WO2011010947A1 - Нанокомпозитный материал на основе минеральных вяжущих - Google Patents

Нанокомпозитный материал на основе минеральных вяжущих Download PDF

Info

Publication number
WO2011010947A1
WO2011010947A1 PCT/RU2009/000562 RU2009000562W WO2011010947A1 WO 2011010947 A1 WO2011010947 A1 WO 2011010947A1 RU 2009000562 W RU2009000562 W RU 2009000562W WO 2011010947 A1 WO2011010947 A1 WO 2011010947A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocomposite material
material according
nanoparticles
fraction
particles
Prior art date
Application number
PCT/RU2009/000562
Other languages
English (en)
French (fr)
Inventor
Андрей Николаевич ПОНОМАРЁВ
Михаил Евгеньевич ЮДОВИЧ
Original Assignee
Ponomarev Andrey Nikolaevich
Yudovitch Mikhail Eugenievich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43499267&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011010947(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ponomarev Andrey Nikolaevich, Yudovitch Mikhail Eugenievich filed Critical Ponomarev Andrey Nikolaevich
Priority to EP09847621.1A priority Critical patent/EP2457870A4/en
Publication of WO2011010947A1 publication Critical patent/WO2011010947A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the claimed invention relates to the field of composite materials based on mineral binders, such as Portland cement, lime, gypsum, or mixtures thereof, filled with mineral fillers with fractions of nanoparticles.
  • mineral binders such as Portland cement, lime, gypsum, or mixtures thereof, filled with mineral fillers with fractions of nanoparticles.
  • Such composite materials based on mineral binders are used as building materials in the construction of buildings and structures, as well as objects of transport and hydraulic engineering construction (bridges, tunnels, dams, dams, etc.).
  • Composite materials based on mineral binders usually consist of hydrated cements, lime, slag cement or gypsum mixed with mineral fillers of various sizes by size. To optimize the tight packing of dissimilar materials, hardening the cement stone, and increase the physicomechanical parameters of the compositions as a whole, various fractions of nanoparticles (ultrafine grinding cement, microsilica, and / or carbon fulleroid type clusters) are introduced into the compositions based on mineral binders. Such composite materials are called "nanocomposites.”
  • the closest set of essential features to the claimed one is a nanocomposite material based on mineral binders, containing a mineral binder selected from the group comprising cement, lime, gypsum, or mixtures thereof and water and additionally containing a fraction of nanoparticles in the form of carbon clusters of a fulleroid type with the number of atoms carbon 36 or more, and the components are taken in the following proportions, wt.%: mineral astringent 33-77; carbon clusters of the fulleroid type 0.0001 - 2.0, water - the rest [RU 2233254, C2, 2004].
  • the disadvantages of this technical solution are the insufficiently high physical and mechanical characteristics of the nanocomposite material and the need for a high content of mineral binders in it (at least 33 mass%).
  • the objective of the invention is the creation of a nanocomposite material based on mineral binders with improved physical and mechanical characteristics, namely, compressive strength and water resistance and a reduced threshold for minimum binder contents.
  • the proposed nanocomposite material containing a mineral binder, a mineral filler and additionally containing a fraction of nanoparticles, in which the fraction of nanoparticles includes multilayer carbon nanoparticles of a toroidal shape, in which the ratio of the outer diameter to the thickness of the torus body is in the range (10-3) : one.
  • Said toroidal carbon particles are preferably of the fulleroid type.
  • the interlayer distance in such particles is 0.34 - 0.36 nm.
  • the indicated toroidal particles are those particles from the crust of the cathode deposit obtained by evaporation of a graphite anode in an arc process and subjected to gas-phase oxidation, which are exposed to an electric field.
  • the crust is ground before oxidation, and gas-phase oxidation is carried out in a microwave field, and it is possible, after gas-phase oxidation, before testing for exposure to an electric field, liquid-phase oxidation is additionally carried out
  • the described method allows to obtain particles with the necessary characteristics.
  • the fraction of nanoparticles in the proposed composite material may further include carbon nanotubes.
  • the ratio of carbon nanotubes and these carbon nanoparticles can be from 1: 10 to 10: 1.
  • the fraction of nanoparticles in the proposed composite material may further include functionalized water-soluble fullerenes.
  • the ratio of fullerenes and these nanoparticles can be from 1: 10 to 1: 10000.
  • Functionalized fullerenes may be R n —C—
  • R is the radicals providing the water solubility of fullerenes, for example, amine, sulfonic acid and hydroxyl, or other functional groups. Mixtures thereof, as well as mixtures of fullerenes and carbon nanotubes, can be used.
  • the fraction of nanoparticles in the proposed composite material does not include fullerenes and nanotubes, it is advisable that the multilayer carbon nanoparticles of a toroidal shape comprise at least 5% by weight of the fraction.
  • the rest of the fraction can be represented, for example, by polyhedral nanoparticles.
  • Such a quantity of carbon nanoparticles of a toroidal shape is sufficient to provide the desired technical effect.
  • the proposed nanocomposite material nanoparticle fraction when present "in an amount up to 3% by weight of the mineral binder. In this case the desired effect is achieved when such particles are present in an amount of 0.00003% by weight of binder.
  • the filler is quartz or washed river sand.
  • the present invention is characterized in that the nanofraction in the composite material based on mineral binders includes multilayer carbon nanoparticles of a toroidal shape (MNTF).
  • MNTF toroidal shape
  • a torus is a body obtained from the rotation of a circle about an axis lying in its plane.
  • the ball represents a particular case of a torus
  • the ratio of the outer diameter to the thickness of the torus body indicated for particles according to the invention eliminates spherical particles.
  • Particles according to the invention while maintaining the specified ratio of the outer diameter to the thickness of the torus body, can be represented by irregular tori, the outer boundary of the projection of which onto the plane is a broken line.
  • the particle structure of the invention may be similar to multilayer nanotubes that are closed so that they do not have free ends.
  • a single layer of a particle can have a fulleroid structure, that is, it can be a continuous network consisting of five- and six-membered rings having alternating ⁇ and ⁇ - bonds.
  • the applicant has established that the technical result is achieved not so much due to the nature of the layer, but mainly due to the shape of the nanoparticle.
  • MNTF multilayer nanoparticles of exactly the toroidal shape
  • MNTFs can have various geometric parameters, for example, the ratio of the external diameter to the thickness of the multilayer torus body.
  • the indicated parameters can be measured using an electron transmission microscope or obtained from the results of X-ray diffraction analysis.
  • torus-like nanoparticles according to the invention can be carried out in addition to the known modification of nanocomposite materials by nanotubes, fulleroid-type polyhedral carbon nanostructures and fullerenes.
  • nanotube itself provides some, increasing the strength of the cement stone, formed by hydration of mineral binder and simultaneous additional modification nanocomposite multilayer carbon nanoparticles torus-shaped structuring provides nanotubes with an increased strength of the hydrated mineral binder, which had not previously been able to achieve.
  • carbon nanotubes are a good material for hardening, because they have high tensile strength and a large ratio of length to diameter.
  • wall slippage is observed relative to one another, which reduces the realistically achievable strength values of the nanocomposite material, and atomically smooth outer surfaces of nanotubes lead to their weak adhesion to the hardened material.
  • the introduction of a toroidal shape of multilayer carbon nanoparticles into the nanocomposite material leads to an increase in the adhesion force of nanotubes with a hardened material, apparently due to their anomalously strong dispersion action with toroidal nanoparticles.
  • the introduction of fullerenes provides an improvement in the surface properties of the components of the nanocomposite material, which in combination with the introduction of these multilayer carbon nanoparticles of a toroidal shape leads to a synergistic improvement in
  • Multilayer carbon nanoparticles of a fulleroid type of a toroidal shape are obtained from the cathode of the deposit obtained by thermal or plasma spraying of a graphite anode under direct current flow in the gap between the anode and cathode in the inert gas atmosphere and isolated from the total mass of carbon nanoparticles thus obtained, for example, by the method sequential oxidation and subsequent separation during the force interaction of the electrodes, for example, in the process of field emission from carbon-containing cathodes.
  • the cathode deposit can be obtained by electric arc erosion of an anode graphite rod with a cross section of 30-160 mm 2 at a current density of 80-200 A / cm 2 and a voltage drop across the arc of 20-28 V in a helium atmosphere at a pressure of 40-100 torr (for example, as this is described in patent RU 2196731, 2000).
  • a dense crust of the cathode deposit is selected, separating it from the loose middle, and crushed.
  • the oxidation is carried out in a microwave field, for example, a field with a frequency of 2.5 GHz and a power of 500-1500 watts.
  • a microwave field for example, a field with a frequency of 2.5 GHz and a power of 500-1500 watts.
  • the crushed cathode deposit is placed in a rotating quartz tube.
  • the resulting product can be further subjected to electrochemical oxidation.
  • the resulting product can be placed in a liquid gas medium (nitrogen, helium).
  • a liquid gas medium nitrogen, helium
  • the product obtained at various electrodes is collected in an organic solvent.
  • the product can be separated from the solvent and examined by the following methods:
  • Fullerenes and nanotubes can be obtained as described, for example, in the patent [RU 2234457, 2001]. They are also commercially available under the trademarks, for example, “Fullers” and “Taynit”.
  • the functionalization of fullerenes, necessary to achieve their water solubility, can be performed, for example, by treating the starting fullerenes in potassium hydroxide, or by boiling in sulfuric acid solutions.
  • a mineral binder use Portland cement grade ⁇ 500 ⁇ 0, gypsum building gypsum (CaSO 4 0, 5 H 2 O), technical lime and their mixtures, as a mineral filler - washed river sand with a particle size of 0-1, 0, as well as technical water GOST 23732
  • the ratio of components in the composite material is 16-76% of the mass, mineral binder, 16-76% of the mass, filler, 3 - 0.00003% of the mass. - fraction of nanoparticles, the rest is technical water.
  • Nanocomposite material can be obtained as follows.
  • 'Toroidal multilayer carbon nanoparticles, or mixtures thereof with nanotubes and fullerenes are mixed with a pre-prepared portion of water, then homogenized in an ultrasonic homogenizer. Dry filler is added to the prepared suspension solution in the ratio (1000-10000): 1 to the total mass of the nanoparticle fraction, mix thoroughly, then water is evaporated and the resulting concentrate is dried to constant weight.
  • the concentrate thus prepared is introduced into a dry mixture of a mineral binder and a filler (filler with technological additives), dosing concentrate in such a way as to ensure the presence of MNTF in an amount of from 0.0003% to 3% of the total mass of the nanocomposite material.
  • the homogeneity of the mixture is ensured by mechanical stirring in a forced action mixer, using, thus, the method of sequential dilution of the previously prepared concentrate. Then, with constant stirring, the calculated amount of water is added. The resulting mortar of the building mixture is poured into the mold and the maturation of the nanocomposite material is ensured for 28 days under normal conditions.
  • Example 1 Obtaining carbon nanoparticles of a toroidal shape By electric arc erosion of an anode graphite rod with a cross section of 100 mm 2 at a current density of 200 A / cm 2 and a voltage drop across the arc of 24 V in a helium atmosphere at a pressure of 70 torr, a cathode deposit is obtained.
  • the dense crust of the cathode deposit is separated from the loose middle, ground to a powder with an average dispersion of 200-800 nm and placed in a rotating quartz tube located in a microwave field with a frequency of 2.5 GHz and a power of 1000 W. After 100 minutes gas-phase oxidation under these conditions, the resulting powder is cooled and placed in
  • Example 2 Obtaining carbon nanoparticles of toroidal shape.
  • the product is obtained as in example 1, but the gas-phase oxidation of ZO is carried out in a medium containing an increased amount of oxygen, for example from 20% to 60%.
  • Example 3. Obtaining carbon nanoparticles of toroidal shape.
  • the product is obtained as in example 1, but after gas-phase oxidation, multilayer carbon nanoparticles are additionally oxidized electrochemically in an aqueous electrolyte containing solutions of chlorine compounds.
  • Example 4 Obtaining carbon nanoparticles of toroidal shape.
  • the product is obtained as in example 1, but the selection of torus-like multilayer carbon nanoparticles is produced in an electric field in a dielectric medium with a high dielectric constant (for example, in white spirit).
  • Example 5 Obtaining carbon nanoparticles of a toroidal shape.
  • the product is obtained as in example 1, but after gas-phase oxidation, the multilayer carbon nanoparticles are additionally placed in a liquid nitrogen medium, bubbled and the precipitate is separated with a liquid phase in an electric field, followed by evaporation of liquid gas and obtaining two types carbon powder, which is further processed, as shown in example 1.
  • Example 6 Obtaining a product of comparison.
  • a 300 l rotary type forced-action mixer is loaded with 40 kg portland cement PTs500D0 as a mineral binder, 40 kg filler in the form of quartz sand, and 8 kg technological additive in the form of the MB10-01 modifier.
  • a dry mixture of mineral binder and filler with a technological additive is mixed for 20 minutes, after which 12 kg of water containing 0.003 kg (0.003% by weight) of carbon nanotubes are added to the mixer. The mixture is stirred for 5 minutes and poured into molds in which the nanocomposite material hardens for 28 days under normal conditions.
  • Example 7 Obtaining nanocomposite material according to the claimed technical solution
  • Torus-like multilayer carbon nanoparticles in an amount of 0.003 kg are mixed with 10 kg of water, then subjected to homogenization in an ultrasonic homogenizer. 10 kg quartz sand is added to the prepared suspension solution, mixed thoroughly, then water is evaporated and the resulting concentrate is dried to constant weight.
  • the concentrate prepared in this way is introduced into a dry mixture of 30 kg port-cement PTs500D0, 40 kg quartz sand and 8 ' kg concrete modifier MB10-01. The mixture is thoroughly mixed for 20 minutes to achieve maximum uniformity. Then, with constant stirring, add 12 kg of water and continue to mix for 5 minutes. The resulting mortar of the building mixture is poured into molds and the maturation of the nanocomposite material is ensured for 28 days under normal conditions.
  • Example 8 Obtaining nanocomposite material
  • Nanocomposite material is obtained, as in example 7, but the amount of MNTF is 0,0003 kg
  • Nanocomposite material receive, as in example 7, but the amount
  • MNTF is 3 kg, Portals cement ⁇ 500 ⁇ 0 - 16 kg, quartz sand
  • Example 10 Obtaining nanocomposite material
  • a nanocomposite material is obtained as in Example 7, but an additional 0.0003 kg of nanotubes is introduced.
  • Example 1 1. Preparation of a nanocomposite
  • a nanocomposite material is obtained as in Example 7, but 0.03 kg of nanotubes is additionally introduced.
  • the amount of Portland cement ⁇ 500 ⁇ 0 is 20 kg, silica sand - 50 kg.
  • Example 12. Obtaining nanocomposite material
  • the nanocomposite material is obtained, as in example 7, but an additional 0.003 kg of fullerenes is added.
  • the amount of Portland cement ⁇ 500 ⁇ 0 is 25 kg, quartz sand - 48 kg, modifier MB10-01 - 5 kg.
  • Example 13 Obtaining nanocomposite material
  • Nanocomposite material is obtained, as in example 7, but additionally enter 0.00003 kg fullerenes
  • Example 14 Obtaining nanocomposite material
  • a nanocomposite material is obtained as in Example 7, but the nanoparticle fraction consists of 0.005 kg of MNTF, 0.001 kg of fullerenes and 0.094 kg of nanotubes.
  • the amount of Portland cement is 20 kg, silica sand - 53 kg, modifier MB10-01 - 5 kg.
  • the inventive nanocomposite material has a higher compressive strength, higher water resistance and may contain less mineral binder than a nanocomposite material that does not contain MNTF.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Inert Electrodes (AREA)

Abstract

Согласно изобретению предложен нанокомпозитный материал на основе минеральных вяжущих, содержащий минеральное вяжущее, минеральный наполнитель и фракцию наночастиц, характеризующийся тем, что фракция наночастиц включает многослойные углеродные частицы тороподобной формы размером от 15 до 150 нм, в которых соотношение внешнего диаметра к толщине тела тора находится в пределах (10-3): 1.

Description

НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ
НА ОСНОВЕ МИНЕРАЛЬНЫХ ВЯЖУЩИХ
Область изобретения
Заявляемое изобретение относится к области композиционных материалов на основе минеральных вяжущих, таких, как портландцемент, известь, гипс, или их смеси, наполненных минеральными наполнителями с фракциями наночастиц. Такие композиционные материалы на основе минеральных вяжущих используют в качестве строительных материалов при возведении зданий и сооружений, а также объектов транспортного и гидротехнического строительства (мосты, тоннели, дамбы, плотины и т.п.).
Предшествующий уровень техники
Композиционные материалы на основе минеральных вяжущих обычно состоят из гидратированных цементов, извести, шлакоцементных вяжущих или гипса, смешанных с минеральными наполнителями различных фракций по крупности. Для оптимизации плотной упаковки разнородных материалов, упрочнения цементного камня и повышения физико- механических параметров композиций в целом в состав композиций на основе минеральных вяжущих вводят различные фракции наночастиц (цемент сверхтонкого помола, микрокремнезем и (или) углеродные кластеры фуллероидного типа). Такие композиционные материалы получили название «нaнoкoмпoзитныe».
Наиболее близким по совокупности существенных признаков к заявляемому является нанокомпозитный материал на основе минеральных вяжущих, содержащий минеральное вяжущее, выбранное из группы, включающей цемент, известь, гипс, или их смеси и воду и дополнительно содержащий фракцию наночастиц в виде углеродных кластеров фуллероидного типа с числом атомов углерода 36 или более, причем компоненты взяты в следующих соотношениях, мacc.%: минеральное вяжущее 33-77; углеродные кластеры фуллероидного типа 0,0001 - 2,0, вода - остальное [RU 2233254, C2, 2004]. Недостатками данного технического решения являются недостаточно высокие физико- механические характеристики нанокомпозитного материала и необходимость высокого содержания в нем минеральных вяжущих (не менее 33 мacc.%).
Сущность изобретения
Задачей данного изобретения является создание нанокомпозитного материала на оснрве минеральных вяжущих с улучшенными физико- механическими характеристиками, а именно - прочностью на сжатие и водонепроницаемостью и сниженным порогом минимального содержаний вяжущего.
Данная задача решается тем, что предложен нанокомпозитный материал, содержащий минеральное вяжущее, минеральный наполнитель и дополнительно содержащий фракцию наночастиц, в котором фракция наночастиц включает многослойные углеродные наночастицы тороподобной формы, в которых соотношение внешнего диаметра к толщине тела тора находится в пределах (10-3): 1.
Введение такой модифицирующей добавки позволяет достичь эффективного уплотнения и упрочнения нанокомпозитного материала вблизи межфазных границ наполнитель/цементный камень (продукт гидратации минерального вяжущего), и таким образом, повысить его прочность.
Указанные углеродные частицы тороподобной формы предпочтительно имеют фуллероидный тип. Межслоевое расстояние в таких частицах равно 0,34 - 0,36 нм.
Целесообразно, когда где указанные частицы тороподобной формы представляют собой те частицы из корки катодного осадка, полученного испарением графитового анода в дуговом процессе и подвергнутого газофазному окислению, которые подвержены действию электрического поля. . Предпочтительно в способе получения корку перед окислением размалывают, а газофазное окисление проводят в СВЧ поле, причем возможно после газофазного окисления перед испытанием на подверженность действию электрического поля, дополнительно осуществляют жидкофазное окисление
Описанный способ позволяет получить частицы с необходимыми характеристиками.
Фракция наночастиц в предложенном композиционном материале может дополнительно включать углеродные нанотрубки.
Соотношение углеродных нанотрубок и указанных углеродных наночастиц может составлять от 1 :10 до 10:1.
Фракция наночастиц в предложенном композиционном материале может дополнительно включать функционализированные водорастворимые фуллерены.
Соотношение фуллеренов и указанных наночастиц может составлять от 1 :10 до 1 :10000.
Функционализированные фуллерены могут представлять собой Rn-C-
60, Rn-C-70 и аналогичные, где R- радикалы, обеспечивающие водорастворимость фуллеренов, например, аминные, сульфокислотные и гидроксильные, либо другие функциональные группы. Могут применяться их смеси, а также смеси фуллеренов и углеродных нанотрубок.
Если фракция ,нaнoчacтиц в предложенном композиционном материале не включает фуллерены и нанотрубки, целесообразно, чтобы многослойные углеродные наночастицы тороподобной формы составляли по меньшей мере 5% от массы фракции. При этом остальная часть фракции может быть представлена, например, полиэдральными наночастицами. Такого количества углеродных наночастицц тороподобной формы достаточно для обеспечения желаемого технического эффекта.
Целесообразно, когда в предложенном нанокомпозитном материале фракция наночастиц присутствует " в количестве до 3% от массы минерального связующего. При этом желаемый эффект достигается уже когда такие частицы присутствуют в количестве 0,00003% от массы связующего. В предпочтительном воплощении изобретения наполнитель представляет собой кварцевый, либо промытый речной песок.
Подробное описание изобретения
Настоящее изобретение характеризуется тем, что нанофракция в композитном материале на основе минеральных вяжущих включает многослойные углеродные наночастицы тороподобной формы (МНТФ).
По определению тор - это тело, получаемое от вращения круга около оси, лежащей в его плоскости. Хотя шар представляет частный случай тора, указанное для частиц по изобретению соотношение внешнего диаметра к толщине тела тора исключает шарообразные частицы.
Частицы по изобретению, при сохранении указанного соотношения внешнего диаметра к толщине тела тора, могут быть представлены неправильными торами, внешняя граница проекции которых на плоскость представляет собой ломаную линию. Структура частиц по изобретению может быть аналогична многослойным нанотрубкам, которые замкнуты так, что не имеют свободных концов.
Единичный слой частицы может иметь фуллероидную структуру, то есть представлять собой непрерывную сеть, состоящую из пяти- и шестичленных колец, имеющих чередующиеся σ и π - связи. Однако заявителем установлено, что технический результат достигается не столько за счет такой природы слоя, а, в основном, за счет формы наночастицы.
Заявителем обнаружено, что многослойные наночастицы именно тороподобной формы (МНТФ) обладают неожиданной способностью повышать среднюю плотность материала, что, вероятно, достигается за счет аномально сильного дисперсионного взаимодействия с поверхностью наполнителя (в частности, кварцевого, или промытого речного песка) и ближайших фрагментов цементного камня.
Тем самым достигается технический результат, заключающийся в уплотнении нанокомпозитного материала вблизи межфазных границ, как следствие, в повышении его прочности и в снижении порога минимального содержания вяжущего в таком материале. МНТФ могут иметь различные геометрические параметры, например соотношение внешнего диаметра к толщине многослойного тела тора.
Указанные параметры могут быть измерены с помощью электронного просвечивающего микроскопа или получены из результатов ренгеноструктурного анализа.
Заявителем установлено, что частицы, у которых соотношение внешнего диаметра к толщине тела тора находится в пределах (10-3): 1, обеспечивают достижение указанного технического результата, причем предпочтительно соотношение (5-4):1 , и более предпочтительно 4,5:1 для углеродных наночастиц фуллероидного типа.
Введение тороподобных наночастиц по изобретению может быть осуществлено в дополнение к известной модификации нанокомпозитных материалов нанотрубками, полиэдральными углеродными наноструктурами фуллероидного типа и фуллеренами.
Введение нанотрубок само по себе обеспечивает некоторое, повышение прочности цементного камня, формируемого при гидратации минерального вяжущего, а одновременная дополнительная модификация нанокомпозитного материала многослойными углеродными наночастицами тороподобной формы обеспечивает структурирование нанотрубок с неожиданным повышением прочности гидратированного минерального вяжущего, которое ранее не удавалось достичь.
При этом ясно, что углеродные нанотрубки являются хорошим материалом для упрочнения, поскольку обладают высокой прочностью на разрыв и большим отношением длины к диаметру. Однако для углеродных нанотрубок наблюдается проскальзывание стенок одна относительно другой, что снижает реально достижимые значения прочности нанокомпозитного материала, а атомно-гладкие внешние поверхности нанотрубок приводят к их слабому сцеплению с упрочняемым материалом.
Введение в состав нанокомпозитного материала многослойных углеродных наночастиц тороподобной формы приводит к повышению силы сцепления нанотрубок с упрочняемым материалом, по-видимому, за счет их аномально сильного дисперсионного воздействия с тороподобными наночастицами. Введение фуллеренов, как известно, обеспечивает улучшение поверхностных свойств компонентов нанокомпозитного материала, что в сочетании с введением указанных многослойных углеродных наночастиц тороподобной формы приводит к синергическому улучшению межфазного
5 взаимодействия в нанокомпозитном материале.
Многослойные углеродные наночастицы фуллероидного типа тороподобной формы получают из корки катодного депозита, полученного термическим или плазменным распылением графитового анода в условиях протекания постоянного тока в промежутке между анодом и катодом в ю атмосфере инертного газа и выделяют из общей массы получаемых таким образом углеродных наночастиц, например, методом последовательного окисления и последующего разделения при силовом взаимодействии электродов, например, в процессе автоэмиссии из углеродосодержащих катодов.
15 Катодный депозит может быть получен электродуговой эрозией анодного графитового стержня сечением 30-160 мм2 при плотности тока 80- 200 А/см2 и падении напряжения на дуге 20-28 В в гелиевой атмосфере при давлении 40-100 торр (например так, как это описано в патенте RU 2196731 , 2000).
20 Для дальнейшей обработки отбирают плотную корку катодного осадка, отделяя её от рыхлой середины, и измельчают.
Окисление проводят в СВЧ-поле, например поле с частотой 2,5 ГГц и мощностью 500-1500 Вт. Перед помещением в СВЧ-поле измельченный катодный осадок помещают во вращающуюся кварцевую трубу. Такое
25 газофазное окисление проводят в течение 100-150 мин.
После газофазного окисления полученный продукт может быть дополнительно подвергнут электрохимическому окислению.
Также после газофазного и/или электрохимического окисления полученный продукт можно поместить в среду жидкого газа (азота, гелия). зо По окончании разделения при силовом взаимодействии электродов полученный на различных электродах продукт собирают в органический растворитель. Для определения основных физических параметров продукт можно отделить от растворителя и исследовать по следующим методикам:
- с помощью электронного просвечивающего микроскопа, например, JЕМ-ЮОС и стандартных образцов латексных шариков определяют размеры, форму и соотношение внешних диаметров тороподобных наночастиц и толщины их многослойного тела;
- рентгенографически определяют межслоевое расстояние в многослойных углеродных наночастицах; расстояние 0,34-0,36 нм характерно для соединений углерода фуллероидного типа;
Фуллерены и нанотрубки можно получить так, как это описано, например, в патенте [RU 2234457, 2001]. Они также имеются в продаже под товарными знаками, например, «Фyллepeны» и «Tayнит». Функционалзация фуллеренов, необходимая для достижения их водорастворимости, может быть произведена, например, обработкой исходных фуллеренов в гидроокиси калия, либо кипячением в растворах серной кислоты.
В качестве минерального вяжущего используют портландцемент марки ПЦ500Д0, гипс строительный полуводный (CaSO40, 5 H2O), известь техническую и их смеси, в качестве минерального наполнителя - промытый речной песок с модулем крупности 0-1 ,0, а также воду техническую ГОСТ 23732 Соотношение компонентов в композитном материале составляет 16- 76% масс, минеральное вяжущее, 16-76% масс, наполнитель, 3 - 0,00003% масс. - фракция наночастиц, остальное - вода техническая.
Нанокомпозитный материал может быть получен следующим образом.
' Многослойные углеродные наночастицы тороподобной формы, или их смеси с нанотрубками и фуллеренами смешивают с заранее приготовленной порцией воды, затем подвергают гомогенизации в ультразвуковом гомогенизаторе. В приготовленную раствор-суспензию добавляют сухой наполнитель в соотношении (1000-10000):1 к полной массе фракции наночастиц, тщательно перемешивают, затем выпаривают воду и полученный концентрат высушивают до постоянного веса. Приготовленный таким образом концентрат вводят в сухую смесь минерального вяжущего и наполнителя (наполнителя с технологическими добавками), дозируя концентрат таким образом, чтобы обеспечить присутствие МНТФ в количестве от 0,0003% до 3 % от общей массы нанокомпозитного материала. Однородность смеси обеспечивают с помощью механического перемешивания в смесителе принудительного действия, используя, таким 5 образом, метод последовательного разбавления ранее приготовленного концентрата. Затем при постоянном перемешивании добавляют расчетное количество воды. Полученный раствор строительной смеси заливают в форму и обеспечивают созревание нанокомпозитного материала в течение 28 суток в нормальных условиях.
ю
Пример 1. Получение углеродных наночастиц тороподобной формы Электродуговой эрозией анодного графитового стержня сечением 100 мм2 при плотности тока 200 А/см2 и падении напряжения на дуге 24 В в гелиевой атмосфере при давлении 70 тор получают катодный осадок.
15 Плотную корку катодного осадка отделяют от рыхлой середины, измельчают до порошка со средней дисперсностью 200-800 нм и помещают во вращающуюся кварцевую трубу, находящуюся в СВЧ-поле с частотой 2,5 ГГц и мощностью 1000 Вт. После 100 мин. газофазного окисления в указанных условиях, полученный порошок охлаждают и помещают в
20 вакуумный объем на отрицательный электрод в межэлектродное пространство между катодом и анодом. Затем повышают разность потенциалов между катодом и анодом до появления тока автоэмиссии. При повышении автоэмиссионного тока часть многослойных углеродных наночастиц перемещается на положительный электрод. После окончания
25 процесса их собирают с поверхности анода и переводят в дисперсию, например, в диметилформамиде.
Пример 2. Получение углеродных наночастиц тороподобной формы Продукт получают, как в примере 1 , но газофазное окисление зо проводят в среде, содержащей повышенное количество кислорода, например от 20% до 60%. Пример 3. Получение углеродных наночастиц тороподобной формы Продукт получают, как в примере 1 , но после газофазного окисления многослойные углеродные наночастицы дополнительно окисляют электрохимически в водном 'электролите, содержащим растворы соединений хлора.
Пример 4. Получение углеродных наночастиц тороподобной формы Продукт получают, как в примере 1 , но выделение тороподобных многослойных углеродных наночастиц производят в электрическом поле в диэлектрической среде с высоким значением диэлектрической проницаемости (например в уайт-спирите).
Пример 5. Получение углеродных наночастиц тороподобной формы Продукт получают, как в примере 1 , но после газофазного окисления многослойные углеродные наночастицы дополнительно помещают в среду жидкого азота, барботируют и разделяют осадок с жидкой фазой в электрическом поле, с последующим испарением жидкого газа и получением двух видов углеродного порошка, который далее обрабатывают, как это показано в примере 1.
Пример 6. Получение продукта сравнения.
В смеситель принудительного действия роторного типа объемом 300 л загружают в качестве минерального вяжущего 40 кГ портландцемента ПЦ500Д0, 40 кГ наполнителя в виде кварцевого песка и 8 кГ технологической добавки в виде модификатора MБ10-01. Сухую смесь минерального вяжущего и наполнителя с технологической добавкой перемешивают в течение 20 минут, после чего в смеситель добавляют 12 кГ воды, содержащей 0,003 кГ (0,003 % масс.) углеродных нанотрубок. Смесь перемешивают в течение 5 минут и разливают по формам, в которых нанокомпозиционный материал твердеет 28 суток в нормальных условиях. Пример 7. Получение нанокомпозитного материала по заявляемому техническому решению
Многослойные углеродные наночастицы тороподобной формы (МНТФ) в количестве 0,003 кГ смешивают с 10 кГ воды, затем подвергают гомогенизации в ультразвуковом гомогенизаторе. В приготовленную раствор- суспензию добавляют 10 кГ кварцевого песка, тщательно перемешивают, затем выпаривают воду и полученный концентрат высушивают до постоянного веса. Приготовленный таким образом концентрат вводят в сухую смесь из 30 кГ портладцемента ПЦ500Д0, 40 кГ кварцевого песка и 8 ' кГ модификатора бетона MБ10-01. Смесь тщательно перемешивают в течение 20 минут для достижения максимальной однородности. Затем при постоянном перемешивании добавляют 12 кГ воды и продолжают перемешивать в течение 5 минут. Полученный раствор строительной смеси заливают в формы и обеспечивают созревание нанокомпозитного материала в течение 28 суток при нормальных условиях.
Пример 8. Получение нанокомпозитного материала
Нанокомпозитный материал получают, как в примере 7, но количество МНТФ составляет 0,0003кГ
Пример 9. Получение нанокомпозитного материала
Нанокомпозитный материал получают, как в примере 7, но количество
МНТФ составляет 3 кГ, портладцемента ПЦ500Д0 - 16 кГ, кварцевого песка
-54 кГ.
Пример 10. Получение нанокомпозитного материала
Нанокомпозитный материал получают, как в примере 7, но дополнительно вводят 0,0003 кГ нанотрубок Пример 1 1. Получение нанокомпозитного материала
Нанокомпозитный материал получают, как в примере 7, но дополнительно вводят 0,03 кГ нанотрубок. При этом количество портландцемента ПЦ500Д0 составляет 20 кГ, кварцевого песка - 50 кГ. Пример 12. Получение нанокомпозитного материала
Нанокомпозитный материал получают, как в примере 7, но дополнительно вводят 0,003 кГ фуллеренов. При этом количество портландцемента ПЦ500Д0 составляет 25 кГ, кварцевого песка - 48 кГ, модификатора MБ10-01 - 5 кГ.
Пример 13. Получение нанокомпозитного материала
Нанокомпозитный материал получают, как в примере 7, но дополнительно вводят 0,00003 кГ фуллеренов
Пример 14. Получение нанокомпозитного материала
Нанокомпозитный материал получают, как в примере 7, но фракция наночастиц состоит из 0,005 кГ МНТФ, 0,001 кГ фуллеренов и 0,094 кГ нанотрубок. При этом количество портландцемента составляет 20 кГ, кварцевого песка - 53 кГ, модификатора MБ10-01 - 5 кГ.
Результаты испытаний образцов нанокомпозитных материалов на основе минеральных вяжущих, полученных в соответствии с примерами 1- 14 приведены в таблице 1
Таблица 1.
Figure imgf000013_0001
Из результатов испытаний, приведенных в таблице, видно, что заявляемый нанокомпозитный материал обладает более высокой прочностью на сжатие, более высокими значениями водонепроницаемости и может содержать меньшее количество минерального вяжущего, чем нанокомпозитный материал, не содержащего МНТФ.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Нанокомпозитный материал на основе минеральных вяжущих, содержащий минеральное вяжущее, минеральный наполнитель и фракцию наночастиц, отличающийся тем, что фракция наночастиц включает многослойные углеродные частицы тороподобной формы размером от 15 до 150 нм, в которых соотношение внешнего диаметра к толщине тела тора находится в пределах (10-3): 1.
2. Нанокомпозитный материал по п.1 , где указанные углеродные частицы тороподобной формы имеют фуллероидный тип.
3. Нанокомпозитный материал по п.2, где межслоевое расстояние в указанных частицах тороподобной формы равно 0,34 - 0,36 нм.
4. Нанокомпозитный материал по п.1 , где " указанные частицы тороподобной формы представляют собой те частицы из корки катодного осадка, полученного испарением графитового анода в дуговом процессе и подвергнутого газофазному окислению, которые подвержены действию электрического поля.
5. Нанокомпозитный материал по п.4, где корку перед окислением размалывают.
6. Нанокомпозитный материал по п.4, где газофазное окисление проводят в СВЧ поле.
7. Нанокомпозитный материал по п.6, где после газофазного окисления перед испытанием на подверженность действию электрического поля, дополнительно осуществляют жидкофазное окисление
8. Нанокомпозитный материал по п. 1 , где фракция наночастиц дополнительно включает углеродные нанотрубки.
9. Нанокомпозитный материал по п.8, где соотношение углеродных нанотрубок и указанных углеродных наночастиц составляет от 1 :10 до 10:1.
10. Нанокомпозитный материал по п.1 , где фракция наночастиц дополнительно включает фуллерены.
И .Нанокомпозитный материал по п.10, где соотношение фуллеренов и указанных наночастиц составляет от 1 :10 до 1 :10000.
12.Haнoкoмпoзитный материал по п.1 , где указанные частицы тороподобной формы составляют по меньшей мере 5% от массы фракции из наночастиц, за вычетом массы фуллеренов и нанотрубок, если они присутствуют.
IЗ.Нанокомпозитный материал по п. 1 , где указанная фракция наночастиц присутствует в количестве от 0,0003% до 3% от общей массы нанокомпозитного материала.
14.Haнoкoмпoзитный материал по любому из п. п.1-13, где минеральный наполнитель представляет собой кварцевый или промытый речной песок.
15.Haнoкoмпoзитный материал по любому п. п. 1-13, где кроме минерального наполнителя в количестве от 0,1 % до 20% от общей массы нанокомпозитного материала присутствуют технологические добавки (модификаторы бетона, пластификаторы, ускорители или замедлители твердения и т.д.).
PCT/RU2009/000562 2009-07-21 2009-10-22 Нанокомпозитный материал на основе минеральных вяжущих WO2011010947A1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09847621.1A EP2457870A4 (en) 2009-07-21 2009-10-22 NANOCOMPOSITE MATERIAL BASED ON MINERAL BINDERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа
RUPCT/RU2009/000364 2009-07-21

Publications (1)

Publication Number Publication Date
WO2011010947A1 true WO2011010947A1 (ru) 2011-01-27

Family

ID=43499267

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа
PCT/RU2009/000562 WO2011010947A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе минеральных вяжущих
PCT/RU2009/000563 WO2011010948A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе полимерных связующих

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/RU2009/000364 WO2011010946A1 (ru) 2009-07-21 2009-07-21 Многослойные углеродные наночастицы фуллероидного типа

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/RU2009/000563 WO2011010948A1 (ru) 2009-07-21 2009-10-22 Нанокомпозитный материал на основе полимерных связующих

Country Status (4)

Country Link
US (2) US9090752B2 (ru)
EP (1) EP2460764A4 (ru)
CN (2) CN102482096B (ru)
WO (3) WO2011010946A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090752B2 (en) 2009-07-21 2015-07-28 Andrey Ponomarev Multi-layered carbon nanoparticles of the fulleroid type
RU2788184C2 (ru) * 2018-10-29 2023-01-17 С2Снт, Ллс Применение изготовленных углеродных наноматериалов с низким уровнем углеродного следа для изготовления композиционных материалов с низким уровнем выбросов co2
US11767260B2 (en) 2018-10-29 2023-09-26 C2Cnt, Llc Use of carbon nanomaterials produced with low carbon footprint to produce composites with low CO2 emission

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010033056A1 (en) * 2008-09-22 2010-03-25 Pcg Tools Ab A tool for machining surfaces of parts
ES2369811B1 (es) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
GB201118586D0 (en) 2011-10-27 2011-12-07 Turzi Antoine New A-PRP medical device, manufacturing machine and process
FR3000426A1 (fr) * 2012-12-28 2014-07-04 Andrey Ponomarev Composition et procede de revetement d'un support
GB201421013D0 (en) 2014-11-26 2015-01-07 Turzi Antoine New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC)
CN110527257B (zh) * 2019-09-18 2022-03-18 东莞泰合复合材料有限公司 一种碳纤维复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464987A (en) * 1992-08-20 1995-11-07 Hitachi, Ltd. Method for constructing a carbon molecule and structures of carbon molecules
RU2196731C2 (ru) 2000-09-21 2003-01-20 Закрытое акционерное общество "Астрин" Полиэдральные многослойные углеродные наноструктуры фуллероидного типа
RU2233254C2 (ru) 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2234457C2 (ru) 2001-06-01 2004-08-20 Общество с ограниченной ответственностью "Научно-производственная компания "НеоТекПродакт" Способ получения фуллеренсодержащей сажи и устройство для его осуществления
RU2281262C1 (ru) * 2005-01-31 2006-08-10 Ижевский государственный технический университет Композиция для получения строительных материалов
RU2345968C2 (ru) * 2007-01-24 2009-02-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" Композиция для получения строительного материала

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316925A (en) 1980-10-09 1982-02-23 John Delmonte Fiber reinforced cementitious castings
JP2668598B2 (ja) 1989-12-08 1997-10-27 日本化薬株式会社 水硬性組成物及び高強度複合材料
RU2068489C1 (ru) 1992-10-26 1996-10-27 Украинский научно-исследовательский институт природных газов Способ крепления скважин
RU2036298C1 (ru) 1992-12-08 1995-05-27 Западно-Сибирский научно-исследовательский институт нефтяной промышленности Тампонажная композиция
EP0688261A4 (en) 1993-03-08 1998-04-01 Khashoggi E Ind INSULATING BARRIERS WITH HYDRAULICALLY CURABLE MATRIX
JP3508247B2 (ja) 1993-10-19 2004-03-22 ソニー株式会社 カーボンチューブの製造方法
RU2085394C1 (ru) 1994-02-16 1997-07-27 Евгений Афанасьевич Точилин Композиционный материал "миленитт-этп"
US20030082092A1 (en) * 2001-10-30 2003-05-01 Nettleton Nyles I. Carbon nanoloop
RU2223988C2 (ru) 2001-11-19 2004-02-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Полимерное связующее, композиционный материал на его основе и способ его изготовления
RU2223304C1 (ru) 2002-09-19 2004-02-10 Открытое акционерное общество "Белкард" Композиционный материал для узлов трения автомобильных агрегатов
RU2291700C2 (ru) 2002-11-20 2007-01-20 Артур Афанасьевич Мак Способ фотодинамического воздействия на вирусы или клетки
RU2281341C2 (ru) 2003-07-23 2006-08-10 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Спеченный композиционный материал
RU2247759C1 (ru) 2004-03-19 2005-03-10 Николаев Алексей Анатольевич Композиция для поглощения электромагнитного излучения и способ получения композиции
DE602005010747D1 (de) 2005-01-13 2008-12-11 Cinv Ag Kohlenstoffnanopartikel enthaltende verbundwerkstoffe
US10618013B2 (en) 2005-03-09 2020-04-14 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
WO2008041965A2 (en) 2005-08-08 2008-04-10 Cabot Corporation Polymeric compositions containing nanotubes
WO2007024838A1 (en) 2005-08-25 2007-03-01 E. I. Du Pont De Nemours And Company Modified nanoparticles
US8012420B2 (en) * 2006-07-18 2011-09-06 Therm-O-Disc, Incorporated Robust low resistance vapor sensor materials
RU2354526C2 (ru) 2007-03-12 2009-05-10 Андрей Николаевич Пономарев Инструмент для механической обработки поверхности деталей
RU2397950C2 (ru) 2008-04-23 2010-08-27 Общество с ограниченной ответственностью "Научно-Технический Центр прикладных нанотехнологий" Многослойные углеродные наночастицы фуллероидного типа тороидальной формы
CA2747168A1 (en) * 2008-12-03 2010-10-21 Massachusetts Institute Of Technology Multifunctional composites based on coated nanostructures
US9090752B2 (en) 2009-07-21 2015-07-28 Andrey Ponomarev Multi-layered carbon nanoparticles of the fulleroid type
RU2437902C2 (ru) 2009-10-22 2011-12-27 Андрей Николаевич Пономарев Нанокомпозитный материал на основе полимерных связующих
RU2436749C2 (ru) 2009-10-22 2011-12-20 Андрей Николаевич Пономарев Нанокомпозитный материал на основе минеральных вяжущих

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464987A (en) * 1992-08-20 1995-11-07 Hitachi, Ltd. Method for constructing a carbon molecule and structures of carbon molecules
RU2196731C2 (ru) 2000-09-21 2003-01-20 Закрытое акционерное общество "Астрин" Полиэдральные многослойные углеродные наноструктуры фуллероидного типа
RU2233254C2 (ru) 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2234457C2 (ru) 2001-06-01 2004-08-20 Общество с ограниченной ответственностью "Научно-производственная компания "НеоТекПродакт" Способ получения фуллеренсодержащей сажи и устройство для его осуществления
RU2281262C1 (ru) * 2005-01-31 2006-08-10 Ижевский государственный технический университет Композиция для получения строительных материалов
RU2345968C2 (ru) * 2007-01-24 2009-02-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" Композиция для получения строительного материала

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2457870A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090752B2 (en) 2009-07-21 2015-07-28 Andrey Ponomarev Multi-layered carbon nanoparticles of the fulleroid type
RU2788184C2 (ru) * 2018-10-29 2023-01-17 С2Снт, Ллс Применение изготовленных углеродных наноматериалов с низким уровнем углеродного следа для изготовления композиционных материалов с низким уровнем выбросов co2
US11767260B2 (en) 2018-10-29 2023-09-26 C2Cnt, Llc Use of carbon nanomaterials produced with low carbon footprint to produce composites with low CO2 emission
US11767261B2 (en) 2018-10-29 2023-09-26 C2Cnt, Llc Use of carbon nanomaterials produced with low carbon footprint to produce composites with low CO2 emission

Also Published As

Publication number Publication date
US20120114946A1 (en) 2012-05-10
WO2011010948A1 (ru) 2011-01-27
US20120142821A1 (en) 2012-06-07
CN102482096B (zh) 2015-02-04
CN102471064B (zh) 2014-11-05
US9090752B2 (en) 2015-07-28
WO2011010946A1 (ru) 2011-01-27
US8742001B2 (en) 2014-06-03
CN102482096A (zh) 2012-05-30
EP2460764A1 (en) 2012-06-06
CN102471064A (zh) 2012-05-23
EP2460764A4 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2011010947A1 (ru) Нанокомпозитный материал на основе минеральных вяжущих
Wang et al. Exfoliation and dispersion of boron nitride nanosheets to enhance ordinary Portland cement paste
Krystek et al. High‐performance graphene‐based cementitious composites
Sabziparvar et al. Barriers to achieving highly dispersed graphene oxide in cementitious composites: An experimental and computational study
Chen et al. Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective
Du et al. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste
Kaur et al. Comparative effects of sterically stabilized functionalized carbon nanotubes and graphene oxide as reinforcing agent on physico-mechanical properties and electrical resistivity of cement nanocomposites
KR102123136B1 (ko) 탄소질 나노충전제 및 초가소제 기재의 마스터 혼합물을 제조하는 방법 및 이의 경화성 무기계 내 용도
RU2436749C2 (ru) Нанокомпозитный материал на основе минеральных вяжущих
JP2017149595A (ja) 廃セッコウの硬化方法
US11919809B2 (en) Graphene reinforced concrete
WO2013096990A1 (en) Graphene oxide reinforced cement and concrete
Jyothimol et al. Effect of reduced graphene oxide on the mechanical properties of concrete
EP3854761A1 (en) Method for the preparation of a stabilized aqueous carbon nanotube dispersion
KR102372277B1 (ko) 탄소나노튜브 교착 혼합시멘트 및 이의 제조방법
Manzur et al. Effect of different parameters on properties of multiwalled carbon nanotube-reinforced cement composites
Gao et al. Graphene oxide-assisted multi-walled carbon nanotube reinforcement of the transport properties in cementitious composites
Jing et al. The non-uniform spatial dispersion of graphene oxide: A step forward to understand the inconsistent properties of cement composites
Behnia et al. High-performance cement mortars-based composites with colloidal nano-silica: synthesis, characterization and mechanical properties
Ho et al. Investigating the reinforcing mechanism and optimized dosage of pristine graphene for enhancing mechanical strengths of cementitious composites
RU2345968C2 (ru) Композиция для получения строительного материала
Yang et al. Hydroxylated graphene: A promising reinforcing nanofiller for nanoengineered cement composites
Tugelbayev et al. The effect of acid treated multi-walled carbon nanotubes on the properties of cement paste prepared by ultrasonication with polycarboxylate ester
EP2457870A1 (en) Nanocomposite material containing mineral binders
Petrunin et al. Cement composites reinforced with functionalized carbon nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009847621

Country of ref document: EP