WO2011002016A1 - 二次電池用電極、二次電池電極用スラリー及び二次電池 - Google Patents

二次電池用電極、二次電池電極用スラリー及び二次電池 Download PDF

Info

Publication number
WO2011002016A1
WO2011002016A1 PCT/JP2010/061132 JP2010061132W WO2011002016A1 WO 2011002016 A1 WO2011002016 A1 WO 2011002016A1 JP 2010061132 W JP2010061132 W JP 2010061132W WO 2011002016 A1 WO2011002016 A1 WO 2011002016A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
electrode
group
secondary battery
active material
Prior art date
Application number
PCT/JP2010/061132
Other languages
English (en)
French (fr)
Inventor
脇坂 康尋
佳 小林
関根 利幸
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020117031086A priority Critical patent/KR101530756B1/ko
Priority to CN201080028715.8A priority patent/CN102473898B/zh
Priority to JP2011520953A priority patent/JP5626209B2/ja
Priority to US13/381,030 priority patent/US8877376B2/en
Priority to EP10794184.1A priority patent/EP2450985B1/en
Priority to PL10794184T priority patent/PL2450985T3/pl
Publication of WO2011002016A1 publication Critical patent/WO2011002016A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode slurry used for a secondary battery electrode such as a lithium ion secondary battery, a secondary battery electrode, and a secondary battery.
  • Lithium ion secondary batteries show the highest energy density among practical batteries, and are widely used especially for small electronics. In addition, expansion to automobile applications is also expected, and there is a demand for improved output characteristics and stable operation over a wide temperature range.
  • a positive electrode of a lithium ion secondary battery is generally used as a positive electrode active material (hereinafter, also referred to as a “positive electrode active material”) on a current collector, such as LiCoO 2 , LiMn 2 O 4 and LiFePO 4.
  • An electrode active material layer is formed by bonding a lithium-containing metal oxide or the like with a binder (also referred to as a binder) such as polyvinylidene fluoride.
  • the negative electrode is a carbonaceous (amorphous) carbon material, metal oxide or metal sulfide used as a negative electrode active material (hereinafter also referred to as “negative electrode active material”) on the current collector.
  • Etc. are bonded with a binder such as a styrene-butadiene copolymer.
  • Patent Document 1 discloses that by using a polymer having a cationic group and an anion corresponding to the cationic group as a binder, the dispersibility of the electrode active material is improved, and as a result, the dispersibility of the conductive agent is also improved. By doing so, it is disclosed that a battery excellent in surface smoothness and output characteristics of the electrode can be obtained.
  • Patent Document 2 discloses that an electrode having an anionic functional group and a binder containing a compound having an anionic functional group and a cationic functional group can be used for adhesion to a current collector and an electrode. It is described that the mobility of lithium ions in the vicinity of the surface is improved.
  • Patent Document 3 discloses that an electrode is formed using a graphite material as a negative electrode active material and polyethylene or ethylene / vinyl acetate copolymer as a binder, and then heat-treating at a temperature equal to or higher than the melting point of the binder to bind the electrode. Has been shown to improve.
  • JP 2006-278303 A JP 2009-123523 A JP 11-238505 A (US Pat. No. 6,436,573)
  • an object of the present invention is to provide an electrode for a lithium ion secondary battery that suppresses lithium metal deposition and the resulting secondary battery exhibits excellent low-temperature characteristics.
  • the inventors of the present invention include an electrode including the electrode active material containing a polymer having a cationic group and an anion corresponding to the cationic group, By setting the cation density in the polymer within a predetermined range, the polymer is selectively present near the surface of the electrode active material, lithium deposition is suppressed, and the low-temperature discharge capacity of the obtained secondary battery is improved. I found out that This is because the polymer is selectively present in the vicinity of the surface of the electrode active material, so that the desolvation resistance at the time of lithium insertion is greatly reduced, and the precipitation of the lithium not inserted on the electrode surface can be suppressed. It depends. Based on these findings, the present invention has been completed.
  • the present invention for solving the above-mentioned problems includes the following matters as a gist.
  • An electrode active material layer comprising a polymer having a cationic group, an anion corresponding to the cationic group, and an electrode active material, and the cation density in the polymer is 0.1 to
  • the electrode for secondary batteries which is 15 meq / g.
  • the electrode for a secondary battery wherein the electrode active material layer further contains a particulate polymer.
  • a mass ratio of the polymer having the cationic group to the particulate polymer in the electrode active material layer is 5:95 to 40:60.
  • a slurry for a secondary battery electrode comprising a polymer having a cationic group, an anion corresponding to the cationic group, an electrode active material, and a solvent, wherein the cation density in the polymer is 0.00.
  • this polymer suppresses resistance during lithium insertion on the surface of the electrode active material, It is possible to obtain a secondary battery electrode in which lithium deposition does not occur on the electrode surface and the obtained secondary battery exhibits a high discharge capacity including a low temperature range of 0 ° C. or lower.
  • the electrode for a secondary battery of the present invention (hereinafter sometimes simply referred to as “electrode”) includes a polymer having a cationic group and an anion corresponding to the cationic group (hereinafter referred to as “counter anion”). And an electrode active material layer containing an electrode active material (also referred to as an “electrode mixture layer”).
  • the anion corresponding to the cationic group represents an anion that can bind to the cationic group.
  • the cationic group refers to an atom or an atomic group that is positively charged by releasing electrons.
  • a cationic group which the polymer used for this invention has what contains a hetero atom is preferable.
  • a heteroatom is defined as an atom other than hydrogen, carbon and metal.
  • it since it has a moderate interaction with the electrolyte solution described later and easily suppresses the precipitation of lithium metal, it preferably contains at least one of nitrogen, phosphorus, sulfur, oxygen and boron, Most preferred is one containing at least one of nitrogen, phosphorus and sulfur.
  • the cationic group containing a hetero atom include a compound represented by the formula (I) (In the formula, A represents a hetero atom.
  • R 1 to R 3 may be the same or different from each other, 1 to 2 may be hydrogen atoms, and 1 to 3 are substituted.
  • each of R 1 to R 3 independently represents a hydrogen atom or an optionally substituted alkyl group, but the aliphatic group represented by the formula (I)
  • at least one of R 1 to R 3 is an optionally substituted alkyl group, and therefore one or two of R 1 to R 3 may be a hydrogen atom.
  • R 1 ⁇ R 3 is an aliphatic cationic group that is represented by the.) that removed as a hydrogen atom, Formula (II): (In the formula, A represents a hetero atom. Q 1 represents an optionally substituted aliphatic ring group. R 1 represents a hydrogen atom or an optionally substituted alkyl group.) Cyclic cationic groups, Or formula (III): (Wherein, A represents a hetero atom, Q 2 represents an optionally substituted heteroaromatic ring group), and the like.
  • the primary cationic group can be classified into the quaternary cationic group according to the number of R 1 to R 3 hydrogen atoms contained in the above formula.
  • R 1 to R 3 hydrogen atoms contained in the above formula.
  • a quaternary cationic group when a hydrogen atom is not included among R 1 to R 3, a quaternary cationic group, a tertiary cationic group when one is a hydrogen atom, and a hydrogen atom when two are hydrogen atoms Is called a secondary cationic group.
  • R 1 when R 1 is a hydrogen atom, it is called a tertiary cationic group, and when R 1 is other than hydrogen, it is called a quaternary cationic group.
  • R 1 when R 1 is a hydrogen atom, it is called a tertiary cationic group, and when R 1 is other than hydrogen, it is called a quaternary cationic group.
  • a heterocyclic cationic group all
  • Examples of the optionally substituted alkyl group in the formula (I) and the formula (II) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • Linear, branched or cyclic unsubstituted having 1 to 18 carbon atoms such as pentyl group, pentyl group, neopentyl group, hexyl group, isohexyl group, decyl group, dodecyl group, octadecyl group, cyclopentyl group, cyclohexyl group, etc.
  • Examples of the substituent of the optionally substituted alkyl group include an aryl group such as a phenyl group; a disubstituted amino group such as a dimethylamino group; a nitro group; a cyano group; a carboxyl group; and a formyl group, an acetyl group, and the like.
  • substituted alkyl group examples include, for example, 1-methoxyethyl group, 2- (dimethylamino) methyl group, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 2-methoxyethyl group, 2- ( 2-methoxyethoxy) ethyl group, allyl group and the like.
  • Examples of the optionally substituted aliphatic ring group in the formula (II) include a pyrrolidyl group, a 2-methylpyrrolidyl group, a 3-methylpyrrolidyl group, a 2-ethylpyrrolidyl group, and a 3-ethylpyrrolidyl group.
  • Examples of the optionally substituted heteroaromatic ring group in the formula (III) include a pyridyl group, a 2-methylpyridyl group, a 3-methylpyridyl group, a 4-methylpyridyl group, a 2,6-dimethylpyridyl group, 2-methyl-6-ethylpyridyl group, 1-methylimidazolyl group, 1,2-dimethylimidazolyl group, 1-ethylimidazolyl group, 1-propylimidazolyl group, 1-butylimidazolyl group, 1-pentylimidazolyl group, 1- Hexylimidazolyl, thiophene, thiazolyl, 1-methylthiazolyl, 1,2-dimethylthiazolyl, 1-ethylthiazolyl, 1-propylthiazolyl, 1-butylthiazolyl, 1-pentylthiazolyl Group, 1-hexyl thiazolyl group and the like
  • the obtained electrode has a high binding property between the electrode active material and the binder, and at the time of forming an electrode slurry (also referred to as an electrode forming slurry).
  • an electrode slurry also referred to as an electrode forming slurry.
  • a tertiary cationic group or a quaternary cationic group is preferred, and a quaternary cationic group is particularly preferred.
  • the alicyclic cationic group represented by the formula (II) and the heterocyclic cationic group represented by the formula (III) Groups are preferred.
  • the cation density in the polymer used in the present invention is 0.1 meq / g or more and 15 meq / g or less per the polymer.
  • the cation density is preferably 0.5 meq / g or more, more preferably 1 meq / g or more, and particularly preferably 2 meq / g or more. Yes, preferably 10 meq / g or less, more preferably 7.5 meq / g or less, and particularly preferably 5 meq / g or less.
  • the cation density is preferably 2 meq / g or more, more preferably 4 meq / g or more, and still more preferably 5 meq / g or more.
  • it is 12 meq / g or less, More preferably, it is 9 meq / g or less, More preferably, it is 8 meq / g or less, Most preferably, it is 7 meq / g or less, Most preferably, it is 6 meq / g or less.
  • the electrode active material layer contains a particulate polymer containing an anion, and the cation density is 2 meq / g or more and 5 meq / g or less.
  • the cation density is less than 0.1 meq / g, precipitation of lithium is observed during discharge and the low-temperature characteristics tend to be inferior.
  • it is more than 15 meq / g the stability of the slurry for secondary battery electrodes described later is lowered, and an increase in battery failure rate is observed due to a decrease in productivity during electrode production and a decrease in electrode surface smoothness.
  • meq / g represents a milliequivalent of a cationic group per gram of the polymer
  • 1 eq is a value represented by “1 mol / ion valence”.
  • the cation density in the polymer having a cationic group used in the present invention can be measured by colloid titration.
  • the quaternary amine group can be measured by colloidal titration using potassium polyvinyl sulfate as a standard anion.
  • the anion (that is, the counter anion) corresponding to the cationic group used in the present invention contains an anion, and the anion preferably contains a halogen element or a chalcogen element.
  • the “halogen element” means an atomic group consisting of fluorine, chlorine, bromine, iodine and astatine which are Group 17 elements.
  • chlorine, bromine and iodine are preferable because a strong electrolyte having a high degree of dissociation can be formed, and at least one selected from the group consisting of chlorine ions, bromine ions and iodine ions is preferable as the counter anion.
  • the “chalcogen element” means an atomic group consisting of oxygen, sulfur, selenium, tellurium and polonium which are group 16 elements. Among these, at least one selected from the group consisting of sulfonate ions, sulfate ions and nitrate ions containing sulfur and oxygen as chalcogen elements is preferable because a strong electrolyte having a high degree of dissociation can be formed.
  • counter anions are usually bonded to the cationic group of the polymer having a cationic group, but may not necessarily form a bond with the cationic group as long as the effects of the present invention are exhibited. Good. Moreover, you may couple
  • the counter anion is bound to the polymer having a cationic group by a bond other than the bond with the cationic group or the cationic group, the polymer having the cationic group is a cationic group and It will have a counter anion.
  • the amount of the counter anion is arbitrary as long as the effect of the present invention is obtained. Since the counter anion corresponds to the cationic group of the polymer used in the present invention, the counter anion usually has the same equivalent density (meq / g) as the corresponding cationic group.
  • the weight average molecular weight of the polymer having a cationic group used in the present invention is a standard polyethylene oxide measured by gel permeation chromatography (hereinafter sometimes referred to as “GPC”) using an aqueous solution of sodium nitrate as a developing solvent.
  • the converted value is preferably 1,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, preferably 500,000 or less, more preferably 300,000 or less, and still more preferably 200,000. Hereinafter, it is particularly preferably 100,000 or less.
  • the polymer having a cationic group When the weight average molecular weight of the polymer having a cationic group is within the above range, the polymer having a cationic group exhibits high adsorption stability to the surface of the electrode active material inside the electrode, and has an appropriate mobility. Thus, excellent low-temperature characteristics are exhibited, and the stability of the electrode slurry is excellent, so that productivity can be improved and a smooth electrode can be obtained.
  • the glass transition temperature (Tg) of the polymer having a cationic group used in the present invention is preferably 30 ° C. or less, more preferably 0 ° C. or less from the viewpoint of improving the flexibility and bending resistance of the electrode.
  • the lower limit of the glass transition temperature (Tg) is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 70 ° C. or higher.
  • the polymer having a cationic group used in the present invention is usually prepared as a solution or dispersion containing the polymer and a solvent in order to produce an electrode.
  • the viscosity of the solution or dispersion is usually 1 mPa ⁇ S or more, preferably 50 mPa ⁇ S or more, and usually 300,000 mPa ⁇ S or less, preferably 10,000 mPa ⁇ S or less.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the solvent used in the solution or dispersion of the polymer having a cationic group used in the present invention is not particularly limited as long as it can uniformly dissolve or disperse the polymer, but a solvent that can dissolve is preferable. This is because the solution tends to have an effect of promoting lithium desolvation on the surface of the electrode active material because a larger amount of polymer can be present on the surface of the electrode active material during electrode production. Moreover, since it mixes with the solvent used for the slurry for electrodes at the time of preparation of the slurry for electrodes mentioned later, it is desirable to use the same solvent as the solvent used for the slurry for electrodes.
  • acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable.
  • water is particularly preferable because the polymer used in the present invention has high solubility and is often used as a solvent for an electrode slurry.
  • a method for producing a polymer having a cationic group used in the present invention for example, (first method) a method of homopolymerizing a monomer having a cationic group, or a copolymerization with a copolymerizable monomer (Second method) a method of adding a compound having a cationic group to a polymer obtained from a polymerizable monomer; (third method) using a compound having a tertiary cationic group as a polymerization catalyst A method of anionic polymerization of a polymerizable monomer; (fourth method) a method of polymerizing a monomer having a secondary cationic group under a basic condition and neutralizing the obtained polymer with an acid, etc. Can be mentioned.
  • Examples of the monomer having a cationic group used in the (first method) include the aforementioned unsaturated monomers having a cationic group.
  • a counter anion corresponding to the cationic group is usually bonded to the monomer having a cationic group.
  • the presence of a cation having a specific density range and a counter anion corresponding to the cationic group is a requirement for achieving the effects of the present invention, and therefore, regardless of the type of cation and counter anion.
  • the effect of the present invention can be exhibited. Therefore, the combination is not particularly limited, and the effect of the present invention can be obtained with any combination.
  • monomers include, for example, when the counter anion is a chloride ion, such as vinylalkylammonium chloride, (meth) acryloylalkylammonium chloride, (di) allylalkylammonium chloride, aminoalkyl (meth) acrylamide, etc.
  • a chloride ion such as vinylalkylammonium chloride, (meth) acryloylalkylammonium chloride, (di) allylalkylammonium chloride, aminoalkyl (meth) acrylamide, etc.
  • the polymer having a cationic group used in the present invention may be obtained by homopolymerizing a monomer having a cationic group or by copolymerizing a polymerizable monomer copolymerizable therewith.
  • the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; 2 such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Carboxylic acid esters having one or more carbon-carbon double bonds having one or more carbon-carbon double bonds; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -Styrene monomers such as methylstyrene and divinylbenzene; Amide monomers such as acrylamide, N-methylol aquaylamide, and acrylamide-2-methylpropanesulfonic acid; ⁇ such as acrylonitrile and methacrylonitrile , ⁇ -unsaturated nitrile compounds; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate
  • the content ratio of the copolymerizable monomer unit in the polymer having a cationic group used in the present invention is preferably 1% by mass or more, more preferably 10% by mass or more, and preferably 90% by mass or less. More preferably, it is 50 mass% or less.
  • the polymerization method in the (first method) is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be used.
  • the polymerization initiator used for the polymerization include peroxides such as hydrogen peroxide and tert-butyl hydroperoxide; reductions of these peroxides and divalent iron (Fe ++), Na 2 SO 3 , ascorbic acid, and the like.
  • Redox initiator comprising a combination with an agent: lauroyl peroxide, disopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butylperoxypivalate, 3,5,5-trimethylhexanoylper Organic peroxides such as oxides; azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile; persulfates such as ammonium persulfate and potassium persulfate;
  • an aqueous medium As the solvent used in solution polymerization, an aqueous medium is preferable.
  • the aqueous medium include water, inorganic acid (hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, etc.) aqueous solution, organic acid aqueous solution, inorganic acid salt (sodium chloride, zinc chloride, calcium chloride, magnesium chloride, etc.) aqueous solution, and the like.
  • suspending agent used in suspension polymerization examples include synthetic polymers such as polyvinyl alcohol, partially saponified polyvinyl acetate, cellulose derivatives such as methylcellulose, polyvinylpyrrolidone, maleic anhydride-vinyl acetate copolymer, and polyacrylamide.
  • synthetic polymers such as polyvinyl alcohol, partially saponified polyvinyl acetate, cellulose derivatives such as methylcellulose, polyvinylpyrrolidone, maleic anhydride-vinyl acetate copolymer, and polyacrylamide.
  • synthetic polymers such as polyvinyl alcohol, partially saponified polyvinyl acetate, cellulose derivatives such as methylcellulose, polyvinylpyrrolidone, maleic anhydride-vinyl acetate copolymer, and polyacrylamide.
  • substances and natural polymer substances such as starch and gelatin.
  • emulsifier used in the emulsion polymerization examples include anionic emulsifiers such as sodium alkylbenzene sulfonate and sodium lauryl sulfate, and nonionic emulsifiers such as polyoxyethylene alkyl ether and polyoxyethylene sorbitan fatty acid partial ester. Further, a molecular weight adjusting agent such as trichlorethylene, thioglycol or dodecyl mercaptan can be used as necessary.
  • the above-described polymerization initiator, monomer, suspending or emulsifying agent, molecular weight adjusting agent, etc. may be added to the polymerization system all together at the start of polymerization, or may be added in portions during the polymerization. The polymerization is usually carried out at a temperature of 35 to 80 ° C. with stirring.
  • a polymer is first formed, and then a compound having a cationic group is added to the polymer.
  • a counter anion corresponding to the cationic group is bonded to the compound having a cationic group.
  • the polymerization method any of the solution polymerization method, the suspension polymerization method, and the emulsion polymerization method can be used as described above, and it is optimal depending on the conditions of the subsequent addition reaction and the characteristics of the polymer to be obtained.
  • a suitable manufacturing method may be selected. For example, when the addition reaction is carried out in an aqueous system, it is advantageous to obtain the polymer as fine aqueous dispersion particles by emulsion polymerization.
  • a solution polymerization method or a suspension polymerization method using a lower alcohol such as methanol as a polymerization medium is preferable, but a normal suspension polymerization method can also be used.
  • a tertiary amine is reacted in the presence or absence of an acid. And a method of adding them together.
  • Tertiary amines include saturated tertiary amines such as pyridine, dimethyl lauryl amine, dimethyl stearyl amine, triethyl amine and dimethyl methoxyethyl amine; dimethylallyl amine, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide and the like.
  • Saturated tertiary amines can be used.
  • the acid include saturated carboxylic acids such as acetic acid and lactic acid; and unsaturated carboxylic acids such as (meth) acrylic acid and crotonic acid.
  • the reaction for adding the polymer and the tertiary amine may be carried out in a solvent in which both are dissolved or may be carried out by directly melting and mixing the two, but in a solvent at 40 to 60 ° C. Is preferred.
  • the pH of the polymer having a cationic group in the present invention is preferably 6 or more, more preferably 7 or more, preferably 12 or less, and more preferably 10 or less.
  • the polymer having a cationic group used in the present invention is obtained through a particulate metal removal step of removing particulate metal contained in the polymer solution or the polymer dispersion in the polymer production process.
  • a particulate metal removal step of removing particulate metal contained in the polymer solution or the polymer dispersion in the polymer production process.
  • the content of the particulate metal component contained in the polymer solution or polymer dispersion is 10 ppm or less, metal ion cross-linking between polymers in the electrode slurry described later is prevented, and the viscosity is increased. Can be prevented.
  • there is little concern about an increase in self-discharge due to internal short circuit of the secondary battery or dissolution or precipitation during charging and the cycle characteristics and safety of the battery are improved.
  • the method for removing the particulate metal component from the polymer solution or polymer dispersion in the particulate metal removal step is not particularly limited.
  • the removal method by filtration using a filtration filter, the removal method by a vibrating screen, centrifugation Examples thereof include a method of removing by separation and a method of removing by magnetic force.
  • the removal target is a metal component
  • the metal foreign matter component can be selectively and efficiently removed.
  • the method for removing by magnetic force is not particularly limited as long as it is a method capable of removing a metal component. However, in consideration of productivity and removal efficiency, it is preferably performed by arranging a magnetic filter in a polymer production line. .
  • the content ratio of the polymer having a cationic group in the electrode active material layer is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 5% by mass or less. More preferably, it is 3 mass% or less, Most preferably, it is 1 mass% or less.
  • the counter anion is bonded to a polymer having a cationic group, it is preferable that the content of the polymer including the mass of the counter anion falls within the above range. Since the content ratio of the polymer having a cationic group in the electrode active material layer is in the above range, excellent low-temperature characteristics are exhibited, and the electrode slurry is excellent in stability and productivity, and a smooth electrode. Can be obtained.
  • Electrode active material What is necessary is just to select the electrode active material used for the electrode for secondary batteries of this invention according to the secondary battery in which an electrode is utilized.
  • the secondary battery include a lithium ion secondary battery and a nickel hydride secondary battery.
  • the positive electrode active material is roughly classified into those made of an inorganic compound and those made of an organic compound.
  • the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • the transition metal Fe, Co, Ni, Mn and the like are used.
  • the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 ; Is mentioned. These compounds may be partially element-substituted.
  • the positive electrode active material made of an organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
  • the particle diameter of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, the 50% volume cumulative diameter is usually 0.1 ⁇ m. Above, preferably 1 ⁇ m or more, usually 50 ⁇ m or less, preferably 20 ⁇ m or less. When the 50% volume cumulative diameter is within this range, a secondary battery having a large charge / discharge capacity can be obtained, and handling of the slurry for electrodes and the electrodes is easy.
  • the 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction.
  • examples of the negative electrode active material include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers. Examples thereof include materials and conductive polymers such as polyacene.
  • carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers. Examples thereof include materials and conductive polymers such as polyacene.
  • metals such as silicon, tin, zinc, manganese, iron, nickel, alloys thereof, oxides or sulfates of the metals or alloys are used.
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicon, and the like can be used.
  • An electrode active material having a conductive agent attached to the surface by a mechanical modification method can also be used.
  • the particle diameter of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually It is 1 ⁇ m or more, preferably 15 ⁇ m or more, and is usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • examples of the positive electrode active material include nickel hydroxide particles.
  • the nickel hydroxide particles may be dissolved in cobalt, zinc, cadmium, or the like, or may be coated with a cobalt compound whose surface is subjected to an alkali heat treatment.
  • the hydrogen storage alloy particles are hydrogen generated electrochemically in an alkaline electrolyte when the battery is charged.
  • the possible storage, yet as long as the storage of hydrogen can be easily released upon discharge well is not particularly limited, AB 5 type system, preferably particles made of TiNi system and TiFe system hydrogen absorbing alloy.
  • LaNi 5 , MmNi 5 (Mm is a misch metal), LmNi 5 (Lm is at least one selected from rare earth elements including La), and a part of Ni of these alloys is Al, Mn, Co Multi-element hydrogen storage alloy particles substituted with one or more elements selected from the group consisting of Ti, Cu, Zn, Zr, Cr, and B can be used.
  • hydrogen storage having a composition represented by the general formula: L m Ni w Co x Mn y Al z (the total value of atomic ratios w, x, y and z is 4.80 ⁇ w + x + y + z ⁇ 5.40)
  • the alloy particles are suitable because the pulverization accompanying the progress of the charge / discharge cycle is suppressed and the charge / discharge cycle characteristics are improved.
  • the content ratio of the electrode active material in the electrode active material layer is preferably 90% by mass or more, more preferably 95% by mass or more, preferably 99.9% by mass or less, more preferably 99% by mass or less.
  • the electrode active material layer is a particulate polymer (also referred to as a particulate polymer) in addition to a polymer having a cationic group, a counter anion corresponding to the cationic group, and an electrode active material. May be included.
  • the particulate polymer By including the particulate polymer, the binding property of the electrode is improved, the strength against the mechanical force applied during the process of winding the electrode is increased, and the electrode active material layer in the electrode is less likely to be detached. For this reason, the risk of a short circuit due to the desorbed material is reduced.
  • the particulate polymer is prepared as a dispersion in which polymer particles having binding properties are dispersed in water or an organic solvent (hereinafter, these may be collectively referred to as “binder dispersion”).
  • binder dispersion is an aqueous dispersion
  • examples of the particulate polymer include polymer particles such as a diene polymer, an acrylic polymer, a fluorine polymer, and a silicon polymer. Among these, non-fluorinated polymers that do not contain fluorine are preferred. If the particulate polymer contains fluorine, the lithium metal precipitation suppressing effect may be reduced due to the interaction with the cation due to high electronegativity.
  • the particulate polymer is more preferably an amorphous polymer. Since the particulate polymer is amorphous, the electrode active material layer is excellent in flexibility, and the lithium metal deposition suppressing effect is highly expressed by the mobility of the polymer inside the battery.
  • the degree of crystallinity of the particulate polymer is preferably 10% or less, more preferably 5% or less.
  • a diene polymer or an acrylic polymer is preferable because of excellent binding properties with an electrode active material and strength and flexibility of the obtained electrode.
  • the particulate polymer is usually polyethylene, polypropylene, polyisobutylene, polyvinyl chloride, polyvinylidene chloride, polyfluoride.
  • Vinyl polymers such as vinylidene, polytetrafluoroethylene, polyvinyl acetate, polyvinyl alcohol, polyvinyl isobutyl ether, polyacrylonitrile, polymethacrylonitrile, polymethyl methacrylate, polymethyl acrylate, polyethyl methacrylate, allyl acetate, polystyrene Diene polymers such as polybutadiene and polyisoprene; ether polymers containing heteroatoms in the main chain such as polyoxymethylene, polyoxyethylene, polycyclic thioether, and polydimethylsiloxane; Poly cyclic anhydride, polyethylene terephthalate, condensation ester polymer such as polycarbonate; nylon 6, nylon 66, poly -m- phenylene isophthalamide, poly -p- phenylene terephthalamide, poly pyromellitic imide.
  • the diene polymer is a polymer containing monomer units obtained by polymerizing conjugated dienes such as butadiene and isoprene, and the binder dispersion is usually an aqueous dispersion.
  • the proportion of the monomer unit obtained by polymerizing the conjugated diene in the diene polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more, and usually 100% or less.
  • Examples of the diene polymer include homopolymers of conjugated dienes such as polybutadiene and polyisoprene; and copolymers with monomers copolymerizable with conjugated dienes.
  • Examples of the copolymerizable monomer include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; styrene, chlorostyrene, Styrene monomers such as vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinylbenzene; olefins such as ethylene and propylene Diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; methyl
  • the acrylic polymer is a polymer containing monomer units obtained by polymerizing acrylic acid ester and / or methacrylic acid ester, and the binder dispersion liquid is usually an aqueous dispersion liquid.
  • the proportion of monomer units formed by polymerizing acrylic acid ester and / or methacrylic acid ester is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more, and usually 100% or less. is there.
  • the acrylic polymer include homopolymers of acrylic acid esters and / or methacrylic acid esters, and copolymers with monomers copolymerizable therewith.
  • Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid
  • two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Carboxylates having carbon double bonds including styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, N-methylol aquaylamide, acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ - such as acrylonitrile and methacrylonitrile Saturated nitrile compounds; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate Vinyl esters such as
  • an acrylic polymer which is a saturated polymer having no unsaturated bond in the polymer main chain is preferable because of excellent oxidation resistance during charging.
  • a diene polymer is preferable.
  • the particulate polymer used for the secondary battery electrode of the present invention preferably contains an anion from the viewpoint of improving the adhesion to the current collector.
  • the anion contained in the particulate polymer is an anion different from the counter anion corresponding to the cationic group, and is contained in the particulate polymer.
  • An anion can be contained in the particulate polymer as an anionic group, and a monomer containing an anionic group is used as a monomer constituting the particulate polymer, or an emulsifier and an initiator used in the polymerization described later.
  • an anionic group can be contained in a polymerization additive such as a terminator, so that it can be contained in the particulate polymer.
  • the content of the anion with respect to the total amount of the particulate polymer varies depending on whether the anionic group is contained in the monomer unit, the emulsifier, the initiator, or the like. Each preferable content is mentioned later.
  • a method for obtaining a particulate polymer containing an anion (1) a method using a monomer containing an anionic group as a polymerizable monomer; (2) an emulsifier containing an anionic group using a polymerizable monomer Examples include a method used for solubilization; (3) a method using an initiator containing an anionic group as a polymerization initiator; and (4) a method combining the above (1) to (3).
  • Examples of the monomer having an anionic group include a monomer having a carboxyl group, a monomer having a phosphonic acid group, a monomer having a phosphinic acid group, and a monomer having a sulfonic acid group.
  • a monomer having a carboxyl group or a monomer having a sulfonic acid group is preferable from the viewpoint of the stability of the particulate polymer.
  • Examples of the monomer having a carboxyl group include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and fumaric acid.
  • Monomers having a sulfonic acid group include 2-acrylamido-2-methylpropanesulfonic acid, 2-[(2-propenyloxy) methoxy] ethenesulfonic acid, 3- (2-propenyloxy) -1-propene-1- Sulfonic acid, vinyl sulfonic acid, 2-vinyl benzene sulfonic acid, 3-vinyl benzene sulfonic acid, 4-vinyl benzene sulfonic acid, 4-vinyl benzyl sulfonic acid, 2-methyl-1-pentene-1-sulfonic acid, 1- Examples include octene-1-sulfonic acid.
  • the content of the monomer unit comprising an anionic group with respect to the total amount of the particulate polymer is preferably 0.5% by mass or more, more preferably 1% by mass or more, preferably 10% by mass or less, more preferably Is 5% by mass or less.
  • an electrostatic repulsion effect will express in a particulate polymer and the stability in the slurry mixing for electrodes will improve.
  • adhesion between the particulate polymer and the current collector is improved in the electrode.
  • the emulsifier containing an anionic group examples include an anionic surfactant such as a surfactant having a carboxyl group, a surfactant having a sulfonic acid group, and a surfactant having a phosphate group.
  • an anionic surfactant such as a surfactant having a carboxyl group, a surfactant having a sulfonic acid group, and a surfactant having a phosphate group.
  • a surfactant having a sulfonic acid group is preferable for the reason of stability of the particulate polymer.
  • surfactants having a sulfonic acid group include sulfates of higher alcohols, alkylbenzene sulfonates, and aliphatic sulfonates.
  • sodium dodecylbenzene sulfonate sodium dodecyl phenyl ether sulfonate, and the like.
  • Benzene sulfonates alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecyl sulfate; sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dihexyl sulfosuccinate, polyoxyethylene lauryl ether sulfate sodium salt, polyoxyethylene nonylphenyl ether Ethoxy sulfate salts such as tersulfate sodium salt; alkane sulfonate salts; and the like.
  • the anionic surfactant may be used alone or in combination with another surfactant.
  • examples of other surfactants include nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • nonionic surfactant known ones can be used. Specifically, polyethylene glycol alkyl ester type, alkyl ether type, alkylphenyl ether type and the like are used.
  • cationic surfactant known ones can be used, and examples thereof include primary amine salts, secondary amine salts, tertiary amine salts, and quaternary ammonium salts.
  • amphoteric surfactants include those having a carboxylate, sulfate, sulfonate, and phosphate ester salt as the anion moiety, and an amine salt and quaternary ammonium salt as the cation moiety.
  • Betaines such as lauryl betaine and stearyl betaine; those of amino acid type such as lauryl- ⁇ -alanine, stearyl- ⁇ -alanine, lauryl di (aminoethyl) glycine, octyldi (aminoethyl) glycine, etc.
  • the content of the emulsifier with respect to the total amount of the particulate polymer is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less.
  • polymerization initiator examples include persulfates such as potassium persulfate and ammonium persulfate, and organic peroxides such as hydrogen peroxide, benzoyl peroxide and cumene hydroperoxide. These may be used alone or as a redox polymerization initiator used in combination with a reducing agent such as acidic sodium sulfite, sodium thiosulfate, or ascorbic acid.
  • persulfates such as potassium persulfate and ammonium persulfate
  • organic peroxides such as hydrogen peroxide, benzoyl peroxide and cumene hydroperoxide.
  • a reducing agent such as acidic sodium sulfite, sodium thiosulfate, or ascorbic acid.
  • the content of the polymerization initiator with respect to the total amount of the particulate polymer is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less. is there. By being included in the said range, even if it mix
  • Polymerization terminators include diethylhydroxylamine, hydroxyaminesulfonic acid, and its metal alkali salts, hydroxyamine sulfate, hydroxydimethylbenzenethiocarboxylic acid, hydroxydibutylbenzenethiocarboxylic acid and other hydroxydithiocarboxylic acids and their alkali metal salts, hydroquinone derivatives And catechol derivatives.
  • hydroxyamine sulfonic acid containing an anionic group and its alkali metal salt, hydroxydithiocarboxylic acid and its alkali metal salt are preferably used.
  • the content of the polymerization terminator with respect to the total amount of the particulate polymer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, preferably 2% by mass or less, more preferably 1% by mass or less. is there. By being included in the said range, even if it mix
  • the content of the anion in the particulate polymer is calculated from the ratio of the structural component having an anionic group in the particulate polymer, preferably 0.25% by mass or more, more preferably 0.5% by mass or more. 1 mass% or more is especially preferable, 20 mass% or less is preferable, 10 mass% or less is more preferable, and 8 mass% or less is especially preferable.
  • the particulate polymer used for the secondary battery electrode of the present invention can be produced by emulsion polymerization, suspension polymerization or the like.
  • emulsion polymerization a known method can be employed, and the emulsion polymerization can be carried out using an emulsifier, a polymerization initiator, a molecular weight regulator and the like in an aqueous medium.
  • the binder dispersion may be an aqueous dispersion (aqueous binder) using water as a dispersion medium or a non-aqueous dispersion (non-aqueous binder) using an organic solvent as a dispersion medium.
  • aqueous binder aqueous binder
  • non-aqueous dispersion non-aqueous binder
  • an aqueous binder is preferably used.
  • the aqueous dispersion can be produced, for example, by emulsion polymerization of the above monomers in water.
  • the non-aqueous dispersion can be produced by replacing the aqueous dispersion with an organic solvent.
  • the number average particle size of the particulate polymer in the binder dispersion is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, and more preferably 400 nm or less. When the number average particle diameter of the particulate polymer is within this range, the strength and flexibility of the obtained electrode are good.
  • the glass transition temperature (Tg) of the particulate polymer is appropriately selected according to the purpose of use, but is usually ⁇ 150 ° C. or higher, preferably ⁇ 100 ° C. or higher, more preferably ⁇ 70 ° C. or higher, more preferably ⁇ 50. ° C or higher, particularly preferably -35 ° C or higher, usually + 100 ° C or lower, preferably + 25 ° C or lower, more preferably + 5 ° C or lower.
  • Tg glass transition temperature
  • the amount of the particulate polymer in the secondary battery electrode of the present invention is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, particularly preferably 100 parts by mass of the electrode active material. It is 0.5 parts by mass or more, preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and particularly preferably 3 parts by mass or less.
  • the amount of the particulate polymer in the electrode active material layer is in the above range, it is possible to prevent the electrode active material from dropping from the electrode without inhibiting the battery reaction.
  • the mass ratio of the polymer having a cationic group in the electrode active material layer to the particulate polymer is preferably 5:95 to 40:60, and 10:90 to 30:70. More preferably.
  • the electrode for a secondary battery of the present invention is further added with an electrolytic solution having functions such as a conductive agent, a reinforcing material, a dispersing agent, a leveling agent, an antioxidant, a thickener, and an electrolytic decomposition inhibition.
  • an agent such as an agent may be included.
  • these other components may be contained in the slurry for secondary battery electrodes mentioned later. These are not particularly limited as long as they do not affect the battery reaction.
  • conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used. Examples thereof include carbon powders such as graphite, and fibers and foils of various metals.
  • the electrical contact between the electrode active materials can be improved by using the conductive agent, and the discharge load characteristics can be improved particularly when used in a lithium ion secondary battery.
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used. By using a reinforcing material, a tough and flexible electrode can be obtained, and excellent long-term cycle characteristics can be exhibited.
  • the content of the conductive agent or reinforcing agent in the electrode active material layer is usually 0.01 parts by mass or more, preferably 1 part by mass or more, and usually 20 parts by mass or less, preferably 100 parts by mass of the electrode active material. Is 10 parts by mass or less. By being included in the range, high capacity and high load characteristics can be exhibited.
  • the dispersant examples include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds.
  • a dispersing agent is selected according to the electrode active material and electrically conductive agent to be used.
  • the content ratio of the dispersant in the electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the electrode slurry is excellent in stability, a smooth electrode can be obtained, and a high battery capacity can be exhibited.
  • the leveling agent examples include surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs during coating or to improve the smoothness of the electrode.
  • the content ratio of the leveling agent in the electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material. When the content of the leveling agent in the electrode active material layer is in the above range, the productivity, smoothness, and battery characteristics during electrode production are excellent.
  • the antioxidant examples include a phenol compound, a hydroquinone compound, an organic phosphorus compound, a sulfur compound, a phenylenediamine compound, and a polymer type phenol compound.
  • the polymer type phenol compound is a polymer having a phenol structure in the molecule, and a polymer type phenol compound having a weight average molecular weight of usually 200 or more, preferably 600 or more, usually 1000 or less, preferably 700 or less is preferably used.
  • the content ratio of the antioxidant in the electrode active material layer is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, preferably 10 parts by mass or less, with respect to 100 parts by mass of the electrode active material. More preferably, it is 5 parts by mass or less. When the content of the antioxidant in the electrode active material layer is within the above range, the electrode slurry stability, battery capacity, and cycle characteristics are excellent.
  • thickeners include cellulose polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Polyacrylic acid, oxidized starch, phosphoric acid starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, and the like.
  • cellulose polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof
  • (modified) poly means “unmodified poly” or “modified poly”
  • “(meth) acryl” means “acryl” or “methacryl”.
  • the content ratio of the thickener in the electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the electrode active material in the electrode slurry is excellent in dispersibility and a smooth electrode can be obtained, and excellent load characteristics and cycle characteristics. Indicates.
  • the electrolytic solution additive vinylene carbonate used in an electrode slurry and an electrolytic solution described later can be used.
  • the content ratio of the electrolytic solution additive in the electrode active material is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the cycle characteristics and the high temperature characteristics are excellent.
  • Other examples include nanoparticles such as fumed silica and fumed alumina: surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants.
  • the content ratio of the nanoparticles in the electrode active material layer is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the slurry for an electrode is excellent in stability and productivity, and high battery characteristics are exhibited.
  • the content ratio of the surfactant in the electrode active material is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • a polymer having a cationic group, a counter anion corresponding to the cationic group, and an electrode active material layer containing an electrode active material may be formed on the current collector.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode of the lithium ion secondary battery, and copper is particularly preferable for the negative electrode of the lithium ion secondary battery.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector is preferably used after roughening in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • the mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • the method for producing an electrode for a secondary battery of the present invention may be any method in which an electrode active material layer is bound in a layered manner on at least one surface, preferably both surfaces of the current collector.
  • an electrode slurry described later is applied to a current collector, dried, and then heated at 120 ° C. or higher for 1 hour or longer to form an electrode.
  • the method for applying the electrode slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a zip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • Examples of the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the preferable range of the porosity is preferably 5% or more, more preferably 7% or more, preferably 15% or less, more preferably 13% or less. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, there are problems that it is difficult to obtain a high volume capacity, or that the electrodes are easily peeled off and are likely to be defective. Further, when a curable polymer is used, it is preferably cured.
  • the thickness of the secondary battery electrode of the present invention is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less, for both the positive electrode and the negative electrode. When the electrode thickness is in the above range, both load characteristics and energy density are high.
  • the slurry for secondary battery electrodes of the present invention includes a polymer having a cationic group, a counter anion corresponding to the cationic group, an electrode active material, and a solvent.
  • Examples of the polymer having a cationic group, the counter anion corresponding to the cationic group, and the electrode active material include those described for the electrode.
  • solvent As a solvent used for the slurry for electrodes, any solid component (polymer having a cationic group, counter anion corresponding to the cationic group, electrode active material, and other components) can be uniformly dispersed. There is no particular limitation.
  • the solvent used for the electrode slurry either water or an organic solvent can be used.
  • organic solvents examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; acetone, ethyl methyl ketone, disopropyl ketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane.
  • Ketones chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; acylonitriles such as acetonitrile and propionitrile; tetrahydrofuran; Ethers such as ethylene glycol diethyl ether: alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; Examples include amides such as loridone and N, N-dimethylformamide.
  • solvents may be used alone, or two or more of these may be mixed and used as a mixed solvent.
  • a solvent having excellent solubility of the polymer of the present invention, excellent dispersibility of the electrode active material and the conductive agent, and having a low boiling point and high volatility is preferable because it can be removed at a low temperature in a short time.
  • Acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable, and water is particularly preferable.
  • the solid content concentration of the slurry for the secondary battery electrode of the present invention is not particularly limited as long as it can be applied and immersed and has a fluid viscosity, but is generally about 10 to 80% by mass. is there.
  • the slurry for the secondary battery electrode further includes a dispersant used in the electrode.
  • a dispersant used in the electrode such as an electrolyte additive having a function of suppressing decomposition of the electrolyte and the like may be included. These are not particularly limited as long as they do not affect the battery reaction.
  • the method for producing the slurry for the secondary battery electrode is not particularly limited, and a polymer having a cationic group, a counter anion corresponding to the cationic group, an electrode active material, and a solvent are added as necessary. Obtained by mixing other ingredients.
  • a polymer having a cationic group, a counter anion corresponding to the cationic group, an electrode active material, and a solvent are added as necessary. Obtained by mixing other ingredients.
  • an electrode slurry in which the electrode active material and the conductive agent are highly dispersed can be obtained regardless of the mixing method and the mixing order.
  • the mixing device is not particularly limited as long as it can uniformly mix the above-mentioned components.
  • the viscosity of the electrode slurry is preferably 10 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, preferably 100,000 mPa ⁇ s or less, more preferably 50, from the viewpoint of uniform coating properties and electrode slurry aging stability. 1,000 mPa ⁇ s or less.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and at least one of the positive electrode and the negative electrode has a polymer having a cationic group, a counter anion corresponding to the cationic group, and an electrode activity. It consists of an electrode including an electrode active material layer containing a substance.
  • Examples of the secondary battery of the present invention include a lithium ion secondary battery, a nickel metal hydride secondary battery, etc., but safety improvement is most demanded and the effect of improving low temperature characteristics is the highest, and in addition, in the operating temperature range.
  • a lithium ion secondary battery is preferable because expansion is cited as a problem.
  • the case where it uses for a lithium ion secondary battery is demonstrated.
  • separator for lithium ion secondary battery
  • known ones such as a microporous film or non-woven fabric made of polyolefin such as polyethylene and polypropylene; a porous resin coat containing inorganic ceramic powder; and the like can be used.
  • a separator for a lithium ion secondary battery a known one such as a microporous film or non-woven fabric containing a polyolefin resin such as polyethylene or polypropylene or an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder; Can do.
  • polyolefin polymers polyethylene, polypropylene, polybutene, polyvinyl chloride
  • microporous membranes made of resins such as mixtures or copolymers thereof, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide
  • a microporous membrane made of a resin such as amide, polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene, or a woven fabric of polyolefin fibers, a nonwoven fabric thereof, an aggregate of insulating substance particles, and the like.
  • a microporous film made of a polyolefin-based resin is preferable because the thickness of the entire separator can be reduced and the electrode active material ratio in the battery can be increased to increase the capacity per volume.
  • the thickness of the organic separator is usually 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and is usually 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less. Within this range, the resistance due to the separator in the battery is reduced, and the workability during battery production is excellent.
  • Electrode for lithium ion secondary battery As the electrolytic solution for the lithium ion secondary battery, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is used. A lithium salt is used as the supporting electrolyte.
  • the lithium salt is not particularly limited, LiPF 6, LiAsF 6, LiBF 4, LiSbF 6, LiAlCl 4, LiClO 4, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. Two or more of these may be used in combination. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolyte for the lithium ion secondary battery is not particularly limited as long as it can dissolve the supporting electrolyte, but dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene Carbonates such as carbonate (PC), butylene carbonate (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds such as: are preferably used. Moreover, you may use the liquid mixture of these solvents.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC butylene carbonate
  • MEC methyl ethyl carbonate
  • esters such as ⁇ -butyrolactone and methyl formate
  • ethers such as 1,2-
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Since the lithium ion conductivity increases as the viscosity of the solvent used decreases, the lithium ion conductivity can be adjusted depending on the type of the solvent. Moreover, it is also possible to use the electrolyte solution by containing an additive. Examples of the additive include carbonate compounds such as vinylene carbonate (VC) used in the above-described slurry for secondary battery electrodes.
  • VC vinylene carbonate
  • concentration of the supporting electrolyte in the electrolyte solution for lithium ion secondary batteries is 1 mass% or more normally, Preferably it is 5 mass% or more, and is 30 mass% or less normally, Preferably it is 20 mass% or less.
  • concentration is usually 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity tends to decrease.
  • the electrolytic solution other than the above include polymer electrolytes such as polyethylene oxide and polyacrylonitrile, gelled polymer electrolytes in which the polymer electrolyte is impregnated with an electrolytic solution, and inorganic solid electrolytes such as LiI and Li 3 N.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery.
  • the method of injecting and sealing is mentioned. If necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the particulate polymer and the polymer having a cationic group partially form a complex. From the presence of this complex, The electrode active material surface is prevented from being completely covered, and a lithium ion entrance route to the electrode active material surface is selectively secured, while the effect of improving the mobility of thium ions by the polymer having a cationic group. It becomes possible to hold. Therefore, precipitation of lithium metal on the electrode surface is suppressed.
  • a secondary battery electrode having an electrode active material layer containing a polymer having a cationic group, a particulate polymer, and an electrode active material.
  • the electrode for a secondary battery wherein the mass ratio of the polymer having the cationic group and the particulate polymer in the electrode active material layer is 5:95 to 40:60.
  • the electrode for a secondary battery wherein the particulate polymer contains an anion.
  • the electrode for a secondary battery, wherein the particulate polymer has a glass transition temperature of 25 ° C. or lower.
  • the electrode for a secondary battery, wherein the cationic group contains a hetero atom.
  • the electrode for a secondary battery containing at least one of nitrogen, phosphorus, sulfur, oxygen, and boron as the heteroatom.
  • a slurry for a secondary battery electrode comprising a polymer having a cationic group, a particulate polymer, an electrode active material and a solvent.
  • a method for producing a secondary battery electrode comprising a step of applying and drying the slurry for a secondary battery electrode on a current collector.
  • a secondary battery including a positive electrode, a negative electrode, a separator, and an electrolytic solution, wherein at least one of the positive electrode and the negative electrode is the electrode.
  • the electrode active material layer necessarily includes a particulate polymer and does not necessarily include a counter anion corresponding to the cationic group. It is the same as the secondary battery electrode of the present invention except that the cation density is not limited to 0.1 to 15 meq / g.
  • the slurry for a secondary battery electrode according to another invention necessarily includes a particulate polymer and does not necessarily include a counter anion corresponding to a cationic group, and the cation density in the polymer having a cationic group Is the same as that of the slurry for secondary battery electrodes of the present invention except that is not limited to 0.1 to 15 meq / g.
  • the manufacturing method of the electrode for secondary batteries which concerns on another invention is 2nd of this invention except using the slurry for secondary battery electrodes which concerns on another invention instead of the slurry for secondary battery electrodes of this invention. It is the same as the manufacturing method of the electrode for secondary batteries.
  • the secondary battery according to another invention is the same as the secondary battery according to the present invention except that the secondary battery electrode according to another invention is used instead of the secondary battery electrode according to the present invention.
  • the polymer having a cationic group and a particulate polymer are contained in the electrode active material layer, so that these polymers have a resistance when lithium is inserted on the surface of the electrode active material. It is possible to obtain a secondary battery electrode that is suppressed, lithium deposition does not occur on the electrode surface, and the obtained secondary battery has a high charge capacity including a low temperature range of 0 ° C. or lower.
  • CV (meq / g) N / 400 PVSK solution titration ⁇ N / 400 PVSK solution titer ⁇ 1/2
  • the blank titer is calculated by adding the titer of the N / 400 PVSK solution.
  • Each electrode is cut into a rectangular shape having a width of 1 cm and a length of 10 cm to form a test piece, which is fixed with the electrode active material layer surface facing up.
  • the stress was measured when the cellophane tape was peeled off from one end of the test piece in the 180 ° direction at a speed of 50 mm / min. The measurement was performed 10 times, the average value was obtained, and this was used as the peel strength. It shows that the adhesion strength of an electrode plate is so large that this value is large.
  • Polymer D An aqueous solution of quaternary salt of N, N-dimethylaminopropylacrylamide methyl chloride (manufactured by Kojin Co., Ltd. DMAPAA-Q 75% aqueous solution) in a reactor equipped with a reflux condenser, thermometer, dropping funnel, stirrer, and gas introduction tube 150 parts was added, and ion exchange water was further added to prepare a monomer concentration of 30%. Furthermore, 2 parts of polyoxyethylene alkyl ether (Emulgen 1150S-60 manufactured by Kao Corporation) was added and stirred to prepare an emulsion.
  • Emulgen 1150S-60 manufactured by Kao Corporation
  • the temperature inside the system was raised to 60 ° C. while introducing nitrogen gas, and 0.2 part of a water-soluble azo polymerization initiator (VA-050 manufactured by Wako Pure Chemical Industries, Ltd.) was added as a polymerization initiator.
  • VA-050 water-soluble azo polymerization initiator manufactured by Wako Pure Chemical Industries, Ltd.
  • the reaction started.
  • the reaction was continued at 60 ° C. for 4 hours, then heated to 80 ° C. and continued for 4 hours, and then cooled to complete the reaction. Thereby, the polymer D was obtained.
  • the polymerization conversion rate determined from the solid content concentration was 96%.
  • the cation density of the polymer D determined by the colloid titration method was 4.8 meq / g.
  • required from GPC was about 50,000.
  • the temperature inside the system was raised to 60 ° C. while introducing nitrogen gas, and 0.2 part of a water-soluble azo polymerization initiator (VA-050 manufactured by Wako Pure Chemical Industries, Ltd.) was added as a polymerization initiator.
  • VA-050 water-soluble azo polymerization initiator manufactured by Wako Pure Chemical Industries, Ltd.
  • the reaction started.
  • the reaction was continued at 60 ° C. for 4 hours, then heated to 80 ° C. and continued for 4 hours, and then cooled to complete the reaction.
  • a polymer E was obtained.
  • the polymerization conversion rate determined from the solid content concentration was 95%.
  • the cation density of the polymer E determined by the colloid titration method was 5.2 meq / g.
  • required from GPC was about 80,000.
  • the reaction was further continued for 3 hours, and then the temperature was raised to 80 ° C. and the reaction was continued for 3 hours, followed by cooling to complete the reaction. Thereby, the polymer I was obtained.
  • the polymerization conversion rate determined from the solid content concentration was 96%.
  • an appropriate amount of ion-exchanged water was added to adjust the solid content concentration to 25%.
  • the cation density of polymer I determined by colloid titration was 0.05 meq / g.
  • polymers A to C, F, G, and H are ion-exchanged water and a 20% strength aqueous solution is prepared and used, and polymers D, E, and I are used as they are. did.
  • Particulate polymer 1 To Polymerization Can A, 5 parts of styrene, 10 parts of butadiene, 3 parts of polyoxyethylene alkyl ether (Emulgen 1150S-60 manufactured by Kao Corporation) and 70 parts of ion-exchanged water were added and stirred sufficiently. Thereafter, the temperature was adjusted to 70 ° C., 0.3 parts of a water-soluble azo polymerization initiator (VA-086 manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerization initiator and 10 parts of ion-exchanged water were added and stirred for 120 minutes.
  • VA-086 water-soluble azo polymerization initiator
  • Porate polymer 2 To polymerization can A, 12 parts of butyl acrylate, 2 parts of acrylonitrile, 2 parts of polyoxyethylene alkyl ether, and 60 parts of ion-exchanged water were added and sufficiently stirred. Thereafter, the temperature was set to 70 ° C., 0.25 part of a water-soluble azo polymerization initiator and 10 parts of ion-exchanged water were added as a polymerization initiator, and the mixture was stirred for 60 minutes.
  • Fine polymer 3 To polymerization can A, 1 part of itaconic acid, 1.0 part of sodium dodecylbenzenesulfonate, and 80 parts of ion-exchanged water were added and sufficiently stirred. On the other hand, 50 parts of butadiene, 48 parts of styrene, 1 part of itaconic acid, 1.0 part of sodium dodecylbenzenesulfonate, and 45 parts of ion-exchanged water were added to another polymerization vessel B and stirred to prepare an emulsion.
  • the polymerization can A was set to 70 ° C., and 1/30 of the emulsion prepared in the polymerization can B was continuously added from the polymerization can B to the polymerization can A.
  • Porate polymer 4 To polymerization can A, 12 parts of 2-ethylhexyl acrylate, 5 parts of styrene, 0.05 part of sodium lauryl sulfate, and 70 parts of ion-exchanged water were added and sufficiently stirred. Thereafter, the temperature was adjusted to 70 ° C., 0.2 parts of ammonium persulfate and 10 parts of ion-exchanged water were added as a polymerization initiator, and the mixture was stirred for 120 minutes.
  • Fine polymer 5 To the polymerization vessel A, 0.2 part of itaconic acid, 0.3 part of sodium dodecylbenzenesulfonate, and 80 parts of ion-exchanged water were added and sufficiently stirred. On the other hand, 35 parts of butadiene, 64.6 parts of styrene, 0.2 part of itaconic acid, 0.5 part of sodium dodecylbenzenesulfonate, and 45 parts of ion-exchanged water are added to another polymerization vessel B and stirred to obtain an emulsion. Was made.
  • the polymerization can A was set to 70 ° C., and 1/30 of the emulsion prepared in the polymerization can B was sequentially added from the polymerization can B to the polymerization can A.
  • Example 1 (Production of slurry for electrodes) As carboxymethyl cellulose (CMC), 1.0% CMC aqueous solution was prepared using “Daicel 2200” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • the electrode slurry was applied to one side of a copper foil having a thickness of 18 ⁇ m with a comma coater so that the film thickness after drying was about 200 ⁇ m, dried at 50 ° C. for 20 minutes, and then heat-treated at 110 ° C. for 20 minutes. As a result, an electrode raw material was obtained.
  • the raw electrode was rolled with a roll press to obtain a negative electrode having an electrode active material layer thickness of 80 ⁇ m. When the coating thickness of the obtained electrode was measured, the film thickness was almost uniform.
  • the negative electrode is cut into a disk shape having a diameter of 15 mm, and a separator made of a porous polypropylene film having a diameter of 18 mm and a thickness of 25 ⁇ m on the surface of the negative electrode active material layer, metallic lithium used as the positive electrode, and expanded metal in this order.
  • This was laminated and stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A negative electrode half cell having a thickness of 20 mm and a thickness of about 2 mm was produced.
  • Example 2 Except that the particulate polymer 2 was used instead of the particulate polymer 1, the same operation as in Example 1 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 3 Except that the polymer B was used instead of the polymer A, the same operation as in Example 2 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 4 Except that the polymer C was used instead of the polymer A, the same operation as in Example 2 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 5 Except having used the polymer D instead of the polymer A, operation similar to Example 1 was performed, the electrode slurry and the negative electrode half cell were produced, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 6 Except that the polymer E was used instead of the polymer A, the same operation as in Example 1 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 7 The polymer F is used in place of the polymer A, the particulate polymer 3 is used in place of the particulate polymer 1, and the mixing ratio of the polymer having a cationic group and the particulate polymer is 20 by mass ratio. : Except that it was set to 80, the same operation as Example 1 was performed, the electrode slurry and the negative electrode half cell were produced, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 8 Except that the polymer B was used instead of the polymer F, the same operation as in Example 7 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 9 An electrode slurry and a negative electrode half cell were prepared by performing the same operation as in Example 7 except that the blending ratio of the polymer having a cationic group and the particulate polymer was 6:94 by mass ratio, and this battery was prepared. The performance was evaluated. The results are shown in Table 2.
  • Example 10 An electrode slurry and a negative electrode half cell were prepared by performing the same operation as in Example 7 except that the blending ratio of the polymer having a cationic group and the particulate polymer was 40:60 by mass ratio, and this battery was prepared. The performance was evaluated. The results are shown in Table 2.
  • Example 11 Except that the particulate polymer 4 was used instead of the particulate polymer 3, the same operation as in Example 7 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 12 Except that the particulate polymer 5 was used instead of the particulate polymer 3, the same operation as in Example 7 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 13 100 parts of spinel manganese (LiMn 2 O 4 ) as an electrode active material, 0.1 part (based on solid content) of polymer A as a polymer having a cationic group, acetylene black (HS-100: Electrochemical Industry) 5 parts, 1.0 part (based on solid content) of an aqueous dispersion of particulate polymer 2 having a solid content concentration of 40% as a particulate polymer, and the degree of etherification as a thickener is 0.8.
  • a slurry for positive electrode was prepared by stirring 40 parts of a certain aqueous solution of carboxymethyl cellulose (solid concentration 2%) and an appropriate amount of water with a planetary mixer. Table 3 shows the evaluation results of the viscosity change rate after 5 hours of the positive electrode slurry.
  • the positive electrode slurry was applied on one side onto a 20 ⁇ m thick aluminum foil with a comma coater, dried at 60 ° C. for 20 minutes, and then heat-treated at 120 ° C. for 20 minutes to obtain an electrode stock.
  • This electrode fabric was rolled with a roll press to obtain an electrode for a positive electrode having an electrode active material layer thickness of 70 ⁇ m. When the coating thickness of the obtained electrode was measured, the film thickness was almost uniform.
  • the positive electrode is cut out into a disk shape having a diameter of 15 mm, and a separator made of a disk-shaped porous polypropylene film having a diameter of 18 mm and a thickness of 25 ⁇ m is formed on the electrode active material layer side of the positive electrode, metallic lithium used as the negative electrode, and expanded metal in this order.
  • This was laminated and stored in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • the electrolyte is poured into the container so that no air remains, and the outer container is fixed with a 0.2 mm thick stainless steel cap through a polypropylene packing, and the battery can is sealed, and the diameter is A positive electrode half cell having a thickness of 20 mm and a thickness of about 2 mm was produced.
  • the performance evaluation results of this battery are shown in Table 3.
  • NMP N-methylpyrrolidone
  • Example 15 Except that the polymer G was used instead of the polymer A, the same operation as in Example 1 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 16 Except having used the polymer C instead of the polymer A, operation similar to Example 1 was performed, the electrode slurry and the negative electrode half cell were produced, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 17 instead of particulate polymer 1, polyvinylidene fluoride-hexafluoropropylene copolymer particles (hereinafter referred to as “PVDF-HFP polymer particles”) having a solid content concentration of 40% and a glass transition temperature of ⁇ 5 ° C.
  • PVDF-HFP polymer particles having a solid content concentration of 40% and a glass transition temperature of ⁇ 5 ° C.
  • the same operation as in Example 1 was carried out except that a slurry for an electrode and a negative electrode half cell were produced, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 18 Except that the polymer F was used instead of the polymer A, the same operation as in Example 1 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 19 Except that the polymer H was used instead of the polymer A, the same operation as in Example 1 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 20 Except that the polymer B was used instead of the polymer A, the same operation as in Example 1 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 2 The same operation as in Example 7 except that 2-aminoethanesulfonic acid, which is a cation-containing low molecular weight composition, was used instead of the polymer B instead of a cation-containing polymer (that is, a polymer having a cationic group).
  • the electrode slurry and the negative electrode half cell were prepared, and the performance of the battery was evaluated. The results are shown in Table 2.
  • Example 3 (Comparative Example 3) Except that the polymer having a cationic group was not used, the same operation as in Example 7 was performed to prepare an electrode slurry and a negative electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 2.
  • Example 4 A slurry for an electrode and a negative electrode half cell were prepared in the same manner as in Example 7 except that a polyethyleneimine polymer (trade name, Epomin SP-200) was used instead of the polymer A. Was evaluated. The results are shown in Table 2.
  • a polyethyleneimine polymer trade name, Epomin SP-200
  • Example 5 (Comparative Example 5) Except that the polymer having a cationic group was not used, the same operation as in Example 13 was performed to produce a positive electrode slurry and a positive electrode half cell, and the performance of this battery was evaluated. The results are shown in Table 3.
  • Examples 1 to 20 by using a polymer having a cationic group having a predetermined cation density and a counter anion, slurry stability, low temperature characteristics, lithium precipitation suppression can be achieved.
  • a lithium ion secondary battery excellent in all can be obtained.
  • an acrylate particulate polymer having no anion is used in combination, the cation density is in the range of 5 to 7 meq / g, and the molecular weight is in the range of 5,000 to 300,000.
  • Examples 2 and 13 using a class cation are particularly excellent in slurry stability, low temperature characteristics, and lithium precipitation suppression.
  • Example 7 in which a particulate polymer having a predetermined amount of anion is used in combination, the cation density is in the range of 2 to 5 meq / g, and the molecular weight is in the range of 5,000 to 300,000 is In addition, it has high peel strength and is excellent in all properties.
  • those having a cation density outside the predetermined range Comparative Examples 1 and 4
  • having a low molecular composition containing a cation without having a polymer having a cationic group and a counter anion Comparative Example 2
  • Those having no polymer having a cationic group and a counter anion are particularly inferior in low-temperature characteristics and lithium precipitation suppression.

Abstract

 低温における容量減少とリチウム析出を抑制する二次電池電極を提供する。そのために、二次電池用電極に、カチオン性基を有する重合体、該カチオン性基に対応するアニオン、及び電極活物質を含有してなる電極活物質層を設け、前記重合体中のカチオン密度を0.1~15meq/gにする。

Description

二次電池用電極、二次電池電極用スラリー及び二次電池
 本発明は、リチウムイオン二次電池などの二次電池用電極に用いられる電極用スラリー、二次電池用電極及び二次電池に関する。
 リチウムイオン二次電池は、実用化電池の中で最も高いエネルギー密度を示し、特に小型エレクトロニクス用に多用されている。また、自動車用途への展開も期待され、出力特性の向上及び広い温度範囲での安定作動が要望されている。
 リチウムイオン二次電池の正極は、一般に、集電体上に、正極の電極活物質(以下、「正極活物質」ということがある)として用いられる、LiCoO、LiMn及びLiFePO等のリチウム含有金属酸化物等を、ポリフッ化ビニリデン等のバインダー(結着剤ともいう。)により結合させた電極活物質層が形成されている。一方負極は、集電体上に、負極の電極活物質(以下、「負極活物質」ということがある)として用いられる、炭素質(非晶質)の炭素材料、金属酸化物もしくは金属硫化物等を、スチレン-ブタジエン共重合体等のバインダーにより結合させた電極活物質層が形成されている。
 リチウムイオン二次電池の出力特性の問題を解決すべく、電極中の電極活物質や導電剤(「導電付与剤」又は「導電性付与材」ともいう。)の分散性を向上させる取り組みがなされている。
 例えば、特許文献1には、カチオン性基を有する重合体及び該カチオン性基に対応するアニオンをバインダーに用いることにより、電極活物質の分散性が向上し、その結果導電剤の分散性も向上することにより、電極の表面平滑性さらには出力特性に優れた電池が得られる旨開示されている。
 また、特許文献2には、アニオン性官能基を有する重合体及び、アニオン性官能基とカチオン性官能基とを有する化合物を含有するバインダーを用いることにより、集電体との密着性及び、電極表面近傍におけるリチウムイオンの移動度が、いずれも向上することが記載されている。
 一方、リチウムイオン二次電池の低温特性に関する問題を解決すべく、電極の結着力を向上させる取り組みもなされている。特許文献3には、負極活物質として黒鉛材料を、バインダーとしてポリエチレンやエチレン・酢酸ビニル共重合体をそれぞれ用いて電極を形成後、バインダーの融点以上の温度で加熱処理することにより電極の結着力が向上する旨示されている。
特開2006-278303号公報 特開2009-123523号公報 特開平11-238505号公報(米国特許第6436573号明細書)
 しかしながら、特許文献1の方法では、カチオン密度の低い重合体を用いており、カチオン性基を含有した重合体が、電極活物質の表面官能基との結合により電極活物質の表面を完全に被覆してしまう。その結果、上記バインダーを用いることで出力特性に優れた電池は得られるものの、0℃以下の低温ではリチウム金属の析出による放電容量の大幅な低下が見られ、より広い温度範囲での安定作動が課題となっていた。
 また、特許文献2の方法でも、リチウムイオンの移動度は向上するものの、アニオン性官能基とカチオン性官能基とを有する化合物を電極活物質表面近傍に選択的に存在させることができずに、特に低温状態におけるリチウム金属の析出は抑制できない。
 また、特許文献3の方法では、結着力は向上し放電特性の向上は見られるものの、同様にリチウム金属の析出は抑制できない。加えて、結着力をあげる際に電極の柔軟性が低下し、その結果長期サイクルを繰り返すことによる電極層の剥がれによる容量低下が引き起こされる。
 以上のことがいずれも本発明者らの検討によりわかった。
 従って、本発明の目的は、リチウム金属の析出を抑制し、得られる二次電池が優れた低温特性を示すリチウムイオン二次電池用電極を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意研究を進めた結果、前記電極活物質を含む電極に、カチオン性基を有する重合体、および該カチオン性基に対応するアニオンを含有させ、さらに重合体中のカチオン密度を所定量範囲とすることにより、該重合体が電極活物質表面近傍に選択的に存在し、リチウムの析出が抑制され、さらに得られる二次電池の低温放電容量が向上されることを見出した。
 これは、重合体が電極活物質表面近傍に選択的に存在する結果、リチウム挿入時の脱溶媒和抵抗が大幅に低減し、挿入されなかったリチウムの電極表面への析出を抑制できると考えたことによる。そしてこれらの知見により本発明を完成するに至った。
 上記課題を解決する本発明は、下記事項を要旨として含む。
 〔1〕 カチオン性基を有する重合体、該カチオン性基に対応するアニオン、及び電極活物質を含有してなる、電極活物質層を有し、前記重合体中のカチオン密度が0.1~15meq/gである二次電池用電極。
 〔2〕 前記電極活物質層がさらに粒子状重合体を含有してなる前記の二次電池用電極。
 〔3〕 前記電極活物質層における前記カチオン性基を有する重合体と、前記粒子状重合体との質量比が5:95~40:60である前記の二次電池用電極。
 〔4〕 前記粒子状重合体が、アニオンを含むものである前記の二次電池用電極。
 〔5〕 前記カチオン性基が、脂環式カチオン性基または複素環式カチオン性基である前記の二次電池用電極。
 〔6〕 カチオン性基を有する重合体、該カチオン性基に対応するアニオン、電極活物質及び溶媒を含有してなる二次電池電極用スラリーであって、前記重合体中のカチオン密度が0.1~15meq/gである二次電池電極用スラリー。
 〔7〕 正極、負極、セパレーター及び電解液を含む二次電池であって、前記正極及び負極の少なくともいずれかが前記の二次電池用電極である、二次電池。
 本発明によれば、前記の、特定範囲のカチオン密度の特定種類の重合体を電極活物質層に含有させることで、この重合体が電極活物質表面におけるリチウムの挿入時の抵抗を抑制し、電極表面におけるリチウムの析出が起こらず、かつ、得られる二次電池が0℃以下の低温範囲も含めて高い放電容量を示す二次電池用電極を得ることができる。
 以下に本発明を詳述する。
 本発明の二次電池用電極(以下、単に「電極」ということがある。)は、カチオン性基を有する重合体、該カチオン性基に対応するアニオン(以下、「対アニオン」という場合がある。)、及び電極活物質を含有してなる電極活物質層(「電極合剤層」ともいう。)を有する。ここで、カチオン性基に対応するアニオンとは、カチオン性基に結合し得るアニオンのことを表す。
(カチオン性基)
 本発明において、カチオン性基とは、電子を放出して正の電荷を帯びた原子、または原子団を示す。本発明に用いられる重合体が有するカチオン性基としては、ヘテロ原子を含むものが好ましい。本発明においてヘテロ原子とは、水素、炭素及び金属以外の原子と定義される。これらの中でも、後述の電解液溶媒との適度な相互作用を有しリチウム金属の析出を抑制しやすいことから、窒素、りん、硫黄、酸素及びホウ素の少なくともいずれか1つを含むものが好ましく、窒素、りん及び硫黄の少なくともいずれか1つを含むものが最も好ましい。
 前記のヘテロ原子を含むカチオン性基の具体例としては、式(I)
Figure JPOXMLDOC01-appb-C000001
(式中、Aはヘテロ原子を示す。R~Rはそれぞれ互いに同じであっても異なっていてもよく、1~2個は水素原子であってもよい。1~3個は置換されていてもよいアルキル基を示す。すなわち、前記のR~Rは、それぞれ独立して、水素原子または置換されていてもよいアルキル基を表すが、式(I)で表される脂肪族カチオン性基において、R~Rのうち少なくとも1個は置換されていてもよいアルキル基である。したがって、R~Rのうち1個又は2個は水素原子であってもよいが、R~Rのうち3個全てが水素原子となることは除かれる。)で表される脂肪族カチオン性基、
式(II):
Figure JPOXMLDOC01-appb-C000002
(式中、Aはヘテロ原子を示す。Qは置換されていてもよい脂肪族環基を示す。Rは水素原子または置換されていてもよいアルキル基を示す。)で表される脂環式カチオン性基、
又は式(III):
Figure JPOXMLDOC01-appb-C000003
(式中、Aはヘテロ原子を示す。Qは置換されていてもよいヘテロ芳香族環基を示す。)で表される複素環式カチオン性基等が挙げられる。
 本発明では、前記式中に含まれるR~Rの水素原子の数により第一級カチオン性基から第四級カチオン性基に分類することが出来る。
 例えば、脂肪族カチオン性基ではR~Rのうち水素原子が含まれない場合は第四級カチオン性基、1つが水素原子の場合は第三級カチオン性基、2つが水素原子の場合は第二級カチオン性基と呼ぶ。脂環式カチオン性基では、Rが水素原子の場合は第三級カチオン性基、Rが水素以外の場合は第四級カチオン性基と呼ぶ。複素環式カチオン性基の場合は全て第四級カチオン性基である。
 式(I)及び式(II)における、置換されていてもよいアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、デシル基、ドデシル基、オクタデシル基、シクロペンチル基、シクロヘキシル基等の炭素数1~18の直鎖状、分岐鎖状若しくは環状の無置換アルキル基;若しくは、かかる無置換アルキル基を構成する一つ若しくは二つ以上水素原子が置換基で置換された基が挙げられる。置換されていてもよいアルキル基の置換基としては、例えばフェニル基等のアリール基;例えばジメチルアミノ基等の二置換アミノ基;ニトロ基;シアノ基;カルボキシル基;例えばホルミル基、アセチル基等のアシル基;例えばメトキシ基、エトキシ基、2-メトキシエトキシ基等のアルコキシ基;例えばビニル基等のアルケニル基;水酸基等が挙げられる。置換されたアルキル基の例としては、例えば1-メトキシエチル基、2-(ジメチルアミノ)メチル基、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、2-メトキシエチル基、2-(2-メトキシエトキシ)エチル基、アリル基等が挙げられる。
 式(II)における、置換されていてもよい脂肪族環基としては、例えばピロリジル基、2-メチルピロリジル基、3-メチルピロリジル基、2-エチルピロリジル基、3-エチルピロリジル基、2,2-ジメチルピロリジル基、2,3-ジメチルピロリジル基、ピペリジル基、2-メチルピペリジル基、3-メチルピペリジル基、4-メチルピペリジル基、2,6-ジメチルピペリジル基、2,2,6,6-テトラメチルピペリジル基、モルホリノ基、2-メチルモルホリノ基、3-メチルモルホリノ基等が挙げられる。
 式(III)における、置換されていてもよいヘテロ芳香族環基としては、例えばピリジル基、2-メチルピリジル基、3-メチルピリジル基、4-メチルピリジル基、2,6-ジメチルピリジル基、2-メチル-6-エチルピリジル基、1-メチルイミダゾリル基、1,2-ジメチルイミダゾリル基、1-エチルイミダゾリル基、1-プロピルイミダゾリル基、1-ブチルイミダゾリル基、1-ペンチルイミダゾリル基、1-へキシルイミダゾリル基、チオフェン基、チアゾリル基、1-メチルチアゾリル基、1,2-ジメチルチアゾリル基、1-エチルチアゾリル基、1-プロピルチアゾリル基、1-ブチルチアゾリル基、1-ペンチルチアゾリル基、1-へキシルチアゾリル基等が挙げられる。
 これらのヘテロ原子を有するカチオン性基の中でも、得られる電極が、電極活物質とバインダーとの間に高い結着性を有することと、電極用スラリー(電極形成用スラリーともいう。)の形成時における電極用スラリーの安定性が高いことから、第三級カチオン性基または第四級カチオン性基が好ましく、第四級カチオン性基が特に好ましい。さらにその中でも、製造が容易であること、上述のリチウム金属析出の抑制効果が高いことから、式(II)で示される脂環式カチオン性基や式(III)で示される複素環式カチオン性基が好ましい。
 本発明に用いる重合体中のカチオン密度(すなわち、重合体中のカチオン性基の密度)は、前記重合体当り、0.1meq/g以上、15meq/g以下である。中でも、電極活物質層がアニオンを含む粒子状重合体を含有する場合、前記のカチオン密度は、好ましくは0.5meq/g以上、より好ましくは1meq/g以上、特に好ましくは2meq/g以上であり、好ましくは10meq/g以下、より好ましくは7.5meq/g以下、特に好ましくは5meq/g以下である。また、電極活物質層がアニオンを含む粒子状重合体を含有しない場合、前記のカチオン密度は、好ましくは2meq/g以上、より好ましくは4meq/g以上、更に好ましくは5meq/g以上であり、好ましくは12meq/g以下、より好ましくは9meq/g以下、更に好ましくは8meq/g以下、特に好ましくは7meq/g以下、もっとも好ましくは6meq/g以下である。これらの中でも特に、電極活物質層がアニオンを含む粒子状重合体を含有し、且つ、前記のカチオン密度が2meq/g以上5meq/g以下であることが、最も好ましい。カチオン密度が0.1meq/g未満であると放電時におけるリチウムの析出が見られ低温特性が劣る傾向にある。一方、15meq/gより多いと、後述する二次電池電極用スラリーの安定性が低下し、電極作製時の生産性の低下と電極表面平滑性の低下による電池不良率の増加がみられる。カチオン密度が前記範囲にあるときには、優れた低温特性を示し、且つ電極用スラリーの安定性に優れて生産性の向上及び平滑な電極を得ることができる。なお、ここでmeq/gとは重合体1グラム当たりのカチオン性基のミリ当量を表し、「1eq」は「1モル/イオン価数」で表される値である。
 本発明に用いるカチオン性基を有する重合体中のカチオン密度は、コロイド滴定により測定することができる。例えば、第四級アミンの基については、ポリビニル硫酸カリウムを標準アニオンとするコロイド滴定により測定することができる。
(アニオン)
 本発明に用いられる、前記カチオン性基に対応するアニオン(すなわち、対アニオン)は、陰イオンを含んでなり、陰イオンとしてはハロゲン元素またはカルコゲン元素を含むものが好ましい。
 ここで、「ハロゲン元素」とは、第17族元素であるフッ素、塩素、臭素、ヨウ素、アスタチンからなる原子群を意味する。これらの中でも、解離度の大きい強電解質を形成し得ることから、塩素、臭素及びヨウ素が好ましく、対アニオンとしては塩素イオン、臭素イオン及びヨウ素イオンからなる群から選ばれる少なくとも1つが好ましい。
 「カルコゲン元素」とは、第16族元素である酸素、硫黄、セレン、テルル、ポロニウムからなる原子群を意味する。これらの中でも、解離度の大きい強電解質を形成し得ることからカルコゲン元素として硫黄、酸素を含有する、スルホン酸イオン、硫酸イオン及び硝酸イオンからなる群から選ばれる少なくとも1つが好ましい。
 これらの対アニオンは、カチオン性基を有する重合体のカチオン性基と、通常は結合しているが、本発明の効果を奏する限りにおいては、必ずしもカチオン性基と結合を形成していなくてもよい。また、カチオン性基との結合以外の結合により、カチオン性基を有する重合体に結合していてもよい。対アニオンが、カチオン性基との結合又はカチオン性基との結合以外の結合によりカチオン性基を有する重合体に結合している場合、前記のカチオン性基を有する重合体は、カチオン性基及び対アニオンを有することになる。
 対アニオンの量は、本発明の効果が得られる限り任意である。対アニオンは本発明に用いる重合体が有するカチオン性基に対応しているので、対アニオンは、通常は対応するカチオン性基と同様の当量密度(meq/g)になる。
(カチオン性基を有する重合体)
 本発明に用いるカチオン性基を有する重合体の重量平均分子量は、硝酸ナトリウム水溶液を展開溶媒としたゲル・パーミエーション・クロマトグラフィー(以下、「GPC」ということがある。)で測定した標準ポリエチレンオキサイド換算値で、好ましくは1,000以上、より好ましくは5,000以上、更に好ましくは10,000以上であり、好ましくは500,000以下、より好ましくは300,000以下、更に好ましくは200,000以下、特に好ましくは100,000以下である。カチオン性基を有する重合体の重量平均分子量が前記範囲にあると、カチオン性基を有する重合体が、電極内部において電極活物質表面への高い吸着安定性を示し、また適度な運動性を有することから優れた低温特性を示し、且つ電極用スラリーの安定性に優れて生産性の向上及び平滑な電極を得ることができる。
 本発明に用いるカチオン性基を有する重合体のガラス転移温度(Tg)は、電極の柔軟性及び耐屈曲性を向上させる観点から好ましくは30℃以下、更に好ましくは0℃以下である。なお、前記ガラス転移温度(Tg)の下限値は、好ましくは-100℃以上、更に好ましくは-70℃以上である。
 本発明に用いるカチオン性基を有する重合体は、通常、電極を作製するために、前記重合体と溶媒とを含む溶液もしくは分散液として調製される。その場合の溶液もしくは分散液の粘度は、通常1mPa・S以上、好ましくは50mPa・S以上であり、通常300,000mPa・S以下、好ましくは10,000mPa・S以下である。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した値である。
 本発明に用いるカチオン性基を有する重合体の溶液または分散液に用いる溶媒としては、前記重合体を均一に溶解または分散し得るものであれば特に制限されないが、溶解し得る溶媒が好ましい。溶液の方が、電極作製時に重合体が電極活物質表面に多く存在し得ることから、電極活物質表面においてリチウムの脱溶媒和を促進させる効果が得られやすいからである。また、後述の電極用スラリーの作製時に、電極用スラリーに用いる溶媒と均一混合させることから、中でも電極用スラリーに用いる溶媒と同一の溶媒を用いることが望ましい。具体的には、アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN-メチルピロリドン、またはこれらの混合溶媒が好ましい。これらの中でも、本発明に用いる重合体の溶解性が高く、電極用スラリー用溶媒として多く用いられていることから水が特に好ましい。
 本発明に用いるカチオン性基を有する重合体の製造方法としては、例えば、(第一方法)カチオン性基を有する単量体を、単独重合させる方法、または共重合可能な単量体と共重合させる方法;(第二方法)重合性単量体から得られた重合体に、カチオン性基を有する化合物を付加させる方法;(第三方法)第三級カチオン性基を有する化合物を重合触媒として、重合性単量体をアニオン重合させる方法;(第四方法)第二級カチオン性基を有する単量体を塩基性下で重合させ、得られた重合体を酸で中和させる方法などが挙げられる。
 前記(第一方法)において用いられるカチオン性基を有する単量体としては、前述のカチオン性基を有する不飽和単量体が挙げられる。カチオン性基を有する単量体には、通常は、前記カチオン性基に対応する対アニオンが結合している。
 本発明においては、特定の密度範囲のカチオンと、そのカチオン性基に対応する対アニオンとが存在していることが、本発明の効果を奏する要件となるので、カチオンと対アニオンの種類にかかわらず本発明の効果が発現できる。よってその組み合わせには特に制限がなく、いずれの組み合わせであっても本発明の効果が得られる。
 単量体の例を挙げると、例えば対アニオンが塩素イオンの場合、ビニルアルキルアンモニウムクロライド、(メタ)アクリロイルアルキルアンモニウムクロライド、(ジ)アリルアルキルアンモニウムクロライド、アミノアルキル(メタ)アクリルアミド等の、式(I)で示される含窒素脂肪族カチオンを有する不飽和単量体;ビニルアルキルピロリジニウムクロライド、(メタ)アクリロイルアルキルピロリジニウムクロライド、(ジ)アリルアルキルピロリジニウムクロライド、ビニルアルキルピペリジニウムクロライド、(メタ)アクリロイルアルキルピペリジニウムクロライド、(ジ)アリルアルキルピペリジニウムクロライド、ビニルアルキルモルホリニウムクロライド、(メタ)アクリロイルアルキルモルホリニウムクロライド、(ジ)アリルアルキルモルホリニウムクロライド等の、式(II)で示される含窒素脂環式カチオンを有する不飽和単量体;ビニルピリジニウムクロライド、(メタ)アクリロイルアルキルピリジニウムクロライド、(ジ)アリルアルキルピリジニウムクロライド、ビニルイミダゾリウムクロライド、(メタ)アクリロイルアルキルイミダゾリウムクロライド、(ジ)アリルアルキルイミダゾリウムクロライド等の、式(III)で示される含窒素複素環式カチオンを有する不飽和単量体;ビニルアルキルホスホニウムクロライド、(メタ)アクリロイルアルキルホスホニウムクロライド、(ジ)アリルアルキルホスホニウムクロライド等の、含リン脂肪族カチオンを有する不飽和単量体;ビニルアルキルスルホニウムクロライド、(メタ)アクリロイルアルキルスルホニウムクロライド、(ジ)アリルアルキルスルホニウムクロライド等の、含硫黄脂肪族カチオンを有する不飽和単量体;が挙げられる。
 本発明に用いるカチオン性基を有する重合体は、カチオン性基を有する単量体を単独重合させてもよく、これと共重合可能な重合性単量体を共重合させてもよい。前記共重合可能な重合性単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸等の不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクエイルアミド、アクリルアミド-2-メチルプロパンスルホン酸等のアミド系単量体;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;などが挙げられ、これらの中でも、アニオン性の官能基を有し、静電反発効果より粒子状重合体と凝集しにくくできる点で、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類が好ましい。
 本発明に用いるカチオン性基を有する重合体中の前記共重合可能な単量体単位の含有割合は、好ましくは1質量%以上、より好ましくは10質量%以上であり、好ましくは90質量%以下、より好ましくは50質量%以下である。
 前記(第一方法)における重合方法は特に制限はなく、溶液重合法、懸濁重合法、乳化重合法などいずれの方法も用いることができる。
 重合に用いられる重合開始剤としては、例えば過酸化水素、tert-ブチルヒドロパーオキシドなどの過酸化物;これらの過酸化物と二価鉄(Fe++)、NaSO、アスコルビン酸などの還元剤との組合わせからなるレドックス系開始剤;過酸化ラウロイル、ジソプロピルパーオキシジカーボネート、ジ2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキシドなどの有機過酸化物;α,α’-アゾビスイソブチロニトリルなどのアゾ化合物;過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩;などが挙げられる。
 溶液重合において用いられる溶媒としては、水性媒体が好ましい。水性媒体としては、例えば水を始め、無機酸(塩酸、硫酸、リン酸、ポリリン酸など)水溶液、有機酸水溶液、無機酸塩(塩化ナトリウム、塩化亜鉛、塩化カルシウム、塩化マグネシウムなど)水溶液などが挙げられる
 懸濁重合において用いられる懸濁剤としては、例えばポリビニルアルコール、ポリ酢酸ビニルの部分ケン化物、メチルセルロースなどのセルロース誘導体、ポリビニルピロリドン、無水マレイン酸-酢酸ビニル共重合体、ポリアクリルアミドなどの合成高分子物質、およびデンプン、ゼラチンなどの天然高分子物質などが挙げられる。
 乳化重合において用いられる乳化剤としては、例えばアルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウムなどのアニオン性乳化剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸部分エステルなどの非イオン性乳化剤などが挙げられる。また必要に応じてトリクロロエチレン、チオグリコール、ドデシルメルカプタンなどの分子量調整剤を用いることもできる。
 前記した重合開始剤、単量体、懸濁剤または乳化剤、分子量調整剤などは重合開始時に一括して重合系に添加してもよいし、重合中に分割して添加することもできる。重合は通常35~80℃の温度で撹拌下にて行われる。
 前記(第二方法)においては、まず重合体を形成させ、ついで該重合体にカチオン性基を有する化合物を付加させる。カチオン性基を有する化合物には、通常は、前記カチオン性基に対応する対アニオンが結合している。
 この場合、重合方法としては、前記と同様に、溶液重合法、懸濁重合法、乳化重合法のいずれも用いることができ、後の付加反応の条件や得られる重合体の特性に応じて最適な製造方法を選択すればよい。例えば、付加反応を水系で行う場合には、乳化重合により微細な水性分散粒子として重合体を得るのが有利である。また、付加反応を溶剤系で行う場合には、溶液重合法またはメタノールなどの低級アルコールを重合媒体とする懸濁重合法が好ましいが、通常の懸濁重合法も用いることができる。
 また、形成させた重合体にカチオン性基を有する化合物を付加させる方法としては、例えば、第四級カチオン性基を導入する方法として、酸の存在下または不存在下に第三級アミンを重合体と付加させる方法が挙げられる。第三級アミンとしては、ピリジン、ジメチルラウリルアミン、ジメチルステアリルアミン、トリエチルアミン、ジメチルメトキシエチルアミンなどの飽和第三級アミン;ジメチルアリルアミン、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミドなどの不飽和第三級アミン;などを用いることができる。酸としては酢酸、乳酸などの飽和カルボン酸;(メタ)アクリル酸、クロトン酸などの不飽和カルボン酸を用いることができる。重合体と第三級アミンを付加させる反応は、両者をともに溶解する溶媒中で行ってもよいし、両者を直接溶融混合して行ってもよいが、溶媒中、40~60℃で行うことが好ましい。
 本発明におけるカチオン性基を有する重合体のpHは、6以上が好ましく、7以上が更に好ましく、12以下が好ましく、10以下が更に好ましい。上記範囲であることで、電極用スラリー中で粒子状重合体と配合しても粒子状重合体を凝集させることなく、電極用スラリーの安定性を保持できる。
 本発明に用いるカチオン性基を有する重合体は、重合体の製造工程において、重合体溶液もしくは重合体分散液に含まれる粒子状の金属を除去する粒子状金属除去工程を経て得られたものであることが好ましい。重合体溶液又は重合体分散液に含まれる粒子状金属成分の含有量が10ppm以下であることにより、後述する電極用スラリー中の重合体間の経時での金属イオン架橋を防止し、粘度上昇を防ぐことができる。さらに二次電池の内部短絡や充電時の溶解又は析出による自己放電増大の懸念が少なく、電池のサイクル特性や安全性が向上する。
 前記粒子状金属除去工程における重合体溶液もしくは重合体分散液から粒子状の金属成分を除去する方法は特に限定されず、例えば、濾過フィルターによる濾過により除去する方法、振動ふるいにより除去する方法、遠心分離により除去する方法、磁力により除去する方法等が挙げられる。中でも、除去対象が金属成分であるので、金属異物成分の選択的かつ効率的な除去ができることから磁力により除去する方法が好ましい。磁力により除去する方法としては、金属成分が除去できる方法であれば特に限定はされないが、生産性および除去効率を考慮すると、好ましくは重合体の製造ライン中に磁気フィルターを配置することで行われる。
 本発明において、カチオン性基を有する重合体の電極活物質層中の含有割合は、好ましくは0.01質量%以上、更に好ましくは0.05質量%以上であり、好ましくは5質量%以下、更に好ましくは3質量%以下、特に好ましくは1質量%以下である。なお、対アニオンがカチオン性基を有する重合体に結合している場合には、対アニオンの質量を含めた重合体の含有割合が前記範囲に収まることが好ましい。電極活物質層中のカチオン性基を有する重合体の含有割合が、前記範囲にあることで、優れた低温特性を示し、且つ電極用スラリーの安定性に優れて生産性の向上及び平滑な電極を得ることができる。
(電極活物質)
 本発明の二次電池用電極に用いられる電極活物質は、電極が利用される二次電池に応じて選択すればよい。前記二次電池としては、リチウムイオン二次電池やニッケル水素二次電池が挙げられる。
 本発明の二次電池用電極を、リチウムイオン二次電池正極用に用いる場合、正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物;などが挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性重合体を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。
 リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1μm以上、好ましくは1μm以上であり、通常50μm以下、好ましくは20μm以下である。50%体積累積径がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ電極用スラリーおよび電極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
 本発明の二次電池用電極を、リチウムイオン二次電池負極用に用いる場合、負極活物質としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性重合体などがあげられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩などが用いられる。加えて、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。電極活物質は、機械的改質法により表面に導電剤を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。
 本発明の二次電池用電極を、ニッケル水素二次電池正極用に用いる場合、正極活物質としては、水酸化ニッケル粒子などが挙げられる。水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がアルカリ熱処理されたコバルト化合物で被覆されていてもよい。
 本発明の二次電池用電極を、ニッケル水素二次電池負極用に用いる場合、負極活物質としては、水素吸蔵合金粒子は、電池の充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよく、特に限定はされないが、AB型系、TiNi系及びTiFe系の水素吸蔵合金からなる粒子が好ましい。具体的には、例えば、LaNi、MmNi(Mmはミッシュメタル)、LmNi(LmはLaを含む希土類元素から選ばれる少なくとも一種)及びこれらの合金のNiの一部をAl、Mn、Co、Ti、Cu、Zn、Zr、Cr及びB等からなる群より選択される1種以上の元素で置換した多元素系の水素吸蔵合金粒子を用いることができる。特に、一般式:LNiCoMnAl(原子比w、x、y及びzの合計値は4.80≦w+x+y+z≦5.40である)で表される組成を有する水素吸蔵合金粒子は、充放電サイクルの進行に伴う微粉化が抑制されて充放電サイクル特性が向上するので好適である。
 電極活物質層中の電極活物質の含有割合は、好ましくは90質量%以上、より好ましくは95質量%以上であり、好ましくは99.9質量%以下、より好ましくは99質量%以下である。電極活物質中における電極活物質の含有量を、前記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
(粒子状重合体)
 本発明において、電極活物質層は、カチオン性基を有する重合体、前記カチオン性基に対応する対アニオン、及び電極活物質の他に、更に粒子状重合体(粒子状高分子ともいう。)を含んでもよい。粒子状重合体を含むことにより電極の結着性が向上し、電極の撒回時等の工程上においてかかる機械的な力に対する強度が上がり、また電極中の電極活物質層が脱離しにくくなることから、脱離物による短絡等の危険性が小さくなる。
 通常、粒子状重合体は、結着性を有する重合体粒子が水または有機溶媒に分散した分散液(以下、これらを総称して「バインダー分散液」と記載することがある)として用意される。バインダー分散液が水分散液の場合は、粒子状重合体としては、例えば、ジエン系重合体、アクリル系重合体、フッ素系重合体、シリコン系重合体などの重合体粒子が挙げられる。
 これらの中でもフッ素を含有しない非フッ素系重合体が好ましい。粒子状重合体がフッ素を含有すると、高い電気陰性度からカチオンとの相互作用により、リチウム金属析出抑制効果が小さくなる恐れがある。
 粒子状重合体は、非結晶性重合体であることがより好ましい。粒子状重合体が非結晶性であることにより電極活物質層の柔軟性に優れ、また電池内部での重合体の運動性によりリチウム金属析出抑制効果が高く発現される。粒子状重合体の結晶化度は、好ましくは10%以下、更に好ましくは5%以下である。非フッ素系重合体かつ非結晶性重合体の中でも、電極活物質との結着性および得られる電極の強度や柔軟性に優れるため、ジエン系重合体、又はアクリル系重合体が好ましい。
 またバインダー分散液が非水系(分散媒として有機溶媒を用いたもの)分散液の場合は、粒子状重合体としては、通常、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルイソブチルエーテル、ポリアクリロニトリル、ポリメタアクリロニトリル、ポリメタクリル酸メチル、ポリアクリル酸メチル、ポリメタクリル酸エチル、酢酸アリル、ポリスチレンなどのビニル系重合体;ポリブタジエン、ポリイソプレンなどのジエン系重合体;ポリオキシメチレン、ポリオキシエチレン、ポリ環状チオエーテル、ポリジメチルシロキサンなど主鎖にヘテロ原子を含むエーテル系重合体;ポリラクトンポリ環状無水物、ポリエチレンテレフタレート、ポリカーボネートなどの縮合エステル系重合体;ナイロン6、ナイロン66、ポリ-m-フェニレンイソフタラミド、ポリ-p-フェニレンテレフタラミド、ポリピロメリットイミドなどが挙げられる。
 ジエン系重合体とは、ブタジエン、イソプレンなどの共役ジエンを重合してなる単量体単位を含む重合体であり、そのバインダー分散液は通常は水分散液となる。ジエン系重合体中の共役ジエンを重合してなる単量体単位の割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上であり、通常100%以下である。ジエン系重合体としては、ポリブタジエンやポリイソプレンなどの共役ジエンの単独重合体;共役ジエンと共重合可能な単量体との共重合体などが挙げられる。前記共重合可能な単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物などが挙げられる。
 アクリル系重合体とは、アクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位を含む重合体であり、そのバインダー分散液は通常は水分散液となる。アクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位の割合は、通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上であり、通常100%以下である。アクリル系重合体としては、アクリル酸エステル及び/又はメタクリル酸エステルの単独重合体、これと共重合可能な単量体との共重合体が挙げられる。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクエイルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物などが挙げられる。
 正極用バインダーとして用いる場合は、充電における耐酸化性に優れるため、重合体主鎖に不飽和結合を有しない飽和型重合体であるアクリル系重合体が好ましい。また、負極用バインダーとして用いる場合は、耐還元性に優れ、強い結着力が得られため、ジエン系重合体が好ましい。
 本発明の二次電池用電極に用いられる粒子状重合体は、集電体との密着性の向上という観点において、アニオンを含むものであることが好ましい。なお、粒子状重合体が含むアニオンは、カチオン性基に対応する対アニオンとは別のアニオンであり、粒子状重合体中に含まれる。粒子状重合体がアニオンを含むものであることにより、集電体との密着性が向上し、電極板の密着強度が向上する。アニオンは、アニオン性基として粒子状重合体に含ませることができ、粒子状重合体を構成する単量体としてアニオン性基を含む単量体を用いたり、後述の重合時に用いる乳化剤や開始剤、停止剤等の重合添加剤中にアニオン性基を含有させたりすることで、粒子状重合体中に含ませることができる。
 粒子状重合体全量に対するアニオンの含有量は、アニオン性基が単量体単位中に含まれる場合、乳化剤に含まれる場合、開始剤に含まれる場合等、それぞれによって異なる。それぞれの好ましい含有量を後述する。
 アニオンを含む粒子状重合体を得る方法としては、(1)アニオン性基を含む単量体を重合性単量体として用いる方法;(2)アニオン性基を含む乳化剤を重合性単量体の可溶化に用いる方法;(3)アニオン性基を含む開始剤を重合開始剤に用いる方法;(4)前記の(1)~(3)を組み合わせる方法などが挙げられる。
 アニオン性基を含む単量体としては、カルボキシル基を有する単量体、ホスホン酸基を有する単量体、ホスフィン酸基を有する単量体、スルホン酸基を有する単量体などが挙げられる。これらの中でも、カルボキシル基を有する単量体やスルホン酸基を有する単量体が粒子状重合体の安定性の面から理由から好ましい。
 カルボキシル基を有する単量体としてはアクリル酸、メタクリル酸、イタコン酸、フマル酸などのエチレン性不飽和カルボン酸類等が挙げられる。
 スルホン酸基を有する単量体としては、2-アクリルアミド-2-メチルプロパンスルホン酸、2-[(2-プロペニロキシ)メトキシ]エテンスルホン酸、3-(2-プロペニロキシ)-1-プロペン-1-スルホン酸、ビニルスルホン酸、2-ビニルベンゼンスルホン酸、3-ビニルベンゼンスルホン酸、4-ビニルベンゼンスルホン酸、4 -ビニルベンジルスルホン酸、2-メチル-1-ペンテン-1-スルホン酸、1-オクテン-1-スルホン酸などが挙げられる。
 粒子状重合体全量に対するアニオン性基を含んでなる単量体単位の含有量は、好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、好ましくは10質量%以下、さらに好ましくは5質量%以下である。上記範囲に含まれることにより、粒子状重合体に静電反発効果が発現し、電極用スラリー配合中の安定性が向上する。また電極中において粒子状重合体と集電体との密着性が向上する。
 アニオン性基を含む乳化剤としてはカルボキシル基を持つ界面活性剤、スルホン酸基を持つ界面活性剤、リン酸基を持つ界面活性剤などのアニオン性界面活性剤等が挙げられる。この中でも粒子状重合体の安定性の理由からスルホン酸基を持つ界面活性剤が好ましい。
 スルホン酸基を持つ界面活性剤としては、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩などが挙げられ、具体的にはドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩、ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエ-テルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;などが挙げられる。
 乳化剤は、前記アニオン性界面活性剤を単独で用いてもよいし、これと他の界面活性剤とを併用して用いてもよい。
 他の界面活性剤としては、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤が挙げられる。
 ノニオン界面活性剤としては、公知のものが使用でき、具体的にはポリエチレングリコールのアルキルエステル型、アルキルエーテル型、アルキルフェニルエーテル型などが用いられる。
 カチオン性界面活性剤としては、公知のものが使用でき、第1級アミンの塩、第2級アミンの塩、第3級アミンの塩、第4級アンモニウム塩などが挙げられる。
 両性界面活性剤としては、アニオン部分としてカルボン酸塩、硫酸エステル塩、スルホン酸塩、燐酸エステル塩を、カチオン部分としてアミン塩、第4級アンモニウム塩を持つものが挙げられ、具体的には、ラウリルベタイン、ステアリルベタインなどのベタイン類;ラウリル-β-アラニン、ステアリル-β-アラニン、ラウリルジ(アミノエチル)グリシン、オクチルジ(アミノエチル)グリシンなどのアミノ酸タイプのものなどが用いられる。
 粒子状重合体全量に対する乳化剤の含有量は、好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上であり、好ましくは10質量%以下、さらに好ましくは5質量%以下である。上記範囲に含まれることにより、電極用スラリー中でカチオン性基を有する重合体と配合しても粒子状重合体が凝集することなく、安定性を保持できる。
 重合開始剤としては過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩、過酸化水素、ベンゾイルパーオキサイド、クメンハイドロパーオキサイドなどの有機過酸化物などが挙げられる。また、これらは単独で用いてもよく、酸性亜硫酸ナトリウム、チオ硫酸ナトリウム、アスコルビン酸などのような還元剤と併用したレドックス系重合開始剤として用いてもよい。さらに、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート、4,4’-アゾビス(4-シアノペンタノイック酸)などのアゾ化合物;2,2’-アゾビス(2-アミノジプロパン)ジヒドロクロライド、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)ジヒドロクロライドなどのアミジン化合物;などを使用することもできる。なお、これらは単独または2種類以上を併用して用いることができる。この中でも好ましくは、アニオン性基を含有する過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩が用いられる。
 
 粒子状重合体全量に対する重合開始剤の含有量は、好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下である。上記範囲に含まれることにより、電極用スラリー中でカチオン性基を有する重合体と配合しても粒子状重合体が凝集することなく、安定性を保持できる。
 重合停止剤としてはジエチルヒドロキシルアミン、ヒドロキシアミンスルホン酸、及びその金属アルカリ塩、ヒドロキシアミン硫酸塩、ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジブチルベンゼンチオカルボン酸などのヒドロキシジチオカルボン酸及びそのアルカリ金属塩、ハイドロキノン誘導体、カテコール誘導体などが挙げられる。この中でも好ましくはアニオン性基を含有するヒドロキシアミンスルホン酸及びそのアルカリ金属塩、ヒドロキシジチオカルボン酸及びそのアルカリ金属塩が用いられる。
 粒子状重合体全量に対する重合停止剤の含有量は、好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、好ましくは2質量%以下、さらに好ましくは1質量%以下である。上記範囲に含まれることにより、電極用スラリー中でカチオン性基を有する重合体と配合しても粒子状重合体が凝集することなく、安定性を保持できる。
 粒子状重合体中のアニオンの含有量は、粒子状重合体中のアニオン性基を有する構造体成分の割合より算出され、0.25質量%以上が好ましく、0.5質量%以上がさらに好ましく、1質量%以上が特に好ましく、また、20質量%以下が好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。
 本発明の二次電池用電極に用いる前記粒子状重合体は、乳化重合、懸濁重合などにより製造することができる。上記乳化重合に際しては、公知の方法を採用することができ、水性媒体中で乳化剤、重合開始剤、分子量調節剤などを用いて製造することができる。
 バインダー分散液は、水を分散媒とする水分散液(水系バインダー)であっても、有機溶剤を分散媒とした非水系分散液(非水系バインダー)であってもよいが、本発明のカチオン性基を有する重合体、該カチオン性基に対応する対アニオンとの混和性の観点から、水系バインダーが好ましく用いられる。
 水分散液は、例えば、上記単量体を水中で乳化重合することにより製造できる。また、非水系分散液は、前記水分散液を有機溶媒で置換することにより製造できる。バインダー分散液中の粒子状重合体の個数平均粒径は、50nm以上が好ましく、70nm以上がさらに好ましく、500nm以下が好ましく、400nm以下がさらに好ましい。粒子状重合体の個数平均粒径がこの範囲であると得られる電極の強度および柔軟性が良好となる。
 粒子状重合体のガラス転移温度(Tg)は、使用目的に応じて適宜選択されるが、通常-150℃以上、好ましくは-100℃以上、より好ましくは-70℃以上、さらに好ましくは-50℃以上、特に好ましくは-35℃以上であり、通常+100℃以下、好ましくは+25℃以下、さらに好ましくは+5℃以下である。粒子状重合体のTgがこの範囲にあるときに、電極の柔軟性、結着性及び捲回性、電極活物質層と集電体との密着性などの特性が高度にバランスされ好適である。
 本発明の二次電池用電極における前記粒子状重合体の量は、電極活物質100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上、特に好ましくは0.5質量部以上であり、好ましくは5質量部以下、より好ましくは4質量部以下、特に好ましくは3質量部以下である。電極活物質層における粒子状重合体の量が上記範囲であることにより、電池反応を阻害せずに、電極から電極活物質が脱落するのを防ぐことができる。
 本発明において、電極活物質層におけるカチオン性基を有する重合体と、前記粒子状重合体との質量比は、5:95~40:60であることが好ましく、10:90~30:70であることがより好ましい。カチオン性基を有する重合体と粒子状重合体とを前記質量比で用いることにより、カチオン性基を有する重合体と前記粒子状重合体由来の凝集物が発生せずに本発明の効果を得ることができる。
(その他の成分)
 本発明の二次電池用電極には、上記成分のほかに、さらに導電剤、補強材、分散剤、レベリング剤、酸化防止剤、増粘剤、電解液分解抑制等の機能を有する電解液添加剤等の、他の成分が含まれていてもよい。また、これらの他の成分は、後述の二次電池電極用スラリー中に含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 導電剤としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。導電剤を用いることにより電極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合に放電負荷特性を改善したりすることができる。
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な電極を得ることができ、優れた長期サイクル特性を示すことができる。
 導電剤や補強剤の電極活物質層中の含有量は、電極活物質100質量部に対して、通常0.01質量部以上、好ましくは1質量部以上であり、通常20質量部以下、好ましくは10質量部以下である。前記範囲に含まれることにより、高い容量と高い負荷特性を示すことができる。
 分散剤としては、アニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は用いる電極活物質や導電剤に応じて選択される。電極活物質層中の分散剤の含有割合は、好ましくは電極活物質100質量部に対して0.01~10質量部である。電極活物質層中の分散剤の含有量が上記範囲であることにより電極用スラリーの安定性に優れ、平滑な電極を得ることができ、高い電池容量を示すことができる。
 レベリング剤としては、アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤等が挙げられる。前記界面活性剤を混合することにより、塗工時に発生するはじきを防止したり、電極の平滑性を向上させることができる。電極活物質層中のレベリング剤の含有割合は、電極活物質100質量部に対して、好ましくは0.01~10質量部である。電極活物質層中のレベリング剤の含有量が上記範囲であることにより電極作製時の生産性、平滑性及び電池特性に優れる。
 酸化防止剤としては、フェノール化合物、ハイドロキノン化合物、有機リン化合物、硫黄化合物、フェニレンジアミン化合物、ポリマー型フェノール化合物等が挙げられる。ポリマー型フェノール化合物は、分子内にフェノール構造を有する重合体であり、重量平均分子量が通常200以上、好ましくは600以上、通常1000以下、好ましくは700以下のポリマー型フェノール化合物が好ましく用いられる。電極活物質層中の酸化防止剤の含有割合は電極活物質100質量部に対して、好ましくは0.01質量部以上、更に好ましくは0.05質量部以上であり、好ましくは10質量部以下、より好ましくは5質量部以下である。電極活物質層中の酸化防止剤の含有量が上記範囲であることにより電極用スラリー安定性、電池容量及びサイクル特性に優れる。
 増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル-ブタジエン共重合体水素化物などが挙げられる。本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味し、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。電極活物質層中の増粘剤の含有割合は、電極活物質100質量部に対して、好ましくは0.01~10質量部である。電極活物質層中の増粘剤の含有量が上記範囲であることにより電極用スラリー中の電極活物質等の分散性に優れ、平滑な電極を得ることができ、優れた負荷特性及びサイクル特性を示す。
 電解液添加剤は、後述する電極用スラリー中及び電解液中に使用されるビニレンカーボネートなどを用いることができる。電極活物質中の電解液添加剤の含有割合は、電極活物質100質量部に対して、好ましくは0.01~10質量部である。電極活物質層中の電解液添加剤の含有量が上記範囲であることにより、サイクル特性及び高温特性に優れる。
 その他には、フュームドシリカやフュームドアルミナなどのナノ微粒子:アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤等が挙げられる。
 前記ナノ微粒子を混合することにより電極用スラリーのチキソ性をコントロールすることができ、さらにそれにより得られる電極のレベリング性を向上させることができる。電極活物質層中のナノ微粒子の含有割合は、電極活物質100質量部に対して、好ましくは0.01~10質量部である。電極活物質層中のナノ微粒子の含有量が上記範囲であることにより電極用スラリー安定性、生産性に優れ、高い電池特性を示す。
 前記界面活性剤を混合することにより電極用スラリー中の電極活物質等の分散性を向上することができ、さらにそれにより得られる電極の平滑性を向上させることができる。電極活物質中の界面活性剤の含有割合は、電極活物質100質量部に対して、好ましくは0.01~10質量部である。電極活物質中の界面活性剤の含有量が上記範囲であることにより電極用スラリー安定性、電極平滑性に優れ、高い生産性を示す。
(集電体)
 本発明の二次電池用電極は、カチオン性基を有する重合体、該カチオン性基に対応する対アニオン及び電極活物質を含む電極活物質層が集電体上に形成されていてもよい。
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましく、リチウムイオン二次電池の負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、電極の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極の接着強度や導電性を高めることを目的に、集電体表面に中間層を形成してもよい。
(電極の製造方法)
 本発明の二次電池用電極の製造方法は、前記集電体の少なくとも片面、好ましくは両面に電極活物質層を層状に結着させる方法であればよい。例えば、後述する電極用スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して電極を形成する。電極用スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ジップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。
 次いで、金型プレスやロールプレスなどを用い、加圧処理により電極の空隙率を低くすることが好ましい。空隙率の好ましい範囲は好ましくは5%以上、より好ましくは7%以上であり、好ましくは15%以下、より好ましくは13%以下である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難かったり、電極が剥がれ易く不良を発生し易いといった問題を生じる。さらに、硬化性の重合体を用いる場合は、硬化させることが好ましい。
 本発明の二次電池用電極の厚みは、正極、負極とも、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。電極厚みが上記範囲にあることにより、負荷特性及びエネルギー密度共に高い特性を示す。
(二次電池電極用スラリー)
 本発明の二次電池電極用スラリーは、カチオン性基を有する重合体、該カチオン性基に対応する対アニオン、電極活物質、及び溶媒を含む。カチオン性基を有する重合体、該カチオン性基に対応する対アニオン、電極活物質としては、電極で説明したものと同様のものが挙げられる。
 (溶媒)
 電極用スラリーに用いる溶媒としては、上記固形分(カチオン性基を有する重合体、該カチオン性基に対応する対アニオン、電極活物質、及びその他の成分)を均一に分散し得るものであれば特に制限されない。
 電極用スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジソプロピルケトン、シクロヘキサノン、メチルシクロヘキサン、エチルシクロヘキサンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類等があげられる。
 これらの溶媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、本発明の重合体の溶解性に優れ、電極活物質及び導電剤の分散性にすぐれ、沸点が低く揮発性が高い溶媒が、短時間でかつ低温で除去できるので好ましい。アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN-メチルピロリドン、またはこれらの混合溶媒が好ましく、特に水が好ましい。
 本発明の二次電池電極用スラリーの固形分濃度は、塗布、浸漬が可能な程度でかつ、流動性を有する粘度になる限り特に限定はされないが、一般的には10~80質量%程度である。
 また、二次電池電極用スラリーには、カチオン性基を有する重合体、該カチオン性基に対応する対アニオン、電極活物質、及び溶媒のほかに、さらに前述の電極中に使用される分散剤や電解液分解抑制等の機能を有する電解液添加剤等の他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
(二次電池電極用スラリー製法)
 本発明においては、二次電池電極用スラリーの製法は、特に限定はされず、カチオン性基を有する重合体、該カチオン性基に対応する対アニオン、電極活物質、及び溶媒と必要に応じ添加される他の成分を混合して得られる。
 本発明においては上記成分を用いることにより、混合方法や混合順序にかかわらず、電極活物質と導電剤が高度に分散された電極用スラリーを得ることができる。混合装置は、上記成分を均一に混合できる装置であれば特に限定されず、ビーズミル、ボールミル、ロールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどを使用することができるが、中でも高濃度での分散が可能なことから、ボールミル、ロールミル、顔料分散機、擂潰機、プラネタリーミキサーを使用することが特に好ましい。
 電極用スラリーの粘度は、均一塗工性、電極用スラリー経時安定性の観点から、好ましくは10mPa・s以上、更に好ましくは100mPa・s以上であり、好ましくは100,000mPa・s以下、更に50,000mPa・s以下である。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
(二次電池)
 本発明の二次電池は、正極、負極、セパレーター及び電解液を含み、前記正極及び負極の少なくともいずれかが、カチオン性基を有する重合体、該カチオン性基に対応する対アニオン、及び電極活物質を含有してなる電極活物質層を含む電極からなる。
 本発明の二次電池としては、リチウムイオン二次電池、ニッケル水素二次電池等挙げられるが、安全性向上が最も求められており低温特性向上の効果が最も高いこと、加えて作動温度領域の拡大が課題として挙げられていることからリチウムイオン二次電池が好ましい。以下、リチウムイオン二次電池に使用する場合について説明する。
(リチウムイオン二次電池用セパレーター)
 セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;など公知のものを用いることができる。
 リチウムイオン二次電池用セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;など公知のものを用いることができる。例えばポリオレフィン系重合体(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くし電池内の電極活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
 有機セパレーターの厚さは、通常0.5μm以上、好ましくは1μm以上であり、通常40μm以下、好ましくは30μm以下、より好ましくは10μm以下である。この範囲であると電池内でのセパレーターによる抵抗が小さくなり、また電池作製時の作業性に優れる。
(リチウムイオン二次電池用電解液)
 リチウムイオン二次電池用の電解液としては、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、リチウム塩が用いられる。リチウム塩としては、特に制限はないが、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは、二種以上を併用してもよい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 リチウムイオン二次電池用の電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 また前記電解液には添加剤を含有させて用いることも可能である。添加剤としては前述の二次電池電極用スラリー中に使用されるビニレンカーボネート(VC)などのカーボネート系の化合物が挙げられる。
 リチウムイオン二次電池用の電解液中における支持電解質の濃度は、通常1質量%以上、好ましくは5質量%以上であり、通常30質量%以下、好ましくは20質量%以下である。また、支持電解質の種類に応じて、通常0.5~2.5モル/Lの濃度で用いられる。支持電解質の濃度が低すぎても高すぎてもイオン導電度は低下する傾向にある。
 上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質や前記ポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質を挙げることができる。
 リチウムイオン二次電池の具体的な製造方法としては、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
(補遺)
 本発明者らは、上記課題を解決すべく鋭意研究を進めた結果、前記電極活物質を含む電極に、カチオン性基を有する重合体及び粒子状重合体を含有させることにより、リチウムの析出が抑制され、さらに得られる二次電池の低温放電容量が向上されることを見出した。
 カチオン性基を有する重合体が電極活物質の表面に存在すると、リチウムイオンの移動度が向上するが、カチオン性基を有する重合体が電極活物質の表面を完全に被覆してしまうと抵抗体となってしまう。そこで、粒子状重合体とカチオン性基を有する重合体とを併用することにより、粒子状重合体とカチオン性基を有する重合体が部分的に複合体を形成し、この複合体の存在より、電極活物質表面が完全に被覆されるのが抑制され、リチウムイオンの電極活物質表面への進入経路が選択的に確保されつつ、カチオン性基を有する重合体によるチウムイオンの移動度の向上効果を保持することが可能となる。よってリチウム金属の電極表面への析出が抑制される。
 これらの知見により、以下の別の発明が創案される。
 〔I〕 カチオン性基を有する重合体、粒子状重合体及び電極活物質を含有してなる電極活物質層を有する二次電池用電極。
 〔II〕 前記電極活物質層における前記カチオン性基を有する重合体と、前記粒子状重合体との質量比が5:95~40:60である前記の二次電池用電極。
 〔III〕 前記粒子状重合体が、アニオンを含むものである前記の二次電池用電極。
 〔IV〕 前記粒子状重合体のガラス転移温度が、25℃以下である前記の二次電池用電極。
 〔V〕 前記カチオン性基が、ヘテロ原子を含む前記の二次電池用電極。
 〔VI〕 前記ヘテロ原子として、窒素、りん、硫黄、酸素及びホウ素の少なくともいずれか1つを含む前記の二次電池用電極。
 〔VII〕 前記カチオン性基を有する重合体の重量平均分子量が、1,000~500,000である前記の二次電池用電極。
 〔VIII〕 カチオン性基を有する重合体、粒子状重合体、電極活物質及び溶媒を含有してなる二次電池電極用スラリー。
 〔IX〕 集電体上に、前記の二次電池電極用スラリーを塗布、乾燥する工程を含む二次電池用電極の製造方法。
 〔X〕 正極、負極、セパレーター及び電解液を含む二次電池であって、前記正極及び負極の少なくともいずれかが前記の電極である、二次電池。
 前記の別の発明に係る二次電池用電極は、電極活物質層が粒子状重合体を必ず含み、カチオン性基に対応する対アニオンを必ずしも含まなくてもよく、カチオン性基を有する重合体中のカチオン密度が0.1~15meq/gに限られないこと以外は、本発明の二次電池用電極と同様である。
 また、別の発明に係る二次電池電極用スラリーは、粒子状重合体を必ず含み、カチオン性基に対応する対アニオンを必ずしも含まなくてもよく、カチオン性基を有する重合体中のカチオン密度が0.1~15meq/gに限られないこと以外は、本発明の二次電池電極用スラリーと同様である。
 また、別の発明に係る二次電池用電極の製造方法は、本発明の二次電池電極用スラリーの代わりに別の発明に係る二次電池電極用スラリーを用いること以外は、本発明の二次電池用電極の製造方法と同様である。
 さらに、別の発明に係る二次電池は、本発明の二次電池用電極の代わりに別の発明に係る二次電池用電極を用いること以外は、本発明の二次電池と同様である。
 前記の別の本発明によれば、カチオン性基を有する重合体及び粒子状重合体を電極活物質層に含有させることで、これらの重合体が電極活物質表面におけるリチウムの挿入時の抵抗を抑制し、電極表面におけるリチウムの析出が起こらず、かつ、得られる二次電池が0℃以下の低温範囲も含めて高い充電容量を示す二次電池用電極を得ることができる。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例において量を表す部、%及びppmは、特記しない限り質量基準である。また、例えば「アクリルアミド(40%)」との記載における「(40%)」等の、試薬名の直後にカッコ書きで示したパーセント表示は、水溶液濃度を表す。
 実施例および比較例において、各種物性は以下のように評価する。
(カチオン密度 :CV値)
 ビーカーに蒸留水90ミリリットルをとり、濃度を500ppmに調整したカチオン性基を有する重合体の水溶液を10ミリリットル加え、1N(1モル/リットル)HCl溶液でpH3.0以下にする。約1分間撹拌したのち、トルイジンブルー指示薬を2~3滴加え、N/400(0.0025モル/リットル)PVSK(ポリビニル硫酸カリウム)溶液で滴定し、CV値を以下の式により求めた。本試験法をコロイド滴定法と呼ぶ。
 CV(meq/g)=N/400PVSK溶液滴定量×N/400PVSK溶液の力価×1/2
 なお、四級化物の場合は、ブランク滴定量にN/400PVSK溶液の滴定量をプラスして計算する。
 (スラリー粘性変化率)
 電極用スラリー作製1時間後のスラリー粘度(η1h)と5時間後のスラリー粘度(η5h)とから、下記式によりスラリー粘性変化率を求め、以下の基準で判定した。
 スラリー粘度変化率(%)=100×(η5h-η1h)/η1h
 この値が小さいほどスラリーの安定性が高いことを示す。
A:5%未満
B:5%以上10%未満
C:10%以上15%未満
D:15%以上20%未満
E:20%以上25%未満
F:25%以上
 なお、スラリーの粘度は、JIS Z8803:1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:4)により測定した。
(ピール強度)
 電極を、それぞれ、幅1cm×長さ10cmの矩形に切って試験片とし、電極活物質層面を上にして固定する。試験片の電極活物質層表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。測定を10回行い、その平均値を求めてこれをピール強度とし、下記基準にて判定を行った。この値が大きいほど、極板の密着強度が大きいことを示す。
A:6N/m以上
B:5N/m以上~6N/m未満
C:4N/m以上~5N/m未満
D:3N/m以上~4N/m未満
E:2N/m以上~3N/m未満
F:2N/m未満
(充放電特性)
(1)低温特性(0℃)
 得られた負極ハーフセルを用いて、それぞれ25℃で充放電レートを0.1Cとし、定電流定電圧充電法にて、0.2Vになるまで定電流で充電し、定電圧で充電する。充電後に1.5Vまで放電する充放電を各2回繰り返し、その後0℃に設定した恒温槽内で0.1Cで定電流定電圧充電を行った。この定電流定電圧充電における定電流時に得られた電池容量をリチウム受け入れ性の指標とし、下記の基準で判定した。この値が大きいほど、低温特性が優れ、リチウム受入性のよい電池であることを示す。
A:220mAh/g以上
B:200mAh/g以上220mAh/g未満
C:180mAh/g以上200mAh/g未満
D:160mAh/g以上180mAh/g未満
E:140mAh/g以上160mAh/g未満
F:140mAh/g未満
(2)低温特性(-30℃)
 得られた負極ハーフセルを用いて、それぞれ25℃で充放電レートを0.1Cとし、定電流定電圧充電法にて、0.2Vになるまで定電流で充電し、定電圧で充電する。充電後に1.5Vまで放電する充放電を各2回繰り返し、その後-30℃に設定した恒温槽内で0.1Cで定電流定電圧充電を行った。この定電流定電圧充電における定電流時に得られた電池容量をリチウム受け入れ性の指標とし、下記の基準で判定した。この値が大きいほど、低温特性が優れ、リチウム受入性のよい電池であることを示す。
A:60mAh/g以上
B:50mAh/g以上60mAh/g未満
C:40mAh/g以上50mAh/g未満
D:20mAh/g以上40mAh/g未満
E:10mAh/g以上20mAh/g未満
F:10mAh/g未満
(3)Li金属析出量
 得られた負極ハーフセルを用いて上記方法と同様に、0.1Cで充電と放電を繰り返した後、0℃に設定した恒温層にて0.1Cで充電し、充電後のハーフセルを解体し、負極電極表面の形態観察を行った。それぞれ10セルずつ試験を行い、リチウムの析出が目視で観察できたセルの数を求める。リチウムの析出が見られるセルが少ないほど、リチウム金属の析出が抑制されていることを示す。
A:0セル
B:1~2セル
C:3~5セル
D:6~8セル
E:9セル以上
(4)正極低温特性(0℃)
 得られた正極ハーフセルを用いて、それぞれ25℃で充放電レートを0.2Cとし、定電流法にて、4.3Vになるまで充電する。充電後に3.0Vまで放電する充放電を各2回繰り返し、その後0℃に設定した恒温槽内で0.1Cで定電流充電を行った。この0℃定電流充電にて得られた充電容量と、25℃低電流充電で得られた充電容量の比(%)で表される正極低温特性を求め、下記の基準で判定した。この値が大きいほど、低温特性に優れることを示す。
A:70%以上
B:50%以上70%未満
C:30%以上50%未満
D:30%未満
<重合体の製造>
(重合体A)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にジアリルジメチルアンモニウムクロリド(60%)400部、アクリルアミド(40%)40部、およびイオン交換水250部を入れ、窒素ガスを流入させながら、系内温度を70℃に昇温した。攪拌下で滴下ロートを用いて、重合開始剤として過硫酸アンモニウム(25%)30部を4時間にわたり滴下した。滴下終了後、更に1時間反応を続け、粘稠な淡黄色液状物を得た。
 この粘稠液を、500部のアセトンを入れた別容器に注ぐと、白色の沈澱を生じた。沈澱を濾別し、さらに2回、100部のアセトンでよく洗浄した。その後、真空乾燥して、重合体Aとして白色固体を得た。
 重合体Aの収率は80%であった。
 コロイド滴定法で求めた重合体Aのカチオン密度は、5.9meq/gであった。
 また、GPCより求めた重合体Aの重量平均分子量(展開溶媒:硝酸ナトリウム水溶液、標準物質:ポリエチレンオキサイド)は、約20万であった。
 なお、後述の重量平均分子量も、全て展開溶媒は硝酸ナトリウム水溶液、標準物質はポリエチレンオキサイドにて測定を行った。
(重合体B)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にN-メチルジアリルアミン塩酸塩(60%)500部およびイオン交換水50部を入れ、窒素ガスを流入させながら、系内温度を80℃に昇温した。攪拌下で滴下ロートを用いて、重合開始剤として過硫酸アンモニウム(25%)30部を4時間にわたり滴下した。滴下終了後、更に1時間反応を続け、粘稠な淡黄色液状物を得た。
 この粘稠液を、500部のアセトンを入れた別容器に注ぐと、白色の沈澱を生じた。沈澱を濾別し、さらに2回、100部のアセトンでよく洗浄した。その後、真空乾燥して、重合体Bとして白色固体を得た。
 重合体Bの収率は78%であった。
 コロイド滴定法で求めた重合体Bのカチオン密度は、6.8meq/gであった。
 また、GPCより求めた重合体Bの重量平均分子量は、約2万であった。
(重合体C)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にジアリルジメチルアンモニウムエチル硫酸塩(60%)400部およびイオン交換水50部を入れ、窒素ガスを流入させながら、系内温度を80℃に昇温した。攪拌下で滴下ロートを用いて、重合開始剤として過硫酸アンモニウム(25%)30部を4時間にわたり滴下した。滴下終了後、更に1時間反応を続け、粘稠な淡黄色液状物を得た。
 この粘稠液を、500部のアセトンを入れた別容器に注ぐと、白色の沈澱を生じた。沈澱を濾別し、さらに2回、100部のアセトンでよく洗浄した。その後、真空乾燥して、重合体Cとして白色固体を得た。
 重合体Cの収率は75%であった。
 コロイド滴定法で求めた重合体Cのカチオン密度は、4.2meq/gであった。
 また、GPCより求めた重合体Cの重量平均分子量は、約3.7万であった。
(重合体D)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にN,N-ジメチルアミノプロピルアクリルアミド塩化メチル4級塩の水溶液((株)興人製 DMAPAA-Q 75%水溶液)150部を入れ、更にイオン交換水を加えてモノマー濃度が30%になるように調製した。さらに、ポリオキシエチレンアルキルエーテル(花王(株)製 エマルゲン 1150S-60)2部を添加し、攪拌混合してエマルジョンを作製した。
 次に、窒素ガスを流入させながら、系内温度を60℃に昇温し、重合開始剤として水溶性アゾ重合開始剤(和光純薬工業(株)製 VA-050)0.2部を添加して反応を開始した。60℃で4時間反応を継続し、その後80℃に昇温し4時間反応を継続した後、冷却して反応を終了した。これにより、重合体Dを得た。なお、固形分濃度から求めた重合転化率は、96%であった。
 コロイド滴定法で求めた重合体Dのカチオン密度は、4.8meq/gであった。
 また、GPCより求めた重合体Dの重量平均分子量は、約5万であった。
(重合体E)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にN,N-ジメチルアミノエチルアクリレート塩化メチル4級塩の水溶液((株)興人製 DMAEA-Q 79%水溶液)150部を入れ、更にイオン交換水を加えてモノマー濃度が30%になるように調製した。さらに、ポリオキシエチレンアルキルエーテル(花王(株)製 エマルゲン 1150S-60)2部を添加し、攪拌混合してエマルジョンを作製した。
 次に、窒素ガスを流入させながら、系内温度を60℃に昇温し、重合開始剤として水溶性アゾ重合開始剤(和光純薬工業(株)製 VA-050)0.2部を添加して反応を開始した。60℃で4時間反応を継続し、その後80℃に昇温し4時間反応を継続した後、冷却して反応を終了した。これにより、重合体Eを得た。なお、固形分濃度から求めた重合転化率は、95%であった。
 コロイド滴定法で求めた重合体Eのカチオン密度は、5.2meq/gであった。
 また、GPCより求めた重合体Eの重量平均分子量は、約8万であった。
(重合体F)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にジアリルメチルエチルアンモニウムエチル硫酸塩(60%)400部、およびマレイン酸(40%)200部を入れ、窒素ガスを流入させながら系内温度を65℃に昇温した。攪拌下で滴下ロートを用いて、重合開始剤として過硫酸アンモニウム(25%)30部を6時間にわたり滴下した。滴下終了後、更に2時間反応を続け、粘稠な淡黄色液状物を得た。
 この粘稠液を、500部のアセトンを入れた別容器に注ぐと、白色の沈澱を生じた。沈澱を濾別し、さらに2回、100部のアセトンでよく洗浄した。その後、真空乾燥して、重合体Fとして白色固体を得た。
 重合体Fの収率は80%であった。
 コロイド滴定法で求めた重合体Fのカチオン密度は、2.6meq/gであった。
 また、GPCより求めた重合体Fの重量平均分子量は、約1万であった。
(重合体G)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にジアリルジメチルアンモニウムクロリド(60%)400部、アクリルアミド(40%)40部、およびイオン交換水250部を入れ、窒素ガスを流入させながら、系内温度を80℃に昇温した。攪拌下で滴下ロートを用いて、重合開始剤として過硫酸アンモニウム(25%)30部を3時間にわたり滴下した。滴下終了後、更に1時間反応を続け、粘稠な淡黄色液状物を得た。
 この粘稠液を、500部のアセトンを入れた別容器に注ぐと、白色の沈澱を生じた。沈澱を濾別し、さらに2回、100部のアセトンでよく洗浄した。その後、真空乾燥して、重合体Gとして白色固体を得た。
 重合体Gの収率は85%であった。
 コロイド滴定法で求めた重合体Gのカチオン密度は、5.9meq/gであった。
 また、GPCより求めた重合体Gの重量平均分子量は、約1万であった。
(重合体H)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にジアリルジメチルアンモニウムクロリド(60%)450部、およびイオン交換水250部を入れ、窒素ガスを流入させながら、系内温度を80℃に昇温した。攪拌下で滴下ロートを用いて、重合開始剤として過硫酸アンモニウム(25%)30部を4時間にわたり滴下した。滴下終了後、更に1時間反応を続け、粘稠な淡黄色液状物を得た。
 この粘稠液を、500部のアセトンを入れた別容器に注ぐと、白色の沈澱を生じた。沈澱を濾別し、さらに2回、100部のアセトンでよく洗浄した。その後、真空乾燥して、重合体Hとして白色固体を得た。
 重合体Hの収率は83%であった。
 コロイド滴定法で求めた重合体Hのカチオン密度は、6.2meq/gであった。
 また、GPCより求めた重合体Hの重量平均分子量は、約4万であった。
(重合体I)
 還流冷却器、温度計、滴下ロート、攪拌装置およびガス導入管を備えた反応器にイオン交換水230部、アクリル酸2-エチルヘキシル77部、メタクリル酸グリシジル2部、アクリロニトリル20部、メタアクリロイルオキシエチルトリメチルアンモニウムクロリド1部、ポリオキシエチレンラウリルエーテル5部およびアゾ重合開始剤(和光純薬工業(株)製 V-601)1部を入れ、十分に撹拌した後、70℃に加温して重合を開始した。更に3時間反応を継続し、その後80℃に昇温して3時間反応を継続した後、冷却して反応を終了した。これにより、重合体Iを得た。なお、固形分濃度から求めた重合転化率は、96%であった。その後イオン交換水を適量加え、固形分濃度を25%に調整した。コロイド滴定法で求めた重合体Iのカチオン密度は、0.05meq/gであった。
 なお、配合実施の際には、重合体A~C、F、及びG、Hは、イオン交換水で、20%濃度の水溶液を調製して使用し、重合体D、E及びIはそのまま使用した。
<粒子状重合体の製造>
(粒子状重合体1)
 重合缶Aにスチレン5部、ブタジエン10部、ポリオキシエチレンアルキルエーテル(花王株式会社製 エマルゲン 1150S-60)3部、およびイオン交換水70部を加え、十分攪拌した。その後、70℃とし、重合開始剤として水溶性アゾ重合開始剤(和光純薬工業製 VA-086)0.3部、およびイオン交換水10部を加え120分攪拌した。
 他方、別の重合缶Bに、スチレン47部、ブタジエン38部、ポリオキシエチレンアルキルエーテル10部、およびイオン交換水30部を加えて攪拌して、エマルジョンを作製した。
 その後、作製したエマルジョンを約300分かけて重合缶Bから重合缶Aに連続添加した後、約180分攪拌してモノマー消費量が95%になったところで冷却して反応を終了した。これにより、固形分濃度が40%、個数平均粒子径が150nm、ガラス転移温度が-15℃であるスチレンーブタジエン粒子状重合体1の水分散液を得た。
(粒子状重合体2)
 重合缶Aにブチルアクリレート12部、アクリロニトリル2部、ポリオキシエチレンアルキルエーテル2部、およびイオン交換水60部を加え、十分攪拌した。その後、70℃とし、重合開始剤として水溶性アゾ重合開始剤0.25部、およびイオン交換水10部を加え60分攪拌した。
 他方、別の重合缶Bに、ブチルアクリレート70部、アクリロニトリル16部、ポリオキシエチレンアルキルエーテル3部、およびイオン交換水46部を加えて攪拌して、エマルジョンを作製した。
 その後、作製したエマルジョンを約180分かけて重合缶Bから重合缶Aに連続添加した後、約120分攪拌してモノマー消費量が95%になったところで冷却して反応を終了した。これにより、固形分濃度が40%、個数平均粒子径が200nm、ガラス転移温度が-35℃であるブチルアクリレート-アクリロニトリル粒子状重合体2の水分散液を得た。
(粒子状重合体3)
 重合缶Aにイタコン酸1部、ドデシルベンゼンスルホン酸ナトリウム1.0部、およびイオン交換水80部を加えて十分攪拌した。
 他方、別の重合缶Bに、ブタジエン50部、スチレン48部、イタコン酸1部、ドデシルベンゼンスルホン酸ナトリウム1.0部、およびイオン交換水45部を加えて攪拌して、エマルジョンを作製した。
 その後、重合缶Aを70℃とし、重合缶Bで作製したエマルジョンのうち1/30を、重合缶Bから重合缶Aに連続添加した。その5分後に、重合缶Aに重合開始剤として過硫酸アンモニウム0.5部、およびイオン交換水10部を添加し、重合缶Bの残りのエマルジョンを300分かけて重合缶Aに連続添加した。その後、約240分攪拌してモノマー消費量が95%になったところで冷却して、反応を終了した。これにより、イタコン酸由来の構造単位を2%(アニオン(アニオン性基)を含んでなる単量体由来の構造単位の含有量2%)含み、個数平均粒子径が100nm、ガラス転移温度が-17℃であるスチレン-ブタジエン粒子状重合体3の水分散液を得た。
(粒子状重合体4)
 重合缶Aに2-エチルヘキシルアクリレート12部、スチレン5部、ラウリル硫酸ナトリウム0.05部、およびイオン交換水70部を加え、十分攪拌した。その後、70℃とし、重合開始剤として過硫酸アンモニウム0.2部、およびイオン交換水10部を加え120分攪拌した。
 他方、別の重合缶Bに、2-エチルヘキシルアクリレート53部、スチレン28部、メタクリル酸2部、ラウリル硫酸ナトリウム0.2部、およびイオン交換水30部を加えて攪拌して、エマルジョンを作製した。
 その後、作製したエマルジョンを約420分かけて重合缶Bから重合缶Aに連続添加した後、約300分攪拌してモノマー消費量が95%になったところで冷却して反応を終了した。これにより、固形分濃度が40%、個数平均粒子径が150nm、ガラス転移温度が-26℃である2-エチルヘキシルアクリレート-スチレン粒子状重合体4の水分散液を得た。
(粒子状重合体5)
 重合缶Aにイタコン酸0.2部、ドデシルベンゼンスルホン酸ナトリウム0.3部、およびイオン交換水80部を加えて十分攪拌した。
 他方、別の重合缶Bに、ブタジエン35部、スチレン64.6部、イタコン酸0.2部、ドデシルベンゼンスルホン酸ナトリウム0.5部、およびイオン交換水45部を加えて攪拌して、エマルジョンを作製した。
 その後、重合缶Aを70℃とし、重合缶Bで作製したエマルジョンのうち1/30を、重合缶Bから重合缶Aに逐次添加した。その5分後に、重合缶Aに重合開始剤として過硫酸アンモニウム0.5部、およびイオン交換水10部を添加し、重合缶Bの残りのエマルジョンを300分かけて重合缶Aに連続添加した。その後、約240分攪拌してモノマー消費量が95%になったところで冷却して反応を終了した。これにより、イタコン酸由来の構造単位を0.4%(アニオン(アニオン性基)を含んでなる単量体由来の構造単位の含有量2%)含み、個数平均粒子径が130nm、ガラス転移温度が10℃であるスチレン-ブタジエン粒子状重合体5の水分散液を得た。得られた粒子状重合体5の水分散液にイオン交換水を適量加え、固形分濃度を40%に調整した。
(実施例1)
 (電極用スラリーの製造)
 カルボキシメチルセルロース(CMC)として、第一工業製薬株式会社製「ダイセル2200」を用い、1.0%のCMC水溶液を調製した。
 ディスパー付きのプラネタリーミキサーに電極活物質として平均粒子径24.5μmの人造黒鉛を100部、カチオン性基を有する重合体として重合体Aを0.1部(固形分基準)、上記1%のCMC水溶液を0.9部をそれぞれ加え、イオン交換水で固形分濃度53.5%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度44%に調整した後、さらに25℃で15分混合した。
 次に、粒子状重合体として固形分濃度が40%の粒子状重合体1の水分散液を1.0部(固形分基準)を入れ、更にイオン交換水を加えて、最終固形分濃度55%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い電極用スラリー(電極用スラリー組成物)を得た。この時のカチオン性基を有する重合体と粒子状重合体の比は、固形分基準で9:91(質量比)となる。
 電極用スラリーの5時間後の粘性変化率の評価結果を表2に示す。
(負極ハーフセルの製造)
 上記電極用スラリーをコンマコーターで、厚さ18μmの銅箔上に、乾燥後の膜厚が200μm程度になるように片面に塗布し、50℃で20分乾燥後、110℃で20分間加熱処理して電極原反を得た。この電極原反をロールプレスで圧延して、電極活物質層の厚みが80μmの負極用電極を得た。得られた電極の塗布厚を測定したところ、膜厚はほぼ均一であった。
 前記負極用電極を直径15mmの円盤状に切り抜き、この負極の電極活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレーター、正極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmの負極ハーフセルを作製した。
 なお、電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
 この電池の性能の評価結果を表2に示す。
(実施例2)
 粒子状重合体1のかわりに粒子状重合体2を使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例3)
 重合体Aのかわりに重合体Bを使用した事以外は実施例2と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例4)
 重合体Aのかわりに重合体Cを使用した事以外は実施例2と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例5)
 重合体Aのかわりに重合体Dを使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例6)
 重合体Aのかわりに重合体Eを使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例7)
 重合体Aのかわりに重合体Fを使用し、粒子状重合体1のかわりに粒子状重合体3を使用し、カチオン性基を有する重合体と粒子状重合体の配合割合を質量比で20:80にした事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例8)
 重合体Fのかわりに重合体Bを使用した事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例9)
 カチオン性基を有する重合体と粒子状重合体の配合割合を質量比で6:94にした事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例10)
 カチオン性基を有する重合体と粒子状重合体の配合割合を質量比で40:60にした事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例11)
 粒子状重合体3のかわりに粒子状重合体4を使用した事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例12)
 粒子状重合体3のかわりに粒子状重合体5を使用した事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例13)
 電極活物質としてスピネルマンガン(LiMn)100部と、カチオン性基を有する重合体として重合体Aを0.1部(固形分基準)と、アセチレンブラック(HS-100:電気化学工業)5部と、粒子状重合体として固形分濃度が40%の粒子状重合体2の水分散液を1.0部(固形分基準)と、増粘剤としてのエーテル化度が0.8であるカルボキシメチルセルロース水溶液40部(固形分濃度2%)と、適量の水とをプラネタリーミキサーにて攪拌し、正極用スラリーを調製した。正極用スラリーの5時間後の粘性変化率の評価結果を表3に示す。
(電池の製造)
 上記正極用スラリーをコンマコーターで、厚さ20μmのアルミ箔上に片面に塗布し、60℃で20分乾燥後、120℃で20分間加熱処理して電極原反を得た。この電極原反をロールプレスで圧延して電極活物質層の厚みが70μmの正極用電極を得た。得られた電極の塗布厚を測定したところ、膜厚はほぼ均一であった。
 前記正極用電極を直径15mmの円盤状に切り抜き、この正極の電極活物質層面側に直径18mm、厚さ25μmの円盤状のポリプロピレン製多孔膜からなるセパレーター、負極として用いる金属リチウム、エキスパンドメタルを順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmの正極ハーフセルを作製した。
 なお、電解液としてはエチレンカーボネート(EC)とジエチルカーボネート(DEC)とをEC:DEC=1:2(20℃での容積比)で混合してなる混合溶媒にLiPFを1モル/リットルの濃度で溶解させた溶液を用いた。
 この電池の性能の評価結果を表3に示す。
(実施例14)
 固形分濃度が40%の粒子状重合体2の水分散液に対して、分散液全体に対して3倍の質量のN-メチルピロリドン(NMP)を加え、エバポレーターで水分を蒸発させ、NMPで固形分濃度10%に調整し、粒子状重合体2のNMP溶解物を得た。カチオン性基を有する重合体Aに対しても同様に、溶液全体に対して3倍の質量のNMPを加え、エバポレーターで水分を蒸発させ、NMPで固形分濃度10%に調整し、重合体AのNMP溶解物を得た。
 ディスパー付きのプラネタリーミキサーに、電極活物質として平均粒子径24.5μmの人造黒鉛を100部、カチオン性基を有する重合体として重合体Aを0.1部(固形分基準)、および粒子状重合体2のNMP溶解物を1.0部(固形分基準)をそれぞれ加え、NMPで固形分濃度50%に調整した後、25℃で60分混合し、流動性の良い電極用スラリー(電極用スラリー組成物)を得た。この時のカチオン性基を有する重合体と粒子状重合体の配合比率は9:91(質量比)となる。
 電極用スラリーの5時間後の粘性変化率の評価結果を表2に示す。
 その後、実施例1と同様に負極ハーフセルを作製し、電池の性能の評価を行った。評価結果を表2に示す。
(実施例15)
 重合体Aのかわりに重合体Gを使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例16)
 重合体Aのかわりに重合体Cを使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例17)
 粒子状重合体1のかわりに固形分濃度が40%、ガラス転移温度が-5℃であるポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体粒子(以下、「PVDF-HFP重合体粒子」ということがある)を使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例18)
 重合体Aのかわりに重合体Fを使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例19)
 重合体Aのかわりに重合体Hを使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(実施例20)
 重合体Aのかわりに重合体Bを使用した事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(比較例1)
 重合体Aのかわりに重合体Iを使用し、粒子状重合体を使用しなかった事以外は実施例1と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(比較例2)
 重合体Bのかわりにカチオン含有重合体(即ち、カチオン性基を有する重合体)ではなくカチオン含有低分子組成物である2-アミノエタンスルホン酸を使用した事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(比較例3)
 カチオン性基を有する重合体を使用しなかった事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(比較例4)
 重合体Aのかわりにポリエチレンイミン重合体(商品名、エポミンSP-200)を使用した事以外は実施例7と同様の操作を行って、電極用スラリー及び負極ハーフセルを作製し、この電池の性能の評価を行った。結果を表2に示す。
(比較例5)
 カチオン性基を有する重合体を使用しなかった事以外は実施例13と同様の操作を行って、正極用スラリー及び正極ハーフセルを作製し、この電池の性能の評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2と表3の結果から、以下のことがわかる。
 本発明によれば、実施例1~実施例20に示すように、所定のカチオン密度を示すカチオン性基及び対アニオンを有する重合体を用いることにより、スラリー安定性、低温特性、リチウム析出抑制の全てに優れるリチウムイオン二次電池を得ることができる。また、実施例の中でも、アニオンを有さないアクリレートの粒子状重合体を併用し、カチオン密度が5~7meq/gの範囲にあり、分子量が5,000~300,000の範囲である第4級カチオンを用いた実施例2、13は、スラリー安定性、低温特性、リチウム析出抑制に特に優れている。更には、所定量のアニオンを有する粒子状重合体を併用し、カチオン密度が2~5meq/gの範囲にあり、分子量が5,000~300,000の範囲である実施例7は、上記特性に加えてピール強度も高く、全ての特性において優れている。
 一方、カチオン密度が所定の範囲以外のもの(比較例1、4)、カチオン性基及び対アニオンを有する重合体を有さずに、カチオンを含む低分子組成物を含むもの(比較例2)、カチオン性基及び対アニオンを有する重合体を有さないものは(比較例3、5)は、特に低温特性、リチウム析出抑制が著しく劣る。

Claims (7)

  1.  カチオン性基を有する重合体、該カチオン性基に対応するアニオン、及び電極活物質を含有してなる、電極活物質層を有し、前記重合体中のカチオン密度が0.1~15meq/gである二次電池用電極。
  2.  前記電極活物質層がさらに粒子状重合体を含有してなる請求項1に記載の二次電池用電極。
  3.  前記電極活物質層における前記カチオン性基を有する重合体と、前記粒子状重合体との質量比が5:95~40:60である請求項2記載の二次電池用電極。
  4.  前記粒子状重合体が、アニオンを含むものである請求項2に記載の二次電池用電極。
  5.  前記カチオン性基が、脂環式カチオン性基または複素環式カチオン性基である請求項1に記載の二次電池用電極。
  6.  カチオン性基を有する重合体、該カチオン性基に対応するアニオン、電極活物質及び溶媒を含有してなる二次電池電極用スラリーであって、前記重合体中のカチオン密度が0.1~15meq/gである二次電池電極用スラリー。
  7.  正極、負極、セパレーター及び電解液を含む二次電池であって、前記正極及び負極の少なくともいずれかが請求項1に記載の二次電池用電極である、二次電池。
PCT/JP2010/061132 2009-07-01 2010-06-30 二次電池用電極、二次電池電極用スラリー及び二次電池 WO2011002016A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117031086A KR101530756B1 (ko) 2009-07-01 2010-06-30 2 차 전지용 전극, 2 차 전지 전극용 슬러리 및 2 차 전지
CN201080028715.8A CN102473898B (zh) 2009-07-01 2010-06-30 二次电池用电极、二次电池电极用浆料及二次电池
JP2011520953A JP5626209B2 (ja) 2009-07-01 2010-06-30 二次電池用電極、二次電池電極用スラリー及び二次電池
US13/381,030 US8877376B2 (en) 2009-07-01 2010-06-30 Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
EP10794184.1A EP2450985B1 (en) 2009-07-01 2010-06-30 Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
PL10794184T PL2450985T3 (pl) 2009-07-01 2010-06-30 Elektroda do baterii akumulatorowej, zawiesina do elektrody do baterii akumulatorowej i bateria akumulatorowa

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-157278 2009-07-01
JP2009157278 2009-07-01
JP2009222951 2009-09-28
JP2009-222951 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011002016A1 true WO2011002016A1 (ja) 2011-01-06

Family

ID=43411087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061132 WO2011002016A1 (ja) 2009-07-01 2010-06-30 二次電池用電極、二次電池電極用スラリー及び二次電池

Country Status (7)

Country Link
US (1) US8877376B2 (ja)
EP (1) EP2450985B1 (ja)
JP (1) JP5626209B2 (ja)
KR (1) KR101530756B1 (ja)
CN (1) CN102473898B (ja)
PL (1) PL2450985T3 (ja)
WO (1) WO2011002016A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004241A (ja) * 2011-06-14 2013-01-07 Toyota Motor Corp リチウムイオン二次電池
JPWO2013031690A1 (ja) * 2011-08-30 2015-03-23 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
JP2015106489A (ja) * 2013-11-29 2015-06-08 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JP2015166887A (ja) * 2015-06-04 2015-09-24 Dic株式会社 重合性液晶組成物
JP2016225135A (ja) * 2015-05-29 2016-12-28 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
JPWO2014185381A1 (ja) * 2013-05-14 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP2017068976A (ja) * 2015-09-29 2017-04-06 Fdk株式会社 アルカリ二次電池用の負極及びこの負極を用いたアルカリ二次電池
JPWO2016024383A1 (ja) * 2014-08-11 2017-05-25 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP2022505211A (ja) * 2018-10-16 2022-01-14 ハーキュリーズ エルエルシー 電極用水性バインダー組成物、及びその製造方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US10199657B2 (en) 2012-04-11 2019-02-05 Ionic Materials, Inc. Alkaline metal-air battery cathode
WO2016196477A1 (en) * 2015-06-02 2016-12-08 Ionic Materials, Inc. Alkaline metal-air battery cathode
US9819053B1 (en) 2012-04-11 2017-11-14 Ionic Materials, Inc. Solid electrolyte high energy battery
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US9570751B2 (en) * 2013-02-26 2017-02-14 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
US10490847B2 (en) 2013-03-14 2019-11-26 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Alkali ion conducting plastic crystals
US10497970B2 (en) 2013-03-14 2019-12-03 Arizona Board Of Regents On Behalf Of Arizona State University Alkali ion conducting plastic crystals
FR3011000A1 (fr) 2013-09-26 2015-03-27 Commissariat Energie Atomique Compositions polymeres conductrices d'ions lithium pour generateur electrochimique au lithium
JP6409782B2 (ja) * 2013-10-31 2018-10-24 日本ゼオン株式会社 リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物
CN103560247B (zh) * 2013-11-08 2017-02-01 深圳市贝特瑞新能源材料股份有限公司 一种车载与储能用锂离子电池负极材料及其制备方法
WO2015084940A1 (en) 2013-12-03 2015-06-11 Zimmerman Michael A Solid, ionically conducting polymer material, and applications
JP6221875B2 (ja) * 2014-03-24 2017-11-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
CN113659140A (zh) 2014-04-01 2021-11-16 离子材料公司 固体离子传导聚合物,包含其的阴极和包括该阴极的电池
EP3304620A4 (en) 2015-06-04 2018-11-07 Ionic Materials, Inc. Solid state bipolar battery
CN108352565A (zh) 2015-06-04 2018-07-31 离子材料公司 具有固体聚合物电解质的锂金属电池
EP3304634B1 (en) 2015-06-08 2022-08-03 Ionic Materials, Inc. Battery having aluminum anode and solid polymer electrolyte
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
PL3410519T3 (pl) * 2016-01-29 2021-11-08 Zeon Corporation Kompozycja wiążąca dla elektrod niewodnej baterii akumulatorowej, kompozycja zawiesinowa dla elektrod niewodnej baterii akumulatorowej, elektroda dla niewodnej baterii akumulatorowej i niewodna bateria akumulatorowa
KR102056455B1 (ko) * 2016-07-15 2019-12-16 주식회사 엘지화학 음극 및 이를 포함하는 이차 전지
KR20190111056A (ko) 2017-01-26 2019-10-01 아이오닉 머터리얼스, 인코퍼레이션 고체 폴리머 전해질을 갖는 알카라인 배터리 캐소드
EP3355384A1 (en) * 2017-01-31 2018-08-01 Universite De Liege Flexible thin-films for battery electrodes
KR102268076B1 (ko) * 2017-06-09 2021-06-23 주식회사 엘지에너지솔루션 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN111106352A (zh) * 2019-12-30 2020-05-05 国联汽车动力电池研究院有限责任公司 一种锂离子电池用交联型水系粘结剂及其制备的电极

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182620A (ja) * 1998-12-11 2000-06-30 Sekisui Chem Co Ltd 二次電池の電極用導電助剤、二次電池の電極及び二次電池
JP2001527275A (ja) * 1997-12-19 2001-12-25 モルテック・コーポレーション カチオン重合体及び電気活性重合硫化物複合体を有する電気化学セル複合陰極
JP2006278303A (ja) * 2005-03-25 2006-10-12 Nippon Zeon Co Ltd 非水電解質二次電池電極用バインダー、バインダー組成物、電極用組成物、ならびに電極

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461498B2 (ja) 1997-12-16 2010-05-12 パナソニック株式会社 非水電解液二次電池およびその負極
JP4441935B2 (ja) * 1998-06-09 2010-03-31 パナソニック株式会社 非水電解液二次電池用負極およびそれを用いた電池
JP2000348728A (ja) 1999-06-02 2000-12-15 Sekisui Chem Co Ltd イオン伝導性高分子、二次電池用電極及び二次電池
JP3911145B2 (ja) 2000-11-10 2007-05-09 三洋化成工業株式会社 電気化学素子の電極用結合剤および電極の製造方法
KR100958651B1 (ko) 2004-01-17 2010-05-20 삼성에스디아이 주식회사 리튬이차전지용 애노드 및 이를 이용한 리튬이차전지
JP2006049158A (ja) 2004-08-06 2006-02-16 Trekion Co Ltd リチウム・ポリマー電池およびその製造方法
JP4617886B2 (ja) 2005-01-11 2011-01-26 パナソニック株式会社 非水二次電池およびその正極ペーストの製造方法
JP5077510B2 (ja) 2005-03-15 2012-11-21 Jsr株式会社 二次電池負極用バインダー組成物、二次電池負極用スラリー、及び二次電池負極
JP5181632B2 (ja) 2007-11-15 2013-04-10 Jsr株式会社 電池電極用バインダー組成物、電池電極用バインダー組成物の製造方法、電池電極用ペースト、電池電極、及び電池電極の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527275A (ja) * 1997-12-19 2001-12-25 モルテック・コーポレーション カチオン重合体及び電気活性重合硫化物複合体を有する電気化学セル複合陰極
JP2000182620A (ja) * 1998-12-11 2000-06-30 Sekisui Chem Co Ltd 二次電池の電極用導電助剤、二次電池の電極及び二次電池
JP2006278303A (ja) * 2005-03-25 2006-10-12 Nippon Zeon Co Ltd 非水電解質二次電池電極用バインダー、バインダー組成物、電極用組成物、ならびに電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450985A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004241A (ja) * 2011-06-14 2013-01-07 Toyota Motor Corp リチウムイオン二次電池
JPWO2013031690A1 (ja) * 2011-08-30 2015-03-23 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
EP2752927A4 (en) * 2011-08-30 2015-09-02 Zeon Corp BINDER COMPOSITION FOR A SECONDARY BATTERY NEGATIVE ELECTRODE, SECONDARY BATTERY NEGATIVE ELECTRODE, SLUDGE COMPOSITION FOR THE NEGATIVE ELECTRODE, METHOD OF MANUFACTURING THEREOF AND SECONDARY BATTERY
JPWO2014185381A1 (ja) * 2013-05-14 2017-02-23 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP2015106489A (ja) * 2013-11-29 2015-06-08 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、および蓄電デバイス
JPWO2016024383A1 (ja) * 2014-08-11 2017-05-25 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
US10529989B2 (en) 2014-08-11 2020-01-07 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP2016225135A (ja) * 2015-05-29 2016-12-28 三菱化学株式会社 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
JP2015166887A (ja) * 2015-06-04 2015-09-24 Dic株式会社 重合性液晶組成物
JP2017068976A (ja) * 2015-09-29 2017-04-06 Fdk株式会社 アルカリ二次電池用の負極及びこの負極を用いたアルカリ二次電池
JP2022505211A (ja) * 2018-10-16 2022-01-14 ハーキュリーズ エルエルシー 電極用水性バインダー組成物、及びその製造方法

Also Published As

Publication number Publication date
US8877376B2 (en) 2014-11-04
US20120107690A1 (en) 2012-05-03
CN102473898A (zh) 2012-05-23
CN102473898B (zh) 2015-03-04
EP2450985A4 (en) 2014-02-26
EP2450985B1 (en) 2017-09-27
KR101530756B1 (ko) 2015-06-22
JPWO2011002016A1 (ja) 2012-12-13
PL2450985T3 (pl) 2018-03-30
KR20120028339A (ko) 2012-03-22
JP5626209B2 (ja) 2014-11-19
EP2450985A1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5626209B2 (ja) 二次電池用電極、二次電池電極用スラリー及び二次電池
JP5617725B2 (ja) 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP6222102B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極及びその製造方法、並びにリチウムイオン二次電池
JP5696664B2 (ja) 二次電池用電極、二次電池電極用バインダー及び二次電池
JP4687833B2 (ja) 二次電池電極用バインダー組成物およびその製造方法
KR101903376B1 (ko) 이차 전지 다공막 슬러리, 이차 전지 다공막, 이차 전지 전극, 이차 전지 세퍼레이터 및 이차 전지
JP6168051B2 (ja) リチウムイオン二次電池
JP6052290B2 (ja) リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP5742493B2 (ja) 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP5534245B2 (ja) 二次電池用正極及び二次電池
KR20170053615A (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
WO2011078263A1 (ja) 二次電池用電極及び二次電池
KR20120094003A (ko) 전기 화학 소자용 바인더 입자
KR20150016937A (ko) 2 차 전지용 부극 및 그 제조 방법
JP2014089834A (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
KR20120051653A (ko) 이차 전지용 다공막 및 이차 전지
US20180108917A1 (en) Electrode mixture layer composition for nonaqueous electrolyte secondary battery, manufacturing method thereof and use therefor
WO2015111663A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR20170003555A (ko) 이차전지 전극용 바인더 조성물, 이차전지 전극용 슬러리 조성물, 이차전지용 전극 및 그 제조 방법, 및 이차전지
WO2014132935A1 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法
JP7143114B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2023127311A1 (ja) 非水系二次電池用バインダー重合体、非水系二次電池用バインダー組成物および非水系二次電池電極

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028715.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011520953

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010794184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010794184

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117031086

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13381030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE