WO2011013657A1 - 化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液 - Google Patents

化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液 Download PDF

Info

Publication number
WO2011013657A1
WO2011013657A1 PCT/JP2010/062604 JP2010062604W WO2011013657A1 WO 2011013657 A1 WO2011013657 A1 WO 2011013657A1 JP 2010062604 W JP2010062604 W JP 2010062604W WO 2011013657 A1 WO2011013657 A1 WO 2011013657A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal
semiconductor
solution
mixed solvent
Prior art date
Application number
PCT/JP2010/062604
Other languages
English (en)
French (fr)
Inventor
誠一郎 稲井
佳英 大川
田中 勇
光一郎 山田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201080012699.3A priority Critical patent/CN102362339B/zh
Priority to US13/320,895 priority patent/US9023680B2/en
Priority to JP2010546972A priority patent/JP5340314B2/ja
Priority to EP10804403.3A priority patent/EP2461355A4/en
Publication of WO2011013657A1 publication Critical patent/WO2011013657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a compound semiconductor, a method for producing a photoelectric conversion device including the compound semiconductor, and a semiconductor forming solution for forming the compound semiconductor.
  • a photoelectric conversion device including a light absorption layer made of a compound semiconductor.
  • a compound semiconductor a chalcopyrite I-III-VI group compound semiconductor such as CIGS is used.
  • a first electrode layer made of Mo for example, is formed on a substrate made of soda lime glass, and a light absorption layer made of a compound semiconductor is formed on the first electrode layer.
  • a transparent second electrode layer made of ZnO or the like is formed on the light absorption layer via a buffer layer made of ZnS or CdS.
  • Patent Document 1 discloses a technique for obtaining a compound semiconductor by applying a raw material solution.
  • a metal chalcogenide such as Cu 2 S is first dissolved in hydrazine (N 2 H 4 ) to form a metal hydrazinium precursor solution. And after apply
  • membrane is obtained by heat-processing this membrane
  • the dissolution concentration of the raw material is limited to about 1% by mass, and the solution for forming a film has a low viscosity. Therefore, it is difficult to satisfactorily form a film of about several ⁇ m on the electrode layer by a simple method such as a blade method. Therefore, in order to obtain a compound semiconductor having a desired thickness, it is necessary to apply the raw material solution many times, and the process becomes complicated. Further, when a raw material solution is applied many times to form a compound semiconductor, the heat treatment state in each layer is different, and stress is generated between the layers, so that the compound semiconductor is likely to be cracked.
  • the method for manufacturing a compound semiconductor according to an embodiment of the present invention includes the following steps.
  • a metal raw material containing at least one of a group IB element and a group III-B element is dissolved in a metal state in a mixed solvent containing a chalcogen element-containing organic compound and a Lewis basic organic compound to form a semiconductor.
  • This is a step of producing a forming solution.
  • the second step is a step of producing a film using the semiconductor forming solution.
  • the third step is a step of heat-treating the film.
  • a method for manufacturing a photoelectric conversion device includes the following steps.
  • a metal raw material containing at least one of a group IB element and a group III-B element is dissolved in a metal state in a mixed solvent containing a chalcogen element-containing organic compound and a Lewis basic organic compound to form a semiconductor.
  • This is a step of producing a forming solution.
  • the second step is a step of producing a film by applying the semiconductor forming solution on the electrode.
  • the third step is a step of producing a compound semiconductor by heat-treating the film.
  • the fourth step is a step of manufacturing a second semiconductor having a conductivity type different from that of the compound semiconductor on the compound semiconductor.
  • a solution for forming a semiconductor according to an embodiment of the present invention includes a metal raw material containing at least one of a group IB element and a group III-B element in a mixed solvent containing a chalcogen element-containing organic compound and a Lewis basic organic compound. Dissolved in a metal state.
  • FIG. 1 It is a perspective view which shows an example of embodiment of the photoelectric conversion apparatus produced using the manufacturing method of the compound semiconductor concerning one Embodiment of this invention, and the manufacturing method of the photoelectric conversion apparatus concerning one Embodiment of this invention. It is sectional drawing of the photoelectric conversion apparatus of FIG. It is sectional drawing which shows the other example of embodiment of the photoelectric conversion apparatus produced using the manufacturing method of the compound semiconductor concerning one Embodiment of this invention, and the manufacturing method of the photoelectric conversion apparatus concerning one Embodiment of this invention. .
  • FIG. 1 is a perspective view showing an example of an embodiment of a photoelectric conversion device manufactured using a method for manufacturing a compound semiconductor according to an embodiment of the present invention and a method for manufacturing a photoelectric conversion device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view thereof.
  • FIG. 3 shows another example of the embodiment of the photoelectric conversion device manufactured using the method for manufacturing the compound semiconductor according to the embodiment of the present invention and the method for manufacturing the photoelectric conversion device according to the embodiment of the present invention.
  • FIG. 1 to 3 the same reference numerals are given to the same components.
  • the photoelectric conversion device 10 includes a substrate 1, a first electrode layer 2, a light absorption layer 3, a buffer layer 4, and a second electrode layer 5.
  • the photoelectric conversion device 10 in the present embodiment shows a device in which light is incident from the second electrode layer 5 side, the present invention is not limited thereto, and light may be incident from the substrate 1 side. .
  • the photoelectric conversion device 10 includes a third electrode layer 6 provided on the substrate 1 side of the light absorption layer 3 so as to be separated from the first electrode layer 2.
  • the second electrode layer 5 and the third electrode layer 6 are electrically connected by a connection conductor 7 provided in the light absorption layer 3.
  • the third electrode layer 6 is integrated with the first electrode layer 2 of the adjacent photoelectric conversion device 10. With this configuration, adjacent photoelectric conversion devices 10 are connected in series.
  • the connection conductor 7 is provided so as to divide the light absorption layer 3 and the buffer layer 4, and is sandwiched between the first electrode layer 2 and the second electrode layer 5.
  • the light absorption layer 3 and the buffer layer 4 perform photoelectric conversion.
  • the substrate 1 is for supporting the photoelectric conversion device 10.
  • Examples of the material used for the substrate 1 include glass, ceramics, resin, and metal.
  • the first electrode layer 2 and the third electrode layer 6 are made of a conductor such as Mo, Al, Ti, or Au, and are formed on the substrate 1 by a sputtering method or a vapor deposition method.
  • the light absorption layer 3 is a layer mainly composed of a chalcopyrite (also referred to as CIS) I-III-VI group compound semiconductor.
  • the group I-III-VI compound is a group IB element (in this specification, the name of the group follows the short period type periodic table. Note that the group IB element is a long period type periodic table of IUPAC. And a group III-B element (also referred to as group 13 element) and a group VI-B element (also referred to as group 16 element).
  • the I-III-VI group compound semiconductor include Cu (In, Ga) Se 2 (also referred to as CIGS), Cu (In, Ga) (Se, S) 2 (also referred to as CIGSS), and CuInS 2 (CIS). Also).
  • Cu (In, Ga) Se 2 refers to a compound mainly composed of Cu, In, Ga, and Se.
  • Cu (In, Ga) (Se, S) 2 refers to a compound mainly composed of Cu, In, Ga, Se,
  • the manufacturing method of the light absorption layer 3 includes the following first to third steps.
  • a mixed solvent containing a chalcogen element-containing organic compound and a Lewis basic organic compound hereinafter, a mixed solvent containing a chalcogen element-containing organic compound and a Lewis basic organic compound is also simply referred to as a mixed solvent So
  • a metal raw material containing at least one of a group IB element and a group III-B element is dissolved in a metal state to produce a semiconductor forming solution.
  • the second step is a step of producing a film using the semiconductor forming solution.
  • the third step is a step of heat-treating the film to make a group I-III-VI compound semiconductor.
  • the chalcogen element-containing organic compound is an organic compound containing a chalcogen element.
  • the chalcogen element refers to S, Se, and Te among VI-B group elements.
  • examples of the chalcogen element-containing organic compound include thiol, sulfide, disulfide, thiophene, sulfoxide, sulfone, thioketone, sulfonic acid, sulfonic acid ester, and sulfonic acid amide.
  • thiol, sulfide, disulfide and the like can be used from the viewpoint of improving the coating property.
  • thiophenol, diphenyl sulfide, etc. and derivatives thereof are mentioned, for example.
  • examples of the chalcogen element-containing organic compound include selenol, selenide, diselenide, selenoxide, and selenone.
  • a metal solution can be satisfactorily produced by forming a complex with a metal
  • serer, selenide, diselenide and the like can be used.
  • those having a phenyl group can be used from the viewpoint of improving the coating property. Examples of those having such a phenyl group include benzene selenol, phenyl selenide, diphenyl diselenide and the like and derivatives thereof.
  • examples of the chalcogen element-containing organic compound include tellurol, telluride, ditelluride, and derivatives thereof.
  • Lewis basic organic compound is an organic compound having a functional group having an unshared electron pair.
  • a functional group having a VB group element having an unshared electron pair also referred to as a Group 15 element
  • a functional group having a VI-B group element having an unshared electron pair is used. be able to.
  • an amino group any of primary amine to tertiary amine
  • a carbonyl group a cyano group and the like can be mentioned.
  • Lewis basic organic compounds include pyridine, aniline, triphenylphosphine, 2,4-pentanedione, 3-methyl-2,4-pentanedione, triethylamine, triethanolamine, acetonitrile, benzyl, benzoin, etc. And derivatives thereof. From the viewpoint of handleability, those that are liquid at room temperature, which are generally used as organic solvents, can be used. In particular, from the viewpoint of improving the coating property, those having a boiling point of 100 ° C. or higher can be used.
  • a metal raw material containing at least one of a group IB metal and a group III-B metal is obtained.
  • a solution for forming a semiconductor having a high concentration by directly dissolving in a metal state (a high concentration is a total of raw materials of a group I-III-VI compound semiconductor, for example, a total concentration of a group IB metal and a group III-B metal, Alternatively, the total concentration of the group IB metal, group III-B metal and group VI-B element is 5% by mass or more, preferably 10% by mass or more).
  • the solubility can be greatly improved as compared with the case where only the chalcogen element-containing organic compound or only the Lewis basic organic compound is used.
  • Such a high-concentration solution becomes a relatively high viscosity coating solution suitable for coating by a simple method such as a blade method. Therefore, by forming a film using this coating solution, a relatively thick and good film can be obtained even by a single application, and as a result, a compound semiconductor having a desired thickness can be easily and satisfactorily produced. it can.
  • a coating solution can be prepared without using water, and by using such a non-aqueous coating solution, oxidation of the raw material metal can be reduced, which is favorable.
  • a compound semiconductor can be manufactured.
  • the semiconductor forming solution may be directly dissolved in the mixed solvent So in a state where at least one of the group IB metal and the group III-B metal is a metal.
  • the solubility can be increased. Therefore, even if any one of the group IB metal and the group III-B metal is dissolved in a state such as an inorganic salt or an organic salt, The raw material concentration can be increased. Further, a solution having a higher concentration can be prepared by dissolving both the Group IB metal and the Group III-B metal directly in the mixed solvent So in the metal state. Further, when the group IB metal or the group III-B metal is composed of a plurality of metal elements, any metal element may be directly dissolved in the mixed solvent So in the metal state. In the following embodiment, an example will be shown in which all of the metal raw materials containing a group IB metal and a group III-B metal are directly dissolved in a mixed solvent So in a metal state.
  • the mixed solvent So may be a combination of compounds that become liquid at room temperature from the viewpoint of handleability.
  • the chalcogen element-containing organic compound may be 100 to 150 mol% with respect to the Lewis basic organic compound.
  • the Group IB metal and the Group III-B metal can be dissolved satisfactorily to obtain a solution in which the raw material of the Group I-III-VI compound semiconductor is 10% by mass or more.
  • the step of preparing the semiconductor forming solution there is a step of dissolving the group IB element metal and the group III-B element metal simultaneously or sequentially in the mixed solvent So. That is, the metal of the group IB element and the metal of the group III-B element are added simultaneously or sequentially into one mixed solvent So to be dissolved.
  • the Group IB metal and the Group III-B metal which are the raw materials for the Group I-III-VI compound semiconductor, can be dissolved at a time in one mixed solvent So, and the process can be simplified.
  • the step of producing a semiconductor forming solution there is a step of dissolving an alloy of a group IB element and a group III-B element in a mixed solvent So.
  • the IB group metal and the III-B group metal which are the raw materials of the I-III-VI group compound semiconductor, can be dissolved at a time in one mixed solvent So, and the process can be simplified.
  • Such a process includes a step of preparing a group IB metal solution by dissolving a group IB element in a metal state in a part of the mixed solvent So, and a group III-B element in another mixed solvent So. In a metal state to prepare a group III-B metal solution, and a step of mixing the group IB metal solution and the group III-B metal solution.
  • the raw materials can be easily dissolved at a high concentration, and a solution for forming a compound semiconductor suitable for coating can be obtained.
  • the group IB metal as the metal dissolved in the mixed solvent So can be copper or silver.
  • the group IB metal may be one element or two or more elements. In the case of two or more elements, these alloys may be used.
  • gallium or indium can be used as the group III-B metal as the metal dissolved in the mixed solvent So.
  • the group III-B metal may be one element or two or more elements. In the case of two or more elements, these alloys may be used.
  • the IB group metal and the III-B group metal are directly dissolved in the mixed solvent So in the metal state because the IB group metal and the III-B metal are in the metal salt or metal complex state. Instead, it refers to mixing and dissolving directly in the mixed solvent So in the state of a single metal ingot or alloy ingot.
  • the bullion of a single metal or an alloy is temporarily changed to another compound (for example, an inorganic metal salt such as chloride, an organic acid salt, or an organic complex) and then dissolved in a solvent.
  • another compound for example, an inorganic metal salt such as chloride, an organic acid salt, or an organic complex
  • the inclusion of impurities other than the elements constituting the I-III-VI group compound semiconductor can be reduced, and the purity can be increased and the crystallization of the I-III-VI group compound semiconductor can be promoted.
  • combining a metal chalcogenide is unnecessary, and a process can be simplified.
  • the chalcogen element-containing organic compound and the group IB metal element may be favorably bonded by a chemical bond such as a coordination bond.
  • the chalcogen element-containing organic compound and the III-B group metal element may be favorably bonded by a chemical bond such as a coordination bond.
  • the chalcogen element-containing organic compound and the Lewis basic organic compound may be favorably bonded by a chemical bond such as a coordination bond.
  • Chemical bonds between chalcogen element-containing organic compounds and group IB metal elements, chemical bonds between chalcogen element-containing organic compounds and group III-B metal elements, and chemical bonds between chalcogen element-containing organic compounds and Lewis basic organic compounds are: For example, it can be confirmed by NMR method. According to this method, the chemical bond between the chalcogen element-containing organic compound and the group IB metal element can be detected as a peak shift in multinuclear NMR of the chalcogen element. Further, the chemical bond between the chalcogen element-containing organic compound and the III-B group metal element can be detected as a peak shift of multinuclear NMR of the chalcogen element.
  • the chemical bond between the chalcogen element-containing organic compound and the Lewis basic organic compound can be detected as a peak shift derived from the Lewis basic organic compound.
  • the number of moles of chemical bonds between the chalcogen element-containing organic compound and the Group IB metal element is in the range of 0.1 to 10 times the number of moles of chemical bonds between the chalcogen element-containing organic compound and the Lewis basic organic compound. be able to.
  • the number of moles of chemical bonds between the chalcogen element-containing organic compound and the III-B group metal element is in the range of 0.1 to 10 times the number of moles of chemical bonds between the chalcogen element-containing organic compound and the Lewis basic organic compound. It can be.
  • the step (first step) of preparing the above-mentioned solution for forming a semiconductor includes a VI-B group simple substance composed of a chalcogen element such as sulfur or selenium in addition to a group IB metal and a group III-B metal.
  • a step of directly dissolving may be included.
  • the chalcogen element-containing organic compound used in the semiconductor forming solution is mixed with the Lewis basic organic compound to constitute the mixed solvent So, and the Group IB metal and the Group III-B metal are dissolved as one component of the mixed solvent So. However, it becomes a VI-B group element constituting the I-III-VI group compound semiconductor by heat treatment.
  • this VI-B group element may decrease due to vaporization or the like, and in order to compensate for this, the VI-B group simple substance may be dissolved separately. As a result, an I-III-VI group compound semiconductor with good photoelectric conversion efficiency can be formed. Even in the case of including such a step of directly dissolving the group VI-B simple substance, by using the mixed solvent So, the total weight concentration of the group IB metal, the group III-B metal and the group VI-B simple substance is 10 It can be made to be at least mass%.
  • the step of directly dissolving the group VI-B simple substance is to mix the group VI-B simple substance with the group IB metal and the group III-B metal, and dissolve the mixture in the mixed solvent So. Also good.
  • the VI-B group simple substance may be prepared by directly dissolving the VI-B group simple substance in the mixed solvent So and added to the group IB metal solution and the group III-B metal solution. .
  • a second step which is a step of producing a film using the semiconductor forming solution.
  • a process for producing the film (second process) a process for forming the film by coating the produced solution for forming a semiconductor on the first electrode layer 2 as it is.
  • the process can be simplified by using the semiconductor-forming solution thus produced as it is as a coating-forming coating solution.
  • Such steps include a step of adding a low-polarity solvent having a polarity lower than that of the Lewis basic organic compound to the semiconductor forming solution to form a precipitate, and this precipitate is removed from an organic solvent (hereinafter referred to as a precipitate).
  • impurities can be further removed when the precipitate is formed, and impurities can be further reduced from being mixed into the film.
  • the precipitate produced by adding the low-polarity solvent is deposited as a group in which the group IB metal, the group III-B metal, and the chalcogen element-containing organic compound are bonded to each other.
  • the low polarity solvent for generating the precipitate may be a solvent having a lower polarity than the Lewis basic organic compound, and a nonpolar organic solvent such as hexane, heptane, carbon tetrachloride, or benzene may be used. it can.
  • the coating solution solvent for dissolving the precipitate to form a coating solution may be the mixed solvent So or other polar solvent. Examples of the solvent for the coating solution include pyridine and aniline.
  • the above-described coating is formed by applying the semiconductor forming solution or the coating solution onto the surface of the first electrode layer 2 using a spin coater, screen printing, dipping, spraying, or a die coater, and drying. Is done by. Drying can be performed in a reducing atmosphere. The drying temperature is 50 to 300 ° C., for example. In this drying, the organic component may be thermally decomposed.
  • the film is then heat-treated to produce a 1.0-2.5 ⁇ m I-III-VI group compound semiconductor.
  • the heat treatment may be performed in a reducing atmosphere in order to prevent oxidation and to obtain a good I-III-VI group compound semiconductor.
  • a reducing atmosphere in the heat treatment any one of a nitrogen atmosphere, a forming gas atmosphere, and a hydrogen atmosphere can be used.
  • the heat treatment temperature is, for example, 400 ° C. to 600 ° C.
  • the group IB metal and the group III-B metal in the film can react with the chalcogen element in the chalcogen element-containing organic compound to form the group I-III-VI compound semiconductor.
  • the VI-B group element is separately dissolved in the semiconductor forming solution
  • the group IB metal and the group III-B metal also react with the separately dissolved group VI-B element to form I- III-VI compound semiconductors can be formed.
  • the gas containing a chalcogen element in the reducing atmosphere at the time of the heat processing of the said film
  • the IB group metal and the III-B group metal in the film can also react with the chalcogen element in the reducing atmosphere, and the I-III-VI group compound semiconductor can be more satisfactorily produced.
  • the gas containing a chalcogen element to be mixed in the reducing atmosphere include S vapor, Se vapor, H 2 S, and H 2 Se.
  • the photoelectric conversion device 10 By stacking a second semiconductor having a conductivity type different from that of the light absorption layer 3 on the I-III-VI group compound semiconductor (light absorption layer 3), the photoelectric conversion device 10 can be obtained.
  • the light absorption layer 3 having a desired thickness can be easily and satisfactorily produced. Therefore, the second semiconductor layer is laminated on the light absorption layer 3.
  • the photoelectric conversion device 10 having high photoelectric conversion efficiency can be easily manufactured.
  • the second semiconductor has a conductivity type different from that of the light absorption layer 3, and the electric charge generated by the light irradiation between the light absorption layer 3 and the second semiconductor can be well separated to obtain electric power.
  • the second semiconductor is an n-type semiconductor.
  • another layer may be interposed at the interface between the light absorption layer 3 and the second semiconductor. Examples of such other layers include an i-type semiconductor layer and a buffer layer that forms a heterojunction with the light absorption layer 3.
  • the buffer layer 4 is provided on the light absorption layer 3, and the buffer layer 4 functions as a buffer layer that performs a heterojunction with the light absorption layer 3 and has a different conductivity from the light absorption layer 3. It also functions as a semiconductor layer having a mold.
  • the buffer layer 4 can be a layer having a resistivity of 1 ⁇ ⁇ cm or more from the viewpoint of reducing leakage current.
  • Examples of the buffer layer 4 include CdS, ZnS, ZnO, In 2 Se 3 , In (OH, S), (Zn, In) (Se, OH), and (Zn, Mg) O. It is formed by a position (CBD) method or the like.
  • In (OH, S) refers to a compound mainly composed of In, OH, and S.
  • (Zn, In) (Se, OH) refers to a compound mainly composed of Zn, In, Se, and OH.
  • (Zn, Mg) O refers to a compound mainly composed of Zn, Mg and O.
  • the buffer layer 4 preferably has a light transmittance with respect to the wavelength region of light absorbed by the light absorption layer 3.
  • the buffer layer 4 has a thickness of 10 to 200 nm, and may be 100 nm or more. Thereby, the fall of the photoelectric conversion efficiency in high-temperature, high-humidity conditions can be reduced especially effectively.
  • the second electrode layer 5 is a 0.05 to 3.0 ⁇ m transparent conductive film such as ITO or ZnO.
  • the second electrode layer 5 is formed by sputtering, vapor deposition, chemical vapor deposition (CVD), or the like.
  • the second electrode layer 5 is a layer having a resistivity lower than that of the buffer layer 4, and is for taking out charges generated in the light absorption layer 3. From the viewpoint of taking out charges well, the resistivity of the second electrode layer 5 may be less than 1 ⁇ ⁇ cm and the sheet resistance may be 50 ⁇ / ⁇ or less.
  • the second electrode layer 5 preferably has a light-transmitting property with respect to the absorption light of the light absorption layer 3 in order to increase the absorption efficiency of the light absorption layer 3.
  • the second electrode layer 5 has a thickness of 0.05 to 0.5 ⁇ m from the viewpoint of enhancing the light transmittance and at the same time enhancing the light reflection loss preventing effect and the light scattering effect, and further transmitting the current generated by the photoelectric conversion. It can be a thickness. Further, from the viewpoint of preventing light reflection loss at the interface between the second electrode layer 5 and the buffer layer 4, the refractive indexes of the second electrode layer 5 and the buffer layer 4 may be made equal.
  • a portion where the buffer layer 4 and the second electrode layer 5 are combined, that is, a portion sandwiched between the light absorption layer 3 and the collector electrode 8 contains a III-VI group compound as a main component. But you can. Thereby, moisture resistance can be improved.
  • the III-VI group compound as a main component means that among the compounds constituting the combined portion of the buffer layer 4 and the second electrode layer 5, a III-VI group compound (a plurality of types of III- When there is a VI group compound, the sum) is 50 mol% or more, and further 80 mol% or more. From the viewpoint of further improving the moisture resistance of the photoelectric conversion device 10, among the metal elements constituting the combined portion of the buffer layer 4 and the second electrode layer 5, the Zn element is 50 atomic% or less, It can be 20 atomic% or less.
  • a plurality of photoelectric conversion devices 10 can be arranged and electrically connected to form a photoelectric conversion module.
  • the photoelectric conversion device 10 is separated from the first electrode layer 2 on the substrate 1 side of the light absorption layer 3.
  • the third electrode layer 6 is provided.
  • the second electrode layer 5 and the third electrode layer 6 are electrically connected by a connection conductor 7 provided in the light absorption layer 3.
  • connection conductor 7 is made of a material having a lower electrical resistivity than the light absorption layer 3.
  • a connection conductor 7 can be formed, for example, by forming a groove penetrating the light absorption layer 3 and the buffer layer 4 and forming a conductor in the groove.
  • the connection electrode 7 can be formed by forming the second electrode layer 5 also in the groove. (See FIGS. 1 and 2). Further, the connection conductor 7 may be formed by filling the groove with a conductive paste (see FIG. 3). In FIG.
  • connection conductor 7 is formed by filling the conductive paste in the grooves penetrating the light absorption layer 3 and the buffer layer 4.
  • the groove can be formed by modifying the light absorption layer 3 and part of the buffer layer 4 to lower the electric resistivity without forming the groove as described above.
  • a collecting electrode 8 may be formed on the second electrode layer 5.
  • the collecting electrode 8 is for reducing the electric resistance of the second electrode layer 5.
  • the thickness of the second electrode layer 5 may be made as thin as possible, but if it is thin, the conductivity tends to decrease. Therefore, by providing the current collecting electrode 8 on the second electrode layer 5, the current generated in the light absorption layer 3 can be taken out efficiently. As a result, the power generation efficiency of the photoelectric conversion device 10 can be increased.
  • the current collecting electrode 8 is formed in a linear shape from one end of the photoelectric conversion device 10 to the connection conductor 7. Thereby, the current generated by the photoelectric conversion of the light absorption layer 3 is collected to the current collecting electrode 8 via the second electrode layer 5, and this is favorably applied to the adjacent photoelectric conversion device 10 via the connection conductor 7. It can conduct electricity.
  • the current collecting electrode 8 may have a width of 50 to 400 ⁇ m from the viewpoint of reducing light shielding to the light absorption layer 3 and having good conductivity.
  • the current collecting electrode 8 may have a plurality of branched portions.
  • the current collecting electrode 8 can be formed, for example, by printing a metal paste in which a metal powder such as Ag is dispersed in a resin binder or the like in a pattern and curing it.
  • the compound semiconductor manufacturing method and the photoelectric conversion device manufacturing method according to the embodiment of the present invention were evaluated as follows.
  • Benzene selenol was dissolved in pyridine so as to be 100 mol% to prepare a mixed solvent So. Next, copper, indium, gallium and selenium are directly dissolved in the mixed solvent So, and copper, indium, gallium and selenium are dissolved in the mixed solvent So, respectively.
  • the sample solution was prepared so that it might become 3.3 mass%, 3.2 mass%, 1.3 mass%, and 7.2 mass% (the total concentration of copper, indium, gallium and selenium is 14.0 mass%).
  • a substrate 1 having a first electrode layer 2 made of Mo formed on the surface was prepared, and the sample solution was applied by a blade method and dried to form a film. After a total of two coatings by the blade method, heat treatment was performed in an atmosphere of hydrogen gas. The heat treatment was performed by raising the temperature to 525 ° C. over 5 minutes and holding at 525 ° C. for 1 hour, followed by natural cooling to produce a CIGS compound semiconductor layer as a sample having a thickness of 2 ⁇ m.
  • a CIGS compound semiconductor layer as a comparative example was produced as follows. First, copper selenide, indium selenide, and gallium selenide were dissolved in hydrazine until the solubility limit was reached. At this time, a comparative solution having a total concentration of copper, indium, gallium and selenium of 0.5% by mass was prepared.
  • a substrate with a first electrode layer made of Mo formed on the surface was prepared, and the comparative solution was applied by the blade method and dried to form a film. After a total of 10 coatings by this blade method, heat treatment was performed in an atmosphere of hydrogen gas. The heat treatment was carried out by raising the temperature to 525 ° C. over 5 minutes and holding at 525 ° C. for 1 hour, followed by natural cooling to produce a CIGS compound semiconductor layer having a thickness of 2 ⁇ m as a comparative example.
  • the CIGS compound semiconductor layer as a sample produced by the method for producing a compound according to the embodiment of the present invention can increase the raw material concentration of the sample solution, the thickness of the desired 2 ⁇ m can be obtained only by applying the blade method twice. Can have. Furthermore, when the produced compound semiconductor layer was observed, generation
  • the CIGS compound semiconductor layer as a comparative example has a limit in the raw material concentration of the comparative solution and cannot be increased in concentration, the thickness of the film after drying is reduced. Therefore, in the comparative example, in order to form the same 2 ⁇ m-thickness as the CIGS compound semiconductor layer as a sample, it was necessary to perform coating by the blade method 10 times, and the process became complicated. Moreover, when the produced compound semiconductor layer as a comparative example was observed, it was found that cracks occurred.
  • a photoelectric conversion device was produced as follows.
  • Cadmium acetate and thiourea were dissolved in ammonia, and the substrate 1 on which the above compound semiconductor layer was formed was immersed therein to form a buffer layer 4 made of CdS having a thickness of 50 nm on the compound semiconductor layer. Further, a transparent second electrode layer 5 made of an Al-doped zinc oxide film was formed on the buffer layer 4 by sputtering. Finally, an aluminum electrode (extraction electrode) was formed by vapor deposition to produce the photoelectric conversion device 10.
  • the photoelectric conversion efficiency was measured.
  • photoelectric conversion efficiency what is called a stationary light solar simulator is used, and the irradiation intensity of the light with respect to the light-receiving surface of the photoelectric conversion apparatus 10 is 100 mW / cm ⁇ 2 >, and AM (air mass) is 1.5. The conversion efficiency was measured.
  • the photoelectric conversion efficiency of the photoelectric conversion device as a comparative example was 8%, whereas the photoelectric conversion efficiency of the photoelectric conversion device as a sample was 12%, which was found to be excellent.
  • Substrate 2 First electrode layer 3: Light absorption layer 4: Buffer layer 5: Second electrode layer 6: Third electrode layer 7: Connection conductor 8: Current collecting electrode 10: Photoelectric conversion device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

 化合物半導体層の製造方法は、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒に、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させて半導体形成用溶液を作製する工程と、該半導体形成用溶液を用いて皮膜を作製する工程と、該皮膜を熱処理する工程とを具備する。

Description

化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液
 本発明は、化合物半導体の製造方法および化合物半導体を含む光電変換装置の製造方法ならびに化合物半導体を形成するための半導体形成用溶液に関するものである。
 太陽電池として、化合物半導体から成る光吸収層を具備する光電変換装置がある。この化合物半導体としては、CIGS等のカルコパライト系のI-III-VI族化合物半導体が用いられている。この光電変換装置は、例えば、ソーダライムガラスからなる基板上に、例えば、Moからなる第1の電極層が形成され、この第1の電極層上に化合物半導体からなる光吸収層が形成されている。さらに、その光吸収層上には、ZnSまたはCdSなどからなるバッファ層を介して、ZnOなどからなる透明の第2の電極層が形成されている。
 このような光吸収層を構成する化合物半導体を形成するための製法としては、スパッタリング法などの真空系の装置を用いた方法が用いられている。しかし、真空系の装置を用いた方法では製造コストが高くなるため、このような高コストの製法に代わり、低コスト化を目的とした種々の製法の開発が行われている。
 例えば、特許文献1には、原料溶液を塗布することによって化合物半導体を得る技術が開示されている。特許文献1では、まず、CuS等の金属カルコゲナイドをヒドラジン(N)に溶解させて、金属ヒドラジニウム系の前駆体の溶液を形成している。そして、この溶液を電極層上に塗布して皮膜を形成した後、この皮膜を熱処理することによって金属カルコゲナイド膜(化合物半導体層)を得ている。
 しかしながら、特許文献1に示すような化合物半導体の製法においては、原料の溶解濃度が1質量%程度で限界となり、皮膜を形成するための溶液が低粘度である。そのため、ブレード法のような簡便な方法で電極層上に数μm程度の皮膜を良好に形成することが困難である。よって、所望の厚みの化合物半導体を得るためには何度も原料溶液を塗布する必要があり、工程が複雑になる。また、原料溶液を何度も塗布して化合物半導体を形成すると、各層における熱処理状態が異なり、層間で応力が生じて化合物半導体にクラックが生じやすくなる。
 以上のことから、所望の厚みの化合物半導体を容易にかつ良好に作製することのできる製造方法が望まれている。
米国特許第7341917号明細書
 本発明の一実施形態に係る化合物半導体の製造方法は、以下の工程を具備する。第1の工程は、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒に、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させて半導体形成用溶液を作製する工程である。第2の工程は、前記半導体形成用溶液を用いて皮膜を作製する工程である。第3の工程は、前記皮膜を熱処理する工程である。
 本発明の一実施形態に係る光電変換装置の製造方法は、以下の工程を具備する。第1の工程は、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒に、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させて半導体形成用溶液を作製する工程である。第2の工程は、前記半導体形成用溶液を電極上に塗布して皮膜を作製する工程である。第3の工程は、前記皮膜を熱処理して化合物半導体を作製する工程である。第4の工程は、該化合物半導体上に該化合物半導体とは異なる導電型を有する第2の半導体を作製する工程である。
 本発明の一実施形態に係る半導体形成用溶液は、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒に、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させて成る。
本発明の一実施形態にかかる化合物半導体の製造方法および本発明の一実施形態にかかる光電変換装置の製造方法を用いて作製した光電変換装置の実施の形態の一例を示す斜視図である。 図1の光電変換装置の断面図である。 本発明の一実施形態にかかる化合物半導体の製造方法および本発明の一実施形態にかかる光電変換装置の製造方法を用いて作製した光電変換装置の実施の形態の他の例を示す断面図である。
 以下、本発明の実施形態について、図面を参照しつつ説明する。図1は、本発明の一実施形態にかかる化合物半導体の製造方法および本発明の一実施形態にかかる光電変換装置の製造方法を用いて作製した光電変換装置の実施の形態の一例を示す斜視図であり、図2はその断面図である。また、図3は、本発明の一実施形態にかかる化合物半導体の製造方法および本発明の一実施形態にかかる光電変換装置の製造方法を用いて作製した光電変換装置の実施の形態の他の例を示す断面図である。図1~図3において同じ構成のものには同じ符号を付している。光電変換装置10は、基板1と、第1の電極層2と、光吸収層3と、バッファ層4と、第2の電極層5とを含んで構成される。本実施形態における光電変換装置10は第2の電極層5側から光が入射されるものを示しているが、これに限定されず、基板1側から光が入射されるものであってもよい。
 図1、図2において、光電変換装置10は複数並べて形成されている。そして、光電変換装置10は、光吸収層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、光吸収層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。この第3の電極層6は、隣接する光電変換装置10の第1の電極層2と一体化されている。この構成により、隣接する光電変換装置10同士が直列接続されている。なお、一つの光電変換装置10内において、接続導体7は光吸収層3およびバッファ層4を分断するように設けられており、第1の電極層2と第2の電極層5とで挟まれた光吸収層3とバッファ層4とで光電変換が行なわれる。
 基板1は、光電変換装置10を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。
 第1の電極層2および第3の電極層6は、Mo、Al、TiまたはAu等の導電体が用いられ、基板1上にスパッタリング法または蒸着法等で形成される。
 光吸収層3は、カルコパイライト系(CIS系ともいう)のI-III-VI族化合物半導体を主成分とする層である。I-III-VI族化合物とは、I-B族元素(本明細書においては、族の名称は、短周期型周期表に従う。なお、I-B族元素は、IUPACの長周期型周期表では11族元素ともいう)とIII-B族元素(13族元素ともいう)とVI-B族元素(16族元素ともいう)との化合物である。I-III-VI族化合物半導体としては、例えば、Cu(In,Ga)Se(CIGSともいう)、Cu(In,Ga)(Se,S)(CIGSSともいう)、およびCuInS(CISともいう)が挙げられる。なお、Cu(In,Ga)Seとは、CuとInとGaとSeとから主に構成された化合物をいう。また、Cu(In,Ga)(Se,S)とは、CuとInとGaとSeとSとから主に構成された化合物をいう。
 光吸収層3の製造方法は、以下の第1~第3の工程を具備する。第1の工程は、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒(以下、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒を、単に混合溶媒Soともいう)に、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させて半導体形成用溶液を作製する工程である。第2の工程は、上記半導体形成用溶液を用いて皮膜を作製する工程である。第3の工程は、上記皮膜を熱処理してI-III-VI族化合物半導体にする工程である。
 カルコゲン元素含有有機化合物とは、カルコゲン元素を含む有機化合物である。カルコゲン元素とは、VI-B族元素のうち、S、SeおよびTeをいう。カルコゲン元素がSである場合、カルコゲン元素含有有機化合物としては、例えば、チオール、スルフィド、ジスルフィド、チオフェン、スルホキシド、スルホン、チオケトン、スルホン酸、スルホン酸エステルおよびスルホン酸アミド等が挙げられる。金属と錯体を形成して金属溶液を良好に作製できるという観点からは、チオール、スルフィド、ジスルフィド等を用いることができる。特に塗布性を高めるという観点からは、フェニル基を有するものを用いることができる。このようなフェニル基を有するものとしては、例えば、チオフェノール、ジフェニルスルフィド等およびこれらの誘導体が挙げられる。
 カルコゲン元素がSeである場合、カルコゲン元素含有有機化合物としては、例えば、セレノール、セレニド、ジセレニド、セレノキシド、セレノン等が挙げられる。金属と錯体を形成して金属溶液を良好に作製できるという観点からは、セレール、セレニド、ジセレニド等を用いることができる。特に塗布性を高めるという観点からは、フェニル基を有するものを用いることができる。このようなフェニル基を有するものとしては、例えば、ベンゼンセレノール、フェニルセレナイド、ジフェニルジセレナイド等およびこれらの誘導体が挙げられる。
 カルコゲン元素がTeである場合、カルコゲン元素含有有機化合物としては、例えば、テルロール、テルリド、ジテルリド等およびこれらの誘導体が挙げられる。
 ルイス塩基性有機化合物とは、非共有電子対を有する官能基を具備する有機化合物である。このような官能基としては、非共有電子対を有するV-B族元素(15族元素ともいう)を具備した官能基や非共有電子対を有するVI-B族元素を具備した官能基を用いることができる。例えば、アミノ基(1級アミン~3級アミンのいずれでもよい)、カルボニル基、シアノ基等が挙げられる。ルイス塩基性有機化合物の具体例としては、ピリジン、アニリン、トリフェニルフォスフィン、2,4-ペンタンジオン、3-メチル-2,4-ペンタンジオン、トリエチルアミン、トリエタノールアミン、アセトニトリル、ベンジル、ベンゾイン等およびこれらの誘導体が挙げられる。取り扱い性の観点からは一般に有機溶剤として用いられている室温で液状であるものを用いることができる。特に塗布性を高めるという観点からは、沸点が100℃以上であるものを用いることができる。
 本実施形態においては、カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒(混合溶媒So)を用いることによって、I-B族金属およびIII-B族金属の少なくとも一方を含む金属原料を金属の状態で直接溶解させて高濃度の半導体形成用溶液(高濃度とはI-III-VI族化合物半導体の原料の合計、例えば、I-B族金属およびIII-B族金属の合計濃度、またはI-B族金属、III-B族金属およびVI-B族元素の合計濃度が5質量%以上、好ましくは10質量%以上をいう)を容易に作製できる。つまり、混合溶媒Soを用いることにより、単にカルコゲン元素含有有機化合物のみ、またはルイス塩基性有機化合物のみの溶媒を用いる場合に比べ、溶解度を非常に向上させることができる。このような高濃度の溶液は、ブレード法等の簡便な方法で塗布するのに適した比較的高い粘度の塗布液となる。よって、この塗布液を用いて皮膜を形成することにより、一度の塗布でも比較的厚い良好な皮膜を得ることができ、その結果、所望の厚みの化合物半導体を容易にかつ良好に作製することができる。また、このような混合溶媒Soを用いることによって、水を用いずに塗布液を作製することができ、このような非水系の塗布液を用いることにより、原料金属の酸化を低減でき、良好な化合物半導体を作製することが可能となる。
 半導体形成用溶液はI-B族金属およびIII-B族金属のうち、少なくとも一方が金属の状態で混合溶媒Soに直接溶解させていればよい。これによって溶解度を高めることができるので、たとえ、I-B族金属およびIII-B族金属のうち、いずれかが無機塩や有機塩のような状態で溶解されていても、半導体形成用溶液の原料濃度を高めることができる。また、I-B族金属およびIII-B族金属の両方が金属の状態で混合溶媒Soに直接溶解されることで、より高濃度の溶液を作製することができる。また、I-B族金属またはIII-B族金属が複数の金属元素から成る場合、いずれかの金属元素が金属の状態で混合溶媒Soに直接溶解させていればよい。以下の実施形態ではI-B族金属およびIII-B族金属を含む金属原料のうち、すべてを金属の状態で混合溶媒Soに直接溶解した例を示す。
 混合溶媒Soは、取り扱い性の観点からは、室温で液状となるような化合物の組み合わせであってもよい。カルコゲン元素含有有機化合物は、ルイス塩基性有機化合物に対して100~150モル%であってもよい。これにより、I-B族金属およびIII-B族金属を良好に溶解させて、I-III-VI族化合物半導体の原料が10質量%以上である溶液とすることができる。
 半導体形成用溶液を作製する工程(第1の工程)の一例としては、混合溶媒SoにI-B族元素の金属およびIII-B族元素の金属を同時にあるいは順に溶解させる工程が挙げられる。つまり、一つの混合溶媒SoにI-B族元素の金属およびIII-B族元素の金属を、同時に投入して、あるいは順に投入して溶解させる。この場合、I-III-VI族化合物半導体の原料となるI-B族金属およびIII-B族金属を一つの混合溶媒Soに対して一度に溶解させることができ、工程を簡略化できる。
 半導体形成用溶液を作製する工程(第1の工程)の他の例として、混合溶媒SoにI-B族元素とIII-B族元素との合金を溶解させる工程が挙げられる。この場合も、I-III-VI族化合物半導体の原料となるI-B族金属およびIII-B族金属を一つの混合溶媒Soに対して一度に溶解させることができ、工程を簡略化できる。
 また、半導体形成用溶液を作製する工程(第1の工程)の他の例として以下のような複数工程を含むものが挙げられる。このような工程としては、一部の混合溶媒SoにI-B族元素を金属の状態で溶解させてI-B族金属溶液を作製する工程と、他の混合溶媒SoにIII-B族元素を金属の状態で溶解させてIII-B族金属溶液を作製する工程と、このI-B族金属溶液およびIII-B族金属溶液を混合する工程とを含む。この場合、異種原料を個別に上記混合溶媒Soに溶解させることによって、容易かつ高濃度に原料を溶解させることができ、塗布に適した化合物半導体形成用の溶液を得ることができる。つまり、異種原料を同時に溶解させた場合は、溶解度の差によって、溶解度の低い方の原料の溶解性を高めにくくなる場合があるが、個々に原料を溶解させることによって、溶解性が良好になる。
 以上のような半導体形成用溶液を作製する工程の複数例において、上記混合溶媒Soに溶解する金属としてのI-B族金属は、銅や銀を用いることができる。I-B族金属は1種の元素であってもよく、2種以上の元素であってもよい。2種以上の元素である場合、これらの合金であってもよい。同様に、上記混合溶媒Soに溶解する金属としてのIII-B族金属は、ガリウムやインジウムを用いることができる。III-B族金属は1種の元素であってもよく、2種以上の元素であってもよい。2種以上の元素である場合、これらの合金であってもよい。
 なお、I-B族金属およびIII-B族金属を金属の状態で混合溶媒Soに直接溶解させるというのは、I-B族金属およびIII-B族金属を、金属塩や金属錯体の状態ではなく、単体金属の地金または合金の地金の状態で直接、混合溶媒Soに混入し、溶解させることをいう。これにより、単体金属の地金または合金の地金を、一旦、他の化合物(例えば塩化物などの無機金属塩、有機酸塩、または有機錯体など)に変化させた後に溶媒に溶解させるという余計な工程は必要なく、工程が簡略化できる。さらに、I-III-VI族化合物半導体を構成する元素以外の不純物が含まれるのを低減することができ、純度を高めてI-III-VI族化合物半導体の結晶化を促進することができる。また、本実施形態では、金属カルコゲナイドを合成するための工程が不要であり、工程が簡略化できる。
 以上のようにして作製される半導体形成用溶液は、カルコゲン元素含有有機化合物とI-B族金属元素とが配位結合等の化学結合によって良好に結合していてもよい。また、カルコゲン元素含有有機化合物とIII-B族金属元素とが配位結合等の化学結合によって良好に結合していてもよい。また、カルコゲン元素含有有機化合物とルイス塩基性有機化合物とが配位結合等の化学結合によって良好に結合していてもよい。このような結合により、これらのI-III-VI族化合物半導体の原料である、カルコゲン元素含有有機化合物、I-B族金属元素およびIII-B族金属元素が互いに接近した状態を維持しながら、後述する皮膜を形成することができる。その結果、皮膜を熱処理することにより、原料同士の反応が良好に行われ、I-III-VI族化合物半導体を良好に作製することが可能となる。
 カルコゲン元素含有有機化合物とI-B族金属元素との化学結合、カルコゲン元素含有有機化合物とIII-B族金属元素との化学結合およびカルコゲン元素含有有機化合物とルイス塩基性有機化合物との化学結合は、例えばNMR法により、確認することができる。そして、この方法によれば、カルコゲン元素含有有機化合物とI-B族金属元素との化学結合はカルコゲン元素の多核NMRのピークシフトとして検出できる。また、カルコゲン元素含有有機化合物とIII-B族金属元素との化学結合はカルコゲン元素の多核NMRのピークシフトとして検出できる。また、カルコゲン元素含有有機化合物とルイス塩基性有機化合物との化学結合はルイス塩基性有機化合物由来のピークのシフトとして検出できる。カルコゲン元素含有有機化合物とI-B族金属元素との化学結合のモル数は、カルコゲン元素含有有機化合物とルイス塩基性有機化合物との化学結合のモル数の0.1~10倍の範囲とすることができる。また、カルコゲン元素含有有機化合物とIII-B族金属元素との化学結合のモル数は、カルコゲン元素含有有機化合物とルイス塩基性有機化合物との化学結合のモル数の0.1~10倍の範囲とすることができる。
 また、上記半導体形成用溶液を作製する工程(第1の工程)は、I-B族金属およびIII-B族金属に加えて、さらに硫黄やセレン等のカルコゲン元素から成るVI-B族単体を直接溶解させる工程を含んでもよい。半導体形成用溶液に用いるカルコゲン元素含有有機化合物は、ルイス塩基性有機化合物と混合して混合溶媒Soを構成し、この混合溶媒Soの一成分としてI-B族金属およびIII-B族金属を溶解する機能を有するが、熱処理によってI-III-VI族化合物半導体を構成するVI-B族元素にもなる。熱処理の際、このVI-B族元素が気化などによって減少することもあり、それを補うために、VI-B族単体を別途溶解させておいてもよい。これにより、光電変換効率が良好なI-III-VI族化合物半導体を形成できる。このようなVI-B族単体を直接溶解させる工程を含む場合でも、混合溶媒Soを用いることにより、I-B族金属、III-B族金属およびVI-B族単体の合計の重量濃度が10質量%以上になるようにすることができる。
 このようなVI-B族単体を直接溶解させる工程は、VI-B族単体をI-B族金属およびIII-B族金属と混合して、この混合物を混合溶媒Soに溶解させるものであってもよい。あるいは、上記混合溶媒SoにVI-B族単体を直接溶解させてVI-B族単体溶液を作製し、これをI-B族金属溶液およびIII-B族金属溶液に加えるものであってもよい。
 このような第1の工程の後、上記半導体形成用溶液を用いて皮膜を作製する工程である第2の工程が行われる。皮膜を作製する工程(第2の工程)の一例としては、作製した上記半導体形成用溶液をそのまま第1の電極層2上に塗布して皮膜を形成する工程が挙げられる。このように作製した半導体形成用溶液をそのまま皮膜形成用の塗布液として用いることにより、工程が簡略化できる。
 また、皮膜を作製する工程(第2の工程)の他の例として以下のような複数工程を含むものが挙げられる。このような工程としては、上記半導体形成用溶液に上記ルイス塩基性有機化合物よりも極性の低い低極性溶媒を加えて沈殿物を生じさせる工程と、この沈殿物を有機溶媒(以下、沈殿物を溶解させる有機溶媒を塗布液用溶媒という)に溶解させて塗布液を作製する工程と、この塗布液を第1の電極層2上に塗布して皮膜を形成する工程とを含む。これにより、沈殿物とする際に不純物をさらに取り除くことができ、皮膜中に不純物が混入するのをさらに低減できる。
 上記低極性溶媒を加えて生じる沈殿物は、I-B族金属、III-B族金属およびカルコゲン元素含有有機化合物が互いに結合した状態のものとして析出する。沈殿物を生じさせるための低極性溶媒としては、上記ルイス塩基性有機化合物よりも極性の低い溶媒であればよく、ヘキサン、ヘプタン、四塩化炭素、ベンゼン等の非極性の有機溶媒を用いることができる。また、沈殿物を溶解させて塗布液にするための塗布液用溶媒としては、上記混合溶媒Soでもよく、他の極性溶媒でもよい。塗布液用溶媒としては、例えば、ピリジンやアニリンなどが挙げられる。
 以上のような皮膜の形成は、上記半導体形成用溶液または上記塗布液をスピンコータ、スクリーン印刷、ディッピング、スプレー、または、ダイコータなどを用いて第1の電極層2の表面に塗布し、乾燥することによって行われる。乾燥は、還元雰囲気下で行うことができる。乾燥時の温度は、例えば、50~300℃で行う。なお、この乾燥の際、有機成分を熱分解させてもよい。
 そして、上記皮膜を熱処理して、1.0~2.5μmのI-III-VI族化合物半導体を作製する。熱処理は、酸化を防止して良好なI-III-VI族化合物半導体とするために、還元雰囲気で行ってもよい。熱処理における還元雰囲気としては、特には、窒素雰囲気、フォーミングガス雰囲気および水素雰囲気のうちいずれかを用いることができる。熱処理温度は、例えば、400℃~600℃とする。このような熱処理において、皮膜中のI-B族金属およびIII-B族金属は、カルコゲン元素含有有機化合物中のカルコゲン元素と反応してI-III-VI族化合物半導体を形成することができる。また、半導体形成用溶液にVI-B族元素も別途溶解させた場合には、I-B族金属およびIII-B族金属は、その別途溶解させたVI-B族元素とも反応してI-III-VI族化合物半導体を形成することができる。
 さらに、上記皮膜の熱処理時における還元雰囲気にはカルコゲン元素を含むガスを混入させてもよい。この場合、皮膜中のI-B族金属およびIII-B族金属は、この還元雰囲気中のカルコゲン元素とも反応することができ、I-III-VI族化合物半導体をより良好に作製することができる。このような還元雰囲気中に混入させるカルコゲン元素を含むガスとしては、S蒸気、Se蒸気、HSまたはHSe等が挙げられる。
 上記I-III-VI族化合物半導体(光吸収層3)上に、この光吸収層3とは異なる導電型の第2の半導体を積層することにより、光電変換装置10とすることができる。本発明の実施形態にかかる化合物半導体の製造方法では、所望の厚みの光吸収層3を容易かつ良好に作製することができるため、この光吸収層3上に第2の半導体層を積層させることにより、光電変換効率の高い光電変換装置10を容易に作製することができる。
 第2の半導体は光吸収層3と異なる導電型を有しており、光吸収層3と第2の半導体とで光照射によって生じる電荷を良好に分離して電力を得ることができる。例えば、光吸収層3がp型半導体である場合、第2の半導体はn型半導体である。なお、光吸収層3と第2の半導体との界面には他の層が介在していてもよい。このような他の層としては、i型半導体層や光吸収層3とヘテロ接合を行うバッファ層等がある。本実施形態では、光吸収層3上にバッファ層4を有しており、このバッファ層4が光吸収層3とのヘテロ接合を行うバッファ層としての機能と、光吸収層3とは異なる導電型を有する半導体層としての機能を兼ねている。
 バッファ層4は、リーク電流を低減するという観点からは抵抗率が1Ω・cm以上の層とすることができる。バッファ層4としては、CdS、ZnS、ZnO、InSe、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等が挙げられ、例えばケミカルバスデポジション(CBD)法等で形成される。なお、In(OH,S)とは、InとOHとSとから主に構成された化合物をいう。(Zn,In)(Se,OH)は、ZnとInとSeとOHとから主に構成された化合物をいう。(Zn,Mg)Oは、ZnとMgとOとから主に構成された化合物をいう。バッファ層4は光吸収層3の吸収効率を高めるため、光吸収層3が吸収する光の波長領域に対して光透過性を有するものが好ましい。
 また、バッファ層4は、その厚みが10~200nmであり、さらには100nm以上であってもよい。これにより、高温高湿条件化における光電変換効率の低下を特に効果的に低減することができる。
 第2の電極層5は、ITO、ZnO等の0.05~3.0μmの透明導電膜である。第2の電極層5は、スパッタリング法、蒸着法または化学的気相成長(CVD)法等で形成される。第2の電極層5は、バッファ層4よりも抵抗率の低い層であり、光吸収層3で生じた電荷を取り出すためのものである。電荷を良好に取り出すという観点からは、第2の電極層5の抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であってもよい。
 第2の電極層5は光吸収層3の吸収効率を高めるため、光吸収層3の吸収光に対して光透過性を有するものが好ましい。光透過性を高めると同時に光反射ロス防止効果および光散乱効果を高め、さらに光電変換によって生じた電流を良好に伝送するという観点から、第2の電極層5は0.05~0.5μmの厚さとすることができる。また、第2の電極層5とバッファ層4との界面での光反射ロスを防止する観点からは、第2の電極層5とバッファ層4の屈折率を等しくしてもよい。
 光電変換装置10において、バッファ層4と第2の電極層5とを合わせた部分、すなわち、光吸収層3と集電電極8とで挟まれる部分は、III-VI族化合物を主成分として含んでもよい。これにより、耐湿性を向上することができる。なお、III-VI族化合物を主成分として含むというのは、このバッファ層4と第2の電極層5とを合わせた部分を構成する化合物のうち、III-VI族化合物(複数種のIII-VI族化合物がある場合、その合計)が50モル%以上、さらには80モル%以上であることをいう。光電変換装置10の耐湿性をさらに向上するという観点からは、このバッファ層4と第2の電極層5とを合わせた部分を構成する金属元素のうち、Zn元素が50原子%以下、さらには20原子%以下とすることができる。
 光電変換装置10は、複数個を並べてこれらを電気的に接続し、光電変換モジュールとすることができる。隣接する光電変換装置10同士を容易に直列接続するために、図1、図2に示すように、光電変換装置10は、光吸収層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、光吸収層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。
 接続導体7は、光吸収層3よりも電気抵抗率の低い材料で構成されている。このような接続導体7は、例えば、光吸収層3およびバッファ層4を貫通する溝を形成し、この溝内に導体を形成することによって形成することができる。このような導体としては、例えば、光吸収層3およびバッファ層4を貫通する溝を形成した後、第2の電極層5をこの溝内にも形成することで接続導体7を形成することができる(図1,2参照)。また、上記溝内に導電ペーストを充填することで接続導体7を形成してもよい(図3参照)。図3においては、集電電極8を導電ペーストで形成する際、光吸収層3およびバッファ層4を貫通する溝内にも導電ペーストを充填して接続導体7を形成している。あるいは、上記のような溝を形成せず、光吸収層3およびバッファ層4の一部を改質して電気抵抗率を低くすることによっても形成することができる。
 また、図1~図3に示すように、第2の電極層5上には集電電極8が形成されていてもよい。集電電極8は、第2の電極層5の電気抵抗を小さくするためのものである。光透過性を高めるという観点からは、第2の電極層5の厚さはできるだけ薄くしてもよいが、薄いと導電性が低下する傾向がある。そこで、第2の電極層5上に集電電極8を設けることにより、光吸収層3で発生した電流を効率よく取り出すことができる。その結果、光電変換装置10の発電効率を高めることができる。
 集電電極8は、例えば、図1に示すように、光電変換装置10の一端から接続導体7にかけて線状に形成されている。これにより、光吸収層3の光電変換によって生じた電流を第2の電極層5を介して集電電極8に集電し、これを接続導体7を介して隣接する光電変換装置10に良好に導電することができる。
 集電電極8は光吸収層3への光を遮るのを低減するとともに良好な導電性を有するという観点からは、50~400μmの幅を有してもよい。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。
 集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペーストをパターン状に印刷し、これを硬化することによって形成することができる。
 本発明の実施形態にかかる化合物半導体の製造方法および光電変換装置の製造方法について、以下のようにして評価した。
 ベンゼンセレノールをピリジンに対し、100モル%となるように溶解し混合溶媒Soを調製した。次に、地金の銅、地金のインジウム、地金のガリウムおよび地金のセレンを上記混合溶媒Soに直接溶解し、銅、インジウム、ガリウムおよびセレンが上記混合溶媒Soに対して、それぞれ2.3質量%、3.2質量%、1.3質量%および7.2質量%(銅、インジウム、ガリウムおよびセレンの合計濃度が14.0質量%)となるようにサンプル溶液を調製した。
 次に、表面にMoから成る第1の電極層2が形成された基板1を用意し、上記サンプル溶液をブレード法にて塗布して乾燥し、皮膜を形成した。このブレード法による塗布を合計2回行った後、水素ガスの雰囲気下で熱処理を実施した。熱処理条件は、525℃まで5分間で昇温し、525℃で1時間保持することで行い、自然冷却し、厚み2μmのサンプルとしてのCIGS化合物半導体層を作製した。
 また、比較例としてのCIGS化合物半導体層を以下のようにして作製した。まず、セレン化銅、セレン化インジウム、セレン化ガリウムをヒドラジンに、溶解限界となるまで溶解した。このとき、銅、インジウム、ガリウムおよびセレンの合計濃度が0.5質量%の比較溶液が調製できた。
 次に、表面にMoから成る第1の電極層が形成された基板を用意し、上記比較溶液をブレード法にて塗布して乾燥し、皮膜を形成した。このブレード法による塗布を合計10回行った後、水素ガスの雰囲気下で熱処理を実施した。熱処理条件は、525℃まで5分間で昇温し、525℃で1時間保持することで行い、自然冷却し、厚み2μmの比較例としてのCIGS化合物半導体層を作製した。
 本発明の実施形態にかかる化合物の製造方法で作製したサンプルとしてのCIGS化合物半導体層は、サンプル溶液の原料濃度を高めることができるため、ブレード法による塗布が2回だけで、所望の2μmの厚みを有することができた。さらに、この作製された化合物半導体層を観察したところ、クラックの発生が低減され、良好な半導体層が形成されていることがわかった。
 一方、比較例としてのCIGS化合物半導体層は、比較溶液の原料濃度に限界があり、高濃度化できないため、乾燥後の皮膜の厚みが薄くなった。よって、比較例では、サンプルとしてのCIGS化合物半導体層と同じ2μmの厚みのものを形成するためには、ブレード法による塗布を10回も行う必要があり、工程が複雑となった。また、この作製された比較例としての化合物半導体層を観察したところ、クラックが発生していることがわかった。
 実施例1で作製したサンプルとしてのCIGS化合物半導体層および比較例としてのCIGS化合物半導体層を用いて、以下のようにして光電変換装置を作製した。
 酢酸カドミウム、チオ尿素をアンモニアに溶解し、これに上記化合物半導体層を形成した基板1を浸漬し、化合物半導体層上に厚み50nmのCdSからなるバッファ層4を形成した。さらに、バッファ層4の上に、スパッタリング法にてAlドープ酸化亜鉛膜からなる透明の第2の電極層5を形成した。最後に蒸着にてアルミ電極(取出電極)を形成して、光電変換装置10を作製した。
 上記のように作製した、サンプルとしてのCIGS化合物半導体層を用いて作製したサンプルとしての光電変換装置と、比較例としてのCIGS化合物半導体層を用いて作製した比較例としての光電変換装置について、それぞれ光電変換効率を測定した。なお、光電変換効率については、いわゆる定常光ソーラシミュレーターが用いられて、光電変換装置10の受光面に対する光の照射強度が100mW/cmであり且つAM(エアマス)が1.5である条件下での変換効率が測定された。
 比較例としての光電変換装置の光電変換効率は8%であったのに対し、サンプルとしての光電変換装置の光電変換効率は12%であり、優れていることがわかった。
 なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。
1:基板
2:第1の電極層
3:光吸収層
4:バッファ層
5:第2の電極層
6:第3の電極層
7:接続導体
8:集電電極
10:光電変換装置

Claims (11)

  1.  カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒に、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させて半導体形成用溶液を作製する工程と、
    該半導体形成用溶液を用いて皮膜を作製する工程と、
    該皮膜を熱処理する工程と
    を具備することを特徴とする化合物半導体の製造方法。
  2.  前記混合溶媒中で、前記カルコゲン元素含有有機化合物を、前記ルイス塩基性有機化合物および前記金属原料と化学結合させる、請求項1に記載の化合物半導体の製造方法。
  3.  前記金属原料はI-B族元素およびIII-B族元素を含んでおり、前記半導体形成用溶液を作製する工程は、前記混合溶媒に前記I-B族元素の金属および前記III-B族元素の金属を溶解させる工程を含む、請求項1に記載の化合物半導体の製造方法。
  4.  前記金属原料はI-B族元素およびIII-B族元素を含んでおり、前記半導体形成用溶液を作製する工程は、前記混合溶媒に前記I-B族元素と前記III-B族元素との合金を溶解させる工程を含む、請求項1に記載の化合物半導体の製造方法。
  5.  前記金属原料はI-B族元素およびIII-B族元素を含んでおり、
    前記半導体形成用溶液を作製する工程は、
    前記混合溶媒に前記I-B族元素の金属を溶解させてI-B族金属溶液を作製する工程と、
    前記混合溶媒に前記III-B族元素の金属を溶解させてIII-B族金属溶液を作製する工程と、
    前記I-B族金属溶液および前記III-B族金属溶液を混合する工程と
    を含む、請求項1に記載の化合物半導体の製造方法。
  6.  前記半導体形成用溶液を作製する工程は、前記混合溶媒にさらにVI-B族元素を単体の状態で溶解させる工程を含む、請求項1記載の化合物半導体の製造方法。
  7.  前記皮膜を作製する工程は、前記半導体形成用溶液を塗布して皮膜を形成する工程を含む、請求項1記載の化合物半導体の製造方法。
  8.  前記皮膜を作製する工程は、
    前記半導体形成用溶液に前記ルイス塩基性有機化合物よりも極性の低い低極性溶媒を加えて沈殿物を生じさせる工程と、
    該沈殿物を有機溶媒に溶解させて塗布液を作製する工程と、
    該塗布液を塗布して皮膜を形成する工程と
    を含む、請求項1記載の化合物半導体の製造方法。
  9.  カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒に、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料を金属の状態で溶解させて半導体形成用溶液を作製する工程と、
    該半導体形成用溶液を電極上に塗布して皮膜を作製する工程と、
    該皮膜を熱処理して化合物半導体にする工程と、
    該化合物半導体上に該化合物半導体とは異なる導電型の第2の半導体を作製する工程と
    を具備することを特徴とする光電変換装置の製造方法。
  10.  カルコゲン元素含有有機化合物およびルイス塩基性有機化合物を含む混合溶媒と、該混合溶媒に金属の状態で溶解された、I-B族元素およびIII-B族元素の少なくとも一方を含む金属原料とを有する半導体形成用溶液。
  11.  前記混合溶媒中で、前記カルコゲン元素含有有機化合物は、前記ルイス塩基性有機化合物および前記金属原料と化学結合している、請求項10に記載の半導体形成用溶液。
PCT/JP2010/062604 2009-07-30 2010-07-27 化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液 WO2011013657A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080012699.3A CN102362339B (zh) 2009-07-30 2010-07-27 化合物半导体的制造方法、光电转换装置的制造方法以及半导体形成用溶液
US13/320,895 US9023680B2 (en) 2009-07-30 2010-07-27 Method for producing compound semiconductor, method for manufacturing photoelectric conversion device, and solution for forming semiconductor
JP2010546972A JP5340314B2 (ja) 2009-07-30 2010-07-27 化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液
EP10804403.3A EP2461355A4 (en) 2009-07-30 2010-07-27 METHOD FOR MANUFACTURING COMPOUND SEMICONDUCTOR, METHOD FOR MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE, AND SOLUTION FOR PRODUCING SEMICONDUCTOR

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009-177632 2009-07-30
JP2009177632 2009-07-30
JP2009-198391 2009-08-28
JP2009198391 2009-08-28
JP2009-198390 2009-08-28
JP2009198428 2009-08-28
JP2009-198428 2009-08-28
JP2009198390 2009-08-28
JP2009240313 2009-10-19
JP2009-240313 2009-10-19

Publications (1)

Publication Number Publication Date
WO2011013657A1 true WO2011013657A1 (ja) 2011-02-03

Family

ID=43529311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062604 WO2011013657A1 (ja) 2009-07-30 2010-07-27 化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液

Country Status (5)

Country Link
US (1) US9023680B2 (ja)
EP (1) EP2461355A4 (ja)
JP (1) JP5340314B2 (ja)
CN (1) CN102362339B (ja)
WO (1) WO2011013657A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146943A (ja) * 2010-12-24 2012-08-02 Kyocera Corp 半導体層の製造方法および光電変換装置の製造方法
JP2012151430A (ja) * 2010-12-27 2012-08-09 Kyocera Corp 光電変換装置の製造方法
WO2012114879A1 (ja) * 2011-02-25 2012-08-30 京セラ株式会社 半導体層の製造方法および光電変換装置の製造方法
JP2012227377A (ja) * 2011-04-20 2012-11-15 Kyocera Corp 半導体層の製造方法および光電変換装置の製造方法
WO2013002057A1 (ja) * 2011-06-27 2013-01-03 京セラ株式会社 半導体層の製造方法、光電変換装置の製造方法および半導体原料
JP2013021231A (ja) * 2011-07-13 2013-01-31 Kyocera Corp 半導体層の製造方法および光電変換装置の製造方法
JP2013026541A (ja) * 2011-07-25 2013-02-04 Kyocera Corp 半導体層の製造方法、光電変換装置の製造方法および半導体層形成用液
JP2014522296A (ja) * 2011-05-06 2014-09-04 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 銅及びインジウムを基剤とするインクをナイフコーティングする装置及び方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308760B (zh) * 2013-06-03 2019-06-18 东京应化工业株式会社 络合物溶液、光吸收层及太阳能电池的制造方法
DE102020108334A1 (de) 2020-03-26 2021-09-30 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Stapelsolarzellenmodul und Verfahren zur Herstellung des Stapelsolarzellenmoduls

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341029A (ja) * 1997-06-05 1998-12-22 Matsushita Electric Ind Co Ltd 半導体薄膜の製造方法および薄膜太陽電池の製造方法
JP2001053314A (ja) * 1999-08-17 2001-02-23 Central Glass Co Ltd 化合物半導体膜の製造方法
US6992202B1 (en) * 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same
JP2010118569A (ja) * 2008-11-14 2010-05-27 Kyocera Corp 薄膜太陽電池の製法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8715082D0 (en) * 1987-06-26 1987-08-05 Prutec Ltd Solar cells
US6126740A (en) * 1995-09-29 2000-10-03 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
US6023020A (en) 1996-10-15 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solar cell and method for manufacturing the same
CN100490205C (zh) 2003-07-10 2009-05-20 国际商业机器公司 淀积金属硫族化物膜的方法和制备场效应晶体管的方法
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
US8679587B2 (en) * 2005-11-29 2014-03-25 State of Oregon acting by and through the State Board of Higher Education action on Behalf of Oregon State University Solution deposition of inorganic materials and electronic devices made comprising the inorganic materials
US8784701B2 (en) * 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
JP5430748B2 (ja) * 2010-04-14 2014-03-05 京セラ株式会社 光電変換装置、および光電変換装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341029A (ja) * 1997-06-05 1998-12-22 Matsushita Electric Ind Co Ltd 半導体薄膜の製造方法および薄膜太陽電池の製造方法
JP2001053314A (ja) * 1999-08-17 2001-02-23 Central Glass Co Ltd 化合物半導体膜の製造方法
US6992202B1 (en) * 2002-10-31 2006-01-31 Ohio Aerospace Institute Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same
JP2010118569A (ja) * 2008-11-14 2010-05-27 Kyocera Corp 薄膜太陽電池の製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461355A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146943A (ja) * 2010-12-24 2012-08-02 Kyocera Corp 半導体層の製造方法および光電変換装置の製造方法
JP2012151430A (ja) * 2010-12-27 2012-08-09 Kyocera Corp 光電変換装置の製造方法
WO2012114879A1 (ja) * 2011-02-25 2012-08-30 京セラ株式会社 半導体層の製造方法および光電変換装置の製造方法
JP5570650B2 (ja) * 2011-02-25 2014-08-13 京セラ株式会社 半導体層の製造方法および光電変換装置の製造方法
JP2012227377A (ja) * 2011-04-20 2012-11-15 Kyocera Corp 半導体層の製造方法および光電変換装置の製造方法
JP2014522296A (ja) * 2011-05-06 2014-09-04 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 銅及びインジウムを基剤とするインクをナイフコーティングする装置及び方法
WO2013002057A1 (ja) * 2011-06-27 2013-01-03 京セラ株式会社 半導体層の製造方法、光電変換装置の製造方法および半導体原料
JPWO2013002057A1 (ja) * 2011-06-27 2015-02-23 京セラ株式会社 半導体層の製造方法、光電変換装置の製造方法および半導体原料
US9287434B2 (en) 2011-06-27 2016-03-15 Kyocera Corporation Method for producing semiconductor layer, method for producing photoelectric conversion device, and semiconductor starting material
JP2013021231A (ja) * 2011-07-13 2013-01-31 Kyocera Corp 半導体層の製造方法および光電変換装置の製造方法
JP2013026541A (ja) * 2011-07-25 2013-02-04 Kyocera Corp 半導体層の製造方法、光電変換装置の製造方法および半導体層形成用液

Also Published As

Publication number Publication date
JPWO2011013657A1 (ja) 2013-01-07
JP5340314B2 (ja) 2013-11-13
US9023680B2 (en) 2015-05-05
EP2461355A4 (en) 2016-05-04
US20120070937A1 (en) 2012-03-22
EP2461355A1 (en) 2012-06-06
CN102362339A (zh) 2012-02-22
CN102362339B (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5052697B2 (ja) 光電変換装置
WO2011013657A1 (ja) 化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液
JP5495849B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP5495925B2 (ja) 半導体の製造方法および光電変換装置の製造方法
WO2011129322A1 (ja) 光電変換装置、および光電変換装置の製造方法
JP5174248B2 (ja) カルコゲン化合物半導体層の製造方法および光電変換装置の製造方法
JP5409960B2 (ja) 光電変換装置
JP2013245212A (ja) 半導体原料、半導体層の製造方法および光電変換装置の製造方法
WO2012070481A1 (ja) 光電変換装置
JP5570650B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP5464984B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP2013201179A (ja) 半導体層形成用溶液、半導体層の製造方法および光電変換装置の製造方法
JP2011249560A (ja) 半導体層の製造方法および光電変換装置の製造方法
JP2011091229A (ja) 光電変換体の製造方法および光電変換装置の製造方法
JP2011138837A (ja) 半導体層の製造方法および光電変換装置の製造方法
JP6162592B2 (ja) 光電変換装置の製造方法
JP5683377B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP2013012722A (ja) 光電変換装置の製造方法
JP2011086859A (ja) 光電変換装置
JP2012160514A (ja) 金属カルコゲナイド層の製造方法および光電変換装置の製造方法
JP2012064734A (ja) 光電変換装置の製造方法
JP2012151430A (ja) 光電変換装置の製造方法
US20140224333A1 (en) Photoelectric conversion device
JP2012227377A (ja) 半導体層の製造方法および光電変換装置の製造方法
JP2011114242A (ja) 半導体層の製造方法および光電変換装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012699.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010546972

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010804403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13320895

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE