JPH1167217A - Perforated current collector for secondary battery and its manufacture - Google Patents

Perforated current collector for secondary battery and its manufacture

Info

Publication number
JPH1167217A
JPH1167217A JP9235385A JP23538597A JPH1167217A JP H1167217 A JPH1167217 A JP H1167217A JP 9235385 A JP9235385 A JP 9235385A JP 23538597 A JP23538597 A JP 23538597A JP H1167217 A JPH1167217 A JP H1167217A
Authority
JP
Japan
Prior art keywords
metal foil
perforated
current collector
hole
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9235385A
Other languages
Japanese (ja)
Other versions
JP4462509B2 (en
Inventor
Koichi Ashizawa
公一 芦澤
Atsushi Mori
厚 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP23538597A priority Critical patent/JP4462509B2/en
Publication of JPH1167217A publication Critical patent/JPH1167217A/en
Application granted granted Critical
Publication of JP4462509B2 publication Critical patent/JP4462509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current collector for a secondary battery in which the coming off of an active material from a metal foil is prevented by a physical means. SOLUTION: Many through holes are formed in a metal foils, and the inner wall surface of the through hole is tilted at the specified intercept angle to the backside or the surface of the metal foil, and an active material is locked to the tilt to prevent the coming off of the active material from the metal foil. The relation of the intercept angle θ1 formed by the backside of the metal foil and the inner wall surface of the through hole on the side of the back side of the metal foil to the intercept angle θ2 formed by the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is preferable to be θ1 =10 deg.-80 deg. and θ2 =90 deg.-170 deg., or θ1 =100 deg.-170 deg. and θ2 =100 deg.-170 deg., or θ1 =10 deg.-80 deg. and θ2 =10 deg.-80 deg.. As the metal foil, an aluminum foil or a copper foil is preferable. As the secondary battery, a lithium system secondary battery is preferably adopted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池、特にリ
チウム系二次電池に用いる集電体及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current collector used for a secondary battery, particularly a lithium secondary battery, and a method for producing the same.

【0002】[0002]

【従来の技術】二次電池は、基本的には、正極,負極,
正極と負極とを絶縁するセパレーター,及び正極と負極
との間でイオンの移動を可能にするための電解液で構成
されている。正極及び負極は、金属箔からなる集電体の
表面に、各種の活物質が塗布されてなるものである。例
えば、リチウム系二次電池においては、正極として、コ
バルト酸リチウム等を含む活物質がアルミニウム箔より
なる集電体に塗布されてなるものが用いられ、一方、負
極としては、難黒鉛化カーボン等を含む活物質が銅箔よ
りなる集電体に塗布されてなるものが用いられている。
2. Description of the Related Art A secondary battery is basically composed of a positive electrode, a negative electrode,
It is composed of a separator that insulates the positive electrode and the negative electrode, and an electrolytic solution that enables ions to move between the positive electrode and the negative electrode. The positive electrode and the negative electrode are formed by applying various active materials to a surface of a current collector made of a metal foil. For example, in a lithium secondary battery, a positive electrode is used in which an active material containing lithium cobaltate or the like is applied to a current collector made of aluminum foil, while a negative electrode is hardly graphitizable carbon or the like. An active material containing is coated on a current collector made of copper foil.

【0003】一般に、アルミニウム箔や銅箔等の各種金
属箔面に、各種の活物質を塗布した場合、金属箔と活物
質とが一体化しにくく、比較的、活物質が脱落しやすい
ということがあった。二次電池作成の際、例えば、正極
及び負極の巻き上げの際に、活物質が脱落すると、所望
の容量を持つ二次電池が得られないという欠点が生じ
る。また、二次電池を作成した後に、活物質が脱落する
と、二次電池の充放電容量が徐々に低下してゆくという
欠点が生じる。
In general, when various active materials are applied to various metal foil surfaces such as aluminum foil and copper foil, the metal foil and the active material are hardly integrated, and the active material is relatively easy to fall off. there were. When a secondary battery is manufactured, for example, when the active material falls off when the positive electrode and the negative electrode are wound up, there is a disadvantage that a secondary battery having a desired capacity cannot be obtained. Further, when the active material falls off after the secondary battery is manufactured, there is a disadvantage that the charge / discharge capacity of the secondary battery gradually decreases.

【0004】このため、活物質中に混合するバインダー
として、金属箔との親和性に優れたものを用いることが
行なわれている。また、金属箔としても、その表面が、
各種バインダーとの親和性に優れたものを採用すること
が行なわれている。例えば、特開平7−201332号
公報には、銅箔表面に、ベンゾトリアゾール等のアゾー
ル系皮膜を形成し、活物質中のバインダーと銅箔との一
体化を向上させ、活物質の脱落を防止する技術が記載さ
れている。
For this reason, it has been practiced to use a binder having an excellent affinity for a metal foil as a binder to be mixed into the active material. Also, the surface of the metal foil,
It has been practiced to employ those having excellent affinity with various binders. For example, JP-A-7-201332 discloses that an azole-based film such as benzotriazole is formed on a copper foil surface to improve the integration of a binder in the active material with the copper foil and prevent the active material from falling off. The technology to do this is described.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、活物
質の金属箔からの脱落防止を、物理的手段で解決するこ
とにある。具体的には、集電体である金属箔に、特定の
貫通孔を設け、集電体の表裏面に塗布される活物質とバ
インダーとを、この貫通孔に係止させやすくして、活物
質の脱落を防止しようというものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of preventing the active material from falling off the metal foil by physical means. Specifically, a specific through-hole is provided in the metal foil as the current collector, and the active material and the binder applied to the front and back surfaces of the current collector are easily locked in the through-hole, and the active material is activated. It is to prevent the loss of material.

【0006】[0006]

【課題を解決するための手段】即ち、本発明は、多数の
貫通孔が設けられている金属箔からなる孔開き集電体で
あって、その貫通孔の内壁面が、金属箔の裏面又は表面
に対して、特定の切片角度で傾斜していることを特徴と
する二次電池用孔開き集電体に関するものである。この
ような内壁面の傾斜に、活物質及びバインダーが係止
し、集電体である金属箔面から活物質が脱落しにくくな
るのである。また、本発明は、このような二次電池用孔
開き集電体を得るのに適した、一つの方法に関するもの
である。
That is, the present invention relates to a perforated current collector comprising a metal foil provided with a large number of through holes, wherein the inner wall surface of the through hole has a rear surface or a metal foil. The present invention relates to a perforated current collector for a secondary battery, which is inclined at a specific intercept angle with respect to a surface. The active material and the binder are locked to such an inclination of the inner wall surface, and the active material is less likely to fall off the metal foil surface as the current collector. The present invention also relates to a method suitable for obtaining such a perforated current collector for a secondary battery.

【0007】本発明においては、孔開き集電体を構成す
る金属箔としては、アルミニウム箔,アルミニウム合金
箔,銅箔又は銅合金箔等が用いられる。リチウム系二次
電池の場合、正極に用いる集電体は、一般的にアルミニ
ウム箔又はアルミニウム合金箔であり、一方、負極に用
いる集電体は、一般的に銅箔又は銅合金箔である。本発
明においては、また、アルミニウム箔や銅箔以外の金属
箔を用いて集電体とすることもできる。二次電池におい
ては、その他の金属箔が用いられる場合もあるからであ
る。孔開き集電体の厚みは、一般的には、8〜30μm
程度である。リチウム系二次電池に用いられるアルミニ
ウム箔製の集電体は15〜25μm程度であるのが好ま
しく、銅箔製の集電体は10〜20μmであるのが好ま
しい。なお、銅箔としては、圧延銅箔(圧延法で得られ
る銅箔)であっても、電解銅箔(電解法で得られる銅
箔)のいずれであっても良い。
In the present invention, as the metal foil constituting the perforated current collector, an aluminum foil, an aluminum alloy foil, a copper foil or a copper alloy foil is used. In the case of a lithium secondary battery, the current collector used for the positive electrode is generally an aluminum foil or an aluminum alloy foil, while the current collector used for the negative electrode is generally a copper foil or a copper alloy foil. In the present invention, a current collector may be formed using a metal foil other than an aluminum foil or a copper foil. This is because other metal foils may be used in the secondary battery. The thickness of the perforated current collector is generally 8 to 30 μm.
It is about. The current collector made of aluminum foil used for a lithium secondary battery is preferably about 15 to 25 μm, and the current collector made of copper foil is preferably 10 to 20 μm. The copper foil may be a rolled copper foil (a copper foil obtained by a rolling method) or an electrolytic copper foil (a copper foil obtained by an electrolytic method).

【0008】集電体に設けられている貫通孔の形状は、
一般的には円形であるが、その他、三角形や四角形等の
任意の形状であって良い。また、貫通孔の大きさは、二
次電池の種類や大きさ或いは用途によって、任意の大き
さとすることができる。一般的には、貫通孔の面積を仮
想円の面積であるとして、その仮想円の直径が0.1〜
3mmになる程度である。また、貫通孔は、集電体に多
数設けられているのであり、例えば、貫通孔間のピッチ
は0.5〜10mm程度でよく、貫通孔の密度は1〜4
00個/cm2程度で良い。
The shape of the through hole provided in the current collector is as follows:
Generally, the shape is circular, but any other shape such as a triangle or a quadrangle may be used. Further, the size of the through hole can be set to an arbitrary size depending on the type, size, or use of the secondary battery. Generally, assuming that the area of a through hole is the area of a virtual circle, the diameter of the virtual circle is 0.1 to
It is about 3 mm. In addition, a large number of through holes are provided in the current collector. For example, the pitch between the through holes may be about 0.5 to 10 mm, and the density of the through holes is 1 to 4.
It may be about 00 / cm 2 .

【0009】本発明の特徴は、貫通孔の内壁面が、金属
箔の裏面又は表面に対して、特定の切片角度θ1又はθ2
で傾斜していることにある。ここで、切片角度とは、貫
通孔の上下方向の断面において現われる金属箔の裏面又
は表面の線と、金属箔の裏面側又は表面側における内壁
面の線との間で形成される角度のことである。内壁面が
曲線の場合には、内壁面の線とは、金属箔の裏面又は表
面の線と当該曲線との交点における、当該曲線に対する
接線のことを意味している。このことは、図1〜3を参
照すれば、より明瞭に理解しうるものである。また、孔
開き集電体の切片角度θ1及びθ2は、集電体の任意の5
箇所を裁断切取し、その断面を顕微鏡で観察し、複数個
の各貫通孔の切片角度θ1及びθ2を測定することにより
行なう。例えば、複数個の各貫通孔のθ1が20°〜5
0°の範囲内にあり、各貫通孔のθ2が30°〜40°
であれば、θ1は20°〜50°でθ2は30°〜40°
と決定する。また、複数個の貫通孔において、θ1が9
0°以上のものと90°未満のものとがある場合には、
それぞれを分けて、θ1が90°以上の貫通孔のθ2と、
θ1が90°未満の貫通孔のθ2とを測定し、それぞれの
範囲を決定し、二種の貫通孔が混在しているものとす
る。本発明における、この切片角度は、具体的には、以
下のとおりである。なお、金属箔の裏面と表面とは、厳
密な意味で用いられているのではなく、一方の面を裏面
とした場合に、他方の面が表面であるという意味で用い
られているにすぎない。
A feature of the present invention is that the inner wall surface of the through-hole has a specific intercept angle θ 1 or θ 2 with respect to the back or front surface of the metal foil.
It is that it is inclined at. Here, the intercept angle is an angle formed between a line on the back or front surface of the metal foil that appears in a vertical cross section of the through hole and a line on the inner wall surface on the back or front surface side of the metal foil. It is. When the inner wall surface is a curve, the line on the inner wall surface means a tangent to the curve at the intersection of the line on the back or front surface of the metal foil and the curve. This can be more clearly understood with reference to FIGS. In addition, the intercept angles θ 1 and θ 2 of the perforated current collector can be set to any five angles of the current collector.
This is performed by cutting and cutting a portion, observing the cross section with a microscope, and measuring the section angles θ 1 and θ 2 of each of the plurality of through holes. For example, θ 1 of each of the plurality of through holes is 20 ° to 5 °.
0 °, and θ 2 of each through hole is 30 ° to 40 °
Then, θ 1 is 20 ° to 50 ° and θ 2 is 30 ° to 40 °
Is determined. Further, in a plurality of through holes, θ 1 is 9
When there is a thing of 0 ° or more and a thing of less than 90 °,
Separately respectively, theta 1 is a theta 2 of 90 ° or more through-holes,
theta 1 measures a second through-hole of less than 90 ° theta, to determine the respective ranges, it is assumed that two kinds of through holes are mixed. The intercept angle in the present invention is specifically as follows. In addition, the back surface and the front surface of the metal foil are not used in a strict sense, but are used only in a sense that when one surface is a back surface, the other surface is a front surface. .

【0010】(i)金属箔の裏面と、この金属箔の裏面
側における貫通孔の内壁面とで形成される切片角度θ1
が10°〜80°であり、金属箔の表面と、この金属箔
の表面側における貫通孔の内壁面とで形成される切片角
度θ2が90°〜170°である貫通孔が設けられてな
る集電体が挙げられる(図1を参照)。このような貫通
孔が開いていると、集電体である金属箔の表裏面に塗布
された活物質等は、表面側や裏面側から外力が負荷され
ても、切片角度θ1を形成している内壁面に、活物質等
が係止され、金属箔から活物質等が脱落しにくくなる。
(I) An intercept angle θ 1 formed between the back surface of the metal foil and the inner wall surface of the through hole on the back surface side of the metal foil.
Is from 10 ° to 80 °, and a through hole is provided in which the intercept angle θ 2 formed by the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is from 90 ° to 170 °. (See FIG. 1). When such a through hole is opened, the active material or the like applied to the front and back surfaces of the metal foil as the current collector forms an intercept angle θ 1 even when an external force is applied from the front side or the back side. The active material or the like is locked to the inner wall surface, and the active material or the like hardly falls off the metal foil.

【0011】(ii)金属箔の裏面と、この金属箔の裏面
側における該貫通孔の内壁面とで形成される切片角度θ
1が10°〜80°であり、金属箔の表面と、この金属
箔の表面側における貫通孔の内壁面とで形成される切片
角度θ2が90°〜170°である貫通孔と、切片角度
θ1が90°〜170°であり、切片角度θ2が10°〜
80°である貫通孔とが混在している集電体が挙げられ
る(図示せず)。このような貫通孔が開いていると、集
電体である金属箔の表裏面に塗布された活物質等は、表
面側や裏面側から外力が負荷されても、切片角度θ1
10°〜80°を形成している内壁面、又は切片角度θ
2が10°〜80°を形成している内壁面によって、活
物質等が係止され、金属箔から活物質等が脱落しにくく
なる。
(Ii) An intercept angle θ formed between the back surface of the metal foil and the inner wall surface of the through hole on the back surface side of the metal foil.
1 is 10 ° to 80 °, a through hole having a section angle θ 2 of 90 ° to 170 ° formed by the surface of the metal foil and the inner wall surface of the through hole on the front side of the metal foil; angle theta 1 is 90 ° to 170 °, intercept angle theta 2 is 10 ° ~
An example is a current collector in which a through-hole of 80 ° is mixed (not shown). When such a through hole is opened, the active material or the like applied to the front and back surfaces of the metal foil as the current collector has a section angle θ 1 of 10 ° even when an external force is applied from the front side or the back side. Inner wall surface forming ~ 80 °, or intercept angle θ
The active material and the like are locked by the inner wall surface where 2 forms 10 ° to 80 °, and the active material and the like hardly fall off the metal foil.

【0012】(iii)金属箔の裏面と、この金属箔の裏
面側における貫通孔の内壁面とで形成される切片角度θ
1が100°〜170°であり、金属箔の表面と、この
金属箔の表面側における貫通孔の内壁面とで形成される
切片角度θ2が100°〜170°である貫通孔が設け
られている集電体が挙げられる(図2)。このような貫
通孔の内壁面中央部は、金属箔の表面側や裏面側におけ
る内壁面よりも、貫通孔の中心に向かって出っ張ってい
ることは自明であろう。このような貫通孔が開いている
と、集電体である金属箔の表裏面に塗布された活物質等
は、表面側や裏面側から外力が負荷されても、貫通孔の
中央部内壁面によって、活物質等が係止され、金属箔か
ら活物質等が脱落しにくくなる。貫通孔の中央部内壁面
に活物質等が係止される理由は、前述したように、中央
部内壁面が、裏面側内壁面や表面側内壁面より出っ張っ
ていることによる。
(Iii) The intercept angle θ formed between the back surface of the metal foil and the inner wall surface of the through hole on the back surface side of the metal foil.
1 is 100 ° to 170 °, and a through hole is provided in which the intercept angle θ 2 formed by the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is 100 ° to 170 °. Current collector (FIG. 2). It is obvious that the central portion of the inner wall surface of such a through-hole protrudes toward the center of the through-hole rather than the inner wall surface on the front side or the back side of the metal foil. When such a through-hole is opened, the active material and the like applied to the front and back surfaces of the metal foil as the current collector are exposed to the central inner wall surface of the through-hole even if external force is applied from the front side or the back side. The active material and the like are locked, so that the active material and the like do not easily fall off the metal foil. The reason why the active material or the like is locked to the central inner wall surface of the through hole is that the central inner wall surface protrudes from the rear inner wall surface or the front inner wall surface as described above.

【0013】(iv)金属箔の裏面と、この金属箔の裏面
側における貫通孔の内壁面とで形成される切片角度θ1
が10°〜80°であり、金属箔の表面と、この金属箔
の表面側における貫通孔の内壁面とで形成される切片角
度θ2が10°〜80°である貫通孔が設けられている
集電体が挙げられる(図3)。このような貫通孔が開い
ていると、集電体である金属箔の表裏面に塗布された活
物質等は、表面側や裏面側から外力が負荷されても、切
片角度θ1及びθ2を形成している内壁面に、活物質等が
係止され、金属箔から活物質等が脱落しにくくなる。
(Iv) The intercept angle θ 1 formed between the back surface of the metal foil and the inner wall surface of the through hole on the back surface side of the metal foil.
Is from 10 ° to 80 °, and a through-hole is provided in which the intercept angle θ 2 formed by the surface of the metal foil and the inner wall surface of the through-hole on the surface side of the metal foil is from 10 ° to 80 °. Current collector (FIG. 3). When such a through hole is opened, the active material and the like applied to the front and back surfaces of the metal foil as the current collector can be intercepted at the intercept angles θ 1 and θ 2 even when an external force is applied from the front side or the back side. The active material or the like is locked on the inner wall surface forming the ridge, and the active material or the like hardly falls off the metal foil.

【0014】(v)金属箔の裏面と、この金属箔の裏面
側における貫通孔の内壁面とで形成される切片角度θ1
が100°〜170°であり、金属箔の表面と、この金
属箔の表面側における貫通孔の内壁面とで形成される切
片角度θ2が100°〜170°である貫通孔と、切片
角度θ1が10°〜80°であり、切片角度θ2が10°
〜80°である貫通孔とが混在している集電体が挙げら
れる(図示せず)。具体的には、図2で示されたような
貫通孔と、図3で示されたような貫通孔とが混在してい
る集電体である。このような貫通孔が開いていると、集
電体である金属箔の表裏面に塗布された活物質等は、表
面側や裏面側から外力が負荷されても、貫通孔の中央部
内壁面によって活物質等が係止され、又は切片角度θ1
及びθ2が10°〜80°である内壁面に活物質等が係
止され、金属箔から活物質等が脱落しにくくなる。
(V) An intercept angle θ 1 formed between the back surface of the metal foil and the inner wall surface of the through hole on the back surface side of the metal foil.
Is from 100 ° to 170 °, a through-hole in which the intercept angle θ 2 formed by the surface of the metal foil and the inner wall surface of the through-hole on the surface side of the metal foil is from 100 ° to 170 °, and the intercept angle theta 1 is 10 ° to 80 °, intercept angle theta 2 is 10 °
An example is a current collector in which through-holes of up to 80 ° are mixed (not shown). Specifically, it is a current collector in which a through hole as shown in FIG. 2 and a through hole as shown in FIG. 3 are mixed. When such a through-hole is opened, the active material and the like applied to the front and back surfaces of the metal foil as the current collector are exposed to the central inner wall surface of the through-hole even if external force is applied from the front side or the back side. Active material, etc. are locked, or intercept angle θ 1
And theta 2 is locked active material or the like is applied to the inner wall surface is 10 ° to 80 °, the active material or the like is less likely to fall off the metal foil.

【0015】以上の如き集電体は、エッチング法又は打
ち抜き法等の任意の方法で得ることができる。本発明に
おいては、好ましくは、以下の如きエッチング法で得る
のが良い。
The current collector as described above can be obtained by any method such as an etching method or a punching method. In the present invention, it is preferable to obtain by the following etching method.

【0016】上記(i)で示した集電体は、無孔金属箔
の表面に、多数の貫通孔を有する孔開きレジスト膜を接
合し、この無孔金属箔の裏面には、無孔レジスト膜を接
合してなる三層積層体に、エッチングを施すことによ
り、無孔金属箔に、孔開きレジスト膜の孔に対応する多
数の貫通孔を形成するという方法で得ることができる。
無孔金属箔としては、孔の開いていないアルミニウム箔
や銅箔等の任意の金属箔を用いることができる。ここ
で、孔が開いていない(無孔)という意味は、上記した
0.1〜3mm程度の貫通孔が開いていないという意味
であり、ピンホールが存在しないという意味ではない。
従って、極めて小さな径のピンホールは存在していても
良い。
In the current collector shown in (i), a perforated resist film having a large number of through holes is joined to the surface of the non-porous metal foil, and the non-porous resist is By etching the three-layer laminate obtained by bonding the films, a large number of through holes corresponding to the holes of the perforated resist film can be formed in the non-porous metal foil.
As the non-porous metal foil, any metal foil such as an aluminum foil or a copper foil having no holes can be used. Here, the meaning that a hole is not opened (no hole) means that the above-described through hole of about 0.1 to 3 mm is not opened, and does not mean that there is no pinhole.
Therefore, a pinhole having an extremely small diameter may exist.

【0017】このような無孔金属箔の表面に、多数の貫
通孔を有する孔開きレジスト膜を接合する。孔開きレジ
スト膜は、無孔金属箔表面に紫外線硬化型感光性樹脂よ
りなるレジスト液を塗布し、レジスト層を形成した後、
このレジスト層にポジフィルムを通して、孔を開けたい
箇所だけに紫外線を照射せずに他の箇所には紫外線を照
射し、他の箇所を硬化させた後、硬化していない箇所の
感光性樹脂を洗浄除去することによって、容易に得るこ
とができる。また、逆に、紫外線分解型(崩壊型)感光
性樹脂よりなるレジスト液を塗布し、レジスト層を形成
した後、このレジスト層にネガフィルムを通して、孔を
開けたい箇所だけに紫外線を照射し、その後、紫外線を
照射した箇所の分解している感光性樹脂を洗浄除去する
ことによって、得ることもできる。一方、無孔金属箔の
裏面には、無孔レジスト膜を接合する。無孔レジスト膜
は、紫外線硬化型感光性樹脂よりなるレジスト液を使用
した場合には、レジスト層を形成した後、紫外線を全面
に照射すれば、容易に得ることができる。また、紫外線
分解型感光性樹脂よりなるレジスト液を使用した場合に
は、レジスト層を形成した後、なるべく紫外線が照射し
ないようにして放置しておけば良い。なお、このレジス
ト膜は、エッチングに対するレジスト膜という意味で用
いられていることは自明であろう。
A perforated resist film having a large number of through holes is joined to the surface of such a non-porous metal foil. Perforated resist film, after applying a resist solution composed of ultraviolet-curable photosensitive resin on the surface of the non-porous metal foil, forming a resist layer,
Through a positive film through this resist layer, irradiate ultraviolet rays to other places without irradiating ultraviolet rays only to the places where you want to make holes, cure other places, and then remove the photosensitive resin in the uncured places. It can be easily obtained by washing and removing. Conversely, after applying a resist solution composed of a UV-decomposable (collapsed) photosensitive resin to form a resist layer, a negative film is passed through the resist layer, and only the portions where holes are to be formed are irradiated with ultraviolet rays. Thereafter, the resin can be obtained by washing and removing the decomposed photosensitive resin at the location irradiated with the ultraviolet rays. On the other hand, a non-porous resist film is bonded to the back surface of the non-porous metal foil. When a resist solution composed of an ultraviolet-curable photosensitive resin is used, the non-porous resist film can be easily obtained by irradiating the entire surface with ultraviolet rays after forming the resist layer. When a resist solution made of a UV-decomposable photosensitive resin is used, after forming the resist layer, it may be left as far as possible without irradiation with ultraviolet rays. It is obvious that this resist film is used as a resist film for etching.

【0018】以上のようにして、孔開きレジスト膜,無
孔金属箔,無孔レジスト膜の順で積層された三層積層体
に、エッチングを施す。エッチングは、無孔金属箔を溶
解させるけれども、レジスト膜は溶解させないエッチン
グ液(例えば、塩化第二鉄−塩酸水溶液)を用いて行な
う。エッチングは、一般的に、三層積層体の孔開きレジ
スト膜に向けて、エッチング液を噴射することによって
行なう。また、三層積層体をエッチング液中に浸漬する
ことによって、行なうこともできる。このような方法に
よって、レジスト膜の孔からエッチング液が侵入し、無
孔金属箔を溶解させ、図1に示すような貫通孔を多数持
つ孔開き集電体が得られるのである。即ち、エッチング
液が侵入する側は、金属箔の溶解量が多くなるので、そ
の切片角度θ2は、90°〜170°であり、無孔レジ
スト膜が接合している側は、金属箔の溶解量が少ないの
で、その切片角度θ1は、10°〜80°となるのであ
る。
As described above, etching is performed on the three-layer laminate in which the perforated resist film, the non-porous metal foil, and the non-porous resist film are laminated in this order. The etching is performed using an etching solution (for example, an aqueous solution of ferric chloride-hydrochloric acid) that dissolves the non-porous metal foil but does not dissolve the resist film. The etching is generally performed by spraying an etching solution toward the perforated resist film of the three-layered structure. Alternatively, it can be performed by immersing the three-layer laminate in an etching solution. By such a method, an etching solution intrudes from the holes of the resist film, dissolves the non-porous metal foil, and obtains a perforated current collector having many through holes as shown in FIG. That is, since the amount of dissolution of the metal foil increases on the side where the etchant enters, the intercept angle θ 2 is 90 ° to 170 °, and the side where the non-porous resist film is joined is the metal foil. since the amount of dissolution is small, the section angle theta 1 is to be 10 ° to 80 °.

【0019】上記(ii)で示した集電体は、無孔金属箔
の表面に、多数の貫通孔を有する孔開きレジスト膜(表
面側)を接合し、この無孔金属箔の裏面には、孔開きレ
ジスト膜(表面側)の各孔に対応合致しない多数の貫通
孔を有する孔開きレジスト膜(裏面側)を接合してなる
三層積層体に、エッチングを施すことにより、無孔金属
箔に、孔開きレジスト膜(表面側)及び孔開きレジスト
膜(裏面側)の各々の孔に対応する多数の貫通孔を形成
するという方法で得ることができる。この方法は、無孔
金属箔の表面に接合される孔開きレジスト膜(表面側)
と、無孔金属箔の裏面に接合される孔開きレジスト膜
(裏面側)との各々の孔が同期しておらず、孔開きレジ
スト膜(表面側)の孔に対応する箇所においては、孔開
きレジスト膜(裏面側)に孔が開いておらず、また、孔
開きレジスト膜(裏面側)の孔に対応する箇所において
は、孔開きレジスト膜(表面側)に孔が開いていないも
のである。従って、このような三層積層体の表裏面に、
エッチング液を噴射したり、或いは三層積層体をエッチ
ング液に浸漬すると、図1で示すような貫通孔と、図1
で示した貫通孔とは上下が逆転している貫通孔とが混在
する集電体が得られる。即ち、切片角度θ2が90°〜
170°で、切片角度θ1が10°〜80°である貫通
孔と、切片角度θ1が10°〜80°で切片角度θ2が9
0°〜170°である貫通孔とが多数混在する集電体が
得られるのである。
In the current collector shown in (ii), a perforated resist film (surface side) having a large number of through holes is joined to the surface of the non-porous metal foil, and the back surface of the non-porous metal foil is By etching a three-layer laminate formed by joining a perforated resist film (back surface side) having a large number of through holes that do not correspond to each hole of the perforated resist film (front surface side), It can be obtained by forming a large number of through holes corresponding to each hole of the perforated resist film (front side) and the perforated resist film (back side) on the foil. This method uses a perforated resist film bonded to the surface of a non-porous metal foil (surface side)
And the holes of the perforated resist film (back side) joined to the back surface of the non-perforated metal foil are not synchronized, and the holes corresponding to the holes of the perforated resist film (front surface side) No holes are formed in the perforated resist film (back side), and no holes are formed in the perforated resist film (front side) at locations corresponding to the holes in the perforated resist film (back side). is there. Therefore, on the front and back surfaces of such a three-layer laminate,
When the etchant is sprayed or the three-layer laminate is immersed in the etchant, a through hole as shown in FIG.
A current collector is obtained in which the through-holes indicated by and the through-holes that are vertically inverted are mixed. That is, the intercept angle θ 2 is 90 ° or more.
In 170 °, a through hole intercept angle theta 1 is 10 ° to 80 °, intercept angle theta 1 intercept angle theta 2 at 10 ° to 80 ° is 9
Thus, a current collector having a large number of through-holes of 0 ° to 170 ° is obtained.

【0020】上記(iii)で示した集電体は、無孔金属
箔の表面に、多数の貫通孔を有する孔開きレジスト膜
(表面側)を接合し、この無孔金属箔の裏面に、孔開き
レジスト膜(表面側)の各孔に対応合致する多数の貫通
孔を有する孔開きレジスト膜(裏面側)を接合してなる
三層積層体に、エッチングを所定の時間(t1)施すこ
とにより、無孔金属箔に、孔開きレジスト膜(表面側)
及び孔開きレジスト膜(裏面側)の各孔に対応する多数
の貫通孔を形成させるという方法である。この方法は、
無孔金属箔の表面に接合される孔開きレジスト膜(表面
側)と、無孔金属箔の裏面に接合される孔開きレジスト
膜(裏面側)との各々の孔が同期しており、孔開きレジ
スト膜(表面側)の孔に対応する箇所においては、孔開
きレジスト膜(裏面側)に孔が開いているというもので
ある。そして、このような三層積層体の表裏面に、比較
的短時間(t1)、エッチング液を噴射したり、或いは
三層積層体をエッチング液に浸漬すると、図2で示すよ
うな貫通孔を多数持つ集電体が得られる。ここで、比較
的短時間(t1)とは、エッチング液の種類や液温及び
無孔金属箔の種類によって、変動するものではあるが、
一般的には、噴射の場合20秒程度以内である。このよ
うなエッチングによって、貫通孔内壁面の中央部の溶解
度が少なく、貫通孔内壁面の表面及び裏面側の溶解度が
大きく、従って、貫通孔内壁面の中央部が出っ張った貫
通孔を多数持つ集電体が得られる。即ち、切片角度θ1
及びθ2が100°〜170°である貫通孔を多数持つ
集電体が得られるのである。
In the current collector shown in the above (iii), a perforated resist film (surface side) having a large number of through holes is joined to the surface of the non-porous metal foil, and Etching is performed for a predetermined time (t 1 ) on a three-layer laminate in which a perforated resist film (back side) having a large number of through holes corresponding to the respective holes of the perforated resist film (front side) is joined. In this way, a perforated resist film (surface side)
And a method of forming a large number of through-holes corresponding to each hole of the perforated resist film (back side). This method
The holes of the perforated resist film (front surface side) bonded to the surface of the non-porous metal foil and the perforated resist film (back surface side) bonded to the back surface of the non-porous metal foil are synchronized. At the locations corresponding to the holes in the apertured resist film (front side), holes are opened in the apertured resist film (back side). Then, when an etching solution is sprayed on the front and back surfaces of such a three-layer laminate for a relatively short time (t 1 ), or when the three-layer laminate is immersed in the etchant, a through hole as shown in FIG. Is obtained. Here, the relatively short time (t 1 ) varies depending on the type and temperature of the etching solution and the type of the non-porous metal foil,
Generally, in the case of injection, it is within about 20 seconds. By such etching, the solubility of the central portion of the inner wall surface of the through hole is low, the solubility of the front surface and the back surface side of the inner wall surface of the through hole is large, and therefore, the central portion of the inner wall surface of the through hole has many protruding through holes. An electric body is obtained. That is, the intercept angle θ 1
And theta 2 is at the current collector having a large number of through-holes is 100 ° to 170 ° is obtained.

【0021】上記(iv)で示した集電体は、上記(ii
i)で示した集電体を得る方法において、エッチング時
間を比較的長時間(t2)とすることによって、図3で
示すような貫通孔を多数持つ集電体が得られる。ここ
で、比較的長時間(t2)とは、前記した比較的短時間
(t1)よりは、長い時間という程度の意味であり、一
般的には、噴射の場合20秒程度以上である。比較的長
時間(t2)エッチングを施すため、貫通孔内壁面の中
央部の溶解が進み、一方、レジスト膜が接合されている
無孔金属箔の表面側及び裏面側における内壁面は溶解が
進まず、その結果、貫通孔内壁面の中央部が浸食された
貫通孔となるのである。即ち、切片角度θ1及びθ2が1
0°〜80°である貫通孔を多数持つ集電体が得られる
のである。
The current collector shown in the above (iv) corresponds to the above (ii)
In the method for obtaining the current collector shown in i), by setting the etching time to be relatively long (t 2 ), a current collector having a large number of through holes as shown in FIG. 3 can be obtained. Here, the relatively long time (t 2 ) means a longer time than the relatively short time (t 1 ), and generally about 20 seconds or more in the case of injection. . Since the etching is performed for a relatively long time (t 2 ), the melting of the central portion of the inner wall surface of the through-hole proceeds, while the inner wall surface of the non-porous metal foil to which the resist film is bonded dissolves. As a result, the central portion of the inner wall surface of the through hole becomes an eroded through hole. That is, the intercept angles θ 1 and θ 2 are 1
A current collector having a large number of through-holes of 0 ° to 80 ° is obtained.

【0022】上記(v)で示した集電体は、上記(ii
i)で示した集電体を得る方法を一定の区域で施し、上
記(iv)で示した集電体を得る方法をその他の区域で施
すという方法で得ることができる。即ち、上記(iii)
の方法で得られた三層積層体の一定の区域においては、
比較的短時間(t1)のエッチングを施して、図2に示
すような貫通孔を設け、一方、その他の区域において
は、比較的長時間(t2)のエッチングを施して、図3
に示すような貫通孔を設け、両者の貫通孔が多数混在し
てなる集電体を得るのである。即ち、切片角度θ1及び
θ2が100°〜170°である貫通孔と、切片角度θ1
及びθ2が10°〜80°である貫通孔が多数混在して
なる集電体が得られるのである。なお、区域割りは任意
に行なうことができ、例えば、レジスト膜の孔一列毎に
区域を変えることもできる。この場合には、図2で示す
タイプの貫通孔と、図3で示すタイプの貫通孔とが、隣
合う列となって並んでいる集電体を得ることができる。
The current collector shown in the above (v) corresponds to the above (ii)
The method of obtaining the current collector shown in i) is performed in a certain area, and the method of obtaining the current collector described in (iv) is performed in other areas. That is, (iii)
In certain areas of the three-layer laminate obtained by the method of
The etching is performed for a relatively short time (t 1 ) to provide a through-hole as shown in FIG. 2, while in other areas, the etching is performed for a relatively long time (t 2 ), and
Is provided, and a current collector in which a large number of both through holes are mixed is obtained. That is, the through-hole sections angles theta 1 and theta 2 are 100 ° to 170 °, intercept angle theta 1
And theta 2 is at the through-holes is 10 ° to 80 ° that many mixed to become collector is obtained. The area division can be performed arbitrarily. For example, the area can be changed for each row of holes in the resist film. In this case, it is possible to obtain a current collector in which the through holes of the type shown in FIG. 2 and the through holes of the type shown in FIG. 3 are arranged in adjacent rows.

【0023】以上の如き各種方法で得られた、各種の貫
通孔を多数持つ集電体は、リチウムイオン電池,金属リ
チウム電池,ポリマー電池等のリチウム系二次電池の集
電体として好適に用いられる。また、リチウム系二次電
池以外の二次電池の集電体としても、好適に用いられ
る。
The current collector having a large number of various through-holes obtained by the various methods as described above is suitably used as a current collector for lithium secondary batteries such as lithium ion batteries, metal lithium batteries, and polymer batteries. Can be Further, it is also suitably used as a current collector of a secondary battery other than the lithium secondary battery.

【0024】[0024]

【実施例】以下、実施例によって本発明を説明するが、
本発明は実施例に限定されるものではない。本発明は、
集電体に設けられた多数の貫通孔の内壁面が、金属箔の
裏面又は表面に対して、特定の切片角度で傾斜している
ため、集電体の表裏面に塗布された活物質等が脱落しに
くくなるという技術的思想に基づいて解釈されるべきで
ある。
Hereinafter, the present invention will be described with reference to Examples.
The present invention is not limited to the embodiments. The present invention
Since the inner wall surfaces of a large number of through holes provided in the current collector are inclined at a specific intercept angle with respect to the back or front surface of the metal foil, the active material applied to the front and back surfaces of the current collector, etc. Should be interpreted based on the technical idea that it is difficult to drop out.

【0025】実施例1 まず、幅50cm,長さ80cm,厚さ18μmの無孔
の圧延銅箔を準備した。この圧延銅箔を、100g/d
32SO4+0.01g/dm3n−プロパノール+3
0g/dm322よりなる前処理水溶液(液温30
℃)に30秒間浸漬し、水洗及び乾燥した。前処理を終
えた圧延銅箔の両面に、レジスト液(東京応化株式会社
製、PMER P−RF30S)を、約5μmの厚さで
均一に塗布し、90℃で20分間乾燥し、レジスト層を
形成した。
Example 1 First, a non-porous rolled copper foil having a width of 50 cm, a length of 80 cm, and a thickness of 18 μm was prepared. 100 g / d of this rolled copper foil
m 3 H 2 SO 4 +0.01 g / dm 3 n-propanol + 3
0 g / dm 3 H 2 O 2 pretreatment aqueous solution (liquid temperature 30
C) for 30 seconds, washed with water and dried. A resist solution (PMER P-RF30S, manufactured by Tokyo Ohka Co., Ltd.) is applied uniformly on both sides of the rolled copper foil after finishing the pretreatment in a thickness of about 5 μm, and dried at 90 ° C. for 20 minutes to form a resist layer. Formed.

【0026】一方、直径0.8mmの円が、幅方向に3
mmピッチで且つ長さ方向に3mmピッチで焼き付けら
れたポジフィルムを準備した。このポジフィルムの大き
さは、圧延銅箔の大きさに合致するように、幅50cm
とし、長さを80cmとした。なお、ポジフィルムの厚
さは0.2mmであった。
On the other hand, a circle having a diameter of 0.8 mm is
A positive film which was baked at a pitch of 3 mm in the longitudinal direction at a pitch of mm was prepared. The size of this positive film is 50 cm in width to match the size of the rolled copper foil.
And the length was 80 cm. In addition, the thickness of the positive film was 0.2 mm.

【0027】このポジフィルムを、無孔圧延銅箔の表面
に接合されたレジスト層上に積層し、ポジフィルムから
一定の距離を置いて設けた紫外線露光器から、300m
J/cm2の紫外線を照射し、レジスト層に潜像を形成
した。そして、東京応化株式会社製のPMER用現像液
を5倍に稀釈した現像液で、30秒間現像し、水洗後1
20℃で10分間乾燥した。この結果、無孔圧延銅箔の
表面に接合されたレジスト層には、直径ほぼ0.8mm
の貫通孔が、幅方向に3mmピッチで且つ長さ方向に3
mmピッチで形成された。また、無孔圧延銅箔の裏面に
接合されたレジスト層には、紫外線を照射せずに、当初
のままの無孔レジスト層とした。以上のようにして、孔
開きレジスト層,無孔圧延銅箔,無孔レジスト層の順で
積層された三層積層体を得た。
This positive film was laminated on a resist layer bonded to the surface of the non-rolled rolled copper foil, and 300 m from an ultraviolet exposure device provided at a fixed distance from the positive film.
The latent image was formed on the resist layer by irradiating ultraviolet rays of J / cm 2 . Then, it is developed for 30 seconds with a developing solution obtained by diluting a PMER developer manufactured by Tokyo Ohka Co., Ltd. 5 times, and after washing with water, 1 hour.
Dry at 20 ° C. for 10 minutes. As a result, the resist layer joined to the surface of the non-rolled rolled copper foil had a diameter of approximately 0.8 mm.
Are 3mm pitch in the width direction and 3mm in the length direction.
It was formed at a pitch of mm. Further, the resist layer bonded to the back surface of the non-rolled copper foil was not irradiated with ultraviolet rays, and was used as the original non-porous resist layer. As described above, a three-layer laminate in which a perforated resist layer, a non-porous rolled copper foil, and a non-porous resist layer were laminated in this order was obtained.

【0028】この三層積層体の孔開きレジスト層側に、
エッチング液を噴射した。即ち、2.2mol/dm3
FeCl3+1.0mol/cm3HCl水溶液(液温約
50℃)よりなるエッチング液を、6本のノズルから
0.15MPaの圧力で、25秒間、水平に保たれた孔
開きレジスト層に向けて噴射して、エッチングを行なっ
た。この後、直ちに水洗及び乾燥した。次いで、三層積
層体の各レジスト層を除去すべく、アセトンに浸漬し、
乾燥した。この結果、直径(銅箔表面側における直径)
が約0.8mmの貫通孔が、幅方向に3mmピッチで且
つ長さ方向に3mmピッチで設けられた銅箔が得られ
た。この銅箔を、幅6cm,長さ70cmに切断して、
孔開き集電体を得た。この集電体の任意の5箇所を裁断
切取し、貫通孔の断面形状を顕微鏡で観察したところ、
図1に示す如き貫通孔であって、θ1は30°程度で、
θ2は100°程度であった。
On the perforated resist layer side of the three-layer laminate,
An etching solution was sprayed. That is, 2.2 mol / dm 3
An etching solution composed of an aqueous solution of FeCl 3 +1.0 mol / cm 3 HCl (solution temperature: about 50 ° C.) was directed from the six nozzles at a pressure of 0.15 MPa toward the perforated resist layer kept horizontally for 25 seconds at a pressure of 0.15 MPa. By spraying, etching was performed. Thereafter, it was immediately washed with water and dried. Then, immersion in acetone to remove each resist layer of the three-layer laminate,
Dried. As a result, the diameter (diameter on the copper foil surface side)
Was obtained at a pitch of 3 mm in the width direction and a pitch of 3 mm in the length direction. This copper foil is cut into width 6cm and length 70cm,
A perforated current collector was obtained. When any five portions of the current collector were cut and cut, and the cross-sectional shape of the through hole was observed with a microscope,
It is a through hole as shown in FIG. 1, where θ 1 is about 30 °,
θ 2 was about 100 °.

【0029】この孔開き集電体の両面に、難黒鉛化カー
ボンよりなる活物質とフッ素系バインダーとの混合物を
塗布したところ、活物質の脱落が少なく、リチウムイオ
ン二次電池の負極として好適に用いられるものであっ
た。
When a mixture of an active material made of non-graphitizable carbon and a fluorine-based binder was applied to both surfaces of the perforated current collector, the active material was less likely to fall off, and was suitable as a negative electrode of a lithium ion secondary battery. It was used.

【0030】実施例2 無孔圧延銅箔の表裏面に設けられたレジスト層の両方
に、ポジフィルムを各々積層し(但し、両方のポジフィ
ルムの画像が、完全に対応合致するように積層す
る。)、無孔圧延銅箔の裏面に設けられたレジスト層に
も紫外線を照射する他は、実施例1と同様の方法で、孔
開きレジスト層(表面側),無孔圧延銅箔,孔開きレジ
スト層(裏面側)の順で積層された三層積層体を得た。
この三層積層体の孔開きレジスト層(表面側)の各孔
と、孔開きレジスト層(裏面側)の各孔とは、各々対応
合致しており、各々の孔の位置は同期していた。
Example 2 A positive film was laminated on both of the resist layers provided on the front and back surfaces of the non-rolled rolled copper foil (provided that the images of both positive films were completely matched. .), A perforated resist layer (front side), a non-rolled copper foil, and a hole were formed in the same manner as in Example 1 except that the resist layer provided on the back surface of the non-rolled copper foil was also irradiated with ultraviolet rays. A three-layer laminate was obtained in which the resist layers (back side) were laminated in this order.
Each hole of the perforated resist layer (front side) and each hole of the perforated resist layer (back side) of the three-layer laminate correspond to each other, and the position of each hole was synchronized. .

【0031】この三層積層体の孔開きレジスト層(表面
側)及び孔開きレジスト層(裏面側)の両方の側に、エ
ッチング時間を14秒間とする他は、実施例1と同様の
方法でエッチングを行なった。この結果、直径が約0.
8mmの貫通孔が、幅方向に3mmピッチで且つ長さ方
向に3mmピッチで設けられた銅箔が得られた。この銅
箔を、幅6cm,長さ70cmに切断して、孔開き集電
体を得た。この集電体の任意の5箇所を裁断切取し、貫
通孔の断面形状を顕微鏡で観察したところ、図2に示す
如き貫通孔であって、θ1は120°程度で、θ2は14
0°程度であった。この孔開き集電体の両面に、実施例
1と同様に活物質等を塗布したところ、活物質の脱落が
少なく、リチウムイオン二次電池の負極として好適に用
いられるものであった。
The same method as in Example 1 was used except that the etching time was 14 seconds on both sides of the perforated resist layer (front side) and the perforated resist layer (back side) of the three-layered laminate. Etching was performed. As a result, the diameter is about 0.
A copper foil in which 8 mm through holes were provided at a pitch of 3 mm in the width direction and at a pitch of 3 mm in the length direction was obtained. This copper foil was cut into a width of 6 cm and a length of 70 cm to obtain a perforated current collector. Any five portions of the current collector were cut and cut out, and the cross-sectional shape of the through-hole was observed with a microscope. As a result, the through-hole was as shown in FIG. 2, where θ 1 was about 120 ° and θ 2 was 14 °.
It was about 0 °. When an active material or the like was applied to both surfaces of the perforated current collector in the same manner as in Example 1, the active material was less likely to fall off and was suitably used as a negative electrode of a lithium ion secondary battery.

【0032】実施例3 エッチング時間を30秒間とする他は、実施例2と同様
の方法で三層積層体を作成し、実施例2と同様の方法で
エッチングを行なった。この結果、直径が約0.8mm
の貫通孔が、幅方向に3mmピッチで且つ長さ方向に3
mmピッチで設けられた銅箔が得られた。この銅箔を、
幅6cm,長さ70cmに切断して、孔開き集電体を得
た。この集電体の任意の5箇所を裁断切取し、貫通孔の
断面形状を顕微鏡で観察したところ、図3に示す如き貫
通孔であって、θ1は40°程度で、θ2は50°程度で
あった。この孔開き集電体の両面に、実施例1と同様に
活物質等を塗布したところ、活物質の脱落が少なく、リ
チウムイオン二次電池の負極として好適に用いられるも
のであった。
Example 3 A three-layer laminate was prepared in the same manner as in Example 2 except that the etching time was changed to 30 seconds, and etching was performed in the same manner as in Example 2. As a result, the diameter is about 0.8 mm
Are 3mm pitch in the width direction and 3mm in the length direction.
A copper foil provided at a pitch of mm was obtained. This copper foil,
It was cut into a width of 6 cm and a length of 70 cm to obtain a perforated current collector. Any five portions of the current collector were cut and cut out, and the cross-sectional shape of the through hole was observed with a microscope. The through hole was a through hole as shown in FIG. 3, where θ 1 was about 40 ° and θ 2 was 50 °. It was about. When an active material or the like was applied to both surfaces of the perforated current collector in the same manner as in Example 1, the active material was less likely to fall off and was suitably used as a negative electrode of a lithium ion secondary battery.

【0033】[0033]

【作用及び発明の効果】本発明は、多数の貫通孔が設け
られている金属箔からなる二次電池用孔開き集電体であ
って、その貫通孔の内壁面が、金属箔の裏面又は表面に
対して、特定の切片角度で傾斜している。従って、集電
体の表裏面に塗布された活物質等は、貫通孔に侵入した
活物質やバインダーと共に一体化する。そして、この貫
通孔の内壁面は特定の切片角度で傾斜しているので、貫
通孔に侵入している活物質等は、この傾斜に係止され
る。依って、貫通孔に侵入した活物質等と一体化してい
る集電体の表裏面に塗布された活物質等が、脱落しにく
いという効果を奏する。
The present invention relates to a perforated current collector for a secondary battery comprising a metal foil provided with a large number of through holes, wherein the inner wall surface of the through hole is formed on the back surface of the metal foil. It is inclined at a specific intercept angle with respect to the surface. Therefore, the active material and the like applied to the front and back surfaces of the current collector are integrated with the active material and the binder that have penetrated the through-hole. Since the inner wall surface of the through-hole is inclined at a specific intercept angle, the active material or the like entering the through-hole is locked by the inclination. Accordingly, an effect is obtained that the active material and the like applied to the front and back surfaces of the current collector integrated with the active material and the like that have penetrated the through-hole are less likely to fall off.

【0034】この結果、活物質等が塗布された集電体
(二次電池用正極又は負極)を巻き上げて、二次電池を
作成する際にも、活物質等の脱落が少なく、所望の容量
を持つ二次電池が作成しやすいという効果を奏する。ま
た、二次電池を作成した後も、活物質等の脱落又は活物
質等と集電体との離隔を防止でき、充放電容量の低下を
防止でき、二次電池の寿命を長くすることができるとい
う効果も奏する。
As a result, even when a current collector (a positive electrode or a negative electrode for a secondary battery) coated with an active material or the like is rolled up to form a secondary battery, the active material or the like is less likely to fall off and has a desired capacity. This has the effect that a secondary battery having the above is easily produced. Further, even after the secondary battery is manufactured, it is possible to prevent the active material or the like from dropping or separating the active material or the like from the current collector, prevent a decrease in charge / discharge capacity, and prolong the life of the secondary battery. It also has the effect of being able to do it.

【0035】また、本発明に係る二次電池用孔開き集電
体は、無孔金属箔の表裏面に特定のレジスト膜を形成し
た後、特定の方法でエッチングすることによって、容易
に且つ合理的に得ることができる。
The perforated current collector for a secondary battery according to the present invention can be easily and reasonably formed by forming a specific resist film on the front and back surfaces of a non-porous metal foil and then etching it by a specific method. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係る孔開き集電体の拡大断面図
であり、一個の貫通孔の上下方向断面を示した拡大断面
図である。
FIG. 1 is an enlarged sectional view of a perforated current collector according to an example of the present invention, and is an enlarged sectional view showing a vertical cross section of one through hole.

【図2】本発明の一例に係る孔開き集電体の拡大断面図
であり、一個の貫通孔の上下方向断面を示した拡大断面
図である。
FIG. 2 is an enlarged cross-sectional view of a perforated current collector according to an example of the present invention, and is an enlarged cross-sectional view showing a vertical cross section of one through hole.

【図3】本発明の一例に係る孔開き集電体の拡大断面図
であり、一個の貫通孔の上下方向断面を示した拡大断面
図である。
FIG. 3 is an enlarged sectional view of a perforated current collector according to an example of the present invention, and is an enlarged sectional view showing a vertical cross section of one through hole.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 多数の貫通孔が設けられている金属箔か
らなる孔開き集電体であって、該金属箔の裏面と、該金
属箔の裏面側における該貫通孔の内壁面とで形成される
切片角度θ1が10°〜80°であり、該金属箔の表面
と、該金属箔の表面側における該貫通孔の内壁面とで形
成される切片角度θ2が90°〜170°である貫通孔
が設けられていることを特徴とする二次電池用孔開き集
電体。
1. A perforated current collector made of a metal foil provided with a large number of through holes, wherein the current collector is formed by a back surface of the metal foil and an inner wall surface of the through hole on the back surface side of the metal foil. The intercept angle θ 1 is 10 ° to 80 °, and the intercept angle θ 2 formed between the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is 90 ° to 170 °. 2. A perforated current collector for a secondary battery, wherein the through-hole is provided.
【請求項2】 多数の貫通孔を設けられている金属箔か
らなる孔開き集電体であって、該金属箔の裏面と、該金
属箔の裏面側における該貫通孔の内壁面とで形成される
切片角度θ1が10°〜80°であり、該金属箔の表面
と、該金属箔の表面側における該貫通孔の内壁面とで形
成される切片角度θ2が90°〜170°である貫通孔
と、切片角度θ1が90°〜170°であり、切片角度
θ2が10°〜80°である貫通孔とが混在して設けら
れていることを特徴とする二次電池用孔開き集電体。
2. A perforated current collector made of a metal foil provided with a large number of through holes, wherein the current collector is formed by a back surface of the metal foil and an inner wall surface of the through hole on the back surface side of the metal foil. The intercept angle θ 1 is 10 ° to 80 °, and the intercept angle θ 2 formed between the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is 90 ° to 170 °. And a through hole having an intercept angle θ 1 of 90 ° to 170 ° and an intercept angle θ 2 of 10 ° to 80 ° are provided in a mixed manner. Perforated current collector.
【請求項3】 多数の貫通孔が設けられている金属箔か
らなる孔開き集電体であって、該金属箔の裏面と、該金
属箔の裏面側における該貫通孔の内壁面とで形成される
切片角度θ1が100°〜170°であり、該金属箔の
表面と、該金属箔の表面側における該貫通孔の内壁面と
で形成される切片角度θ2が100°〜170°である
貫通孔が設けられていることを特徴とする二次電池用孔
開き集電体。
3. A perforated current collector comprising a metal foil provided with a large number of through holes, wherein the current collector is formed by a back surface of the metal foil and an inner wall surface of the through hole on the back surface side of the metal foil. The intercept angle θ 1 is 100 ° to 170 °, and the intercept angle θ 2 formed by the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is 100 ° to 170 °. 2. A perforated current collector for a secondary battery, wherein the through-hole is provided.
【請求項4】 多数の貫通孔が設けられている金属箔か
らなる孔開き集電体であって、該金属箔の裏面と、該金
属箔の裏面側における該貫通孔の内壁面とで形成される
切片角度θ1が10°〜80°であり、該金属箔の表面
と、該金属箔の表面側における該貫通孔の内壁面とで形
成される切片角度θ2が10°〜80°である貫通孔が
設けられていることを特徴とする二次電池用孔開き集電
体。
4. A perforated current collector comprising a metal foil provided with a large number of through holes, wherein the current collector is formed by a back surface of the metal foil and an inner wall surface of the through hole on the back surface side of the metal foil. The intercept angle θ 1 is 10 ° to 80 °, and the intercept angle θ 2 formed by the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is 10 ° to 80 °. 2. A perforated current collector for a secondary battery, wherein the through-hole is provided.
【請求項5】 多数の貫通孔が設けられている金属箔か
らなる孔開き集電体であって、該金属箔の裏面と、該金
属箔の裏面側における該貫通孔の内壁面とで形成される
切片角度θ1が100°〜170°であり、該金属箔の
表面と、該金属箔の表面側における該貫通孔の内壁面と
で形成される切片角度θ2が100°〜170°である
貫通孔と、切片角度θ1が10°〜80°であり、切片
角度θ2が10°〜80°である貫通孔とが混在して設
けられていることを特徴とする二次電池用孔開き集電
体。
5. A perforated current collector comprising a metal foil provided with a large number of through holes, wherein the current collector is formed by a back surface of the metal foil and an inner wall surface of the through hole on the back surface side of the metal foil. The intercept angle θ 1 is 100 ° to 170 °, and the intercept angle θ 2 formed by the surface of the metal foil and the inner wall surface of the through hole on the surface side of the metal foil is 100 ° to 170 °. And a through-hole having an intercept angle θ 1 of 10 ° to 80 ° and an intercept angle θ 2 of 10 ° to 80 ° are provided in a mixed manner. Perforated current collector.
【請求項6】 金属箔が、アルミニウム箔,アルミニウ
ム合金箔,銅箔及び銅合金箔よりなる群から選ばれたい
ずれかである請求項1乃至5のいずれか一項に記載の二
次電池用孔開き集電体。
6. The secondary battery according to claim 1, wherein the metal foil is any one selected from the group consisting of an aluminum foil, an aluminum alloy foil, a copper foil and a copper alloy foil. Perforated current collector.
【請求項7】 二次電池が、リチウムイオン電池,金属
リチウム電池又はポリマー電池である請求項1乃至6の
いずれか一項に記載の二次電池用孔開き集電体。
7. The perforated current collector for a secondary battery according to claim 1, wherein the secondary battery is a lithium ion battery, a metal lithium battery, or a polymer battery.
【請求項8】 無孔金属箔の表面に、多数の貫通孔を有
する孔開きレジスト膜を接合し、該無孔金属箔の裏面に
は、無孔レジスト膜を接合してなる三層積層体に、エッ
チングを施すことにより、該無孔金属箔に、該孔開きレ
ジスト膜の孔に対応する多数の貫通孔を形成することを
特徴とする請求項1記載の二次電池用孔開き集電体の製
造方法。
8. A three-layer laminate in which a perforated resist film having a large number of through holes is joined to the surface of a non-porous metal foil, and a non-porous resist film is joined to the back surface of the non-porous metal foil. 2. A perforated current collector for a secondary battery according to claim 1, wherein a plurality of through-holes corresponding to the perforations of the perforated resist film are formed in the non-perforated metal foil by etching. How to make the body.
【請求項9】 無孔金属箔の表面に、多数の貫通孔を有
する孔開きレジスト膜(表面側)を接合し、該無孔金属
箔の裏面には、該孔開きレジスト膜(表面側)の各孔に
対応合致しない多数の貫通孔を有する孔開きレジスト膜
(裏面側)を接合してなる三層積層体に、エッチングを
施すことにより、該無孔金属箔に、該孔開きレジスト膜
(表面側)及び孔開きレジスト膜(裏面側)の各々の孔
に対応する多数の貫通孔を形成することを特徴とする請
求項2記載の二次電池用孔開き集電体の製造方法。
9. A perforated resist film (surface side) having a large number of through holes is bonded to the surface of the non-porous metal foil, and the perforated resist film (front side) is formed on the back surface of the non-porous metal foil. The three-layer laminate formed by joining a perforated resist film (back surface side) having a large number of through holes that do not correspond to each of the holes is etched to form the perforated resist film on the non-perforated metal foil. 3. The method for producing a perforated current collector for a secondary battery according to claim 2, wherein a large number of through holes are formed corresponding to the respective holes of the (front side) and the perforated resist film (back side).
【請求項10】 無孔金属箔の表面に、多数の貫通孔を
有する孔開きレジスト膜(表面側)を接合し、該無孔金
属箔の裏面に、該孔開きレジスト膜(表面側)の各孔に
対応合致する多数の貫通孔を有する孔開きレジスト膜
(裏面側)を接合してなる三層積層体に、エッチングを
所定の時間(t1)施すことにより、該無孔金属箔に、
該孔開きレジスト膜(表面側)及び該孔開きレジスト膜
(裏面側)の各孔に対応する多数の貫通孔を形成するこ
とを特徴とする請求項3記載の二次電池用孔開き集電体
の製造方法。
10. A perforated resist film (surface side) having a large number of through holes is bonded to the surface of the non-porous metal foil, and the perforated resist film (front side) is formed on the back surface of the non-porous metal foil. Etching is performed for a predetermined time (t 1 ) on a three-layer laminate obtained by joining a perforated resist film (back side) having a large number of through holes corresponding to the respective holes, so that ,
4. A perforated current collector for a secondary battery according to claim 3, wherein a number of through holes corresponding to each hole of the perforated resist film (front side) and the perforated resist film (back side) are formed. How to make the body.
【請求項11】 無孔金属箔の表面に、多数の貫通孔を
有する孔開きレジスト膜(表面側)を接合し、該無孔金
属箔の裏面に、該孔開きレジスト膜(表面側)の各孔に
対応合致する多数の貫通孔を有する孔開きレジスト膜
(裏面側)を接合してなる三層積層体に、エッチング
を、請求項9で規定された所定の時間(t1)より長い
時間(t2)施すことにより、該無孔金属箔に、該孔開
きレジスト膜(表面側)及び該孔開きレジスト膜(裏面
側)の各孔に対応する多数の貫通孔を形成することを特
徴とする請求項4記載の二次電池用孔開き集電体の製造
方法。
11. A perforated resist film (surface side) having a large number of through holes is bonded to the surface of the non-porous metal foil, and the perforated resist film (front side) is formed on the back surface of the non-porous metal foil. Etching is performed on a three-layer laminate formed by joining a perforated resist film (back surface side) having a large number of through holes corresponding to each hole for a time longer than a predetermined time (t 1 ) defined in claim 9. By performing the time (t 2 ), a large number of through holes corresponding to each hole of the perforated resist film (front side) and the perforated resist film (back side) are formed in the non-perforated metal foil. The method for producing a perforated current collector for a secondary battery according to claim 4.
【請求項12】 無孔金属箔の表面に、多数の貫通孔を
有する孔開きレジスト膜(表面側)を接合し、該無孔金
属箔の裏面に、該孔開きレジスト膜(表面側)の各孔に
対応合致する多数の貫通孔を有する孔開きレジスト膜
(裏面側)を接合してなる三層積層体に、エッチング
を、所定の時間(t1)施す区域と、所定の時間(t1
より長い時間(t2)施す区域とを設け、該無孔金属箔
に、該孔開きレジスト膜(表面側)及び該孔開きレジス
ト膜(裏面側)の各孔に対応する多数の貫通孔を形成す
ることを特徴とする請求項5記載の二次電池用孔開き集
電体の製造方法。
12. A perforated resist film (surface side) having a large number of through-holes is bonded to the surface of the non-porous metal foil, and the perforated resist film (front side) is formed on the back surface of the non-porous metal foil. An area where etching is performed for a predetermined time (t 1 ) and a predetermined time (t 1 ) are applied to a three-layer laminate in which a perforated resist film (rear surface side) having a large number of through holes corresponding to each hole is bonded. 1 )
Providing an area to be applied for a longer time (t 2 ), and forming a large number of through holes corresponding to each hole of the perforated resist film (front side) and the perforated resist film (back side) on the non-porous metal foil. The method for producing a perforated current collector for a secondary battery according to claim 5, wherein the current collector is formed.
JP23538597A 1997-08-14 1997-08-14 Perforated current collector for secondary battery and manufacturing method thereof Expired - Lifetime JP4462509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23538597A JP4462509B2 (en) 1997-08-14 1997-08-14 Perforated current collector for secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23538597A JP4462509B2 (en) 1997-08-14 1997-08-14 Perforated current collector for secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1167217A true JPH1167217A (en) 1999-03-09
JP4462509B2 JP4462509B2 (en) 2010-05-12

Family

ID=16985307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23538597A Expired - Lifetime JP4462509B2 (en) 1997-08-14 1997-08-14 Perforated current collector for secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4462509B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243401A (en) * 1998-06-26 2000-09-08 Kazunori Yamada Collector for battery
JP2000331687A (en) * 1999-05-18 2000-11-30 Dainippon Printing Co Ltd Metallic foil sheet and manufacture thereof
JP2003051313A (en) * 2001-08-07 2003-02-21 Matsushita Electric Ind Co Ltd Manufacturing method for secondary battery and secondary battery
EP2096702A1 (en) 2008-02-25 2009-09-02 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device, Electrode, Method for Fabricating Electrode, and Management Method
JP2011198765A (en) * 2011-05-20 2011-10-06 Dainippon Printing Co Ltd Metal foil sheet
CN102471835A (en) * 2009-07-07 2012-05-23 东洋铝株式会社 Perforated aluminum foil
JP2014159640A (en) * 2014-04-07 2014-09-04 Dainippon Printing Co Ltd Method for producing metal foil sheet
JP2015167192A (en) * 2014-03-04 2015-09-24 旭化成パックス株式会社 Punched thin film and power storage device using the same
EP3208365A4 (en) * 2014-10-14 2017-10-11 Fujifilm Corporation Aluminum plate and method for producing aluminum plate
US10062907B2 (en) 2013-05-09 2018-08-28 Asahi Kasei Pax Corporation Perforated film, coating film, and electricity storage device
KR20190038877A (en) 2016-09-26 2019-04-09 후지필름 가부시키가이샤 Manufacturing method of perforated metal foil
WO2019125064A1 (en) * 2017-12-22 2019-06-27 주식회사 엘지화학 Negative electrode for lithium metal battery, and lithium metal battery comprising same
KR20210087922A (en) * 2017-12-22 2021-07-13 주식회사 엘지에너지솔루션 Anode current for lithium metal battery and lithium metal battery including the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243401A (en) * 1998-06-26 2000-09-08 Kazunori Yamada Collector for battery
JP2000331687A (en) * 1999-05-18 2000-11-30 Dainippon Printing Co Ltd Metallic foil sheet and manufacture thereof
JP2003051313A (en) * 2001-08-07 2003-02-21 Matsushita Electric Ind Co Ltd Manufacturing method for secondary battery and secondary battery
EP2096702A1 (en) 2008-02-25 2009-09-02 Fuji Jukogyo Kabushiki Kaisha Electric Storage Device, Electrode, Method for Fabricating Electrode, and Management Method
CN102471835A (en) * 2009-07-07 2012-05-23 东洋铝株式会社 Perforated aluminum foil
JP2011198765A (en) * 2011-05-20 2011-10-06 Dainippon Printing Co Ltd Metal foil sheet
US10062907B2 (en) 2013-05-09 2018-08-28 Asahi Kasei Pax Corporation Perforated film, coating film, and electricity storage device
JP2015167192A (en) * 2014-03-04 2015-09-24 旭化成パックス株式会社 Punched thin film and power storage device using the same
JP2014159640A (en) * 2014-04-07 2014-09-04 Dainippon Printing Co Ltd Method for producing metal foil sheet
EP3208365A4 (en) * 2014-10-14 2017-10-11 Fujifilm Corporation Aluminum plate and method for producing aluminum plate
US10862133B2 (en) 2014-10-14 2020-12-08 Fujifilm Corporation Aluminum plate and method for manufacturing aluminum plate
KR20190038877A (en) 2016-09-26 2019-04-09 후지필름 가부시키가이샤 Manufacturing method of perforated metal foil
WO2019125064A1 (en) * 2017-12-22 2019-06-27 주식회사 엘지화학 Negative electrode for lithium metal battery, and lithium metal battery comprising same
CN110462902A (en) * 2017-12-22 2019-11-15 株式会社Lg化学 Anode for lithium metal battery and the lithium metal battery including the anode
KR20210087922A (en) * 2017-12-22 2021-07-13 주식회사 엘지에너지솔루션 Anode current for lithium metal battery and lithium metal battery including the same
CN110462902B (en) * 2017-12-22 2022-05-13 株式会社Lg化学 Anode for lithium metal battery and lithium metal battery including the same

Also Published As

Publication number Publication date
JP4462509B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JPH1167217A (en) Perforated current collector for secondary battery and its manufacture
US20060110661A1 (en) Anode for lithium metal polymer secondary battery comprising surface patterned anodic current collector and method of preparing the same
TWI536648B (en) Metal foil for negative electrode current collector
US8043519B2 (en) Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
JP6296260B2 (en) Method for forming adhesive layer for secondary battery
JP2007317638A (en) Electrode assembly excellent in structural stability and wettability of electrolyte solution and secondary battery containing above
KR20150093874A (en) Electrode structure for a lithium-sulfur secondary cell and method of manufacturing the same
JP3779745B2 (en) Printed circuit board and film circuit board manufacturing method
JPH0992254A (en) Battery separator and its manufacture
JP2013182810A (en) Collector, and lithium ion secondary battery using the same
CN102971845B (en) Substrate for mounting semiconductor element and method for manufacturing the substrate
TWI517485B (en) Porous electrodes for secondary batteries
US7033641B2 (en) Gas separating unit and method for manufacturing the same
JP4912100B2 (en) Electric double layer capacitor
JP4216795B2 (en) Polymer capacitor manufacturing method and polymer capacitor manufactured thereby
JP2010080858A (en) Electric double layer capacitor and method of manufacturing the same
JP2000173595A (en) Composite negative electrode and secondary battery using it
CN110112422B (en) Microporous metal foil and method for producing same
KR20160053886A (en) Electrode structure for a lithium-sulfur secondary cell
KR20130005722A (en) Method for manufacturing current collector for electrochemical device and current collector for electrochemical device manufactured by using same
JP2002208393A (en) Electrolyte retention membrane, electrolyte retention membrane with base material and manufacturing method of electrolyte retention membrane
JP2007026963A (en) Manufacturing method of negative electrode for nonaqueous electrolyte secondary battery
JPH11273685A (en) Porous current collector for battery, electrode, and battery
KR101351252B1 (en) Manufacturing Process for Anode Active Material having Multi-Diameter Structure and Lithium Secondary Battery using the Same
JPS58186168A (en) Manufacturing method of grid base plate for storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term