WO2011010946A1 - Многослойные углеродные наночастицы фуллероидного типа - Google Patents

Многослойные углеродные наночастицы фуллероидного типа Download PDF

Info

Publication number
WO2011010946A1
WO2011010946A1 PCT/RU2009/000364 RU2009000364W WO2011010946A1 WO 2011010946 A1 WO2011010946 A1 WO 2011010946A1 RU 2009000364 W RU2009000364 W RU 2009000364W WO 2011010946 A1 WO2011010946 A1 WO 2011010946A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanoparticles
nanoparticles
multilayer
multilayer carbon
fulleroid type
Prior art date
Application number
PCT/RU2009/000364
Other languages
English (en)
French (fr)
Inventor
Андрей Николаевич ПОНОМАРЕВ
Михаил Евгеньевич ЮДОВИЧ
Original Assignee
Ponomarev Andrei Nikolaevich
Yudovich Mikhail Evgen Evich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43499267&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011010946(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ponomarev Andrei Nikolaevich, Yudovich Mikhail Evgen Evich filed Critical Ponomarev Andrei Nikolaevich
Priority to PCT/RU2009/000364 priority Critical patent/WO2011010946A1/ru
Priority to US13/384,710 priority patent/US9090752B2/en
Priority to EP09847620.3A priority patent/EP2460764A4/en
Priority to CN200980160650.XA priority patent/CN102482096B/zh
Priority to US13/388,182 priority patent/US8742001B2/en
Priority to CN200980159895.0A priority patent/CN102471064B/zh
Priority to PCT/RU2009/000563 priority patent/WO2011010948A1/ru
Priority to PCT/RU2009/000562 priority patent/WO2011010947A1/ru
Publication of WO2011010946A1 publication Critical patent/WO2011010946A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the invention relates to the chemistry of carbon, and, in particular, to the production of carbon multilayer nanoparticles of the fulleroid type.
  • Particles of fulleroid type have a characteristic structure, which is a continuous network consisting of 5, 6 membered rings having alternating ⁇ and ⁇ - bonds.
  • Multilayer particles have a distance between layers of 0.34-0.36 nm.
  • the structure of fulleroid nanoparticles determines their ability to low-intensity, intense, or anomalously high dispersion interaction, which is manifested in a possible increase in the electric field strength of an electromagnetic wave incident on such a particle.
  • Multilayer carbon nanoparticles of the fulleroid type — multilayer carbon nanotubes are tubular nanoparticles having a fairly wide range of sizes: length 10-100,000 nm; outer diameter 1-500 nm; wall thickness 0.1-200 nm. Nanotubes are obtained by isolation from a cathode deposit obtained by arc evaporation of graphite anode, [application JP JS ⁇ 207-165406, M.cl. C Ol B, 31/00, 1995].
  • Multilayer carbon nanotubes have practically no effect of force interaction in interelectrode gaps during field emission from cathodes containing such nanoparticles.
  • the value of the electric field gain realized on the surface of a cathode containing nanotubes is small, which does not allow one to obtain a high level of dispersion interaction at the boundaries of various media.
  • Polyhedral multilayer carbon nanoparticles are 4-7-sided polyhedra with an internal slit-shaped capillary. They can also have a branched appearance and do not contain an internal capillary, or have the appearance of a flattened polyhedron, the outer diameter of which exceeds the length of the nanoparticle.
  • Polyhedral multilayer carbon nanoparticles of the fulleroid type are isolated from the crust of the cathode deposit obtained by the arc process of evaporation of a graphite anode. Production method It includes gas-phase oxidation of the milled cake cathode deposit and the subsequent liquid-phase oxidation of the carbon powder in the molten mixture hydroxide and potassium nitrate, as is shown in RU 2196731.
  • Polyhedral multilayer carbon nanoparticles have a number of valuable properties: they contribute to the structuring of concrete [RU patent N22233254, 2004], increase the wear resistance of alloys [RU patent N ° 2281341, 2003], have high resistance to thermal decomposition [RU patent JV22196731, 2003], etc.
  • the random nature of their size and shape distribution does not allow the effect of force interaction in the interelectrode gap to be realized upon field emission from cathodes made of such nanoparticles and to achieve high values of the coefficient amplification of the electric field on the surface thereof, which would provide the highest level of dispersion interaction at the interface in various environments.
  • the basis of the invention is the task of producing multilayer carbon nanoparticles of the fulleroid type, giving high values of force interaction in the interelectrode gap during field emission from a cathode made of these particles.
  • fulleroid-type multilayer carbon nanoparticles with an interlayer distance of 0.34-0.36 nm have a toroidal shape with a ratio of the outer diameter to the thickness of the multilayer torus body equal to (10-3): 1 and an average nanoparticle size of 15-100 nm.
  • Toroidal multiwall carbon nanoparticles fulleroid type obtained by selection of sizes and shapes of multilayer carbon nanoparticles their separation in an electric field, as described in AN Brozdnichenko et al. [“Surface. X-ray, Synchrotron and Neutron studies)) 2007, ⁇ 2, p. 69-73].
  • a cathode plate For nanoparticles to form said vacuum volume is placed a cathode plate, which has received as a result of oxidation of previous operations multiwall carbon nanoparticles and, parallel thereto, an anode plate made of a nonmagnetic material such as tantalum. After connecting the anode and cathode to a high voltage source, power is supplied and the potential difference acting in the interelectrode gap is gradually increased.
  • field emission current begins to appear.
  • anode attraction force appears by the cathode, which is fixed by a vacuum dynamometer on which the anode plate is fixed.
  • part of the multilayer carbon nanoparticles moves from the cathode to the anode, while the force acting in the interelectrode gap ceases to grow.
  • the voltage applied to the cathode and the anode is removed, the vacuum volume is filled with an inert gas, and carbon multilayer nanoparticles accumulated on the anode plate are collected.
  • Multilayer carbon nanoparticles thus isolated have a toroidal shape with a ratio of the outer diameter to the thickness of the torus body equal to (10-3): l, as shown by studies using a transmission electron microscope such as JEM-100C.
  • FIG. 1-2 is a diagrammatic representation of FIG. 1 .
  • FIG. 1 shows an image of multilayer carbon nanoparticles of the fulleroid type, agglomerated in the form of a bundle of tori.
  • FIG. Figure 2 shows an image of a toroidal multilayer carbon nanoparticles of fulleroid type at high magnification, which allows to determine the ratio the outer diameter of the torus to the thickness of its body.
  • the claimed invention is illustrated by examples, but not limited to.
  • An electric arc erosion of an anode graphite rod with a cross-section of 30-160 mm at a current density of 80-200 A / cm and a voltage drop across an arc of 20-28 V in a helium atmosphere at a pressure of 40-100 torr produces a cathode deposit.
  • the dense crust of the cathode deposit is separated from the loose middle, crushed and placed in a rotating quartz tube placed in a microwave field with a frequency of 2.5 GHz and a power of 500-1500 watts. After 100-150 minutes gas-phase oxidation under these conditions, the resulting powder is cooled and placed in a vacuum volume on a negative electrode in the interelectrode space between the cathode and the anode.
  • the potential difference between the cathode and the anode is increased until the field emission current appears.
  • part of the multilayer carbon nanoparticles moves to the positive electrode. After the end of the process, they are collected from the surface of the anode and transferred into a dispersion in an organic solvent, for example, in dimethylformamide.
  • the product is obtained, as in example 1, but gas phase oxidation carried out in an environment containing an increased amount of oxygen, for example from 20% to 60%.
  • the product is obtained as in example 1, but after gas-phase oxidation, multilayer carbon nanoparticles are additionally oxidized electrochemically in an aqueous electrolyte containing solutions of chlorine compounds.
  • the product is obtained, as in example 1, but the selection of toroidal multilayer carbon nanoparticles is produced in an electric field in a dielectric medium with a high dielectric constant (for example, in white spirit).
  • the product is obtained as in example 1, but after gas-phase oxidation, the multilayer carbon nanoparticles are additionally cooled by placing liquid gas (nitrogen, helium) in the medium, bubbling and separating the precipitate with the liquid phase, followed by evaporation of the liquid gas and obtaining two types of carbon powder, which are further processed as shown in example 1.
  • liquid gas nitrogen, helium
  • the product is separated from the solvent and examined according to the following parameters: - X-ray determine the interlayer distance in multilayer carbon nanoparticles, which is equal to 0.34-0.36 nm, which is typical for carbon compounds of the fulleroid type;
  • a field emission cathode was made from the obtained toroidal nanoparticles by depositing them on an electrically conductive substrate.
  • field emission cathodes with multilayer nanotubes and with polyhedral multilayer carbon nanoparticles according to RU 2196731 were manufactured.
  • the table shows that the force acting in the interelectrode gap in the case of a negative electrode made of toroidal multilayer carbon nanoparticles of fulleroid type differs from the values of such forces for electrodes of multilayer nanotubes and polyhedral multilayer carbon nanoparticles of fulleroid type obtained in according to RU 2196731.
  • the resulting product due to the high value of the electric field gain on the surface of such toroidal multilayer carbon nanoparticles of the fulleroid type, can be used in electronic devices, using the effect of force interaction in the interelectrode gap during field emission (sensors of dynamic parameters), as a component of nonlinear optical media, as well as a reinforcing additive to structural composite materials and as a plasticizing additive to concrete mixtures in construction.

Abstract

Заявлены многослойные углеродные наночастицы с межслоевым расстоянием 0,34-0,36 нм тороидальной формы с соотношением внешнего диаметра к толщине многослойного тела тора, равным (10-3): 1, и средним размером 15-100 нм.

Description

Многослойные углеродные наночастицы фуллероидного типа
Область техники.
Изобретение относится к химии углерода, и, в частности, к получению углеродных многослойных наночастиц фуллероидного типа.
Частицы фуллероидного типа имеют характерное строение, представляющее собой непрерывную сеть, состоящую из 5-ти, 6-ти членных колец, имеющих чередующиеся σ и π - связи.
Многослойные частицы имеют расстояние между слоями, равное 0,34-0,36 нм. Строение фуллероидных наночастиц определяет их способность к малоинтенсивному, интенсивному или аномально высокому дисперсионному взаимодействию, что проявляется в возможном увеличении напряженности электрического поля электромагнитной волны, падающей на такую частицу.
Предшествующий уровень техники.
Многослойные углеродные наночастицы фуллероидного типа - многослойные углеродные нанотрубки, - представляют собой наночастицы трубчатой формы, имеющие достаточно широкий диапазон размеров: длина 10-100 000 нм; внешний диаметр 1-500 нм; толщина стенок 0,1-200 нм. Нанотрубки получают выделением из катодного осадка, получаемого при дуговом испарении графитового анода, [заявка JP JSГ207- 165406, М.кл. C Ol B, 31/00, 1995].
У многослойных углеродных нанотрубок практически отсутствует эффект силового взаимодействия в межэлектродных промежутках при автоэмиссии из катодов, содержащих такие наночастицы. Кроме того, значение коэффициента усиления электрического поля, реализуемое на поверхности катода, содержащего нанотрубки, невелико, что не позволяет получить высокий уровень дисперсионного взаимодействия на границах различных сред.
Известны полиэдральные многослойные углеродные наночастицы фуллероидного типа, имеющие межслоевое расстояние 0,34-0,36 нм и средний размер частиц 60-200 нм [RU патент N°2196731 , M. кл. COlB, 31/02, 2003].
Полиэдральные многослойные углеродные наночастицы представляют собой 4-7-cтopoнниe многогранники с внутренним щелевидным капилляром. Они могут иметь также разветвленный вид и не содержать внутреннего капилляра, или иметь вид приплюснутого многогранника, внешний диаметр которого превышает длину наночастицы.
Полиэдральные многослойные углеродные наночастицы фуллероидного типа выделяют из корки катодного осадка, получаемого при дуговом процессе испарения графитового анода. Способ получения включает газофазное окисление размолотой корки катодного осадка и последующее жидкофазное окисление углеродного порошка в расплаве смеси гидроксида и нитрата калия, как это показано в RU 2196731.
Полиэдральные многослойные углеродные наночастицы обладают рядом ценных свойств: они способствуют структурированию бетонов [RU патент N22233254, 2004], повышают износостойкость сплавов [RU патент N°2281341, 2003], имеют высокую стойкость к термическому разложению [RU патент JV22196731, 2003] и т. п. Однако, случайный характер их распределения по размерам и формам, не позволяет реализовать эффект силового взаимодействия в межэлектродном промежутке при автоэлектронной эмиссии из катодов, выполненных из таких наночастиц и достигнуть высоких значений коэффициента усиления электрического поля на их поверхности, что обеспечивало бы максимально высокий уровень дисперсионного взаимодействия на границах раздела фаз в различных средах.
Раскрытие изобретения.
В основу изобретения поставлена задача получения многослойных углеродных наночастиц фуллероидного типа, дающих высокие значения силового взаимодействия в межэлектродном промежутке при автоэлектронной эмиссии из катода, выполненного из указанных частиц. Согласно изобретению, многослойные углеродные наночастицы фуллероидного типа с межслоевым расстоянием 0,34-0,36 нм имеют тороидальную форму с соотношением внешнего диаметра к толщине многослойного тела тора, равным (10-3): 1, и средним размером наночастиц 15-100 нм.
Тороидальные многослойные углеродные наночастицы фуллероидного типа получены путем селекции размеров и форм многослойных углеродных наночастиц разделением их в электрическом поле, как это описано в работе Броздниченко А.Н. и др. [«Пoвepxнocть. Рентгеновские, Синхротронные и Нейтронные исследования)) 2007, Ж2, с. 69-73]. Для получения наночастиц указанной формы в вакуумный объем помещают катодную пластину, на которой размещены полученные окислением в результате предыдущих операций многослойные углеродные наночастицы и, параллельно ей, анодную пластину, выполненную из немагнитного материала, например, тантала. После подключения анода и катода к источнику высокого напряжения подают питание и постепенно повышают разность потенциалов, действующую в межэлектродном промежутке. При достижении напряженности поля в 800-1000 В/мм начинает появляться автоэмиссионный ток. При увеличении автоэмиссионного тока возникает сила притяжения анода катодом, что фиксируется вакуумным динамометром, на котором закреплена анодная пластина. Начиная с некоторого значения автоэмиссионного тока, часть многослойных углеродных наночастиц перемещается с катода на анод, при этом сила, действующая в межэлектродном промежутке перестает расти. Затем напряжение, поданное на катод и анод снимают, вакуумный объем заполняют инертным газом и собирают углеродные многослойные наночастицы, накопившиеся на анодной пластине.
Многослойные углеродные наночастицы, выделенные таким образом, имеют тороидальную форму с соотношением внешнего диаметра к толщине тела тора, равным (10-3):l, как показали исследования, выполненные с помощью просвечивающего электронного микроскопа, такого, как JEM-100C.
Микрофотографии полученных наночастиц представлены на
Фиг. 1-2.
На Фиг. 1 представлено изображение многослойных углеродных наночастиц фуллероидного типа, агломерированных в виде связки торов.
На Фиг. 2 представлено изображение тороидальных многослойных углеродных наночастиц фуллероидного типа при большом увеличении, позволяющем определить соотношение внешнего диаметра тора к толщине его тела.
Заявляемое изобретение поясняется примерами, но не ограничено ими.
Пример 1.
Электродуговой эрозией анодного графитового стержня сечением 30-160 мм при плотности тока 80-200 А/см и падении напряжения на дуге 20-28 В в гелиевой атмосфере при давлении 40- 100 тор получают катодный осадок. Плотную корку катодного осадка отделяют от рыхлой середины, измельчают и помещают во вращающуюся кварцевую трубу, помещенную в СВЧ-поле с частотой 2,5 ГГц и мощностью 500-1500 Вт. После 100-150 мин. газофазного окисления в указанных условиях, полученный порошок охлаждают и помещают в вакуумный объем на отрицательный электрод в межэлектродное пространство между катодом и анодом. Затем повышают разность потенциалов между катодом и анодом до появления тока автоэмиссии. При повышении автоэмиссионного тока часть многослойных углеродных наночастиц перемещается на положительный электрод. После окончания процесса их собирают с поверхности анода и переводят в дисперсию в органическом растворителе, например, в диметилформамиде.
Пример 2.
Продукт получают, как в примере 1 , но газофазное окисление проводят в среде, содержащей повышенное количество кислорода, например от 20% до 60%.
Пример 3.
Продукт получают, как в примере 1, но после газофазного окисления многослойные углеродные наночастицы дополнительно окисляют электрохимически в водном электролите, содержащим растворы соединений хлора.
Пример 4.
Продукт получают, как в примере 1 , но выделение тороидальных многослойных углеродных наночастиц производят в электрическом поле в диэлектрической среде с высоким значением диэлектрической проницаемости (например в уайт-спирите).
Пример 5.
Продукт получают, как в примере 1, но после газофазного окисления многослойные углеродные наночастицы дополнительно охлаждают помещением в среду жидкого газа (азота, гелия), барботируют и разделяют осадок с жидкой фазой с последующим испарением жидкого газа и получением двух видов углеродного порошка, который далее обрабатывают, как это показано в примере 1.
Для определения электрофизических параметров продукт отделяют от растворителя и исследуют по следующим параметрам: - рентгенографически определяют межслоевое расстояние в многослойных углеродных наночастицах, которое равно 0,34-0,36 нм, что характерно для соединений углерода фуллероидного типа;
- с помощью электронного просвечивающего микроскопа, например, JEM-100C и стандартных образцов латексных шариков определяют размеры, форму и соотношение внешних диаметров тороидальных наночастиц и толщины их многослойного тела.
Из полученных тороидальных наночастиц путем нанесения их на электропроводящую подложку был изготовлен автоэмиссионный катод. Аналогичным способом были изготовлены автоэмиссионные катоды с многослойными нанотрубками и с полиэдральными многослойными углеродными наночастицами по RU 2196731.
Для указанных автоэмиссионных катодов определялось силовое взаимодействие в межэлектродном промежутке. Показатели приведены в таблице.
Из таблицы видно, что сила, действующая в межэлектродном промежутке в случае отрицательного электрода, выполненного из тороидальных многослойных углеродных наночастиц фуллероидного типа отличается от значений таких сил для электродов из многослойных нанотрубок и полиэдральных многослойных углеродных наночастиц фуллероидного типа, полученных в соответствии с RU 2196731.
Таблица
Показатели силового взаимодействия для электродов из многослойных углеродных наночастиц фуллероидного типа по заявляемому - техническому решению
Figure imgf000010_0001
Промышленная применимость.
Полученный продукт, вследствие высокого значения коэффициента усиления электрического поля на поверхности таких тороидальных многослойных углеродных наночастиц фуллероидного типа, может найти применение в электронных приборах, использующих эффект силового взаимодействия в межэлектродном промежутке при автоэлектронной эмиссии (сенсоры динамических параметров), как компонент нелинейно-оптических сред, а также как усиливающая добавка к конструкционным композиционным материалам и как пластифицирующая добавка к бетонным смесям в строительстве.

Claims

Формула изобретения
Многослойные углеродные наночастицы фуллероидного типа с межслоевым расстоянием 0,34-0,36 нм, отличающиеся тем, что они имеют тороидальную форму с соотношением внешнего диаметра к толщине многослойного тела тора, равным (10-3):l, и средний размер 15-100 нм.
PCT/RU2009/000364 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа WO2011010946A1 (ru)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа
US13/384,710 US9090752B2 (en) 2009-07-21 2009-07-21 Multi-layered carbon nanoparticles of the fulleroid type
EP09847620.3A EP2460764A4 (en) 2009-07-21 2009-07-21 MULTILAYER FULLEROID CARBON NANOPARTICLES
CN200980160650.XA CN102482096B (zh) 2009-07-21 2009-07-21 富勒烯型多层碳纳米颗粒
US13/388,182 US8742001B2 (en) 2009-07-21 2009-10-22 Nanocomposite material containing polymer binders
CN200980159895.0A CN102471064B (zh) 2009-07-21 2009-10-22 含有聚合物粘合剂的纳米复合材料
PCT/RU2009/000563 WO2011010948A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе полимерных связующих
PCT/RU2009/000562 WO2011010947A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе минеральных вяжущих

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа

Publications (1)

Publication Number Publication Date
WO2011010946A1 true WO2011010946A1 (ru) 2011-01-27

Family

ID=43499267

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа
PCT/RU2009/000563 WO2011010948A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе полимерных связующих
PCT/RU2009/000562 WO2011010947A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе минеральных вяжущих

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/RU2009/000563 WO2011010948A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе полимерных связующих
PCT/RU2009/000562 WO2011010947A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе минеральных вяжущих

Country Status (4)

Country Link
US (2) US9090752B2 (ru)
EP (1) EP2460764A4 (ru)
CN (2) CN102482096B (ru)
WO (3) WO2011010946A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527257A (zh) * 2019-09-18 2019-12-03 东莞泰合复合材料有限公司 一种碳纤维复合材料及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894472B2 (en) * 2008-09-22 2014-11-25 Virtum I Sverige Ab Tool for machining surfaces of parts
WO2011010946A1 (ru) 2009-07-21 2011-01-27 Ponomarev Andrei Nikolaevich Многослойные углеродные наночастицы фуллероидного типа
ES2369811B1 (es) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
GB201118586D0 (en) 2011-10-27 2011-12-07 Turzi Antoine New A-PRP medical device, manufacturing machine and process
FR3000426A1 (fr) * 2012-12-28 2014-07-04 Andrey Ponomarev Composition et procede de revetement d'un support
GB201421013D0 (en) 2014-11-26 2015-01-07 Turzi Antoine New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC)
CN116254545A (zh) 2018-10-29 2023-06-13 C2Cnt有限责任公司 以低碳足迹生产的碳纳米材料用于生产具有低co2排放的复合材料的用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165406A (ja) 1993-10-19 1995-06-27 Sony Corp カーボンチューブの製造方法
US5464987A (en) * 1992-08-20 1995-11-07 Hitachi, Ltd. Method for constructing a carbon molecule and structures of carbon molecules
RU2196731C2 (ru) 2000-09-21 2003-01-20 Закрытое акционерное общество "Астрин" Полиэдральные многослойные углеродные наноструктуры фуллероидного типа
RU2233254C2 (ru) 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2281341C2 (ru) 2003-07-23 2006-08-10 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Спеченный композиционный материал

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316925A (en) 1980-10-09 1982-02-23 John Delmonte Fiber reinforced cementitious castings
JP2668598B2 (ja) 1989-12-08 1997-10-27 日本化薬株式会社 水硬性組成物及び高強度複合材料
RU2068489C1 (ru) 1992-10-26 1996-10-27 Украинский научно-исследовательский институт природных газов Способ крепления скважин
RU2036298C1 (ru) 1992-12-08 1995-05-27 Западно-Сибирский научно-исследовательский институт нефтяной промышленности Тампонажная композиция
WO1994020274A1 (en) 1993-03-08 1994-09-15 E. Khashoggi Industries Insulation barriers having a hydraulically settable matrix
RU2085394C1 (ru) 1994-02-16 1997-07-27 Евгений Афанасьевич Точилин Композиционный материал "миленитт-этп"
RU2234457C2 (ru) 2001-06-01 2004-08-20 Общество с ограниченной ответственностью "Научно-производственная компания "НеоТекПродакт" Способ получения фуллеренсодержащей сажи и устройство для его осуществления
US20030082092A1 (en) * 2001-10-30 2003-05-01 Nettleton Nyles I. Carbon nanoloop
RU2223988C2 (ru) 2001-11-19 2004-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Полимерное связующее, композиционный материал на его основе и способ его изготовления
RU2223304C1 (ru) 2002-09-19 2004-02-10 Открытое акционерное общество "Белкард" Композиционный материал для узлов трения автомобильных агрегатов
RU2291700C2 (ru) 2002-11-20 2007-01-20 Артур Афанасьевич Мак Способ фотодинамического воздействия на вирусы или клетки
RU2247759C1 (ru) 2004-03-19 2005-03-10 Николаев Алексей Анатольевич Композиция для поглощения электромагнитного излучения и способ получения композиции
CA2591942A1 (en) 2005-01-13 2006-07-20 Cinvention Ag Composite materials containing carbon nanoparticles
RU2281262C1 (ru) 2005-01-31 2006-08-10 Ижевский государственный технический университет Композиция для получения строительных материалов
AU2006223564A1 (en) 2005-03-09 2006-09-21 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
KR20080053924A (ko) 2005-08-08 2008-06-16 캐보트 코포레이션 나노튜브를 함유하는 중합체 조성물
JP5541864B2 (ja) 2005-08-25 2014-07-09 コーティングス フォーリン アイピー カンパニー, エルエルシー 変性ナノ粒子
US8012420B2 (en) * 2006-07-18 2011-09-06 Therm-O-Disc, Incorporated Robust low resistance vapor sensor materials
RU2345968C2 (ru) 2007-01-24 2009-02-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" Композиция для получения строительного материала
RU2354526C2 (ru) * 2007-03-12 2009-05-10 Андрей Николаевич Пономарев Инструмент для механической обработки поверхности деталей
RU2397950C2 (ru) 2008-04-23 2010-08-27 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Многослойные углеродные наночастицы фуллероидного типа тороидальной формы
JP2012510426A (ja) * 2008-12-03 2012-05-10 マサチューセッツ インスティテュート オブ テクノロジー コーティングされたナノ構造ベースに基づく多機能複合材
WO2011010946A1 (ru) 2009-07-21 2011-01-27 Ponomarev Andrei Nikolaevich Многослойные углеродные наночастицы фуллероидного типа
RU2437902C2 (ru) 2009-10-22 2011-12-27 Андрей Николаевич Пономарев Нанокомпозитный материал на основе полимерных связующих
RU2436749C2 (ru) 2009-10-22 2011-12-20 Андрей Николаевич Пономарев Нанокомпозитный материал на основе минеральных вяжущих

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464987A (en) * 1992-08-20 1995-11-07 Hitachi, Ltd. Method for constructing a carbon molecule and structures of carbon molecules
JPH07165406A (ja) 1993-10-19 1995-06-27 Sony Corp カーボンチューブの製造方法
RU2196731C2 (ru) 2000-09-21 2003-01-20 Закрытое акционерное общество "Астрин" Полиэдральные многослойные углеродные наноструктуры фуллероидного типа
RU2233254C2 (ru) 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2281341C2 (ru) 2003-07-23 2006-08-10 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Спеченный композиционный материал

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BROZDNICHENKO A.N., JOURNAL OF SURFACE INVESTIGATION. X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES, vol. 2, 2007, pages 69 - 73
HAN JIE: "Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles", NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 1997, XP008160054, Retrieved from the Internet <URL:http://www.nas.nasa.gov/News/Techreports/I997/PDF/nas-97-015.pdf> [retrieved on 20100303] *
See also references of EP2460764A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527257A (zh) * 2019-09-18 2019-12-03 东莞泰合复合材料有限公司 一种碳纤维复合材料及其制备方法和应用
CN110527257B (zh) * 2019-09-18 2022-03-18 东莞泰合复合材料有限公司 一种碳纤维复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN102482096A (zh) 2012-05-30
US8742001B2 (en) 2014-06-03
EP2460764A1 (en) 2012-06-06
WO2011010947A1 (ru) 2011-01-27
CN102471064B (zh) 2014-11-05
EP2460764A4 (en) 2013-11-13
US9090752B2 (en) 2015-07-28
CN102471064A (zh) 2012-05-23
WO2011010948A1 (ru) 2011-01-27
CN102482096B (zh) 2015-02-04
US20120114946A1 (en) 2012-05-10
US20120142821A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2011010946A1 (ru) Многослойные углеродные наночастицы фуллероидного типа
Sahoo et al. 2D materials for renewable energy storage devices: outlook and challenges
Zhang et al. 3D porous γ‐Fe2O3@ C nanocomposite as high‐performance anode material of Na‐ion batteries
JP6209641B2 (ja) 薄片状黒鉛結晶集合物
TWI485105B (zh) 碳奈米管及其製造方法
CN108463578B (zh) 2d材料的电化学剥离
TWI712206B (zh) 能量儲存裝置、其電極以及矽藻殼
Ouyang et al. Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors
TW201924949A (zh) 能量儲存裝置、能量儲存裝置之膜與用於印刷薄膜之墨水
KR101409640B1 (ko) 전기선 폭발을 이용한 그래핀 및 그래핀-나노금속 복합분말의 제조방법
CN101031508A (zh) 制造磁性石墨材料的方法以及由其制造的材料
Hosseini et al. Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using NaCl accuse as solution and Fe and Ni particles and catalysts
Pawar et al. Efficient supercapacitor based on polymorphic structure of 1T′-Mo6Te6 nanoplates and few-atomic-layered 2H-MoTe2: A layer by layer study on nickel foam
US20230227317A1 (en) Conductive two-dimensional particle and method for producing the same
CN110799676B (zh) 复合层、其制造方法及其用途
Sankaran et al. Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid
Tan et al. ZnO tip-coated carbon nanotubes core–shell structures for photoluminescence and electron emission properties
Zhang et al. Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope
JPH06280116A (ja) カーボンナノチューブの製造方法
Zhang et al. Ultrasound-assisted fabrication of Ti3C2Tx MXene toward enhanced energy storage performance
Ahmad et al. Systematic study of physicochemical and electrochemical properties of carbon nanomaterials
RU2397950C2 (ru) Многослойные углеродные наночастицы фуллероидного типа тороидальной формы
RU2504858C2 (ru) Автоэмиссионный катод
KR102151393B1 (ko) 산화그래핀의 분급 방법 및 그에 의해 분급된 산화그래핀
CN113690066B (zh) 一种石墨烯量子点/少层Ti3C2Tx复合材料的制备方法及其应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160650.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384710

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 168/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009847620

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE