WO2011007874A1 - Ledチップ接合体、ledパッケージ、及びledパッケージの製造方法 - Google Patents

Ledチップ接合体、ledパッケージ、及びledパッケージの製造方法 Download PDF

Info

Publication number
WO2011007874A1
WO2011007874A1 PCT/JP2010/062102 JP2010062102W WO2011007874A1 WO 2011007874 A1 WO2011007874 A1 WO 2011007874A1 JP 2010062102 W JP2010062102 W JP 2010062102W WO 2011007874 A1 WO2011007874 A1 WO 2011007874A1
Authority
WO
WIPO (PCT)
Prior art keywords
led chip
led
composite substrate
metal
aluminum
Prior art date
Application number
PCT/JP2010/062102
Other languages
English (en)
French (fr)
Inventor
智志 日隈
秀樹 広津留
真也 成田
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to EP10799932.8A priority Critical patent/EP2455991B1/en
Priority to JP2011522872A priority patent/JPWO2011007874A1/ja
Priority to US13/384,479 priority patent/US8546842B2/en
Priority to CN201080033749.6A priority patent/CN102473829B/zh
Publication of WO2011007874A1 publication Critical patent/WO2011007874A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to an LED chip assembly, an LED package, and a method for manufacturing the LED package.
  • An LED light emitting element is an element that emits light when a forward current flows through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN.
  • LED light emitting devices with excellent conversion efficiency have been developed due to advances in semiconductor epitaxial growth technology and light emitting device process technology, and are widely used in various fields.
  • the LED chip is composed of a p-type layer and an n-type layer obtained by epitaxially growing a group III-V semiconductor crystal on a growth substrate, and a photoactive layer sandwiched between both.
  • a group III-V semiconductor crystal is epitaxially grown on a growth substrate such as single crystal sapphire, and then an electrode or the like is formed to form an LED chip.
  • the single crystal sapphire has a thermal conductivity of about 40 W / (m ⁇ K)
  • the heat generated in the III-V group semiconductor device cannot be sufficiently dissipated.
  • the temperature of the element rises, causing a decrease in light emission efficiency and a decrease in element life.
  • Patent Document 1 was not satisfactory. That is, since the metal package substrate (holding substrate) is also conductive, it must have a non-insulating structure for mounting.
  • an object of the present invention is to provide a highly reliable LED package with significantly improved heat dissipation, a method for manufacturing the LED package, and an LED chip assembly used for the LED package.
  • the present invention is an LED chip joined body in which one or two or more LED chips are directly mounted on a composite substrate with a joining material, and the composite substrate contains aluminum, silicon, or a component thereof in an inorganic molded body.
  • the sheet thickness is 0.1-2 mm
  • the surface roughness (Ra) is 0.5 ⁇ m or less
  • the thermal conductivity at a temperature of 25 ° C. is 100-600 W / (m ⁇ K)
  • the temperature is 25 ° C.
  • the linear expansion coefficient at ⁇ 150 ° C. is 3 to 12 ⁇ 10 ⁇ 6 / K
  • the three-point bending strength is 50 to 500 MPa
  • the area of the LED chip mounting surface of the composite substrate is smaller than the contact area with the LED chip.
  • An LED chip joined body having a magnification of 2 to 100 times.
  • the present invention also relates to an LED chip assembly in which one or two or more LED chips are directly mounted on a composite substrate with a bonding material, and the composite substrate is an inorganic molding having a porosity of 10 to 40% by volume.
  • the body is impregnated with an aluminum-silicon alloy having an aluminum content of 80 to 97% by mass, the plate thickness is 0.1 to 1 mm, the surface roughness (Ra) is 0.5 ⁇ m or less, and the heat conduction is 25 ° C.
  • LED chip of a composite substrate with a rate of 100 to 300 W / (m ⁇ K), a linear expansion coefficient of 4 to 9 ⁇ 10 ⁇ 6 / K at a temperature of 25 ° C. to 150 ° C., and a three-point bending strength of 50 to 400 MPa.
  • the LED chip assembly is characterized in that the area of the mounting surface is 2 to 25 times the contact area with the LED chip.
  • the composite substrate has a thickness of 0.5 at least one metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn on the surface.
  • the bonding material made of the bonding material is soldering, brazing, or a high thermal conductive adhesive; and
  • the material of the inorganic molded body is silicon carbide. At least one selected from aluminum nitride, silicon nitride, diamond and graphite, and (d) the LED chip has a non-insulating structure with an output of 0.5 W or more. It is preferable to have an aspect.
  • the LED chip assembly of the present invention is bonded to a circuit board in which a metal circuit is formed through an insulating layer on the metal substrate, while the LED chip and the circuit board of the LED chip assembly are combined.
  • the LED is characterized in that the metal circuit is connected with an electrical connection member, and at least the LED chip assembly and the electrical connection member are sealed with a resin sealing material containing a fluorescent material. It is a package.
  • the fluorescent material is selected from ⁇ -type sialon, ⁇ -type sialon, CASIN (Ca ⁇ Al ⁇ Si ⁇ N 3 ), yttrium ⁇ aluminum ⁇ garnet and sulfide. 1 type, and the resin sealing material contains a filler other than the fluorescent material having a relative refractive index of 2.2 or more and an average particle diameter of 1 to 100 nm, and (f) an insulating layer.
  • the thermal conductivity is 0.5 to 20 W / (m ⁇ K)
  • the thickness is 0.03 to 0.2 mm
  • the material of the metal circuit is aluminum or copper
  • the thickness is 0.005 to 0.4 mm. It is preferable to have either or both of the embodiments.
  • this invention is a manufacturing method of the LED package of this invention characterized by passing through the following processes.
  • (I) Using at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, an inorganic molded body made of a sintered body or a powder molded body having a porosity of 10 to 50% by volume is manufactured.
  • Step (ii) A step of manufacturing a composite by impregnating the inorganic molded body with aluminum or an aluminum alloy by a molten forging method, or impregnating with silicon or a silicon alloy by a melt impregnation method (iii) Processing the composite
  • the plate thickness is 0.1 to 2 mm
  • the surface roughness (Ra) is 0.5 ⁇ m or less
  • the thermal conductivity at a temperature of 25 ° C. is 100 to 600 W / (m ⁇ K)
  • the temperature is 25 to 150 ° C.
  • step linear expansion coefficient of the 3 ⁇ 12 ⁇ 10 -6 / K , 3 -point bending strength to produce a pre-composite substrate is 50 ⁇ 400MPa (iv) in the pre-composite substrate, if necessary, Ni, After forming a metal layer of at least one metal selected from o, Pd, Cu, Ag, Au, Pt and Sn, the area is 2 to 100 times the contact area of the LED chip to be mounted.
  • a step of mounting one or more LED chips with a bonding material to produce an LED chip assembly (v) The LED chip assembly is placed on a metal substrate via an insulating layer (Vi) After connecting the LED chip of the LED chip assembly and the metal circuit of the circuit board with an electrical connecting member, at least the LED chip assembly and the circuit board A step of manufacturing the LED package by sealing the electrical connection member with a resin sealing material containing a fluorescent material.
  • the reliable LED package with which heat dissipation was improved significantly the manufacturing method of an LED package, and the LED chip assembly used for this LED package are provided. Since the LED package of the present invention is configured using the LED chip assembly in which the LED chip is directly mounted on the composite substrate, the lighting temperature of the LED chip can be reduced, and the brightness of the LED can be further increased. Achieved.
  • the LED chip is directly mounted on the composite substrate using a bonding material, and the area of the LED chip mounting surface of the composite substrate is 2 with respect to the contact area with the LED chip. It is up to 100 times, preferably 2 to 25 times. If the area ratio (magnification) is less than twice, the heat from the LED chip cannot be sufficiently spread to the composite substrate, and the lighting temperature of the LED chip becomes high. On the other hand, when the area ratio (magnification) exceeds 100 times, an electrical joining member (for example, Au wire bonding) for energizing the LED chip becomes extremely long, and there is a concern that reliability may be lowered.
  • an electrical joining member for example, Au wire bonding
  • the “LED chip” refers to a structure composed of an LED element made of a III-V semiconductor crystal and a holding substrate.
  • a III-V group semiconductor crystal emitting light in the ultraviolet to blue wavelength region is used, and specifically, InGaN, AlGaAs, AlGaInP, or the like.
  • the holding substrate is a growth substrate used for epitaxial growth of a group III-V semiconductor crystal, or after a group III-V semiconductor crystal is epitaxially grown on the growth substrate, a high thermal conductivity substrate is bonded through a metal layer. Thereafter, the high thermal conductivity substrate from which the growth substrate has been removed. Examples thereof are sapphire, silicon carbide, silicon, Cu / W, Cu / Mo, and the like.
  • the holding substrate belonging to the latter is used from the viewpoint of thermal conductivity, and the LED chip has a non-insulating structure.
  • the advantage of the non-insulating LED chip is that high brightness can be obtained in a small area.
  • the LED chip is directly mounted on the composite substrate using a bonding material.
  • the joining is performed by, for example, soldering, brazing, a high thermal conductive adhesive, or the like, and preferably soldering or brazing.
  • solder cream solder, eutectic solder, lead-free solder or the like can be used.
  • a brazing method using a eutectic metal layer on the back surface of the LED chip is preferable, whereby the thickness of the layer made of the bonding material, that is, the bonding layer can be reduced to 1 to 5 ⁇ m.
  • the “high thermal conductive adhesive” is an adhesive having a thermal conductivity of 10 W / (m ⁇ K) or more, and examples thereof include an Ag paste, a high thermal conductive silicone adhesive, and an Ag-based conductive adhesive. it can.
  • “joining” means that the LED chip and the composite substrate are bonded, and is used in the same concept as mounting.
  • the thickness of the bonding layer is preferably 0.1 mm or less, and particularly preferably 0.05 mm or less. When the thickness of the bonding layer exceeds 0.1 mm, the thermal resistance increases.
  • the adhesion rate that is, the ratio of the area of the bonding layer to the bottom area of the LED chip is preferably close to 1, but if it is 0.5 or more, preferably 0.8 or more, the heat generated by the LED chip can be comfortably combined. Can be communicated to.
  • the surface roughness (Ra) of the composite substrate exceeds 0.5 ⁇ m, there is a risk that problems such as a decrease in the adhesion rate may occur. The smaller the surface roughness (Ra), the better.
  • the lower limit is preferably 0.01 ⁇ m.
  • Composite substrate refers to an inorganic molded body, preferably an inorganic molded body having a porosity of 10 to 50% by volume, particularly preferably a porosity of 20 to 35% by volume.
  • An alloy contained as a component preferably an aluminum-silicon alloy having an aluminum content of 80 to 97% by mass, is impregnated by, for example, the method of Japanese Patent No. 3468358, or silicon or a silicon alloy is obtained by melt impregnation, for example, No.
  • thermal conductivity at a temperature of 25 ° C. is 100 to 600 W / (m ⁇ K), preferably 100 to 300 W / (m ⁇ K), temperature is 25 ° C.
  • a linear expansion coefficient at ⁇ 150 ° C. is 3 to 12 ⁇ 10 ⁇ 6 / K, preferably 4 to 9 ⁇ 10 ⁇ 6 / K, and a three-point bending strength is 50 to 500 MPa, preferably 50 to 400 MPa.
  • the material of the inorganic molded body is preferably at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite.
  • the proportion of voids (porosity) in the inorganic molded body is preferably 10 to 50% by volume, particularly preferably 20 to 35% by volume. If the porosity exceeds 50% by volume, the linear thermal expansion coefficient of the composite substrate becomes too large, and if it is less than 10% by volume, aluminum, silicon or an alloy containing them as a component cannot be sufficiently impregnated. In addition, the thermal conductivity may be reduced.
  • the porosity can be adjusted by adjusting the particle size of inorganic components such as silicon carbide, aluminum nitride, silicon nitride, diamond, graphite, molding pressure, sintering conditions, and the like.
  • the composite substrate used in the present invention has a function as a heat spreader that spreads the heat generated in the LED chip in the surface direction, a highly reliable LED package for high-power LEDs can be manufactured.
  • the thermal conductivity of the composite substrate at a temperature of 25 ° C. is 100 to 600 W / (m ⁇ K).
  • the thermal conductivity is less than 100 W / (m ⁇ K)
  • the heat generated by the LED chip cannot be sufficiently dissipated, and particularly in a high-power LED, the temperature of the element rises and the luminous efficiency decreases, and the element lifetime associated therewith. There is a risk of decline.
  • the upper limit of the thermal conductivity is set to 600 W / (m ⁇ K) because the composite substrate becomes expensive.
  • the thermal conductivity can be increased or decreased depending on the type, blending amount, etc. of the raw material of the inorganic molded body.
  • the difference in coefficient of thermal expansion between the III-V semiconductor crystal constituting the LED chip and the holding substrate is small. Further, since the composite substrate to which the LED chip is bonded is bonded to the metal circuit of the circuit board, the composite substrate has a function that can relieve the stress caused by the difference in thermal expansion coefficient between the LED chip and the circuit board. It is preferable. Therefore, the linear thermal expansion coefficient of the composite substrate at a temperature of 25 ° C. to 150 ° C. is 3 to 12 ⁇ 10 ⁇ 6 / K. If the coefficient of thermal expansion is other than this, there is a risk that warping will occur after mounting, the mounting part will peel off, or the LED chip will break in the worst case due to the difference in linear thermal expansion coefficient with the LED chip.
  • the linear thermal expansion coefficient of the composite substrate can be increased or decreased depending on the composition ratio of aluminum, silicon or an alloy containing them as a component and the inorganic molded body.
  • the composite substrate has a strength that can be sustained when the LED chip is mounted with a bonding material, and (b) the bonding surface is flat with no inclusions such as voids or foreign matters on the bonding surface. That is.
  • the three-point bending strength of the composite substrate is set to 50 MPa or more.
  • the upper limit is 500 MPa.
  • the surface roughness (Ra) of the composite substrate may be 0.5 ⁇ m or less.
  • the three-point bending strength can be increased or decreased depending on the material of the inorganic molded body, the particle size of the inorganic component, the porosity, etc., and the surface roughness (Ra) can be increased or decreased depending on the grain size of the abrasive grains used for processing. Can do.
  • the thickness of the composite substrate is set to 0.1 to 2 mm from the viewpoint of improving the heat dissipation of the LED chip assembly and the handling property when mounting the LED chip.
  • the thickness is preferably 0.1 to 1 mm.
  • the composite substrate has a metal layer having a thickness of 0.5 to 20 ⁇ m made of at least one metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn, particularly preferably Ni or Au, on the surface. It is preferable to have.
  • a particularly preferred metal layer thickness is 2 to 10 ⁇ m. This improves the adhesion rate. If the thickness of the metal layer is less than 0.5 ⁇ m, the effect of improving the adhesion rate is small, and if it exceeds 20 ⁇ m, there is a risk of peeling due to the difference in thermal expansion between the metal layer and the heat spreader.
  • the metal layer can be formed by washing the composite substrate and then performing electroless plating or electrolytic plating with the above metal species. Besides the plating method, it can also be formed by a metal vapor deposition method or a metal coating method.
  • ⁇ LED package> 1 to 3 are explanatory diagrams showing examples of LED packages.
  • the LED package of the present invention has a basic structure in which the LED chip assembly 10 of the present invention is mounted on a circuit board 11, connected by an electrical connection member 9, and sealed by a resin sealing material 8 ( 1 to 3).
  • An embodiment example using one LED chip assembly is shown in FIGS. 1 and 2, and an embodiment example using two or more LED chip assemblies is FIG. 3.
  • An example using the dam material 7 is shown in FIGS. 1 and 3, and an example not using it is FIG. This will be described in more detail below.
  • the LED chip assembly 10 of the present invention is mounted on a circuit board 11.
  • the circuit board 11 is composed of a laminate of the metal circuit 3 and the metal substrate 5 with the insulating layer 4 interposed therebetween.
  • the metal circuit 3 and the metal substrate 5 aluminum, iron, copper, or an alloy containing these metals as components is preferable.
  • the surface of the metal substrate bonded to the insulating layer can be subjected to surface treatment such as sandblasting, etching, various plating treatments, and coupling agent treatment. .
  • the thickness of the metal circuit is preferably 0.005 to 0.4 mm. If it is less than 0.005 mm, a sufficient conduction circuit as an LED package cannot be secured, and if it exceeds 0.40 mm, restrictions on circuit formation increase.
  • the thickness of the metal substrate is preferably 0.1 to 4 mm. If it is too thin, the handleability is lowered. Even if it is too thick, there is not much practical advantage as an LED package for illumination.
  • the insulating layer 4 is a cured product of a curable resin composition containing a heat-resistant resin, a curing agent, and an inorganic filler, and preferably has a thermal conductivity of 0.5 W / (m ⁇ K) or more. If the thermal conductivity is less than 0.5 W / (m ⁇ K), the heat generated by the LED chip cannot be sufficiently spread, so the junction temperature of the LED chip increases, the brightness of the LED chip decreases, and the lifetime There is a risk of lowering. An upper limit of thermal conductivity of 20 W / (m ⁇ K) is sufficient.
  • the thickness of the insulating layer is preferably 30 to 200 ⁇ m. If it is less than 30 ⁇ m, the electrical insulation becomes insufficient, and if it exceeds 200 ⁇ m, the heat dissipation may be impaired.
  • the heat-resistant resin for example, an epoxy resin, a silicone resin, a phenol resin, an imide resin, or the like can be used.
  • the curing agent those described below are used.
  • the inorganic filler include oxide ceramics such as aluminum oxide (alumina), silicon oxide, and magnesium oxide, nitride ceramics such as aluminum nitride, silicon nitride, and boron nitride, and carbide ceramics.
  • the inorganic filler is preferably a spherical powder having a maximum particle size of 100 ⁇ m or less and a minimum particle size of 0.05 ⁇ m or more. Among them, those containing 50 to 75% by mass of particles having a particle size of 5 to 50 ⁇ m and 25 to 50% by mass of particles having a particle size of 0.2 to 1.5 ⁇ m are more preferable.
  • the content of the inorganic filler in the insulating layer is preferably 70 to 95 parts by mass, particularly preferably 80 to 90 parts by mass with respect to 100 parts by mass of the total amount of the heat-resistant resin and the curing agent.
  • the ratio of the inorganic filler exceeds 95 parts by mass with respect to 100 parts by mass of the total amount of the heat-resistant resin and the curing agent, the viscosity of the curable resin composition increases and the workability decreases. On the other hand, if it is less than 70 parts by mass, the thermal conductivity of the insulating layer may be lowered.
  • a silane coupling agent, a titanate coupling agent, a stabilizer, a curing accelerator, and the like can be used as necessary.
  • the storage elastic modulus of the insulating layer is preferably 15000 MPa or less at 300K in order to relieve the stress at the bonded portion.
  • Such an insulating layer contains 5 to 50 parts by mass of a curing agent having a polyether skeleton and a primary amino group at the end of the main chain and 70 to 95 parts by mass of the inorganic filler per 100 parts by mass of the epoxy resin. This can be realized by preparing a cured curable resin composition.
  • epoxy resin general-purpose epoxy resins such as bisphenol F type epoxy resin and bisphenol A type epoxy resin can be used.
  • Epoxy resin having a dicyclopentadiene skeleton, epoxy resin having a naphthalene skeleton, epoxy having a biphenyl skeleton When the resin contains 10% by mass or more of one or more selected from epoxy resins having a novolac skeleton in the epoxy resin, the balance between stress relaxation and moisture resistance is further improved.
  • Typical epoxy resins having a novolak skeleton include a phenol novolak type epoxy resin and a cresol novolak type epoxy resin, but an epoxy resin having a dicyclopentadiene skeleton, a naphthalene skeleton, or a biphenyl skeleton and a novolak skeleton can also be used.
  • the epoxy resin an epoxy resin having the above skeleton may be used alone.
  • a thermosetting resin such as a phenol resin or a polyimide resin, or a high molecular weight resin such as phenoxy resin, acrylic rubber, or acrylonitrile-butadiene may be blended as another resin mainly composed of an epoxy resin.
  • the blending amount of the high molecular weight resin is preferably 30% by mass or less with respect to the total amount with the epoxy resin.
  • the curing agent has a polyether skeleton, and a curing agent having a primary amino group at the end of the main chain is used to reduce the storage elastic modulus of the resin composition after curing. It can also be used in combination with other curing agents. When an aromatic amine curing agent is used in combination, the balance of stress relaxation, electrical insulation, moisture resistance and the like can be further improved.
  • the aromatic amine curing agent diaminodiphenylmethane, diaminodiphenylsulfone, metaphenylenediamine and the like can be used.
  • a curing agent such as a phenol novolac resin can be further used in combination.
  • a curable resin composition slurry for forming an insulating layer is pattern-printed on a metal substrate 5 (for example, an aluminum substrate) by a method such as screen printing and heated to be in a semi-cured state, and then a metal circuit 3 is formed.
  • a metal foil for example, a copper foil
  • the insulating layer is processed into a semi-cured sheet in advance, and the metal circuit 3 is formed by a hot press apparatus. And a method of integrating with a metal foil (for example, a copper foil).
  • a method for forming a pattern of a metal circuit for example, a method in which a resist layer is applied in advance to a predetermined position on a metal foil and cured, and then etched using an etchant such as cupric chloride, a mixture of hydrogen peroxide and sulfuric acid, or the like is used. It is done.
  • an etchant such as cupric chloride, a mixture of hydrogen peroxide and sulfuric acid, or the like
  • the LED chip 1 of the LED chip assembly and the metal circuit 3 of the circuit board are connected by an electrical connection member 9.
  • the electrical connection member 9 for example, wire bonding using Ag, Au or the like, a bump, a bridge, or the like is used.
  • the LED chip joined body 10 is joined to the metal circuit 3, and the above-described soldering, brazing, high thermal conductive adhesive, or the like is used for the joining. Preferably, it is soldering.
  • ⁇ LED package-resin sealing material> In the LED package of the present invention, at least the LED chip assembly 10 and the electrical connection member 9 are sealed with a resin sealing material 8 containing a fluorescent material.
  • a resin sealing material 8 containing a fluorescent material In resin sealing, as shown in FIGS. 1 and 3, in order to suppress the spread of the resin sealing material, the dam material 7 can be installed so as to surround the outer periphery of the LED chip assembly.
  • the dam material can be formed by screen printing, a dispenser, or the like using, for example, a silicone resin or an epoxy resin.
  • thermosetting resins such as silicone resin, epoxy resin, polydimethylsiloxane derivative having epoxy group, oxetane resin, acrylic resin, cycloolefin resin, etc. are used, but higher refractive index and heat resistance. From the viewpoint of imparting properties, a silicone resin is preferable.
  • the resin sealing material contains a fluorescent substance, and its content is preferably 1 to 50% by mass.
  • the fluorescent material is not particularly limited as long as it receives visible light from the LED chip.
  • ⁇ -type sialon, ⁇ -type sialon, CASIN (Ca ⁇ Al ⁇ Si ⁇ N 3 ), yttrium ⁇ aluminum ⁇ garnet, sulfide, etc. and at least one of them is used.
  • ⁇ -type sialon and ⁇ -type sialon are preferable.
  • the ⁇ -type sialon does not need to be a special one, and a commonly available one is used.
  • the oxygen content is preferably 1.2% by mass or less.
  • a cumulative particle size (D10) with a cumulative value of 10% by volume is 2 to 15 ⁇ m.
  • a particle size (D50) having a value of 50% by volume of 5 to 20 ⁇ m and a cumulative value of 90% by volume of a particle size D90) of 6 to 50 ⁇ m are preferred because higher luminance can be achieved.
  • the resin sealing material preferably contains a filler having a relative refractive index of 2.2 or more.
  • a filler having a relative refractive index of 2.2 or more.
  • Illustrative examples include titanium oxide, zirconium oxide, and potassium titanate.
  • the average particle diameter of the filler is preferably 100 nm or less. If it exceeds 100 nm, the amount of light scattering loss may increase.
  • the resist layer 6 By disposing the resist layer 6 in the LED package of the present invention, the light from the LED chip can be more efficiently irradiated on the front surface.
  • the resist layer should not be disposed between the light emitting portion of the LED chip and the electrical connection member so as not to inhibit the light emission of the LED chip.
  • the reflectance of the resist layer is preferably 70% or more with respect to light having a wavelength of 400 to 800 nm, more preferably the maximum value of the reflectance in each wavelength range of 450 to 470 nm, 520 to 570 nm, and 620 to 660 nm. , Both are 80% or more, and further 85% or more.
  • the resist layer having the above characteristics can be produced by adding a white pigment to a curable resin containing one or both of an ultraviolet curable resin and a thermosetting resin.
  • a curable resin an epoxy resin, an acrylic resin, and a mixture thereof are preferably used.
  • the white pigment at least one selected from zinc oxide, calcium carbonate, titanium dioxide, alumina, and smectite is used. Of these, rutile type titanium dioxide is preferable because of its weak photocatalytic action.
  • the white pigment may have been subjected to a surface treatment with, for example, silicon dioxide, aluminum hydroxide or the like to weaken the photocatalytic action.
  • the content of the white pigment is too small, a sufficient reflection effect cannot be obtained. If the content is too large, the fluidity at the time of film formation decreases and a uniform film cannot be formed. It is preferably 30 to 70% by volume, more preferably 30 to 60% by volume.
  • the LED package of the present invention can be provided with a reflector (not shown) in order to more efficiently irradiate the front surface with light from the LED chip.
  • a reflector not only a separate reflector but also a counterbore having a conical shape, a dome shape or the like can be formed on a metal substrate directly under the LED chip joined body to make the insulating layer itself a reflector.
  • a separate reflector for example, a metal such as Ag, Al, Ni, Au, Cu, SiO 2 / ZrO 2 , SiO 2 / TiO, etc., on the inner surface of a cylindrical body having an inclination such as glass, ceramics, metal, or resin A metal oxide film reflecting layer formed of 2 or the like can be used.
  • the manufacturing method of the LED package according to the present invention includes the steps (i) to (vi) described above.
  • description will be made while avoiding duplication with the above description as much as possible.
  • an inorganic molded body to be impregnated with aluminum or aluminum alloy, silicon or silicon alloy is manufactured.
  • the inorganic molded body (hereinafter also referred to as “preform”) includes a sintered body having a porosity of 10 to 50% by volume (hereinafter also referred to as “inorganic porous body”) and a porosity of 10 to 50 volume. % Powder compact.
  • a part or all of the voids of the preform is impregnated with aluminum or an aluminum alloy, or silicon or a silicon alloy, so that a composite substrate having the above characteristics is obtained.
  • the porosity of the preform can be adjusted by adjusting the particle size of the raw material powder, molding pressure, heat treatment conditions, and the like.
  • the preform powder molding is molded by using the raw material powder alone or in combination with an inorganic binder such as silica sol or alumina sol.
  • an inorganic binder such as silica sol or alumina sol.
  • a general ceramic powder forming method such as press forming or cast forming is employed.
  • the inorganic porous body of the preform can be produced by, for example, sintering the powder molded body.
  • Step> the preform is impregnated with aluminum or an aluminum alloy by a molten metal forging method or impregnated with silicon or a silicon alloy by a melt impregnation method to produce a composite.
  • the molten metal forging method aluminum or an aluminum alloy is heated to a melting point or higher, and the preform is pressure impregnated into the preform.
  • An example of the specific conditions of the molten metal forging method is described in the above-mentioned patent document, and these can also be adopted in the present invention, and further described as follows. According to the molten metal forging method, a composite substrate having a large thermal conductivity and excellent heat dissipation can be obtained.
  • the composition of aluminum or aluminum alloy used in the molten metal forging method preferably contains 70% by mass or more of aluminum.
  • the thermal conductivity of the composite substrate may be reduced.
  • the aluminum alloy include aluminum-silicon and aluminum-silicon-magnesium.
  • an aluminum alloy containing 3 to 20% by mass of silicon having a low melting point so as to sufficiently penetrate into the voids of the preform is preferable.
  • an aluminum-silicon-magnesium alloy containing up to 3% by mass of magnesium is more preferable because the bond between the ceramic and the metal portion becomes stronger.
  • the metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely, and for example, copper or the like may be included.
  • the preforms are preferably impregnated by connecting a plurality of preforms to form a laminate. It is preferable to sandwich a release plate such as a stainless steel plate or a ceramic plate with a release agent applied to the plurality of connections, and a jig such as an iron or graphite bolt and nut is used to fix the preform. It is preferable to use it.
  • a release plate such as a stainless steel plate or a ceramic plate with a release agent applied to the plurality of connections
  • a jig such as an iron or graphite bolt and nut is used to fix the preform. It is preferable to use it.
  • sprays containing release agent powders such as graphite, boron nitride, and alumina are used.
  • the laminate After the laminate is heated at a temperature of about 600 to 800 ° C., one or two or more pieces are placed in the container, and then the molten aluminum or aluminum alloy heated to the melting point or higher is quickly supplied, and 30 MPa or more, In particular, it is preferable to pressurize at a pressure of 50 MPa or more. As a result, aluminum or an aluminum alloy is easily impregnated into the voids of the preform.
  • the heating temperature of the laminate exceeds 800 ° C., the raw material powder used for forming the preform may be oxidized, and the thermal conductivity and the like may be reduced. Thereafter, the impregnated product is annealed as necessary to remove distortion during impregnation.
  • silicon or a silicon alloy and a preform are placed in a crucible made of, for example, graphite or BN and heat-treated at a temperature equal to or higher than the melting point of silicon or the silicon alloy in a non-oxidizing atmosphere or reduced pressure.
  • the preform is impregnated with silicon or a silicon alloy by the pressure impregnation method.
  • powder metallurgy can be used for the composite of the preform and silicon or silicon alloy
  • the non-pressure impregnation method is preferred from the standpoint of characteristics.
  • An example of specific conditions of the melt impregnation method is described in the above-mentioned patent document, and these can be employed in the present invention.
  • the melt impregnation method it becomes easy to impregnate a metal having a low viscosity of the molten metal, such as silicon or a silicon alloy.
  • the silicon alloy to be impregnated is preferably a silicon alloy containing 70% by mass or more of silicon in order to make the molten metal low in viscosity and easily penetrate into the preform.
  • Step> the composite is processed into a pre-composite substrate having a plate thickness of 0.1 to 2 mm and a surface roughness (Ra) of 0.5 ⁇ m or less.
  • the thermal expansion coefficient is 10 to 50% by volume of aluminum or aluminum alloy, or silicon or silicon alloy
  • the thermal conductivity at 25 ° C. is 100 to 600 W / (m ⁇ K)
  • the linear expansion coefficient is 25 to 150 ° C. Is 3 to 12 ⁇ 10 ⁇ 6 / K
  • a pre-composite substrate having a three-point bending strength of 50 to 400 MPa is manufactured.
  • the content of aluminum or aluminum alloy, or silicon or silicon alloy is adjusted, and the thermal conductivity and linear expansion coefficient are controlled.
  • the content of aluminum or aluminum alloy, or silicon or silicon alloy in the pre-composite substrate is preferably 20 to 35% by volume.
  • the composite is preferably processed as follows.
  • the shape of the composite is a cylinder
  • a processing machine such as a double-side grinding machine, a rotary grinding machine, a surface grinding machine, or a lapping machine.
  • the thickness is 0.1 to 2 mm and the surface roughness (Ra) is 0 with a processing machine such as a double-sided grinder, rotary grinder, surface grinder, or lapping machine. Process to 5 ⁇ m or less.
  • the pre-composite substrate is cut to an area of 2 to 100 times the contact area of the LED chip (that is, the bottom area of the LED chip), and the composite substrate 2 is manufactured. Thereafter, one or two or more LED chips 1 are mounted with a bonding material, and the LED chip bonded body 10 is manufactured. In this step, cutting to an area of 2 to 100 times, and forming a metal layer of at least one metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn as necessary. Details of what can be done are described above.
  • the peripheral processing of the pre-composite substrate can be performed by dicing, laser processing, water jet processing, and electric discharge processing. Dicing is optimal in terms of processing accuracy and processing speed, and laser processing is most excellent in terms of processing speed.
  • the number of LED chips to be mounted on the composite substrate is limited as long as the area of the composite substrate is 2 to 100 times the adhesion area of the LED chip, and the layout does not hinder the mounting and heat dissipation of individual LED chips. There is no. For this reason, it can also be set as the LED chip assembly which attached two or more LED chips to one composite substrate.
  • An advantage of mounting a plurality of LED chips is that man-hours in the mounting process can be reduced.
  • Example 1 ⁇ Pre-composite substrates A and B using an inorganic porous material> Silicon carbide powder A (commercial product: average particle size 200 ⁇ m) 1800 g, silicon carbide powder B (commercial product: average particle size 20 ⁇ m) 900 g, silicon carbide powder C (commercial product: average particle size 2 ⁇ m) 300 g, and molded binder (methylcellulose) 150 g of trade name “Metroze” manufactured by Shin-Etsu Chemical Co., Ltd.) was weighed and mixed with a stirring mixer for 30 minutes.
  • a linear expansion coefficient measurement specimen (diameter 3 mm, length 10 mm) and a thermal conductivity measurement specimen (25 mm ⁇ 25 mm ⁇ 1 mm) were cut out by grinding, and a wire having a temperature of 25 ° C. to 150 ° C.
  • the coefficient of expansion was measured with a thermal dilatometer (Seiko Denshi Kogyo Co., Ltd .; TMA300), the thermal conductivity at a temperature of 25 ° C. was measured with a laser flash method (manufactured by ULVAC; TC3000), and the three-point bending strength was measured with a bending strength tester.
  • the linear expansion coefficient was 5.0 ⁇ 10 ⁇ 6 / K
  • the thermal conductivity was 250 W / (m ⁇ K)
  • the strength was 350 MPa.
  • the composite was processed into a cylindrical shape having a diameter of 50.8 mm and a height of 100 mm using a diamond grinder with a cylindrical grinder, and then a diamond abrasive grain was used with a multi-wire saw, and the cutting speed was 0.2 mm. / Min. And cut into a disk shape having a plate thickness of 0.3 mm, and further ground to a plate thickness of 0.22 mm with a double-side grinding machine using a # 600 diamond grindstone. Thereafter, polishing was performed to a thickness of 0.2 mm using diamond abrasive grains on a lapping machine, and then ultrasonic cleaning was performed in pure water and then in isopropyl alcohol, followed by drying to produce a pre-composite substrate A. . This surface roughness (Ra) was 0.05 ⁇ m.
  • the pre-composite substrate A was subjected to electroless Ni—P plating and electro Au plating to form a metal layer (5 ⁇ m thickness) of (Ni—P: 4 ⁇ m + Au: 1 ⁇ m).
  • the surface roughness (Ra) was 0.1 ⁇ m.
  • a commercially available ultraviolet curable solder resist layer was applied to one side of the pre-composite substrate provided with the metal layer with a screen printer, and then cured with an ultraviolet ray to form a resist layer (15 ⁇ m) (not shown) of 4 mm.
  • a pre-composite substrate B was formed at intervals.
  • the LED package shown in FIG. 1 was manufactured using the following constituent materials. That is, the insulating layer 4 is laminated on the metal substrate 5 to a thickness of 80 ⁇ m, and then the metal foil is laminated, the metal circuit 3 is formed by chemical etching, and the resist layer 6 is applied to the surface of the circuit board 11. Manufactured. On the other hand, the LED chip 1 was bonded to the composite substrate 2. For the bonding of A and a composite substrates, an Ag paste high thermal conductive adhesive (Kyocera Chemical Co., Ltd .: CT284R) is used. For the composite substrates of B and b, a cream solder adhesive is used for the metal layer between the resist layers. It was. 120 LED chip assemblies 10 were produced for each.
  • the LED chip assembly was mounted on the circuit board 11 by wire bonding using cream solder and the electrical connection member 9.
  • the area of the LED chip mounting surface of the obtained LED chip assembly was 15.2 times the bottom area of the LED chip.
  • the dam material 7 was provided and the resin sealing material 8 was filled, and the LED package of this invention was manufactured.
  • LED chip 1 (manufactured by Cree: EZ1000 shape: 1 mm ⁇ 1 mm ⁇ 0.1 mm output: 3 W)
  • Composite substrate 2 Composite substrate A, B, a or b manufactured above
  • Metal circuit 3 Copper insulating layer having a thickness of 35 ⁇ m 4: Bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin, “EP-828”) and a curing agent phenol novolac (manufactured by Dainippon Ink & Chemicals, “TD-2131”) ))
  • an inorganic filler crushed silica powder having an average particle size of 1.2 ⁇ m (manufactured by Tatsumori Co., Ltd., “A-1”): crushed silica powder having an average particle size of 10 ⁇ m (manufactured by Tatsumori Co., Ltd., “5X”)
  • Resist layer 6 (Taiyo Ink, “PSR4000LEW1”)
  • Dam material 7 Silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., “KER-2000-DAM”)
  • Resin sealing material 8 80% by mass of a silicone resin (Toray Dow Corning, “JCR6125”) and 20% by mass of ⁇ -sialon (D10 is 4.8 ⁇ m, D50 is 9.1 ⁇ m, D90 is 18.9 ⁇ m) blend.
  • Electrical connection member 9 gold wire.
  • the upper surface temperature of the LED chip of the LED package manufactured using the composite substrate A, the composite substrate B, the composite substrate a, and the composite substrate b is 69 ° C., 60 ° C., 70 ° C., respectively, with an average value of 5 pieces. It was 61 ° C.
  • Comparative Example 1 In the LED package of Example 1 using the composite substrate B, the LED chip was mounted directly on the circuit board using cream solder without producing the LED chip assembly, and the upper surface temperature of the LED chip was 105 ° C. there were.
  • Example 11-15 The composite substrate B of Example 1 was formed except that a metal layer having the metal species and metal layer thickness shown in Table 2 was formed instead of the plating layer (5 ⁇ m thickness) of (Ni—P: 4 ⁇ m + Au: 1 ⁇ m). An LED package was manufactured in the same manner as used, and the upper surface temperature of the LED chip was measured. The results are shown in Table 2.
  • Example 16 ⁇ LED chip assembly and LED package using composite substrates C and D using an inorganic porous body> 1300 g of silicon carbide powder D (commercial product: average particle size 150 ⁇ m), 700 g of silicon carbide powder E (commercial product: average particle size 10 ⁇ m), and 300 g of silica sol (Nissan Chemical Co., Ltd .: Snowtex) were weighed and stirred. After mixing for 30 minutes, it was press-molded into a plate having dimensions of 160 mm ⁇ 160 mm ⁇ 5 mm at a surface pressure of 30 MPa to produce a molded body. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour, and then fired in a nitrogen atmosphere at a temperature of 1400 ° C.
  • Ten inorganic porous bodies are formed into a structure (170 mm ⁇ 170 mm ⁇ 40 mm) with a release plate (160 mm ⁇ 160 mm ⁇ 0.8 mm) coated with a graphite release agent on each sheet, and iron plates ( A plate thickness of 12 mm) was arranged and connected with eight bolts to form one laminate.
  • a composite 155 mm ⁇ 155 mm ⁇ 3 mm was produced in the same manner as the composite substrate A of Example 1, the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength. Were measured to be 7.5 ⁇ 10 ⁇ 6 / K, 200 W / (m ⁇ K), and 400 MPa, respectively.
  • the obtained composite was surface-processed into a plate thickness of 0.4 mm using a diamond grindstone with a surface grinder, and then a water jet processing machine (Abstract Jet Cutter NC manufactured by Sugino Machine) was used. Then, using a garnet having a particle size of 100 ⁇ m as abrasive grains under the conditions of a pressure of 250 MPa and a processing speed of 100 mm / min, it was cut into a shape having a diameter of 50.8 mm ⁇ 0.4 mm.
  • the upper surface temperature of the LED chip of the LED package manufactured using the composite substrate C and the upper surface temperature of the LED chip of the LED package manufactured using the composite substrate D were measured. And 62 ° C.
  • Example 17 ⁇ LED chip assembly and LED package using composite substrates E and F using an inorganic porous body>
  • a stainless steel plate using an isotropic graphite molded body manufactured by Tokai Carbon Co., Ltd .: G458, porosity: 13% by volume, dimensions: 100 mm ⁇ 100 mm ⁇ 100 mm) as an inorganic porous body, and a graphite release material applied as a release plate A composite was manufactured according to the manufacture of the composite substrate A, except that (100 mm ⁇ 100 mm ⁇ 0.8 mm) was used.
  • a metal layer similar to that of the pre-composite substrate B is applied to the pre-composite substrate E to obtain a pre-composite substrate F, and then the obtained pre-composite substrates E and F are cut at a cutting speed of 0.5 mm using an electric discharge machine.
  • the composite substrates E and F were manufactured by cutting into a shape of 3.9 mm ⁇ 3.9 mm at / s.
  • the LED chips (CREE: EZ1000 / 1 mm ⁇ 1 mm ⁇ 0.1 mm) with an output of 3 W are joined to the composite substrates E and F with cream solder, the upper surface of the LED chip of the LED package manufactured using the composite substrate E When the temperature and the upper surface temperature of the LED chip of the LED package manufactured using the composite substrate F were measured, they were 72 ° C. and 66 ° C., respectively.
  • Example 18 ⁇ LED chip assembly and LED package using composite substrates G and H using an inorganic porous body> A mixed powder of 2880 g of aluminum nitride powder (commercial product: average particle size 2 ⁇ m), 120 g of yttria powder (commercial product: average particle size 1 ⁇ m), 150 g of molding binder (methylcellulose), and 150 g of pure water was press-molded at a surface pressure of 10 MPa. Thereafter, CIP molding was further performed at a molding pressure of 100 MPa to produce a cylindrical body (diameter 55 mm ⁇ 110 mm). This was degreased at a temperature of 600 ° C. for 2 hours in an air atmosphere, then fired at a temperature of 1780 ° C. for 4 hours in a nitrogen atmosphere to produce a sintered body, and then the porosity was 22 using a diamond grindstone at a machining center. % Inorganic porous material (diameter 52 mm ⁇ 100 mm) was produced.
  • a pre-composite substrate G (diameter 50.8 mm ⁇ 0.2 mm) was prepared in the same manner as the composite substrate A of Example 1 except that this inorganic porous material was used and that pure aluminum was used instead of the aluminum alloy. Manufactured. The surface roughness (Ra) was 0.06 ⁇ m. Further, a metal layer similar to that of the pre-composite substrate B is applied to the pre-composite substrate G to obtain a pre-composite substrate H, and then the obtained pre-composite substrates G and H are cut with a laser processing machine at a cutting speed of 8 mm / s. Were cut into a shape of 3.9 mm ⁇ 3.9 mm to produce composite substrates G and H.
  • LED chips (CREE: EZ700 / 0.7 mm ⁇ 0.7 mm ⁇ 0.1 mm) with an output of 1 W are bonded to the composite substrates G and H with a solder paste adhesive at 2 mm intervals to form an LED chip assembly.
  • the obtained LED chip assembly has a structure in which four LED chips are mounted on the upper surface of one composite substrate, and the area of the LED chip mounting surface of the composite substrate is the total of the bottom area of the LED chips. It was 7.8 times. A voltage was applied to the LED chip so that the output was 4 W, and the temperature of the upper surface of the LED chip was measured by infrared thermography. As a result, the upper surface temperature of the LED chip of the LED package manufactured using the composite substrate G was 70, and that manufactured using the composite substrate H was 63 ° C.
  • Example 19 ⁇ LED chip assembly and LED package using composite substrates I and J using inorganic porous material> Except for using a mixture of 2790 g of silicon nitride powder (commercial product: average particle size 1 ⁇ m), 150 g of yttria powder (commercial product: average particle size 1 ⁇ m), and 60 g of magnesium oxide powder (commercial product: average particle size 1 ⁇ m), A cylindrical body (diameter 55 mm ⁇ 110 mm) was produced in the same manner as in Example 18. This was fired for 4 hours at a temperature of 1880 ° C.
  • Example 20 ⁇ LED chip assembly and LED package using composite substrates c and d using inorganic powder compacts> 7 g of diamond powder A (Diamond Innovations, MBG-600, average particle size: 120 ⁇ m) and 3 g of diamond powder B (Diamond Innovations, MBG-600, average particle size: 15 ⁇ m) in an alumina mortar After mixing for a minute, a graphite jig Y having an outer diameter of 52.4 mm ⁇ 9 mm was inserted into a cylindrical graphite jig X having an outer dimension of 70 mm ⁇ 70 mm ⁇ 20 mm (inner diameter: diameter 52.5 mm ⁇ 20 mm). Thereafter, 10 g of diamond mixed powder was filled, and a graphite jig Y was further inserted on the upper surface of the diamond mixed powder to produce an inorganic powder molded body having a porosity of 35%.
  • diamond powder A Diamond Innovations, MBG-600, average particle size: 120 ⁇ m
  • This inorganic powder compact was subjected to impregnation treatment with a laminate according to the production of the composite substrate a to produce a composite (70 mm ⁇ 70 mm ⁇ 20 mm) surrounded by a cylindrical graphite jig.
  • This was ground into a plate-like body (70 mm ⁇ 70 mm ⁇ 1 mm) from both main surface sides (70 mm ⁇ 70 mm) using a diamond grinder with a surface grinder until the composite was exposed.
  • the outer peripheral process was carried out in the disk (diameter 50.8 mm x 1 mm) shape with the water jet processing machine, and the composite substrate c was manufactured.
  • This surface roughness (Ra) was 0.4 ⁇ m.
  • a composite substrate d was manufactured by applying a plating layer and a resist layer in the same manner as the composite substrate b.
  • the thermal conductivity of the composite substrate c at a temperature of 25 ° C. was 500 W / (m ⁇ K).
  • the upper surface temperature of the LED chip of the LED package manufactured using the composite substrate c was 66 ° C.
  • that manufactured using the composite substrate d was 58 ° C.
  • Example 21 ⁇ LED chip assembly and LED package using composite substrates K and L using inorganic porous material>
  • An inorganic porous material (outer dimension: diameter 52 mm ⁇ height 100 mm, porosity: 20%) manufactured in the manufacturing process of the composite substrate A of Example 1 was used with a diamond grindstone at a machining center, and the outer dimension was 52 mm ⁇ 20 mm in diameter. Processed into a disk. This disk and lump silicon were put in a graphite crucible coated with BN powder and set in an electric furnace. The furnace was evacuated and held at 1650 ° C. for 8 hours to impregnate the disc with silicon.
  • Example 2 After cooling to room temperature, excess silicon was removed with a cylindrical grinder to produce a composite, and in the same manner as in Example 1, the linear expansion coefficient at a temperature of 25 ° C. to 150 ° C. and the thermal conductivity at a temperature of 25 ° C. was measured, the coefficient of linear expansion was 4.3 ⁇ 10 ⁇ 6 / K, and the thermal conductivity was 210 W / (m ⁇ K).
  • the same processing as that of the composite substrate A was performed to manufacture the composite substrate K, and the same processing as that of the composite substrate B was performed to manufacture the composite substrate L.
  • the surface roughness (Ra) of the composite substrate K was 0.08 ⁇ m.
  • the upper surface temperature of the LED chip of the LED package manufactured using the composite substrate K was 69 ° C.
  • that manufactured using the composite substrate L was 61 ° C.
  • Example 22 Comparative Example 6 ⁇ LED chip bonded body and LED package using composite substrate e, f using inorganic powder molded body> 461 g (Example 22) of silicon carbide powder E (commercial product: average particle diameter 10 ⁇ m), or 377 g (comparative example 6) of silicon carbide powder F (commercial product: average particle diameter 6 ⁇ m) were transferred to a cylindrical graphite jig ( External dimensions: 70 mm ⁇ 70 mm ⁇ 110 mm, inner dimensions: diameter 55 mm ⁇ height 110 mm), press-molded with a surface pressure of 5 MPa, porosity of 45% (Example 22) or porosity of 55% (comparison) The powder compact of Example 6) (a cylindrical body having a diameter of 55 mm and a height of 110 mm) was produced.
  • the composite substrate e (Example 22) and composite substrate f (Comparative Example 6) were manufactured in the same manner as in the case of the composite substrate b of Example 1, and the LED chip assembly was manufactured. The LED package was manufactured and the upper surface temperature of the LED chip was measured. The results are shown in Table 3. Further, in the same manner as in Example 1, when the linear expansion coefficient at a temperature of 25 ° C. to 150 ° C., the thermal conductivity at a temperature of 25 ° C., and the three-point bending strength were measured, the linear expansion coefficient of the composite substrate e was 10.5.
  • thermal conductivity 120 W / (m ⁇ K)
  • strength 500 MPa
  • the linear expansion coefficient of the composite substrate f is 12.5 ⁇ 10 ⁇ 6 / K
  • thermal conductivity 80 W / (m ⁇ K). K)
  • the strength was 550 MPa.
  • Examples 23 and 24 ⁇ LED chip bonded body and LED package using composite substrate g, h using inorganic powder molded body> Instead of an aluminum alloy containing 12% by mass of silicon and 1% by mass of magnesium, an aluminum alloy containing 3% by mass of silicon (Example 23) or an aluminum alloy containing 20% by mass of silicon (Example 24) was used. And the composite substrate g and composite substrate in the same manner as the composite substrate b of Example 1 except that an aluminum (Al) circuit (thickness 35 ⁇ m) was used instead of the copper (Cu) circuit (thickness 35 ⁇ m). The LED package was manufactured via the manufacture of h and the manufacture of the LED chip assembly, and the upper surface temperature of the LED chip was measured. The results are shown in Table 3.
  • the linear expansion coefficient at a temperature of 25 ° C. to 150 ° C. and the thermal conductivity at a temperature of 25 ° C. were measured in the same manner as in Example 1, the linear expansion coefficient of the composite substrate g was 5.8 ⁇ 10 ⁇ 6 / K, the thermal conductivity was 215 W / (m ⁇ K), the linear expansion coefficient of the composite substrate h was 6.3 ⁇ 10 ⁇ 6 / K, and the thermal conductivity was 230 W / (m ⁇ K).
  • Examples 25 and 26 ⁇ LED chip assembly and LED package with composite substrate i, j using inorganic powder compact>
  • the composite substrate i (Example 25) is the same as the composite substrate b of Example 1 except that ⁇ -type sialon powder (Example 25) or CASIN powder (Example 26) is used instead of the ⁇ -type sialon powder.
  • the composite substrate j (Example 26) was manufactured, and the LED packages were manufactured via the manufacture of the LED chip assembly. When the upper surface temperature of the LED chip was measured, all of the results were as good as those of the LED package manufactured using the composite substrate b of Example 1.

Abstract

放熱性を著しく改善した信頼性の高いLEDパッケージと、LEDパッケージの製造方法と、このLEDパッケージに用いるLEDチップ接合体を提供する。LEDパッケージは、LEDチップ接合体(10)が、金属基板(5)に絶縁層(4)を介して金属回路(3)が形成されてなる回路基板(11)に接合される一方、上記LEDチップ接合体のLEDチップ(1)と上記回路基板の金属回路(3)とが電気的接続部材(9)で接続されており、少なくとも上記LEDチップ接合体と上記電気的接続部材とが、蛍光物質を含む樹脂封止材(8)で封止されていることを特徴とする。

Description

LEDチップ接合体、LEDパッケージ、及びLEDパッケージの製造方法
本発明は、LEDチップ接合体、LEDパッケージ、及びLEDパッケージの製造方法に関する。
LED発光素子は、半導体のpn接合に順方向電流を流すと発光する素子であり、GaAs、GaN等のIII-V族半導体結晶を用いて製造される。近年、半導体のエピタキシャル成長技術と発光素子プロセス技術の進歩により、変換効率の優れるLED発光素子が開発され、様々な分野において幅広く使用されている。
LEDチップは、成長基板上にIII-V族半導体結晶をエピタキシャル成長させたp型層とn型層及び両者に挟まれる光活性層から構成される。一般的には、単結晶サファイア等の成長基板上に、III-V族半導体結晶をエピタキシャル成長させた後、電極等を形成させてLEDチップにされる。
単結晶サファイアの熱伝導率が40W/(m・K)程度であるので、III-V族半導体素子で発生する熱を十分に放熱することができない。とくに、大電流を流す高出力LEDでは素子の温度が上昇して、発光効率の低下や素子寿命の低下を起こしてしまう。これを解決するため、成長基板上にIII-V族半導体結晶をエピタキシャル成長させた後に、金属層を介してパッケージ基板(保持基板)を接合し、その後、成長基板を除去する方法が提案されているが(特許文献1)、十分に満足できるものではなかった。すなわち、金属系のパッケージ基板(保持基板)は導電性でもあるので実装に際しては非絶縁構造としなければならない。たとえば、回路基板等の実装基板に半田接合する際、接合部直下に樹脂等の熱伝導率の低い絶縁層を配置する必要があったが、この絶縁層が十分な放熱を阻害してしまう。
一方、LEDチップの発熱による障害を少しでも軽減させるべく高出力LED発光装置では、放熱板、例えば銅(Cu)板を介して、LEDチップを回路基板等に実装する方法が提案されている(特許文献2)。しかし、Cuの線膨張係数が17×10-6/K程度であり、LEDチップの5×10-6/K程度と大きく相違しているので、使用中に接合部にクラック等が発生し放熱特性が低下してしまう。
特開2006-128710号公報 特表2008-544488号パンフレット
本発明の目的は、上記に鑑み、放熱性を著しく改善した信頼性の高いLEDパッケージと、LEDパッケージの製造方法と、このLEDパッケージに用いるLEDチップ接合体を提供する。
本発明は、複合基板に一個又は二個以上のLEDチップが接合材により直接実装されてなるLEDチップ接合体であって、上記複合基板が、無機質成形体にアルミニウム、シリコン又はそれらを成分として含有する合金を含浸させてなる、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下、温度25℃の熱伝導率が100~600W/(m・K)、温度25℃~150℃の線膨張係数が3~12×10-6/K、3点曲げ強度が50~500MPaであり、しかも複合基板のLEDチップ実装面の面積が、LEDチップとの接触面積に対し、2~100倍であることを特徴とするLEDチップ接合体である。
また、本発明は、複合基板に一個又は二個以上のLEDチップが接合材により直接実装されてなるLEDチップ接合体であって、上記複合基板が、気孔率が10~40体積%の無機質成形体に、アルミニウム含有率が80~97質量%のアルミニウム-シリコン合金を含浸させてなる、板厚が0.1~1mm、表面粗さ(Ra)が0.5μm以下、温度25℃の熱伝導率が100~300W/(m・K)、温度25℃~150℃の線膨張係数が4~9×10-6/K、3点曲げ強度が50~400MPaであり、しかも複合基板のLEDチップ実装面の面積が、LEDチップとの接触面積に対し、2~25倍であることを特徴とするLEDチップ接合体である。
本発明のLEDチップ接合体にあっては、(イ)複合基板が、表面にNi、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属による厚み0.5~20μmの金属層を有していること、(ロ)接合材による接合材が、はんだ付け、ロウ付け、又は高熱伝導性接着剤であること、(ハ)無機質成形体の材質が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた少なくとも1種であること、及び(ニ)LEDチップが、出力0.5W以上の非絶縁構造であること、から選ばれた少なくとも1つの実施態様を有していることが好ましい。
また、本発明は、本発明のLEDチップ接合体が、金属基板に絶縁層を介して金属回路の形成されてなる回路基板に接合される一方、上記LEDチップ接合体のLEDチップと上記回路基板の金属回路とが電気的接続部材で接続されており、少なくとも上記LEDチップ接合体と上記電気的接続部材とが、蛍光物質を含む樹脂封止材で封止されていることを特徴とするLEDパッケージである。
本発明のLEDパッケージにあっては、(ホ)蛍光物質が、α型サイアロン、β型サイアロン、CASIN(Ca・Al・Si・N)、イットリウム・アルミニウム・ガーネット及び硫化物から選ばれた少なくとも1種であり、しかも樹脂封止材が、比屈折率が2.2以上、平均粒子径が1~100nmの上記蛍光物質以外のフィラーを含有しているものであること、(ヘ)絶縁層が、熱伝導率が0.5~20W/(m・K)、厚みが0.03~0.2mmであり、金属回路の材質がアルミニウム又は銅でありその厚みが0.005~0.4mmであること、のいずれか又は両方の実施態様を有していることが好ましい。
また、本発明は、以下の工程を経由することを特徴とする本発明のLEDパッケージの製造方法である。
(i)炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた少なくとも1種を用いて、気孔率が10~50体積%の焼結体又は粉末成形体からなる無機質成形体を製造する工程
(ii)上記無機質成形体に、溶湯鍛造法によりアルミニウム又はアルミニウム合金を含浸させるか、又は溶融含浸法によりシリコン又はシリコン合金を含浸させて複合体を製造する工程
(iii)上記複合体を加工して、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下で、しかも温度25℃の熱伝導率が100~600W/(m・K)、温度25℃~150℃の線膨張係数が3~12×10-6/K、3点曲げ強度が50~400MPaであるプレ複合基板を製造する工程
(iv)上記プレ複合基板に、必要に応じて、Ni、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属による金属層を形成させてから、実装されるLEDチップの接触面積の2~100倍の面積となるように切断して複合基板を製造した後、接合材によって一個又は二個以上のLEDチップを実装し、LEDチップ接合体を製造する工程
(v)上記LEDチップ接合体を、金属基板に絶縁層を介して金属回路の形成された回路基板に接合する工程
(vi)上記LEDチップ接合体のLEDチップと上記回路基板の金属回路とを電気的接続部材で接続した後、少なくとも上記LEDチップ接合体と上記電気的接続部材とを、蛍光物質を含む樹脂封止材で封止してLEDパッケージを製造する工程。
本発明によれば、放熱性が著しく改善された信頼性の高いLEDパッケージと、LEDパッケージの製造方法と、このLEDパッケージに用いるLEDチップ接合体が提供される。本発明のLEDパッケージは、LEDチップを複合基板に直接実装されたLEDチップ接合体を用いて構成されているので、LEDチップの点灯温度を低減することができ、LEDの更なる高輝度化が達成される。
本発明のLEDパッケージの一例を示す説明図 本発明のLEDパッケージの別の一例を示す説明図 本発明のLEDパッケージの他の一例を示す説明図
 1 LEDチップ
 2 複合基板
 3 金属回路
 4 絶縁層
 5 金属基板
 6 レジスト層
 7 ダム材
 8 樹脂封止材
 9 電気的接続部材
10 LEDチップ接合体
11 回路基板
<LEDチップ接合体>
本発明のLEDチップ接合体の構造は、LEDチップが複合基板に接合材を用いて直接実装されており、しかも複合基板のLEDチップ実装面の面積が、LEDチップとの接触面積に対し、2~100倍、好ましくは2~25倍となっている。この面積比(倍率)が2倍未満であると、LEDチップからの熱を複合基板に十分に広げることができないので、LEDチップの点灯温度が高くなる。一方、面積比(倍率)が100倍をこえると、LEDチップに通電するための電気的接合部材(例えば、Auワイヤーボンディング)が極端に長くなり信頼性の低下を招く恐れがある。
本明細書において「LEDチップ」とは、III-V族半導体結晶からなるLED素子と保持基板からなる構造体のことである。LED素子としては紫外~青色の波長域の光を発するIII-V族半導体結晶が使用され、具体的にはInGaN、AlGaAs、AlGaInPなどである。保持基板とは、III-V族半導体結晶をエピタキシャル成長する際に用いた成長基板、又は成長基板上にIII-V族半導体結晶をエピタキシャル成長させた後に、金属層を介して高熱伝導性基板を接合し、その後、成長基板を除去された上記高熱伝導性基板のことである。それを例示すれば、サファイア、炭化珪素、シリコン、Cu/W、Cu/Moなどである。これらの中、0.5W以上の出力が要求されるLEDチップでは、熱伝導率の点から、上記の後者に属する保持基板が使用され、LEDチップは非絶縁構造となる。非絶縁構造LEDチップの利点は、狭い面積で高輝度が得られることである。
LEDチップは複合基板に接合材を用いて直接実装される。接合は、例えばはんだ付け、ロウ付け、高熱伝導性接着剤等によって行われるが、好ましくははんだ付け又はロウ付けである。はんだとしては、クリームはんだ、共晶はんだ、鉛フリーはんだなどを使用できる。ロウ付けは、LEDチップ裏面の共晶金属層を利用したロウ付け法が好ましく、これによって接合材からなる層、すなわち接合層の厚みを1~5μmに薄くすることができる。「高熱伝導性接着剤」とは、熱伝導率が10W/(m・K)以上の接着剤のことであり、例えばAgペースト、高熱伝導シリコーン接着剤、Ag系導電性接着剤をあげることができる。なお、本明細書においては、「接合」とは、LEDチップと複合基板とを接着するという意味であり、装着等と同等概念で用いている。
接合層の厚みは0.1mm以下が好ましく、特に0.05mm以下が好ましい。接合層の厚みが0.1mmをこえると熱抵抗が大きくなる。接着率、すなわちLEDチップの底面積に対する接合層の面積の比率は1に近いほどよいが、0.5以上、好ましくは0.8以上もあれば、LEDチップで発生した熱を不都合なく複合基板に伝達することができる。複合基板の表面粗さ(Ra)が0.5μmをこえると、接着率が低下するなどの不具合が生じる恐れがある。表面粗さ(Ra)は小さいほどよいが、加工費が増大するので下限値は0.01μmが好ましい。
「複合基板」とは、無機質成形体、好ましくは気孔率が10~50体積%、特に好ましくは気孔率が20~35体積%の無機質成形体に、溶湯鍛造法にてアルミニウム、シリコン又はそれらを成分として含有する合金、好ましくはアルミニウム含有率が80~97質量%のアルミニウム-シリコン合金を例えば特許3468358号の方法によって含浸させるか、又は溶融含浸法にてシリコン又はシリコン合金を、例えば特開平5-32485号公報の方法によって含浸させて製造されたものであって、板厚が0.1~2mm、好ましくは0.1~1mm、表面粗さ(Ra)が0.5μm以下、好ましくは0.05~0.5μm、温度25℃の熱伝導率が100~600W/(m・K)、好ましくは100~300W/(m・K)、温度25℃~150℃の線膨張係数が3~12×10-6/K、好ましくは4~9×10-6/K、3点曲げ強度が50~500MPa、好ましくは50~400MPaであるものをいう。
無機質成形体の材質としては、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた少なくとも1種であることが好ましい。無機質成形体中の空隙の割合(気孔率)は10~50体積%が好ましく、特に20~35体積%であることが好ましい。気孔率が50体積%をこえると、複合基板の線熱膨張係数が大きくなり過ぎ、10体積%未満であると、アルミニウム、シリコン又はそれらを成分として含有する合金を十分に含浸させることができずに熱伝導率が小さくなる恐れがある。気孔率の調整は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド、黒鉛等の無機成分の粒度調整、成形圧力、焼結条件等によって行うことができる。
本発明で用いられる複合基板は、LEDチップで発生した熱を面方向に広げるヒートスプレッダーとしての機能を有するので、高出力LED用として信頼性の高いLEDパッケージを製造することができる。複合基板の温度25℃の熱伝導率は100~600W/(m・K)である。熱伝導率が100W/(m・K)未満では、LEDチップが発生した熱を十分に放熱することができず、特に高出力LEDでは、素子の温度が上がり発光効率の低下、それに伴う素子寿命の低下が起こる恐れがある。特性面からの熱伝導率の上限には制約はないが、複合基板が高価になるので、上限を600W/(m・K)とした。熱伝導率は、無機質成形体の原料の種類、配合量等によって増減させることができる。
LEDチップを構成しているIII-V族半導体結晶と保持基板との熱膨張係数差は小さいことが好ましい。また、LEDチップの接合された複合基板は、回路基板の金属回路に接合されるので、複合基板は、LEDチップと回路基板との熱膨張係数差によって生じる応力を緩和できる機能を有していることが好ましい。これらのため、複合基板の温度25℃~150℃の線熱膨張係数は3~12×10-6/Kとする。これ以外の熱膨張係数であると、LEDチップとの線熱膨張係数差により、実装後に反りが生じたり、実装部分が剥離したり、最悪の場合はLEDチップが割れる恐れがある。複合基板の線熱膨張係数は、アルミニウム、シリコン又はそれらを成分として含有する合金と無機質成形体との構成比などによって増減させることができる。
複合基板に求められる他の特性は、(い)LEDチップを接合材で実装する際に耐え得る強度を有すること、(ろ)接合面にボイドや異物等の介在物がなく接合面が平坦であることである。(い)を満たすには複合基板の3点曲げ強度を50MPa以上にする。500MPaをこえる複合基板を製造するには、無機質成形体を緻密な焼結体にする必要があり、アルミニウム、シリコン又はそれらを成分として含有する合金との複合化が困難になるので、上限は500MPaであることが好ましい。(ろ)を満たすには複合基板の表面粗さ(Ra)を0.5μm以下とすればよい。3点曲げ強度は、無機質成形体の材質、無機成分の粒子サイズ、気孔率などによって増減させることができ、表面粗さ(Ra)は、加工に用いる砥石の砥粒の粒度等によって増減させることができる。
LEDチップ接合体の放熱性や、LEDチップの実装時等の取扱い性を良くする点から、複合基板の厚みは0.1~2mmとする。好ましくは0.1~1mmである。
複合基板は、表面にNi、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属による、特に好ましくはNi又はAuによる、厚みが0.5~20μmの金属層を有していることが好ましい。特に好ましい金属層の厚みは2~10μmである。これによって上記接着率が向上する。金属層の厚みが0.5μm未満であると、接着率の向上効果が小さく、20μmをこえると、金属層とヒートスプレッダーとの熱膨張差による剥離が生じる恐れがある。
金属層は、複合基板を洗浄後、上記金属種による無電解めっき又は電解めっきを施すことによって形成させることができる。めっき法以外にも、金属蒸着法や金属被覆法によっても形成させることができる。
<LEDパッケージ>
図1~3は、LEDパッケージの例を示す説明図である。
本発明のLEDパッケージは、本発明のLEDチップ接合体10が回路基板11に搭載され、電気的接続部材9で接続され、樹脂封止材8で封止されていることを基本構造としている(図1~図3)。一個のLEDチップ接合体を用いた実施態様例が図1、図2であり、二個以上のLEDチップ接合体を用いた実施態様例が図3である。ダム材7を用いた例が図1、図3であり、用いない例が図2である。以下、更に詳しく説明する。
<LEDパッケージ-回路基板>
本発明のLEDパッケージは、本発明のLEDチップ接合体10が回路基板11に搭載されている。回路基板11は、金属回路3と金属基板5との絶縁層4を介した積層体から構成されている。金属回路3及び金属基板5としては、アルミニウム、鉄、銅、又はそれらの金属を成分とする合金が好ましい。LEDチップ接合体が搭載される金属回路の面には接合性の向上や表面の酸化防止のために、また絶縁層と接着される金属回路の面には絶縁層との接着性の向上のために、更には絶縁層と接着される金属基板の面には絶縁層との密着性を改良するために、それぞれサンドブラスト、エッチング、各種メッキ処理、カップリング剤処理などの表面処理を施すことができる。
金属回路の厚さは0.005~0.4mmが好ましい。0.005mm未満ではLEDパッケージとして十分な導通回路を確保できず、0.40mmをこえると回路形成上の制約が多くなる。金属基板の厚みは0.1~4mmが好ましく、あまりに薄いと取扱い性が低下し、あまりに厚くしても照明用LEDパッケージとしての実用的利点はあまりない。
絶縁層4は、耐熱樹脂と硬化剤と無機フィラーを含む硬化性樹脂組成物の硬化物であって、その熱伝導率が0.5W/(m・K)以上であるものが好ましい。熱伝導率が0.5W/(m・K)未満であると、LEDチップで発生した熱を十分に広げることができないため、LEDチップのジャンクション温度が高くなり、LEDチップの輝度の低下、寿命の低下を招く恐れがある。熱伝導率の上限は20W/(m・K)もあれば十分である。絶縁層の厚みとしては30~200μmが好ましい。30μm未満であると電気絶縁性が不十分となり、200μmをこえると放熱性が損なわれる恐れがある。
耐熱樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、フェノール樹脂、イミド樹脂等が使用できる。硬化剤としては後記のものが使用される。無機フィラーとしては、例えば酸化アルミニウム(アルミナ)、酸化ケイ素、酸化マグネシウム等の酸化物セラミックス、例えば窒化アルミニウム、窒化ケイ素、窒化ホウ素等の窒化物セラミックス、炭化物セラミックスなどを使用できる。無機フィラーは、最大粒子径100μm以下、最小粒子径0.05μm以上の球状粉末が好ましい。なかでも、粒子径5~50μmの粒子を50~75質量%、粒子径0.2~1.5μmの粒子を25~50質量%含むものがより好ましい。
絶縁層中の無機フィラーの含有割合は耐熱樹脂と硬化剤の合計量100質量部に対して70~95質量部が好ましく、特に80~90質量部が好ましい。耐熱樹脂と硬化剤の合計量100質量部に対して無機フィラーの割合が95質量部をこえると、硬化性樹脂組成物の粘度が上昇して作業性が低下する。一方、70質量部未満であると、絶縁層の熱伝導性が低下する恐れがある。絶縁層を形成させるための硬化性樹脂組成物には、必要に応じて、シラン系カップリング剤、チタネート系カップリング剤、安定剤、硬化促進剤などを用いることができる。
さらに、好ましい絶縁層について説明する。LEDチップ接合体と回路基板との熱膨張係数差が大きい場合は、それによって発生する接合部分の応力緩和のために、絶縁層の貯蔵弾性率は300Kで15000MPa以下であることが好ましい。このような絶縁層は、エポキシ樹脂100質量部あたり、ポリエーテル骨格を有し主鎖の末端に1級アミノ基を有する硬化剤を5~50質量部、上記無機フィラーを70~95質量部配合した硬化性樹脂組成物を調製することによって実現できる。
エポキシ樹脂としては、ビスフェノールF型エポキシ樹脂やビスフェノールA型エポキシ樹脂等の汎用のエポキシ樹脂を用いることができるが、ジシクロペンタジエン骨格を持つエポキシ樹脂、ナフタレン骨格を持つエポキシ樹脂、ビフェニル骨格を持つエポキシ樹脂及びノボラック骨格を持つエポキシ樹脂から選ばれた1種以上を、エポキシ樹脂中10質量%以上含むと、応力緩和性と耐湿性のバランスが更に向上する。ノボラック骨格を持つ代表的なエポキシ樹脂には、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂があるが、ジシクロペンタジエン骨格、ナフタレン骨格又はビフェニル骨格とノボラック骨格を併せ持つエポキシ樹脂を用いることもできる。エポキシ樹脂として、上記の骨格を持つエポキシ樹脂を単独で使用してもかまわない。また、エポキシ樹脂を主体に他の樹脂として、フェノール樹脂、ポリイミド樹脂等の熱硬化性樹脂やフェノキシ樹脂、アクリルゴム、アクリロニトリル-ブタジエン等の高分子量樹脂を配合してもよいが、応力緩和性、電気絶縁性、耐熱性、耐湿性のバランスを考慮すると、上記高分子量樹脂の配合量はエポキシ樹脂との合計量に対して30質量%以下であることが好ましい。
硬化剤は、ポリエーテル骨格を有し、主鎖の端末に1級アミノ基を有する硬化剤を硬化後の樹脂組成物の貯蔵弾性率をさげるために使用する。他の硬化剤と併用することもできる。芳香族アミン系硬化剤を併用すると、応力緩和性、電気絶縁性、耐湿性等のバランスを更に好適にすることができる。芳香族アミン系硬化剤としては、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、メタフェニレンジアミン等が使用できる。フェノールノボラック樹脂等の硬化剤を更に併用することもできる。
金属基板5に、絶縁層4を介して金属回路3を接合し、回路基板11を形成するには例えば以下のようにする。すなわち、絶縁層を形成するための硬化性樹脂組成物スラリーを金属基板5(例えばアルミニウム基板)にスクリーン印刷等の方法によりパターン印刷し、加熱して半硬化状態にした後、金属回路3を形成するための金属箔(例えば銅箔)を張り合わせ、更に加熱してほぼ完全な硬化状態とする方法、あらかじめ絶縁層を半硬化状態のシート状に加工し、ホットプレス装置により金属回路3を形成するための金属箔(例えば銅箔)とともに一体化させる方法、などである。金属回路のパターン形成方法としては、例えばあらかじめ金属箔上の所定箇所にレジスト層を塗布し硬化させた後、塩化第二銅、過酸化水素水と硫酸の混合物等のエッチャントによりエッチングする方法が用いられる。
<LEDパッケージ-回路基板とLEDチップ接合体との接続>
本発明のLEDパッケージは、LEDチップ接合体のLEDチップ1と回路基板の金属回路3とが電気的接続部材9で接続されている。電気的接続部材9としては、例えばAg、Au等を用いたワイヤーボンディング、バンプ、ブリッジなどが用いられる。LEDチップ接合体10は金属回路3に接合されており、その接合には、上記したはんだ付け、ロウ付け、高熱伝導性接着剤などが用いられる。好ましくは、はんだ付けである。
<LEDパッケージ-樹脂封止材>
本発明のLEDパッケージは、少なくとも上記LEDチップ接合体10と上記電気的接続部材9とが、蛍光物質を含む樹脂封止材8で封止されている。樹脂封止に際しては、図1、図3に示されるように、樹脂封止材の広がりを抑制するため、LEDチップ接合体の外周を囲むようにダム材7を設置することができる。ダム材は、例えばシリコーン系樹脂やエポキシ系樹脂等を用い、スクリーン印刷、ディスペンサなどによって形成させることができる。
樹脂封止材の樹脂としては、シリコーン樹脂、エポキシ樹脂、エポキシ基を有するポリジメチルシロキサン誘導体、オキセタン樹脂、アクリル樹脂、シクロオレフィン樹脂等の熱硬化樹脂などが用いられるが、より高い屈折率と耐熱性を付与させる点から、シリコーン樹脂が好ましい。樹脂封止材には蛍光物質が含まれており、その含有率は1~50質量%あることが好ましい。
蛍光物質は、LEDチップからの光を受け可視光を発するものであれば、特に材質の制約はない。それを例示すれば、α型サイアロン、β型サイアロン、CASIN(Ca・Al・Si・N)、イットリウム・アルミニウム・ガーネット、硫化物などであり、これらの少なくとも1種が用いられる。なかでも、α型サイアロン、β型サイアロンが好ましい。
α型サイアロンとしては、特別なものである必要はなく、普通に入手できるものが使用される。酸素含有量は1.2質量%以下が好ましい。また、レーザー回折散乱法(たとえば、シーラス社製商品名「シーラスグラニュロメーター モデル920」)によって測定された累積粒度分布において、累積値が10体積%の粒子径(D10)が2~15μm、累積値が50体積%の粒子径(D50)が5~20μm、累積値が90体積%の粒子径D90)が6~50μmであるものは、より高輝度化ができるので好ましい。
β型サイアロンについても特別なものである必要はなく、普通に入手できるものが使用される。なかでも、Euを含有するものであって、電子スピン共鳴スペクトルによる25℃のg=2.00±0.02の吸収に対応するスピン密度が2.0×1017個/g以下であるものが好ましい。また、D50が6~30μm、D10が4μm以上、BET比表面積が0.5m/g以下であるものがより好ましい。
LEDチップからの光の取り出し効率を向上させるため、樹脂封止材には比屈折率が2.2以上のフィラーを含有していることが好ましい。それ例示をすれば、酸化チタン、酸化ジルコニウム、チタン酸カリウムなどである。フィラーの平均粒子径は100nm以下が好ましい。100nmをこえると、光の散乱損失量が増加する恐れがある。
<LEDパッケージ-レジスト層>
本発明のLEDパッケージには、レジスト層6を配置することによって、LEDチップからの光をより効率よく前面に照射させることができる。レジスト層は、LEDチップの発光を阻害させないよう、LEDチップの発光部と電気的接続部材とには配置しないのがよい。レジスト層の反射率は、400~800nmの波長の光に対して70%以上が好ましく、更に好ましくは450~470nm、520~570nm及び620~660nmのそれぞれの波長の範囲における反射率の最大値が、いずれも80%以上、更には85%以上である。
上記特性を有するレジスト層は、紫外線硬化樹脂、熱硬化樹脂のいずれか一方又は両方を含有する硬化性樹脂に白色顔料を含有させることによって製造することができる。
硬化性樹脂としては、エポキシ樹脂、アクリル樹脂及びこれらの混合物が好適に用いられる。白色顔料としては、酸化亜鉛、炭酸カルシウム、二酸化チタン、アルミナ、スメクタイトから選ばれた少なくとも1種が用いられる。なかでも、ルチル型二酸化チタンは光触媒作用が弱いので好ましい。白色顔料は、例えば二酸化ケイ素、水酸化アルミニウム等で表面処理を施し、光触媒作用を弱めたものであってもよい。白色顔料の含有量は、あまりに少な過ぎると十分な反射効果が得られず、あまりに多過ぎると膜形成時の流動性が低下し均一な膜を形成できなくなるため、レジスト層中の含有率が、30~70体積%が好ましく、より好ましくは30~60体積%である。
本発明のLEDパッケージには、LEDチップからの光を更に一段と効率よく前面に照射させるため、リフレクタ(図示せず)を設けることができる。リフレクタは、別体のリフレクタを用いるだけでなく、例えば円錐状、ドーム状等のザグリをLEDチップ接合体直下の金属基板に形成させて絶縁層自体をリフレクタとすることもできる。別体のリフレクタとしては、ガラス、セラミックス、金属、樹脂などの傾斜を有する筒状体の内面に、例えばAg、Al、Ni、Au、Cu等の金属、SiO/ZrO、SiO/TiO等による金属酸化膜の反射層を形成したものなどが使用できる。
<LEDパッケージの製造方法>
本発明のLEDパッケージの製造方法は、上記した(i)~(vi)の工程を経由することからなっている。以下、上記説明との重複をできるだけ避けて説明する。
<LEDパッケージの製造方法-(i)工程>
この工程では、アルミニウム又はアルミニウム合金、シリコン又はシリコン合金を含浸させるための無機質成形体が製造される。無機質成形体(以下、「プリフォーム」ともいう。)には、気孔率が10~50体積%の焼結体(以下、「無機多孔体」ともいう。)と、気孔率が10~50体積%の粉末成形体とがある。プリフォームの空隙の一部又は全部に、アルミニウム又はアルミニウム合金、ないしはシリコン又はシリコン合金が含浸されて、上記特性を有する複合基板となる。プリフォームの気孔率は、原料粉末の粒度調整、成形圧力、熱処理条件などによって調整することができる。
プリフォームの粉末成形体は、上記原料粉末単独、又は例えばシリカゾル、アルミナゾル等の無機バインダーと併用して成形される。成形には、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法が採用される。一方、プリフォームの無機多孔体は、例えば上記粉末成形体を焼結処理することによって製造することができる。プリフォームの形状には特に制約はなく、平板状、円柱状などである。
<LEDパッケージの製造方法-(ii)工程>
この工程では、プリフォームに、溶湯鍛造法によりアルミニウム又はアルミニウム合金を含浸させるか、又は溶融含浸法によりシリコン又はシリコン合金を含浸させて複合体が製造される。
溶湯鍛造法では、アルミニウム又はアルミニウム合金を融点以上に加熱し、それをプリフォームに加圧含浸される。溶湯鍛造法の具体的条件の一例は上記特許文献に記載されており、本発明でもそれらを採用することができるが、更に述べれば以下のとおりである。溶湯鍛造法によれば、熱伝導率の大きな、より放熱性に優れた複合基板が得られる。
溶湯鍛造法で用いられるアルミニウム又はアルミニウム合金の組成は、アルミニウムを70質量%以上含有するものであることが好ましい。アルミニウム含有率が70質量%未満のアルミニウム合金では、複合基板の熱伝導率が低下する恐れがある。アルミニウム合金としては、例えばアルミニウム-シリコン、アルミニウム-シリコン-マグネシウム等を例示することができる。これらのなかでも、プリフォームの空隙内に十分に浸透させるべく融点の低い、シリコン3~20質量%含有のアルミニウム合金が好ましい。さらには、マグネシウムを3質量%以下まで含有させたアルミニウム-シリコン-マグネシウム合金は、セラミックスと金属部分との結合がより強固になるのでより好ましい。また、アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば、特に制限はなく、例えば銅等が含まれていてもよい。
プリフォームは、その複数個を連結し、積層体としてから含浸処理することが好ましい。複数個の連結には、離型剤の塗布された例えばステンレス板、セラミックス板等の離型板を挟むことが好ましく、またプリフォームの固定には鉄製や黒鉛製のボルトナット等の治具を用いことが好ましい。離型剤としては黒鉛、窒化ホウ素、アルミナ等の離型剤粉末を含有したスプレーなどが用いられる。
積層体は、温度600~800℃程度で加熱後、容器内に1個又は2個以上を配置してから、速やかに融点以上に加熱されたアルミニウム又はアルミニウム合金の溶湯を給湯し、30MPa以上、特に50MPa以上の圧力で加圧することが好ましい。これによって、プリフォームの空隙中にアルミニウム又はアルミニウム合金が容易に含浸する。積層体の加熱温度が800℃をこえると、プリフォームの成形に用いた原料粉末が酸化され、熱伝導率等が低下する恐れがある。その後、含浸品は必要に応じてアニール処理されて含浸時の歪みが除去される。
一方、溶融含浸法では、シリコン又はシリコン合金とプリフォームを、例えば黒鉛製、BN製等の坩堝に入れ、非酸化性雰囲気中又は減圧中、シリコン又はシリコン合金の融点以上で熱処理される非加圧含浸法によって、プリフォームにシリコン又はシリコン合金が含浸される。プリフォームとシリコン又はシリコン合金との複合化には粉末冶金法をも採用できるが、特性面から非加圧含浸法が好ましい。溶融含浸法の具体的条件の一例は上記特許文献に記載されており、本発明でもそれらを採用することができる。溶融含浸法によれば、シリコン又はシリコン合金のように、溶湯の粘性が低い金属を含浸させることが容易となる。含浸するシリコン合金としては、溶湯の粘性が低くプリフォーム中に浸透しやすくするため、シリコンを70質量%以上含有するシリコン合金が好ましい。
<LEDパッケージの製造方法-(iii)工程>
この工程では、複合体を加工して板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下のプレ複合基板に加工される。これによって、アルミニウム又はアルミニウム合金、もしくはシリコン又はシリコン合金を10~50体積%含み、温度25℃の熱伝導率が100~600W/(m・K)で、温度25℃~150℃の線膨張係数が3~12×10-6/Kで、3点曲げ強度が50~400MPaのプレ複合基板が製造される。プリフォームの気孔率や含浸条件によって、アルミニウム又はアルミニウム合金、もしくはシリコン又はシリコン合金の含有率が調整され、熱伝導率と線膨張係数が制御される。本発明にあっては、プレ複合基板のアルミニウム又はアルミニウム合金、もしくはシリコン又はシリコン合金の含有率は20~35体積%であることが好ましい。
複合体の加工は以下のようにして行うことが好ましい。複合体の形状が円柱である場合、円筒研削盤等によりダイヤモンド砥石を用いて所定寸法に外形加工した後、例えば固定砥粒方式のマルチワイヤソーや、外周刃、内周刃、ダイヤモンドワイヤソーなどによって、又は、遊離砥粒方式のマルチワイヤソー等により0.1~0.5mm程度厚い板厚に切断する。マルチワイヤソーが量産性に優れる。その後、例えば両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下に加工する。
一方、複合体の形状が板状である場合、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機で、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下に加工する。
<LEDパッケージの製造方法-(iv)工程>
この工程では、LEDチップの接触面積(すなわちLEDチップの底面積)の2~100倍の面積に上記プレ複合基板が切断されて複合基板2が製造される。その後、接合材によって一個又は二個以上のLEDチップ1を実装し、LEDチップ接合体10が製造される。この工程において、2~100倍の面積に切断すること、必要に応じてNi、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種金属による金属層を形成させることができることの詳細は上記した。
プレ複合基板の外周加工はダイシング、レーザー加工、ウォータージェット加工、及び放電加工により行うことができる。加工精度及び加工速度の点から、ダイシングが最適であり、加工速度の点からレーザー加工が最も優れる。
複合基板に装着されるLEDチップの個数は、複合基板の面積がLEDチップの接着面積の2~100倍の範囲であり、個々のLEDチップの実装、放熱に支障をきたさない配置であれば制約はない。このため、1つの複合基板に二個以上のLEDチップを装着したLEDチップ接合体とすることもできる。複数のLEDチップを搭載することの利点は、実装工程での工数を低減できることである。
<LEDパッケージの製造方法-(v)工程>
この工程では、LEDチップ接合体10が、金属基板5に絶縁層4を介して金属回路3の形成された回路基板11に接合される。この工程の詳細は上記した。
<LEDパッケージの製造方法-(vi)工程>
この工程では、LEDチップ1と金属回路3とが電気的接続部材9で接続され、少なくともこのLEDチップ接合体と電気的接続部材とを、蛍光物質を含む樹脂封止材8で封止されて本発明のLEDパッケージが製造される。この工程の詳細は上記した。
 以下、本発明を実施例によって詳細に説明するが、本発明はこれらによって限定されるものではない。
実施例1
<無機多孔体を用いたプレ複合基板A、B>
炭化珪素粉末A(市販品:平均粒子径200μm)1800g、炭化珪素粉末B(市販品:平均粒子径20μm)900g、炭化珪素粉末C(市販品:平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製商品名「メトローズ」)150gを秤取し、攪拌混合機で30分間混合した。これを、面圧10MPaでプレス成形し、続いて圧力100MPaでCIP成形をして円柱状成形体(直径55mm×高さ110mm)を製造した後、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度2100℃で2時間焼成した。得られた焼結体をマシニングセンターでダイヤモンド製の砥石を用い、外形寸法が直径52mm×高さ100mmに加工して無機多孔体(気孔率20%)を製造した。得られた無機多孔体に窒化硼素の離型剤を塗布してから、筒状黒鉛治具(外寸法:70mm×70mm×100mm、内寸法:直径52.5mm×高さ100mm)に挿入して構造体とした。
黒鉛離型材の塗布されたステンレス板からなる離型板(70mm×100mm×0.8mm)を挟んで上記構造体の4個を組み立て(140.8mm×140.8mm×100mm)、両側に鉄板(厚み12mm)を配置し、ボルト8本で連結して一つの積層体とした。この積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいたプレス金型(内径400mm×高さ300mm)内に収め、シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金の溶湯(温度800℃)を注ぎ、100MPaの圧力で25分間加圧してアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断して離型板を剥がし、旋盤で黒鉛治具部分を除去して複合体(直径52mm×高さ100mm)の4個を製造した。これを530℃の温度で3時間アニール処理して含浸時の歪み除去した。
得られた複合体から、研削加工により線膨張係数測定用試験体(直径3mm長さ10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)を切り出し、温度25℃~150℃の線膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)で、3点曲げ強度を曲げ強度試験機で測定した。その結果、線膨張係数は5.0×10-6/K、熱伝導率は250W/(m・K)、強度350MPaであった。
ついで、複合体を、円筒研削盤でダイヤモンドの砥石を用いて、直径50.8mm×高さ100mmの円柱形状に外周加工を行ってから、マルチワイヤソーでダイヤモンド砥粒を用い、切り込み速度0.2mm/minで、板厚0.3mmの円板状に切断加工し、更に両面研削盤で#600のダイヤモンド砥石を用いて板厚0.22mmに研削加工した。その後、ラップ盤でダイヤモンドの砥粒を用いて、板厚0.2mmまで研磨加工をしてから、純水中、次いでイソプロピルアルコール中で超音波洗浄を行い乾燥し、プレ複合基板Aを製造した。この表面粗さ(Ra)は0.05μmであった。
プレ複合基板Aに、無電解Ni-Pめっき及び電気Auめっきを行い、(Ni-P:4μm+Au:1μm)の金属層(5μm厚)を形成した。この表面粗さ(Ra)は0.1μmであった。ついで、この金属層の施されたプレ複合基板の片面に、市販の紫外線硬化型のはんだレジスト層をスクリーン印刷機で塗布した後、紫外線硬化させてレジスト層(15μm)(図示せず)を4mm間隔で形成しプレ複合基板Bとした。
<無機粉末成形体を用いたプレ複合基板a、b>
炭化珪素粉末Aを352g、炭化珪素粉末Bを176g、炭化珪素粉末Cを59g秤取し、攪拌混合機で30分間混合した。これを、筒状黒鉛治具(外寸法:70mm×70mm×110mm、内寸法:直径55mm×高さ110mm)に充填し、面圧10MPaでプレス成形して粉末成形体(直径55mm×高さ110mmの円柱体、気孔率30%)を製造した。ついで、上記プレ複合基板Aの製造において構造体の4個を組み立てたことのかわりに、ここで製造された筒状黒鉛治具ごと粉末成形体の4個を組み立てたこと以外は、同様にして複合体(温度25℃~150℃の線膨張係数:6.0×10-6/K、温度25℃での熱伝導率:220W/(m・K))を製造し、それを加工してプレ複合基板aと、プレ複合基板aに金属層とレジスト層(図示せず)を施してプレ複合基板bを製造した。
<複合基板A,B,a,b>
その後、得られたプレ複合基板A,B,a,bをダイシング装置(ディスコ社製:DAD3350)にて、刃幅0.1mmのレジンボンドタイプのダイヤモンドブレード(R07-SD400)を使用して、送り速度8mm/sで3.9mm×3.9mm×0.2mmの形状に切断加工をし、純水中で超音波洗浄を行い、乾燥して各々120個の複合基板A,B,a,bを製造した。得られた複合基板のLEDチップの装着面の面積は、いずれもLEDチップの底面積の15.2倍であった。
<LEDパッケージ>
以下の構成材料を用い、図1に示されるLEDパッケージを製造した。すなわち、金属基板5の上に絶縁層4を厚み80μmに積層してから金属箔を積層し、化学エッチングにより金属回路3を形成し、更にその表面にレジスト層6を塗布して回路基板11を製造した。一方、複合基板2にLEDチップ1を接着した。接着には、A、aの複合基板ではAgペースト系の高熱伝導接着剤(京セラケミカル社製:CT284R)を用い、B、bの複合基板ではレジスト層間の金属層にクリームはんだの接着材を用いた。LEDチップ接合体10は各々120個作製した。ついで、LEDチップ接合体をクリームはんだと電気的接続部材9によるワイヤーボンディングにより回路基板11に実装した。得られたLEDチップ接合体のLEDチップの装着面の面積は、いずれもLEDチップの底面積の15.2倍であった。その後、ダム材7を設け樹脂封止材8を充填して本発明のLEDパッケージを製造した。
<構成材料>
LEDチップ1:(Cree社製:EZ1000 形状:1mm×1mm×0.1mm 出力:3W)
複合基板2:上記で製造された複合基板A,B,a又はb
金属回路3:厚み35μmの銅
絶縁層4:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、「EP-828」)と、硬化剤のフェノールノボラック(大日本インキ化学工業社製、「TD-2131」)と、無機フィラー(平均粒子径が1.2μmの破砕シリカ粉末(龍森社製、「A-1」):平均粒子径10μmの破砕シリカ粉末(龍森社製、「5X」)の質量比が7:3である混合粉末であってその含有率が絶縁層中56体積%)とを含み、熱伝導率が2W/(m・K)であるもの
金属基板5:厚み1.5mmのアルミニウム。
レジスト層6:(太陽インキ社、「PSR4000LEW1」)
ダム材7:シリコーン系樹脂(信越化学社製、「KER-2000-DAM」)
樹脂封止材8:シリコーン系樹脂(東レダウコーニング社、「JCR6125」)80質量%とα型サイアロン(D10が4.8μm、D50が9.1μm、D90が18.9μm)20質量%との混合物。
電気的接続部材9:金ワイヤー。
<LEDパッケージの放熱特性の評価>
LEDパッケージ中央部の樹脂封止材を除去してから、市販のシリコーンゴム製の両面粘着の放熱シート(熱伝導率2W/(m・K))を挟んで、アルミニウム製の放熱フィン(熱抵抗:5.2℃/W、50mm×50mm×17mm)に接着した。LEDチップに出力が3Wの電圧を印可し、LEDチップの上面温度を赤外線サーモグラフィーにより測定した。その結果、複合基板A、複合基板B、複合基板a、複合基板bを用いて製造されたLEDパッケージのLEDチップの上面温度は、5個の平均値でそれぞれ69℃、60℃、70℃、61℃であった。
比較例1
複合基板Bを用いた実施例1のLEDパッケージにおいて、LEDチップ接合体を作製せずにLEDチップを、直接、クリームはんだを用いて回路基板に実装したところ、LEDチップの上面温度は105℃であった。
実施例2~4 比較例2、3
マルチワイヤソー加工時の切断幅をかえ、板厚の異なる複合基板を製造したこと、LEDチップの接着剤としてクリームはんだをロウ材(Au/Sn=80/20)に変更したこと、及びLEDチップの間隔を表1に示すようにしたこと以外は、実施例1の複合基板Bを用いたのと同様にしてLEDパッケージを製造し、LEDチップの上面温度を測定した。結果を表1に示す。
実施例5~7 比較例4
ラップ盤加工時のダイヤモンドの砥粒の粒度をかえ、表面粗さの異なる複合基板を製造したこと、LEDチップの接着剤としてクリームはんだをロウ材(Au/Sn=80/20)に変更したこと以外は、実施例1の複合基板Bを用いたのと同様にしてLEDパッケージを製造し、LEDチップの上面温度を測定した。結果を表1に示す。
実施例8~10 比較例5
LEDチップの接着剤としてクリームはんだをロウ材(Au/Sn=80/20)に変更したこと、及びダイシング装置での切断加工時の間隔をかえ、LEDチップの底面積に対する複合基板の面積比が異なる複合基板を製造したこと以外は、実施例1の複合基板Bを用いたのと同様にしてLEDパッケージを製造し、LEDチップの上面温度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例11~15
(Ni-P:4μm+Au:1μm)のめっき層(5μm厚)のかわりに、表2に示す金属種と金属層厚みを有する金属層を形成させたこと以外は、実施例1の複合基板Bを用いたのと同様にしてLEDパッケージを製造し、LEDチップの上面温度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
実施例16
<無機多孔体を用いた複合基板C、DによるLEDチップ接合体、LEDパッケージ>
炭化珪素粉末D(市販品:平均粒子径150μm)1300g、炭化珪素粉末E(市販品:平均粒子径10μm)700g、シリカゾル(日産化学社製:スノーテックス)300gを秤取し、攪拌混合機で30分間混合した後、160mm×160mm×5mmの寸法の板状に面圧30MPaでプレス成形して成形体を作製した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1400℃で2時間焼成して、気孔率が35%の焼結体を製造し、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、155mm×155mm×3mmの形状に加工して無機多孔体を製造した。
無機多孔体の10枚を1枚毎に黒鉛離型剤が塗布された離型板(160mm×160mm×0.8mm)を挟んで構造体(170mm×170mm×40mm)となし、両側に鉄板(板厚12mm)を配置して、ボルト8本で連結して一つの積層体とした。以下、実施例1の複合基板Aと同様にして複合体(155mm×155mm×3mm)を製造し、温度25℃~150℃の熱膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、それぞれ、7.5×10-6/K、200W/(m・K)、400MPaであった。
得られた複合体を、平面研削盤でダイヤモンドの砥石を用いて、板厚0.4mmの板状に面加工した後、続いて、ウォータージェット加工機(スギノマシン製アブレッシブ・ジェットカッタNC)により、圧力250MPa、加工速度100mm/minの条件で、研磨砥粒として粒度100μmのガーネットを使用して、直径50.8mm×0.4mmの形状に切断加工した。その後、両面研削盤で#800のダイヤモンド砥石を用いて、板厚0.3mmに研削加工を行い、純水中、次いでイソプロピルアルコール中で超音波洗浄を行い乾燥し、プレ複合基板Cを製造した。この表面粗さ(Ra)は0.1μmであった。また、プレ複合基板Cに、上記プレ複合基板Bと同様な金属層を施してプレ複合基板Dとし、その後、得られたプレ複合基板C、Dを実施例1の複合基板Aと同様な方法で切断し複合基板C,Dを製造した。
上記と同様にして、複合基板Cを用いて製造されたLEDパッケージのLEDチップの上面温度と、複合基板Dを用いて製造されたLEDパッケージのLEDチップの上面温度を測定したところ、それぞれ、70℃、62℃であった。
実施例17
<無機多孔体を用いた複合基板E、FによるLEDチップ接合体、LEDパッケージ>
無機多孔体として等方性黒鉛成形体(東海カーボン社製:G458、気孔率:13体積%、寸法:100mm×100mm×100mm)を用い、また離型板として黒鉛離型材の塗布されたステンレス板(100mm×100mm×0.8mm)を用いたこと以外は、複合基板Aの製造に準じて複合体を製造した。
この複合体を、ダイヤモンドソーで切断加工した後、円筒研削盤でダイヤモンドの砥石を用いて、直径50.8mm×100mmの円柱形状に外周加工を行い、更にマルチワイヤソーでダイヤモンド砥粒を用いて、切り込み速度0.5mm/minで板厚0.4mmの円板に切断加工した。得られた円板を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.3mmに研削加工を行い、水中、次いでイソプロピルアルコール中で超音波洗浄を行い乾燥し、プレ複合基板Eを製造した。この表面粗さ(Ra)は0.15μmであった。また、プレ複合基板Eに、上記プレ複合基板Bと同様な金属層を施してプレ複合基板Fとし、その後、得られたプレ複合基板E、Fを放電加工機にて、切断速度0.5mm/sで3.9mm×3.9mmの形状に切断加工を行い、複合基板E、Fを製造した。
複合基板E、Fに出力3WのLEDチップ(Cree社製:EZ1000/1mm×1mm×0.1mm)をクリームはんだで接合した後、複合基板Eを用いて製造されたLEDパッケージのLEDチップの上面温度と、複合基板Fを用いて製造されたLEDパッケージのLEDチップの上面温度を測定したところ、それぞれ、72℃、66℃であった。
実施例18
<無機多孔体を用いた複合基板G、HによるLEDチップ接合体、LEDパッケージ>
窒化アルミニウム粉末(市販品:平均粒子径2μm)2880g、イットリア粉末(市販品:平均粒子径1μm)120g、成形バインダー(メチルセルロース)150g、及び純水150gの混合粉末を、面圧10MPaでプレス成形した後、更に成形圧力100MPaでCIP成形して円柱体(直径55mm×110mm)を製造した。これを、大気雰囲気中、温度600℃で2時間脱脂処理後、窒素雰囲気下、温度1780℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が22%の無機多孔体(直径52mm×100mm)を製造した。
この無機多孔体を用いたこと、及びアルミニウム合金のかわりに純アルミニウムを用いたこと以外は、実施例1の複合基板Aと同様にしてプレ複合基板G(直径50.8mm×0.2mm)を製造した。この表面粗さ(Ra)は0.06μmであった。また、プレ複合基板Gに、上記プレ複合基板Bと同様な金属層を施してプレ複合基板Hとし、その後、得られたプレ複合基板G、Hを、レーザー加工機にて切断速度8mm/sで3.9mm×3.9mmの形状に切断加工し、複合基板G、Hを製造した。
複合基板G、Hに出力1WのLEDチップ(Cree社製:EZ700/0.7mm×0.7mm×0.1mm)4個を2mm間隔で、クリームはんだの接着材により接合しLEDチップ接合体を製造した。得られたLEDチップ接合体は、1つの複合基板の上面に4個のLEDチップが実装された構造となり、複合基板のLEDチップの装着面の面積は、いずれもLEDチップの底面積の合計の7.8倍であった。出力が4WとなるようにLEDチップに電圧を印可し、LEDチップの上面の温度を赤外線サーモグラフィーにより測定した。その結果、複合基板Gを用いて製造されたLEDパッケージのLEDチップの上面温度は70であり、複合基板Hを用いて製造されたそれは63℃であった。
実施例19
<無機多孔体を用いた複合基板I、JによるLEDチップ接合体、LEDパッケージ>
窒化珪素粉末(市販品:平均粒子径1μm)2790g、イットリア粉末(市販品:平均粒子径1μm)150g、及び酸化マグネシウム粉末(市販品:平均粒子径1μm)60gの混合物を用いたこと以外は、実施例18と同様にして円柱体(直径55mm×110mm)を製造した。これを、0.9MPaの窒素加圧雰囲気下、温度1880℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が13%の無機多孔体(直径52mm×100mm)を製造した。以下、複合基板Gと同様な処理を行って複合基板Iを、また複合基板Hと同様な処理を行って複合基板Jを製造した。その結果、複合基板Iの表面粗さ(Ra)は0.05μmであった。また、複合基板Iを用いて製造されたLEDパッケージのLEDチップの上面温度は72℃であり、複合基板Jを用いて製造されたそれは66℃であった。
実施例20
<無機粉末成形体を用いた複合基板c、dによるLEDチップ接合体、LEDパッケージ>
ダイヤモンド粉末A(Diamond Innovations社製、MBG-600、平均粒子径:120μm)7gと、ダイヤモンド粉末B(Diamond Innovations社製、MBG-600、平均粒子径:15μm)3gを、アルミナ製の乳鉢で10分間混合した後、外形寸法70mm×70mm×20mm(内径寸法:直径52.5mm×20mm)の筒状の黒鉛治具Xに、外形寸法が直径52.4mm×9mmの黒鉛治具Yを挿入した後、ダイヤモンドの混合粉末10gを充填し、更にダイヤモンドの混合粉末の上面に黒鉛治具Yを挿入して、気孔率が35%の無機粉末成形体を製造した。
この無機粉末成形体を上記複合基板aの製造に準じて積層体となし含浸処理を施して筒状黒鉛治具で囲まれた複合体(70mm×70mm×20mm)を製造した。これを、複合体が露出するまで、両主面側(70mm×70mm)より、平面研削盤でダイヤモンド砥石を用いて研削加工を行い、板状体(70mm×70mm×1mm)に加工した。その後、ウォータージェット加工機で、円板(直径50.8mm×1mm)形状に外周加工を行い、複合基板cを製造した。この表面粗さ(Ra)は0.4μmであった。また、複合基板bと同様にしてめっき層とレジスト層を施して複合基板dを製造した。その結果、複合基板cの温度25℃の熱伝導率は500W/(m・K)であった。
また、複合基板cを用いて製造されたLEDパッケージのLEDチップの上面温度は66℃であり、複合基板dを用いて製造されたそれは58℃であった。
実施例21
<無機多孔体を用いた複合基板K、LによるLEDチップ接合体、LEDパッケージ>
実施例1の複合基板Aの製造過程で製造された無機多孔体(外形寸法:直径52mm×高さ100mm 気孔率:20%)を、マシニングセンターでダイヤモンド砥石を用い、外形寸法が直径52mm×20mmの円盤に加工した。この円盤と塊状のシリコンを、BN粉を塗布した黒鉛坩堝に入れ、電気炉内にセットした。炉内を真空引きし、1650℃で8時間保持して円盤にシリコンを含浸させた。室温まで冷却した後、円筒研削盤で余分なシリコンを除去して複合体を製造し、実施例1と同様にして、温度25℃~150℃の線膨張係数と温度25℃での熱伝導率を測定したところ、線膨張係数は4.3×10-6/K、熱伝導率は210W/(m・K)であった。
その後、複合基板Aと同様な処理を行って複合基板Kを、また複合基板Bと同様な処理を行って複合基板Lを製造した。その結果、複合基板Kの表面粗さ(Ra)は0.08μmであった。また、複合基板Kを用いて製造されたLEDパッケージのLEDチップの上面温度は69℃であり、複合基板Lを用いて製造されたそれは61℃であった。
実施例22 比較例6
<無機粉末成形体を用いた複合基板e、fによるLEDチップ接合体、LEDパッケージ>
炭化珪素粉末E(市販品:平均粒子径10μm)の461g(実施例22)、又は炭化珪素粉末F(市販品:平均粒子径6μm)の377g(比較例6)を、筒状黒鉛治具(外寸法:70mm×70mm×110mm、内寸法:直径55mm×高さ110mm)に充填し、面圧5MPaでプレス成形して、気孔率が45%(実施例22)又は気孔率が55%(比較例6)の粉末成形体(直径55mm×高さ110mmの円柱体)を製造した。それらを用いたこと以外は、実施例1の複合基板bの場合と同様にして複合基板e(実施例22)、複合基板f(比較例6)の製造、LEDチップ接合体の製造を経由してLEDパッケージを製造し、LEDチップの上面温度を測定した。それらの結果を表3に示す。また、実施例1と同様にして、温度25℃~150℃の線膨張係数と温度25℃での熱伝導率、3点曲げ強度を測定したところ、複合基板eの線膨張係数は10.5×10-6/K、熱伝導率は120W/(m・K)、強度は500MPa、複合基板fの線膨張係数は12.5×10-6/K、熱伝導率は80W/(m・K)、強度は550MPaであった。
実施例23、24
<無機粉末成形体を用いた複合基板g、hによるLEDチップ接合体、LEDパッケージ>
シリコンを12質量%及びマグネシウムを1質量%含有するアルミニウム合金のかわりに、シリコンを3質量%含むアルミニウム合金(実施例23)、又はシリコンを20質量%含むアルミニウム合金(実施例24)を用いたこと、及び銅(Cu)回路(厚み35μm)のかわりにアルミニウム(Al)回路(厚み35μm)を用いたこと以外は、実施例1の複合基板bの場合と同様にして複合基板g、複合基板hの製造、LEDチップ接合体の製造を経由してLEDパッケージを製造し、LEDチップの上面温度を測定した。それらの結果を表3に示す。また、実施例1と同様にして、温度25℃~150℃の線膨張係数と温度25℃での熱伝導率を測定したところ、複合基板gの線膨張係数は5.8×10-6/K、熱伝導率は215W/(m・K)、複合基板hの線膨張係数は6.3×10-6/K、熱伝導率は230W/(m・K)であった。
Figure JPOXMLDOC01-appb-T000003
実施例25、26
<無機粉末成形体を用いた複合基板i、jによるLEDチップ接合体、LEDパッケージ>
α型サイアロン粉末のかわりにβ型サイアロン粉末(実施例25)又はCASIN粉末(実施例26)を用いたこと以外は、実施例1の複合基板bと同様にして複合基板i(実施例25)、複合基板j(実施例26)を製造し、LEDチップ接合体の製造を経由してそれらのLEDパッケージを製造した。LEDチップの上面温度を測定したところ、いずれも実施例1の複合基板bを用いて製造されたLEDパッケージとほぼ同等の好結果であった。
最後に実施例・比較例の主要条件と結果を表4~6にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Claims (10)

  1. 複合基板(2)に一個又は二個以上のLEDチップ(1)が接合材(図示せず)により直接実装されてなるLEDチップ接合体(10)であって、上記複合基板が、無機質成形体にアルミニウム、シリコン又はそれらを成分として含有する合金を含浸させてなる、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下、温度25℃の熱伝導率が100~600W/(m・K)、温度25℃~150℃の線膨張係数が3~12×10-6/K、3点曲げ強度が50~500MPaであり、しかも複合基板のLEDチップ実装面の面積が、LEDチップとの接触面積に対し、2~100倍であることを特徴とするLEDチップ接合体。
  2. 複合基板(2)に一個又は二個以上のLEDチップ(1)が接合材(図示せず)により直接実装されてなるLEDチップ接合体(10)であって、上記複合基板が、気孔率が10~40体積%の無機質成形体に、アルミニウム含有率が80~97質量%のアルミニウム-シリコン合金を含浸させてなる、板厚が0.1~1mm、表面粗さ(Ra)が0.05~0.5μm、温度25℃の熱伝導率が100~300W/(m・K)、温度25℃~150℃の線膨張係数が4~9×10-6/K、3点曲げ強度が50~400MPaであり、しかも複合基板のLEDチップ実装面の面積が、LEDチップとの接触面積に対し、2~25倍であることを特徴とするLEDチップ接合体。
  3. 複合基板が、表面にNi、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属による厚み0.5~20μmの金属層を有していることを特徴とする請求項1又は2記載のLEDチップ接合体。
  4. 接合材による接合が、はんだ付け、ロウ付け、又は高熱伝導性接着剤で接着してなることを特徴とする請求項1~3のいずれかに記載のLEDチップ接合体。
  5. 無機質成形体の材質が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた少なくとも1種であることを特徴とする請求項1~4のいずれかに記載のLEDチップ接合体。
  6. LEDチップが、出力0.5W以上の非絶縁構造であることを特徴とする請求項1~5のいずれかに記載のLEDチップ接合体。
  7. 請求項1~6のいずれかに記載のLEDチップ接合体(10)が、金属基板(5)に絶縁層(4)を介して金属回路(3)が形成されてなる回路基板(11)に接合される一方、上記LEDチップ接合体のLEDチップ(1)と上記回路基板の金属回路(3)とが電気的接続部材(9)で接続されており、少なくとも上記LEDチップ接合体と上記電気的接続部材とが、蛍光物質を含む樹脂封止材(8)で封止されていることを特徴とするLEDパッケージ。
  8. 蛍光物質が、α型サイアロン、β型サイアロン、CASIN(Ca・Al・Si・N)、イットリウム・アルミニウム・ガーネット及び硫化物から選ばれた少なくとも1種であり、しかも樹脂封止材が、比屈折率が2.2以上、平均粒子径が1~100nmの上記蛍光物質以外のフィラーを含有しているものであることを特徴とする請求項7記載のLEDパッケージ。
  9. 絶縁層(4)が、熱伝導率が0.5~20W/(m・K)、厚みが0.03~0.2mmであり、金属回路(3)の材質がアルミニウム又は銅でありその厚みが0.005~0.4mmであることを特徴とする請求項7又は8記載のLEDパッケージ。
  10. 以下の工程を経由することを特徴とする請求項7~9のいずれかに記載のLEDパッケージの製造方法。
    (i)炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛から選ばれた少なくとも1種を用いて、気孔率が10~50体積%の焼結体又は粉末成形体からなる無機質成形体を製造する工程
    (ii)上記無機質成形体に、溶湯鍛造法により、圧力30MPa以上でアルミニウム又はアルミニウム合金を含浸させるか、又は溶融含浸法によりシリコン又はシリコン合金を含浸させて複合体を製造する工程
    (iii)上記複合体を加工して、板厚が0.1~2mm、表面粗さ(Ra)が0.5μm以下で、しかも温度25℃の熱伝導率が100~600W/(m・K)、温度25℃~150℃の線膨張係数が3~12×10-6/K、3点曲げ強度が50~400MPaであるプレ複合基板を製造する工程
    (iv)上記プレ複合基板に、必要に応じて、Ni、Co、Pd、Cu、Ag、Au、Pt及びSnから選ばれた少なくとも1種の金属による金属層を形成させてから、実装されるLEDチップの接触面積の2~100倍の面積となるように切断して複合基板(2)を製造した後、接合材によって一個又は二個以上のLEDチップ(1)を実装し、LEDチップ接合体(10)を製造する工程
    (v)上記LEDチップ接合体(10)を、金属基板(5)に絶縁層(4)を介して金属回路(3)の形成された回路基板(11)に接合する工程
    (vi)上記LEDチップ接合体のLEDチップ(1)と上記回路基板の金属回路(3)とを電気的接続部材(9)で接続した後、少なくとも上記LEDチップ接合体と上記電気的接続部材とを、蛍光物質を含む樹脂封止材(8)で封止してLEDパッケージを製造する工程。
PCT/JP2010/062102 2009-07-17 2010-07-16 Ledチップ接合体、ledパッケージ、及びledパッケージの製造方法 WO2011007874A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10799932.8A EP2455991B1 (en) 2009-07-17 2010-07-16 Led chip assembly, led package, and manufacturing method of led package
JP2011522872A JPWO2011007874A1 (ja) 2009-07-17 2010-07-16 Ledチップ接合体、ledパッケージ、及びledパッケージの製造方法
US13/384,479 US8546842B2 (en) 2009-07-17 2010-07-16 LED chip assembly, LED package, and manufacturing method of LED package
CN201080033749.6A CN102473829B (zh) 2009-07-17 2010-07-16 Led芯片接合体、led封装体、及led封装体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-168957 2009-07-17
JP2009168957 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011007874A1 true WO2011007874A1 (ja) 2011-01-20

Family

ID=43449484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062102 WO2011007874A1 (ja) 2009-07-17 2010-07-16 Ledチップ接合体、ledパッケージ、及びledパッケージの製造方法

Country Status (7)

Country Link
US (1) US8546842B2 (ja)
EP (1) EP2455991B1 (ja)
JP (1) JPWO2011007874A1 (ja)
KR (1) KR20120068831A (ja)
CN (1) CN102473829B (ja)
TW (1) TWI501432B (ja)
WO (1) WO2011007874A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299213A (zh) * 2011-06-13 2011-12-28 协鑫光电科技(张家港)有限公司 Led多晶封装基板及其制作方法
JP2012004474A (ja) * 2010-06-21 2012-01-05 Konica Minolta Opto Inc 反りを抑えた基板、それを用いた発光装置及びそれらの製造方法
US20120098006A1 (en) * 2010-10-22 2012-04-26 Taiwan Semiconductor Manufacturing Company, Ltd. Light emitting diode package with photoresist reflector and method of manufacturing
US20120147625A1 (en) * 2010-12-08 2012-06-14 Chan-Shung Yang Light source module and backlight module
WO2013051208A1 (ja) * 2011-10-06 2013-04-11 パナソニック株式会社 ランプおよび照明器具
JP2013065621A (ja) * 2011-09-15 2013-04-11 Shinko Electric Ind Co Ltd 発光装置用の配線基板、発光装置及び発光装置用配線基板の製造方法
JP2013118285A (ja) * 2011-12-02 2013-06-13 Hitachi Appliances Inc 発光ダイオードモジュール及びそれを利用した照明器具
EP2620980A1 (en) * 2012-01-25 2013-07-31 Shinko Electric Industries Co., Ltd. Wiring substrate, light emitting device, and manufacturing method of wiring substrate
JP2013207230A (ja) * 2012-03-29 2013-10-07 Stanley Electric Co Ltd 発光ダイオード発光装置の製造方法
CN103367602A (zh) * 2012-03-27 2013-10-23 信越化学工业株式会社 光学半导体装置用基板及其制造方法、以及光学半导体装置及其制造方法
JP2014082284A (ja) * 2012-10-15 2014-05-08 Dow Corning Toray Co Ltd 凸状硬化物及び基材を備える一体化物の製造方法
WO2015056555A1 (ja) * 2013-10-17 2015-04-23 住友ベークライト株式会社 金属基板、金属ベース回路基板、電子装置および金属ベース回路基板の製造方法
US9029891B2 (en) 2012-01-25 2015-05-12 Shinko Electric Industries Co., Ltd. Wiring substrate, light emitting device, and manufacturing method of wiring substrate
US9084372B2 (en) 2012-01-25 2015-07-14 Shinko Electric Industries Co., Ltd. Wiring substrate, light emitting device, and manufacturing method of wiring substrate
JP2017112295A (ja) * 2015-12-18 2017-06-22 豊田合成株式会社 発光装置およびその製造方法
JP2018206886A (ja) * 2017-06-01 2018-12-27 パナソニックIpマネジメント株式会社 発光装置、及び、照明装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373183B2 (en) * 2011-02-22 2013-02-12 Hong Kong Applied Science and Technology Research Institute Company Limited LED package for uniform color emission
DE102011012262A1 (de) * 2011-02-24 2012-08-30 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
CN102956761B (zh) * 2011-08-25 2015-03-11 展晶科技(深圳)有限公司 发光二极管的封装方法
CN104145331B (zh) 2012-01-31 2017-09-29 三菱电机株式会社 半导体装置和其制造方法
AT14124U1 (de) * 2012-02-13 2015-04-15 Tridonic Jennersdorf Gmbh LED-Modul mit Flächenverguß
JPWO2013125474A1 (ja) * 2012-02-24 2015-07-30 三菱電機株式会社 半導体装置とその製造方法
TW201349577A (zh) * 2012-05-22 2013-12-01 Hugetemp Energy Ltd 照明裝置
KR101237483B1 (ko) * 2012-09-20 2013-03-11 주식회사 조양이에스 인쇄회로기판 제조 방법
WO2014073038A1 (ja) 2012-11-06 2014-05-15 日本碍子株式会社 発光ダイオード用基板
US9312193B2 (en) 2012-11-09 2016-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Stress relief structures in package assemblies
DE102013201809B4 (de) * 2013-02-05 2023-09-07 Richard Wolf Gmbh Medizinisches Instrument
CN104103747A (zh) * 2013-04-03 2014-10-15 光宝电子(广州)有限公司 发光二极管封装结构
KR102087864B1 (ko) * 2013-06-28 2020-03-12 엘지이노텍 주식회사 발광소자 모듈
USRE48955E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices having multiple emitter modules
US9578724B1 (en) 2013-08-20 2017-02-21 Ketra, Inc. Illumination device and method for avoiding flicker
US9360174B2 (en) * 2013-12-05 2016-06-07 Ketra, Inc. Linear LED illumination device with improved color mixing
USRE48956E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices using multiple series of measurement intervals
KR102080778B1 (ko) * 2013-09-11 2020-04-14 엘지이노텍 주식회사 발광 소자 패키지
JP6276557B2 (ja) * 2013-10-25 2018-02-07 シチズン電子株式会社 Led発光装置
CN103872033B (zh) * 2014-02-26 2017-08-25 深圳市瑞丰光电子股份有限公司 一种led灯丝及照明器
CN103872217B (zh) * 2014-03-14 2016-06-15 苏州晶品光电科技有限公司 大功率led光源封装体
KR101585773B1 (ko) * 2014-06-12 2016-01-15 주식회사 효성 희토류 금속 산화물 입자를 포함하는 led 봉지재
US9557214B2 (en) 2014-06-25 2017-01-31 Ketra, Inc. Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
US9392660B2 (en) 2014-08-28 2016-07-12 Ketra, Inc. LED illumination device and calibration method for accurately characterizing the emission LEDs and photodetector(s) included within the LED illumination device
US9510416B2 (en) 2014-08-28 2016-11-29 Ketra, Inc. LED illumination device and method for accurately controlling the intensity and color point of the illumination device over time
JP6339212B2 (ja) * 2014-09-24 2018-06-06 京セラ株式会社 電子モジュール
KR102276647B1 (ko) * 2015-01-13 2021-07-13 엘지이노텍 주식회사 발광소자 패키지용 회로기판
DE102015109788A1 (de) * 2015-06-18 2016-12-22 Osram Opto Semiconductors Gmbh Anordnung
JP6638282B2 (ja) * 2015-09-25 2020-01-29 三菱マテリアル株式会社 冷却器付き発光モジュールおよび冷却器付き発光モジュールの製造方法
US9653411B1 (en) * 2015-12-18 2017-05-16 Intel Corporation Electronic package that includes fine powder coating
JP6152409B1 (ja) * 2015-12-21 2017-06-21 レノボ・シンガポール・プライベート・リミテッド 粘着部材および電子機器
JP6089144B1 (ja) * 2016-03-30 2017-03-01 日本タングステン株式会社 銅張積層板およびその製造方法
WO2018003391A1 (ja) * 2016-06-29 2018-01-04 株式会社村田製作所 部品内蔵基板及びその製造方法、並びに高周波モジュール
KR102052900B1 (ko) * 2016-10-04 2019-12-06 삼성전자주식회사 팬-아웃 반도체 패키지
CN106972096A (zh) * 2016-10-26 2017-07-21 湾城公司 一种散热构造体及应用
CN110366777B (zh) * 2017-03-29 2024-04-26 三菱综合材料株式会社 带散热片的绝缘电路基板的制造方法
US11272599B1 (en) 2018-06-22 2022-03-08 Lutron Technology Company Llc Calibration procedure for a light-emitting diode light source
TWI684293B (zh) * 2018-06-29 2020-02-01 同泰電子科技股份有限公司 高反射背光電路板結構及其製作方法
US20230023047A1 (en) * 2021-07-09 2023-01-26 Seoul Semiconductor Co., Ltd. Light emitting device and light emitting module including the same
KR102580872B1 (ko) * 2023-03-16 2023-09-20 (주)솔라루체 광효율이 향상된 led 모듈

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532485A (ja) 1990-09-21 1993-02-09 Anelva Corp 薄膜作成方法
JP3468358B2 (ja) 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP2006128710A (ja) 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2007042749A (ja) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd 発光装置とこれを用いた表示装置及び照明装置、並びに発光装置の製造方法
JP2007165840A (ja) * 2005-09-09 2007-06-28 Matsushita Electric Works Ltd 発光装置
WO2008018482A1 (fr) * 2006-08-11 2008-02-14 Sanyo Electric Co., Ltd. Élément semi-conducteur et son procédé de fabrication
JP2008091831A (ja) * 2006-10-05 2008-04-17 Toshiba Corp Led用サブマウント基板およびそれを用いた発光装置並びにled用サブマウント基板の製造方法
JP2008544488A (ja) 2005-06-10 2008-12-04 クリー インコーポレイテッド Ledパッケージ
JP2009123829A (ja) * 2007-11-13 2009-06-04 Denki Kagaku Kogyo Kk 発光装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339022A (ja) * 1999-12-24 2001-12-07 Ngk Insulators Ltd ヒートシンク材及びその製造方法
DE10165107B3 (de) * 2000-09-20 2015-06-18 Hitachi Metals, Ltd. Substrat mit Siliciumnitrid-Sinterkörper und Leiterplatte
JP2007142479A (ja) * 2003-03-14 2007-06-07 Sumitomo Electric Ind Ltd 半導体装置
JP2007005709A (ja) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Led照明装置用の低熱抵抗配線基板およびled照明装置
JP2007250979A (ja) * 2006-03-17 2007-09-27 Zeniya Sangyo Kk 半導体パッケージ
CN101427367B (zh) * 2006-04-26 2010-06-02 电气化学工业株式会社 铝-碳化硅复合体和使用该复合体的散热零件
US7655957B2 (en) * 2006-04-27 2010-02-02 Cree, Inc. Submounts for semiconductor light emitting device packages and semiconductor light emitting device packages including the same
JP2008172113A (ja) * 2007-01-15 2008-07-24 Ngk Spark Plug Co Ltd 配線基板
JP2009054892A (ja) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Ledチップの実装方法
EP2398081B1 (en) * 2009-02-13 2018-05-09 Denka Company Limited Composite substrate for led light emitting element, method of production of same, and led light emitting element
CN102333823A (zh) * 2009-02-25 2012-01-25 松下电器产业株式会社 热传导性组合物和使用它的散热板、散热基板、电路模块、热传导性组合物的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532485A (ja) 1990-09-21 1993-02-09 Anelva Corp 薄膜作成方法
JP3468358B2 (ja) 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP2006128710A (ja) 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2008544488A (ja) 2005-06-10 2008-12-04 クリー インコーポレイテッド Ledパッケージ
JP2007042749A (ja) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd 発光装置とこれを用いた表示装置及び照明装置、並びに発光装置の製造方法
JP2007165840A (ja) * 2005-09-09 2007-06-28 Matsushita Electric Works Ltd 発光装置
WO2008018482A1 (fr) * 2006-08-11 2008-02-14 Sanyo Electric Co., Ltd. Élément semi-conducteur et son procédé de fabrication
JP2008091831A (ja) * 2006-10-05 2008-04-17 Toshiba Corp Led用サブマウント基板およびそれを用いた発光装置並びにled用サブマウント基板の製造方法
JP2009123829A (ja) * 2007-11-13 2009-06-04 Denki Kagaku Kogyo Kk 発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2455991A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004474A (ja) * 2010-06-21 2012-01-05 Konica Minolta Opto Inc 反りを抑えた基板、それを用いた発光装置及びそれらの製造方法
US20120098006A1 (en) * 2010-10-22 2012-04-26 Taiwan Semiconductor Manufacturing Company, Ltd. Light emitting diode package with photoresist reflector and method of manufacturing
US8432089B2 (en) * 2010-12-08 2013-04-30 Au Optronics Corp. Light source module and backlight module
US20120147625A1 (en) * 2010-12-08 2012-06-14 Chan-Shung Yang Light source module and backlight module
CN102299213A (zh) * 2011-06-13 2011-12-28 协鑫光电科技(张家港)有限公司 Led多晶封装基板及其制作方法
JP2013065621A (ja) * 2011-09-15 2013-04-11 Shinko Electric Ind Co Ltd 発光装置用の配線基板、発光装置及び発光装置用配線基板の製造方法
WO2013051208A1 (ja) * 2011-10-06 2013-04-11 パナソニック株式会社 ランプおよび照明器具
JP5319855B1 (ja) * 2011-10-06 2013-10-16 パナソニック株式会社 ランプおよび照明器具
JP2013118285A (ja) * 2011-12-02 2013-06-13 Hitachi Appliances Inc 発光ダイオードモジュール及びそれを利用した照明器具
US9029891B2 (en) 2012-01-25 2015-05-12 Shinko Electric Industries Co., Ltd. Wiring substrate, light emitting device, and manufacturing method of wiring substrate
EP2620980A1 (en) * 2012-01-25 2013-07-31 Shinko Electric Industries Co., Ltd. Wiring substrate, light emitting device, and manufacturing method of wiring substrate
JP2013153067A (ja) * 2012-01-25 2013-08-08 Shinko Electric Ind Co Ltd 配線基板、発光装置及び配線基板の製造方法
US9084372B2 (en) 2012-01-25 2015-07-14 Shinko Electric Industries Co., Ltd. Wiring substrate, light emitting device, and manufacturing method of wiring substrate
US9000474B2 (en) 2012-01-25 2015-04-07 Shinko Electric Industries Co. Ltd. Wiring substrate, light emitting device, and manufacturing method of wiring substrate
CN103367602A (zh) * 2012-03-27 2013-10-23 信越化学工业株式会社 光学半导体装置用基板及其制造方法、以及光学半导体装置及其制造方法
JP2013207230A (ja) * 2012-03-29 2013-10-07 Stanley Electric Co Ltd 発光ダイオード発光装置の製造方法
CN104685000A (zh) * 2012-10-15 2015-06-03 道康宁东丽株式会社 包含凸状固化产品和基板的集成件的制造方法
JP2014082284A (ja) * 2012-10-15 2014-05-08 Dow Corning Toray Co Ltd 凸状硬化物及び基材を備える一体化物の製造方法
WO2015056555A1 (ja) * 2013-10-17 2015-04-23 住友ベークライト株式会社 金属基板、金属ベース回路基板、電子装置および金属ベース回路基板の製造方法
JP2017112295A (ja) * 2015-12-18 2017-06-22 豊田合成株式会社 発光装置およびその製造方法
JP2018206886A (ja) * 2017-06-01 2018-12-27 パナソニックIpマネジメント株式会社 発光装置、及び、照明装置

Also Published As

Publication number Publication date
EP2455991B1 (en) 2017-05-10
EP2455991A4 (en) 2013-12-25
CN102473829B (zh) 2014-12-10
US20120112236A1 (en) 2012-05-10
JPWO2011007874A1 (ja) 2012-12-27
TW201115796A (en) 2011-05-01
CN102473829A (zh) 2012-05-23
EP2455991A1 (en) 2012-05-23
KR20120068831A (ko) 2012-06-27
TWI501432B (zh) 2015-09-21
US8546842B2 (en) 2013-10-01

Similar Documents

Publication Publication Date Title
WO2011007874A1 (ja) Ledチップ接合体、ledパッケージ、及びledパッケージの製造方法
TWI464114B (zh) 由鋁-石墨複合物所構成之基板之製法、使用基板之散熱組件及led發光構件
US8684562B2 (en) Semiconductor light emitting apparatus and light source apparatus using the same
WO2010092972A1 (ja) Led発光素子用複合材料基板、その製造方法及びled発光素子
JP5789512B2 (ja) Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体
JP5330889B2 (ja) 照明用ledモジュール
KR20220087490A (ko) 형광체 플레이트, 발광 장치 및 형광체 플레이트의 제조 방법
JP2006032804A (ja) 発光装置およびその製造方法
JP5400290B2 (ja) 発光装置
TWI486486B (zh) 鋁-石墨複合物、使用它之散熱組件及led發光構件
JP5646473B2 (ja) アルミニウム−黒鉛質複合体、それを用いた放熱部品及びled発光部材
JP5681035B2 (ja) Led光源パッケージ
JP5759376B2 (ja) Ledチップ接合体の製造方法
JP5400289B2 (ja) 発光装置
JP5881280B2 (ja) Led発光素子用保持基板の製造方法及びled発光素子の製造方法
CN114026201A (zh) 荧光体板和使用该荧光体板的发光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033749.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522872

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13384479

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010799932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010799932

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127004099

Country of ref document: KR

Kind code of ref document: A