CN102482096B - 富勒烯型多层碳纳米颗粒 - Google Patents

富勒烯型多层碳纳米颗粒 Download PDF

Info

Publication number
CN102482096B
CN102482096B CN200980160650.XA CN200980160650A CN102482096B CN 102482096 B CN102482096 B CN 102482096B CN 200980160650 A CN200980160650 A CN 200980160650A CN 102482096 B CN102482096 B CN 102482096B
Authority
CN
China
Prior art keywords
carbon nano
particle
multilayer
positive plate
multilayer carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980160650.XA
Other languages
English (en)
Other versions
CN102482096A (zh
Inventor
A·波诺马廖夫
M·尤多维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43499267&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102482096(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CN102482096A publication Critical patent/CN102482096A/zh
Application granted granted Critical
Publication of CN102482096B publication Critical patent/CN102482096B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Abstract

本发明涉及一种具有0.34-0.36nm层间距的环状的多层碳纳米颗粒,所述多层碳纳米颗粒的环状多层体的外径和厚度的比为(10-3)∶1,且平均尺寸为15-100nm。

Description

富勒烯型多层碳纳米颗粒
技术领域
本发明涉及碳的化学,特别是,涉及富勒烯型(fulleroid type)多层碳纳米颗粒的获得。
富勒烯型颗粒具有呈现由σ和π键交互的5元环,6元环组成的连续网状的典型结构。
多层颗粒具有等于0.34-0.36nm的层间距。富勒烯型纳米颗粒的结构决定了它们具有低强度的、强的或异常高的弥散相互作用(dispersion interaction)的性能,该性能通过进入所述颗粒的电磁波的电场强度的可行性增长得到证实。
背景技术
富勒烯型多层碳纳米颗粒—多层碳纳米管—是管状纳米颗粒,具有相当大范围的尺寸:长度为10-100000nm;外径为1-500nm;壁厚为0.1-200nm。纳米管通过提取由石墨阳极的电弧蒸发得到的阴极沉积物而获得(申请JP 07-165406,M.cl.C01B,31/00,1995)。
所述的多层纳米管在包含这些纳米颗粒的阴极的自发射中在电极间隙中对相互作用力几乎没有影响。此外,在包含纳米管的阴极表面上实现的电场增益系数值很小,不允许在各种介质的边界上获得高水平的弥散相互作用。
具有0.34-0.36nm的层间距以及60-200nm的平均颗粒尺寸的富勒烯型多面体多层碳纳米颗粒是已知的(RU专利号2196731,M.cl.C01B,31/02,2003)。
所述多面体多层碳纳米颗粒是具有内部裂缝状毛细管的4-7面多面体。它们也可以具有分枝形式并可不包含所述的内部毛细管,或者它们可具有拉平的多面体的形式,其外径超出纳米颗粒的长度。
所述富勒烯型多面体多层纳米颗粒从电弧过程中石墨阳极的蒸发得到的阴极沉积物的外壳中提取获得。制备方法包括研磨过的阴极沉淀物外壳的气相氧化以及随后的碳粉在氢氧化物和硝酸钾的混合物熔体中的液相氧化,如在RU2196731中所示的。
所述多面体多层碳纳米颗粒具有很多有价值的特性:它们有助于构造混凝土(RU专利号2233254,2004),增强合金的耐磨性(RU专利号2281341,2003),高抗热降解性(RU专利号2196731,2003)等等。然而,它们在尺寸和形状分布的随机性不允许在从由这些纳米颗粒制成的阴极自电子发射的过程中实现在电极间隙间相互作用力的效果,也不允许在它们表面上获得高的电场增益系数,高的电场增益系数在各种介质的相界面上提供最高水平的弥散相互作用。
发明内容
本发明的目的是获得富勒烯型多层碳纳米颗粒,在由所述颗粒制成的阴极自电子发射过程中所述颗粒在电极间隙间提供高值的相互作用力。
根据本发明,层间距为0.34-0.36nm的富勒烯型多层碳纳米颗粒具有环形形状,环状多层体的外径与厚度的比为(10-3)∶1且纳米颗粒的平均尺寸为15-100nm。
所述富勒烯型环形多层碳纳米颗粒通过它们在电场中的分离来选择多层碳纳米颗粒的尺寸和形状而获得,如Brozdnichenko A.N.&all.的论文中所述(Journal ofSurface Investigation.X-ray,Synchrotron and Neutron Techniques,2007,No2,p.69-73)。为了获得所述形状的纳米颗粒,阴极板被放置在真空体中;由先前的操作通过氧化得到的多层碳纳米颗粒置于阴极板上,并且与之平行放置由非磁性材料例如钽制成的阳极板。将阳极和阴极连接到高压电源后,提供电压并且逐渐提高在电极间隙间的电位差。当场强度达到800-1000V/mm时,开始产生自发射电流。如果自发射电流增大,通过一个在其上固定所述阳极板的真空功率计记录阳极/阴极吸引力的出现。以某个自发射电流值开始,一部分多层碳纳米颗粒从阴极迁移到阳极,同时,在电极间隙中作用的力停止增加。随后,移除施加在阴极和阳极上的电压,用惰性气体填充所述真空体,收集积聚在阳极板上的多层碳纳米颗粒。
用这种方式分离的多层碳纳米颗粒具有环形形状,所述环状多层体的外径与厚度的比等于(10-3)∶1,正如在透射电子显微镜,例如JEM-100C的帮助下的研究所示。
附图说明
所得纳米颗粒的微观照片如图1-2所示。
图1显示了聚集成一束的圆环形状的富勒烯型多层碳纳米颗粒的照片。
图2显示了富勒烯型环状多层碳纳米颗粒在可确定环状外径与其主体厚度的比的高放大倍率下的照片。
具体实施方式
本发明通过实施例进一步说明但不限于这些实施例。
实施例1
在80-200A/cm2的电流密度和20-28V的电弧压降下在40-100Torr压力的氦气气氛中通过截面积为30-160mm2的阳极石墨棒的电弧侵蚀来获得阴极沉积。从松散的中部分离阴极沉积物的致密外壳,将其研磨并将其放置在置于频率为2.5GHz且功率为500-1500Wt的超高频场中的转动的石英管中。在这些条件下经过100-150min的气相氧化,冷却所得到的粉末并将其置于真空体中的阴极上,处于阴极和阳极之间的极间空间中。随后增大阴极和阳极间的电位差直到出现自发射电流。随着自发射电流的增大,一部分多层碳纳米颗粒迁移到阳极。在该过程的最后,从阳极表面被收集多层碳纳米颗粒并在有机溶剂例如二甲基甲酰胺中转化为分散体。
实施例2
如实施例1所述得到产品,但气相氧化在包含过量氧气,例如,20%-60%氧气的气氛下进行。
实施例3
如实施例1所述得到产品,但在气相氧化后,多层碳纳米颗粒另外在包含氯化合物的含水电解液中电化学氧化。
实施例4
如实施例1所述得到产品,但环状多层碳纳米颗粒的分离在具有高的介电渗透性值的介电介质(例如石油溶剂油)中在电场下实施。
实施例5
如实施例1所述得到产品,但在气相氧化后,通过将多层碳纳米颗粒放置在液化气体介质(氮,氦)中进行附加冷却,鼓泡并从液相中分离沉积物,随后蒸发液化气体获得两种类型的碳粉末,并如实施例1所述进一步处理,。
为了确定电物理学特性,将产物从溶剂中分离并测定以下参数:
—放射学地测定多层碳纳米颗粒的层间距,测得层间距等于0.34-0.36nm,该值是富勒烯型碳化合物的特征;
—使用透射电子显微镜,例如JEM-100C,和乳胶珠标准样,测定了多层碳纳米颗粒的尺寸、形状以及环状纳米颗粒的外径和多层体厚度之间的比。
通过将所得到的环状纳米颗粒涂覆在电传导基体上制造自发射阴极。根据RU2196731,具有多层纳米管和多面体多层碳纳米颗粒的自发射阴极已用相似的方式制造。
测定了所述自发射阴极的电极间隙中的相互作用力。参数列于表中。
下表显示了当负极由富勒烯型环状多层碳纳米颗粒制造时电极间隙中的作用力,与根据RU2196731得到的多层纳米管和富勒烯型多面体多层碳纳米颗粒的电极的这些力的值不同。
表根据本发明的技术方案的由富勒烯型多层碳纳米颗粒
制备的电极的相互作用力
由于在这些富勒烯型环状多层碳纳米颗粒表面上的电场的增益系数的高值,制得的产物可以应用于利用在自电子发射过程中电极间隙中相互作用力的效应的电子设备(动态参数传感器);作为非线性光学介质的组分;也可用作结构复合材料的增强剂和作为建筑中混凝土的增塑剂。

Claims (10)

1.富勒烯型多层碳纳米颗粒,其具有0.34-0.36nm的层间距,特征在于:所述富勒烯型多层碳纳米颗粒具有环形形状,环状纳米颗粒的多层体的外径和厚度的比等于(10-3):1,且平均尺寸为15-100nm,所述平均尺寸通过透射电子显微镜测定。
2.制备根据权利要求1所述的富勒烯型多层碳纳米颗粒的方法,所述方法包括:
-将阴极板和由非磁性材料制成的阳极板放置在具有介电介质的真空体中,调节所述阴极板和阳极板使得形成电极间隙,
-通过气相氧化获得源自多层碳纳米结构的粉末,
其特征在于,所述方法进一步包括:
-将先前通过气相氧化获得的源自多层碳纳米结构的粉末放置在所述阴极板上;
-将所述阳极板固定在功率计上;
-将所述阴极板和所述阳极板连接至电源;
-通过给所述阴极板和所述阳极板施加电压将所述粉末暴露在电场中;
-增加所述阴极板和所述阳极板之间的电位差直到在电极间隙间中出现自发射电流;
-通过所述功率计记录阳极/阴极吸引力作为自发射电流的函数;
-当在电极间隙中作用的力停止增加,移除施加在所述阴极板和所述阳极板上的电位差;
-用惰性气体填充所述真空体;
-收集积聚在所述阳极板的富勒烯型多层碳纳米颗粒;
-用放射学方法测定富勒烯型多层碳纳米颗粒的层间距;
-使用透射电子显微镜测定富勒烯型多层碳纳米颗粒的平均尺寸、形状以及外径和多层体厚度之间的比值;且
特征在于,
所述多层碳纳米颗粒是根据权利要求1所述的富勒烯型多层碳纳米颗粒。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:
-在氦气气氛中通过阳极石墨棒的电弧侵蚀来获得阴极沉积;
-从松散的中部分离阴极沉积物的致密外壳;
-研磨该致密外壳;
-借助于该致密外壳的气相氧化获得多层碳纳米结构。
4.根据权利要求3所述的方法,其特征在于,所述方法还包括:将在阳极板上收集的富勒烯型多层碳纳米颗粒在有机溶剂中转化为分散体。
5.根据权利要求4所述的方法,其特征在于,所述有机溶剂是二甲基甲酰胺。
6.根据权利要求5所述的方法,其特征在于,所述方法还包括将该致密外壳置于超高频场中,以及特征在于,
-阳极石墨棒的截面积为30-160mm2
-在80-200A/cm2的电流密度和20-28V的电弧压降下在40-100Torr压力的氦气气氛中进行阳极石墨棒的电弧侵蚀;
-超高频场的频率为2.5GHz且功率为500-1500Wt;
-致密外壳的气相氧化在100-150min的时间内实现。
7.根据权利要求6所述的方法,其特征在于,所述致密外壳的气相氧化在包含氧气的气氛中进行,并且所述气氛包含的氧气量为20%-60%。
8.根据权利要求6所述的方法,其特征在于,在气相氧化之后,多层碳纳米结构另外在包含氯化合物溶液的含水电解液中被电化学氧化。
9.根据权利要求6所述的方法,其特征在于,在气相氧化之后,对多层碳纳米结构另外进行处理,该另外的处理包括:
-通过将多层碳纳米结构放置在液化气体中将其冷却;
-对包含该液化气体和该多层碳纳米结构的介质进行鼓泡;
-从该介质的液相中分离介质的固相;
-通过蒸发所述液相从介质的液相中获得粉末。
10.通过权利要求2的方法所获得的权利要求1的富勒烯型多层碳纳米颗粒在以下应用之一中的用途:(a)作为利用在自电子发射过程中电极间隙中相互作用力的效应的电子设备中的动态参数传感器;(b)作为非线性光学介质的组分;(c)用作结构复合材料的增强剂;和(d)作为建筑中混凝土的增塑剂。
CN200980160650.XA 2009-07-21 2009-07-21 富勒烯型多层碳纳米颗粒 Expired - Fee Related CN102482096B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа

Publications (2)

Publication Number Publication Date
CN102482096A CN102482096A (zh) 2012-05-30
CN102482096B true CN102482096B (zh) 2015-02-04

Family

ID=43499267

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980160650.XA Expired - Fee Related CN102482096B (zh) 2009-07-21 2009-07-21 富勒烯型多层碳纳米颗粒
CN200980159895.0A Active CN102471064B (zh) 2009-07-21 2009-10-22 含有聚合物粘合剂的纳米复合材料

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200980159895.0A Active CN102471064B (zh) 2009-07-21 2009-10-22 含有聚合物粘合剂的纳米复合材料

Country Status (4)

Country Link
US (2) US9090752B2 (zh)
EP (1) EP2460764A4 (zh)
CN (2) CN102482096B (zh)
WO (3) WO2011010946A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033056A1 (en) * 2008-09-22 2010-03-25 Pcg Tools Ab A tool for machining surfaces of parts
WO2011010946A1 (ru) 2009-07-21 2011-01-27 Ponomarev Andrei Nikolaevich Многослойные углеродные наночастицы фуллероидного типа
ES2369811B1 (es) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
GB201118586D0 (en) 2011-10-27 2011-12-07 Turzi Antoine New A-PRP medical device, manufacturing machine and process
FR3000426A1 (fr) * 2012-12-28 2014-07-04 Andrey Ponomarev Composition et procede de revetement d'un support
GB201421013D0 (en) 2014-11-26 2015-01-07 Turzi Antoine New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC)
CN116254544A (zh) 2018-10-29 2023-06-13 C2Cnt有限责任公司 以低碳足迹生产的碳纳米材料用于生产具有低co2排放的复合材料的用途
CN110527257B (zh) * 2019-09-18 2022-03-18 东莞泰合复合材料有限公司 一种碳纤维复合材料及其制备方法和应用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316925A (en) 1980-10-09 1982-02-23 John Delmonte Fiber reinforced cementitious castings
JP2668598B2 (ja) 1989-12-08 1997-10-27 日本化薬株式会社 水硬性組成物及び高強度複合材料
JPH0669494A (ja) * 1992-08-20 1994-03-11 Hitachi Ltd カーボン分子とその集合体の製造方法
RU2068489C1 (ru) 1992-10-26 1996-10-27 Украинский научно-исследовательский институт природных газов Способ крепления скважин
RU2036298C1 (ru) 1992-12-08 1995-05-27 Западно-Сибирский научно-исследовательский институт нефтяной промышленности Тампонажная композиция
JPH08509949A (ja) 1993-03-08 1996-10-22 イー・カショーギ・インダストリーズ 水硬性構造マトリックスを有する断熱障壁及び製造法
JP3508247B2 (ja) 1993-10-19 2004-03-22 ソニー株式会社 カーボンチューブの製造方法
RU2085394C1 (ru) 1994-02-16 1997-07-27 Евгений Афанасьевич Точилин Композиционный материал "миленитт-этп"
RU2196731C2 (ru) 2000-09-21 2003-01-20 Закрытое акционерное общество "Астрин" Полиэдральные многослойные углеродные наноструктуры фуллероидного типа
RU2233254C2 (ru) 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2234457C2 (ru) 2001-06-01 2004-08-20 Общество с ограниченной ответственностью "Научно-производственная компания "НеоТекПродакт" Способ получения фуллеренсодержащей сажи и устройство для его осуществления
US20030082092A1 (en) * 2001-10-30 2003-05-01 Nettleton Nyles I. Carbon nanoloop
RU2223988C2 (ru) 2001-11-19 2004-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Полимерное связующее, композиционный материал на его основе и способ его изготовления
RU2223304C1 (ru) 2002-09-19 2004-02-10 Открытое акционерное общество "Белкард" Композиционный материал для узлов трения автомобильных агрегатов
RU2291700C2 (ru) 2002-11-20 2007-01-20 Артур Афанасьевич Мак Способ фотодинамического воздействия на вирусы или клетки
RU2281341C2 (ru) 2003-07-23 2006-08-10 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Спеченный композиционный материал
RU2247759C1 (ru) 2004-03-19 2005-03-10 Николаев Алексей Анатольевич Композиция для поглощения электромагнитного излучения и способ получения композиции
PT1836239E (pt) 2005-01-13 2009-02-02 Cinv Ag Materiais compósitos contendo nanopartículas de carbono
RU2281262C1 (ru) 2005-01-31 2006-08-10 Ижевский государственный технический университет Композиция для получения строительных материалов
KR20080003789A (ko) 2005-03-09 2008-01-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 나노복합체막 및 이의 제조 및 사용 방법
KR20080053924A (ko) 2005-08-08 2008-06-16 캐보트 코포레이션 나노튜브를 함유하는 중합체 조성물
MX2008002329A (es) 2005-08-25 2008-03-14 Du Pont Nanoparticulas modificadas.
US8012420B2 (en) * 2006-07-18 2011-09-06 Therm-O-Disc, Incorporated Robust low resistance vapor sensor materials
RU2345968C2 (ru) 2007-01-24 2009-02-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" Композиция для получения строительного материала
RU2354526C2 (ru) 2007-03-12 2009-05-10 Андрей Николаевич Пономарев Инструмент для механической обработки поверхности деталей
RU2397950C2 (ru) 2008-04-23 2010-08-27 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Многослойные углеродные наночастицы фуллероидного типа тороидальной формы
KR20110099711A (ko) * 2008-12-03 2011-09-08 메사추세츠 인스티튜트 오브 테크놀로지 코팅된 나노구조물에 기초한 다기능성 복합체
WO2011010946A1 (ru) 2009-07-21 2011-01-27 Ponomarev Andrei Nikolaevich Многослойные углеродные наночастицы фуллероидного типа
RU2436749C2 (ru) 2009-10-22 2011-12-20 Андрей Николаевич Пономарев Нанокомпозитный материал на основе минеральных вяжущих
RU2437902C2 (ru) 2009-10-22 2011-12-27 Андрей Николаевич Пономарев Нанокомпозитный материал на основе полимерных связующих

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Energetic and structure of fullerene crop circles;Jie Han;《Chemical Physics Letters》;19980109;第282卷;188-189页 2.circular tori *
Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles;Jie Han;《NASA Technical Report》;19971231;文章2.Circular Tori *

Also Published As

Publication number Publication date
CN102471064B (zh) 2014-11-05
EP2460764A1 (en) 2012-06-06
WO2011010947A1 (ru) 2011-01-27
EP2460764A4 (en) 2013-11-13
US20120142821A1 (en) 2012-06-07
US9090752B2 (en) 2015-07-28
WO2011010946A1 (ru) 2011-01-27
CN102471064A (zh) 2012-05-23
US20120114946A1 (en) 2012-05-10
WO2011010948A1 (ru) 2011-01-27
CN102482096A (zh) 2012-05-30
US8742001B2 (en) 2014-06-03

Similar Documents

Publication Publication Date Title
CN102482096B (zh) 富勒烯型多层碳纳米颗粒
Du et al. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition
JP6209641B2 (ja) 薄片状黒鉛結晶集合物
Zhang et al. 3D porous γ‐Fe2O3@ C nanocomposite as high‐performance anode material of Na‐ion batteries
Li et al. Study on electrochemical performance of multi-wall carbon nanotubes coated by iron oxide nanoparticles as advanced electrode materials for supercapacitors
Sun et al. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@ Carbon anodes for lithium-ion batteries
Fairchild et al. Morphology dependent field emission of acid-spun carbon nanotube fibers
de Souza Augusto et al. Flexible metal-free supercapacitors based on multilayer graphene electrodes
Chang et al. Formation of urchin-like CuO structure through thermal oxidation and its field-emission lighting application
Li et al. based ultracapacitors with carbon nanotubes-graphene composites
Peng et al. Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries
Alaf et al. Electrochemical properties of free-standing Sn/SnO2/multi-walled carbon nano tube anode papers for Li-ion batteries
Pal et al. Graphene oxide–polyaniline–polypyrrole nanocomposite for a supercapacitor electrode
Daryakenari et al. Ethanol electro-oxidation on nanoworm-shaped Pd particles supported by nanographitic layers fabricated by electrophoretic deposition
Kim et al. Seamless aqueous arc discharge process for producing graphitic carbon nanostructures
Wenelska et al. Carbon nanotubes decorated by mesoporous cobalt oxide as electrode material for lithium-ion batteries
Wan et al. Molten salt electrolytic fabrication of TiC-CDC and its applications for supercapacitor
Jennifer et al. Exploring ternary hybrid nanocomposite of NiO@ CuO embedded on reduced graphene oxide as supercapacitor electrode
Shi et al. Templated fabrication, characterization and electrocatalysis of cobalt hexacyanoferrate nanotubes
Maity et al. Nickel oxide-1D/2D carbon nanostructure hybrid as efficient field emitters
Kim et al. High performance graphene foam emitter
Qiu et al. An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene
Han et al. Densification effect on field emission characteristics of CNT film emitters for electron emission devices
Zhao et al. One-step gas-phase construction of carbon-coated Fe 3 O 4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage
RU2504858C2 (ru) Автоэмиссионный катод

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204

Termination date: 20170721