CN102482096A - 富勒烯型多层碳纳米颗粒 - Google Patents

富勒烯型多层碳纳米颗粒 Download PDF

Info

Publication number
CN102482096A
CN102482096A CN200980160650XA CN200980160650A CN102482096A CN 102482096 A CN102482096 A CN 102482096A CN 200980160650X A CN200980160650X A CN 200980160650XA CN 200980160650 A CN200980160650 A CN 200980160650A CN 102482096 A CN102482096 A CN 102482096A
Authority
CN
China
Prior art keywords
particle
carbon nano
multilayer carbon
type
soccerballene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980160650XA
Other languages
English (en)
Other versions
CN102482096B (zh
Inventor
A·波诺马廖夫
M·尤多维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43499267&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102482096(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of CN102482096A publication Critical patent/CN102482096A/zh
Application granted granted Critical
Publication of CN102482096B publication Critical patent/CN102482096B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Inert Electrodes (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明涉及一种具有0.34-0.36nm层间距的环状的多层碳纳米颗粒,所述多层碳纳米颗粒的环状多层体的外径和厚度的比为(10-3)∶1,且平均尺寸为15-100nm。

Description

富勒烯型多层碳纳米颗粒
技术领域
本发明涉及碳的化学,特别是,涉及富勒烯型(fulleroid type)多层碳纳米颗粒的获得。
富勒烯型颗粒具有呈现由σ和π键交互的5元环,6元环组成的连续网状的典型结构。
多层颗粒具有等于0.34-0.36nm的层间距。富勒烯型纳米颗粒的结构决定了它们具有低强度的、强的或异常高的弥散相互作用(dispersion interaction)的性能,该性能通过进入所述颗粒的电磁波的电场强度的可行性增长得到证实。
背景技术
富勒烯型多层碳纳米颗粒—多层碳纳米管—是管状纳米颗粒,具有相当大范围的尺寸:长度为10-100000nm;外径为1-500nm;壁厚为0.1-200nm。纳米管通过提取由石墨阳极的电弧蒸发得到的阴极沉积物而获得(申请JP 07-165406,M.cl.C01B,31/00,1995)。
所述的多层纳米管在包含这些纳米颗粒的阴极的自发射中在电极间隙中对相互作用力几乎没有影响。此外,在包含纳米管的阴极表面上实现的电场增益系数值很小,不允许在各种介质的边界上获得高水平的弥散相互作用。
具有0.34-0.36nm的层间距以及60-200nm的平均颗粒尺寸的富勒烯型多面体多层碳纳米颗粒是已知的(RU专利号2196731,M.cl.C01B,31/02,2003)。
所述多面体多层碳纳米颗粒是具有内部裂缝状毛细管的4-7面多面体。它们也可以具有分枝形式并可不包含所述的内部毛细管,或者它们可具有拉平的多面体的形式,其外径超出纳米颗粒的长度。
所述富勒烯型多面体多层纳米颗粒从电弧过程中石墨阳极的蒸发得到的阴极沉积物的外壳中提取获得。制备方法包括研磨过的阴极沉淀物外壳的气相氧化以及随后的碳粉在氢氧化物和硝酸钾的混合物熔体中的液相氧化,如在RU2196731中所示的。
所述多面体多层碳纳米颗粒具有很多有价值的特性:它们有助于构造混凝土(RU专利号2233254,2004),增强合金的耐磨性(RU专利号2281341,2003),高抗热降解性(RU专利号2196731,2003)等等。然而,它们在尺寸和形状分布的随机性不允许在从由这些纳米颗粒制成的阴极自电子发射的过程中实现在电极间隙间相互作用力的效果,也不允许在它们表面上获得高的电场增益系数,高的电场增益系数在各种介质的相界面上提供最高水平的弥散相互作用。
发明内容
本发明的目的是获得富勒烯型多层碳纳米颗粒,在由所述颗粒制成的阴极自电子发射过程中所述颗粒在电极间隙间提供高值的相互作用力。
根据本发明,层间距为0.34-0.36nm的富勒烯型多层碳纳米颗粒具有环形形状,环状多层体的外径与厚度的比为(10-3)∶1且纳米颗粒的平均尺寸为15-100nm。
所述富勒烯型环形多层碳纳米颗粒通过它们在电场中的分离来选择多层碳纳米颗粒的尺寸和形状而获得,如Brozdnichenko A.N.&all.的论文中所述(Journal ofSurface Investigation.X-ray,Synchrotron and Neutron Techniques,2007,No2,p.69-73)。为了获得所述形状的纳米颗粒,阴极板被放置在真空体中;由先前的操作通过氧化得到的多层碳纳米颗粒置于阴极板上,并且与之平行放置由非磁性材料例如钽制成的阳极板。将阳极和阴极连接到高压电源后,提供电压并且逐渐提高在电极间隙间的电位差。当场强度达到800-1000V/mm时,开始产生自发射电流。如果自发射电流增大,通过一个在其上固定所述阳极板的真空功率计记录阳极/阴极吸引力的出现。以某个自发射电流值开始,一部分多层碳纳米颗粒从阴极迁移到阳极,同时,在电极间隙中作用的力停止增加。随后,移除施加在阴极和阳极上的电压,用惰性气体填充所述真空体,收集积聚在阳极板上的多层碳纳米颗粒。
用这种方式分离的多层碳纳米颗粒具有环形形状,所述环状多层体的外径与厚度的比等于(10-3)∶1,正如在透射电子显微镜,例如JEM-100C的帮助下的研究所示。
附图说明
所得纳米颗粒的微观照片如图1-2所示。
图1显示了聚集成一束的圆环形状的富勒烯型多层碳纳米颗粒的照片。
图2显示了富勒烯型环状多层碳纳米颗粒在可确定环状外径与其主体厚度的比的高放大倍率下的照片。
具体实施方式
本发明通过实施例进一步说明但不限于这些实施例。
实施例1
在80-200A/cm2的电流密度和20-28V的电弧压降下在40-100Torr压力的氦气气氛中通过截面积为30-160mm2的阳极石墨棒的电弧侵蚀来获得阴极沉积。从松散的中部分离阴极沉积物的致密外壳,将其研磨并将其放置在置于频率为2.5GHz且功率为500-1500Wt的超高频场中的转动的石英管中。在这些条件下经过100-150min的气相氧化,冷却所得到的粉末并将其置于真空体中的阴极上,处于阴极和阳极之间的极间空间中。随后增大阴极和阳极间的电位差直到出现自发射电流。随着自发射电流的增大,一部分多层碳纳米颗粒迁移到阳极。在该过程的最后,从阳极表面被收集多层碳纳米颗粒并在有机溶剂例如二甲基甲酰胺中转化为分散体。
实施例2
如实施例1所述得到产品,但气相氧化在包含过量氧气,例如,20%-60%氧气的气氛下进行。
实施例3
如实施例1所述得到产品,但在气相氧化后,多层碳纳米颗粒另外在包含氯化合物的含水电解液中电化学氧化。
实施例4
如实施例1所述得到产品,但环状多层碳纳米颗粒的分离在具有高的介电渗透性值的介电介质(例如石油溶剂油)中在电场下实施。
实施例5
如实施例1所述得到产品,但在气相氧化后,通过将多层碳纳米颗粒放置在液化气体介质(氮,氦)中进行附加冷却,鼓泡并从液相中分离沉积物,随后蒸发液化气体获得两种类型的碳粉末,并如实施例1所述进一步处理,。
为了确定电物理学特性,将产物从溶剂中分离并测定以下参数:
—放射学地测定多层碳纳米颗粒的层间距,测得层间距等于0.34-0.36nm,该值是富勒烯型碳化合物的特征;
—使用透射电子显微镜,例如JEM-100C,和乳胶珠标准样,测定了多层碳纳米颗粒的尺寸、形状以及环状纳米颗粒的外径和多层体厚度之间的比。
通过将所得到的环状纳米颗粒涂覆在电传导基体上制造自发射阴极。根据RU2196731,具有多层纳米管和多面体多层碳纳米颗粒的自发射阴极已用相似的方式制造。
测定了所述自发射阴极的电极间隙中的相互作用力。参数列于表中。
下表显示了当负极由富勒烯型环状多层碳纳米颗粒制造时电极间隙中的作用力,与根据RU2196731得到的多层纳米管和富勒烯型多面体多层碳纳米颗粒的电极的这些力的值不同。
表根据本发明的技术方案的由富勒烯型多层碳纳米颗粒
制备的电极的相互作用力
Figure BPA00001499657600051
由于在这些富勒烯型环状多层碳纳米颗粒表面上的电场的增益系数的高值,制得的产物可以应用于利用在自电子发射过程中电极间隙中相互作用力的效应的电子设备(动态参数传感器);作为非线性光学介质的组分;也可用作结构复合材料的增强剂和作为建筑中混凝土的增塑剂。

Claims (1)

1.富勒烯型多层碳纳米颗粒,其具有0.34-0.36nm的层间距,所述富勒烯型多层碳纳米颗粒的特征在于:具有环形形状,所述环状多层体的外径和厚度的比等于(10-3)∶1,且平均尺寸为15-100nm。
CN200980160650.XA 2009-07-21 2009-07-21 富勒烯型多层碳纳米颗粒 Expired - Fee Related CN102482096B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа

Publications (2)

Publication Number Publication Date
CN102482096A true CN102482096A (zh) 2012-05-30
CN102482096B CN102482096B (zh) 2015-02-04

Family

ID=43499267

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980160650.XA Expired - Fee Related CN102482096B (zh) 2009-07-21 2009-07-21 富勒烯型多层碳纳米颗粒
CN200980159895.0A Active CN102471064B (zh) 2009-07-21 2009-10-22 含有聚合物粘合剂的纳米复合材料

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200980159895.0A Active CN102471064B (zh) 2009-07-21 2009-10-22 含有聚合物粘合剂的纳米复合材料

Country Status (4)

Country Link
US (2) US9090752B2 (zh)
EP (1) EP2460764A4 (zh)
CN (2) CN102482096B (zh)
WO (3) WO2011010946A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033056A1 (en) * 2008-09-22 2010-03-25 Pcg Tools Ab A tool for machining surfaces of parts
US9090752B2 (en) 2009-07-21 2015-07-28 Andrey Ponomarev Multi-layered carbon nanoparticles of the fulleroid type
ES2369811B1 (es) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
GB201118586D0 (en) 2011-10-27 2011-12-07 Turzi Antoine New A-PRP medical device, manufacturing machine and process
FR3000426A1 (fr) * 2012-12-28 2014-07-04 Andrey Ponomarev Composition et procede de revetement d'un support
GB201421013D0 (en) 2014-11-26 2015-01-07 Turzi Antoine New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC)
CA3116596A1 (en) 2018-10-29 2020-05-07 Stuart Licht Use of carbon nanomaterials produced with low carbon footprint to produce composites with low co2 emission
CN110527257B (zh) * 2019-09-18 2022-03-18 东莞泰合复合材料有限公司 一种碳纤维复合材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093175A1 (fr) * 2000-09-21 2003-11-13 Zakrytoe Akcionernoe Obschestvo 'astrin-Holding' Nanostructures de carbone polyedres a couches multiples de type de fullerenes

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316925A (en) 1980-10-09 1982-02-23 John Delmonte Fiber reinforced cementitious castings
JP2668598B2 (ja) 1989-12-08 1997-10-27 日本化薬株式会社 水硬性組成物及び高強度複合材料
JPH0669494A (ja) * 1992-08-20 1994-03-11 Hitachi Ltd カーボン分子とその集合体の製造方法
RU2068489C1 (ru) 1992-10-26 1996-10-27 Украинский научно-исследовательский институт природных газов Способ крепления скважин
RU2036298C1 (ru) 1992-12-08 1995-05-27 Западно-Сибирский научно-исследовательский институт нефтяной промышленности Тампонажная композиция
AU6361394A (en) 1993-03-08 1994-09-26 E. Khashoggi Industries, Llc Insulation barriers having a hydraulically settable matrix
JP3508247B2 (ja) 1993-10-19 2004-03-22 ソニー株式会社 カーボンチューブの製造方法
RU2085394C1 (ru) 1994-02-16 1997-07-27 Евгений Афанасьевич Точилин Композиционный материал "миленитт-этп"
RU2233254C2 (ru) 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2234457C2 (ru) 2001-06-01 2004-08-20 Общество с ограниченной ответственностью "Научно-производственная компания "НеоТекПродакт" Способ получения фуллеренсодержащей сажи и устройство для его осуществления
US20030082092A1 (en) * 2001-10-30 2003-05-01 Nettleton Nyles I. Carbon nanoloop
RU2223988C2 (ru) 2001-11-19 2004-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Полимерное связующее, композиционный материал на его основе и способ его изготовления
RU2223304C1 (ru) 2002-09-19 2004-02-10 Открытое акционерное общество "Белкард" Композиционный материал для узлов трения автомобильных агрегатов
RU2291700C2 (ru) 2002-11-20 2007-01-20 Артур Афанасьевич Мак Способ фотодинамического воздействия на вирусы или клетки
RU2281341C2 (ru) 2003-07-23 2006-08-10 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Спеченный композиционный материал
RU2247759C1 (ru) 2004-03-19 2005-03-10 Николаев Алексей Анатольевич Композиция для поглощения электромагнитного излучения и способ получения композиции
CN101098916A (zh) * 2005-01-13 2008-01-02 金文申有限公司 含有碳纳米颗粒的复合材料
RU2281262C1 (ru) 2005-01-31 2006-08-10 Ижевский государственный технический университет Композиция для получения строительных материалов
CA2600481A1 (en) 2005-03-09 2006-09-21 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
CN101283027A (zh) 2005-08-08 2008-10-08 卡伯特公司 包含纳米管的聚合物组合物
RU2413740C2 (ru) 2005-08-25 2011-03-10 Е.И.Дюпон Де Немур Энд Компани Модифицированные наночастицы
US8012420B2 (en) * 2006-07-18 2011-09-06 Therm-O-Disc, Incorporated Robust low resistance vapor sensor materials
RU2345968C2 (ru) 2007-01-24 2009-02-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" Композиция для получения строительного материала
RU2354526C2 (ru) * 2007-03-12 2009-05-10 Андрей Николаевич Пономарев Инструмент для механической обработки поверхности деталей
RU2397950C2 (ru) 2008-04-23 2010-08-27 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Многослойные углеродные наночастицы фуллероидного типа тороидальной формы
RU2011127203A (ru) * 2008-12-03 2013-01-10 Массачусетс Инститьют Оф Текнолоджи Многофункциональные композиты на основе покрытых наноструктур
US9090752B2 (en) 2009-07-21 2015-07-28 Andrey Ponomarev Multi-layered carbon nanoparticles of the fulleroid type
RU2437902C2 (ru) 2009-10-22 2011-12-27 Андрей Николаевич Пономарев Нанокомпозитный материал на основе полимерных связующих
RU2436749C2 (ru) 2009-10-22 2011-12-20 Андрей Николаевич Пономарев Нанокомпозитный материал на основе минеральных вяжущих

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093175A1 (fr) * 2000-09-21 2003-11-13 Zakrytoe Akcionernoe Obschestvo 'astrin-Holding' Nanostructures de carbone polyedres a couches multiples de type de fullerenes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIE HAN: "Energetic and structure of fullerene crop circles", 《CHEMICAL PHYSICS LETTERS》 *
JIE HAN: "Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles", 《NASA TECHNICAL REPORT》 *

Also Published As

Publication number Publication date
WO2011010947A1 (ru) 2011-01-27
EP2460764A1 (en) 2012-06-06
CN102471064B (zh) 2014-11-05
US8742001B2 (en) 2014-06-03
US9090752B2 (en) 2015-07-28
WO2011010946A1 (ru) 2011-01-27
US20120142821A1 (en) 2012-06-07
CN102471064A (zh) 2012-05-23
US20120114946A1 (en) 2012-05-10
CN102482096B (zh) 2015-02-04
EP2460764A4 (en) 2013-11-13
WO2011010948A1 (ru) 2011-01-27

Similar Documents

Publication Publication Date Title
CN102482096A (zh) 富勒烯型多层碳纳米颗粒
JP6209641B2 (ja) 薄片状黒鉛結晶集合物
Zhang et al. 3D porous γ‐Fe2O3@ C nanocomposite as high‐performance anode material of Na‐ion batteries
Du et al. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition
CN104010990B (zh) 包含碳纳米角的致密质材料及其利用
JP5253943B2 (ja) 導電性材料およびその製造方法
Chang et al. Formation of urchin-like CuO structure through thermal oxidation and its field-emission lighting application
Kaur et al. Metal foam-carbon nanotube-reduced graphene oxide hierarchical structures for efficient field emission
JP2007533581A (ja) 電子電界放出特性を有する、小直径カーボンナノチューブの合成方法
CN106505188B (zh) 锡基纳米颗粒-碳复合材料及其制备方法与应用
JP2007533581A6 (ja) 電子電界放出特性を有する、小直径カーボンナノチューブの合成方法
Qiu et al. Preparation of carbon-coated magnetic iron nanoparticles from composite rods made from coal and iron powders
Li et al. A novel preparation and formation mechanism of carbon nanotubes aerogel
Qiu et al. An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene
RU2504858C2 (ru) Автоэмиссионный катод
Lee et al. Influence of the nitrogen content on the electrochemical capacitor characteristics of vertically aligned carbon nanotubes
Zhang et al. Enhanced field emission properties of aligned sharp graphene emitter arrays prepared by freeze-drying and hydrothermal reduction
JP2003115255A (ja) 電界電子放出電極およびその製造方法
Zhang et al. Luminescent amorphous alumina nanoparticles in toluene solution
JP2018142519A (ja) 白金ナノ粒子と炭素系担体との複合体及びその製造方法
Yao et al. Fabrication and characteristics of various graphene/manganese oxide nanocomposites in structure, morphology, and supercapacitors
CN1269598C (zh) 一种用等离子体制备的一维金属纳米材料及其方法
Tripathi et al. Graphene nanosheets assisted carbon hollow cylinder for high-performance field emission applications
RU2397950C2 (ru) Многослойные углеродные наночастицы фуллероидного типа тороидальной формы
EP3476802A1 (en) Processing of optically active terrestrial carbon forms

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204

Termination date: 20170721