JP2012160514A - 金属カルコゲナイド層の製造方法および光電変換装置の製造方法 - Google Patents

金属カルコゲナイド層の製造方法および光電変換装置の製造方法 Download PDF

Info

Publication number
JP2012160514A
JP2012160514A JP2011017831A JP2011017831A JP2012160514A JP 2012160514 A JP2012160514 A JP 2012160514A JP 2011017831 A JP2011017831 A JP 2011017831A JP 2011017831 A JP2011017831 A JP 2011017831A JP 2012160514 A JP2012160514 A JP 2012160514A
Authority
JP
Japan
Prior art keywords
temperature
metal chalcogenide
photoelectric conversion
layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011017831A
Other languages
English (en)
Inventor
Kazumasa Umesato
計匡 梅里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011017831A priority Critical patent/JP2012160514A/ja
Publication of JP2012160514A publication Critical patent/JP2012160514A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 光電変換効率の高い金属カルコゲナイド層およびそれを用いた光電変換装置を提供すること。
【解決手段】 金属カルコゲナイド層の製造方法は、金属元素を含む皮膜を、第1濃度のカルコゲン元素を含む第1雰囲気において第1温度まで昇温して、前記皮膜中に金属カルコゲナイドを形成する第1昇温工程と、皮膜を第1温度よりも低い第2温度に冷却する冷却工程と、皮膜を、第1濃度よりも低い第2濃度のカルコゲン元素を含むかまたはカルコゲン元素を含まない第2雰囲気において第1温度よりも高い第3温度まで昇温する第2昇温工程とを具備する。
【選択図】 図1

Description

本発明は、金属カルコゲナイド層の製造方法およびそれを用いた光電変換装置の製造方法に関するものである。
太陽電池として、I−III−VI化合物半導体やII−VI化合物半導体等の金属カルコゲナイドを含む光吸収層を具備する光電変換装置を用いたものがある。このような光電変換装置は、ソーダライムガラスを含む基板を有している。この基板上には、裏面電極となる、例えば、Moを含む第1の電極層が形成されている。そして、この第1の電極層上にI−III−VI化合物半導体を含む光吸収層が形成されている。さらに、その光吸収層上には、ZnSおよびCdS等から選ばれるバッファ層を介して、ZnO等を含む透明の第2の電極層が形成されている。
このような光吸収層の作製方法としては、以下のような方法が開示されている。まず、I−B族元素およびIII−B族元素が、個別にまたは同時に堆積されて前駆体層が形成される。そして、この前駆体層が、VI−B族元素を含むガスを供給しながら加熱されることによって、I−III−VI化合物半導体が形成される。
特開平5−267704号公報
近年、光電変換装置の需要は増加傾向にあり、光電変換装置のさらなる光電変換効率の向上が望まれている。光電変換装置の光電変換効率を高めるためには、光吸収層としての金属カルコゲナイド層の結晶化を良好に行ない、金属カルコゲナイド層の光電変換効率を高めることが有効である。
よって、本発明の目的は、光電変換効率の高い金属カルコゲナイド層およびそれを用いた光電変換装置を提供することである。
本発明の一実施形態に係る金属カルコゲナイド層の製造方法は、金属元素を含む皮膜を、第1濃度のカルコゲン元素を含む第1雰囲気において第1温度まで昇温して、前記皮膜中に金属カルコゲナイドを形成する第1昇温工程と、前記皮膜を前記第1温度よりも低い第2温度に冷却する冷却工程と、前記皮膜を、前記第1濃度よりも低い第2濃度のカルコゲン元素を含むかまたはカルコゲン元素を含まない第2雰囲気において前記第1温度よりも高い第3温度まで昇温する第2昇温工程と、を具備することを特徴とする。
本発明の一実施形態に係る光電変換装置の製造方法は、上記金属カルコゲナイド層の製造方法によって金属カルコゲナイド層を作製する工程と、該金属カルコゲナイド層と電気的に接続された、該金属カルコゲナイド層とは異なる導電型の半導体層を作製する工程とを具備することを特徴とする。
本発明によれば、光電変換効率の高い金属カルコゲナイド層およびそれを用いた光電変
換装置を提供することができる。
本発明の一実施形態にかかる金属カルコゲナイド層の製造方法および本発明の一実施形態にかかる光電変換装置の製造方法を用いて作製した光電変換装置の実施の形態の一例を示す断面図である。 図1の光電変換装置の斜視図である。
以下に本発明の実施形態に係る金属カルコゲナイド層の製造方法および光電変換装置の製造方法について図面を参照しながら詳細に説明する。図1は、本発明の一実施形態に係る金属カルコゲナイド層の製造方法および本発明の一実施形態に係る光電変換装置の製造方法を用いて作製した光電変換装置を示す断面図であり、図2はその斜視図である。光電変換装置10は、基板1と、第1の電極層2と、金属カルコゲナイドを含む第1の半導体層3と、第2の半導体層4と、第2の電極層5とを含んでいる。
本実施形態における光電変換装置10は第2の電極層5側から光が入射されるものを示しているが、これに限定されず、基板1側から光が入射されるものであってもよい。
図1、図2において、光電変換装置10は複数並べて形成されて光電変換モジュール11が形成されている。光電変換装置10は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。図1、図2においては、この第3の電極層6は、隣接する光電変換装置10の第1の電極層2が延伸されたものである。この構成により、隣接する光電変換装置10同士が直列接続されている。なお、一つの光電変換装置10内において、接続導体7は第1の半導体層3および第2の半導体層4を貫通するように設けられており、第1の電極層2と第2の電極層5とで挟まれた第1の半導体層3と第2の半導体層4とで光電変換が行なわれる。
基板1は、第1の半導体層3および第2の半導体層4を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。
第1の電極層2および第3の電極層6は、Mo、Al、TiおよびAu等から選ばれる導電体が用いられ、基板1上にスパッタリング法および蒸着法等から選ばれる方法で形成される。
第1の半導体層3は、金属カルコゲナイドを含んでいる。金属カルコゲナイドは、金属元素とカルコゲン元素とを含む化合物半導体である。カルコゲン元素とは、VI−B族元素のうちのS、Se、Teをいう。金属カルコゲナイドとしては、例えば、I−III−VI化合物半導体やII−VI化合物半導体等が挙げられる。
I−III−VI化合物半導体とは、I−B族元素(11族元素ともいう)とIII−B族元素(13族元素ともいう)とVI−B族元素(16族元素ともいう)との化合物半導体であり、カルコパイライト構造を有し、カルコパイライト系化合物半導体と呼ばれる(CIS系化合物半導体ともいう)。I−III−VI化合物半導体としては、例えば、Cu(In,Ga)Se(CIGSともいう)、Cu(In,Ga)(Se,S)(CIGSSともいう)、およびCuInSe(CISともいう)等が挙げられる。なお、Cu(In,Ga)Seとは、CuとInとGaとSeとから主に構成された化合物をいう。また、
Cu(In,Ga)(Se,S)とは、CuとInとGaとSeとSとを主成分として含む化合物をいう。10μm以下の薄層でも高い光電変換効率が得られるという観点からは、第1の半導体層3はこのようなI−III−VI化合物半導体が用いられてもよい。
また、II−VI化合物半導体とは、II−B族元素(12族元素ともいう)とVI−B族元素との化合物半導体である。II−VI化合物半導体としては、例えば、ZnS、ZnSe、ZnTe、CdS,CdSe、およびCdTe等が挙げられる。
このような第1の半導体層3としての金属カルコゲナイド層は、例えば、次のようにして作製される(以下、第1の半導体層の製造方法として示した内容は、金属カルコゲナイド層の製造方法として読み替えてもよい。以下、第1の半導体層を金属カルコゲナイド層と呼ぶ場合もある。)。先ず、第1の電極層2を有する基板1上に、蒸着およびスパッタ等の方法により第1の半導体層3を構成する金属元素(例えばI−B族元素、III−B族元素、またはII−B族元素)が供給されて皮膜が形成される。あるいは第1の電極層2を有する基板1上に、金属元素(例えばI−B族元素、III−B族元素、またはII−B族元素)を含む原料溶液が塗布されることにより皮膜が形成される。これらの皮膜はVI−B族元素を含んでいても良い。また、これらの皮膜は、異なる組成比の複数の積層体であってもよい。
なお、皮膜とは、所望とする第1の半導体層3に含まれる金属カルコゲナイドの含有率が45mol%以下(0mol%も含む)の層をいう。つまり、皮膜中に含まれる原料の大部分が、所望とする金属カルコゲナイドではなく、皮膜を形成する際に用いた原料の状態、金属の状態、あるいは所望とする金属カルコゲナイド以外の他の金属化合物の状態であることをいう。
例えば、第1の半導体層3が金属カルコゲナイドとしてI−III−VI化合物半導体を含む場合、皮膜はI−B族元素およびIII−B族元素を、皮膜を作製する際に用いた化合物の状態で、あるいは、金属の状態で含んでいる。また、この皮膜中にVI−B族元素を含んでいてもよいが、その場合、皮膜におけるI−III−VI化合物半導体の含有率は45mol%以下である。つまり、皮膜はI−B族元素、III−B族元素およびVI−B族元素を、皮膜を作製する際に用いた化合物の状態で、金属の状態で、あるいは、I−VI族化合物およびIII−VI族化合物の状態で含んでいる。
また、第1の半導体層3が金属カルコゲナイドとしてII−VI化合物半導体を含む場合、皮膜はII−B族元素を含んでいる。この皮膜中にVI−B族元素を含んでいてもよいが、その場合、皮膜におけるII−VI化合物半導体の含有率は45mol%以下である。
次に、この皮膜が、第1濃度のカルコゲン元素を含む第1雰囲気において、第1温度まで昇温される(第1昇温工程)。第1昇温工程において、皮膜中の金属元素が第1雰囲気中のカルコゲン元素と反応し、金属カルコゲナイドが形成される。第1昇温工程は、形成される金属カルコゲナイドの結晶化が完了する途中の段階で終了する。例えば、金属カルコゲナイドの平均粒径が50μm以下の状態で第1昇温工程を終了すれば、その後の第2昇温工程での結晶化が良好となる。そして、この皮膜が、上記第1温度よりも低い第2温度に冷却される(冷却工程)。その後、上記皮膜が上記第1温度よりも高い第3温度まで昇温されることによって、金属カルコゲナイド層が形成される(第2昇温工程)。この第2昇温工程では、上記第1濃度よりも低い第2濃度のカルコゲン元素を含む第2雰囲気か、または、カルコゲン元素を含まない第2雰囲気とされる。
このような方法により、金属カルコゲナイド層の表面形状が平滑な面となる。このように平滑な表面を有する金属カルコゲナイド層が第1の半導体層3として形成されると、こ
の上に第2の半導体層4が、欠陥の少ない良好な状態で形成されやすくなる。よって、第1の半導体層3と第2の半導体層4との間に良好なpn接合が形成され、光電変換効率が向上する。
このような作用効果は以下のような現象によるものではないかと考えられる。つまり、第1昇温工程では、比較的低温であるため、金属元素のカルコゲン化反応が進行するものの、結晶成長は抑制され、比較的小さな粒径の金属カルコゲナイド粒子を多く含む皮膜となる。そして、第1昇温工程の後、冷却工程によって、この皮膜が収縮し、金属カルコゲナイド粒子が互いに接近し合って、比較的緻密で平滑な表面を有する皮膜となる。そして、続けて第2昇温工程によって、金属カルコゲナイド粒子の成長が積極的に行なわれる結果、表面形状が比較的平滑な面を有する金属カルコゲナイド層になるのではないかと考えられる。
第1昇温工程における第1温度は、特に限定されず、皮膜中の金属カルコゲナイドの平均粒径を所望のものとするのに適したものであればよい。製造ばらつきを小さくして所望の平均粒径の金属カルコゲナイド粒子を含む皮膜を安定に作製するという観点からは、第1温度は250〜400℃であってもよい。
第1昇温工程における第1雰囲気はカルコゲン元素を含んでいる。カルコゲン元素を含んだガスとしては、Se等のカルコゲン元素単体のガスやHSe等のカルコゲン元素化合物のガスがあり、これらは、窒素およびアルゴン等から選ばれる不活性ガスあるいは水素等の還元ガスと混合されてもよい。
また、冷却工程における第2温度は、熱膨張した皮膜が十分収縮する温度であればよい。そのような第2温度は、第1温度の1/2以下の温度であってもよい。より緻密な皮膜となって第1の電極層2との密着性を高めるという観点からは、第2温度は100℃以下であってもよい。
また、第2昇温工程における第2雰囲気のカルコゲン元素の濃度である第2濃度は、皮膜表面のカルコゲン化反応による凹凸の生成が生じにくくし、表面を滑らかに維持できる濃度であればよい。そのような第2濃度としては、第1濃度の1/5以下であってもよい。結晶化を良好に行なうという観点からは、第2濃度は、カルコゲン元素を含む気体分子の体積分率として200ppm以下(0ppmを含む)であってもよい。第1の電極層2との密着性を高めるという観点からは、第2雰囲気は、第2濃度が0ppmの雰囲気、すなわち、カルコゲン元素が含まれない雰囲気であってもよい。
また、第2昇温工程における第3温度は、第1温度よりも高く設定される。結晶化を良好に行なうという観点からは、第3温度は、第2温度よりも50℃以上高くてもよい。製造ばらつきを小さくして所望の物性を有する金属カルコゲナイド層(第1の半導体層3)を形成するという観点からは、第3温度は450〜600℃であってもよい。
また、第1昇温工程および第2昇温工程におけるそれぞれの昇温速度は、特に限定されない。皮膜表面をより滑らかにしながら結晶性をより高めるという観点からは、第1昇温工程における昇温速度を第2昇温工程における昇温速度よりも小さくしてもよい。これにより、第1昇温工程では、皮膜中に混入した酸素等の不要な元素を低減しながらカルコゲン化を行なうことによって皮膜表面が凹凸になるのを抑制でき、また、第2昇温工程で昇温速度を比較的高くして結晶成長を促進することによって結晶性を高めることができる。
上記第1の半導体層3(金属カルコゲナイド層)の製造方法において、上記皮膜は多孔質とすることができる。このように皮膜が多孔質であると、カルコゲン元素を含むガスが
皮膜全体に行き渡りやすくなり、第1の半導体層3の結晶化をより促進することができる。
このような多孔質の皮膜を形成する方法としては、例えば、第1の半導体層3となる金属元素(例えばI−B族元素およびIII−B族元素、またはII−B族元素)を含む原料溶液を塗布し、乾燥によって溶媒を除去するという方法がある。
原料溶液としては、金属カルコゲナイドの生成を良好にするという観点から、金属元素とカルコゲン元素含有有機化合物との錯体化合物が溶解した溶液であってもよい。カルコゲン元素含有有機化合物は、カルコゲン元素(カルコゲン元素とはVI−B族元素のうちのS、Se、Teをいう)を有する有機化合物である。例えば、チオール、スルフィド、ジスルフィド、チオフェン、スルホキシド、スルホン、チオケトン、スルホン酸、スルホン酸エステル、スルホン酸アミド、セレノール、セレニド、ジセレニド、セレノキシド、セレノン、テルロール、テルリド、ジテルリド等がある。特に、配位力が高く金属元素と安定な錯体を形成しやすいという観点からは、チオール、スルフィド、ジスルフィド、セレノール、セレニド、ジセレニド、テルロール、テルリド、ジテルリドが用いられてもよい。
金属元素とカルコゲン元素含有有機化合物との錯体化合物は、例えば、カルコゲン元素含有有機化合物が溶解された溶液に金属元素の単体あるいは金属塩が溶解されることにより作製され得る。あるいは、米国特許第6992202号明細書に記載されているような、カルコゲン元素含有有機化合物とI−B族元素とIII−B族元素とを1つの錯体分子内に含んでいる単一源前駆体が用いられても良い。
上記の原料溶液が第1の電極層2を有する基板1の表面に皮膜状に被着されることにより、皮膜が形成される。原料溶液は、スピンコータ、スクリーン印刷、ディッピング、スプレーまたはダイコータなどを用いて第1の電極層2上に被着され、乾燥される。乾燥は、例えば、不活性ガス雰囲気下や還元ガス雰囲気下で行なわれる。乾燥時の温度は、例えば、50〜300℃である。
光電変換装置10は、上記第1の半導体層3上に、第1の半導体層3とは異なる導電型の第2の半導体層4が、例えば10〜200nmの厚みで形成される。第1の半導体層3および第2の半導体層4は、一方がn型で他方がp型の異なる導電型を有しており、これらがpn接合している。または、第1の半導体層3がp型であり第2の半導体層4がn型であってもよく、逆の関係であってもよい。なお、第1の半導体層3および第2の半導体層4によるpn接合は、第1の半導体層3と第2の半導体層4とが直接接合しているものに限らない。例えば、これらの間に第1の半導体層3と同じ導電型の他の半導体層かまたは第2の半導体層4と同じ導電型の他の半導体層が介在していてもよい。また、第1の半導体層3と第2の半導体層4との間に、i型の半導体層が介在し、これらの半導体層でpin接合が形成されていてもよい。また、第1半導体層3および第2半導体層4が異なる組成である場合に、これらの間に第1の半導体層3と第2の半導体層4とのヘテロ接合を良好に行なうためのバッファ層が介在していてもよい。本実施形態では、第1の半導体層3が一方導電型の光吸収層であり、第2の半導体層4がバッファ層と他方導電型半導体層とを兼ねている例を示している。
第2の半導体層4としては、CdS、ZnS、ZnO、InSe、In(OH,S)、(Zn,In)(Se,OH)、(Zn,Mg)O等が挙げられる。第2の半導体層4は、例えばケミカルバスデポジション(CBD)法等で形成される。なお、In(OH,S)とは、InとOHとSとを主成分として含む化合物をいう。(Zn,In)(Se,OH)は、ZnとInとSeとOHとを主成分として含む化合物をいう。(Zn,Mg
)Oは、ZnとMgとOとを主成分として含む化合物をいう。第2の半導体層4は、第1の半導体層3の吸収効率を高めるため、第1の半導体層3が吸収する光の波長領域に対して光透過性を有するものが用いられてもよい。
第2の電極層5は、ITO、ZnO等の0.05〜3.0μmの厚みを有する透明導電膜である。第2の電極層5は、スパッタリング法、蒸着法または化学的気相成長(CVD)法等で形成される。第2の電極層5は、第2の半導体層4よりも抵抗率の低い層であり、第1の半導体層3で生じた電荷を取り出すためのものである。電荷を良好に取り出すという観点からは、第2の電極層5の抵抗率は、1Ω・cm未満でシート抵抗が50Ω/□以下であってもよい。
第2の電極層5としては、第1の半導体層3の吸収効率を高めるため、第1の半導体層3の吸収光に対して光透過性を有するものを用いることができる。光透過性を高めると同時に光反射ロス低減効果および光散乱効果を高め、さらに光電変換によって生じた電流を良好に伝送するという観点から、第2の電極層5は0.05〜0.5μmの厚さであってもよい。また、第2の電極層5と第2の半導体層4との界面での光反射ロスを低減する観点から、第2の電極層5と第2の半導体層4の屈折率が近似していてもよい。
光電変換装置10は、複数個が並べられ、これらが電気的に接続されることによって、光電変換モジュール11となる。隣接する光電変換装置10同士を容易に直列接続するために、図1に示すように、光電変換装置10は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。
接続導体7は、第2の電極層5と、隣接する光電変換装置10の第1の電極層2に電気的に接続された第3の電極層6とを電気的に接続している。このような構成により、隣接する光電変換装置10同士が直列接続される。
接続導体7は、第2の電極層5を形成する際に、第2の電極層5と連続するように形成されてもよい。これにより、第2の電極層5との電気的な接続信頼性が高まる。あるいは、接続導体7は導電ペーストで形成されてもよく、後述する集電電極8が導電ペーストで形成される際に、集電電極8と連続するように形成されてもよい。これにより、工程が簡略化される。
集電電極8は、第2の電極層5の電気抵抗を小さくするためのものである。集電電極8が設けられることにより、第2の電極層5の厚さを薄くして光透過性を高めるとともに第1の半導体層3で発生した電流を効率よく取り出すことができる。その結果、光電変換装置20の発電効率が向上する。
集電電極8は、例えば、図2に示すように、光電変換装置20の一端から接続導体7にわたって線状に形成されている。これにより、第1の半導体層3の光電変換により生じた電荷を第2の電極層5を介して集電電極8に集電し、接続導体7を介して隣接する光電変換装置20に良好に導電することができる。
集電電極8の幅は、第1の半導体層3への光透過を良好にするとともに導電性を高めるという観点から、50〜400μmとされてもよい。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。
集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペースト
がパターン状に印刷され、これが硬化されることによって形成されてもよい。
本発明の一実施形態に係る金属カルコゲナイド層の製造方法および光電変換装置の製造方法について、以下のようにして評価した。本実施例では、2種類の原料溶液(原料溶液Aと原料溶液B)を用いて金属カルコゲナイド層(第1の半導体層3)を作製した。
<原料溶液Aの作製>
I−B族元素の有機金属錯体として1mmolのCu(CHCN)・PFと、ルイス塩基として2mmolのP(Cとを、10mlのアセトニトリルに溶解した。この溶液をマグネチックスターラーにて室温で5時間攪拌し、第1錯体を含有する第1錯体溶液(以下、第1錯体溶液1-1という)を作製した。
一方、4mmolのNaOCHと、カルコゲン元素含有有機化合物として4mmolのHSeCとを、30mlのメタノールに溶解した後、この溶液に、III−B族元素として0.7mmolのInClおよび0.3mmolのGaClを溶解した。この溶液をマグネチックスターラーにて室温で5時間攪拌し、第2錯体を含有する第2錯体溶液(以下、第2錯体溶液1-2という)を作製した。
次に、第1錯体溶液1-1に第2錯体溶液1-2を1分間に10mlの速度で滴下した。これにより、I−B族元素、III−B族元素およびカルコゲン元素含有有機化合物を1つの錯体分子内に有する単一源前駆体を含む析出物が生成した。この沈殿物を遠心分離機にて取り出した。
この単一源前駆体を含む沈殿物にピリジンを添加して、沈殿物が全量中50質量%の原料溶液Aを作製した。
<原料溶液Bの作製>
50mmolのアニリンと、カルコゲン元素含有有機化合物として60mmolのHSeCとを混合した。そして、この混合液に10mmolの金属の銅、7mmolの金属のインジウムおよび3mmolの金属のガリウムを溶解させた。そして、この溶液にヘキサンを添加することにより、I−B族元素とカルコゲン元素含有有機化合物との錯体化合物、および、III−B族元素とカルコゲン元素含有有機化合物との錯体化合物を含む析出物が生成した。この沈殿物を遠心分離機にて取り出した。
この錯体化合物を含む沈殿物にピリジンを添加して、沈殿物が全量中50質量%の原料溶液Bを作製した。
<第1の半導体層の作製>
上記の原料溶液Aおよび原料溶液Bをそれぞれ、ドクターブレード法によって、ソーダライムガラス基板1のMoからなる第1電極層2上に塗布して、皮膜を形成した。具体的には、グローブボックス内で、キャリアガスとして窒素ガスを用いて、原料溶液を第1電極層2上へ塗布することによって塗布膜を形成した。そして、この塗布膜をホットプレートによって110℃で5分間加熱して、乾燥させることによって皮膜を形成した。
これらの原料溶液1を用いて皮膜を形成したサンプル、および原料溶液2を用いて皮膜を形成したサンプルを、それぞれ複数枚用意し、下記の条件1〜3に示す各条件で熱処理を行なうことにより、第1の半導体層3を作製した。
(条件1)
サンプルを、60ppmのSeを含む水素雰囲気下で、500℃まで20℃/分の速度で昇温させた後、続けて500℃で1時間保持した。
(条件2)
サンプルを、60ppmのSeを含む水素雰囲気下で、380℃まで20℃/分の速度で昇温させた後、窒素雰囲気下で25℃まで冷却した。その後、サンプルを水素雰囲気下(Seを含まない)で、500まで20℃/分の速度で昇温させた後、続けて500℃で1時間保持した。
(条件3)
サンプルを、60ppmのSeを含む水素雰囲気下で、380℃まで20℃/分の速度で昇温させた後、窒素雰囲気下で25℃まで冷却した。その後、サンプルを水素雰囲気下(Seを含まない)で、500まで40℃/分の速度で昇温させた後、続けて500℃で1時間保持した。
<光電変換装置の作製>
上記各条件により第1の半導体層3を作製した後、酢酸カドミウムおよびチオ尿素が溶解されたアンモニア水溶液に、上記第1の半導体層3が形成された試料を浸漬した。これにより、第1の半導体層3上に厚み0.05μmのCdSからなる第2の半導体層4を形成した。さらに、第2の半導体層4の上に、スパッタリング法にてAlドープ酸化亜鉛膜(第2電極層5)を形成して、光電変換装置10を作製した。
これらの光電変換装置10の光電変換効率を、定常光ソーラーシミュレーターを用いて測定した。ここでは、光電変換装置10の受光面に対する光の照射強度が100mW/cmであり且つエアマス(AM)が1.5である条件下で光電変換効率を測定した。なお、光電変換効率は、光電変換装置10において太陽光のエネルギーが電気エネルギーに変換される割合を示し、ここでは、光電変換装置10から出力される電気エネルギーの値を、光電変換装置10に入射される太陽光のエネルギーの値で除して、100を乗じることで算出した。
結果を表1に示す。これより、条件2および条件3のように冷却工程および第2昇温工程を設けた本発明の製造方法では、光電変換効率が、従来条件である条件1よりも高くなっていることがわかる。各条件で作製された第1の半導体層3の表面を観察したところ、条件1では多くの突起状のものが観察されたが、条件2、3では少なくなっていることが観察された。これより、第1の半導体層3の表面が滑らかになったため、第2の半導体層4との接合が良好になったか、あるいは第2の半導体層4が欠陥の少ない状態で成膜されたことにより、光電変換効率が高くなったのではないかと考えられる。
Figure 2012160514
なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しな
い範囲内で種々の変更を施すことは何等差し支えない。
1:基板
2:第1の電極層
3:第1の半導体層(金属カルコゲナイド層)
4:第2の半導体層
5:第2の電極層
6:第3の電極層
7:接続導体
8:集電電極
10:光電変換装置
11:光電変換モジュール

Claims (4)

  1. 金属元素を含む皮膜を、第1濃度のカルコゲン元素を含む第1雰囲気において第1温度まで昇温して、前記皮膜中に金属カルコゲナイドを形成する第1昇温工程と、
    前記皮膜を前記第1温度よりも低い第2温度に冷却する冷却工程と、
    前記皮膜を、前記第1濃度よりも低い第2濃度のカルコゲン元素を含むかまたはカルコゲン元素を含まない第2雰囲気において前記第1温度よりも高い第3温度まで昇温する第2昇温工程と
    を具備することを特徴とする金属カルコゲナイド層の製造方法。
  2. 前記第1昇温工程における昇温速度を前記第2昇温工程における昇温速度よりも小さくする、請求項1に記載の金属カルコゲナイド層の製造方法。
  3. 前記金属元素としてI−B族元素およびIII−B族元素を用いて、前記金属カルコゲナイドにI−III−VI化合物を含ませる、請求項1または2に記載の金属カルコゲナイド層の製造方法。
  4. 請求項1乃至3のいずれかに記載の金属カルコゲナイド層の製造方法によって金属カルコゲナイド層を作製する工程と、
    該金属カルコゲナイド層と電気的に接続された、該金属カルコゲナイド層とは異なる導電型の半導体層を作製する工程と
    を具備することを特徴とする光電変換装置の製造方法。

JP2011017831A 2011-01-31 2011-01-31 金属カルコゲナイド層の製造方法および光電変換装置の製造方法 Pending JP2012160514A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017831A JP2012160514A (ja) 2011-01-31 2011-01-31 金属カルコゲナイド層の製造方法および光電変換装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017831A JP2012160514A (ja) 2011-01-31 2011-01-31 金属カルコゲナイド層の製造方法および光電変換装置の製造方法

Publications (1)

Publication Number Publication Date
JP2012160514A true JP2012160514A (ja) 2012-08-23

Family

ID=46840820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017831A Pending JP2012160514A (ja) 2011-01-31 2011-01-31 金属カルコゲナイド層の製造方法および光電変換装置の製造方法

Country Status (1)

Country Link
JP (1) JP2012160514A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115466A1 (ja) * 2013-01-22 2014-07-31 京セラ株式会社 光電変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506475A (ja) * 1994-08-22 1997-06-24 ミッドウエスト リサーチ インスティチュート 半導体デバイス用薄膜Cu(In,Ga)Se▲下2▼のセレン化再結晶方法
JP2004095931A (ja) * 2002-09-02 2004-03-25 Fuji Xerox Co Ltd 化合物半導体膜の製造方法及びそれを用いた化合物半導体装置
JP2007503708A (ja) * 2003-08-14 2007-02-22 ユニヴァーシティ オブ ヨハネスバーグ Ib−iiia−via族四元合金又は五元合金以上の合金から成る半導体薄膜を製造するための方法
US20110018103A1 (en) * 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506475A (ja) * 1994-08-22 1997-06-24 ミッドウエスト リサーチ インスティチュート 半導体デバイス用薄膜Cu(In,Ga)Se▲下2▼のセレン化再結晶方法
JP2004095931A (ja) * 2002-09-02 2004-03-25 Fuji Xerox Co Ltd 化合物半導体膜の製造方法及びそれを用いた化合物半導体装置
JP2007503708A (ja) * 2003-08-14 2007-02-22 ユニヴァーシティ オブ ヨハネスバーグ Ib−iiia−via族四元合金又は五元合金以上の合金から成る半導体薄膜を製造するための方法
US20110018103A1 (en) * 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115466A1 (ja) * 2013-01-22 2014-07-31 京セラ株式会社 光電変換装置
JP6039695B2 (ja) * 2013-01-22 2016-12-07 京セラ株式会社 光電変換装置

Similar Documents

Publication Publication Date Title
WO2011013657A1 (ja) 化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液
WO2011149008A1 (ja) 光電変換装置および光電変換装置の製造方法
JP5430748B2 (ja) 光電変換装置、および光電変換装置の製造方法
JP5174248B2 (ja) カルコゲン化合物半導体層の製造方法および光電変換装置の製造方法
JP2011233700A (ja) 半導体の製造方法および光電変換装置の製造方法
WO2012147427A1 (ja) 光電変換装置
JP2013245212A (ja) 半導体原料、半導体層の製造方法および光電変換装置の製造方法
JP5451899B2 (ja) 光電変換装置
JP2013098191A (ja) 光電変換装置
JP2012160514A (ja) 金属カルコゲナイド層の製造方法および光電変換装置の製造方法
JP2013201179A (ja) 半導体層形成用溶液、半導体層の製造方法および光電変換装置の製造方法
JP5570650B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP5566335B2 (ja) 光電変換装置の製造方法
JP2012114251A (ja) 光電変換装置の製造方法
JP5464984B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP5683377B2 (ja) 半導体層の製造方法および光電変換装置の製造方法
JP5618942B2 (ja) 光電変換装置の製造方法
JP2011249560A (ja) 半導体層の製造方法および光電変換装置の製造方法
JP2015142001A (ja) 光電変換装置の製造方法
JP2012195553A (ja) 半導体層の製造方法および光電変換装置の製造方法
JP2013012722A (ja) 光電変換装置の製造方法
JP2012114250A (ja) 光電変換装置の製造方法
JP5813120B2 (ja) 光電変換装置の製造方法
JP2014090009A (ja) 光電変換装置
JP2011138837A (ja) 半導体層の製造方法および光電変換装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930