WO2019125064A1 - Negative electrode for lithium metal battery, and lithium metal battery comprising same - Google Patents

Negative electrode for lithium metal battery, and lithium metal battery comprising same Download PDF

Info

Publication number
WO2019125064A1
WO2019125064A1 PCT/KR2018/016500 KR2018016500W WO2019125064A1 WO 2019125064 A1 WO2019125064 A1 WO 2019125064A1 KR 2018016500 W KR2018016500 W KR 2018016500W WO 2019125064 A1 WO2019125064 A1 WO 2019125064A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium metal
pore
negative electrode
diameter
pores
Prior art date
Application number
PCT/KR2018/016500
Other languages
French (fr)
Korean (ko)
Inventor
문재원
유형균
한형석
팽기훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180166735A external-priority patent/KR20190076890A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880019235.1A priority Critical patent/CN110462902B/en
Priority to US16/500,633 priority patent/US12009522B2/en
Priority to EP18891822.1A priority patent/EP3598546A4/en
Publication of WO2019125064A1 publication Critical patent/WO2019125064A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium metal battery and a lithium metal battery including the same.
  • Lithium metal batteries use lithium metal as an anode active material. When metal is discharged, the metal loses electrons and moves to the anode through the electrolyte. When the battery is charged, lithium ions move to the cathode through the electrolyte, Which is an electrochemical reaction. This has the advantage of having a theoretically very high energy capacity as compared with a commercial lithium ion battery using graphite or the like as the negative electrode active material. .
  • the lithium metal battery has not been commercialized because of the difficulty in securing the reversibility of the negative electrode due to the structural limitations of the negative electrode collector proposed so far.
  • the copper foil ( 1 - 1) widely used as an anode current collector in a lithium ion battery is simply transferred to a lithium metal battery, due to a flat structure not including internal pores, It does not provide sufficient space and various directions in which lithium ions are electrodeposited .
  • a porous collector comprising a foam (&) shaped pore.
  • a porous current collector can provide various directions and sufficient space in which the lyrium ion is electrodeposited, so that the pore can be advantageous for initial charging. Nevertheless, owing to the irregular ( 11 (1 0111 )) pore form of the pores, 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • the present invention proposes a negative electrode collector capable of suppressing local clogging during repetitive charging and discharging of the battery while providing a variety of directions and sufficient space for allowing lithium ions to enter the lithium ion battery when charging the lithium metal battery , And an optimal cathode and battery design method using the anode current collector.
  • a lyrium metal layer 110 is formed so as to face the first pores of the negative electrode collector
  • a negative electrode for a lithium metal battery is provided.
  • a lithium metal battery which is designed such that the separator faces the second pore (relatively large-diameter pore) of the negative electrode collector using the negative electrode for a lithium metal battery of the embodiment to provide.
  • the negative electrode and the lithium metal battery are designed according to the above embodiments to ensure the reversibility of the lithium metal negative electrode and to improve the lifetime characteristics of the lithium metal battery.
  • FIG. 1 is a cross- 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • FIG. 2 schematically shows a part of a lyrium metal battery to which the anode current collector of the embodiment is applied.
  • Fig. 3 schematically shows a side portion of a negative electrode current collector designed according to one embodiment of the present invention.
  • FIG. 1 schematically shows a side view of a lithium metal cathode designed in an embodiment of the invention.
  • the figure schematically shows a part of a side surface of a lithium metal anode designed in a comparative example of the present invention.
  • FIG. 5 shows the results of sludge discharge performed when the driving of each cell in one embodiment of the present invention and one comparative example is terminated.
  • the term "combination thereof " included in the expression of the machine form means one or more combinations or combinations selected from the group consisting of the constituents described in the expression of the machine form, ≪ / RTI & gt ; and the like . 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • Lithium Metal Battery Cathode In one embodiment of the invention,
  • a lithium metal layer 110 is formed so as to face the first pores of the negative electrode collector
  • a negative electrode for a lithium metal battery is provided.
  • the lyrium metal anode of the embodiment has a structure in which the first pores (relatively small-diameter pores) of the negative electrode collector are opposed to the lyrium metal layer 110, and the second pores (pores having a relatively large diameter) are exposed Structure.
  • the second pores (relatively large pores) of the anode current collector are opposed to the separator.
  • the low-pore 12 opposed to the separator is a wide entrance through which lyrium ions (specifically, lithium ions derived from the electrolyte impregnated into the separator membrane) can enter.
  • Lithium ions that enter through such a wide entrance (second pore) are transferred to the lithium metal layer through the phosphorus.
  • various directions in which lithium ions can penetrate into the anode current collector and sufficient space So that the lithium metal battery is repeatedly charged and discharged 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • FIG. 1 is a side view schematically showing the negative electrode current collector.
  • each of the plurality of holes has a first pore formed on one surface of the metal plate, and a second pore is formed on the other surface of the metal plate,
  • the plurality of holes may have a pore structure that is open on both sides of the metal plate, independently of each other.
  • each of the plurality of holes has a relatively small diameter of a first pore formed on one surface of the metal plate, and a diameter of a second pore formed on the other surface of the metal plate is relatively large ,
  • the diameter of the hole may increase in a direction from the first pore to the second pore.
  • the plurality of holes may be formed independently of each other, in a direction from the first pore to the second pore, such that a gradient of the hole increases in diameter.
  • 2 schematically shows a part of a lyrium metal battery to which the anode current collector of the embodiment is applied.
  • lithium metal vapor is deposited on the surface having the relatively small diameter of the first pore
  • the separation membrane can be stacked on the surface where the second pores are located.
  • the anode may be laminated on the other surface of the separator, and the separator may be impregnated with an electrolyte to form a lithium metal battery. 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • the lithium ions of the electrolyte move from the separator and pass through the plurality of holes, and can be electrodeposited on the lyrium metal layer.
  • Lithium ions are desorbed from the lithium metal layer and can move to the separation membrane 5 through the plurality of holes.
  • the second pore adjacent to the separation membrane can provide a wide entrance through which the lyrium ion of the electrolyte can easily enter.
  • the hole whose diameter gradually decreases from the second pore to the first pore may be a passage through which lithium ions of the electrolyte move.
  • the plurality of holes may independently have a constant slope in the direction from the second pore to the low pore, and gradually decrease.
  • lithium ions are injected through the wide entrance (second pore)
  • the phrase on the diameter slope of the hole may be in the range of 30 2 to 60 2 , for example, 40 to 50 °. In this range, it is possible to provide various directions in which the lyrium ion can enter and sufficient space, It may be advantageous to suppress the local clogging phenomenon.
  • the plurality of holes may include, independently of each other, 1) a porous structure having openings on both sides of the metal plate, 2) a structure in which the diameter of the pores is reduced from one surface of the metal plate to the other surface It is sufficient to achieve the above advantage.
  • the diameter of the hole has a constant slope and can be increased gradually, or the slope of the diameter of the hole can be within a specific range, and the present invention is not limited by the examples.
  • the plurality of holes are formed such that, independently of each other, the diameter of the first pores (small) 2, for example, 50 to 70.
  • RTI ID 0.0 > 100 / year, < / RTI >
  • each of the plurality of holes may independently have a diameter of the second pore of 7 to 700, for example, 200 to 350 // .
  • the pore diameter of the surface on which the separation membrane is deposited is 7 to 700 / L, for example, 200 to 350 m.
  • the thickness of the substrate on which the plurality of holes are formed may be in a range of 5 to 300, for example, 100 to 150.
  • the plurality of holes may independently include: 1) a structure having a pore structure that is open on both sides of the metal plate, 2) a structure in which the diameter of the pore increases from one surface of the metal plate to the other surface Only , It is sufficient to achieve the above advantage.
  • the fact that the diameter of the first pore, the diameter of the second pore, the thickness of the metal plate, and the degree of change in the hole diameter in the metal plate can each fall within a specific range is merely an example And the present invention is not limited by the examples.
  • the plurality of holes may be independently formed by soft molding, self-assembly of spherical particles, or photo etching. More specifically, an optical angle can be used as in the following embodiments.
  • the plurality of holes may be formed in a metal plate using a soft mold of a cone, a cone, or a polyhedron.
  • the soft mold may be an elastomer, for example, polydimethylsiloxane (PDMS) ≪ / RTI > Specifically, in order to realize the shape of a soft mold, etching can be performed on a metal or non-metal substrate using photolithography, and the desired shape can be transferred to the elastomer.
  • the substrate may be a Si wafer and is not limited to the material because photolithography is applicable to all applicable substrates.
  • soft mold There are three ways to use soft mold. There is a method of applying conductivity to the soft mold itself and utilizing it as a stamper for patterning, and a method of using only the metal layer to be used. Specifically, as a method of imparting conductivity, it is possible to utilize a method of plating the entire surface of a soft mold by using an electroless plating method, sputtering a metal on a soft mold, and then forming a pore by removing a tip portion. When the metal part having pores is removed, a desired metal plate can be obtained. When this is used, the diameter of the hole, the diameter of the first pore, and / or the diameter of the second pore may be formed in each of the ranges described above.
  • spherical particles having a Gaussian distribution according to the diameter of the particles can be used to obtain a soft mold-like shape.
  • the size of the spherical particles may be in the range of 1 to 30 / ffli, and the pores may be self-assembled by liquid phase precipitation, It can be implemented as a mechanism.
  • the spherical particles are dropped on the substrate completely immersed in the liquid, they are accumulated according to the particle size due to gravity, and a cone shape, a cone shape, or a polygonal shape similar to the soft mold is distributed on the surface.
  • the diameter of the hole, the diameter of the first pore, and / or the diameter of the second pore may be formed in each range. .
  • the light to be irradiated may be ultraviolet (UV), and may have a wavelength band of 10 nt to 500 nm in general. More specifically, the central wavelength can be located at 300 nm to 500 nm.
  • UV ultraviolet
  • a photoresist and a photomask are positioned so that light can be formed on a metal plate so that a desired hole is formed, a part of the metal except the photoresist and the photomask is etched.
  • the size of the photoresist and the photomask may be sequentially adjusted to form the plurality of holes having a gradient. In this case, the diameter of the hole, the diameter of the first pore, and / or the diameter of the second pore may be formed in the aforementioned ranges.
  • the plurality of holes may each have a truncated cone, a truncated cone, or a polygonal prism shape by independently controlling the formation method and conditions thereof.
  • each of the plurality of holes may be formed into a truncated cone shape.
  • a narrower upper surface may form the first pore
  • a second pore may be formed, and the slope thereof may coincide with the diameter slope of the hole.
  • the shapes listed above are merely examples, and the present invention is not limited thereto. Porosity
  • the metal plate may include copper ( 1); Or copper may be made of a number of days (0, 1) and the alloy (1 0 ⁇ of other metals.
  • the metal plate is made of a without causing chemical changes in the battery copper (0 1) or a copper alloy ((3 ⁇ 4- during 10 material having a high conductivity, it is not particularly limited.
  • the metal plate may be a film, a sheet, a foil, or the like having a thickness of 3 to 500, e.g., 100 to 150, and the plurality of holes may be formed on the metal plate.
  • the metal tube may be formed with fine irregularities on its surface to increase the adhesion of the lyrium metal layer and / or the separator.
  • the rutum metal layer can be deposited in a battery.
  • the lithium metal layer can be deposited on the negative electrode collector by replacing the negative electrode of a conventional battery with the negative electrode collector of the embodiment described above and repeating charging and discharging. Lyrium metal battery
  • a negative electrode including a negative electrode including the negative electrode collector according to one embodiment of the present invention and a lyrium metal layer facing the first pore of the negative electrode collector, An electrolyte impregnated in the separator, and a cathode opposite to the other surface of the separator. 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • the lithium metal layer is deposited on the surface of the negative electrode collector of the above embodiment where the first pores having a relatively small diameter are located and the separator is stacked on the surface where the second pores having a relatively large diameter are located.
  • the anode may be laminated on the other surface of the separator, and the separator may be impregnated with an electrolyte to form a rutum metal battery. Its structure is the same as described in detail in connection with Figs. 1 and 2 above.
  • a porous current collector including a copper foil (0 1 - >) or a foam (3 ⁇ 4)) type of pores having no flat pores is used as a negative electrode current collector, The capacity decrease is severe.
  • the lithium metal battery of the embodiment includes the above-described negative electrode current collector, the storage and desorption of lyrium can be stably performed in the negative electrode including the above-described negative electrode current collector during repeated charging and discharging of the battery. And life characteristics can be improved.
  • battery components other than the cathode will be described in detail.
  • an electrolytic solution containing a non-aqueous organic solvent and a lithium salt may be used.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based or aprotic solvent may be used.
  • the carbonate-based solvent include dimethyl carbonate (DMC), diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl ethyl carbonate (ethylene carbonate, propylene carbonate 1), butylene carbonate and the like can be used.
  • ester solvent methyl acetate, ethyl acetate, 11 propyl acetate, 1,1-dimethyl ethyl acetate, methyl propionate, ethyl propionate, Lactone, Decanolide, valerolactone, mevalonolactone, caprolactone, and the like may be used.
  • ether solvent dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like can be used.
  • ketone solvent cyclohexanone and the like can be used.
  • alcoholic solvent ethyl alcohol, isopropyl alcohol and the like can be used.
  • aprotic solvent R-CN (R is a linear, branched or cyclic hydrocarbon group of C2 to C20, An amide such as nitrile, dimethylformamide, etc., which may contain a bonding aromatic ring or an ether bond, dioxolane such as 1,3-dioxolane, sulfolane, and the like.
  • the non-aqueous organic solvent may be used alone or in admixture of one or more. If the non-aqueous organic solvent is used in combination, the mixing ratio may be appropriately adjusted according to the desired cell performance. .
  • the carbonate-based solvent it is preferable to use a mixture of a cyclic carbonate and a chain carbonate.
  • mixing the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9 may provide excellent performance of the electrolytic solution.
  • the non-aqueous organic solvent may further include the aromatic hydrocarbon-based organic solvent in the carbonate-based solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1.
  • the aromatic hydrocarbon-based organic solvent may be an aromatic hydrocarbon-based compound represented by the following formula (1).
  • each of 3 ⁇ 4 to 11 6 independently represents hydrogen, halogen, 01 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • the aromatic hydrocarbon-based organic solvent is selected from the group consisting of benzene, fluorobenzene,
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound represented by the following formula (2) to improve battery life.
  • ⁇ and 3 ⁇ 4 are each independently hydrogen, halogen, cyano (0), a nitro group 02) or ⁇ a fluoroalkyl group of 1 to 05, wherein at least one of the and 3 ⁇ 4 is a halogen group, A cyano group (0 ratio, nitrogage 0 2 ), or a fluoroalkyl group of 01 to 05.
  • ethylene carbonate-based compound examples include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene Carbonates, cyanoethylene carbonate, fluoroethylene carbonate, and the like.
  • the amount of the vinylene carbonate or the ethylene carbonate-based compound can be appropriately adjusted to improve the service life.
  • the lithium salt is dissolved in the non-aqueous organic solvent to act as a source of lithium ions in the battery to enable operation of a basic lithium secondary battery, and a material capable of promoting the movement of lithium ions between the positive electrode and the negative electrode to be.
  • the lithium salt Representative examples are LiPF 6, LiBF 4, LiSbF 6 , LiAsF 6, LiC 4 F 9 S0 3, L1CIO 4, LiA10 2, LiAlCU, LiN (C x F 2x + 1 S0 2) (C y F 2y + 1 SiO 2 ) (where x and y are natural numbers), LiCl, Lil, LiB (C 2 C> 4 ) 2 (lithium bis (oxalato) borate LiBOB)
  • the concentration of the lithium salt is preferably within the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity It can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ion.
  • Any separator may be used as long as it is commonly used in a lithium battery. That is, a material having a low resistance against the ion movement of the electrolyte and an excellent ability to impregnate the electrolyte can be used.
  • a material having a low resistance against the ion movement of the electrolyte and an excellent ability to impregnate the electrolyte can be used.
  • selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof and may be nonwoven fabric or woven fabric.
  • a polyolefin-based polymer separator such as polyethylene, polypropylene and the like is mainly used for a lithium ion battery, and a coated separator containing a ceramic component or a polymer substance may be used for heat resistance or mechanical strength, It can be used as a structure.
  • the positive electrode may include a positive electrode collector and a positive electrode mixture layer positioned on the positive electrode collector. 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • the anode is prepared by mixing an active material and a binder, and optionally a conductive material, a filler, etc., in a solvent to prepare a slurry-like electrode mixture, and applying the electrode mixture to each electrode current collector.
  • the method of manufacturing the electrode is well known in the art, and therefore, a detailed description thereof will be omitted herein.
  • the positive electrode active material is lithium cobalt oxide (0> 02), Lyrium nickel oxide (Nishi 02) layered compounds or one or more transition compounds substituted with a metal such as; My + ⁇ formula - ⁇ wherein, X is 0 to 0.33), - 110 3,
  • the cathode current collector generally has a thickness of 3-500.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used.
  • the current collector may have fine irregularities on its surface to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous substrate, a foam, and a nonwoven fabric are possible.
  • the conductive material is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, Carbon black such as black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber, metal powders such as carbon fluoride, aluminum and nickel powder, Conductive whiskey such as potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the lithium metal battery of the embodiment can be used not only in a battery cell used as a power source of a small device but also as a unit battery in a middle or large battery module including a plurality of battery cells. Production Example 1
  • a first pore having a relatively small diameter is formed on one surface 120a of the metal plate, and a second pore having a relatively larger diameter than the first pore is formed on the other surface 120b of the metal plate. And a plurality of holes passing through the inside of the metal plate and connecting the first pores and the second pores were manufactured.
  • an electrolytic copper foil having a thickness of 16 _ was used as a metal plate serving as a base material of the anode current collector 120.
  • a first photo-resist layer was uniformly deposited on one side of the electrolytic copper foil.
  • a first photomask (not shown) including a circular opening having a diameter of 81 a photo-mask was attached, followed by irradiation with ultraviolet light (UV) at a dose of 90 to 110 mJ / cm 2 to form a pattern by the first photomask
  • the first photomask is removed, and immersion is performed in a developer composed of NaOH and water (H 2 O) to remove the first photoresist layer having the pattern formed by the first photomask, Thereby removing the photoresist layer present in the portion to be etched.
  • Etching was carried out using Etching solution composed of HNO 3 (3 ⁇ 40) to form pores in the metal by proceeding wet etching.
  • a positive / negative photolithography process can be used to etch and pattern the metal.
  • each of the photomasks includes a circular opening formed at equal intervals on the basis of each pore center point.
  • each of the holes penetrates the inside of the metal plate from the diameter of the first pore, and the diameter gradually increases (the thickness of the electrolytic copper foil / the diameter of the hole per chip is increased by 0.84375) , will have a gradient of the form up to the diameter of the second pores, the porosity is 20 to 30 ⁇ 1%.
  • a lithium metal anode was fabricated using the anode current collector 120 of Production Example 1, except that the first pores (relatively small-diameter pores) of the anode current collector and the lithium metal grease face each other.
  • Example 2 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • a lithium metal battery was fabricated with a structure that faces the second pores (relatively large-diameter pores) and the separator.
  • LiNio .8 Mno Coo .1 .1 O 2 using a conductive material as carbon black, and a binder polyvinylidene fluoride denpul ( ⁇ ), respectively, and the positive electrode active material in the positive electrode active material: conductive material: binder weight ratio of In a mixed solvent of 96: 2: 2 was added to the solvent, to prepare a cathode active material slurry.
  • Width 34 TM, height 51 TM, thickness of 12 TM 3.15 per side of the aluminum housing The anode active material slurry was applied to the anode active material slurry in a loading (1.03 1 ) column, dried and rolled, and then pulverized in a circular shape (diameter: 1.40)
  • electrolytic solution examples include a solvent mixed with ethylene carbonate (3 ⁇ 4), diethyl carbonate (), and dimethyl carbonate (1: 2: 1 by volume) The total amount of 1, 6 and 10% of fluoroethylene
  • a polyethylene separator (thickness: 20 11111 ) was interposed between the lyrium metal anode of Example 1 and the anode of Example 1, and the electrolytic solution was injected thereinto. Then, 12032 coin cells 1) was prepared and obtained as the lyrium metal cell of Example 2.
  • a lithium metal anode was fabricated using the anode current collector 120 of Production Example 1 and having a structure in which the second pores (relatively large-diameter pores) of the anode current collector and the lithium metal foil 110 were opposed to each other.
  • FIG. 5A shows the charge capacity per cycle of the electrons
  • FIG. 5B shows the discharge capacity per cycle of the battery
  • FIG. 5C shows the charge / discharge efficiency of each battery in each cycle.
  • the lower 12 pores (relatively large-diameter pores) of the negative electrode collector (Production Example 1) were opposed to the lithium metal layer and the first pores of the negative electrode collector These small pores are designed to face the membrane.
  • the first pores opposed to the separation membrane can be clogged because lithium ions can not smoothly flow in and out of the lithium metal battery during repeated charging and discharging processes.
  • the second pores (pores having a relatively large diameter) of the negative electrode collector of Preparation Example 1 were opposed to the separator, 2019/125064 1 »(: 1 ⁇ 1 ⁇ 2018/016500
  • the pores are designed to face the lyrium metal layer.
  • the second pore opposed to the separation membrane provides a wide entrance through which lithium ions (specifically, lithium ions derived from electrolyte impregnated in the separation membrane) can easily enter.
  • Lithium ions that enter through such a wide entrance (second pore) are transferred to the lithium metal layer through the phosphorus.
  • holes (1 101 Li provides various directions in which lithium ions can enter and sufficient space to suppress local clogging in repeated charge and discharge processes of lithium metal batteries,
  • FIG. 3 to 5 Refer to, although common to the entire manufacturing example 1 to the negative electrode current collector,
  • the lyrium metal battery (Comparative Example 2) designed such that the first pores (relatively small-diameter pores) of the negative electrode collector face the separation membrane is driven only in the 85th cycle only;
  • FIG. 6A shows the charge capacity per cycle of the battery
  • FIG. 6B shows the discharge capacity per cycle of the battery. 6A and 6B, even if the negative electrode collector of Production Example 1 is commonly used,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a negative electrode for a lithium metal battery and to a lithium metal battery. In particular, one embodiment of the present invention provides a negative electrode for a lithium metal battery, which 1) uses a negative electrode current collector (120) which has first pores on one surface (120a) of a metal plate, also has second pores, having a larger diameter than the first pores, on the other surface (120b) of the metal plate, and comprises a plurality of holes passing through the inside of the metal plate and connecting the first and second pores; and 2) has a lithium metal layer (110) formed so as to face the first pores of the negative electrode current collector. Further, another embodiment of the present invention provides a lithium metal battery which uses the negative electrode for a lithium metal battery of the one embodiment and is designed such that a separator faces the second pores (having a larger diameter) of the negative electrode current collector.

Description

2019/125064 1»(:1^1{2018/016500  2019/125064 1 »(: 1 ^ 1 {2018/016500
【발명의 명칭】 Title of the Invention
리튬메탈전지용음극및 이를포함하는리륨메탈전지 【기술분야】  Cathode for lithium metal battery and lithium metal battery containing the same
관련출원(들)과의상호인용  Cross-reference with related application (s)
본출원은 2017년 12월 22일자한국특허 출원제 10-2017-0178759호및 2018년 12월 20일자 한국특허 출원 제 10-2018-0166735호에 기초한우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0178759 dated December 22, 2017 and Korean Patent Application No. 10-2018-0166735 dated December 20, 2018, The entire contents of which are incorporated herein by reference.
본발명은,리륨메탈전지용음극및 이를포함하는리륨메탈전지에 관한것이다.  The present invention relates to a negative electrode for a lithium metal battery and a lithium metal battery including the same.
【배경기술】 BACKGROUND ART [0002]
리튬메탈전지는음극활물질로리륨메탈을사용하여,전지의 방전시 음극의 리를 메탈이 전자를 잃고 전해질을 통해 양극으로 이동하고, 전지의 충전 시 리튬 이온이 전해질을 통해 음극으로 이동하여 음극 활물질에 저장되는 전기화학적인 반응을 이용하는 전지이다. 이는, 음극 활물질로 흑연 등을사용하는 상용 리튬 이온 전지에 비하여, 이론적으로 매우 높은 에너지 용량을가지는이점이 있다. .  Lithium metal batteries use lithium metal as an anode active material. When metal is discharged, the metal loses electrons and moves to the anode through the electrolyte. When the battery is charged, lithium ions move to the cathode through the electrolyte, Which is an electrochemical reaction. This has the advantage of having a theoretically very high energy capacity as compared with a commercial lithium ion battery using graphite or the like as the negative electrode active material. .
다만,리튬메탈전지는,위와같은이점에도불구하고,현재까지 제안된 음극집전체의 구조적 한계로 인하여, 음극의 가역성을 확보하는 데 어려움이 있어,상용화되지 못한상태이다.  However, despite the above advantages, the lithium metal battery has not been commercialized because of the difficulty in securing the reversibility of the negative electrode due to the structural limitations of the negative electrode collector proposed so far.
구체적으로, 현재 리튬 이온 전지에서 음극 집전체로 널리 사용되는 구리 호일( 1-如1)를 리륨메탈전지에 단순 전용(轉用)하는경우,내부 기공을 포함하지 않는 평평한 ) 구조로 인하여, 전지의 충전 시 리튬 이온이 전착되는다양한방향및충분한공간을제공하지 못하는것이다. Specifically, when the copper foil ( 1 - 1) widely used as an anode current collector in a lithium ion battery is simply transferred to a lithium metal battery, due to a flat structure not including internal pores, It does not provide sufficient space and various directions in which lithium ions are electrodeposited .
이와 관련하여, 발포(& ) 형태의 기공을 포함하는 다공성 집전체가 제시되었다. 이러한 다공성 집전체는, 리륨 이온이 전착되는 다양한 방향 및 충분한 공간을 상기 기공이 제공할 수 있어, 초기 충전에 유리할 수 있다. 그럼에도 불구하고, 기공의 불규칙적( 11(10111)인 발포 형태로 인하여, 전지의 2019/125064 1»(:1^1{2018/016500 In this regard, a porous collector comprising a foam (&) shaped pore is presented. Such a porous current collector can provide various directions and sufficient space in which the lyrium ion is electrodeposited, so that the pore can be advantageous for initial charging. Nevertheless, owing to the irregular ( 11 (1 0111 )) pore form of the pores, 2019/125064 1 »(: 1 ^ 1 {2018/016500
반복적인충방전중기공이 국부적으로막히는부위가형성될수 있고,음극의 가역성이 점차저해될수있다. During repetitive insect discharge, a region where pores are locally clogged can be formed, and the reversibility of the negative electrode can be gradually impeded.
【발명의 상세한설명】 DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본발명에서는,리툼메탈전지의 충전시,리튬아온의 들어올수있는 다양한 방향과 충분한 공간을 제공하면서도, 전지의 반복적인 충방전 과정에 있어서 국부적인 막힘 현상은 억제할 수 있는 음극 집전체를 제시하며, 상기 음극집전체를사용하는최적의 음극및 전지 설계방식을제공한다.  The present invention proposes a negative electrode collector capable of suppressing local clogging during repetitive charging and discharging of the battery while providing a variety of directions and sufficient space for allowing lithium ions to enter the lithium ion battery when charging the lithium metal battery , And an optimal cathode and battery design method using the anode current collector.
【기술적 해결방법】 [Technical Solution]
구체적으로,본발명의 일구현예에서는,  Specifically, in one embodiment of the present invention,
1) 금속판의 일면 (120句 상에 제 1 기공을 형성하고, 상기 금속판의 타면 (12아)) 상에 상기 제 1 기공보다 상대적으로 직경이 큰 제 2 기공을 형성하고,상기 금속판의 내부를관통하며 상기 제 1 기공 및 상기 제 2기공을 연결하는홀 네을복수개포함하는,음극집전체 (120)를이용하여, 1) forming a second pore having a diameter larger than that of the first pore on one surface of the metal plate (the first pore is formed on the 120 phr and the other surface (12a ) of the metal plate ) (120) which includes a plurality of holes (110) passing through the first pores and connecting the first pores and the second pores,
2) 상기 음극 집전체의 제 1 기공에 대향하도록 리륨 메탈 층 (110)을 형성한,  2) a lyrium metal layer 110 is formed so as to face the first pores of the negative electrode collector,
리륨메탈전지용음극을제공한다. 또한, 본 발명의 다른 일 구현예에서는, 상기 일 구현예의 리튬 메탈 전지용 음극을사용하여,상기 음극 집전체의 제 2 기공 (상대적으로 직경이 큰 기공)에 분리막이 대향하도록설계된,리튬메탈전지를제공한다. 【발명의 효과】  A negative electrode for a lithium metal battery is provided. According to another embodiment of the present invention, there is provided a lithium metal battery, which is designed such that the separator faces the second pore (relatively large-diameter pore) of the negative electrode collector using the negative electrode for a lithium metal battery of the embodiment to provide. 【Effects of the Invention】
상기 구현예들에 따라음극 및 리튬 메탈 전지를 설계하면, 리튬 메탈 음극의 가역성을확보하며,리튬메탈전지의 수명 특성을향상시킬수있다.  The negative electrode and the lithium metal battery are designed according to the above embodiments to ensure the reversibility of the lithium metal negative electrode and to improve the lifetime characteristics of the lithium metal battery.
【도면의 간단한설명】 BRIEF DESCRIPTION OF THE DRAWINGS
도 1은,상기 일구현예의 음극집전체를개략적으로나타낸 2019/125064 1»(:1^1{2018/016500 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross- 2019/125064 1 »(: 1 ^ 1 {2018/016500
측면도이다. Side view.
도 2는,상기 일구현예의 음극집전체를적용한리륨메탈전지의 일부분을개략적으로도시한것이다.  2 schematically shows a part of a lyrium metal battery to which the anode current collector of the embodiment is applied.
도 3은,본발명의 일제조예서 설계한음극집전체의 측면 일부분을 개략적으로도시한것이다. Fig. 3 schematically shows a side portion of a negative electrode current collector designed according to one embodiment of the present invention.
Figure imgf000004_0001
발명의 일실시예에서 설계한리튬메탈음극의 측면 일부분을개략적으로도시한것이다.
Figure imgf000004_0001
1 schematically shows a side view of a lithium metal cathode designed in an embodiment of the invention.
도 는,본발명의 일 ·비교예에서 설계한리튬메탈음극의 측면 일부분을개략적으로도시한것이다. The figure schematically shows a part of a side surface of a lithium metal anode designed in a comparative example of the present invention.
Figure imgf000004_0002
도 5(:는,본발명의 일실시예 및 일 비교예의 각전지의 구동이 종료될때까자충방전을실시하고,그결과를나타낸것이다.
Figure imgf000004_0002
FIG. 5 shows the results of sludge discharge performed when the driving of each cell in one embodiment of the present invention and one comparative example is terminated.
도 63및도 는, 25 X:에서,본발명의 일실시예 및 일 비교예의 각 전지의 구동이 10사이클진행될 때까지 충방전을실시하고,그결과를나타낸 것이다. Fig. 3 and is, 25 X: In, and the drive of the one embodiment and one of the comparative example, each cell of the present invention subjected to charging and discharging conducted until cycle 10, illustrates the result.
【발명의 실시를위한최선의 형태】 BEST MODE FOR CARRYING OUT THE INVENTION
본명세서에서,어떤부분이 어떤구성요소를’’포함’’한다고할때,이는 특별히 반대되는기재가없는한다른구성요소를제외하는 것이 아니라다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는정도의 용어 "약”, "실질적으로”등은 언급된 의미에 고유한제조및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고,본원의 이해를돕기 위해 정확하거나절대적인 수치가 언급된 개시 내용을비양심적인 침해자가부당하게 이용하는것을방지하기 위해사용된다. 본원명세서 전체에서 사용되는정도의 용어 ”~(하는)단계”또는 "의 단계"는 ” 를위한단계"를의미하지 않는다.  In this specification, when a component is referred to as including an element, it is to be understood that the element may include other elements, without departing from the spirit or scope of the present invention. The terms "about "," substantially ", etc. used to the extent that they are used throughout the specification are intended to be taken to mean the approximation of the manufacturing and material tolerances inherent in the stated sense, Accurate or absolute numbers are used to help prevent unauthorized exploitation by unauthorized intruders of the referenced disclosure. The word " step (s) " or "step ", as used throughout the specification, does not imply " step for.
본 명세서에서, 마쿠시 형식의 표현에 포함된 "이들의 조합”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는하나이상을포함하는것을의미한다. 2019/125064 1»(:1^1{2018/016500 In the present specification, the term "combination thereof " included in the expression of the machine form means one or more combinations or combinations selected from the group consisting of the constituents described in the expression of the machine form, ≪ / RTI & gt ; and the like . 2019/125064 1 »(: 1 ^ 1 {2018/016500
위와 같은 정의를 기반으로, 본 발명의 구현예들을 상세히 설명하가로 한다. 다만, 이들은 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는않으며 본발명은후술할청구범위의 범주에 의해정의될뿐이다. 리툼메탈전지용음극 본발명의 일구현예에서는, Based on the above definitions, embodiments of the present invention will be described in detail. However, the present invention is not limited thereto, and the present invention is only defined by the scope of the following claims. Lithium Metal Battery Cathode In one embodiment of the invention,
1) 금속판의 일면(120句 상에 제 1 기공을 형성하고, 상기 금속판의 타면(12%) 상에 상기 제 1 기공보다 상대적으로 직경이 큰 제 2 기공을 형성하고,상기 금속판의 내부를관통하며 상기 제 1 기공 및 상기 제 2기공을 연결하는홀 네을복수개포함하는,음극집전체(120)를이용하여,  1) forming a first pore on one side of a metal plate (120 phr, forming a second pore having a diameter larger than that of the first pore on the other side (12%) of the metal plate, And a plurality of holes for connecting the first pores and the second pores to each other,
2) 상기 음극 집전체의 제 1 기공에 대향하도록 리튬 메탈 층(110)을 형성한,  2) a lithium metal layer 110 is formed so as to face the first pores of the negative electrode collector,
리튬메탈전지용음극을제공한다.  A negative electrode for a lithium metal battery is provided.
.  .
상기 일 구현예의 리륨 메탈 음극은, 상기 음극 집전체의 제 1 기공(상대적으로 직경이 작은 기공)이 리륨 메탈 층(110)에 대향하고, 제 2 기공(상대적으로직경이 큰기공)이 노출된구조이다.  The lyrium metal anode of the embodiment has a structure in which the first pores (relatively small-diameter pores) of the negative electrode collector are opposed to the lyrium metal layer 110, and the second pores (pores having a relatively large diameter) are exposed Structure.
따라서,상기 일구현예의 리튬메탈음극을사용하여 리튬메탈전지를 설계하면, 상기 음극 집전체의 제 2 기공(상대적으로 직경이 큰 기공)은 분리막에 대향하게된다. 상기 일 구현예의 리륨 메탈 음극에 있어서, 분리막에 대향하는 저 12 기공은, 리륨 이온(구체적으로, 분리막에 함침된 전해액으로부터 유래된 리튬 이온)이 용아하게들어올수있는넓은출입구가된다.  Therefore, when a lithium metal battery is designed using the lithium metal anode of the embodiment, the second pores (relatively large pores) of the anode current collector are opposed to the separator. In the lyrium metal anode according to the embodiment, the low-pore 12 opposed to the separator is a wide entrance through which lyrium ions (specifically, lithium ions derived from the electrolyte impregnated into the separator membrane) can enter.
이처럼 넓은 출입구(제 2 기공)를 통해 들어온 리튬 이온은, 의 을 통과하여 리튬 메탈 층으로 이동하게 된다. 여기서, 분리막에 대향하는 넓은 출입구(제 2 기공)로부터 리튬 메탈 층에 대향하는 좁은 출입구(제 1 기공)에 이르기까지,음극 집전체 내부를관통하는리튬 이온의 들어올수 있는다양한 방향과충분한공간을 제공하므로, 리륨 메탈전지의 반복적인 충방전 과정에 2019/125064 1»(:1^1{2018/016500 Lithium ions that enter through such a wide entrance (second pore) are transferred to the lithium metal layer through the phosphorus. Here, in various directions from the wide entrance (second pore) opposed to the separation membrane to the narrow entrance (first pore) opposed to the lithium metal layer, various directions in which lithium ions can penetrate into the anode current collector and sufficient space , So that the lithium metal battery is repeatedly charged and discharged 2019/125064 1 »(: 1 ^ 1 {2018/016500
있어서 국부적인막힘 현상을억제할수있다, So that local clogging can be suppressed,
따라서 ,상기 일구현예의위륨메탈음극을사용하여 리륨메탈전지를 설계하면,리튬메탈음극의 가역성을확보하고,리튬메탈전지의 수명 특성을 향상시킬수있다. 이하, 상기 일 구현예의 리툼 메탈 음극을 구성하는 각각의 요소를 상세히 설명한다. 도 1은,상기 음극집전체를개략적으로나타낸측면도이다.  Therefore, by designing the lithium metal battery using the lithium metal anode of the embodiment, it is possible to ensure the reversibility of the lithium metal anode and to improve the lifetime characteristics of the lithium metal battery. Hereinafter, each element constituting the lime metal cathode of the embodiment will be described in detail. 1 is a side view schematically showing the negative electrode current collector.
1)도 1에 도시된바와같이,상기 복수의 홀은,각각독립적으로,상기 금속판의 일면 상에 제 1 기공을 형성하고, 상기 금속판의 내부를 관통하여, 상기 금속판의 타면상에 제 2기공을형성할수 있다.다시 말해,상기 복수의 홀은,각각독립적으로,상기 금속판의 양면에 열려 있는기공구조를가질 수 있다. 1) As shown in Fig. 1, each of the plurality of holes has a first pore formed on one surface of the metal plate, and a second pore is formed on the other surface of the metal plate, In other words, the plurality of holes may have a pore structure that is open on both sides of the metal plate, independently of each other.
2)또한/상기 복수의 홀은,각각독립적으로,상기금속판의 일면상에 형성하는 제 1 기공의 직경이 상대적으로 작고,.상기 금속판의 타면 상에 형성하는 제 2 기공의 직경이 상대적으로 크며, 상기 제 1 기공으로부터 상기 제 2 기공에 이르는 방향으로 상기 홀의 직경이 증가할 수 있다. 다시 말해, 상기 복수의 홀은,각각독립적으로,상기 제 1 기공으로부터 상기 제 2 기공에 이르는 방향으로, 상기 홀의 직경이 증가하는 형태의 구배가 형성될 것일 수 있다. 도 2는, 상기 일 구현예의 음극 집전체를 적용한 리륨 메탈 전지의 일부분을개략적으로도시한것이다.  2) Further, each of the plurality of holes has a relatively small diameter of a first pore formed on one surface of the metal plate, and a diameter of a second pore formed on the other surface of the metal plate is relatively large , The diameter of the hole may increase in a direction from the first pore to the second pore. In other words, the plurality of holes may be formed independently of each other, in a direction from the first pore to the second pore, such that a gradient of the hole increases in diameter. 2 schematically shows a part of a lyrium metal battery to which the anode current collector of the embodiment is applied.
도 2에 도시된 바와같이,상기 일 구현예의 음극집전체를사용하여 리륨 메탈 전지를 구성할 때, 상대적으로 직경이 작은 상기 제 1 기공이 위치하는면에는 리튬 메탈증을증착시키고,상대적으로 직경이 큰상기 제 2 기공이 위치하는 면에는 분리막을 적층시킬 수 있다. 또한, 상기 분리막의 타면에는 양극을 적층시키고, 상기 분리막에는 전해질을 함침시켜 리튬 메탈 전지를구성할수있다. 2019/125064 1»(:1^1{2018/016500 As shown in FIG. 2, when a lithium metal battery is constructed using the anode current collector of the embodiment, lithium metal vapor is deposited on the surface having the relatively small diameter of the first pore, The separation membrane can be stacked on the surface where the second pores are located. The anode may be laminated on the other surface of the separator, and the separator may be impregnated with an electrolyte to form a lithium metal battery. 2019/125064 1 »(: 1 ^ 1 {2018/016500
상기 리륨 메탈 전지의 충전 시, 상기 전해질의 리튬 이온은, 상기 분리막으로부터 이동하여, 상기 복수의 홀을 관통하며, 상기 리륨 메탈 층에 전착될수있다.그와반대로,상기 리륨메탈전지의 방전시,상기 리튬메탈 층으로부터 리튬 이온이 탈리되고,상기 복수의 홀을통하여,상기 분리막으로 5 이동할수있다. When the lithium metal battery is charged, the lithium ions of the electrolyte move from the separator and pass through the plurality of holes, and can be electrodeposited on the lyrium metal layer. On the contrary, when discharging the lyrium metal battery, Lithium ions are desorbed from the lithium metal layer and can move to the separation membrane 5 through the plurality of holes.
상기 복수의 홀에 있어서, 상기 분리막에 인접한 제 2 기공은, 상기 전해질의 리륨이온이 용이하게들어올수있는넓은출입구를제공할수있다. 또한,상기 제 2 기공으로부터 상기 제 1 기공에 이르기까지 점진적으로 직경이 감소하는홀은,상기 전해질의 리튬이온이 이동하는통로가될수있다.  In the plurality of holes, the second pore adjacent to the separation membrane can provide a wide entrance through which the lyrium ion of the electrolyte can easily enter. The hole whose diameter gradually decreases from the second pore to the first pore may be a passage through which lithium ions of the electrolyte move.
10 이때,상기 분리막에 인접한제 2기공이 제공하는넓은출입구와,상기 제 2 기공으로부터 상기 제 1 기공에 이르기까지 점진적으로 직경이 감소하는 홀은, 리륨 이온의 들어올 수 있는 다양한 방향과 충분한 공간을 제공하며, 전지의 반복적인 충방전 과정에 있어서 국부적인 막힘 현상을 억제하기에 유리한구조를체공한다. 10 At this time, a wide entrance port provided by the second pore adjacent to the separation membrane, and a hole whose diameter is gradually decreased from the second pore to the first pore, And a structure advantageous for suppressing the local clogging phenomenon in the repeated charging / discharging process of the battery is provided.
15 상기 일 구현예의 음극 집전체를사용하고,특히 도 2에 도시된 바와 같이 리륨 메탈 전지를 구성하면, 음극의 가역성을 확보하고, 전지의 수명 특성을향상시킬수있다. 홀의 직경 구배 15 Using a negative electrode current collector of the above embodiment, and particularly a lyrium metal battery as shown in Fig. 2, the reversibility of the negative electrode can be ensured and the lifetime characteristics of the battery can be improved. Hole diameter gradient
20 상기 복수의 홀은,각각독립적으로,상기 제 2기공으로부터 상기 저 11 기공에 이르는 방향으로, 상기 홀의 직경이 일정한 기울기를 가지며, 점진적으로감소하는것일수있다. 20 The plurality of holes may independently have a constant slope in the direction from the second pore to the low pore, and gradually decrease.
이때,상기 일 구현예의 리튬 메탈음극을사용하여 설계된 리튬 메탈 전지를충전하면,전술한넓은출입구(제 2기공)를통해 리튬이온이 상기 홀을 In this case, when the lithium metal battery designed using the lithium metal anode of the embodiment is charged, lithium ions are injected through the wide entrance (second pore)
25 . 통과하여 리튬메탈증으로이동하게 된다. . 2 5. And is transferred to lithium metal. .
여기서, 분리막에 대향하는 넓은 출입구(제 2 기공)로부터 리륨 메탈 층에 대향하는 좁은 출입구(제 1 기공)에 이르기까지, 음극 집전체 내부를 관통하며 접진적으로 그 직경이 감소하는 홀(加뗘은, 리륨 이온의 들어올 수 있는 다양한 방향과 충분한 공간을 제공하므로, 리튬 메탈 전지의 반복적인 Here, from the wide entrance (the second pore) opposed to the separator to the narrow entrance (the first pore) opposed to the lyrium metal layer, the holes passing through the interior of the anode current collector and decreasing in diameter, , It provides various directions in which lithium ions can enter and sufficient space, so that the repetitive
30 충방전과정에 있어서 국부적인막힘 현상을억제할수있다, 2019/125064 1»(:1^1{2018/016500 30 It is possible to suppress the local clogging in charging and discharging process, 2019/125064 1 »(: 1 ^ 1 {2018/016500
이때, 상기 홀의 직경 기울기 에句는 302 내지 602 예를 들어 40 내지 50 ° 일 수 있고, 이 범위에서 리륨 이온의 들어올 수 있는 다양한 방향과 충분한 공간을 제공하며, 전지의 반복적인 충방전 과정에 있어서 국부적인막힘 현상을억제하기에 유리할수있다. In this case, the phrase on the diameter slope of the hole may be in the range of 30 2 to 60 2 , for example, 40 to 50 °. In this range, it is possible to provide various directions in which the lyrium ion can enter and sufficient space, It may be advantageous to suppress the local clogging phenomenon.
다만, 앞서 설명한바와같이,상기 복수의 홀은,각각독립적으로, 1) 상기 금속판의 양면에 열려 있는 .기공 구조를 가지며, 2) 상기 금속판의 일면으로부터 타면에 이르기까지 기공의 직경이 감소하는 구조를 가지기만 하면,상기 이점을달성하기어ᅵ 충분하다.  However, as described above, the plurality of holes may include, independently of each other, 1) a porous structure having openings on both sides of the metal plate, 2) a structure in which the diameter of the pores is reduced from one surface of the metal plate to the other surface It is sufficient to achieve the above advantage.
따라서,상기 홀의 직경이 일정한기울기를가지며 점진적으로증가할 수 있다거나,상기 홀의 직경 기울기가특정 범위 내에 속할수 있다는 것은, 어디까지나예시일뿐이며,해당예시에 의해본발명이 제한되는것은아니다. 제 1기공및제 2기공의 각직경  Therefore, it is only an example that the diameter of the hole has a constant slope and can be increased gradually, or the slope of the diameter of the hole can be within a specific range, and the present invention is not limited by the examples. The diameters of the first pore and the second pore
상기 복수의 홀은,각각독립적으로,상기 제 1 기공(小)의 직경이
Figure imgf000008_0001
내지 100_,예를들어 50_내지 70_일수 있다.이를도 2와연계하면,상기 일구현예의 음극집전체에 있어서,리륨메탈이 증착되는면의
Figure imgf000008_0002
The plurality of holes are formed such that, independently of each other, the diameter of the first pores (small)
Figure imgf000008_0001
2, for example, 50 to 70. In connection with FIG. 2, in the negative electrode current collector of this embodiment, the surface of the surface on which lyrium metal is deposited
Figure imgf000008_0002
내지 100/해,예를들어 50 내지 70 /페인것으로볼수있다. To < RTI ID = 0.0 > 100 / year, < / RTI >
또한,상기 복수의 홀은,각각독립적으로,상기 제 2기공(大)의 직경이 7 내지 700쌘!,예를들어 200,내지 350 //이일수있다.이를도 2와연계하면, 상기 일 구현예의 음극집전체에 있어서,분리막이 증착되는면의 기공직경이 7 내지 700/패,예를들어 200_내지 350m인것으로볼수있다. In addition, each of the plurality of holes may independently have a diameter of the second pore of 7 to 700, for example, 200 to 350 // . In connection with FIG. 2, In the exemplary negative electrode collector, the pore diameter of the surface on which the separation membrane is deposited is 7 to 700 / L, for example, 200 to 350 m.
한편,상기 복수의 홀이 형성되는기재,즉상기 금속판의 두께는 5 내지 300_,예를들어 100_내지 150_일수있다.  On the other hand, the thickness of the substrate on which the plurality of holes are formed, that is, the metal plate may be in a range of 5 to 300, for example, 100 to 150.
상기 제 1 기공(小)의 직경, 상기 제 2 기공(大)의 직경, 및 상기 금속판의 두께를종합적으로고려하면,상기 제 1 기공(小)의 직경으로부터 상기 금속판의 두께 1 ^ 당 직경이 0.1 내지 3 III씩 증가하여 상기 제 2 기공(大)의 직경에 이를수있다.  Considering the diameter of the first pore, the diameter of the second pore, and the thickness of the metal plate, it is preferable that the diameter per 1 mm of the metal plate is smaller than the diameter of the first pore, 0.1 to 3 < RTI ID = 0.0 > III < / RTI > to reach the diameter of the second pore.
다만, 앞서 설명한바와같이,상기 복수의 홀은,각각독립적으로, 1) 상기 금속판의 양면에 열려 있는 기공 구조를 가지며, 2) 상기 금속판의 일면으로부터 타면에 이르기까지 기공의 직경이 증가하는 구조를 가지기만 하면,상기 이점을달성하기에 충분하다. However, as described above, the plurality of holes may independently include: 1) a structure having a pore structure that is open on both sides of the metal plate, 2) a structure in which the diameter of the pore increases from one surface of the metal plate to the other surface Only , It is sufficient to achieve the above advantage.
따라서, 상기 제 1 기공 (小)의 직경, 상기 제 2 기공 (大)의 직경, 상기 금속판의 두께, 상기 금속판 내부에서의 홀 직경 변화 정도가 각각 특정 범위에 속할수 있다는것은,어디까지나예시일 뿐이며,해당예시에 의해 본 발명이 제한되는것은아니다. 복수의 홀형성 방법  Therefore, the fact that the diameter of the first pore, the diameter of the second pore, the thickness of the metal plate, and the degree of change in the hole diameter in the metal plate can each fall within a specific range is merely an example And the present invention is not limited by the examples. Method of forming a plurality of holes
한편, 상기 복수의 홀은, 각각독립적으로, 소프트 몰딩, 구형 입자의 자기 조립,또는 광 식각을 이용하여 형성된 것일 수 있다. 보다구체적으로, 후술되는실시예와같이,광식각을이용할수있다.  On the other hand, the plurality of holes may be independently formed by soft molding, self-assembly of spherical particles, or photo etching. More specifically, an optical angle can be used as in the following embodiments.
소프트 몰딩: 첫 번째로, 원뿔형, 타원뿔형, 또는 다각뿔형의 소프트 몰드 (soft mold)를사용하여 금속판에 상기 복수의 홀을형성할수있다.소프트 몰드는탄성 중합체,예를들어, PDMS(polydimethylsiloxane)로이루어질수있다. 구체적으로, 소프트 몰드의 형상을 구현하기 위해 금속, 비금속 기판에 포토리소그래피를 이용하여 식각을 진행하고, 탄성 중합체에 목적하는 형상을 전사시켜 제작할 수 있다. 예를 들어, 기판은 Si 웨이퍼 일 수 있으며, 포토리소그래피가적용가능한모든 기판에 활용가능하기 때문에 해당물질로 한정 짓지 않는다.  Soft moldings: First, the plurality of holes may be formed in a metal plate using a soft mold of a cone, a cone, or a polyhedron. The soft mold may be an elastomer, for example, polydimethylsiloxane (PDMS) ≪ / RTI > Specifically, in order to realize the shape of a soft mold, etching can be performed on a metal or non-metal substrate using photolithography, and the desired shape can be transferred to the elastomer. For example, the substrate may be a Si wafer and is not limited to the material because photolithography is applicable to all applicable substrates.
소프트 몰드의 활용 방법은 세 가지가 있다. 소프트 몰드 자체에 전도성을 부여하여 활용하는 방법, 패터닝을 위한 스템퍼 (Stamper)로 활용하여 금속 층만 탈리시켜 사용하는 방법이 있다. 구체적으로, 전도성을 부여하는 방법은 무전해도금법을 활용 하여 Cu 이온을 소프트 몰드 전면을 도금하는 방법을활용할수 있고,소프트몰드위에 금속을 Sputtering한후 첨단부분을 제거하여 기공을 형성할 수 있다. 기공이 형성된 금속 부분을 탈리 시키면 목적한금속판을 얻을수 있다. 이를사용할 때 전술한각범위로홀의 직경, 제 1기공의 직경,및/또는제 2기공의 직경이 형성될수있다.  There are three ways to use soft mold. There is a method of applying conductivity to the soft mold itself and utilizing it as a stamper for patterning, and a method of using only the metal layer to be used. Specifically, as a method of imparting conductivity, it is possible to utilize a method of plating the entire surface of a soft mold by using an electroless plating method, sputtering a metal on a soft mold, and then forming a pore by removing a tip portion. When the metal part having pores is removed, a desired metal plate can be obtained. When this is used, the diameter of the hole, the diameter of the first pore, and / or the diameter of the second pore may be formed in each of the ranges described above.
구형 입자의 자기 조립: 이와 달리, 입자의 직경에 따라 가우시안 분포 (Gausskn Distribution)를 가지고 있는 구형 입자를 사용하여도 소프트 몰드와유사한형태를얻을수 있다. 예를들어,상기 구형 입자의 크기는 1_ 내지 30/ffli 일 수 있고, 끼를 액상 침전에 의한 자기 조립 (self-assembly) 매커니즘으로구현할수 있다. 액체에 완전히 잠겨있는 기판위에 구형 입자를 낙하시키면, 중력에 의해서 입자 사이즈에 따라 쌓이게 되고, 상기 소프트 몰드와 유사한 원뿔형, 타원뿔형, 또는 다각뿔형의 형태가 표면에 분포되어 있는형태를구현할수 있다.각범위로홀의 직경,제 1 기공의 직경,및/또는 제 2기공의 직경이 형성될수있다.. Self-assembly of spherical particles: Alternatively, spherical particles having a Gaussian distribution according to the diameter of the particles can be used to obtain a soft mold-like shape. For example, the size of the spherical particles may be in the range of 1 to 30 / ffli, and the pores may be self-assembled by liquid phase precipitation, It can be implemented as a mechanism. When the spherical particles are dropped on the substrate completely immersed in the liquid, they are accumulated according to the particle size due to gravity, and a cone shape, a cone shape, or a polygonal shape similar to the soft mold is distributed on the surface. The diameter of the hole, the diameter of the first pore, and / or the diameter of the second pore may be formed in each range. .
광 식각: 한편, 광식각을 이용할 경우, 조사되는 광은 자외선 (UV)일 수 있으며, 일반적으로 lOntn 내지 500nm의 파장대역을 가질 수 있다. 보다 구체적으로중심 파장이 300nm내지 500nm에 위치 할수 있다. 광을금속판에 목적하는홀이 형성될수있도록포토레지스트와광마스크를위치 하도록하고 조사 시키면 포토레지스트와 광마스크가 있는 곳을 제외한 금속의 일부분이 식각된다. 깊이에 따른 구배 (Gradient)가 있는 홀을 형성하기 위해서는 포토레지스트와 광마스크의 사이즈를 순차적으로 조절하여 구배가 있는 상기 복수의 홀을 형성할 수 있다. 이 경우, 전술한 각 범위로 홀의 직경, 제 1 기공의 직경,및/또는제 2기공의 직경이 형성될수있다.  Photolithography: On the other hand, when an optical angle is used, the light to be irradiated may be ultraviolet (UV), and may have a wavelength band of 10 nt to 500 nm in general. More specifically, the central wavelength can be located at 300 nm to 500 nm. When a photoresist and a photomask are positioned so that light can be formed on a metal plate so that a desired hole is formed, a part of the metal except the photoresist and the photomask is etched. In order to form a hole with a gradient according to the depth, the size of the photoresist and the photomask may be sequentially adjusted to form the plurality of holes having a gradient. In this case, the diameter of the hole, the diameter of the first pore, and / or the diameter of the second pore may be formed in the aforementioned ranges.
다만,상기 홀의 직경,상기 제 1 기공의 직경,상기 제 2 기공의 직경 등에 대하여 전술한 각 범위가 예시인 만큼, 상기 예시된 각 방법 및 각 방법의 공정 조건또한,상기 일구현예의 이해를돕기 위한예시에 불과하다. 복수의 홀형상  However, since the aforementioned ranges are exemplified with respect to the diameter of the hole, the diameter of the first pore, the diameter of the second pore, and the like, the process conditions of each of the illustrated methods and each method are also described in order to facilitate understanding of the embodiment For example. A plurality of hole shapes
상기 복수의 홀은, 각각 독립적으로, 그 형성 방법과 조건을 제어함으로써 원뿔대, 타원뿔대, 또는 다각뿔대 형상을 가질 수 있다. 예를 들어, 원뿔형의 소프트 몰드를 사용하면, 상기 복수의 홀을 각각 원뿔대 형상으로 형성할수 있다.상기 원뿔대 형상에 있어서,보다좁은윗면이 상가 제 1 기공을 형성할 수 있고, 보다 넓은 밑면은 상기 제 2 기공을 형성할 수 있고, 그 기울기는 상기 홀의 직경 기울기와 일치할 수 있다. 다만, 상기 나열된형상은예시일뿐이며,이에 의해본발명이 제한되는것은아니다. 기공도  The plurality of holes may each have a truncated cone, a truncated cone, or a polygonal prism shape by independently controlling the formation method and conditions thereof. For example, when a conical soft mold is used, each of the plurality of holes may be formed into a truncated cone shape. In the truncated cone shape, a narrower upper surface may form the first pore, A second pore may be formed, and the slope thereof may coincide with the diameter slope of the hole. However, the shapes listed above are merely examples, and the present invention is not limited thereto. Porosity
상기 일 구현예의 음극집전체에 있어서,상기 금속판및 상기 복수의 홀을포함하는전체부피 (100부피%)중,상기 복수의 기공이 차지하는부피가 2019/125064 1»(:1^1{2018/016500 In the negative electrode current collector of the embodiment, the volume occupied by the plurality of pores among the total volume (100 volume%) including the metal plate and the plurality of holes 2019/125064 1 »(: 1 ^ 1 {2018/016500
50 내지 90 부피% 일 수 있다. 이 범위에서, 리튬 이온의 들어올 수 있는 다양한 방향과 충분한 공간을 제공하며, 전지의 반복적인 충방전 과정에 있어서 국부적인 막힘 현상을 억제하기에 유리할수 있다. 다만, 이는 예시일 뿐이며,이에 의해본발명이 제한되는것은아니다. 금속판 50 to 90% by volume. In this range, it provides various directions in which lithium ions can enter and sufficient space, and can be advantageous in suppressing local clogging in repeated charging and discharging of the battery. However, this is merely an example, and the present invention is not limited thereto. plate
상기 일 구현예의 음극 집전체에 있어서, 상기 금속판은 구리 ( 1); 또는구리 (01)와다른금속의 합금 ( 10九으로이루어진것일수있다. In the negative electrode current collector of this embodiment, the metal plate may include copper ( 1); Or copper may be made of a number of days (0, 1) and the alloy (1 0九of other metals.
상기 금속판은 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을가지는구리 (01)또는구리 합금 ((¾-시10 소재로 이루어진 것이라면, 특별히 제한되는것은아니다. If the metal plate is made of a without causing chemical changes in the battery copper (0 1) or a copper alloy ((¾- during 10 material having a high conductivity, it is not particularly limited.
상기 금속판은앞서 언급한바와같이 3내지 500 !예를들어 100_ 내지 150_의 두께를가지는 필름,시트,호일 등일 수 있고, 이러한금속판에 전술한복수의 홀을 형성할수 있는 것이다. 또한,상기 금속관은, 그 표면에 미세한요철을 형성하여 리륨 메탈층 및/또는 분리막의 접착력을높일 수도 있다. 리륨메탈층의 증착방법  As described above, the metal plate may be a film, a sheet, a foil, or the like having a thickness of 3 to 500, e.g., 100 to 150, and the plurality of holes may be formed on the metal plate. In addition, the metal tube may be formed with fine irregularities on its surface to increase the adhesion of the lyrium metal layer and / or the separator. Method for depositing a lyrium metal layer
한편, 상기 일 구현예의 집전체 상에 상기 리튬 메탈 증을 증착 방법은,당업계에 일반적으로알려진방법을적절히 선택할수있다.  Meanwhile, as a method for depositing the lithium metal deposit on the current collector of the embodiment, a method generally known in the art can be appropriately selected.
구체적으로, 상기 리툼 메탈 층은, 전지 내에서 증착시킬 수 있다. 예컨대,통상적인 전지의 음극을전술한일 구현예의 음극집전체로대체한뒤 충전과 방전을 반복함으로써, 상기 음극 집전체에 상기 리륨 메탈 층을 증착시킬수있다. 리륨메탈전지  Specifically, the rutum metal layer can be deposited in a battery. For example, the lithium metal layer can be deposited on the negative electrode collector by replacing the negative electrode of a conventional battery with the negative electrode collector of the embodiment described above and repeating charging and discharging. Lyrium metal battery
본 발명의 다른 일 구현예에서는,상기 일 구현예의 음극 집전체; 및 상기 음극집전체의 제 1기공에 대향하는리륨메탈층;을포함하는음극;상기 음극집전체의 제 2가공에 대향하는분리막;상기 분리막에 함침된 전해질;및 상기 분리막의 타면에 대향하는양극;을포함하는,리튬메탈전지를제공한다. 2019/125064 1»(:1^1{2018/016500 According to another embodiment of the present invention, there is provided a negative electrode including a negative electrode including the negative electrode collector according to one embodiment of the present invention and a lyrium metal layer facing the first pore of the negative electrode collector, An electrolyte impregnated in the separator, and a cathode opposite to the other surface of the separator. 2019/125064 1 »(: 1 ^ 1 {2018/016500
이는, 상기 일 구현예의 음극 집전체에 대하여, 상대적으로 직경이 작은 상기 제 1 기공이 위치하는 면에는 리튬 메탈 층을 증착시키고, 상대적으로직경이 큰상기 제 2기공이 위치하는면에는분리막을적층시키고, 또한, 상기 분리막의 타면에는 양극을 적층시키고, 상기 분리막에는 전해질을 함침시켜 리툼 메탈 전지를 구성한 것일 수 있다. 이의 구조는, 도 1 및 2와 연계하여 앞서 상세히 기술한것과동일하다. 기공을 포함하지 않는 평평한(0 ) 구조의 구리 호일(01-&)산) 또는 발포(¾) ) 형태의 기공을 포함하는 다공성 집전체를 각각 음극 집전체로 사용하는경우,리튬메탈전지의 용량저하가극심하다. This is because the lithium metal layer is deposited on the surface of the negative electrode collector of the above embodiment where the first pores having a relatively small diameter are located and the separator is stacked on the surface where the second pores having a relatively large diameter are located. Further, the anode may be laminated on the other surface of the separator, and the separator may be impregnated with an electrolyte to form a rutum metal battery. Its structure is the same as described in detail in connection with Figs. 1 and 2 above. When a porous current collector including a copper foil (0 1 - >) or a foam (¾)) type of pores having no flat pores is used as a negative electrode current collector, The capacity decrease is severe.
그에 반면,상기 일구현예의 리튬메탈전지는,전술한음극집전체를 포함하는것이므로,전지의 반복적인충전 및 방전과정에 있어서 전술한음극 집전체를포함하는음극에 리륨의 저장과탈리가안정적으로이루어질수있어, 수명 특성이 향상될수있다. 이하에서는음극이외의 전지 구성 요소를상세히 설명하기로한다. 전해액  On the other hand, since the lithium metal battery of the embodiment includes the above-described negative electrode current collector, the storage and desorption of lyrium can be stably performed in the negative electrode including the above-described negative electrode current collector during repeated charging and discharging of the battery. And life characteristics can be improved. Hereinafter, battery components other than the cathode will be described in detail. Electrolyte
상기 리륨 메탈 전지는, 비수성 유기용매와 리튬염을 포함하는 전해액을사용할수있다.  As the lyrium metal battery, an electrolytic solution containing a non-aqueous organic solvent and a lithium salt may be used.
상기 비수성 유기용매는전지의 전기화학적 반응에 관여하는이온들이 이동할수있는매질 역할을한다.  The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계,알코올계또는비양성자성 용매를사용할수있다. 상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트 표이, 디프로필 카보네이트田어, 메틸프로필 카보네이트(^« ), 에틸프로필 카보네이트 이, 메틸에틸 카보네이트(出(¾ 에틸렌 카보네이트여어, 프로필렌 카보네이트(1 ), 부틸렌 카보네이트 어 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, 11프로필 아세테이트, 1,1 -디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 상 -부티로락톤, 데카놀라이드 (decanolide), 발레로락톤, 메발로노락톤 (mevalonolactone), 카프로락톤 (caprolactone)등이 사용될수있다. 상기 에테르계용매로는디부틸 에테르, 테트라글라임 , 디글라임 , 디메톡시에탄, 2 -메틸테트라히드로퓨란, 테트라히드로퓨란등이 사용될수 있으며,상기 케톤계 용매로는시클로핵사논 등이 사용될 수 있다. 또한상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올등이 사용될수 있으며,상기 비양성자성 용매로는 R-CN(R은 C2내지 C20의 직쇄상,분지상또는환구조의 탄화수소기이며,이중결합방향환또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3 -디옥솔란 등의 디옥솔란류 설포란 (sulfolane)류 등이 사용될 수 있다. As the non-aqueous organic solvent, a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based or aprotic solvent may be used. Examples of the carbonate-based solvent include dimethyl carbonate (DMC), diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl ethyl carbonate (ethylene carbonate, propylene carbonate 1), butylene carbonate and the like can be used. As the ester solvent, methyl acetate, ethyl acetate, 11 propyl acetate, 1,1-dimethyl ethyl acetate, methyl propionate, ethyl propionate, Lactone, Decanolide, valerolactone, mevalonolactone, caprolactone, and the like may be used. As the ether solvent, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like can be used. As the ketone solvent, cyclohexanone and the like can be used. As the alcoholic solvent, ethyl alcohol, isopropyl alcohol and the like can be used. As the aprotic solvent, R-CN (R is a linear, branched or cyclic hydrocarbon group of C2 to C20, An amide such as nitrile, dimethylformamide, etc., which may contain a bonding aromatic ring or an ether bond, dioxolane such as 1,3-dioxolane, sulfolane, and the like.
상기 비수성 유기 용매는 단독으로또는 하나 이상혼합하여 사용할 수 있으며, 하나 이상혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는널리 이해될수있다.  The non-aqueous organic solvent may be used alone or in admixture of one or more. If the non-aqueous organic solvent is used in combination, the mixing ratio may be appropriately adjusted according to the desired cell performance. .
또한, 상기 카보네이트계 용매의 경우 환형 (cyclic) 카보네이트와 사슬형 (chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는것이 전해액의 성능이 우수하게나타날수있다.  In the case of the carbonate-based solvent, it is preferable to use a mixture of a cyclic carbonate and a chain carbonate. In this case, mixing the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9 may provide excellent performance of the electrolytic solution.
상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를더 포함할수도 있다. 이때 상기 카보네이트계 용매와 상기 방향족탄화수소계유기용매는약 1:1내지 약 30:1의 부피비로혼합될수 있다.  The non-aqueous organic solvent may further include the aromatic hydrocarbon-based organic solvent in the carbonate-based solvent. In this case, the carbonate-based solvent and the aromatic hydrocarbon-based solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 1의 방향족 탄화수소계화합물이사용될수있다.  The aromatic hydrocarbon-based organic solvent may be an aromatic hydrocarbon-based compound represented by the following formula (1).
[화학식 1] [Chemical Formula 1]
Figure imgf000013_0001
상기 화학식 1에서, ¾ 내지 116는 각각독립적으로 수소, 할로겐, 01 2019/125064 1»(:1^1{2018/016500
Figure imgf000013_0001
In the above formula (1), each of ¾ to 11 6 independently represents hydrogen, halogen, 01 2019/125064 1 »(: 1 ^ 1 {2018/016500
내지(:10의 알킬기,(그1내지乂: 10의 할로알킬기 또는이들의 조합이다. (Having 1 to 10 carbon atoms, (1 to 10 carbon atoms), or a combination thereof.
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, The aromatic hydrocarbon-based organic solvent is selected from the group consisting of benzene, fluorobenzene,
1,2 -디플루오로벤젠, 1,3 -디플루오로벤젠, 1,4 -디플루오로벤젠,1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene,
1.2.3 -트리플루오로벤젠, 1,2, 4 -트리플루오로벤젠, 클로로벤젠, 1,2 -디클로로벤젠,1.2.3 - trifluorobenzene, 1,2,4 - trifluorobenzene, chlorobenzene, 1,2 - dichlorobenzene,
1.3 -디클로로벤젠, 1,4 -디클로로벤젠, 1,2, 3 -트리클로로벤젠, 1,2, 4 -트리클로로벤젠, 아이오도벤젠, 1,2 -디아이오도벤젠, 1,3 -디아이오도벤젠, 1,4 -디아이오도벤젠,1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3- Benzene, 1,4-diiodobenzene,
1.2.3 -트리아이오도벤젠, 1,2, 4 -트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 1,2 -디플루오로톨루엔, 1,3 -디플루오로톨루엔, 1,4 -디플루오로톨루엔,1,2,3-triiodobenzene, 1,2,4-triiodobenzene, toluene, fluorotoluene, 1,2-difluorotoluene, 1,3-difluorotoluene, 1,4-difluoro Toluene,
1,2, 3 -트리플루오로톨루엔, 1,2,4 -트리플루오로톨루엔, 클로로톨루엔,1,2,3-trifluorotoluene, 1,2,4-trifluorotoluene, chlorotoluene,
1.2 -디클로로톨루엔, 1,3 -디클로로톨루엔, 1,4 -디클로로톨루엔, 1,2,3 -트리클로로톨루엔, 1,2, 4 -트리클로로톨루엔, 아이오도톨루엔,1,2-dichlorotoluene, 1,3-dichlorotoluene, 1,4-dichlorotoluene, 1,2,3-trichlorotoluene, 1,2,4-trichlorotoluene, iodotoluene,
1.2 -디아이오도톨루엔, 1,3 -디아이오도톨루엔, 1,4 -디아이오도톨루엔,1,2-diiodotoluene, 1,3-diiodotoluene, 1,4-diiodotoluene,
1,2, 3 -트리아이오도톨루엔, 1,2, 4 -트리아이오도톨루엔,자일렌또는이들의 조합을 사용할수있다. 1,2,3-triiodotoluene, 1,2,4-triiodotoluene, xylene, or a combination thereof.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트또는하기 화학식 2의 에틸렌 카보네이트계 화합물을더욱포함할 수도있다.  The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound represented by the following formula (2) to improve battery life.
[화학식 2]  (2)
Figure imgf000014_0001
상기 화학식 2에서, 幻 및 ¾는 각각 독립적으로 수소, 할로겐기, 시아노기(0 ), 니트로기 02) 또는 <그1 내지 05의 플루오로알킬기이며, 상기 과 ¾중 적어도 하나는 할로겐기, 시아노기(0비, 니트로기어02) 또는 01 내지 05의 플루오로알킬기이다.
Figure imgf000014_0001
In Formula 2,幻and ¾ are each independently hydrogen, halogen, cyano (0), a nitro group 02) or <a fluoroalkyl group of 1 to 05, wherein at least one of the and ¾ is a halogen group, A cyano group (0 ratio, nitrogage 0 2 ), or a fluoroalkyl group of 01 to 05.
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트,시아노에틸렌 카보네이트,플루오로에틸렌 카보네이트등을들수 있다. 상기 비닐렌카보네이트또는상기 에틸렌카보네이트계 화합물을더욱 사용하는경우그사용량을적절하게조절하여 수명을향상시킬수있다. Representative examples of the ethylene carbonate-based compound include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene Carbonates, cyanoethylene carbonate, fluoroethylene carbonate, and the like. When the vinylene carbonate or the ethylene carbonate-based compound is further used, the amount of the vinylene carbonate or the ethylene carbonate-based compound can be appropriately adjusted to improve the service life.
상기 리튬염은상기 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로작용하여 기본적인 리튬이차전지의 작동을가능하게하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 상기 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiC4F9S03, L1CIO4, LiA102, LiAlCU, LiN(CxF2x+1S02)(CyF2y+1S02)(여기서, x및 y는자연수임), LiCl, Lil, LiB(C2C>4)2(리튬비스옥살레이토보레이트 (litiium bis(oxalato) borate; LiBOB)또는 이들의 조합을 들 수 있으며, 이들을 지지 (supporting) 전해염으로 포함한다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할수있다. The lithium salt is dissolved in the non-aqueous organic solvent to act as a source of lithium ions in the battery to enable operation of a basic lithium secondary battery, and a material capable of promoting the movement of lithium ions between the positive electrode and the negative electrode to be. The lithium salt Representative examples are LiPF 6, LiBF 4, LiSbF 6 , LiAsF 6, LiC 4 F 9 S0 3, L1CIO 4, LiA10 2, LiAlCU, LiN (C x F 2x + 1 S0 2) (C y F 2y + 1 SiO 2 ) (where x and y are natural numbers), LiCl, Lil, LiB (C 2 C> 4 ) 2 (lithium bis (oxalato) borate LiBOB) The concentration of the lithium salt is preferably within the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity It can exhibit excellent electrolyte performance, and lithium ions can move effectively.
- 세퍼레이터  - Separator
상기 세퍼레이터는 상기 음극과 상기 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다. 즉, 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습능력이 우수한것이 사용될수있다. 예를들어,유리 섬유,폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌 (PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 고분자 세퍼레이터가 주로 사용되고, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될수도있으며,선택적으로단층또는다층구조로사용될수있다. 양극  The separator separates the negative electrode and the positive electrode and provides a passage for lithium ion. Any separator may be used as long as it is commonly used in a lithium battery. That is, a material having a low resistance against the ion movement of the electrolyte and an excellent ability to impregnate the electrolyte can be used. For example, selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, and may be nonwoven fabric or woven fabric. For example, a polyolefin-based polymer separator such as polyethylene, polypropylene and the like is mainly used for a lithium ion battery, and a coated separator containing a ceramic component or a polymer substance may be used for heat resistance or mechanical strength, It can be used as a structure. anode
상기 양극은, 양극 집전체 및 상기 양극 집전체 상에 위치하는 양극 합제층을포함할수있다. 2019/125064 1»(:1^1{2018/016500 The positive electrode may include a positive electrode collector and a positive electrode mixture layer positioned on the positive electrode collector. 2019/125064 1 »(: 1 ^ 1 {2018/016500
상기 양극은활물질 및 바인더,경우에 따라서는도전재,충진재 등을 용매 중에서 혼합하여 슬러리 상의 전극 합제으로 제조하고, 이 전극 합제를 각각의 전극집전체에 도포하여 제조한다. 이와같은 전극제조방법은당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. The anode is prepared by mixing an active material and a binder, and optionally a conductive material, a filler, etc., in a solvent to prepare a slurry-like electrode mixture, and applying the electrode mixture to each electrode current collector. The method of manufacturing the electrode is well known in the art, and therefore, a detailed description thereof will be omitted herein.
상기 양극 활물질은 리튬 코발트 산화물(0 >02), 리륨 니켈 산화물(니 02)등의 층상화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 내+ 均-必八여기서, X 는 0 〜 0.33 임), ] 1103
Figure imgf000016_0001
The positive electrode active material is lithium cobalt oxide (0> 02), Lyrium nickel oxide (Nishi 02) layered compounds or one or more transition compounds substituted with a metal such as; My +均formula -必八wherein, X is 0 to 0.33), - 110 3,
Figure imgf000016_0001
1 11102등의 리륨망간산화물;리륨동산화물( 20102); ¼08, 1 6304, ¼05, 012\^207등의 바나듐산화물;화학식 여(여기서, M = 00,
Figure imgf000016_0002
1 1110 2 lyrium manganese oxide, lyrium copper oxide ( 2 010 2 ); ¼0 8, 1 6 3 0 4 , ¼0 5, 01 2 \ ^ 2 vanadium oxide, such as 0 to 7; formula W (where, M = 00,
Figure imgf000016_0002
Mg, 8또는
Figure imgf000016_0003
이고, X = 0.01 - 0.3 임)으로표현되는해사이트형 리튬니켈 산화물;화학식
Figure imgf000016_0005
(여기서,
Figure imgf000016_0004
0.01
Mg, 8 or
Figure imgf000016_0003
, And X = 0.01 - 0.3);
Figure imgf000016_0005
(here,
Figure imgf000016_0004
0.01
- 0.1 임)또는니2 11 08(여기서, = ?6, 00,섀,어또는 ¾1임)으로표현되는 리튬망간복합산화물; :니 니 ᄌ어로표현되는스피넬구조의 리륨망간복합 산화물; 화학식의 0 일부가 알칼리토금속 이온으로 치환된 LiMn204; 디설파이드 화합물; ¾( 0043등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. - 0.1) or Ni 2 O 8 (where? = 6, 00, Shahr or ¾1); : A lyrium manganese composite oxide having a spinel structure expressed in Nizhnekams; LiMn 2 O 4 where 0 part of the formula is substituted with an alkaline earth metal ion; Disulfide compounds; ¾ (00 4 ) 3 , but are not limited to these.
상기 양극집전체는 일반적으로 3 - 500 의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는그것의 표면에 미세한요철을형성하여 양극활물질의 접착력을높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질처ᅵ, 발포체, 부직포체 등 다양한 형태가가능하다.  The cathode current collector generally has a thickness of 3-500. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used. The current collector may have fine irregularities on its surface to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous substrate, a foam, and a nonwoven fabric are possible.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나인조흑연등의 흑연;카본블랙,아세틸렌블랙,케첸블랙,채널블랙, 퍼네이스 블랙, 램프블랙,서머 블랙 등의 카본블랙; 탄소 섬유나금속 섬유 등의 도전성 섬유;불화카본,알루미늄,니켈분말등의 금속분말;산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌유도체등의 도전성 소재등이사용될수있다. 상기 일 구현예의 리튬 메탈 전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을뿐만아니라, 다수의 전지셀들을포함하는 중대형 전지모듈에 단위전지로도사용될수있다. 제조예 1 The conductive material is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, Carbon black such as black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber, metal powders such as carbon fluoride, aluminum and nickel powder, Conductive whiskey such as potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. The lithium metal battery of the embodiment can be used not only in a battery cell used as a power source of a small device but also as a unit battery in a middle or large battery module including a plurality of battery cells. Production Example 1
도 3에 도시된 바와같이,금속판의 일면 (120a)상에 상대적으로직경이 작은제 1 기공을형성하고,상기 금속판의 타면 (120b)상에 상기 제 1 기공보다 상대적으로 직경이 큰 제 2 기공을 형성하고, 상기 금속판의 내부를 관통하며 상기 제 1 기공및 상기 제 2기공을연결하는홀 (hole)을복수개 포함하는,음극 집전체 (120)를제조하였다.  As shown in FIG. 3, a first pore having a relatively small diameter is formed on one surface 120a of the metal plate, and a second pore having a relatively larger diameter than the first pore is formed on the other surface 120b of the metal plate. And a plurality of holes passing through the inside of the metal plate and connecting the first pores and the second pores were manufactured.
구체적으로, 상기 음극 집전체 (120)의 모재 (base material)가 되는 금속판으로는,두께가 16 _인전해동박을사용하였다.  Specifically, an electrolytic copper foil having a thickness of 16 _ was used as a metal plate serving as a base material of the anode current collector 120.
상기 전해동박의 일면 상에 제 1 포토레지스트 (photo-resist) 층을 균일하게 증착하였다.또한,상기 포토레지스트 (photo-resist)층상에,직경이 81 인 원형의 개구부를 포함하는 제 1 광마스크 (photo-mask)를 부착한 뒤, 90 내지 110mJ/cm2의 광량자외선 (UV)훌조사함으로써, 상기 제 1광마스크에 의한 패턴을형성하였다 A first photo-resist layer was uniformly deposited on one side of the electrolytic copper foil. On the photo-resist layer, a first photomask (not shown) including a circular opening having a diameter of 81 a photo-mask was attached, followed by irradiation with ultraviolet light (UV) at a dose of 90 to 110 mJ / cm 2 to form a pattern by the first photomask
그 다음, 상기 제 1 광마스크를 제거하고, 상기 제 1 광마스크에 의한 패턴이 형성된 제 1 포토레지스트 층을 제거하기 위해 NaOH 및 물 (H20)로 구성된 현상액 (developer)에 침지 (immersion)하여, 식각되어야 할 부분에 존재하는 포토레지스트 층을 제거하였다. 그리고 습식 식각 (Wet etching)을 진행하여 금속에 기공을 형성하기 위해 HN03 와물 (¾0)로 이루어진 Etching 액을 사용하여 식각을 실시하였다. 단, 상기 공정 외에도 통상적인Next, the first photomask is removed, and immersion is performed in a developer composed of NaOH and water (H 2 O) to remove the first photoresist layer having the pattern formed by the first photomask, Thereby removing the photoresist layer present in the portion to be etched. Etching was carried out using Etching solution composed of HNO 3 (¾0) to form pores in the metal by proceeding wet etching. However, in addition to the above processes,
Positive/Negative 포토리소그래피 공정을 적용하여 금속을 식각 및 패턴 (Pattern)을제작할수있다. A positive / negative photolithography process can be used to etch and pattern the metal.
이후, 직경이 67.5 _인 원형의 개구부를 포함하는 광마스크 (photo-mask)에 이르기까지, 81, 개구부부터 순차적으로 광마스크의 2019/125064 1»(:1^1{2018/016500 Thereafter, to a photo-mask including a circular opening with a diameter of 67.5 _, 81, successively from the opening, 2019/125064 1 »(: 1 ^ 1 {2018/016500
사이즈를 줄여서 원형의 개구부 직경이 점진적으로 감소하는 광마스크로 교체해가며, 노광, 현상, 에칭, 및 박리 공정을 반복하였다. 여기서, 각각의 광마스크는, 각기공중심점기준에서 동일한간격으로형성된원형의 개구부를 포함한다. The exposure, development, etching, and the peeling process were repeated while changing the size of the photomask in which the diameter of the circular opening gradually decreased. Here, each of the photomasks includes a circular opening formed at equal intervals on the basis of each pore center point.
최종적으로, 상기 전해동박의 일면(120句 상에 형성된 기공의 직경이 Finally, one surface of the electrolytic copper foil (the diameter of the pores formed on the 120 phrases
67.5 m (제 1 기공)이고, 상기 전해동박의 타면(12아>) 상에 형성된 기공의 직경이 81 _ (제 2 기공)이며, 상기 전해동박의 내부를 관통하며 상기 제 1 기공 및 상기 제 2 기공을 연결하는 홀어 이이 복수개 형성된 형태로, 음극 집전체(120)를수득하였다. (Second pore) formed on the other surface (12a) of the electrolytic copper foil is 67.5 m (first pore), and the diameter of the pore formed on the other surface The negative electrode current collector 120 was obtained.
상기 음극 집전체(120)에 있어서, 각각의 홀은, 상기 제 1 기공의 직경으로부터, 상기 금속판의 내부를 관통하며 직경이 점진적으로 증가 (전해동박의 두께 1 /패당홀의 직경은 0.84375,증가)하여,상기 제 2기공의 직경에 이르는형태의 구배가형성된 것이며,기공도는 20~30\ 1%이다. 【발명의 실시를위한형태】 In the anode current collector 120, each of the holes penetrates the inside of the metal plate from the diameter of the first pore, and the diameter gradually increases (the thickness of the electrolytic copper foil / the diameter of the hole per chip is increased by 0.84375) , will have a gradient of the form up to the diameter of the second pores, the porosity is 20 to 30 \ 1%. DETAILED DESCRIPTION OF THE INVENTION
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로설명하기로한다. 다만, 이는발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가어떠한의미로든한정되는것은아니다. 실시예 1  BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. However, this is provided as an example of the invention, and the scope of the invention is not limited thereto in any sense. Example 1
상기 제조예 1의 음극집전체(120)을사용하되,상기 음극집전체의 제 1 기공(상대적으로 직경이 작은 기공)과 리튬 메탈 증이 대향하는 구조로 리튬 메탈음극을제조하였다.  A lithium metal anode was fabricated using the anode current collector 120 of Production Example 1, except that the first pores (relatively small-diameter pores) of the anode current collector and the lithium metal grease face each other.
구체적으로, 도
Figure imgf000018_0001
도시된 바와 같이, 상기 제조예 1의 음극 집전체(120)에 있어서 상대적으로 직경이 작은 기공이 위치하는 면(120句과, 리륨 호일( &11, 두께 : 20 _)이 대향하도록 한 뒤, 집전체와 리튬 메탈층이 합지되어 떨어지지 않을 정도로 롤 프레스(대11 633)하고, 원형(직경 : 1.5(패)으로타발하여 , 실시예 1의 리륨메탈음극으로수득하였다. 실시예 2 2019/125064 1»(:1^1{2018/016500
Specifically,
Figure imgf000018_0001
As shown in the drawing, in the negative electrode current collector 120 of Production Example 1, the surface (120 phrases where relatively small diameter pores exist) and the lyrium foil (& 11, thickness: A roll press (band 11 633 ) was carried out so that the entirety and the lithium metal layer did not fall off, and was obtained as a lyrium metal negative electrode of Example 1 with a circular shape (diameter: 1.5 L). Example 2 2019/125064 1 »(: 1 ^ 1 {2018/016500
상기 실시예 1의 리륨메탈음극을사용하여 , 제 2기공(상대적으로 직경이 큰기공)과분리막에 대향하는구조로리튬메탈전지를제조하였다. 구체적으로, 양극활물질로 LiNio.8Mno.1Coo.1O2 , 도전재로카본블랙, 및 바인더로폴리비닐리덴풀루오라이드(^ )를각각사용하고, 양극활물질: 도전재: 바인더의 중량비를 96 : 2 : 2로하여 혼합한혼합물에, 용제인■?에 첨가하여 양극활물질슬러리를제조하였다. Using the lyrium metal anode of Example 1, a lithium metal battery was fabricated with a structure that faces the second pores (relatively large-diameter pores) and the separator. Specifically, LiNio .8 Mno Coo .1 .1 O 2, using a conductive material as carbon black, and a binder polyvinylidene fluoride denpul (^), respectively, and the positive electrode active material in the positive electrode active material: conductive material: binder weight ratio of In a mixed solvent of 96: 2: 2 was added to the solvent, to prepare a cathode active material slurry.
가로 34™, 세로 51™, 두께 12™인 알루미늄집전체의 편면당 3.15
Figure imgf000019_0001
로딩(103 1塔)량으로상기 양극활물질슬러리를도포한뒤, 건조 및 압연한다음, 원형(직경: 1.40«)으로타발하여, 실시예 1의 양극을
Width 34 ™, height 51 ™, thickness of 12 ™ 3.15 per side of the aluminum housing
Figure imgf000019_0001
The anode active material slurry was applied to the anode active material slurry in a loading (1.03 1 ) column, dried and rolled, and then pulverized in a circular shape (diameter: 1.40)
수득하였다. .
전해액으로는, 에틸렌카보네이트(¾:), 디에틸카보네이트여 ), 및 디메틸카보네이트(關 를 1:2: 1의 부피비(狀 :販(::쌔(:)로혼합한용매를 포함하고, 전해액총량중 의 1^平6및 10 %의 플루오로에틸렌 Examples of the electrolytic solution include a solvent mixed with ethylene carbonate (¾), diethyl carbonate (), and dimethyl carbonate (1: 2: 1 by volume) The total amount of 1, 6 and 10% of fluoroethylene
카보네이트 防)를포함하는전해액을제조하였다. Carbonate) was prepared.
상기 실시예 1의 리륨메탈음극및상기 실시예 1의 양극사이에 , 폴리에틸렌소재의 분리막(두께: 20 11111)를개재시킨뒤, 상기 전해액을 주액하고, 통상적인방법에 따라 12032코인 셀(¥ 0 1)을제조하여,실시예 2의 리륨메탈전지로수득하였다. A polyethylene separator (thickness: 20 11111 ) was interposed between the lyrium metal anode of Example 1 and the anode of Example 1, and the electrolytic solution was injected thereinto. Then, 12032 coin cells 1) was prepared and obtained as the lyrium metal cell of Example 2.
상기 실시예 2의 리튬 메탈 전지에 있어서, 상기 음극 집전체(제조예 1)의 제 1 기공(상대적으로직경이 작은기공)은리륨메탈층과대향하고,상기 음극집전체의 제 2기공(상대적으로직경이 큰기공)은분리막과대향한다. 비교예 1  In the lithium metal battery of Example 2, the first pores (relatively small-diameter pores) of the negative electrode collector (Production Example 1) were oriented in a direction opposite to the lyrium metal layer and the second pores of the negative electrode collector Large-diameter pores) are directed against the membrane. Comparative Example 1
상기 제조예 1의 음극 집전체(120)을 사용하되 , 음극 집전체의 제 2 기공(상대적으로직경이 큰기공)과리튬메탈증(110)이 대향하는구조로리튬 메탈음극을제조하였다.  A lithium metal anode was fabricated using the anode current collector 120 of Production Example 1 and having a structure in which the second pores (relatively large-diameter pores) of the anode current collector and the lithium metal foil 110 were opposed to each other.
구체적으로, 도 41,에 도시된 바와 같이, 상기 제조예 1의 .음극 집전체(120)에 있어서 상대적으로직경이 큰기공이 위치하는면(12(¾)과,리튬 호일( 두께: 20 _)이 대향하도록 한 뒤, 집전체와 리륨 메탈층이 합지되어 떨어지지 않을 정도로 롤 프레스(101 1 133)하고 , 원형(직경 : 1.5011)으로타발하여, 비교예 1의 리튬메탈음극으로수득하였다. 비교예 2 Specifically, as shown in Fig. 41, the surface 12 (¾) in which pores having a relatively large diameter are located and the lithium foil (thickness: 20 ¾) in the anode current collector 120 of Production Example 1, ( 101 1 1 ) 33 so that the current collector and the lyrium metal layer are laminated and do not fall off), and a circular shape (diameter: 1.50 11 ) to obtain a lithium metal negative electrode of Comparative Example 1. Comparative Example 2
상기 실시예 1의 리튬 메탈 음극 대신 상기 비교예 1의 리륨 메탈 음극을사용하고, 나머지는실시예 1과동일하게 하여, 비교예 2의 리튬메탈 전지를수득하였다. 실험예 1  The lithium metal anode of Comparative Example 1 was used instead of the lithium metal anode of Example 1 and the remainder of the lithium metal anode of Comparative Example 1 was used. Experimental Example 1
본 실험예에서는, 제조예 1 음극 집전체를 적용한 리륨 메탈 전지의 설계방식에 따라,수명 특성이 달라지는자확인한다. 구체적으로, 25 °C에서, 다음과 같은 조건으로, 실시예 2 및 비교예 2 전지의 구동이 종료될 때까지 충방전을 실시하고, 그 결과를 도 5a 내지 도 5c에 나타내었다. In this Experimental Example, it is confirmed that the lifetime characteristics are changed according to the design method of the lithium metal battery to which the anode current collector of Production Example 1 is applied. Specifically, charging and discharging were carried out at 25 ° C until the driving of the cells of Example 2 and Comparative Example 2 was completed under the following conditions, and the results are shown in FIGS. 5A to 5C.
Charge: 0.5C, CC/CV, 4.3 V, 0.05C cut-off  Charge: 0.5C, CC / CV, 4.3V, 0.05C cut-off
Discharge: 0.5C , CC, 3.0 V, cut-off  Discharge: 0.5C, CC, 3.0V, cut-off
도 5a는각전자의 사이클별 충전용량을나타낸 것이고, 도 5b는각 전지의 사이클 별 방전 용량을나타낸 것이고, 도 5c는각전지의 사이클 별 충방전효율을나타낸것이다. 비교예 2의 리륨 메탈 전지는, 상기 음극 집전체(제조예 1)의 저 12 기공(상대적으로 직경이 큰 기공)은 리튬 메탈 층과 대향하고, 상기 음극 집전체의 제 1 기공(상대적으로 직경이 작은 기공)은 분리막과 대향하도록 설계된것이다.  FIG. 5A shows the charge capacity per cycle of the electrons, FIG. 5B shows the discharge capacity per cycle of the battery, and FIG. 5C shows the charge / discharge efficiency of each battery in each cycle. In the lyrium metal battery of Comparative Example 2, the lower 12 pores (relatively large-diameter pores) of the negative electrode collector (Production Example 1) were opposed to the lithium metal layer and the first pores of the negative electrode collector These small pores are designed to face the membrane.
보다 구체적으로, 상기 비교예 2에 있어서, 분리막에 대향하는 제 1 기공은, 리튬 메탈 전지의 반복적인 충방전 과정에 있어서 리륨 이온이 원활하게출입하지 못하여,막히게될수있다. 그에 반면, 실시예 2의 리륨 메탈 전지는, 상기 제조예 1의 음극 집전체의 제 2 기공(상대적으로 직경이 큰 기공)이 분리막에 대향하고, 제 1 2019/125064 1»(:1^1{2018/016500 More specifically, in Comparative Example 2, the first pores opposed to the separation membrane can be clogged because lithium ions can not smoothly flow in and out of the lithium metal battery during repeated charging and discharging processes. On the other hand, in the lyrium metal battery of Example 2, the second pores (pores having a relatively large diameter) of the negative electrode collector of Preparation Example 1 were opposed to the separator, 2019/125064 1 »(: 1 ^ 1 {2018/016500
기공(상대적으로 직경이 작은 기공)이 리륨 메탈 층에 대향하도록 설계된 것이다. The pores (relatively small pores) are designed to face the lyrium metal layer.
보다 구체적으로, 상기 실시예 2에 있어서, 분리막에 대향하는 제 2 기공은, 리튬 이온(구체적으로, 분리막에 함침된 전해액으로부터 유래된 리툼 이온)이 용이하게들어올수있는넓은출입구를제공한다.  More specifically, in Example 2, the second pore opposed to the separation membrane provides a wide entrance through which lithium ions (specifically, lithium ions derived from electrolyte impregnated in the separation membrane) can easily enter.
이처럼 넓은 출입구(제 2 기공)를 통해 들어온 리튬 이온은, 의 을 통과하여 리튬 메탈 층으로 이동하게 된다. 여기서, 분리막에 대향하는 넓은 출입구(제 2 기공)로부터 리륨 메탈 층에 대향하는 좁은 출입구(제 1 기공)에 이르기까지, 음극 집전체 내부를 관통하며 접진적으로 그 직경이 감소하는 홀(1101리은, 리튬 이온의 들어올 수 있는 다양한 방향과 충분한 공간을 제공하므로, 리튬 메탈전지의 반복적인 충방전 과정에 있어서 국부적인 막힘 현상을억제한다, Lithium ions that enter through such a wide entrance (second pore) are transferred to the lithium metal layer through the phosphorus. Here, from the wide entrance (second pore) opposed to the separation membrane to the narrow entrance (first pore) opposed to the lyrium metal layer, holes (1 101 Li provides various directions in which lithium ions can enter and sufficient space to suppress local clogging in repeated charge and discharge processes of lithium metal batteries,
따라서, 상기 제조예 1의 음극 집전체를 사용하여, 실시예 2와 같이 리튬 메탈 전지를 설계하면, 리튬 메탈음극의 가역성을 확보하고, 리튬 메탈 전지의 수명 특성을향상시킬수있다. 실제로, 도 53 내지 5(:을 참고하면, 공통적으로 제조예 1 음극 집전체를적용하더라도, Therefore, by designing the lithium metal battery as in the case of Example 2 using the anode current collector of Production Example 1, the reversibility of the lithium metal cathode can be ensured and the lifetime characteristics of the lithium metal battery can be improved. In fact, FIG. 3 to 5 (: Refer to, although common to the entire manufacturing example 1 to the negative electrode current collector,
상기 음극집전체의 제 1 기공(상대적으로직경이 작은기공)이 분리막에 대향하도록 설계된 리륨 메탈 전지(비교예 2)는, 불과 85 번째 사이클만에 구동이 종료되는반면;  The lyrium metal battery (Comparative Example 2) designed such that the first pores (relatively small-diameter pores) of the negative electrode collector face the separation membrane is driven only in the 85th cycle only;
상기 음극집전체의 제 2기공(상대적으로직경이 큰기공)이 분리막에 대향하도록 설계된 리륨 메탈 전지(실시예 2)는, 약 20사이클 더 구동된 후 구동이 종료되는것을확인할수있다. 실험예 2>  It is confirmed that the lyrium metal battery (Embodiment 2) designed to face the separation membrane with the second pore (relatively large diameter pore) of the negative electrode collector is driven for about 20 more cycles and then the driving is terminated. Experimental Example 2>
본 실험예에서는, 본 실험예에서는, 제조예 1 음극 집전체를 적용한 리툼메탈전지의 설계 방식에 따라,초가특성이 달라지는지 확인한다.
Figure imgf000021_0001
전지의 구동이. 10사이클진행될 때까지 충방전을실시하여,그결과를도 6크 및도해에 나타내었다.
In this Experimental Example, it is confirmed in this Experiment Example that the threshold value characteristics are varied according to the design method of the rim metal battery using the anode current collector of Production Example 1.
Figure imgf000021_0001
The drive of the battery . Charging and discharging were carried out until 10 cycles were progressed, and the results are shown in Fig. 6 and Fig.
Charge: 0.5C, CC/CV, 4.3V, 0.05C cut-off  Charge: 0.5C, CC / CV, 4.3V, 0.05C cut-off
Discharge: 0.5C , CC, 3.0 V, cut-off  Discharge: 0.5C, CC, 3.0V, cut-off
도 6a는각전지의 사이클별충전용량을나타낸 것이고, 도 6b는각 전지의사이클별방전용량을나타낸것이다. 도 6a 및 6b를 참고하면, 공통적으로 제조예 1 음극 집전체를 적용하더라도,  FIG. 6A shows the charge capacity per cycle of the battery, and FIG. 6B shows the discharge capacity per cycle of the battery. 6A and 6B, even if the negative electrode collector of Production Example 1 is commonly used,
상기 제조예 1의 음극 집전체의 제 1 기공(상대적으로 직경이 작은 기공)이 분리막에 대향하도록 설계된 리륨 메탈 전지(비교예 2)는, 첫 사이클 후충전용량이 5.58mAh,4번째사이클후충전용량이 4.40mAh에 불과한반면, 제조예 1의 음극 집전체의 제 2 기공(상대적으로 직경아큰 기공)이 분리막에 대향하도록 설계된 리륨 메탈 전지(실시예예 2)는 첫 사이클 후 충전 용량이 5.79mAh, 4번째 사이클 후 충전 용량이 4.49mAh에 이르는 것을 확인할 수 있다. 부호의설명  The lithium metal battery (Comparative Example 2) designed to have the first pores (relatively small-diameter pores) of the anode current collector of Production Example 1 opposed to the separator had a charge capacity after the first cycle of 5.58 mAh, a charge after the fourth cycle A lithium metal battery (Example 2) designed such that the second pore (relatively large diameter pore) of the anode current collector of Production Example 1 was opposed to the separator while the capacity was 4.40 mAh had a charge capacity of 5.79 mAh after the first cycle, It can be seen that the charge capacity after the fourth cycle reaches 4.49 mAh. Explanation of symbols
120:음극집전체  120: cathode collector
120a:상기 음극집전체(120)에 있어서,상대적으로직경이 작은기공이 위치하는면  120a: In the negative electrode current collector 120, a surface having relatively small diameter pores
120b: 상기 음극 집전체(120)에 있어서, 상대적으로 직경이 큰기공이 위치하는면  120b: In the negative electrode current collector 120, a surface having relatively large diameter pores
110:리튬메탈층  110: Lithium metal layer

Claims

2019/125064 1»(:1^1{2018/016500 【청구의 범위】 2019/125064 1 »(: 1 ^ {2018/016500)
【청구항 1]  [Claim 1]
음극 집전체; 및 상기 음극 집전체 상에 위치하는 리튬 메탈 층;을 포함하되,  Cathode collector; And a lithium metal layer positioned on the negative electrode collector,
상기 음극집전체는,  The anode current collector
금속판;및  Metal plate; and
각각독립적으로,상기 금속판의 일면 상에 제 1 기공을 형성하고,상기 금속판의 타면 상에 상기 제 1 기공보다 상대적으로 직경이 큰 제 2 기공을 형성하고, 상기 금속판의 내부를 관통하며 상기 제 1 기공 및 상기 제 2 기공을연결하는,복수의 홀(1101功을포함하고, Forming a first pore on one surface of the metal plate and forming second pores having a diameter larger than that of the first pore on the other surface of the metal plate and passing through the inside of the metal plate, porosity and includes a plurality of holes (1功101, for connecting the second pores,
상기 리튬메탈층은,  The lithium metal layer may include,
상기 음극집전체의 제 1 기공에 대향하는것인,  And a second pore of the anode current collector,
리튬메탈전지용음극.  Cathode for lithium metal batteries.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 복수의 홀은,각각독립적으로,  The plurality of holes may be, independently from each other,
상기 제 2기공의 직경으로부터,상기 금속판의 내부를관통하며 직경이 점진적으로감소하여,상기 제 1 기공의 직경에 이르는것인,  Wherein the diameter of the first pore is gradually reduced from the diameter of the second pore through the inside of the metal plate to reach the diameter of the first pore.
리륨메탈전지용음극.  Lithium metal cathode cathode.
【청구항 3】 [Claim 3]
제 2항에 있어서,  3. The method of claim 2,
상기 복수의 홀은,각각독립적으로,  The plurality of holes may be, independently from each other,
상기 금속판의 두께 1/패당직경이 0.1 _내지 3 씩 증가하는것인, 리튬메탈전지용음극. Thickness 1 / paedang diameter of 0.1 _ to increase haneungeot of a lithium metal negative electrode cell by 3 of the metal plate.
【청구항 4】 Claim 4
제 1항에 있어서,  The method according to claim 1,
상기 복수의 홀은,각각독립적으로, 2019/125064 1»(:1^1{2018/016500 The plurality of holes may be, independently from each other, 2019/125064 1 »(: 1 ^ 1 {2018/016500
상기 제 1기공의 직경이 1,내지 100_인것인, Wherein the diameter of the first pore is between 1 and 100 &lt;
리튬메탈전지용음극.  Cathode for lithium metal batteries.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method according to claim 1,
상기 복수의 홀은,각각독립적으로,  The plurality of holes may be, independently from each other,
상기 제 2기공의 직경이 7_내지 700_인 것인,  Wherein the second pore has a diameter of 7 to 700 &lt;
리륨메탈전지용음극.  Lithium metal cathode cathode.
【청구항 6] [Claim 6]
제 1항에 있어서,  The method according to claim 1,
상기 복수의 홀은,각각독립적으로,  The plurality of holes may be, independently from each other,
소프트몰딩,구형 입자의 자기 조립,또는광식각을 이용하여 형성된 것인,  Soft molding, self-assembly of spherical particles, or an optical angle.
리튬메탈전지용음극.  Cathode for lithium metal batteries.
【청구항 7】 7.
저 11항에 있어서,  In the 11th aspect,
상기 복수의 홀은,각각독립적으로,  The plurality of holes may be, independently from each other,
원뿔대,타원뿔대,또는다각뿔대 형상인 것인,  A truncated cone, a truncated cone, or a truncated pyramid.
리튬메탈전지용음극.  Cathode for lithium metal batteries.
【청구항 8】 8.
제 1항에 있어서,  The method according to claim 1,
상기 금속판및 상기 복수의 홀을포함하는 전체 부피(100부피%)중, 상기 복수의 기공이 차지하는부피가 50내지 90부피%인,  Wherein a volume occupied by the plurality of pores is 50 to 90% by volume of the total volume (100% by volume) including the metal plate and the plurality of holes,
리튬메탈전지용음극.  Cathode for lithium metal batteries.
【청구항 9] 9]
제 1항에 있어서, 2019/125064 1»(:1^1{2018/016500 The method according to claim 1, 2019/125064 1 »(: 1 ^ 1 {2018/016500
상기 금속판은, The metal plate may include:
구리 (01);또는구리 ( )와다른금속의 합금 (시10)0;으로이루어진 것인, 리툼메탈전지용음극. Copper (0 1); Or an alloy of copper () and another metal (Si 10 ) 0 ; Wherein the negative electrode comprises a negative electrode.
【청구항 10】 Claim 10
제 1항의 음극;  A negative electrode of claim 1;
상기 음극집전체의 제 2기공에 대향하는분리막;  A separation membrane facing the second pores of the anode current collector;
상기 분리막에 함침된전해질;및  An electrolyte impregnated into the separator;
상기 분리막의 타면에 대향하는양극;을포함하는,  And a cathode opposite to the other surface of the separator.
리튬메탈전지.  Lithium metal batteries.
PCT/KR2018/016500 2017-12-22 2018-12-21 Negative electrode for lithium metal battery, and lithium metal battery comprising same WO2019125064A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880019235.1A CN110462902B (en) 2017-12-22 2018-12-21 Anode for lithium metal battery and lithium metal battery including the same
US16/500,633 US12009522B2 (en) 2017-12-22 2018-12-21 Anode for lithium metal battery and lithium metal battery comprising the same
EP18891822.1A EP3598546A4 (en) 2017-12-22 2018-12-21 Negative electrode for lithium metal battery, and lithium metal battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170178759 2017-12-22
KR10-2017-0178759 2017-12-22
KR10-2018-0166735 2018-12-20
KR1020180166735A KR20190076890A (en) 2017-12-22 2018-12-20 Anode current for lithium metal battery and lithium metal battery including the same

Publications (1)

Publication Number Publication Date
WO2019125064A1 true WO2019125064A1 (en) 2019-06-27

Family

ID=66994955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016500 WO2019125064A1 (en) 2017-12-22 2018-12-21 Negative electrode for lithium metal battery, and lithium metal battery comprising same

Country Status (2)

Country Link
CN (1) CN110462902B (en)
WO (1) WO2019125064A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914446A (en) * 2022-04-26 2022-08-16 中国五洲工程设计集团有限公司 Composite electrode, preparation method of composite electrode and battery
CN117276468A (en) * 2023-11-23 2023-12-22 宁德时代新能源科技股份有限公司 Negative electrode plate, battery and electricity utilization device
CN114914446B (en) * 2022-04-26 2024-06-07 中国五洲工程设计集团有限公司 Composite electrode, preparation method of composite electrode and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167217A (en) * 1997-08-14 1999-03-09 Nippon Foil Mfg Co Ltd Perforated current collector for secondary battery and its manufacture
JP2013069632A (en) * 2011-09-26 2013-04-18 Toyota Industries Corp Collector for secondary battery or capacitor
JP2013182810A (en) * 2012-03-02 2013-09-12 Tdk Corp Collector, and lithium ion secondary battery using the same
KR20170055993A (en) * 2014-10-14 2017-05-22 후지필름 가부시키가이샤 Aluminum plate and method for producing aluminum plate
KR20170101853A (en) * 2014-07-16 2017-09-06 프로로지움 홀딩 인크. Lithium metal electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004777A1 (en) * 2009-07-07 2011-01-13 東洋アルミニウム株式会社 Perforated aluminum foil
JP2011216364A (en) * 2010-03-31 2011-10-27 Toyo Aluminium Kk Metal foil for negative electrode collector
KR101598650B1 (en) * 2012-08-23 2016-03-03 주식회사 엘지화학 Negative-electrode and lithium secondary battery with high capacity comprising the same
CN105018776B (en) * 2014-04-30 2017-09-29 中国科学院金属研究所 A kind of preparation technology of porous copper foil and its application
JP2016058257A (en) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2017094526A1 (en) * 2015-11-30 2017-06-08 日立マクセル株式会社 Electrode for electrochemical elements and lithium ion secondary battery
WO2017188021A1 (en) * 2016-04-26 2017-11-02 日立マクセル株式会社 Electrochemical element electrode and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167217A (en) * 1997-08-14 1999-03-09 Nippon Foil Mfg Co Ltd Perforated current collector for secondary battery and its manufacture
JP2013069632A (en) * 2011-09-26 2013-04-18 Toyota Industries Corp Collector for secondary battery or capacitor
JP2013182810A (en) * 2012-03-02 2013-09-12 Tdk Corp Collector, and lithium ion secondary battery using the same
KR20170101853A (en) * 2014-07-16 2017-09-06 프로로지움 홀딩 인크. Lithium metal electrode
KR20170055993A (en) * 2014-10-14 2017-05-22 후지필름 가부시키가이샤 Aluminum plate and method for producing aluminum plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914446A (en) * 2022-04-26 2022-08-16 中国五洲工程设计集团有限公司 Composite electrode, preparation method of composite electrode and battery
CN114914446B (en) * 2022-04-26 2024-06-07 中国五洲工程设计集团有限公司 Composite electrode, preparation method of composite electrode and battery
CN117276468A (en) * 2023-11-23 2023-12-22 宁德时代新能源科技股份有限公司 Negative electrode plate, battery and electricity utilization device
CN117276468B (en) * 2023-11-23 2024-04-12 宁德时代新能源科技股份有限公司 Negative electrode plate, battery and electricity utilization device

Also Published As

Publication number Publication date
CN110462902A (en) 2019-11-15
CN110462902B (en) 2022-05-13

Similar Documents

Publication Publication Date Title
JP6399731B2 (en) Negative electrode composition for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP6207131B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
CN111801816B (en) Negative electrode for lithium metal battery, method for manufacturing same, and lithium metal battery comprising same
US9203083B2 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery including the same
KR102323428B1 (en) Negative electrode for rechargeable lithium battery, method of manufacturing the same, and rechargeable lithium battery including the same
KR101702989B1 (en) Negative active material for rechargeable lithium battery, method of prepareing the same and rechargeable lithium battery including the same
US11581540B2 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, and negative electrode and rechargeable lithium battery including same
JP6592134B2 (en) Method for producing negative electrode active material for lithium secondary battery
US20150017527A1 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery using the same
JP2011086599A (en) Negative electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP6122593B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
WO2012141363A1 (en) Anode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including same
KR20140012464A (en) Silicon alloy based negative active material and composition including the same and method of manufacturing the same and lithium rechargeble battery
KR102377302B1 (en) Anode current for lithium metal battery and lithium metal battery including the same
KR20140139294A (en) Negative electrode active material for rechargable lithium battery, negative electrode including the same, and rechargable lithium battery including the negative electrode
KR20160057255A (en) Negative electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
WO2019125064A1 (en) Negative electrode for lithium metal battery, and lithium metal battery comprising same
KR102383074B1 (en) Separator for rechargeable lithium battery, and method of preparing the same, and rechargeable lithium battery including the same
US12009522B2 (en) Anode for lithium metal battery and lithium metal battery comprising the same
US20200227711A1 (en) Separator for rechargeable lithium battery, and method for preparing the same, and rechargeable lithium battery including the same
KR101815712B1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
US20210234234A1 (en) Separator for lithium secondary battery, manufacturing method of the same, lithium secondary battery including the same
KR20240020982A (en) Electrode and secondary battery including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018891822

Country of ref document: EP

Effective date: 20191015

NENP Non-entry into the national phase

Ref country code: DE