WO2011004777A1 - アルミニウム貫通箔 - Google Patents
アルミニウム貫通箔 Download PDFInfo
- Publication number
- WO2011004777A1 WO2011004777A1 PCT/JP2010/061355 JP2010061355W WO2011004777A1 WO 2011004777 A1 WO2011004777 A1 WO 2011004777A1 JP 2010061355 W JP2010061355 W JP 2010061355W WO 2011004777 A1 WO2011004777 A1 WO 2011004777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foil
- aluminum
- thickness
- etching
- ppm
- Prior art date
Links
- 239000011888 foil Substances 0.000 title claims abstract description 204
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 93
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 230000000149 penetrating effect Effects 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 230000035515 penetration Effects 0.000 claims description 14
- 230000035699 permeability Effects 0.000 claims description 14
- 238000010998 test method Methods 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 4
- 238000005530 etching Methods 0.000 description 68
- 238000005096 rolling process Methods 0.000 description 35
- 238000000137 annealing Methods 0.000 description 25
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 24
- 229910001416 lithium ion Inorganic materials 0.000 description 24
- 238000000034 method Methods 0.000 description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 13
- 238000005097 cold rolling Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- 239000011149 active material Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000008151 electrolyte solution Substances 0.000 description 9
- 238000003486 chemical etching Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000000866 electrolytic etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000010731 rolling oil Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/74—Terminals, e.g. extensions of current collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a novel aluminum penetration foil. More specifically, the present invention relates to a through aluminum foil used for a current collector such as a lithium ion battery, a lithium ion capacitor, or an electric double layer capacitor.
- a current collector such as a lithium ion battery, a lithium ion capacitor, or an electric double layer capacitor.
- Lithium ions can be supported on the negative electrode active material by allowing lithium ions to move reversibly through the through holes of the current collector.
- a method for producing a current collector having a through hole for example, punching, meshing, expanding, and netting are known.
- the size of the through hole formed by these methods is generally 0. 0. 3 mm or more.
- the strength of the current collector is reduced accordingly, and the problem of strength reduction becomes greater with a relatively large hole diameter as described above.
- an electrode using a current collector having relatively fine through holes has been proposed.
- a positive electrode made of a material capable of reversibly supporting lithium ions and / or anions and a negative electrode made of a material capable of reversibly supporting lithium ions are provided, and an aprotic organic lithium salt is used as an electrolyte.
- a lithium ion capacitor comprising a solvent electrolyte solution, wherein (1) lithium ions are doped into the negative electrode and / or positive electrode by electrochemical contact between the negative electrode and / or positive electrode and a lithium ion supply source;
- the potential of the positive electrode after short-circuiting the negative electrode is 2.0 V or less, (3) the positive electrode and / or the negative electrode has a large number of holes penetrating the front and back surfaces, and an inscribed circle of these through holes
- a lithium ion capacitor having a current collector made of a metal foil having an average diameter of 100 ⁇ m or less Patent Document 1.
- Patent Document 1 does not particularly mention the configuration of the current collector other than its average diameter. Moreover, when the average diameter of the inscribed circle of the through hole is set to 100 ⁇ m or less, Patent Document 1 does not particularly mention what kind of material should be used. In general, in order to manufacture an aluminum foil having through holes having high strength and appropriate density and number, it is necessary to form pits perpendicular to the aluminum foil. Although it is necessary to align the crystal orientation (100) plane of the aluminum foil in order to form such vertical pits, it is difficult or impossible to obtain a high (100) plane occupancy ratio with the prior art.
- the current collector is made of an aluminum etching foil having a thickness of 20 to 45 ⁇ m, an apparent density of 2.00 to 2.54 g / cm 3 , and having a large number of through holes penetrating the front and back surfaces having an air permeability of 20 to 120 s.
- an electrode layer formed by applying a paint containing a material capable of reversibly supporting lithium ions and anions as an active material on the current collector A coated electrode is known in which 80% or more of the through holes of the current collector have a hole diameter of 1 to 30 ⁇ m (Patent Document 2).
- Patent Document 2 also does not particularly describe the configuration except that 80% or more of the through holes of the current collector have a hole diameter of 1 to 30 ⁇ m.
- a manufacturing method thereof it is described that a through hole is obtained by direct current etching using an aluminum soft foil having a uniform crystal orientation in Al having a thickness of 25 to 60 ⁇ m and 99.99%. The production method is not shown.
- an aluminum foil for electrolytic capacitors is known as an aluminum foil having a uniform crystal orientation (for example, Patent Document 3 and Patent Document 4).
- the aluminum foil for electrolytic capacitors usually has a thickness of 100 ⁇ m or more and cannot be used as a current collector for pre-doping as described above. Further, if the thickness of the aluminum foil is reduced, it is difficult to align the crystal orientation. In fact, for example, in Examples 1 to 3 of Patent Document 3, the cube occupation ratio of an aluminum foil having a thickness of 50 ⁇ m is shown, but the value is only 56 to 65%. For this reason, in order to obtain a desired through-hole, further technical improvement is required.
- the main object of the present invention is to provide an aluminum through foil having a high strength and a large number of through holes because it has a high cube orientation occupation ratio even though the foil thickness is thin.
- the present inventors have found that the above object can be achieved by producing an aluminum foil from aluminum having a predetermined structure by a specific method, and the present invention has been completed. It came to do.
- this invention concerns on the following aluminum penetration foil.
- Fe 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: an aluminum penetrating foil comprising Al and inevitable impurities, (1) The foil thickness is 50 ⁇ m or less, (2) having a plurality of through holes from the foil surface to the back surface, (3) The ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t ( ⁇ m) in the aluminum through foil is 1.4 or more.
- An aluminum penetration foil characterized by that. 2.
- the aluminum penetration foil of Claim 1 whose air permeability measured by the air permeability test method by the Gurley type
- Item 3 The aluminum penetrating foil according to Item 1 or 2, wherein the through hole has an inner diameter of 0.2 to 5 ⁇ m. 4).
- Through porosity s (%) [(100 ⁇ measured weight (g)) / (foil thickness (cm) ⁇ sample area (cm 2 ))] / (aluminum specific gravity (2.70 g / cm 3 )) Item 4.
- the tensile strength h (N) is Item 5.
- the aluminum penetrating foil according to any one of Items 1 to 4 which has a value of [0.22 ⁇ foil thickness t ( ⁇ m)] or more. 6).
- Surface area expansion rate (%) Item 6.
- Item 9 The aluminum penetrating foil according to Item 7 or 8, wherein the method further comprises a step of annealing the final foil at 450 ° C. or higher in a vacuum or an inert gas atmosphere prior to the step (5). 10. Any of the above items 7 to 9, wherein the method further includes a step of heat-treating the thin foil at 150 to 350 ° C. as an intermediate annealing after the step (3) and prior to the step (4).
- Aluminum through-foil as described in 1. 11.
- 11. 11 The aluminum penetrating foil according to any one of Items 7 to 10, wherein in the method, the average roughness Ra of the final foil obtained in the step (4) is 0.25 ⁇ m or less.
- the foil thickness is as thin as 50 ⁇ m or less, since it has a cubic texture at a high ratio, it is possible to provide an aluminum through foil having high strength and sufficient through holes. .
- Such an aluminum foil can be suitably used as a current collector for lithium ion batteries, lithium ion capacitors, electric double layer capacitors and the like.
- a lithium ion capacitor or a lithium ion secondary battery includes 1) a positive electrode made of a material capable of reversibly carrying lithium ions and / or anions, and 2) a negative electrode made of a material capable of reversibly carrying lithium ions and 3
- the aluminum through-foil of the present invention is useful as a current collector that contains an electrolyte solution containing lithium ions and is doped with lithium ions on the positive electrode and / or the negative electrode. That is, when the aluminum through-foil of the present invention is used as a current collector as described above, it functions as a current collector that can be doped with lithium ions through the through holes, which can contribute to improvements in battery characteristics and the like.
- the aluminum penetration foil of the present invention (the Al foil of the present invention) is made of Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: aluminum composed of Al and inevitable impurities.
- a penetrating foil (1) The foil thickness is 50 ⁇ m or less, (2) having a plurality of through holes from the foil surface to the back surface, (3) The ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t ( ⁇ m) in the aluminum through foil is 1.4 or more. It is characterized by that.
- the composition of the Al foil of the present invention comprises Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: Al and inevitable impurities.
- the Fe content is usually about 5 to 80 ppm, preferably 10 to 50 ppm.
- Fe is an element that can be crystallized as an Al—Fe-based compound to improve rolling properties and elongation.
- an appropriate amount of Al-Fe-based compound refines the crystal grains by the crystal nucleation side and pinning to suppress seizure resistance during rolling (material adhesion to the roll) and generation of fine powder.
- the rollability of the thin foil can be improved.
- the Fe content is less than 5 ppm, the above effect cannot be obtained, and the strength of the foil is reduced due to the coarsening of crystal grains, and the strength of the perforated foil is easily reduced and the strength varies depending on the part.
- the Fe content exceeds 80 ppm, excessive dissolution occurs on the surface, resulting in a decrease in strength of the perforated foil and variation in strength due to the site. Further, the occupation ratio of the cube orientation is lowered, and a sufficient through etching pit density cannot be obtained.
- the Si content is usually about 5 to 100 ppm, preferably 10 to 60 ppm.
- Si is an element that can mainly improve the strength.
- an instantaneous temperature rise is caused not only on the surface of the aluminum penetrating foil but also on the inside, but dislocation disappears due to the presence of silicon. It can suppress and the fall of intensity
- the Si content is less than 5 ppm, the above effect cannot be obtained, and the strength is lowered, and the strength of the perforated foil is easily reduced and the strength is easily varied depending on the portion.
- the Si content exceeds 100 ppm, the occupation ratio of the cube orientation becomes low, and a sufficient through etching pit density cannot be obtained.
- the Cu content is usually about 10 to 100 ppm, preferably 15 to 60 ppm.
- Cu mainly improves the solubility during hydrochloric acid etching and contributes to the formation of through-etching pits.
- the above effect cannot be obtained sufficiently, and the rollability of the thin foil is remarkably lowered.
- the Cu content exceeds 100 ppm, excessive dissolution occurs on the surface, resulting in a decrease in strength of the perforated foil and variation in strength due to the site. Further, the occupation ratio of the cube orientation is lowered, and a sufficient through etching pit density cannot be obtained.
- the Al foil of the present invention may contain Pb as necessary.
- Pb mainly promotes the reaction between the electrolytic solution used for the etching process and the aluminum foil and increases the initial number of etching pits, so that a higher penetration etching density can be achieved.
- the Pb content is usually about 0.01 to 20 ppm, preferably 0.05 to 10 ppm.
- Pb mainly promotes the reaction between the electrolytic solution used for the etching treatment and the aluminum foil and increases the initial number of etching pits, so that a higher penetration etching density can be achieved.
- the content of Pb in the case of containing Pb can be appropriately adjusted so as to achieve the above effects, but it is usually about 0.01 to 20 ppm, preferably 0.05 to 10 ppm.
- Pb in the Al foil of the present invention, it is desirable to set Pb to be in the range of 40 to 2000 ppm in the region from the surface of the aluminum foil to a depth of 0.1 ⁇ m.
- the penetration etching density can be further increased.
- Such adjustment of the Pb content can be carried out, for example, by adjusting the amount of Pb added to the molten aluminum in the production stage of the aluminum foil and further controlling the annealing temperature within a range of 450 ° C. or higher. .
- the balance is substantially made of Al and inevitable impurities.
- the aluminum purity in the aluminum alloy foil of the present invention is not particularly limited as long as it is within a range that can be used for a current collector.
- Inevitable impurities may include, for example, Mg, Mn, Zn, Ti, V, Ga, Cr, Zr, and B.
- the thickness of the Al foil of the present invention is 50 ⁇ m or less, preferably 40 ⁇ m or less. By setting to the above thickness, it can be suitably used as a current collector of a lithium ion capacitor.
- the lower limit value of the thickness is not limited, but is usually about 1 ⁇ m.
- the inner diameter of the through-hole can be appropriately set according to the use and purpose of use of the Al foil, but is usually 0.2 to 5 ⁇ m, particularly preferably 0.5 to 3 ⁇ m.
- the inner diameter of the through hole can be appropriately controlled by adjusting the etching time particularly during the etching process.
- the ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t ( ⁇ m) in the aluminum through foil is 1.4 or more, preferably 1.5 or more. More preferably, it is 1.6 or more. This indicates that the Al foil of the present invention exhibits a higher vertical through-hole occupation ratio even at the same thickness as compared with the conventional aluminum through foil. That is, the Al foil of the present invention has a higher vertical through-hole occupancy rate despite its small thickness. In general, as the thickness of the high-purity aluminum foil increases, the cube orientation occupancy decreases, and the vertical through-hole occupancy decreases accordingly.
- the cube orientation occupancy corresponds to a value about the value of foil thickness ( ⁇ m)%.
- the cube orientation occupation ratio is approximately 55%.
- the present invention by controlling the content of Fe, Si, Cu, etc., it is possible to realize a higher cubic orientation occupancy than the prior art even with a thin foil. It becomes possible to increase the occupation ratio.
- the value of the vertical through-hole occupancy itself in the Al foil of the present invention is not particularly limited because it varies depending on the foil thickness and the like, but is generally 30 to 98%, particularly 40 to 98%. If it is in the range.
- the through holes are 70 to 110 from the horizontal plane.
- a vertical through hole is defined as an angle having an angle in the range of degrees (that is, 90 ° ⁇ 20 °), and the ratio of the vertical through hole to the total number of through holes is defined as the vertical through hole occupation ratio. Therefore, the vertical through-hole occupation ratio in the present invention is almost the same value as the cube orientation occupation ratio of the aluminum foil before etching.
- the Al foil of the present invention has an air permeability measured by an air permeability test method using a Gurley type densometer according to JIS P 8117 of 5 sec / 100 ml or more, particularly 15 sec / 100 ml or more.
- the upper limit value of the air permeability is not particularly limited, but is usually about 180 sec / 100 ml.
- the surface area enlargement ratio is preferably a value of [0.15 ⁇ foil thickness t ( ⁇ m)] or more, and particularly preferably a value of [0.17 ⁇ foil thickness t ( ⁇ m)] or more.
- the through porosity s (%) [measured weight (g) / [foil thickness (cm) ⁇ sample area (cm 2 )]] / aluminum specific gravity (2.70 g / cm 3 ) Is preferably in the range of 5 ⁇ s ⁇ 20.
- the Al foil of the present invention preferably has a tensile strength h (N) of at least [0.22 ⁇ foil thickness t ( ⁇ m)] or more, particularly [0.26 ⁇ foil thickness t ( ⁇ m)] or more. .
- N tensile strength
- Al foil can be manufactured as follows, for example. First, from casting to plate rolling (about 1 mm), it can be manufactured by an ordinary method. For example, an ingot is produced by preparing a molten raw material having the above composition and solidifying the molten metal. In this case, it is preferable to homogenize the resulting ingot at 400 to 550 ° C. for about 1 to 20 hours. In particular, in the present invention, it is desirable that the homogenization temperature is 550 ° C. or lower. By setting the homogenization treatment temperature to 550 ° C. or lower, a higher cube orientation occupation ratio can be obtained after rolling and annealing to a foil of 50 ⁇ m or less.
- the ingot is hot rolled and cold rolled to obtain a thick foil of about 350 ⁇ m.
- the thickness of the thin foil after rolling is preferably 110 to 130% of the thickness of the final foil.
- the temperature of cold rolling itself can be implemented within the temperature range which does not exceed 120 degreeC.
- the thin foil rolling (at least the final rolling (that is, rolling for obtaining the final foil)) has an average roughness Ra of the rolling roll of 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further 0.18 ⁇ m or less. It is preferable that In this case, the average roughness Ra of the thin foil obtained is 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further 0.18 ⁇ m or less on the surface in contact with the rolling roll.
- a thin foil when a thin foil is obtained by rolling a thick foil, it is preferable to perform rolling while ensuring a surface that does not contact the rolling roll.
- By securing a surface that does not come into contact with the rolling roll it is possible to eliminate a factor that hinders the movement of crystal grains, and thereby a high cube orientation occupation ratio can be obtained even with a thin foil.
- the total thickness when the foils are overlapped is preferably 350 ⁇ m or less. Separation of the laminated foils can be carried out before and / or after the next step, annealing. Also in this combined rolling, it is preferable that the average roughness Ra of the rolling roll is 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further 0.18 ⁇ m or less.
- the heat treatment temperature is desirably 350 ° C. or lower.
- the atmosphere of the intermediate annealing is not limited, and may be any of, for example, vacuum, air, inert gas atmosphere, and the like.
- the thin foil is further cold-rolled to obtain a final foil having a desired foil thickness (a foil having a final foil thickness). That is, a foil having a thickness of 50 ⁇ m or less can be obtained by this cold rolling.
- the average roughness Ra of the rolling roll is preferably 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further preferably 0.18 ⁇ m or less.
- the foil may be washed for the purpose of removing rolling oil, impurities and oxide film on the foil surface, for example. You may dry suitably after washing
- high-temperature annealing is performed with excessively applied rolling oil, a part of the foil surface is yellowed in a spot shape, and etching pits having a desired shape may not be obtained even if etching is performed.
- the annealing temperature is not limited, it is usually 450 ° C. or higher, preferably 450 ° C. or higher and lower than 660 ° C., more preferably 500 to 620 ° C.
- the annealing temperature is lower than 450 ° C., the cube orientation ratio is lowered, and there is a possibility that etching pits having a desired shape cannot be obtained even if etching is performed.
- the annealing time is generally about 1 to 100 hours, although it depends on the annealing temperature.
- the annealing atmosphere is desirably substantially a vacuum or an inert gas atmosphere.
- the temperature exceeds 350 ° C. including the temperature raising and lowering steps, it is desirable to reduce the oxygen concentration in the annealing atmosphere as much as possible industrially. That is, it is desirable that the pressure be 10 ⁇ 5 Torr or less or an inert gas atmosphere containing 0 to 1% by volume of oxygen.
- an inert gas atmosphere in which the oxygen concentration in the vacuum atmosphere or annealing atmosphere exceeding 10 ⁇ 5 Torr exceeds 1.0% by volume, a part of the foil surface after annealing turns yellow into a spot shape, and etching treatment is performed.
- the through hole is formed by performing an etching process on the foil (final foil) thus obtained.
- the method for the etching treatment is not limited, and a desired through hole may be formed by one-stage etching, or may be performed in two stages or more.
- the first-stage etching is preferably direct-current etching in an electrolyte containing hydrochloric acid as a main component.
- etching pits are mainly formed and the density and shape (through shape) can be controlled.
- the electrolytic solution an aqueous solution in which 1 to 10% by weight of hydrochloric acid is dissolved in water can be used. In this case, 0.001 to 0.1% by weight of oxalic acid, phosphoric acid, sulfuric acid or the like may be added to the electrolytic solution.
- the liquid temperature is about 60 to 90 ° C.
- the current density is about 0.1 to 0.5 A / cm 2 .
- the etching method is preferably direct current etching.
- the etching time can be appropriately set according to the foil thickness, the target air permeability, and the like.
- chemical etching is preferably performed.
- the etching pit diameter can be mainly controlled.
- chemical etching can be performed in a liquid having the same composition and temperature as the first-stage etching.
- the etching time can be appropriately set according to, for example, the foil thickness and the target air permeability.
- hydrochloric acid it is not always necessary to use hydrochloric acid as a main component, and it may be an electrolyte containing nitric acid as a main component.
- electrolytic etching instead of chemical etching.
- “second-stage etching” may be further multi-staged by combining chemical etching, electrolytic etching, and etching solution composition.
- Comparative Example 1 After preparing a molten metal having the composition shown in Table 1, an ingot was obtained by solidifying the molten metal. Next, the ingot was homogenized at 500 ° C. for 10 hours. Thereafter, the ingot was rolled to a thickness of 65 ⁇ m by hot rolling (temperature 400 ° C.) and cold rolling. Intermediate annealing was performed at 250 ° C. for 8 hours, and then cold rolling was performed to obtain a foil having a thickness of 50 ⁇ m. After washing with an organic solvent-based detergent (isopropylene), annealing was performed in argon gas at 530 ° C. for 10 hours. Prior to the etching treatment, the average roughness Ra and the foil thickness of the foil surface in contact with the rolling roll were measured. The results are shown in Table 1.
- the obtained foil was subjected to a two-stage etching process.
- the first-stage etching treatment was performed by direct current etching using an aqueous solution containing 5% by weight of hydrochloric acid as an electrolytic solution at a liquid temperature of 70 ° C. and a current density of 0.3 A / cm 2 .
- chemical etching is performed for 300 seconds (for 50 ⁇ m) at the same electrolytic solution temperature and liquid temperature as the first stage. Carried out. In this way, an aluminum through foil having a predetermined through hole was obtained.
- Comparative Examples 2-10 A through aluminum foil was produced in the same manner as in Comparative Example 1 except that the composition of the molten metal and the production conditions were changed to those shown in Table 1 and the chemical etching time of an aluminum foil having a foil thickness of 30 ⁇ m was set to 200 seconds.
- Example 1 After preparing a molten metal having the composition shown in Table 1, an ingot was obtained by solidifying the molten metal. Next, the ingot was homogenized at 500 ° C. for 10 hours. Thereafter, the ingot was rolled to a thickness of 130 ⁇ m by hot rolling (temperature 400 ° C.) and cold rolling. Two sheets obtained in this way were prepared, and a foil having a total thickness of 130 ⁇ m (each 65 ⁇ m) was obtained by further cold rolling (combined rolling or combined rolling) in a state where the two were superposed. Intermediate annealing was performed at 250 ° C. for 8 hours, and then cold rolling was performed to obtain a foil having a total thickness of 100 ⁇ m (each 50 ⁇ m).
- the two foils were separated separately, washed with an organic solvent-based cleaning agent (isopropylene), and then annealed in argon gas at 530 ° C. for 10 hours. Prior to the etching treatment, the average roughness Ra and the foil thickness of the foil surface in contact with the rolling roll were measured. The results are shown in Table 1.
- Examples 2 to 10 A through aluminum foil was produced in the same manner as in Comparative Example 1 except that the composition of the molten metal and the production conditions were changed as shown in Table 1 and the chemical etching time of an aluminum foil having a foil thickness of 30 ⁇ m was changed to 200 seconds.
- Test example 1 About the aluminum penetration foil obtained by the comparative example and the Example, the vertical through-hole occupation rate, the internal diameter of a through-hole, etc. were measured, respectively. The results are shown in Tables 2 and 3.
- the measuring method of each physical property was implemented as follows.
- (1) Vertical through-hole occupancy of aluminum through-foil (after etching process) Sample (10 mm width) so that the LT-ST surface (cross section perpendicular to the rolling direction) of the aluminum through-foil after etching is the observation surface
- the sample is embedded in an epoxy resin and the sample is buffed (diamond polished).
- the resin part) is observed with a scanning electron microscope (SEM).
- the part where the measurement length of each sample is 100 mm in the dimension of the photograph is selected as shown in FIG. 1, and the angle measurement as shown in FIG.
- the transparent card for use is superimposed on the above photo, and the number of through holes with an angle in the range of 70 to 110 ° (90 ⁇ 20 °) from the lower surface is measured, and the total number of all through holes is visually observed. After counting, the ratio to the total number is calculated as the vertical through-hole occupation ratio (%).
- Through-hole ratio s (%) [(100 ⁇ measured weight (g)) / (foil thickness (cm) ⁇ sample area (cm 2 ))] / (specific gravity of aluminum (2.70 g / cm 3 )) was determined.
- the “foil thickness” is an average value obtained by measuring a total of five points at the four corners and the center of the sample with a micrometer.
- the “sample area” is 10 cm ⁇ 5 cm.
- the “measured weight” is a value obtained by weighing the sample with an electronic balance.
- Average roughness According to JIS B 0601, the center line average roughness in the direction perpendicular to the rolling direction of the surface of the aluminum penetrating foil was measured using a contact-type surface roughness meter (product name “SURFCOM 1400D-12” manufactured by Tokyo Seimitsu Co., Ltd.). The average roughness (Ra) was measured. The measurement range is 10 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- ing And Chemical Polishing (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
1. Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
(1)箔厚みが50μm以下であり、
(2)箔表面から裏面に至る貫通孔を複数有し、
(3)当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、
ことを特徴とするアルミニウム貫通箔。
2. JIS P 8117に準じたガーレ式デンソメータによる透気度試験方法によって測定された透気度が5sec/100ml以上である、請求項1に記載のアルミニウム貫通箔。
3. 貫通孔の内径が0.2~5μmである、前記項1又は2に記載のアルミニウム貫通箔。
4. 貫通孔率s(%)=[(100×測定重量(g))/(箔厚み(cm)×試料面積(cm2))]/(アルミニウムの比重(2.70g/cm3))が、5≦s≦20の範囲である、前記項1~3のいずれかに記載のアルミニウム貫通箔。
5. 引張強度h(N)が、
[0.22×箔厚みt(μm)]以上の値である、前記項1~4のいずれかに記載のアルミニウム貫通箔。
6. 表面積拡大率(%)が、
[0.15×箔厚みt(μm)]以上の値である、前記項1~5のいずれかに記載のアルミニウム貫通箔。
7. Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
(1)Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム系材料を400~550℃で均質化処理する工程、
(2)前記の均質化処理された材料を圧延することにより厚み400~100μmの厚箔を得る工程、
(3)前記厚箔を2枚以上重ねた状態で冷間圧延することにより最終箔の箔厚みの110~130%の厚みの薄箔を得る工程、
(4)前記薄箔を冷間圧延することにより箔厚み50μm以下の最終箔を得る工程、
(5)前記最終箔を塩酸水溶液で直流エッチングする工程、及び
(6)前記の直流エッチングが施された最終箔を塩酸水溶液でケミカルエッチングする工程
を含む方法により得られる、アルミニウム貫通箔。
8. 箔表面から裏面に至る貫通孔を複数有し、かつ、当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、前記項7に記載のアルミニウム貫通箔。
9. 前記方法が、前記工程(5)に先立って、前記最終箔を真空又は不活性ガス雰囲気下450℃以上で焼鈍する工程をさらに含む、前記項7又は8に記載のアルミニウム貫通箔。
10. 前記方法が、前記工程(3)の後、かつ、前記工程(4)に先立って、中間焼鈍として前記薄箔を150~350℃で熱処理する工程をさらに含む、前記項7~9のいずれかに記載のアルミニウム貫通箔。
11. 前記方法において、前記工程(4)で得られる最終箔の平均粗度Raが0.25μm以下である、前記項7~10のいずれかに記載のアルミニウム貫通箔。
本発明のアルミニウム貫通箔(本発明Al箔)は、Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
(1)箔厚みが50μm以下であり、
(2)箔表面から裏面に至る貫通孔を複数有し、
(3)当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、
ことを特徴とする。
本発明Al箔は、例えば次のようにして製造することができる。まず、鋳造から板圧延(約1mm位)まではほぼ通常の方法で製造することができる。例えば、上記組成を有する原料の溶湯を調製し、溶湯を凝固させることにより鋳塊を製造する。この場合、得られた鋳塊に対して400~550℃で1~20時間程度の均質化処理を施すことが好ましい。特に、本発明では、均質化処理温度を550℃以下とすることが望ましい。均質化処理温度を550℃以下とすることによって、50μm以下の箔に圧延して焼鈍した後により高い立方体方位占有率を得ることができる。
2段目のエッチングでは、好ましくはケミカルエッチングを実施する。これにより、主としてエッチングピット径を制御することができる。例えば、上記1段目エッチングと同組成・温度の液中で、ケミカルエッチングを行うことができる。エッチング時間は、例えば箔厚、目標とする透気度等に応じて適宜設定することができる。また、必ずしも塩酸を主成分としなくても良く、硝酸を主成分とした電解液中でも良い。また、ケミカルエッチングでなく、電解エッチングとしても良い。さらに必要に応じて、ケミカルエッチングや電解エッチング、エッチング液組成を組み合わせて、「2段目のエッチング」をさらに多段化しても良い。
表1に示す組成を有する溶湯を調製した後、溶湯を凝固させることにより鋳塊を得た。次いで、前記鋳塊を500℃で10時間かけて均質化処理を施した。その後、前記鋳塊に対して熱間圧延(温度400℃)及び冷間圧延を施すことによって厚さ65μmまで圧延した。250℃で8時間かけて中間焼鈍を施した後、さらに冷間圧延を施すことによって厚さ50μmの箔を得た。有機溶剤系洗浄剤(イソプロピレン)で洗浄した後、アルゴンガス中530℃で10時間かけて焼鈍を施した。エッチング処理に先立ち、圧延ロールと接した箔面の平均粗度Ra及び箔厚を測定した。結果を表1に示す。
溶湯の組成及び製造条件を表1に示す組成に変更し、箔厚30μmのアルミニウム箔のケミカルエッチング時間を200秒としたほかは、比較例1と同様にしてアルミニウム貫通箔を製造した。
表1に示す組成を有する溶湯を調製した後、溶湯を凝固させることにより鋳塊を得た。次いで、前記鋳塊を500℃で10時間かけて均質化処理を施した。その後、前記鋳塊に対して熱間圧延(温度400℃)及び冷間圧延を施すことによって厚さ130μmまで圧延した。このようにして得られたシートを2枚用意し、両者を重ね合わせた状態でさらに冷間圧延(併せ圧延又は合わせ圧延)を施すことによって合計厚さ130μm(各65μm)の箔を得た。250℃で8時間かけて中間焼鈍を施した後、さらに冷間圧延を行うことにより合計厚さ100μm(各50μm)の箔を得た。
溶湯の組成及び製造条件を表1に示すように変更し、箔厚30μmのアルミニウム箔のケミカルエッチング時間を200秒としたほかは、比較例1と同様にしてアルミニウム貫通箔を製造した。
比較例及び実施例で得られたアルミニウム貫通箔について、垂直貫通孔占有率、貫通孔の内径等をそれぞれ測定した。その結果を表2及び表3に示す。
(1)アルミニウム貫通箔(エッチング処理後)の垂直貫通孔占有率
エッチング処理後のアルミニウム貫通箔のLT-ST面(圧延方向に垂直な断面)が観察面となるようにサンプル(10mm幅)をエポキシ樹脂に埋め込み、試料をバフ研磨(ダイヤモンド研磨)する。その後、アルミニウム部分を電解(電解条件:エタノール:過塩素酸=4:1の溶液にて、0℃、定電圧(20V)電解×180秒)にて溶解し、エッチングピット(エッチングピットに入り込んだ樹脂部分)を走査型電子顕微鏡(SEM)にて観察する。そして、無作為に撮影した10視野(倍率500倍)の写真から、図1に示すように各試料の測定長さが写真の寸法で100mmとなる部位を選び、図2に示すような角度測定用透明カードを上記写真に重ね合わせ、下表面から70~110°(90±20°)の範囲内の角度をもった貫通孔の数を計測し、全体の貫通孔の合計数を目視にてカウントした後、その合計数に対する割合を垂直貫通孔占有率(%)として算出する。
倍率を5000倍としたほかは前記(1)と同様の方法にて無作為に10視野の写真を撮影し、各試料の測定面積が写真の寸法で100mm×100mmの範囲を画像解析してエッチングピット数及び総エッチングピット面積を計測し、貫通孔を円形と仮定して貫通孔の内径を算出する。画像解析装置としては、多目的高速画像解析装置「PCA11」(システムサイエンス株式会社製)を用いた。
エッチング処理後のアルミニウム貫通箔を60℃の陽極酸化処理液(5%アジピン酸アンモニウム溶液)に浸漬し、10Vで陽極酸化処理することにより陽極酸化皮膜を形成させた後、LCRメータを用いて静電容量を測定し、エッチング前のアルミニウム箔の静電容量比から算出する。測定投影面積は、5cm×10cmとした。
エッチング処理後のアルミニウム貫通箔を幅10mm、長さ150mmに切断し、EIAJ RC-2364A(アルミニウム電解コンデンサ用電極箔の試験方法)に基づき測定した。
貫通孔率s(%)= [(100×測定重量(g))/(箔厚み(cm)×試料面積(cm2))]/(アルミニウムの比重(2.70g/cm3))を求めた。前記「箔厚み」は、試料4隅と中央部の計5点をマイクロメーターで測定した平均値とする。前記「試料面積」は10cm×5cmとする。前記「測定重量」は試料を電子天秤で秤量した値とする。
JIS P 8117に準じたガーレ式デンソメータによる透気度試験方法によって測定する。
JIS B 0601に従い、アルミニウム貫通箔表面の圧延直角方向の中心線平均粗さを接触式表面粗度計((株)東京精密製 製品名「SURFCOM1400D-12」)を用いて測定し、平均粗度(Ra)とした。なお、測定範囲は10mmとする。
Claims (6)
- Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
(1)箔厚みが50μm以下であり、
(2)箔表面から裏面に至る貫通孔を複数有し、
(3)当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、
ことを特徴とするアルミニウム貫通箔。 - JIS P 8117に準じたガーレ式デンソメータによる透気度試験方法によって測定された透気度が5sec/100ml以上である、請求項1に記載のアルミニウム貫通箔。
- 貫通孔の内径が0.2~5μmである、請求項1又は2に記載のアルミニウム貫通箔。
- 貫通孔率s(%)=[(100×測定重量(g))/(箔厚み(cm)×試料面積(cm2))]/(アルミニウムの比重(2.70g/cm3))が、5≦s≦20の範囲である、請求項1~3のいずれかに記載のアルミニウム貫通箔。
- 引張強度h(N)が、
[0.22×箔厚みt(μm)]以上の値である、請求項1~4のいずれかに記載のアルミニウム貫通箔。 - 表面積拡大率が、
[0.15×箔厚みt(μm)]以上の値である、請求項1~5のいずれかに記載のアルミニウム貫通箔。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080027918.5A CN102471835B (zh) | 2009-07-07 | 2010-07-03 | 具有贯通孔的铝箔 |
JP2011521904A JP5539985B2 (ja) | 2009-07-07 | 2010-07-03 | アルミニウム貫通箔 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-161271 | 2009-07-07 | ||
JP2009161271 | 2009-07-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011004777A1 true WO2011004777A1 (ja) | 2011-01-13 |
Family
ID=43429200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061355 WO2011004777A1 (ja) | 2009-07-07 | 2010-07-03 | アルミニウム貫通箔 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5539985B2 (ja) |
CN (1) | CN102471835B (ja) |
WO (1) | WO2011004777A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013110049A (ja) * | 2011-11-24 | 2013-06-06 | Mitsubishi Alum Co Ltd | リチウムイオン二次電池の正極集電体用箔、及び、リチウムイオン二次電池 |
WO2015115531A1 (ja) | 2014-01-31 | 2015-08-06 | 富士フイルム株式会社 | アルミニウム板の製造方法、アルミニウム板、蓄電デバイス用集電体および蓄電デバイス |
EP3279984A4 (en) * | 2015-03-31 | 2018-08-29 | FUJIFILM Corporation | Aluminum plate, and current collector for power storage device |
US10862133B2 (en) | 2014-10-14 | 2020-12-08 | Fujifilm Corporation | Aluminum plate and method for manufacturing aluminum plate |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219524B (zh) * | 2013-04-28 | 2015-09-23 | 奇瑞新能源汽车技术有限公司 | 一种叠片锂离子电池正极集流体箔片、正极极片及电池 |
CN104282872A (zh) * | 2014-10-24 | 2015-01-14 | 南通海星电子股份有限公司 | 一种自铆式的通孔导电涂层金属箔及其制备方法 |
CN110462902B (zh) * | 2017-12-22 | 2022-05-13 | 株式会社Lg化学 | 用于锂金属电池的阳极和包括该阳极的锂金属电池 |
KR20190076890A (ko) | 2017-12-22 | 2019-07-02 | 주식회사 엘지화학 | 리튬 메탈 전지용 음극 및 이를 포함하는 리튬 메탈 전지 |
CN112635822B (zh) | 2019-09-24 | 2021-11-09 | 宁德时代新能源科技股份有限公司 | 一种锂离子电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06306520A (ja) * | 1993-04-20 | 1994-11-01 | Nippon Foil Mfg Co Ltd | 軟質アルミ箔およびその製造方法 |
JPH07268525A (ja) * | 1994-03-30 | 1995-10-17 | Furukawa Electric Co Ltd:The | 高純度硬質アルミニウム箔及びその製造方法 |
JPH08260117A (ja) * | 1995-03-23 | 1996-10-08 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム合金箔地の製造方法 |
JPH10189396A (ja) * | 1996-12-26 | 1998-07-21 | Nippon Light Metal Co Ltd | 電解コンデンサ陽極用アルミニウム合金 |
JP2004207117A (ja) * | 2002-12-26 | 2004-07-22 | Toyo Aluminium Kk | 集電体用アルミニウム箔、集電体および二次電池 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4462509B2 (ja) * | 1997-08-14 | 2010-05-12 | 日本製箔株式会社 | 二次電池用孔開き集電体及びその製造方法 |
JPH1186869A (ja) * | 1997-09-01 | 1999-03-30 | Nippon Foil Mfg Co Ltd | 二次電池に用いる孔開き集電体 |
JP5363818B2 (ja) * | 2006-12-27 | 2013-12-11 | Jmエナジー株式会社 | 塗布電極及び有機電解質キャパシタ |
-
2010
- 2010-07-03 JP JP2011521904A patent/JP5539985B2/ja active Active
- 2010-07-03 CN CN201080027918.5A patent/CN102471835B/zh not_active Expired - Fee Related
- 2010-07-03 WO PCT/JP2010/061355 patent/WO2011004777A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06306520A (ja) * | 1993-04-20 | 1994-11-01 | Nippon Foil Mfg Co Ltd | 軟質アルミ箔およびその製造方法 |
JPH07268525A (ja) * | 1994-03-30 | 1995-10-17 | Furukawa Electric Co Ltd:The | 高純度硬質アルミニウム箔及びその製造方法 |
JPH08260117A (ja) * | 1995-03-23 | 1996-10-08 | Furukawa Electric Co Ltd:The | 電解コンデンサ陰極用アルミニウム合金箔地の製造方法 |
JPH10189396A (ja) * | 1996-12-26 | 1998-07-21 | Nippon Light Metal Co Ltd | 電解コンデンサ陽極用アルミニウム合金 |
JP2004207117A (ja) * | 2002-12-26 | 2004-07-22 | Toyo Aluminium Kk | 集電体用アルミニウム箔、集電体および二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013110049A (ja) * | 2011-11-24 | 2013-06-06 | Mitsubishi Alum Co Ltd | リチウムイオン二次電池の正極集電体用箔、及び、リチウムイオン二次電池 |
WO2015115531A1 (ja) | 2014-01-31 | 2015-08-06 | 富士フイルム株式会社 | アルミニウム板の製造方法、アルミニウム板、蓄電デバイス用集電体および蓄電デバイス |
US10593989B2 (en) | 2014-01-31 | 2020-03-17 | Fujifilm Corporation | Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device |
US10862133B2 (en) | 2014-10-14 | 2020-12-08 | Fujifilm Corporation | Aluminum plate and method for manufacturing aluminum plate |
EP3279984A4 (en) * | 2015-03-31 | 2018-08-29 | FUJIFILM Corporation | Aluminum plate, and current collector for power storage device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011004777A1 (ja) | 2012-12-20 |
CN102471835A (zh) | 2012-05-23 |
JP5539985B2 (ja) | 2014-07-02 |
CN102471835B (zh) | 2014-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5539985B2 (ja) | アルミニウム貫通箔 | |
WO2011040292A1 (ja) | アルミニウム貫通箔及びその製造方法 | |
JP5498750B2 (ja) | アルミニウム貫通箔及びその製造方法 | |
JP2013124402A (ja) | 電解コンデンサ用アルミニウム箔およびその製造方法 | |
JP2009062595A (ja) | アルミニウム箔材 | |
JP5460102B2 (ja) | リチウムイオン二次電池用アルミニウム合金箔及びその製造方法 | |
JP5663184B2 (ja) | アルミニウム貫通箔及びその製造方法 | |
US7612986B2 (en) | Aluminum plate for aluminum electrolytic capacitor electrode, aluminum electrolytic capacitor, and method for manufacturing aluminum electrolytic capacitor | |
JP2009249668A (ja) | 電解コンデンサ用アルミニウム箔およびその製造方法 | |
JP4237236B2 (ja) | 電解コンデンサ用アルミニウム箔およびその製造方法 | |
JP5019371B2 (ja) | 電解コンデンサ電極用アルミニウム箔材 | |
JP3308456B2 (ja) | 電解コンデンサ電極用アルミニウム箔の製造方法 | |
JP2010159446A (ja) | 高純度アルミニウム材 | |
JP2007318007A (ja) | 電解コンデンサ用アルミニウム電極箔 | |
JP2803762B2 (ja) | 電解コンデンサ用アルミニウム箔の製造方法 | |
JP2002173748A (ja) | 高純度アルミニウム箔の製造方法 | |
JP5053702B2 (ja) | コンデンサ用電極シートおよびその製造方法 | |
JP2008045172A (ja) | 電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法、電解コンデンサ用電極材ならびにアルミニウム電解コンデンサ | |
JP4539912B2 (ja) | 電解コンデンサ陽極用アルミニウム箔およびその製造方法 | |
JP2007169690A (ja) | 電解コンデンサ用アルミニウム箔 | |
JP2011006747A (ja) | 電解コンデンサ用アルミニウム箔 | |
JP4539911B2 (ja) | 電極コンデンサ陽極用アルミニウム箔およびその製造方法 | |
JP4793827B2 (ja) | 電解コンデンサ用アルミニウム箔およびその製造方法 | |
JP2007113098A (ja) | 電解コンデンサ陰極用アルミニウム合金箔及びその製造方法 | |
JP2006169571A (ja) | 電解コンデンサ用アルミニウム箔及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080027918.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10797088 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011521904 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10797088 Country of ref document: EP Kind code of ref document: A1 |