WO2011004777A1 - Perforated aluminum foil - Google Patents

Perforated aluminum foil Download PDF

Info

Publication number
WO2011004777A1
WO2011004777A1 PCT/JP2010/061355 JP2010061355W WO2011004777A1 WO 2011004777 A1 WO2011004777 A1 WO 2011004777A1 JP 2010061355 W JP2010061355 W JP 2010061355W WO 2011004777 A1 WO2011004777 A1 WO 2011004777A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
aluminum
thickness
etching
ppm
Prior art date
Application number
PCT/JP2010/061355
Other languages
French (fr)
Japanese (ja)
Inventor
敦志 小西
将志 目秦
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to JP2011521904A priority Critical patent/JP5539985B2/en
Priority to CN201080027918.5A priority patent/CN102471835B/en
Publication of WO2011004777A1 publication Critical patent/WO2011004777A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a novel aluminum penetration foil. More specifically, the present invention relates to a through aluminum foil used for a current collector such as a lithium ion battery, a lithium ion capacitor, or an electric double layer capacitor.
  • a current collector such as a lithium ion battery, a lithium ion capacitor, or an electric double layer capacitor.
  • Lithium ions can be supported on the negative electrode active material by allowing lithium ions to move reversibly through the through holes of the current collector.
  • a method for producing a current collector having a through hole for example, punching, meshing, expanding, and netting are known.
  • the size of the through hole formed by these methods is generally 0. 0. 3 mm or more.
  • the strength of the current collector is reduced accordingly, and the problem of strength reduction becomes greater with a relatively large hole diameter as described above.
  • an electrode using a current collector having relatively fine through holes has been proposed.
  • a positive electrode made of a material capable of reversibly supporting lithium ions and / or anions and a negative electrode made of a material capable of reversibly supporting lithium ions are provided, and an aprotic organic lithium salt is used as an electrolyte.
  • a lithium ion capacitor comprising a solvent electrolyte solution, wherein (1) lithium ions are doped into the negative electrode and / or positive electrode by electrochemical contact between the negative electrode and / or positive electrode and a lithium ion supply source;
  • the potential of the positive electrode after short-circuiting the negative electrode is 2.0 V or less, (3) the positive electrode and / or the negative electrode has a large number of holes penetrating the front and back surfaces, and an inscribed circle of these through holes
  • a lithium ion capacitor having a current collector made of a metal foil having an average diameter of 100 ⁇ m or less Patent Document 1.
  • Patent Document 1 does not particularly mention the configuration of the current collector other than its average diameter. Moreover, when the average diameter of the inscribed circle of the through hole is set to 100 ⁇ m or less, Patent Document 1 does not particularly mention what kind of material should be used. In general, in order to manufacture an aluminum foil having through holes having high strength and appropriate density and number, it is necessary to form pits perpendicular to the aluminum foil. Although it is necessary to align the crystal orientation (100) plane of the aluminum foil in order to form such vertical pits, it is difficult or impossible to obtain a high (100) plane occupancy ratio with the prior art.
  • the current collector is made of an aluminum etching foil having a thickness of 20 to 45 ⁇ m, an apparent density of 2.00 to 2.54 g / cm 3 , and having a large number of through holes penetrating the front and back surfaces having an air permeability of 20 to 120 s.
  • an electrode layer formed by applying a paint containing a material capable of reversibly supporting lithium ions and anions as an active material on the current collector A coated electrode is known in which 80% or more of the through holes of the current collector have a hole diameter of 1 to 30 ⁇ m (Patent Document 2).
  • Patent Document 2 also does not particularly describe the configuration except that 80% or more of the through holes of the current collector have a hole diameter of 1 to 30 ⁇ m.
  • a manufacturing method thereof it is described that a through hole is obtained by direct current etching using an aluminum soft foil having a uniform crystal orientation in Al having a thickness of 25 to 60 ⁇ m and 99.99%. The production method is not shown.
  • an aluminum foil for electrolytic capacitors is known as an aluminum foil having a uniform crystal orientation (for example, Patent Document 3 and Patent Document 4).
  • the aluminum foil for electrolytic capacitors usually has a thickness of 100 ⁇ m or more and cannot be used as a current collector for pre-doping as described above. Further, if the thickness of the aluminum foil is reduced, it is difficult to align the crystal orientation. In fact, for example, in Examples 1 to 3 of Patent Document 3, the cube occupation ratio of an aluminum foil having a thickness of 50 ⁇ m is shown, but the value is only 56 to 65%. For this reason, in order to obtain a desired through-hole, further technical improvement is required.
  • the main object of the present invention is to provide an aluminum through foil having a high strength and a large number of through holes because it has a high cube orientation occupation ratio even though the foil thickness is thin.
  • the present inventors have found that the above object can be achieved by producing an aluminum foil from aluminum having a predetermined structure by a specific method, and the present invention has been completed. It came to do.
  • this invention concerns on the following aluminum penetration foil.
  • Fe 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: an aluminum penetrating foil comprising Al and inevitable impurities, (1) The foil thickness is 50 ⁇ m or less, (2) having a plurality of through holes from the foil surface to the back surface, (3) The ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t ( ⁇ m) in the aluminum through foil is 1.4 or more.
  • An aluminum penetration foil characterized by that. 2.
  • the aluminum penetration foil of Claim 1 whose air permeability measured by the air permeability test method by the Gurley type
  • Item 3 The aluminum penetrating foil according to Item 1 or 2, wherein the through hole has an inner diameter of 0.2 to 5 ⁇ m. 4).
  • Through porosity s (%) [(100 ⁇ measured weight (g)) / (foil thickness (cm) ⁇ sample area (cm 2 ))] / (aluminum specific gravity (2.70 g / cm 3 )) Item 4.
  • the tensile strength h (N) is Item 5.
  • the aluminum penetrating foil according to any one of Items 1 to 4 which has a value of [0.22 ⁇ foil thickness t ( ⁇ m)] or more. 6).
  • Surface area expansion rate (%) Item 6.
  • Item 9 The aluminum penetrating foil according to Item 7 or 8, wherein the method further comprises a step of annealing the final foil at 450 ° C. or higher in a vacuum or an inert gas atmosphere prior to the step (5). 10. Any of the above items 7 to 9, wherein the method further includes a step of heat-treating the thin foil at 150 to 350 ° C. as an intermediate annealing after the step (3) and prior to the step (4).
  • Aluminum through-foil as described in 1. 11.
  • 11. 11 The aluminum penetrating foil according to any one of Items 7 to 10, wherein in the method, the average roughness Ra of the final foil obtained in the step (4) is 0.25 ⁇ m or less.
  • the foil thickness is as thin as 50 ⁇ m or less, since it has a cubic texture at a high ratio, it is possible to provide an aluminum through foil having high strength and sufficient through holes. .
  • Such an aluminum foil can be suitably used as a current collector for lithium ion batteries, lithium ion capacitors, electric double layer capacitors and the like.
  • a lithium ion capacitor or a lithium ion secondary battery includes 1) a positive electrode made of a material capable of reversibly carrying lithium ions and / or anions, and 2) a negative electrode made of a material capable of reversibly carrying lithium ions and 3
  • the aluminum through-foil of the present invention is useful as a current collector that contains an electrolyte solution containing lithium ions and is doped with lithium ions on the positive electrode and / or the negative electrode. That is, when the aluminum through-foil of the present invention is used as a current collector as described above, it functions as a current collector that can be doped with lithium ions through the through holes, which can contribute to improvements in battery characteristics and the like.
  • the aluminum penetration foil of the present invention (the Al foil of the present invention) is made of Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: aluminum composed of Al and inevitable impurities.
  • a penetrating foil (1) The foil thickness is 50 ⁇ m or less, (2) having a plurality of through holes from the foil surface to the back surface, (3) The ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t ( ⁇ m) in the aluminum through foil is 1.4 or more. It is characterized by that.
  • the composition of the Al foil of the present invention comprises Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: Al and inevitable impurities.
  • the Fe content is usually about 5 to 80 ppm, preferably 10 to 50 ppm.
  • Fe is an element that can be crystallized as an Al—Fe-based compound to improve rolling properties and elongation.
  • an appropriate amount of Al-Fe-based compound refines the crystal grains by the crystal nucleation side and pinning to suppress seizure resistance during rolling (material adhesion to the roll) and generation of fine powder.
  • the rollability of the thin foil can be improved.
  • the Fe content is less than 5 ppm, the above effect cannot be obtained, and the strength of the foil is reduced due to the coarsening of crystal grains, and the strength of the perforated foil is easily reduced and the strength varies depending on the part.
  • the Fe content exceeds 80 ppm, excessive dissolution occurs on the surface, resulting in a decrease in strength of the perforated foil and variation in strength due to the site. Further, the occupation ratio of the cube orientation is lowered, and a sufficient through etching pit density cannot be obtained.
  • the Si content is usually about 5 to 100 ppm, preferably 10 to 60 ppm.
  • Si is an element that can mainly improve the strength.
  • an instantaneous temperature rise is caused not only on the surface of the aluminum penetrating foil but also on the inside, but dislocation disappears due to the presence of silicon. It can suppress and the fall of intensity
  • the Si content is less than 5 ppm, the above effect cannot be obtained, and the strength is lowered, and the strength of the perforated foil is easily reduced and the strength is easily varied depending on the portion.
  • the Si content exceeds 100 ppm, the occupation ratio of the cube orientation becomes low, and a sufficient through etching pit density cannot be obtained.
  • the Cu content is usually about 10 to 100 ppm, preferably 15 to 60 ppm.
  • Cu mainly improves the solubility during hydrochloric acid etching and contributes to the formation of through-etching pits.
  • the above effect cannot be obtained sufficiently, and the rollability of the thin foil is remarkably lowered.
  • the Cu content exceeds 100 ppm, excessive dissolution occurs on the surface, resulting in a decrease in strength of the perforated foil and variation in strength due to the site. Further, the occupation ratio of the cube orientation is lowered, and a sufficient through etching pit density cannot be obtained.
  • the Al foil of the present invention may contain Pb as necessary.
  • Pb mainly promotes the reaction between the electrolytic solution used for the etching process and the aluminum foil and increases the initial number of etching pits, so that a higher penetration etching density can be achieved.
  • the Pb content is usually about 0.01 to 20 ppm, preferably 0.05 to 10 ppm.
  • Pb mainly promotes the reaction between the electrolytic solution used for the etching treatment and the aluminum foil and increases the initial number of etching pits, so that a higher penetration etching density can be achieved.
  • the content of Pb in the case of containing Pb can be appropriately adjusted so as to achieve the above effects, but it is usually about 0.01 to 20 ppm, preferably 0.05 to 10 ppm.
  • Pb in the Al foil of the present invention, it is desirable to set Pb to be in the range of 40 to 2000 ppm in the region from the surface of the aluminum foil to a depth of 0.1 ⁇ m.
  • the penetration etching density can be further increased.
  • Such adjustment of the Pb content can be carried out, for example, by adjusting the amount of Pb added to the molten aluminum in the production stage of the aluminum foil and further controlling the annealing temperature within a range of 450 ° C. or higher. .
  • the balance is substantially made of Al and inevitable impurities.
  • the aluminum purity in the aluminum alloy foil of the present invention is not particularly limited as long as it is within a range that can be used for a current collector.
  • Inevitable impurities may include, for example, Mg, Mn, Zn, Ti, V, Ga, Cr, Zr, and B.
  • the thickness of the Al foil of the present invention is 50 ⁇ m or less, preferably 40 ⁇ m or less. By setting to the above thickness, it can be suitably used as a current collector of a lithium ion capacitor.
  • the lower limit value of the thickness is not limited, but is usually about 1 ⁇ m.
  • the inner diameter of the through-hole can be appropriately set according to the use and purpose of use of the Al foil, but is usually 0.2 to 5 ⁇ m, particularly preferably 0.5 to 3 ⁇ m.
  • the inner diameter of the through hole can be appropriately controlled by adjusting the etching time particularly during the etching process.
  • the ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t ( ⁇ m) in the aluminum through foil is 1.4 or more, preferably 1.5 or more. More preferably, it is 1.6 or more. This indicates that the Al foil of the present invention exhibits a higher vertical through-hole occupation ratio even at the same thickness as compared with the conventional aluminum through foil. That is, the Al foil of the present invention has a higher vertical through-hole occupancy rate despite its small thickness. In general, as the thickness of the high-purity aluminum foil increases, the cube orientation occupancy decreases, and the vertical through-hole occupancy decreases accordingly.
  • the cube orientation occupancy corresponds to a value about the value of foil thickness ( ⁇ m)%.
  • the cube orientation occupation ratio is approximately 55%.
  • the present invention by controlling the content of Fe, Si, Cu, etc., it is possible to realize a higher cubic orientation occupancy than the prior art even with a thin foil. It becomes possible to increase the occupation ratio.
  • the value of the vertical through-hole occupancy itself in the Al foil of the present invention is not particularly limited because it varies depending on the foil thickness and the like, but is generally 30 to 98%, particularly 40 to 98%. If it is in the range.
  • the through holes are 70 to 110 from the horizontal plane.
  • a vertical through hole is defined as an angle having an angle in the range of degrees (that is, 90 ° ⁇ 20 °), and the ratio of the vertical through hole to the total number of through holes is defined as the vertical through hole occupation ratio. Therefore, the vertical through-hole occupation ratio in the present invention is almost the same value as the cube orientation occupation ratio of the aluminum foil before etching.
  • the Al foil of the present invention has an air permeability measured by an air permeability test method using a Gurley type densometer according to JIS P 8117 of 5 sec / 100 ml or more, particularly 15 sec / 100 ml or more.
  • the upper limit value of the air permeability is not particularly limited, but is usually about 180 sec / 100 ml.
  • the surface area enlargement ratio is preferably a value of [0.15 ⁇ foil thickness t ( ⁇ m)] or more, and particularly preferably a value of [0.17 ⁇ foil thickness t ( ⁇ m)] or more.
  • the through porosity s (%) [measured weight (g) / [foil thickness (cm) ⁇ sample area (cm 2 )]] / aluminum specific gravity (2.70 g / cm 3 ) Is preferably in the range of 5 ⁇ s ⁇ 20.
  • the Al foil of the present invention preferably has a tensile strength h (N) of at least [0.22 ⁇ foil thickness t ( ⁇ m)] or more, particularly [0.26 ⁇ foil thickness t ( ⁇ m)] or more. .
  • N tensile strength
  • Al foil can be manufactured as follows, for example. First, from casting to plate rolling (about 1 mm), it can be manufactured by an ordinary method. For example, an ingot is produced by preparing a molten raw material having the above composition and solidifying the molten metal. In this case, it is preferable to homogenize the resulting ingot at 400 to 550 ° C. for about 1 to 20 hours. In particular, in the present invention, it is desirable that the homogenization temperature is 550 ° C. or lower. By setting the homogenization treatment temperature to 550 ° C. or lower, a higher cube orientation occupation ratio can be obtained after rolling and annealing to a foil of 50 ⁇ m or less.
  • the ingot is hot rolled and cold rolled to obtain a thick foil of about 350 ⁇ m.
  • the thickness of the thin foil after rolling is preferably 110 to 130% of the thickness of the final foil.
  • the temperature of cold rolling itself can be implemented within the temperature range which does not exceed 120 degreeC.
  • the thin foil rolling (at least the final rolling (that is, rolling for obtaining the final foil)) has an average roughness Ra of the rolling roll of 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further 0.18 ⁇ m or less. It is preferable that In this case, the average roughness Ra of the thin foil obtained is 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further 0.18 ⁇ m or less on the surface in contact with the rolling roll.
  • a thin foil when a thin foil is obtained by rolling a thick foil, it is preferable to perform rolling while ensuring a surface that does not contact the rolling roll.
  • By securing a surface that does not come into contact with the rolling roll it is possible to eliminate a factor that hinders the movement of crystal grains, and thereby a high cube orientation occupation ratio can be obtained even with a thin foil.
  • the total thickness when the foils are overlapped is preferably 350 ⁇ m or less. Separation of the laminated foils can be carried out before and / or after the next step, annealing. Also in this combined rolling, it is preferable that the average roughness Ra of the rolling roll is 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further 0.18 ⁇ m or less.
  • the heat treatment temperature is desirably 350 ° C. or lower.
  • the atmosphere of the intermediate annealing is not limited, and may be any of, for example, vacuum, air, inert gas atmosphere, and the like.
  • the thin foil is further cold-rolled to obtain a final foil having a desired foil thickness (a foil having a final foil thickness). That is, a foil having a thickness of 50 ⁇ m or less can be obtained by this cold rolling.
  • the average roughness Ra of the rolling roll is preferably 0.25 ⁇ m or less, particularly 0.20 ⁇ m or less, and further preferably 0.18 ⁇ m or less.
  • the foil may be washed for the purpose of removing rolling oil, impurities and oxide film on the foil surface, for example. You may dry suitably after washing
  • high-temperature annealing is performed with excessively applied rolling oil, a part of the foil surface is yellowed in a spot shape, and etching pits having a desired shape may not be obtained even if etching is performed.
  • the annealing temperature is not limited, it is usually 450 ° C. or higher, preferably 450 ° C. or higher and lower than 660 ° C., more preferably 500 to 620 ° C.
  • the annealing temperature is lower than 450 ° C., the cube orientation ratio is lowered, and there is a possibility that etching pits having a desired shape cannot be obtained even if etching is performed.
  • the annealing time is generally about 1 to 100 hours, although it depends on the annealing temperature.
  • the annealing atmosphere is desirably substantially a vacuum or an inert gas atmosphere.
  • the temperature exceeds 350 ° C. including the temperature raising and lowering steps, it is desirable to reduce the oxygen concentration in the annealing atmosphere as much as possible industrially. That is, it is desirable that the pressure be 10 ⁇ 5 Torr or less or an inert gas atmosphere containing 0 to 1% by volume of oxygen.
  • an inert gas atmosphere in which the oxygen concentration in the vacuum atmosphere or annealing atmosphere exceeding 10 ⁇ 5 Torr exceeds 1.0% by volume, a part of the foil surface after annealing turns yellow into a spot shape, and etching treatment is performed.
  • the through hole is formed by performing an etching process on the foil (final foil) thus obtained.
  • the method for the etching treatment is not limited, and a desired through hole may be formed by one-stage etching, or may be performed in two stages or more.
  • the first-stage etching is preferably direct-current etching in an electrolyte containing hydrochloric acid as a main component.
  • etching pits are mainly formed and the density and shape (through shape) can be controlled.
  • the electrolytic solution an aqueous solution in which 1 to 10% by weight of hydrochloric acid is dissolved in water can be used. In this case, 0.001 to 0.1% by weight of oxalic acid, phosphoric acid, sulfuric acid or the like may be added to the electrolytic solution.
  • the liquid temperature is about 60 to 90 ° C.
  • the current density is about 0.1 to 0.5 A / cm 2 .
  • the etching method is preferably direct current etching.
  • the etching time can be appropriately set according to the foil thickness, the target air permeability, and the like.
  • chemical etching is preferably performed.
  • the etching pit diameter can be mainly controlled.
  • chemical etching can be performed in a liquid having the same composition and temperature as the first-stage etching.
  • the etching time can be appropriately set according to, for example, the foil thickness and the target air permeability.
  • hydrochloric acid it is not always necessary to use hydrochloric acid as a main component, and it may be an electrolyte containing nitric acid as a main component.
  • electrolytic etching instead of chemical etching.
  • “second-stage etching” may be further multi-staged by combining chemical etching, electrolytic etching, and etching solution composition.
  • Comparative Example 1 After preparing a molten metal having the composition shown in Table 1, an ingot was obtained by solidifying the molten metal. Next, the ingot was homogenized at 500 ° C. for 10 hours. Thereafter, the ingot was rolled to a thickness of 65 ⁇ m by hot rolling (temperature 400 ° C.) and cold rolling. Intermediate annealing was performed at 250 ° C. for 8 hours, and then cold rolling was performed to obtain a foil having a thickness of 50 ⁇ m. After washing with an organic solvent-based detergent (isopropylene), annealing was performed in argon gas at 530 ° C. for 10 hours. Prior to the etching treatment, the average roughness Ra and the foil thickness of the foil surface in contact with the rolling roll were measured. The results are shown in Table 1.
  • the obtained foil was subjected to a two-stage etching process.
  • the first-stage etching treatment was performed by direct current etching using an aqueous solution containing 5% by weight of hydrochloric acid as an electrolytic solution at a liquid temperature of 70 ° C. and a current density of 0.3 A / cm 2 .
  • chemical etching is performed for 300 seconds (for 50 ⁇ m) at the same electrolytic solution temperature and liquid temperature as the first stage. Carried out. In this way, an aluminum through foil having a predetermined through hole was obtained.
  • Comparative Examples 2-10 A through aluminum foil was produced in the same manner as in Comparative Example 1 except that the composition of the molten metal and the production conditions were changed to those shown in Table 1 and the chemical etching time of an aluminum foil having a foil thickness of 30 ⁇ m was set to 200 seconds.
  • Example 1 After preparing a molten metal having the composition shown in Table 1, an ingot was obtained by solidifying the molten metal. Next, the ingot was homogenized at 500 ° C. for 10 hours. Thereafter, the ingot was rolled to a thickness of 130 ⁇ m by hot rolling (temperature 400 ° C.) and cold rolling. Two sheets obtained in this way were prepared, and a foil having a total thickness of 130 ⁇ m (each 65 ⁇ m) was obtained by further cold rolling (combined rolling or combined rolling) in a state where the two were superposed. Intermediate annealing was performed at 250 ° C. for 8 hours, and then cold rolling was performed to obtain a foil having a total thickness of 100 ⁇ m (each 50 ⁇ m).
  • the two foils were separated separately, washed with an organic solvent-based cleaning agent (isopropylene), and then annealed in argon gas at 530 ° C. for 10 hours. Prior to the etching treatment, the average roughness Ra and the foil thickness of the foil surface in contact with the rolling roll were measured. The results are shown in Table 1.
  • Examples 2 to 10 A through aluminum foil was produced in the same manner as in Comparative Example 1 except that the composition of the molten metal and the production conditions were changed as shown in Table 1 and the chemical etching time of an aluminum foil having a foil thickness of 30 ⁇ m was changed to 200 seconds.
  • Test example 1 About the aluminum penetration foil obtained by the comparative example and the Example, the vertical through-hole occupation rate, the internal diameter of a through-hole, etc. were measured, respectively. The results are shown in Tables 2 and 3.
  • the measuring method of each physical property was implemented as follows.
  • (1) Vertical through-hole occupancy of aluminum through-foil (after etching process) Sample (10 mm width) so that the LT-ST surface (cross section perpendicular to the rolling direction) of the aluminum through-foil after etching is the observation surface
  • the sample is embedded in an epoxy resin and the sample is buffed (diamond polished).
  • the resin part) is observed with a scanning electron microscope (SEM).
  • the part where the measurement length of each sample is 100 mm in the dimension of the photograph is selected as shown in FIG. 1, and the angle measurement as shown in FIG.
  • the transparent card for use is superimposed on the above photo, and the number of through holes with an angle in the range of 70 to 110 ° (90 ⁇ 20 °) from the lower surface is measured, and the total number of all through holes is visually observed. After counting, the ratio to the total number is calculated as the vertical through-hole occupation ratio (%).
  • Through-hole ratio s (%) [(100 ⁇ measured weight (g)) / (foil thickness (cm) ⁇ sample area (cm 2 ))] / (specific gravity of aluminum (2.70 g / cm 3 )) was determined.
  • the “foil thickness” is an average value obtained by measuring a total of five points at the four corners and the center of the sample with a micrometer.
  • the “sample area” is 10 cm ⁇ 5 cm.
  • the “measured weight” is a value obtained by weighing the sample with an electronic balance.
  • Average roughness According to JIS B 0601, the center line average roughness in the direction perpendicular to the rolling direction of the surface of the aluminum penetrating foil was measured using a contact-type surface roughness meter (product name “SURFCOM 1400D-12” manufactured by Tokyo Seimitsu Co., Ltd.). The average roughness (Ra) was measured. The measurement range is 10 mm.

Abstract

Disclosed is a perforated aluminum foil which has high strength and a plurality of through holes, since the perforated aluminum foil has a high cube orientation occupancy in spite of a thin foil thickness. Specifically disclosed is a perforated aluminum foil which is composed of 5-80 ppm by weight of Fe, 5-100 ppm by weight of Si and 10-100 ppm by weight of Cu, with the balance made up of Al and unavoidable impurities. The perforated aluminum foil is characterized in that: (1) the foil thickness is not more than 50 μm; (2) the foil has a plurality of through holes penetrating therethrough from the front surface to the back surface; and (3) the ratio of the vertical through hole occupancy (c) (%) to the foil thickness (t) (μm) in the perforated aluminum foil, namely c/t is not less than 1.4.

Description

アルミニウム貫通箔Aluminum penetration foil
 本発明は、新規なアルミニウム貫通箔に関する。より具体的には、リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタ等の集電体に用いられるアルミニウム貫通箔に関する。 The present invention relates to a novel aluminum penetration foil. More specifically, the present invention relates to a through aluminum foil used for a current collector such as a lithium ion battery, a lithium ion capacitor, or an electric double layer capacitor.
 リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタ等のエネルギー密度を向上させるためにはより高い電圧が必要である。エネルギー密度を高めるためには、プレドープ技術を利用し、負極電位を下げることが好ましい。プレドープを効率良く行うためには、集電体に貫通孔を設けることが必要である。集電体の貫通孔を通じてリチウムイオンを可逆的に移動可能とすることにより負極活物質にリチウムイオンを担持することができる。 Higher voltage is required to improve the energy density of lithium ion batteries, lithium ion capacitors, electric double layer capacitors, etc. In order to increase the energy density, it is preferable to use a pre-doping technique and lower the negative electrode potential. In order to efficiently perform pre-doping, it is necessary to provide a through hole in the current collector. Lithium ions can be supported on the negative electrode active material by allowing lithium ions to move reversibly through the through holes of the current collector.
 貫通孔を有する集電体の作製方法として、例えばパンチング加工、メッシュ加工、エキスパンド加工、網加工等が知られているが、これらの方法で形成される貫通孔の大きさは一般的に0.3mm以上である。ところが、貫通孔を設けるとそれだけ集電体の強度が低下することになり、前記のような比較的大きな孔径では強度低下の問題がより大きくなる。 As a method for producing a current collector having a through hole, for example, punching, meshing, expanding, and netting are known. The size of the through hole formed by these methods is generally 0. 0. 3 mm or more. However, if a through hole is provided, the strength of the current collector is reduced accordingly, and the problem of strength reduction becomes greater with a relatively large hole diameter as described above.
 これに対し、比較的微細な貫通孔を有する集電体を用いる電極等が提案されている。例えば、リチウムイオン及び/又はアニオンを可逆的に担持可能な物質からなる正極とリチウムイオンを可逆的に担持可能な物質からなる負極を備えており、かつ、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備えたリチウムイオンキャパシタであって、(1)負極及び/又は正極とリチウムイオン供給源との電気化学的接触によってリチウムイオンが負極及び/又は正極にドーピングされ、(2)正極と負極を短絡させた後の正極の電位が2.0V以下であり、(3)前記正極及び/又は負極が、表裏面を貫通する多数の孔を有し、かつこれらの貫通孔の内接円の平均直径が100μm以下である金属箔からなる集電体を有することを特徴とするリチウムイオンキャパシタが知られている(特許文献1)。 On the other hand, an electrode using a current collector having relatively fine through holes has been proposed. For example, a positive electrode made of a material capable of reversibly supporting lithium ions and / or anions and a negative electrode made of a material capable of reversibly supporting lithium ions are provided, and an aprotic organic lithium salt is used as an electrolyte. A lithium ion capacitor comprising a solvent electrolyte solution, wherein (1) lithium ions are doped into the negative electrode and / or positive electrode by electrochemical contact between the negative electrode and / or positive electrode and a lithium ion supply source; The potential of the positive electrode after short-circuiting the negative electrode is 2.0 V or less, (3) the positive electrode and / or the negative electrode has a large number of holes penetrating the front and back surfaces, and an inscribed circle of these through holes There is known a lithium ion capacitor having a current collector made of a metal foil having an average diameter of 100 μm or less (Patent Document 1).
 しかし、特許文献1では、上記集電体についてその平均直径以外の構成については特に言及されていない。しかも、貫通孔の内接円の平均直径が100μm以下にする場合、具体的にどのような材料を使用すれば良いかについて特許文献1には特に言及されていない。一般に、強度が高く、かつ、適切な密度及び数を有する貫通孔を有するアルミニウム箔を製造するためには、アルミニウム箔に対して垂直なピットを形成する必要がある。このような垂直のピットを形成するためにアルミニウム箔の結晶方位(100)面を揃えることが必要であるものの、従来技術では高い(100)面占有率を得ることは困難ないしは不可能である。 However, Patent Document 1 does not particularly mention the configuration of the current collector other than its average diameter. Moreover, when the average diameter of the inscribed circle of the through hole is set to 100 μm or less, Patent Document 1 does not particularly mention what kind of material should be used. In general, in order to manufacture an aluminum foil having through holes having high strength and appropriate density and number, it is necessary to form pits perpendicular to the aluminum foil. Although it is necessary to align the crystal orientation (100) plane of the aluminum foil in order to form such vertical pits, it is difficult or impossible to obtain a high (100) plane occupancy ratio with the prior art.
 また、特許文献1に記載されている100μm以下、特に10μm以下でも密度が高くなりすぎると、集電体に活物質を塗布しても活物質が裏抜けし、不必要な部分にも活物質が塗布されたり、またその対策として前処理が必要となる場合も生じる。また、集電体の強度も低くなり、活物質の塗布工程において制約が多くなる。このため、適切な貫通孔を得るためにはアルミニウム原箔から種々の物性を制御することが必要である。例えば、従来の3003材等で代表されるアルミニウム箔をそのまま用いても、表面から裏面までを最短距離で100μm以下の小さな貫通孔を多数制御することは不可能である。 Further, if the density becomes too high even if it is 100 μm or less, particularly 10 μm or less as described in Patent Document 1, even if an active material is applied to the current collector, the active material breaks through and the active material is also applied to unnecessary portions. May be applied, or pretreatment may be required as a countermeasure. In addition, the strength of the current collector is lowered, and there are many restrictions in the active material coating process. For this reason, in order to obtain an appropriate through-hole, it is necessary to control various physical properties from the aluminum original foil. For example, even if an aluminum foil represented by a conventional 3003 material or the like is used as it is, it is impossible to control a large number of small through-holes having a minimum distance of 100 μm or less from the front surface to the back surface.
 また、厚さが20~45μm及び見掛密度が2.00~2.54g/cmで、透気度20~120sの表裏面を貫通する多数の貫通孔を有するアルミニウムエッチング箔よりなる集電体と、この集電体上に、活物質として、リチウムイオン及びアニオンを可逆的に担持可能な物質を含有する塗料が塗布されることによって形成された電極層とを有することを特徴とする塗布電極であって、前記集電体の貫通孔の80%以上が、孔径1~30μmであることを特徴とする塗布電極が知られている(特許文献2)。 Further, the current collector is made of an aluminum etching foil having a thickness of 20 to 45 μm, an apparent density of 2.00 to 2.54 g / cm 3 , and having a large number of through holes penetrating the front and back surfaces having an air permeability of 20 to 120 s. And an electrode layer formed by applying a paint containing a material capable of reversibly supporting lithium ions and anions as an active material on the current collector A coated electrode is known in which 80% or more of the through holes of the current collector have a hole diameter of 1 to 30 μm (Patent Document 2).
 しかし、特許文献2も、集電体の貫通孔の80%以上が、孔径1~30μmであるという点以外の構成については特に記載されていない。また、その製造方法としても、厚み25~60μm、99.99%のAlにおいて、結晶方位が揃ったアルミニウム軟質箔を用い、直流エッチングにて貫通孔を得ると記載されているが、具体的な製造方法は示されていない。 However, Patent Document 2 also does not particularly describe the configuration except that 80% or more of the through holes of the current collector have a hole diameter of 1 to 30 μm. In addition, as a manufacturing method thereof, it is described that a through hole is obtained by direct current etching using an aluminum soft foil having a uniform crystal orientation in Al having a thickness of 25 to 60 μm and 99.99%. The production method is not shown.
 他方、結晶方位が揃ったアルミニウム箔として、電解コンデンサ用アルミニウム箔が知られている(例えば、特許文献3、特許文献4)。 On the other hand, an aluminum foil for electrolytic capacitors is known as an aluminum foil having a uniform crystal orientation (for example, Patent Document 3 and Patent Document 4).
 しかし、電解コンデンサ用アルミニウム箔は、その厚みが通常100μm以上であり、前記のようなプレドープ用の集電体として用いることができない。また、アルミニウム箔の厚みを薄くしようとすると、結晶方位を揃えることが困難となる。事実、例えば特許文献3の実施例1~3では、厚さ50μmのアルミニウム箔の立方体占有率が示されているが、その値は56~65%にとどまっている。このため、所望の貫通孔を得るためには、さらなる技術改良が必要である。 However, the aluminum foil for electrolytic capacitors usually has a thickness of 100 μm or more and cannot be used as a current collector for pre-doping as described above. Further, if the thickness of the aluminum foil is reduced, it is difficult to align the crystal orientation. In fact, for example, in Examples 1 to 3 of Patent Document 3, the cube occupation ratio of an aluminum foil having a thickness of 50 μm is shown, but the value is only 56 to 65%. For this reason, in order to obtain a desired through-hole, further technical improvement is required.
特開2007-141897JP2007-141897 国際公開WO2008/078777International Publication WO2008 / 0778777 特開2009-62595JP 2009-62595 A 特開2005-174949JP 2005-174949 A
 従って、本発明の主な目的は、箔厚みが薄いにもかかわらず、高い立方体方位占有率を有するがゆえに、高強度で多くの貫通孔を有するアルミニウム貫通箔を提供することにある。 Therefore, the main object of the present invention is to provide an aluminum through foil having a high strength and a large number of through holes because it has a high cube orientation occupation ratio even though the foil thickness is thin.
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、所定の構成を有するアルミニウムから特定の方法によりアルミニウム箔を製造することにより上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the problems of the prior art, the present inventors have found that the above object can be achieved by producing an aluminum foil from aluminum having a predetermined structure by a specific method, and the present invention has been completed. It came to do.
 すなわち、本発明は、下記のアルミニウム貫通箔に係る。
1. Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
(1)箔厚みが50μm以下であり、
(2)箔表面から裏面に至る貫通孔を複数有し、
(3)当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、
ことを特徴とするアルミニウム貫通箔。
2. JIS P 8117に準じたガーレ式デンソメータによる透気度試験方法によって測定された透気度が5sec/100ml以上である、請求項1に記載のアルミニウム貫通箔。
3. 貫通孔の内径が0.2~5μmである、前記項1又は2に記載のアルミニウム貫通箔。
4. 貫通孔率s(%)=[(100×測定重量(g))/(箔厚み(cm)×試料面積(cm))]/(アルミニウムの比重(2.70g/cm))が、5≦s≦20の範囲である、前記項1~3のいずれかに記載のアルミニウム貫通箔。
5. 引張強度h(N)が、
[0.22×箔厚みt(μm)]以上の値である、前記項1~4のいずれかに記載のアルミニウム貫通箔。
6. 表面積拡大率(%)が、
[0.15×箔厚みt(μm)]以上の値である、前記項1~5のいずれかに記載のアルミニウム貫通箔。
7. Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
(1)Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム系材料を400~550℃で均質化処理する工程、
(2)前記の均質化処理された材料を圧延することにより厚み400~100μmの厚箔を得る工程、
(3)前記厚箔を2枚以上重ねた状態で冷間圧延することにより最終箔の箔厚みの110~130%の厚みの薄箔を得る工程、
(4)前記薄箔を冷間圧延することにより箔厚み50μm以下の最終箔を得る工程、
(5)前記最終箔を塩酸水溶液で直流エッチングする工程、及び
(6)前記の直流エッチングが施された最終箔を塩酸水溶液でケミカルエッチングする工程
を含む方法により得られる、アルミニウム貫通箔。
8. 箔表面から裏面に至る貫通孔を複数有し、かつ、当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、前記項7に記載のアルミニウム貫通箔。
9. 前記方法が、前記工程(5)に先立って、前記最終箔を真空又は不活性ガス雰囲気下450℃以上で焼鈍する工程をさらに含む、前記項7又は8に記載のアルミニウム貫通箔。
10. 前記方法が、前記工程(3)の後、かつ、前記工程(4)に先立って、中間焼鈍として前記薄箔を150~350℃で熱処理する工程をさらに含む、前記項7~9のいずれかに記載のアルミニウム貫通箔。
11. 前記方法において、前記工程(4)で得られる最終箔の平均粗度Raが0.25μm以下である、前記項7~10のいずれかに記載のアルミニウム貫通箔。
That is, this invention concerns on the following aluminum penetration foil.
1. Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: an aluminum penetrating foil comprising Al and inevitable impurities,
(1) The foil thickness is 50 μm or less,
(2) having a plurality of through holes from the foil surface to the back surface,
(3) The ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t (μm) in the aluminum through foil is 1.4 or more.
An aluminum penetration foil characterized by that.
2. The aluminum penetration foil of Claim 1 whose air permeability measured by the air permeability test method by the Gurley type | mold densometer according to JISP8117 is 5 sec / 100ml or more.
3. Item 3. The aluminum penetrating foil according to Item 1 or 2, wherein the through hole has an inner diameter of 0.2 to 5 μm.
4). Through porosity s (%) = [(100 × measured weight (g)) / (foil thickness (cm) × sample area (cm 2 ))] / (aluminum specific gravity (2.70 g / cm 3 )) Item 4. The aluminum penetrating foil according to any one of Items 1 to 3, wherein the range is 5 ≦ s ≦ 20.
5. The tensile strength h (N) is
Item 5. The aluminum penetrating foil according to any one of Items 1 to 4, which has a value of [0.22 × foil thickness t (μm)] or more.
6). Surface area expansion rate (%)
Item 6. The aluminum penetrating foil according to any one of Items 1 to 5, which has a value of [0.15 × foil thickness t (μm)] or more.
7). Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: an aluminum penetrating foil comprising Al and inevitable impurities,
(1) A step of homogenizing an aluminum-based material composed of Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: Al and inevitable impurities at 400 to 550 ° C.
(2) a step of obtaining a thick foil having a thickness of 400 to 100 μm by rolling the homogenized material;
(3) A step of obtaining a thin foil having a thickness of 110 to 130% of the final foil by cold rolling in a state where two or more of the thick foils are stacked,
(4) A step of cold rolling the thin foil to obtain a final foil having a foil thickness of 50 μm or less,
(5) An aluminum penetrating foil obtained by a method comprising a step of direct-current etching the final foil with a hydrochloric acid aqueous solution, and (6) a step of chemically etching the final foil subjected to the direct-current etching with a hydrochloric acid aqueous solution.
8). There are a plurality of through holes from the foil surface to the back surface, and the ratio [c / t] of the vertical through hole occupation ratio c (%) and the foil thickness t (μm) in the aluminum through foil is 1.4 or more Item 8. The aluminum penetrating foil according to Item 7 above.
9. Item 9. The aluminum penetrating foil according to Item 7 or 8, wherein the method further comprises a step of annealing the final foil at 450 ° C. or higher in a vacuum or an inert gas atmosphere prior to the step (5).
10. Any of the above items 7 to 9, wherein the method further includes a step of heat-treating the thin foil at 150 to 350 ° C. as an intermediate annealing after the step (3) and prior to the step (4). Aluminum through-foil as described in 1.
11. 11. The aluminum penetrating foil according to any one of Items 7 to 10, wherein in the method, the average roughness Ra of the final foil obtained in the step (4) is 0.25 μm or less.
 本発明によれば、箔厚みが50μm以下と薄くても、高い比率で立方体集合組織を有するため、強度が高く、かつ、量的に十分な貫通孔を有するアルミニウム貫通箔を提供することができる。 According to the present invention, even if the foil thickness is as thin as 50 μm or less, since it has a cubic texture at a high ratio, it is possible to provide an aluminum through foil having high strength and sufficient through holes. .
 このようなアルミニウム箔は、リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタ等の集電体として好適に用いることができる。とりわけ、リチウムイオンキャパシタ又はリチウムイオン二次電池が、1)リチウムイオン及び/又はアニオンを可逆的に担持可能な物質からなる正極、2)リチウムイオンを可逆的に担持可能な物質からなる負極及び3)リチウムイオンを含む電解質溶液を含み、かつ、リチウムイオンが正極及び/又は負極にドーピングされるものの集電体として本発明のアルミニウム貫通箔は有用である。すなわち、本発明のアルミニウム貫通箔を上記のような集電体として用いる場合は、リチウムイオンが貫通孔を通じてドーピングできる集電体として機能するので、電池特性等の向上に寄与することができる。 Such an aluminum foil can be suitably used as a current collector for lithium ion batteries, lithium ion capacitors, electric double layer capacitors and the like. In particular, a lithium ion capacitor or a lithium ion secondary battery includes 1) a positive electrode made of a material capable of reversibly carrying lithium ions and / or anions, and 2) a negative electrode made of a material capable of reversibly carrying lithium ions and 3 The aluminum through-foil of the present invention is useful as a current collector that contains an electrolyte solution containing lithium ions and is doped with lithium ions on the positive electrode and / or the negative electrode. That is, when the aluminum through-foil of the present invention is used as a current collector as described above, it functions as a current collector that can be doped with lithium ions through the through holes, which can contribute to improvements in battery characteristics and the like.
垂直貫通孔占有率を測定する場合のエッチングピットを走査型電子顕微鏡で観察した結果の一例を示す図(電子顕微鏡写真)である。It is a figure (an electron micrograph) which shows an example of the result of having observed the etching pit in the case of measuring a vertical through-hole occupation rate with a scanning electron microscope. 所定の角度を有するエッチングピットを観察するための透明カードの模式図である。It is a schematic diagram of the transparent card | curd for observing the etching pit which has a predetermined angle.
 アルミニウム貫通箔
 本発明のアルミニウム貫通箔(本発明Al箔)は、Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
(1)箔厚みが50μm以下であり、
(2)箔表面から裏面に至る貫通孔を複数有し、
(3)当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、
 ことを特徴とする。
Aluminum penetration foil The aluminum penetration foil of the present invention (the Al foil of the present invention) is made of Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: aluminum composed of Al and inevitable impurities. A penetrating foil,
(1) The foil thickness is 50 μm or less,
(2) having a plurality of through holes from the foil surface to the back surface,
(3) The ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t (μm) in the aluminum through foil is 1.4 or more.
It is characterized by that.
 本発明Al箔の組成は、前記の通り、Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなる。 As described above, the composition of the Al foil of the present invention comprises Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: Al and inevitable impurities.
 Feの含有量は、通常5~80ppm程度とし、好ましくは10~50ppmとする。Feは、Al-Fe系の化合物として晶出し、圧延性や伸びを改善することができる元素である。また、適度な量のAl-Fe系の化合物は、結晶核発生サイド及びピン止めにより結晶粒を微細化し、圧延時の耐焼付性(ロールへの材料の溶着)と微粉の発生とを抑えることによって、薄箔の圧延性を向上させることができる。 The Fe content is usually about 5 to 80 ppm, preferably 10 to 50 ppm. Fe is an element that can be crystallized as an Al—Fe-based compound to improve rolling properties and elongation. In addition, an appropriate amount of Al-Fe-based compound refines the crystal grains by the crystal nucleation side and pinning to suppress seizure resistance during rolling (material adhesion to the roll) and generation of fine powder. Thus, the rollability of the thin foil can be improved.
 Feの含有量が5ppm未満の場合は、上記の効果が得られず、結晶粒の粗大化による箔の強度低下が起こり、孔開箔の強度低下や部位による強度のバラツキを生じやすい。一方、Feの含有量が80ppmを超える場合は、表面に過剰な溶解が起こり、孔開箔の強度低下や部位による強度のバラツキを招く。また、立方体方位の占有率が低くなり、十分な貫通エッチングピット密度が得られない。 When the Fe content is less than 5 ppm, the above effect cannot be obtained, and the strength of the foil is reduced due to the coarsening of crystal grains, and the strength of the perforated foil is easily reduced and the strength varies depending on the part. On the other hand, when the Fe content exceeds 80 ppm, excessive dissolution occurs on the surface, resulting in a decrease in strength of the perforated foil and variation in strength due to the site. Further, the occupation ratio of the cube orientation is lowered, and a sufficient through etching pit density cannot be obtained.
 Siの含有量は、通常5~100ppm程度とし、好ましくは10~60ppmとする。Siは、主に、強度を向上させることができる元素である。また、例えば、特に厚みが50μm以下の薄箔への圧延時にはアルミニウム貫通箔の表面のみならず、内部にも圧延加工に伴う瞬間的な温度上昇が発生するが、シリコンの存在により転位の消失を抑制して強度の低下を防ぐことができる。 The Si content is usually about 5 to 100 ppm, preferably 10 to 60 ppm. Si is an element that can mainly improve the strength. In addition, for example, when rolling to a thin foil having a thickness of 50 μm or less, an instantaneous temperature rise is caused not only on the surface of the aluminum penetrating foil but also on the inside, but dislocation disappears due to the presence of silicon. It can suppress and the fall of intensity | strength can be prevented.
 Siの含有量が5ppm未満の場合は、上記の効果が得られず、強度低下が起こり、孔開箔の強度低下や部位による強度のバラツキを生じやすい。また、Siの含有量が100ppmを超える場合は、立方体方位の占有率が低くなり、十分な貫通エッチングピット密度が得られない。 When the Si content is less than 5 ppm, the above effect cannot be obtained, and the strength is lowered, and the strength of the perforated foil is easily reduced and the strength is easily varied depending on the portion. In addition, when the Si content exceeds 100 ppm, the occupation ratio of the cube orientation becomes low, and a sufficient through etching pit density cannot be obtained.
 Cuの含有量は、通常10~100ppm程度とし、好ましくは15~60ppmとする。Cuは、主として塩酸エッチング時の溶解性を向上させ、貫通エッチングピットの形成に寄与する。 The Cu content is usually about 10 to 100 ppm, preferably 15 to 60 ppm. Cu mainly improves the solubility during hydrochloric acid etching and contributes to the formation of through-etching pits.
 Cuの含有量が10ppm未満の場合は上記の効果が十分に得られない上、薄箔の圧延性を著しく低下させる。他方、Cuの含有量が100ppmを超える場合は、表面に過剰な溶解が起こり、孔開箔の強度低下や部位による強度のバラツキを招く。また、立方体方位の占有率が低くなり、十分な貫通エッチングピット密度が得られない。 When the Cu content is less than 10 ppm, the above effect cannot be obtained sufficiently, and the rollability of the thin foil is remarkably lowered. On the other hand, when the Cu content exceeds 100 ppm, excessive dissolution occurs on the surface, resulting in a decrease in strength of the perforated foil and variation in strength due to the site. Further, the occupation ratio of the cube orientation is lowered, and a sufficient through etching pit density cannot be obtained.
 本発明Al箔では、上記のような成分のほか、必要に応じてPbが含まれていても良い。Pbは、主としてエッチング処理に使用する電解液とアルミニウム箔との反応を促進し、初期のエッチングピット数を増加させる働きがあることから、いっそう高い貫通エッチング密度を達成することが可能となる。Pbを含有する場合のPb含有量は、通常0.01~20ppm程度とし、好ましくは0.05~10ppmとすれば良い。 In addition to the above components, the Al foil of the present invention may contain Pb as necessary. Pb mainly promotes the reaction between the electrolytic solution used for the etching process and the aluminum foil and increases the initial number of etching pits, so that a higher penetration etching density can be achieved. When Pb is contained, the Pb content is usually about 0.01 to 20 ppm, preferably 0.05 to 10 ppm.
 Pbは、主としてエッチング処理に使用する電解液とアルミニウム箔との反応を促進し、初期のエッチングピット数を増加させる働きがあるので、いっそう高い貫通エッチング密度を達成することが可能となる。Pbを含有する場合のPbの含有量は、上記のような効果が達成できるように適宜調整することができるが、通常0.01~20ppm程度、好ましくは0.05~10ppmとすれば良い。 Pb mainly promotes the reaction between the electrolytic solution used for the etching treatment and the aluminum foil and increases the initial number of etching pits, so that a higher penetration etching density can be achieved. The content of Pb in the case of containing Pb can be appropriately adjusted so as to achieve the above effects, but it is usually about 0.01 to 20 ppm, preferably 0.05 to 10 ppm.
 特に、本発明Al箔では、Pbがアルミニウム箔の表面から深さ0.1μmまでの領域において40~2000ppmの範囲となるように設定することが望ましい。上記範囲内に設定することによって、貫通エッチング密度をよりいっそう高めることができる。 In particular, in the Al foil of the present invention, it is desirable to set Pb to be in the range of 40 to 2000 ppm in the region from the surface of the aluminum foil to a depth of 0.1 μm. By setting within the above range, the penetration etching density can be further increased.
 なお、このようなPb含有量の調整は、例えばアルミニウム箔の製造段階においてアルミニウム溶湯に添加するPb量を調節し、さらに焼鈍温度を450℃以上の範囲内で制御することによって実施することができる。 Such adjustment of the Pb content can be carried out, for example, by adjusting the amount of Pb added to the molten aluminum in the production stage of the aluminum foil and further controlling the annealing temperature within a range of 450 ° C. or higher. .
 残部は実質的にAlと不可避不純物からなる。本発明のアルミニウム合金箔におけるアルミニウム純度は、集電体用として使える範囲内であれば特に制限されない。また、不可避不純物としては、例えばMg、Mn、Zn、Ti、V、Ga、Cr、Zr、B等が含まれていても良い。 The balance is substantially made of Al and inevitable impurities. The aluminum purity in the aluminum alloy foil of the present invention is not particularly limited as long as it is within a range that can be used for a current collector. Inevitable impurities may include, for example, Mg, Mn, Zn, Ti, V, Ga, Cr, Zr, and B.
 本発明Al箔の厚みは、50μm以下、好ましくは40μm以下とする。上記の厚みに設定することにより、リチウムイオンキャパシタの集電体として好適に用いることができる。なお、厚みの下限値は限定的ではないが、通常は1μm程度とすれば良い。 The thickness of the Al foil of the present invention is 50 μm or less, preferably 40 μm or less. By setting to the above thickness, it can be suitably used as a current collector of a lithium ion capacitor. The lower limit value of the thickness is not limited, but is usually about 1 μm.
 また、貫通孔の内径は、Al箔の用途、使用目的等に応じて適宜設定することができるが、通常は0.2~5μm、特に0.5~3μmとすることが好ましい。貫通孔の内径は、エッチング処理時において特にエッチング時間を調整することにより適宜制御することができる。 The inner diameter of the through-hole can be appropriately set according to the use and purpose of use of the Al foil, but is usually 0.2 to 5 μm, particularly preferably 0.5 to 3 μm. The inner diameter of the through hole can be appropriately controlled by adjusting the etching time particularly during the etching process.
 本発明Al箔では、アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上であり、好ましくは1.5以上であり、より好ましくは1.6以上である。このことは、本発明Al箔が、従来のアルミニウム貫通箔と比べて、同じ厚みでもより高い垂直貫通孔占有率を示すものである。すなわち、本発明Al箔は、厚みが薄いにもかかわらず、より高い垂直貫通孔占有率を有するものである。一般に、高純度アルミニウム箔は、厚くが薄くなるほど立方体方位占有率が低くなり、それに伴って垂直貫通孔占有率も低下する。一般的には立方体方位占有率は、箔厚み(μm)%の数値程度の値に相当すると言われている。例えば、箔厚み55μmのアルミニウム箔であれば立方体方位占有率はおよそ55%前後となる。これに対し、本発明では、Fe、Si、Cu等の含有量を制御すること等によって、薄い箔であっても従来技術よりも高い立方体方位占有率を実現させることができる結果、垂直貫通孔占有率をより高くすることが可能となる。 In the Al foil of the present invention, the ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t (μm) in the aluminum through foil is 1.4 or more, preferably 1.5 or more. More preferably, it is 1.6 or more. This indicates that the Al foil of the present invention exhibits a higher vertical through-hole occupation ratio even at the same thickness as compared with the conventional aluminum through foil. That is, the Al foil of the present invention has a higher vertical through-hole occupancy rate despite its small thickness. In general, as the thickness of the high-purity aluminum foil increases, the cube orientation occupancy decreases, and the vertical through-hole occupancy decreases accordingly. In general, it is said that the cube orientation occupancy corresponds to a value about the value of foil thickness (μm)%. For example, in the case of an aluminum foil having a foil thickness of 55 μm, the cube orientation occupation ratio is approximately 55%. On the other hand, in the present invention, by controlling the content of Fe, Si, Cu, etc., it is possible to realize a higher cubic orientation occupancy than the prior art even with a thin foil. It becomes possible to increase the occupation ratio.
 前記の垂直貫通孔占有率に関し、本発明Al箔では垂直貫通孔占有率そのものの値については箔厚み等によって変動するので特に限定されないが、一般的には30~98%、特に40~98%の範囲内にあれば良い。 Regarding the vertical through-hole occupancy, the value of the vertical through-hole occupancy itself in the Al foil of the present invention is not particularly limited because it varies depending on the foil thickness and the like, but is generally 30 to 98%, particularly 40 to 98%. If it is in the range.
 なお、一般に、水平面から70~110度の角度をなす貫通孔の割合が、エッチング前のアルミニウム箔の立方体方位占有率とほぼ同じ値となることから、本発明では貫通孔が水平面から70~110度(すなわち、90度±20度)の範囲の角度をなすものを垂直貫通孔とし、貫通孔の総数に対する垂直貫通孔が占める割合を垂直貫通孔占有率としている。よって、本発明のおける垂直貫通孔占有率は、エッチング前のアルミニウム箔の立方体方位占有率とほぼ同じ値となる。 In general, since the ratio of the through holes forming an angle of 70 to 110 degrees from the horizontal plane is substantially the same as the cube orientation occupation ratio of the aluminum foil before etching, in the present invention, the through holes are 70 to 110 from the horizontal plane. A vertical through hole is defined as an angle having an angle in the range of degrees (that is, 90 ° ± 20 °), and the ratio of the vertical through hole to the total number of through holes is defined as the vertical through hole occupation ratio. Therefore, the vertical through-hole occupation ratio in the present invention is almost the same value as the cube orientation occupation ratio of the aluminum foil before etching.
 また、本発明Al箔は、JIS P 8117に準じたガーレ式デンソメータによる透気度試験方法によって測定された透気度が5sec/100ml以上、特に15sec/100ml以上であることが好ましい。かかる透気度を有することにより、本発明Al箔に活物質を塗布しても活物質が裏抜けせず、不必要な部分にも活物質が塗布されることがないため、その対策としての前処理が不要になるという効果が得られる。なお、前記透気度の上限値は特に制限されないが、通常は180sec/100ml程度とすれば良い。 In addition, it is preferable that the Al foil of the present invention has an air permeability measured by an air permeability test method using a Gurley type densometer according to JIS P 8117 of 5 sec / 100 ml or more, particularly 15 sec / 100 ml or more. By having such air permeability, even if an active material is applied to the Al foil of the present invention, the active material does not get through, and the active material is not applied to unnecessary portions. The effect that pre-processing becomes unnecessary is acquired. The upper limit value of the air permeability is not particularly limited, but is usually about 180 sec / 100 ml.
 本発明Al箔においては、表面積拡大率が[0.15×箔厚みt(μm)]以上の値、特に[0.17×箔厚みt(μm)]以上の値であることが好ましい。表面積拡大率を上記範囲に設定することによって、集電体としての本発明Al箔と活物質との密着性を向上させることができる。 In the Al foil of the present invention, the surface area enlargement ratio is preferably a value of [0.15 × foil thickness t (μm)] or more, and particularly preferably a value of [0.17 × foil thickness t (μm)] or more. By setting the surface area expansion ratio in the above range, the adhesion between the Al foil of the present invention as a current collector and the active material can be improved.
 また、本発明Al箔では、貫通孔率s(%)=〔 測定重量(g)/〔箔厚み(cm)×試料面積(cm)〕〕/アルミニウムの比重(2.70g/cm)が、5≦s≦20の範囲にあることが好ましい。上記範囲内に設定することによって、貫通孔を通じてリチウムイオンを可逆的に移動可能でありながら、強度が低くなりすぎるおそれをなくすことができる。 Further, in the Al foil of the present invention, the through porosity s (%) = [measured weight (g) / [foil thickness (cm) × sample area (cm 2 )]] / aluminum specific gravity (2.70 g / cm 3 ) Is preferably in the range of 5 ≦ s ≦ 20. By setting within the above range, the lithium ion can be reversibly moved through the through hole, but the possibility that the strength becomes too low can be eliminated.
 本発明Al箔は、引張強度h(N)が、少なくとも[0.22×箔厚みt(μm)]以上、特に[0.26×箔厚みt(μm)]以上の値であることが好ましい。上記範囲内に設定することによって、コンマコーター等による活物質の塗工が容易になり、生産性に支障をきたすおそれをなくすことができる。 The Al foil of the present invention preferably has a tensile strength h (N) of at least [0.22 × foil thickness t (μm)] or more, particularly [0.26 × foil thickness t (μm)] or more. . By setting within the above range, the application of the active material by a comma coater or the like can be facilitated, and the possibility of impeding productivity can be eliminated.
 アルミニウム貫通箔の製造方法
 本発明Al箔は、例えば次のようにして製造することができる。まず、鋳造から板圧延(約1mm位)まではほぼ通常の方法で製造することができる。例えば、上記組成を有する原料の溶湯を調製し、溶湯を凝固させることにより鋳塊を製造する。この場合、得られた鋳塊に対して400~550℃で1~20時間程度の均質化処理を施すことが好ましい。特に、本発明では、均質化処理温度を550℃以下とすることが望ましい。均質化処理温度を550℃以下とすることによって、50μm以下の箔に圧延して焼鈍した後により高い立方体方位占有率を得ることができる。
Manufacturing method of aluminum penetration foil This invention Al foil can be manufactured as follows, for example. First, from casting to plate rolling (about 1 mm), it can be manufactured by an ordinary method. For example, an ingot is produced by preparing a molten raw material having the above composition and solidifying the molten metal. In this case, it is preferable to homogenize the resulting ingot at 400 to 550 ° C. for about 1 to 20 hours. In particular, in the present invention, it is desirable that the homogenization temperature is 550 ° C. or lower. By setting the homogenization treatment temperature to 550 ° C. or lower, a higher cube orientation occupation ratio can be obtained after rolling and annealing to a foil of 50 μm or less.
 その後、鋳塊に対して熱間圧延及び冷間圧延を施すことによって350μm程度の厚箔とする。なお、必要に応じて、板表面の不純物又は酸化皮膜を除去する等の目的で板洗浄、箔洗浄等の公知の処理を行っても良い。 Thereafter, the ingot is hot rolled and cold rolled to obtain a thick foil of about 350 μm. In addition, you may perform well-known processes, such as board washing | cleaning and foil washing | cleaning, for the objective of removing the impurity or oxide film of a board surface as needed.
 次いで、前記の厚箔を冷間圧延することによって、薄箔を得る。この場合、圧延後の薄箔の厚みは、最終箔の厚みの110~130%の厚みとすることが好ましい。なお、冷間圧延の温度自体は、公知の冷間圧延と同様にすれば良く、例えば120℃を超えない温度範囲内で実施することができる。 Next, a thin foil is obtained by cold rolling the thick foil. In this case, the thickness of the thin foil after rolling is preferably 110 to 130% of the thickness of the final foil. In addition, what is necessary is just to make the temperature of cold rolling itself the same as well-known cold rolling, for example, can be implemented within the temperature range which does not exceed 120 degreeC.
 薄箔の圧延時にはアルミニウム箔の表面のみならず内部にも、圧延加工に伴う瞬間的な温度上昇が発生する。また、アルミニウム箔と圧延ロールとの間の摩擦等、機械的ストレスが大きくなると、50μm以下の箔に圧延して焼鈍した後に立方体方位の占有率が低くなるおそれがある。従って、薄箔の圧延(少なくとも最後の圧延(すなわち、最終箔を得るための圧延))は、圧延ロールの平均粗度Raを0.25μm以下、特に0.20μm以下、さらには0.18μm以下とすることが好ましい。この場合、得られる薄箔の平均粗度Raは、圧延ロールと接する面がそれぞれ0.25μm以下、特に0.20μm以下、さらに0.18μm以下となる。 When rolling a thin foil, an instantaneous temperature rise accompanying the rolling process occurs not only on the surface of the aluminum foil but also inside. In addition, when mechanical stress such as friction between the aluminum foil and the rolling roll increases, the occupation ratio of the cube orientation may decrease after rolling and annealing to a foil of 50 μm or less. Therefore, the thin foil rolling (at least the final rolling (that is, rolling for obtaining the final foil)) has an average roughness Ra of the rolling roll of 0.25 μm or less, particularly 0.20 μm or less, and further 0.18 μm or less. It is preferable that In this case, the average roughness Ra of the thin foil obtained is 0.25 μm or less, particularly 0.20 μm or less, and further 0.18 μm or less on the surface in contact with the rolling roll.
 本発明では、厚箔を圧延して薄箔を得る場合は、圧延ロールに接触しない面を確保しながら圧延することが好ましい。圧延ロールに接触しない面を確保することにより、結晶粒の動きを阻害する要因を除くことができ、これにより薄い箔であっても高い立方体方位占有率を得ることができる。圧延ロールに接触しない面をつくりだすには、例えばいわゆる合わせ圧延(併せ圧延)を行うことが好ましい。すなわち、箔を2枚又はそれ以上重ね合わせた状態で圧延することにより、圧延ロールに接触しない面を有する薄箔を得ることができる。この場合、最終的に得られる薄箔の厚みを均一化するために、箔を重ね合わせる場合の総厚みは350μm以下とすることが好ましい。重ね合わせた箔の分離は、次の工程である焼鈍の前及び/又は後に実施することができる。この合わせ圧延においても、圧延ロールの平均粗度Raを0.25μm以下、特に0.20μm以下、さらには0.18μm以下とすることが好ましい。 In the present invention, when a thin foil is obtained by rolling a thick foil, it is preferable to perform rolling while ensuring a surface that does not contact the rolling roll. By securing a surface that does not come into contact with the rolling roll, it is possible to eliminate a factor that hinders the movement of crystal grains, and thereby a high cube orientation occupation ratio can be obtained even with a thin foil. In order to produce a surface that does not come into contact with the rolling roll, for example, it is preferable to perform so-called combined rolling (combined rolling). That is, the thin foil which has a surface which does not contact a rolling roll can be obtained by rolling in the state which piled up two or more foils. In this case, in order to make the thickness of the thin foil finally obtained uniform, the total thickness when the foils are overlapped is preferably 350 μm or less. Separation of the laminated foils can be carried out before and / or after the next step, annealing. Also in this combined rolling, it is preferable that the average roughness Ra of the rolling roll is 0.25 μm or less, particularly 0.20 μm or less, and further 0.18 μm or less.
 上記の冷間圧延を実施した後、必要に応じて、中間焼鈍として150~350℃(特に150~300℃)で1~30時間程度の熱処理を施すことが好ましい。特に前記の熱処理温度は350℃以下とすることが望ましい。熱処理温度を350℃以下とすることによって、50μm以下の箔に圧延して焼鈍した後により高い立方体方位占有率を得ることができる。なお、中間焼鈍の雰囲気は限定的でなく、例えば真空中、大気中、不活性ガス雰囲気中等のいずれであっても良い。 After carrying out the above-described cold rolling, it is preferable to perform heat treatment at 150 to 350 ° C. (especially 150 to 300 ° C.) for about 1 to 30 hours as an intermediate annealing if necessary. In particular, the heat treatment temperature is desirably 350 ° C. or lower. By setting the heat treatment temperature to 350 ° C. or lower, a higher cube orientation occupation ratio can be obtained after rolling and annealing to a foil of 50 μm or less. The atmosphere of the intermediate annealing is not limited, and may be any of, for example, vacuum, air, inert gas atmosphere, and the like.
 次に、前記薄箔をさらに冷間圧延することにより所望の箔厚みをもつ最終箔(最終的な箔厚みをもつ箔)を得る。すなわち、この冷間圧延によって、箔厚み50μm以下の箔を得ることができる。なお、この冷間圧延においても、圧延ロールの平均粗度Raを0.25μm以下、特に0.20μm以下、さらには0.18μm以下とすることが好ましい。 Next, the thin foil is further cold-rolled to obtain a final foil having a desired foil thickness (a foil having a final foil thickness). That is, a foil having a thickness of 50 μm or less can be obtained by this cold rolling. In this cold rolling as well, the average roughness Ra of the rolling roll is preferably 0.25 μm or less, particularly 0.20 μm or less, and further preferably 0.18 μm or less.
 本発明では、前記の最終箔に対して焼鈍(最終焼鈍)工程を実施することが好ましい。また、焼鈍工程に先立ち、例えば箔表面の圧延油、不純物、酸化皮膜を除去する等の目的で箔洗浄を行っても良い。洗浄後には乾燥を適宜行っても良い。特に、圧延油が過大に付着したまま高温の焼鈍を行なうと、箔表面の一部がシミ状に黄変し、エッチング処理を行なっても所望の形状のエッチングピットが得られなくなるおそれがある。 In the present invention, it is preferable to perform an annealing (final annealing) step on the final foil. Prior to the annealing step, the foil may be washed for the purpose of removing rolling oil, impurities and oxide film on the foil surface, for example. You may dry suitably after washing | cleaning. In particular, if high-temperature annealing is performed with excessively applied rolling oil, a part of the foil surface is yellowed in a spot shape, and etching pits having a desired shape may not be obtained even if etching is performed.
 焼鈍温度は限定的ではないが、通常450℃以上とし、特に450℃以上660℃未満、さらには500~620℃に設定することが望ましい。焼鈍温度が450℃未満になると立方体方位率が低下し、エッチング処理を行っても所望の形状のエッチングピットが得られなくなるおそれがある。焼鈍時間は、焼鈍温度等にもよるが、一般的には1~100時間程度とすれば良い。 Although the annealing temperature is not limited, it is usually 450 ° C. or higher, preferably 450 ° C. or higher and lower than 660 ° C., more preferably 500 to 620 ° C. When the annealing temperature is lower than 450 ° C., the cube orientation ratio is lowered, and there is a possibility that etching pits having a desired shape cannot be obtained even if etching is performed. The annealing time is generally about 1 to 100 hours, although it depends on the annealing temperature.
 焼鈍雰囲気は、実質的に真空又は不活性ガス雰囲気とすることが望ましい。ただし、昇温及び降温の工程も含め350℃を超える場合には、焼鈍雰囲気中の酸素濃度を工業的に可能な限り低減させることが望ましい。すなわち、10-5Torr以下の減圧下又は酸素を0~1体積%含む不活性ガス雰囲気とすることが望ましい。10-5Torrを超える真空雰囲気又は焼鈍雰囲気中の酸素濃度が1.0体積%を超える不活性ガス雰囲気の場合は、焼鈍後の箔表面の一部がシミ状に黄変し、エッチング処理を行なっても所望の形状のエッチングピットが得られなくなるおそれがある。焼鈍雰囲気中の酸素濃度を上記のように設定することによって、薄くて均一な熱酸化皮膜が得られ、透気度の制御に寄与することができる。 The annealing atmosphere is desirably substantially a vacuum or an inert gas atmosphere. However, when the temperature exceeds 350 ° C. including the temperature raising and lowering steps, it is desirable to reduce the oxygen concentration in the annealing atmosphere as much as possible industrially. That is, it is desirable that the pressure be 10 −5 Torr or less or an inert gas atmosphere containing 0 to 1% by volume of oxygen. In the case of an inert gas atmosphere in which the oxygen concentration in the vacuum atmosphere or annealing atmosphere exceeding 10 −5 Torr exceeds 1.0% by volume, a part of the foil surface after annealing turns yellow into a spot shape, and etching treatment is performed. Even if it carries out, there exists a possibility that the etching pit of a desired shape may no longer be obtained. By setting the oxygen concentration in the annealing atmosphere as described above, a thin and uniform thermal oxide film can be obtained, which can contribute to the control of the air permeability.
 このようにして得られた箔(最終箔)に対してエッチング処理を施すことにより貫通孔を形成させる。エッチング処理の方法は限定的ではなく、1段階のエッチングにより所望の貫通孔を形成しても良いし、2段階又はそれ以上に分けて実施しても良い。 The through hole is formed by performing an etching process on the foil (final foil) thus obtained. The method for the etching treatment is not limited, and a desired through hole may be formed by one-stage etching, or may be performed in two stages or more.
 本発明では、例えば少なくとも2段階のエッチングとし、1段目のエッチングで貫通孔を形成し、2段目のエッチングで貫通孔の内径を調整することにより、所望の貫通孔を好適に形成することができる。 In the present invention, for example, a desired through hole is suitably formed by forming at least two stages of etching and forming a through hole by the first stage etching and adjusting the inner diameter of the through hole by the second stage etching. Can do.
 この場合、1段目のエッチングは、好ましくは塩酸を主成分とする電解液中で直流エッチングする。1段目エッチングでは、主にエッチングピットを形成するとともにその密度と形状(貫通形状)を制御することができる。電解液としては、塩酸1~10重量%が水に溶解した水溶液を使用することができる。この場合、電解液中にはシュウ酸、リン酸、硫酸等を0.001~0.1重量%加えても良い。また、液温は60~90℃程度とし、電流密度は0.1~0.5A/cm程度とする。エッチング方式は、直流エッチングとすることが好ましい。なお、エッチング時間は、箔厚、目標とする透気度等に応じて適宜設定することができる。
 2段目のエッチングでは、好ましくはケミカルエッチングを実施する。これにより、主としてエッチングピット径を制御することができる。例えば、上記1段目エッチングと同組成・温度の液中で、ケミカルエッチングを行うことができる。エッチング時間は、例えば箔厚、目標とする透気度等に応じて適宜設定することができる。また、必ずしも塩酸を主成分としなくても良く、硝酸を主成分とした電解液中でも良い。また、ケミカルエッチングでなく、電解エッチングとしても良い。さらに必要に応じて、ケミカルエッチングや電解エッチング、エッチング液組成を組み合わせて、「2段目のエッチング」をさらに多段化しても良い。
In this case, the first-stage etching is preferably direct-current etching in an electrolyte containing hydrochloric acid as a main component. In the first stage etching, etching pits are mainly formed and the density and shape (through shape) can be controlled. As the electrolytic solution, an aqueous solution in which 1 to 10% by weight of hydrochloric acid is dissolved in water can be used. In this case, 0.001 to 0.1% by weight of oxalic acid, phosphoric acid, sulfuric acid or the like may be added to the electrolytic solution. The liquid temperature is about 60 to 90 ° C., and the current density is about 0.1 to 0.5 A / cm 2 . The etching method is preferably direct current etching. The etching time can be appropriately set according to the foil thickness, the target air permeability, and the like.
In the second stage etching, chemical etching is preferably performed. Thereby, the etching pit diameter can be mainly controlled. For example, chemical etching can be performed in a liquid having the same composition and temperature as the first-stage etching. The etching time can be appropriately set according to, for example, the foil thickness and the target air permeability. Further, it is not always necessary to use hydrochloric acid as a main component, and it may be an electrolyte containing nitric acid as a main component. Moreover, it is good also as electrolytic etching instead of chemical etching. Furthermore, if necessary, “second-stage etching” may be further multi-staged by combining chemical etching, electrolytic etching, and etching solution composition.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 Hereinafter, examples and comparative examples will be shown to describe the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples.
 比較例1
 表1に示す組成を有する溶湯を調製した後、溶湯を凝固させることにより鋳塊を得た。次いで、前記鋳塊を500℃で10時間かけて均質化処理を施した。その後、前記鋳塊に対して熱間圧延(温度400℃)及び冷間圧延を施すことによって厚さ65μmまで圧延した。250℃で8時間かけて中間焼鈍を施した後、さらに冷間圧延を施すことによって厚さ50μmの箔を得た。有機溶剤系洗浄剤(イソプロピレン)で洗浄した後、アルゴンガス中530℃で10時間かけて焼鈍を施した。エッチング処理に先立ち、圧延ロールと接した箔面の平均粗度Ra及び箔厚を測定した。結果を表1に示す。
Comparative Example 1
After preparing a molten metal having the composition shown in Table 1, an ingot was obtained by solidifying the molten metal. Next, the ingot was homogenized at 500 ° C. for 10 hours. Thereafter, the ingot was rolled to a thickness of 65 μm by hot rolling (temperature 400 ° C.) and cold rolling. Intermediate annealing was performed at 250 ° C. for 8 hours, and then cold rolling was performed to obtain a foil having a thickness of 50 μm. After washing with an organic solvent-based detergent (isopropylene), annealing was performed in argon gas at 530 ° C. for 10 hours. Prior to the etching treatment, the average roughness Ra and the foil thickness of the foil surface in contact with the rolling roll were measured. The results are shown in Table 1.
 得られた箔について2段階のエッチング処理を施した。1段目のエッチング処理は、塩酸5重量%を含む水溶液を電解液として用い、液温70℃及び電流密度0.3A/cmで直流エッチングにて実施した。2段目のエッチング処理は、1段目のエッチング処理で形成された貫通孔の内径を調整するために、1段目と同じ電解液オ及び液温度で300秒間(50μm用)ケミカルエッチングにて実施した。このようにして所定の貫通孔を有するアルミニウム貫通箔を得た。 The obtained foil was subjected to a two-stage etching process. The first-stage etching treatment was performed by direct current etching using an aqueous solution containing 5% by weight of hydrochloric acid as an electrolytic solution at a liquid temperature of 70 ° C. and a current density of 0.3 A / cm 2 . In the second stage etching process, in order to adjust the inner diameter of the through hole formed in the first stage etching process, chemical etching is performed for 300 seconds (for 50 μm) at the same electrolytic solution temperature and liquid temperature as the first stage. Carried out. In this way, an aluminum through foil having a predetermined through hole was obtained.
 比較例2~10
 溶湯の組成及び製造条件を表1に示す組成に変更し、箔厚30μmのアルミニウム箔のケミカルエッチング時間を200秒としたほかは、比較例1と同様にしてアルミニウム貫通箔を製造した。
Comparative Examples 2-10
A through aluminum foil was produced in the same manner as in Comparative Example 1 except that the composition of the molten metal and the production conditions were changed to those shown in Table 1 and the chemical etching time of an aluminum foil having a foil thickness of 30 μm was set to 200 seconds.
 実施例1
 表1に示す組成を有する溶湯を調製した後、溶湯を凝固させることにより鋳塊を得た。次いで、前記鋳塊を500℃で10時間かけて均質化処理を施した。その後、前記鋳塊に対して熱間圧延(温度400℃)及び冷間圧延を施すことによって厚さ130μmまで圧延した。このようにして得られたシートを2枚用意し、両者を重ね合わせた状態でさらに冷間圧延(併せ圧延又は合わせ圧延)を施すことによって合計厚さ130μm(各65μm)の箔を得た。250℃で8時間かけて中間焼鈍を施した後、さらに冷間圧延を行うことにより合計厚さ100μm(各50μm)の箔を得た。
Example 1
After preparing a molten metal having the composition shown in Table 1, an ingot was obtained by solidifying the molten metal. Next, the ingot was homogenized at 500 ° C. for 10 hours. Thereafter, the ingot was rolled to a thickness of 130 μm by hot rolling (temperature 400 ° C.) and cold rolling. Two sheets obtained in this way were prepared, and a foil having a total thickness of 130 μm (each 65 μm) was obtained by further cold rolling (combined rolling or combined rolling) in a state where the two were superposed. Intermediate annealing was performed at 250 ° C. for 8 hours, and then cold rolling was performed to obtain a foil having a total thickness of 100 μm (each 50 μm).
 2枚の箔を別々に分離し、有機溶剤系洗浄剤(イソプロピレン)で洗浄した後、アルゴンガス中で530℃で10時間かけて焼鈍を施した。エッチング処理に先立ち、圧延ロールと接した箔面の平均粗度Ra及び箔厚を測定した。結果を表1に示す。 The two foils were separated separately, washed with an organic solvent-based cleaning agent (isopropylene), and then annealed in argon gas at 530 ° C. for 10 hours. Prior to the etching treatment, the average roughness Ra and the foil thickness of the foil surface in contact with the rolling roll were measured. The results are shown in Table 1.
 次に、得られた箔について2段階のエッチング処理を施した。1段目のエッチング処理は、塩酸5重量%を含む水溶液を電解液として用い、液温70℃及び電流密度0.3A/cmで直流エッチングにて実施した。2段目のエッチング処理は、1段目のエッチング処理で形成された貫通孔の内径を調整するために、1段目と同じ電解液及び液温度で300秒間(50μm用)ケミカルエッチングにて実施した。このようにして所定の貫通孔を有するアルミニウム貫通箔を得た。 Next, the obtained foil was subjected to a two-stage etching process. The first-stage etching treatment was performed by direct current etching using an aqueous solution containing 5% by weight of hydrochloric acid as an electrolytic solution at a liquid temperature of 70 ° C. and a current density of 0.3 A / cm 2 . The second stage etching process is performed by chemical etching for 300 seconds (for 50 μm) at the same electrolyte and liquid temperature as the first stage in order to adjust the inner diameter of the through hole formed in the first stage etching process. did. In this way, an aluminum through foil having a predetermined through hole was obtained.
 実施例2~10
 溶湯の組成及び製造条件を表1に示すように変更し、箔厚30μmのアルミニウム箔のケミカルエッチング時間を200秒としたほかは、比較例1と同様にしてアルミニウム貫通箔を製造した。
Examples 2 to 10
A through aluminum foil was produced in the same manner as in Comparative Example 1 except that the composition of the molten metal and the production conditions were changed as shown in Table 1 and the chemical etching time of an aluminum foil having a foil thickness of 30 μm was changed to 200 seconds.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例1
 比較例及び実施例で得られたアルミニウム貫通箔について、垂直貫通孔占有率、貫通孔の内径等をそれぞれ測定した。その結果を表2及び表3に示す。
Test example 1
About the aluminum penetration foil obtained by the comparative example and the Example, the vertical through-hole occupation rate, the internal diameter of a through-hole, etc. were measured, respectively. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、各物性の測定方法は、次のようにして実施した。
(1)アルミニウム貫通箔(エッチング処理後)の垂直貫通孔占有率
 エッチング処理後のアルミニウム貫通箔のLT-ST面(圧延方向に垂直な断面)が観察面となるようにサンプル(10mm幅)をエポキシ樹脂に埋め込み、試料をバフ研磨(ダイヤモンド研磨)する。その後、アルミニウム部分を電解(電解条件:エタノール:過塩素酸=4:1の溶液にて、0℃、定電圧(20V)電解×180秒)にて溶解し、エッチングピット(エッチングピットに入り込んだ樹脂部分)を走査型電子顕微鏡(SEM)にて観察する。そして、無作為に撮影した10視野(倍率500倍)の写真から、図1に示すように各試料の測定長さが写真の寸法で100mmとなる部位を選び、図2に示すような角度測定用透明カードを上記写真に重ね合わせ、下表面から70~110°(90±20°)の範囲内の角度をもった貫通孔の数を計測し、全体の貫通孔の合計数を目視にてカウントした後、その合計数に対する割合を垂直貫通孔占有率(%)として算出する。
In addition, the measuring method of each physical property was implemented as follows.
(1) Vertical through-hole occupancy of aluminum through-foil (after etching process) Sample (10 mm width) so that the LT-ST surface (cross section perpendicular to the rolling direction) of the aluminum through-foil after etching is the observation surface The sample is embedded in an epoxy resin and the sample is buffed (diamond polished). Thereafter, the aluminum part was dissolved by electrolysis (electrolysis condition: ethanol: perchloric acid = 4: 1 solution, 0 ° C., constant voltage (20 V) electrolysis × 180 seconds), and entered the etching pit (etching pit). The resin part) is observed with a scanning electron microscope (SEM). Then, from the photograph of 10 fields of view (500 times magnification) taken at random, the part where the measurement length of each sample is 100 mm in the dimension of the photograph is selected as shown in FIG. 1, and the angle measurement as shown in FIG. The transparent card for use is superimposed on the above photo, and the number of through holes with an angle in the range of 70 to 110 ° (90 ± 20 °) from the lower surface is measured, and the total number of all through holes is visually observed. After counting, the ratio to the total number is calculated as the vertical through-hole occupation ratio (%).
(2)貫通孔の内径
 倍率を5000倍としたほかは前記(1)と同様の方法にて無作為に10視野の写真を撮影し、各試料の測定面積が写真の寸法で100mm×100mmの範囲を画像解析してエッチングピット数及び総エッチングピット面積を計測し、貫通孔を円形と仮定して貫通孔の内径を算出する。画像解析装置としては、多目的高速画像解析装置「PCA11」(システムサイエンス株式会社製)を用いた。
(2) Inside diameter of the through-hole The photograph of 10 fields of view was taken at random by the same method as the above (1) except that the magnification was set to 5000 times, and the measurement area of each sample was 100 mm × 100 mm in the dimension of the photograph. The range is image-analyzed to measure the number of etching pits and the total etching pit area, and the inner diameter of the through hole is calculated assuming that the through hole is circular. As the image analysis apparatus, a multipurpose high-speed image analysis apparatus “PCA11” (manufactured by System Science Co., Ltd.) was used.
(3)表面積拡大率
 エッチング処理後のアルミニウム貫通箔を60℃の陽極酸化処理液(5%アジピン酸アンモニウム溶液)に浸漬し、10Vで陽極酸化処理することにより陽極酸化皮膜を形成させた後、LCRメータを用いて静電容量を測定し、エッチング前のアルミニウム箔の静電容量比から算出する。測定投影面積は、5cm×10cmとした。
(3) Surface area enlargement ratio After the aluminum penetration foil after the etching treatment was immersed in a 60 ° C. anodizing solution (5% ammonium adipate solution) and anodized at 10 V, an anodized film was formed. The capacitance is measured using an LCR meter, and is calculated from the capacitance ratio of the aluminum foil before etching. The measurement projected area was 5 cm × 10 cm.
(4)引張強度
 エッチング処理後のアルミニウム貫通箔を幅10mm、長さ150mmに切断し、EIAJ RC-2364A(アルミニウム電解コンデンサ用電極箔の試験方法)に基づき測定した。
(4) Tensile strength The etched through aluminum foil was cut into a width of 10 mm and a length of 150 mm, and measured based on EIAJ RC-2364A (a test method for electrode foil for aluminum electrolytic capacitors).
(5)貫通孔率
 貫通孔率s(%)= [(100×測定重量(g))/(箔厚み(cm)×試料面積(cm))]/(アルミニウムの比重(2.70g/cm))を求めた。前記「箔厚み」は、試料4隅と中央部の計5点をマイクロメーターで測定した平均値とする。前記「試料面積」は10cm×5cmとする。前記「測定重量」は試料を電子天秤で秤量した値とする。
(5) Through-hole ratio Through-hole ratio s (%) = [(100 × measured weight (g)) / (foil thickness (cm) × sample area (cm 2 ))] / (specific gravity of aluminum (2.70 g / cm 3 )) was determined. The “foil thickness” is an average value obtained by measuring a total of five points at the four corners and the center of the sample with a micrometer. The “sample area” is 10 cm × 5 cm. The “measured weight” is a value obtained by weighing the sample with an electronic balance.
(6)透気度
 JIS P 8117に準じたガーレ式デンソメータによる透気度試験方法によって測定する。
(6) Air permeability Measured by an air permeability test method using a Gurley type densometer according to JIS P 8117.
(7)平均粗度
 JIS B 0601に従い、アルミニウム貫通箔表面の圧延直角方向の中心線平均粗さを接触式表面粗度計((株)東京精密製 製品名「SURFCOM1400D-12」)を用いて測定し、平均粗度(Ra)とした。なお、測定範囲は10mmとする。
(7) Average roughness According to JIS B 0601, the center line average roughness in the direction perpendicular to the rolling direction of the surface of the aluminum penetrating foil was measured using a contact-type surface roughness meter (product name “SURFCOM 1400D-12” manufactured by Tokyo Seimitsu Co., Ltd.). The average roughness (Ra) was measured. The measurement range is 10 mm.

Claims (6)

  1. Fe:5~80重量ppm、Si:5~100重量ppm、Cu:10~100重量ppmならびに残部:Al及び不可避不純物からなるアルミニウム貫通箔であって、
    (1)箔厚みが50μm以下であり、
    (2)箔表面から裏面に至る貫通孔を複数有し、
    (3)当該アルミニウム貫通箔における垂直貫通孔占有率c(%)と前記箔厚みt(μm)の比率[c/t]が1.4以上である、
    ことを特徴とするアルミニウム貫通箔。
    Fe: 5 to 80 ppm by weight, Si: 5 to 100 ppm by weight, Cu: 10 to 100 ppm by weight, and the balance: an aluminum penetrating foil comprising Al and inevitable impurities,
    (1) The foil thickness is 50 μm or less,
    (2) having a plurality of through holes from the foil surface to the back surface,
    (3) The ratio [c / t] of the vertical through-hole occupation ratio c (%) and the foil thickness t (μm) in the aluminum through foil is 1.4 or more.
    An aluminum penetration foil characterized by that.
  2. JIS P 8117に準じたガーレ式デンソメータによる透気度試験方法によって測定された透気度が5sec/100ml以上である、請求項1に記載のアルミニウム貫通箔。 The aluminum penetration foil of Claim 1 whose air permeability measured by the air permeability test method by the Gurley type densometer based on JISP8117 is 5 sec / 100ml or more.
  3. 貫通孔の内径が0.2~5μmである、請求項1又は2に記載のアルミニウム貫通箔。 The aluminum penetrating foil according to claim 1 or 2, wherein the inner diameter of the through hole is 0.2 to 5 µm.
  4. 貫通孔率s(%)=[(100×測定重量(g))/(箔厚み(cm)×試料面積(cm))]/(アルミニウムの比重(2.70g/cm))が、5≦s≦20の範囲である、請求項1~3のいずれかに記載のアルミニウム貫通箔。 Through porosity s (%) = [(100 × measured weight (g)) / (foil thickness (cm) × sample area (cm 2 ))] / (aluminum specific gravity (2.70 g / cm 3 )) The aluminum penetrating foil according to any one of claims 1 to 3, wherein the range is 5 ≤ s ≤ 20.
  5. 引張強度h(N)が、
    [0.22×箔厚みt(μm)]以上の値である、請求項1~4のいずれかに記載のアルミニウム貫通箔。
    The tensile strength h (N) is
    The aluminum penetrating foil according to any one of claims 1 to 4, which has a value of [0.22 x foil thickness t (µm)] or more.
  6. 表面積拡大率が、
    [0.15×箔厚みt(μm)]以上の値である、請求項1~5のいずれかに記載のアルミニウム貫通箔。
    The surface area expansion rate is
    The aluminum penetrating foil according to any one of claims 1 to 5, which has a value of [0.15 x foil thickness t (μm)] or more.
PCT/JP2010/061355 2009-07-07 2010-07-03 Perforated aluminum foil WO2011004777A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011521904A JP5539985B2 (en) 2009-07-07 2010-07-03 Aluminum penetration foil
CN201080027918.5A CN102471835B (en) 2009-07-07 2010-07-03 Perforated aluminum foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009161271 2009-07-07
JP2009-161271 2009-07-07

Publications (1)

Publication Number Publication Date
WO2011004777A1 true WO2011004777A1 (en) 2011-01-13

Family

ID=43429200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061355 WO2011004777A1 (en) 2009-07-07 2010-07-03 Perforated aluminum foil

Country Status (3)

Country Link
JP (1) JP5539985B2 (en)
CN (1) CN102471835B (en)
WO (1) WO2011004777A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110049A (en) * 2011-11-24 2013-06-06 Mitsubishi Alum Co Ltd Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery
WO2015115531A1 (en) 2014-01-31 2015-08-06 富士フイルム株式会社 Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device
EP3279984A4 (en) * 2015-03-31 2018-08-29 FUJIFILM Corporation Aluminum plate, and current collector for power storage device
US10862133B2 (en) 2014-10-14 2020-12-08 Fujifilm Corporation Aluminum plate and method for manufacturing aluminum plate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219524B (en) * 2013-04-28 2015-09-23 奇瑞新能源汽车技术有限公司 A kind of laminated lithium ion battery plus plate current-collecting body paillon foil, anode pole piece and battery
CN104282872A (en) * 2014-10-24 2015-01-14 南通海星电子股份有限公司 Self-riveting type through hole conductive coating metal foil and preparation method thereof
WO2019125064A1 (en) * 2017-12-22 2019-06-27 주식회사 엘지화학 Negative electrode for lithium metal battery, and lithium metal battery comprising same
KR20190076890A (en) * 2017-12-22 2019-07-02 주식회사 엘지화학 Anode current for lithium metal battery and lithium metal battery including the same
CN112635822B (en) * 2019-09-24 2021-11-09 宁德时代新能源科技股份有限公司 Lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306520A (en) * 1993-04-20 1994-11-01 Nippon Foil Mfg Co Ltd Soft aluminum foil and its production
JPH07268525A (en) * 1994-03-30 1995-10-17 Furukawa Electric Co Ltd:The High purity hard aluminum foil and its production
JPH08260117A (en) * 1995-03-23 1996-10-08 Furukawa Electric Co Ltd:The Production of aluminum alloy foil stock for electrolytic capacitor cathode
JPH10189396A (en) * 1996-12-26 1998-07-21 Nippon Light Metal Co Ltd Aluminum alloy for electrolytic capacitor anode
JP2004207117A (en) * 2002-12-26 2004-07-22 Toyo Aluminium Kk Aluminum foil for collector, collector, and secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462509B2 (en) * 1997-08-14 2010-05-12 日本製箔株式会社 Perforated current collector for secondary battery and manufacturing method thereof
JPH1186869A (en) * 1997-09-01 1999-03-30 Nippon Foil Mfg Co Ltd Perforated current collecting body used for secondary battery
WO2008078777A1 (en) * 2006-12-27 2008-07-03 Jm Energy Corporation Coated electrode and organic electrolyte capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306520A (en) * 1993-04-20 1994-11-01 Nippon Foil Mfg Co Ltd Soft aluminum foil and its production
JPH07268525A (en) * 1994-03-30 1995-10-17 Furukawa Electric Co Ltd:The High purity hard aluminum foil and its production
JPH08260117A (en) * 1995-03-23 1996-10-08 Furukawa Electric Co Ltd:The Production of aluminum alloy foil stock for electrolytic capacitor cathode
JPH10189396A (en) * 1996-12-26 1998-07-21 Nippon Light Metal Co Ltd Aluminum alloy for electrolytic capacitor anode
JP2004207117A (en) * 2002-12-26 2004-07-22 Toyo Aluminium Kk Aluminum foil for collector, collector, and secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110049A (en) * 2011-11-24 2013-06-06 Mitsubishi Alum Co Ltd Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery
WO2015115531A1 (en) 2014-01-31 2015-08-06 富士フイルム株式会社 Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device
US10593989B2 (en) 2014-01-31 2020-03-17 Fujifilm Corporation Method for manufacturing aluminum plate, aluminum plate, collector for storage device, and storage device
US10862133B2 (en) 2014-10-14 2020-12-08 Fujifilm Corporation Aluminum plate and method for manufacturing aluminum plate
EP3279984A4 (en) * 2015-03-31 2018-08-29 FUJIFILM Corporation Aluminum plate, and current collector for power storage device

Also Published As

Publication number Publication date
JPWO2011004777A1 (en) 2012-12-20
CN102471835B (en) 2014-03-19
CN102471835A (en) 2012-05-23
JP5539985B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5539985B2 (en) Aluminum penetration foil
WO2011040292A1 (en) Perforated aluminum foil, and process for production thereof
JP5498750B2 (en) Aluminum through foil and method for producing the same
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP2009062595A (en) Aluminum foil material
JP5663184B2 (en) Aluminum through foil and method for producing the same
US7612986B2 (en) Aluminum plate for aluminum electrolytic capacitor electrode, aluminum electrolytic capacitor, and method for manufacturing aluminum electrolytic capacitor
JP5460102B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
WO2016136804A1 (en) Electrode material for aluminum electrolytic capacitors and method for producing same
JP3308456B2 (en) Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JP2007318007A (en) Aluminum electrode foil for electrolytic capacitor
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP2002173748A (en) Method for producing high purity aluminum foil
JP2008045172A (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2011006747A (en) Aluminum foil for electrolytic capacitor
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor
JP2010275586A (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JP3930033B1 (en) Aluminum foil for electrolytic capacitors
JP2000226627A (en) Aluminum alloy foil for electrolytic capacitor electrode and its production
JP5053539B2 (en) Aluminum alloy material for electrolytic capacitor and method for producing the same, method for producing electrode material for electrolytic capacitor, anode material for electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027918.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521904

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797088

Country of ref document: EP

Kind code of ref document: A1