WO2010137735A1 - 粉末冶金用鉄基混合粉末 - Google Patents
粉末冶金用鉄基混合粉末 Download PDFInfo
- Publication number
- WO2010137735A1 WO2010137735A1 PCT/JP2010/059402 JP2010059402W WO2010137735A1 WO 2010137735 A1 WO2010137735 A1 WO 2010137735A1 JP 2010059402 W JP2010059402 W JP 2010059402W WO 2010137735 A1 WO2010137735 A1 WO 2010137735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- iron
- based mixed
- mixed powder
- flake
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0264—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the present invention relates to an iron-based mixed powder suitable for use in powder metallurgy technology.
- the present invention increases the density of the green compact, and the ejection force when the green compact is extracted from the die after compacting. It is intended to achieve an advantageous reduction.
- the powder metallurgy process after mixing the raw material powder, the mixed powder is transferred and filled into the mold, and after pressure molding, the manufactured molded body (referred to as a green compact) is taken out from the mold, and if necessary Apply post-treatment such as sintering.
- a powder metallurgy process in order to improve product quality and reduce manufacturing costs, high powder flowability in the transfer process, high compressibility in the pressing process, and compacting It is required to simultaneously achieve a low output in the process of extracting the body from the mold.
- Patent Document 1 discloses that the fluidity of the iron-based mixed powder can be improved by adding fullerenes.
- Patent Document 2 discloses a technique for improving the fluidity of a powder by adding a granular inorganic oxide having an average particle size of less than 500 nm. However, even if these means are used, it is insufficient to realize high compressibility and low output power while maintaining fluidity.
- JP 2007-31744 A JP-T-2002-515542
- the present invention has been developed in view of the above-mentioned present situation, and improves the fluidity of the iron-based mixed powder to improve the compacting density of the compact, and at the same time greatly reduces the punching power after compacting. Therefore, an object is to propose an iron-based mixed powder for powder metallurgy that can achieve both improvement in product quality and reduction in manufacturing cost.
- the inventors have made various studies on the additive in the iron-based powder. As a result, it has been found that the addition of an appropriate amount of flake powder to the iron-based powder has excellent fluidity, and the molding density and the output power are greatly improved.
- the present invention is based on the above findings.
- the gist configuration of the present invention is as follows. 1. An iron-base mixed powder for powder metallurgy, wherein the iron-base powder has an average particle diameter of 100 ⁇ m or less, a thickness of 10 ⁇ m or less, and an aspect ratio (the ratio of the major axis to the thickness) of 5 or more. In an iron-based mixed powder in an amount of 0.01 to 5.0 mass%.
- the present invention by adding an appropriate amount of flake powder in the iron-based powder, it goes without saying that it has excellent fluidity, and can achieve both high molding density and low output power, It is effective for improving productivity and reducing manufacturing costs.
- FIG. 1 is a view schematically showing a flake powder according to the present invention.
- the flake powder used in the present invention is a powder composed of particles on a flat plate whose diameter in the thickness direction is very small compared to the diameter in the spreading direction.
- the primary particles are flaky powder
- the average particle diameter of the major axis 1 is 100 ⁇ m or less
- the thickness 2 is 10 ⁇ m or less
- the aspect ratio (the major axis with respect to the thickness). Ratio) is 5 or more.
- Such a flake powder reduces the frictional force between the powder and the frictional force between the powder and the mold due to the rearrangement and plastic deformation of the powder in the molding and compression process of the iron-based mixed powder. Improvements can be realized.
- the output can be greatly reduced through a reduction in the frictional force between the green compact and the mold.
- the flake powder is preferably an oxide, and specific examples thereof include scaly silica (Sunlovely (TM), AGC Si-Tech Co., Ltd.), petal silicic acid. Calcium (FLORITE (TM)), Tokuyama Corporation (made by Tokuyama Corporation), plate-like alumina (Seraph (SERATH (TM)), Kinsei Matec (made by KINSEI MATEC CO., LTD.)), Scaly iron oxide ( AM-200 (TM), Titanium Industry (manufactured by Titan Kogyo, Ltd.), and the like can be mentioned, but the components and crystal structure are not particularly specified.
- conventionally known graphite powder may be flake powder (eg, flake graphite), but the improvement effect by addition is not seen (see Examples) and the object of the present invention is achieved. I can't. The reason for this is not clear, but it is presumed that graphite has high adhesion to iron powder, iron powder compacts, and molds, and hinders improvement in characteristics expected in the present invention. Adhesion with a mold or the like is presumed to occur in the case of a flake powder made of a metal or a semimetal such as graphite, and therefore these are excluded from the flake powder in the present invention.
- a flaky powder made of a substance having a relatively low electronic conductivity is preferable, although the bonding mode between atoms constituting the substance is mainly a covalent bond or an ionic bond.
- oxides are particularly preferred.
- at least one of silica, calcium silicate, alumina, and iron oxide is particularly preferable.
- flake graphite powder is excluded from flake powder in the present invention, but addition of graphite powder as an alloy powder is permitted regardless of flake shape or non flake shape.
- the flake powder has an aspect ratio of 5 or more. More preferably, it is 10 or more, More preferably, it is 20 or more.
- the aspect ratio is measured by the following method. The oxide particles are observed with a scanning electron microscope, the major axis 1 and the thickness 2 of the particles are measured for 100 or more randomly selected particles, and the aspect ratio of each particle is calculated. Since the aspect ratio has a distribution, the average value defines the aspect ratio.
- acicular powder can be mentioned as one form of flake powder.
- the acicular powder is a powder composed of needle-like or rod-like particles having a thin shape, but the above-mentioned effect by addition of the flake-like powder is greater.
- the average particle diameter of the long diameter of the flake powder exceeds 100 ⁇ m, it cannot be uniformly mixed with the iron-based mixed powder (average particle diameter: around 100 ⁇ m) commonly used in powder metallurgy, and the above effect cannot be exhibited. . Therefore, it is necessary for the flake powder to have an average particle diameter of a long diameter of 100 ⁇ m or less. More preferably, it is 40 micrometers or less, More preferably, it is 20 micrometers or less.
- the average particle diameter of flake powder be the average value of the long diameter 1 observed using the scanning electron microscope as mentioned above.
- the particle size distribution may be measured by a laser diffraction / scattering method based on JIS R 1629, and the 50% diameter in the volume-based integrated fraction may be used.
- the thickness of the flake powder needs to be 10 ⁇ m or less. More effective flake powder thickness is 1 ⁇ m or less, more preferably 0.5 ⁇ m or less. In addition, the practical minimum value of the thickness is about 0.01 ⁇ m.
- the blending amount of the flake powder is set to 0.01 to 5.0 mass%. More preferably, it is in the range of 0.05 to 2.0 mass%.
- examples of the iron-based powder include the following. Pure iron powder such as atomized iron powder and reduced iron powder. Partially diffused alloyed steel powder (partly diffused steel powder) and fully alloyed steel powder (prealloyed steel powder). Furthermore, hybrid steel powder in which alloy components are partially diffused in fully alloyed steel powder.
- the average particle size of the iron-based powder is preferably 1 ⁇ m or more, more preferably about 10 to 200 ⁇ m.
- the type of alloy powder examples include graphite powder, metal powders such as Cu, Mo, and Ni, and metal compound powders. Other known alloy powders can also be used.
- the strength of the sintered body can be increased by mixing at least one of these alloy powders with the iron-based powder.
- the total blending amount of the above-mentioned alloy powder is preferably about 0.1 to 10 mass% in the iron-based mixed powder. This is because, by adding 0.1 mass% or more of the alloy powder, the strength of the obtained sintered body is advantageously improved. On the other hand, if it exceeds 10 mass%, the dimensional accuracy of the sintered body decreases. is there.
- alloy component exterior iron powder is preferably in a state of being adhered to the surface of the iron-based powder via an organic binder (hereinafter referred to as alloy component exterior iron powder). This can prevent segregation of the alloy powder and make the component distribution in the powder uniform.
- fatty acid amides and metallic soaps are particularly advantageously suitable as the organic binder, but other known organic binders such as polyolefins, polyesters, (meth) acrylic polymers, vinyl acetate polymers, etc. Can also be used. These organic binders may be used alone or in combination of two or more. When two or more kinds of organic binders are used, at least a part of them may be used as a composite melt. If the amount of the organic binder added is less than 0.01 mass%, the alloy powder cannot be uniformly and sufficiently adhered to the surface of the iron powder. On the other hand, if it exceeds 1.0 mass%, the iron powders adhere to each other and agglomerate, which may reduce the fluidity.
- organic binders such as polyolefins, polyesters, (meth) acrylic polymers, vinyl acetate polymers, etc. Can also be used. These organic binders may be used alone or in combination of two or more. When two or more kinds of organic binders are used, at least
- the amount of the organic binder added is preferably in the range of 0.01 to 1.0 mass%.
- the addition amount (mass%) of an organic binder points out the ratio of the organic binder which occupies for the whole iron group mixed powder for powder metallurgy.
- a free lubricant powder can be added.
- the amount of the free lubricant added is preferably 1.0 mass% or less as a proportion of the entire iron-based mixed powder for powder metallurgy. On the other hand, it is preferable to add 0.01 mass% or more of the free lubricant.
- free lubricants include metal soaps (for example, zinc stearate, manganese stearate, lithium stearate, etc.), bisamides (for example, ethylene bisstearic acid amide), fatty acid amides containing monoamides (for example, stearic acid monoamide, erucic acid amide, etc.) ), Fatty acids (for example, oleic acid, stearic acid, etc.), and thermoplastic resins (for example, polyamide, polyethylene, polyacetal, etc.) are preferable because they have an effect of reducing the output of the green compact.
- Other known free lubricants other than those described above can also be used.
- the iron content in the iron-based mixed powder is preferably 50 mass% or more.
- additives such as flake powder, binder, lubricant (free lubricant, lubricant attached to iron powder surface with binder) according to the present invention, and alloy powder as required , Mix.
- additives such as flake powder, binder, lubricant (free lubricant, lubricant attached to iron powder surface with binder) according to the present invention, and alloy powder as required , Mix.
- it is not always necessary to add all of the above-mentioned additives such as binders and lubricants at the same time. After adding only a part and performing primary mixing, the remainder is added and secondarily mixed. You can also.
- the mixing means is not particularly limited, and any conventionally known mixer can be used.
- a conventionally known stirring blade type mixer for example, a Henschel mixer
- a container rotation type mixer for example, a V type mixer, a double cone mixer, etc.
- a high-speed bottom-stirring mixer, an inclined rotary van mixer, a rotary mulberry mixer, a conical planetary screw mixer, etc. which can be easily heated, are particularly advantageously adapted.
- the additive for improving a characteristic can be added according to the objective other than the above-mentioned additive.
- a machinability improving powder such as MnS is exemplified.
- Example 1 Pure iron powder (atomized iron powder, average particle size: 80 ⁇ m) A as an iron-based powder, and an alloy component exterior iron powder B in which an alloy powder is attached to the surface of the pure iron powder via an organic binder Prepared the kind.
- the alloy powder used for B was Cu powder (average particle size: 25 ⁇ m): 2.0 mass% and graphite powder (average particle size: 5.0 ⁇ m, aspect ratio> 5): 0.8 mass%.
- organic binders stearic acid monoamide: 0.05 mass% and ethylenebisstearic acid amide: 0.05 mass% were used. In addition, all of these addition ratios are ratios which occupy for the whole iron-based powder.
- flake powder and free lubricant were added in various ratios, and then mixed to obtain an iron-based mixed powder for powder metallurgy.
- the free lubricant in addition to lithium stearate: 0.1 mass%, zinc stearate, ethylenebisstearic acid amide and erucic acid amide in the amounts shown in Table 1 were used.
- a powder to which flaky graphite powder, fullerene powder, alumina fine particles or magnesia fine particles were added was also prepared.
- the fullerene a commercially available powder having a diameter of about 20 ⁇ m in which primary particles with a diameter of 1 nm aggregated was used. Table 1 shows the blending ratio of these mixed powders. This blending ratio is the ratio of the entire iron-based mixed powder for powder metallurgy.
- each iron-based mixed powder obtained was filled in a mold and pressure-molded at a pressure of 980 MPa at room temperature to obtain a cylindrical green compact (diameter: 11 mm, height: 11 mm).
- Table 1 also shows the results of measurement of the fluidity of the iron-based mixed powder, the output when the green compact is extracted from the mold, and the green density of the obtained green compact.
- the fluidity of the iron-based mixed powder was evaluated according to JISZ 2502. Here, if the fluidity is a flow rate of 30 sec / 50 g or less, the compressibility is a molding density of 7.35 Mg / m 3 or more, and the drawability is more than 20 MPa or less, respectively. It can be said that it is good.
- the flake powder according to the present invention By adding an appropriate amount of the flake powder according to the present invention to the iron-based powder, not only the fluidity but also the molding density and the unloading power can be improved, and not only the productivity is improved, but also the production. Cost can be reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
かかる粉末冶金プロセスにおいて、製品品質の向上と製造コストの低減を実現するためには、移送工程における粉末の高い流動性(flowability)、加圧成形工程における高い圧縮性(compressibility)、さらには圧粉体を金型から抜き出す工程における低い抜出力、を同時に達成することが求められる。
また、500nm未満の平均粒径を有する粒状無機酸化物を添加することによって、粉末の流動性を改良する手法が、特許文献2に開示されている。
しかしながら、これらの手段を用いたとしても、流動性を維持した上で、高い圧縮性や低い抜出力を実現するには不十分であった。
しかしながら、このような潤滑剤は、延伸性を有する故に、鉄粉や合金用粉末(powder for an alloy)の粒子にも付着し易く、そのため鉄基混合粉末の流動性や充填性はかえって阻害されるという問題がある。
このように、従来は、鉄基混合粉末の流動性と、高い成形密度と、低い抜出力とを両立させることは極めて難しかった。
その結果、鉄基粉末中に適量の片状粉末を添加することにより、流動性に優れるのはいうまでもなく、成形密度と抜出力が大幅に改善されるという知見を得た。
本発明は、上記の知見に立脚するものである。
1.粉末冶金用鉄基混合粉末であって、鉄基粉末に、長径の平均粒子径が100μm以下、厚さが10μm以下で、かつアスペクト比(厚さに対する長径の比率)が5以上の片状粉末を、鉄基混合粉末に対し0.01~5.0mass%の範囲で含有させてなることを特徴とする粉末冶金用鉄基混合粉末。
本発明で用いる片状粉末とは、厚さ方向の径が拡がり方向の径に比べて非常に小さい平板上の粒子からなる粉末である。 本発明では、図1に示すように、一次粒子が薄片状の粉末であって、その長径1の平均粒子径が100μm以下で、厚さ2が10μm以下で、かつアスペクト比(厚さに対する長径の比率)が5以上であることを特徴とする。
かかる片状粉末は、鉄基混合粉末の成形圧縮工程において、粉体の再配列や塑性変形にかかる粉体間の摩擦力、並びに粉体と金型間の摩擦力を低減し、成形密度の向上を実現できる。 さらに、成形体の抜出し工程においては、圧粉体と金型間の摩擦力低下を通じて、抜出力を大きく低減することが可能となる。 これらの効果は、片状粉末の扁平な形状に起因して、鉄基混合粉末間に片状粉末が効果的に配列し、金属粉末同士および金属粉末と金型間の直接接触を有効に防止し、摩擦力を低減することによって得られるものと考えられる。
なお、従来から知られている黒鉛粉は、片状粉末である場合があるが(鱗片状黒鉛など)、添加による改善効果が見られず(実施例を参照)、本発明の目的を達することができない。その理由は明らかではないが、黒鉛は鉄粉、鉄粉圧粉体、さらに金型との付着力が高く、本発明で期待する特性改善を阻害していると推測される。 金型等との付着は、金属あるいは前記の黒鉛のような半金属(semimetal)からなる片状粉末の場合に起きると推測され、したがってこれらは本発明における片状粉末から除外される。 逆に言えば金属・半金属以外の片状粉末であれば、金型等との付着という阻害要因を有さないため、本発明の効果が期待できる。 本発明者らの調査によれば、物質を構成する原子間の結合様式が、主に共有結合またはイオン結合からなり、比較的電子伝導率が低い物質からなる片状粉末が好ましいが、前記のように酸化物がとくに好ましい。 なかでも、シリカ、ケイ酸カルシウム、アルミナおよび酸化鉄の少なくとも一種であることがとりわけ好ましい。
なお、前記理由により片状の黒鉛粉は本発明における片状粉末から除外されるが、合金用粉末として黒鉛粉を添加することは、片状・非片状に関わらず許される。
なお、アスペクト比は以下の方法により測定する。 走査型電子顕微鏡で酸化物粒子を観察し、ランダムに選択した100個以上の粒子に対して粒子の長径1と厚み2を計測し、個々の粒子のアスペクト比を計算する。 アスペクト比には分布があるので、その平均値をもってアスペクト比を定義する。
なお、本発明においては片状粉末の一形態として針状粉末を挙げることができる。 針状粉末とは、形状が細い針状あるいは棒状の粒子からなる粉末であるが、片状粉末の方が添加による上記効果が大きい。
したがって、片状粉末は長径の平均粒子径を100μm以下とする必要がある。より好ましくは40μm以下であり、さらに好ましくは20μm以下である。
なお、片状粉末の平均粒子径は、上記のように走査型電子顕微鏡を用いて観察した長径1の平均値とする。 ただし、JIS R 1629に準拠したレーザ回折・散乱法により粒子径分布を測定し、体積基準の積算分率における50%径を用いてもよい。
上記した合金用粉末の配合量の合計は、鉄基混合粉末中で0.1~10mass%程度とすることが好ましい。 というのは、合金用粉末を0.1mass%以上配合することにより、得られる焼結体の強度が有利に向上し、一方、10mass%を超えると、焼結体の寸法精度が低下するからである。
なお、鉄基混合粉末中の鉄の含有量は50mass%以上とすることが好ましい。
鉄基粉末に、本発明に従う片状粉末や結合剤、潤滑剤(遊離潤滑剤、結合剤で鉄粉表面に付着させる潤滑剤)などの添加材、さらに必要に応じて合金用粉末を加えて、混合する。なお、上記した結合剤、潤滑剤などの添加材は、必ずしも全量を一度に添加する必要はなく、一部のみを添加して一次混合を行ったのち、残部を添加して二次混合することもできる。
鉄基粉末として純鉄粉(アトマイズ鉄粉、平均粒子径:80μm)Aと、この純鉄粉の表面に有機結合剤を介して合金用粉末を付着させた合金成分外装鉄粉Bとの二種類を準備した。 Bに用いた合金用粉末はCu粉末(平均粒子径:25μm):2.0mass%および黒鉛粉末(平均粒子径:5.0μm、アスペクト比>5):0.8mass%とした。 また、有機結合剤としては、ステアリン酸モノアミド:0.05mass%およびエチレンビスステアリン酸アミド:0.05mass%を使用した。 なお、これらの添加比率はいずれも、鉄基粉末全体に占める比率である。
上記の鉄基粉末に、片状粉末と遊離潤滑剤を種々の比率で添加したのち、混合して、粉末冶金用鉄基混合粉末とした。遊離潤滑剤としては、ステアリン酸リチウム:0.1mass%に加えて、表1に記載した量のステアリン酸亜鉛、エチレンビスステアリン酸アミド、エルカ酸アミドを使用した。
また、比較のため、薄片状黒鉛粉末、フラーレン粉末、アルミナ微粒子またはマグネシア微粒子を添加したものも準備した。 フラーレンは直径:1nmの一次粒子が凝集した粒径:約20μmの市販粉末を利用した。これらの混合粉末の配合比率を表1に示す。この配合比率は、粉末冶金用鉄基混合粉末全体に占める比率である。
ここに、流動性は流動度が30sec/50g以下であれば、また圧縮性は成形密度が7.35Mg/m3以上であれば、さらに抜出性は抜出力が20MPa以下であれば、それぞれ良好といえる。
2 厚さ
Claims (7)
- 粉末冶金用鉄基混合粉末であって、鉄基粉末に、長径の平均粒子径が100μm以下、厚さが10μm以下で、かつアスペクト比(厚さに対する長径の比率)が5以上の片状粉末を、鉄基混合粉末に対し0.01~5.0mass%の範囲で含有させてなる粉末冶金用鉄基混合粉末。
- 前記片状粉末が、シリカ、ケイ酸カルシウム、アルミナおよび酸化鉄のうちから選んだ少なくとも一種である請求項1に記載の粉末冶金用鉄基混合粉末。
- さらに合金用粉末を含有する、請求項1に記載の粉末冶金用鉄基混合粉末。
- さらに合金用粉末を含有する、請求項2に記載の粉末冶金用鉄基混合粉末。
- さらに有機結合剤を含有する、請求項1~4のいずれかに記載の粉末冶金用鉄基混合粉末。
- さらに遊離潤滑剤を含有する、請求項1~4のいずれかに記載の粉末冶金用鉄基混合粉末。
- さらに遊離潤滑剤を含有する、請求項5に記載の粉末冶金用鉄基混合粉末。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10780688.7A EP2436462B1 (en) | 2009-05-28 | 2010-05-27 | A powder metallurgy method using iron-based mixed powder |
US13/320,391 US8603212B2 (en) | 2009-05-28 | 2010-05-27 | Iron-based mixed powder for powder metallurgy |
KR1020117027349A KR101352883B1 (ko) | 2009-05-28 | 2010-05-27 | 분말 야금용 철기 혼합 분말 |
CA2762898A CA2762898C (en) | 2009-05-28 | 2010-05-27 | Iron-based mixed powder for powder metallurgy |
CN2010800232314A CN102448641A (zh) | 2009-05-28 | 2010-05-27 | 粉末冶金用铁基混合粉末 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009129706 | 2009-05-28 | ||
JP2009-129706 | 2009-05-28 | ||
JP2010120175A JP5604981B2 (ja) | 2009-05-28 | 2010-05-26 | 粉末冶金用鉄基混合粉末 |
JP2010-120175 | 2010-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137735A1 true WO2010137735A1 (ja) | 2010-12-02 |
Family
ID=43222835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059402 WO2010137735A1 (ja) | 2009-05-28 | 2010-05-27 | 粉末冶金用鉄基混合粉末 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8603212B2 (ja) |
EP (1) | EP2436462B1 (ja) |
JP (1) | JP5604981B2 (ja) |
KR (1) | KR101352883B1 (ja) |
CN (2) | CN102448641A (ja) |
CA (1) | CA2762898C (ja) |
WO (1) | WO2010137735A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150283609A1 (en) * | 2012-12-17 | 2015-10-08 | Diamet Corporation | Raw material powder for powder metallurgy |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5617529B2 (ja) * | 2010-10-28 | 2014-11-05 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉末 |
JP6213809B2 (ja) * | 2013-03-12 | 2017-10-18 | 日立金属株式会社 | 圧粉磁心、これを用いたコイル部品および圧粉磁心の製造方法 |
CN105899315A (zh) * | 2014-01-22 | 2016-08-24 | Ntn株式会社 | 烧结机械部件及其制造方法 |
JP6480264B2 (ja) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | 鉄基粉末冶金用混合粉及び焼結体 |
RU2018103772A (ru) * | 2015-07-18 | 2019-08-19 | Вулканформс Инк. | Аддитивное производство посредством пространственно регулируемого сплавления материала |
JP6634365B2 (ja) * | 2016-12-02 | 2020-01-22 | 株式会社神戸製鋼所 | 鉄基粉末冶金用混合粉末および焼結体の製造方法 |
US10875094B2 (en) | 2018-03-29 | 2020-12-29 | Vulcanforms Inc. | Additive manufacturing systems and methods |
EP3880393A4 (en) * | 2018-11-12 | 2022-09-21 | Desktop Metal, Inc. | TECHNIQUES FOR CONTROL OF BUILD MATERIAL FLOW PROPERTIES IN ADDITIONAL MANUFACTURING AND ASSOCIATED SYSTEMS AND PROCESSES |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60218403A (ja) * | 1984-04-11 | 1985-11-01 | ブライシユタール・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウング | 弁座環の製造方法 |
JPH07188803A (ja) * | 1993-11-01 | 1995-07-25 | Ufec Universal Fusion Energ Co Sa | 高靱性セラミック/金属複合体及びその製造方法 |
JPH09287002A (ja) * | 1996-04-23 | 1997-11-04 | Kawasaki Steel Corp | 粉末冶金用混合粉 |
JP2001059147A (ja) * | 1999-06-11 | 2001-03-06 | Nippon Steel Corp | 耐磨耗性焼結外層を有する鋼製複合部材 |
JP2002515542A (ja) | 1998-05-15 | 2002-05-28 | ホガナス アクチボラゲット | 流動剤含有冶金用鉄基組成物及びその使用方法 |
JP2004339598A (ja) * | 2003-05-19 | 2004-12-02 | Honda Motor Co Ltd | 複合軟磁性材料の製造方法 |
JP2007031744A (ja) | 2005-07-22 | 2007-02-08 | Kobe Steel Ltd | 粉末冶金用混合粉末 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1458276A1 (de) | 1964-09-02 | 1969-01-16 | Mannesmann Ag | Pulvergemisch zum Pressen von Formkoerpern |
CS204329B1 (en) | 1978-09-22 | 1981-04-30 | Milan Slesar | Method of making the sintered iron pressings of the hardened iron oxides |
US4230491A (en) * | 1979-01-08 | 1980-10-28 | Stanadyne, Inc. | Internal combustion engine tappet comprising a sintered powdered metal wear resistant composition |
JPH0627297B2 (ja) * | 1985-01-29 | 1994-04-13 | 株式会社日立製作所 | 酸化物分散超合金およびその製造方法 |
US4808205A (en) * | 1987-11-16 | 1989-02-28 | Ppg Industries, Inc. | Lid construction for a heating vessel and method of use |
US5135566A (en) * | 1987-09-30 | 1992-08-04 | Kawasaki Steel Corporation | Iron base powder mixture and method |
JP2743090B2 (ja) * | 1989-07-31 | 1998-04-22 | 株式会社 小松製作所 | 金属射出品の炭素量コントロール方法 |
JP2829644B2 (ja) | 1989-10-13 | 1998-11-25 | 日本化学工業株式会社 | α−酸化鉄の製造法 |
US5080712B1 (en) * | 1990-05-16 | 1996-10-29 | Hoeganaes Corp | Optimized double press-double sinter powder metallurgy method |
US5256184A (en) * | 1991-04-15 | 1993-10-26 | Trw Inc. | Machinable and wear resistant valve seat insert alloy |
JPH06136404A (ja) | 1992-10-28 | 1994-05-17 | Kawasaki Steel Corp | 鉄系軟磁性材料焼結体の製造方法 |
JP3351844B2 (ja) | 1993-03-01 | 2002-12-03 | 川崎製鉄株式会社 | 鉄系焼結材料用の合金鋼粉及びその製造方法 |
JPH06267723A (ja) * | 1993-03-16 | 1994-09-22 | Tdk Corp | 複合軟磁性材料 |
DE69611052T2 (de) | 1995-04-25 | 2001-04-05 | Kawasaki Steel Corp., Kobe | Pulvermischung auf Eisenbasis und Verfahren seiner Herstellung |
JPH08325667A (ja) | 1995-05-26 | 1996-12-10 | Kobe Steel Ltd | 粉末冶金鉄系焼結体の寸法変化制御方法 |
JPH09111303A (ja) * | 1995-10-18 | 1997-04-28 | Kawasaki Steel Corp | 切削性および耐摩耗性に優れた焼結体が得られる鉄粉および鉄基混合粉 |
JPH1174140A (ja) * | 1997-08-29 | 1999-03-16 | Tokin Corp | 圧粉磁芯の製造方法 |
US6280683B1 (en) * | 1997-10-21 | 2001-08-28 | Hoeganaes Corporation | Metallurgical compositions containing binding agent/lubricant and process for preparing same |
SE9704494D0 (sv) | 1997-12-02 | 1997-12-02 | Hoeganaes Ab | Lubricant for metallurgical powder compositions |
US6494968B1 (en) * | 1998-02-06 | 2002-12-17 | Toda Kogyo Corporation | Lamellar rare earth-iron-boron-based magnet alloy particles, process for producing the same and bonded magnet produced therefrom |
JPH11279676A (ja) * | 1998-03-31 | 1999-10-12 | Kawasaki Steel Corp | 粉末冶金用鉄基混合粉および高強度焼結体の製造方法 |
JP4709340B2 (ja) * | 1999-05-19 | 2011-06-22 | 株式会社東芝 | ボンド磁石の製造方法、およびアクチュエータ |
JP2002008913A (ja) | 2000-06-19 | 2002-01-11 | Daido Electronics Co Ltd | 希土類磁石およびその成形材料 |
JP2004359990A (ja) * | 2003-06-03 | 2004-12-24 | Toyota Motor Corp | 繊維強化金属基複合材料およびその製造方法 |
JP4208689B2 (ja) | 2003-09-30 | 2009-01-14 | 日立粉末冶金株式会社 | 高耐食性ステンレス焼結部材の製造方法 |
JP2006213984A (ja) | 2005-02-07 | 2006-08-17 | Tdk Corp | 超磁歪材料及びその製造方法 |
JP4957204B2 (ja) | 2006-11-22 | 2012-06-20 | Jfeスチール株式会社 | 粉末冶金用鉄基粉末 |
WO2009075042A1 (ja) | 2007-12-13 | 2009-06-18 | Jfe Steel Corporation | 粉末冶金用鉄基粉末 |
JP5247329B2 (ja) * | 2008-09-25 | 2013-07-24 | 日立粉末冶金株式会社 | 鉄系焼結軸受およびその製造方法 |
US20110175013A1 (en) * | 2008-10-01 | 2011-07-21 | Takeshi Takahashi | Composite magnetic material and process for producing the composite magnetic material |
-
2010
- 2010-05-26 JP JP2010120175A patent/JP5604981B2/ja active Active
- 2010-05-27 CA CA2762898A patent/CA2762898C/en active Active
- 2010-05-27 CN CN2010800232314A patent/CN102448641A/zh active Pending
- 2010-05-27 EP EP10780688.7A patent/EP2436462B1/en active Active
- 2010-05-27 CN CN201410502822.XA patent/CN104308141B/zh not_active Expired - Fee Related
- 2010-05-27 KR KR1020117027349A patent/KR101352883B1/ko active IP Right Grant
- 2010-05-27 WO PCT/JP2010/059402 patent/WO2010137735A1/ja active Application Filing
- 2010-05-27 US US13/320,391 patent/US8603212B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60218403A (ja) * | 1984-04-11 | 1985-11-01 | ブライシユタール・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウング | 弁座環の製造方法 |
JPH07188803A (ja) * | 1993-11-01 | 1995-07-25 | Ufec Universal Fusion Energ Co Sa | 高靱性セラミック/金属複合体及びその製造方法 |
JPH09287002A (ja) * | 1996-04-23 | 1997-11-04 | Kawasaki Steel Corp | 粉末冶金用混合粉 |
JP2002515542A (ja) | 1998-05-15 | 2002-05-28 | ホガナス アクチボラゲット | 流動剤含有冶金用鉄基組成物及びその使用方法 |
JP2001059147A (ja) * | 1999-06-11 | 2001-03-06 | Nippon Steel Corp | 耐磨耗性焼結外層を有する鋼製複合部材 |
JP2004339598A (ja) * | 2003-05-19 | 2004-12-02 | Honda Motor Co Ltd | 複合軟磁性材料の製造方法 |
JP2007031744A (ja) | 2005-07-22 | 2007-02-08 | Kobe Steel Ltd | 粉末冶金用混合粉末 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2436462A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150283609A1 (en) * | 2012-12-17 | 2015-10-08 | Diamet Corporation | Raw material powder for powder metallurgy |
US9844811B2 (en) * | 2012-12-17 | 2017-12-19 | Diamet Corporation | Raw material powder for powder metallurgy |
Also Published As
Publication number | Publication date |
---|---|
CA2762898C (en) | 2015-11-24 |
US8603212B2 (en) | 2013-12-10 |
KR101352883B1 (ko) | 2014-01-17 |
US20120111146A1 (en) | 2012-05-10 |
EP2436462A4 (en) | 2014-04-30 |
CN104308141A (zh) | 2015-01-28 |
EP2436462B1 (en) | 2019-08-21 |
KR20120026493A (ko) | 2012-03-19 |
CA2762898A1 (en) | 2010-12-02 |
JP2011006786A (ja) | 2011-01-13 |
CN102448641A (zh) | 2012-05-09 |
CN104308141B (zh) | 2019-09-27 |
EP2436462A1 (en) | 2012-04-04 |
JP5604981B2 (ja) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010137735A1 (ja) | 粉末冶金用鉄基混合粉末 | |
WO2010150920A1 (ja) | 粉末冶金用鉄基混合粉末 | |
JP2010265454A (ja) | 潤滑剤複合物及びその製造方法 | |
JP5617529B2 (ja) | 粉末冶金用鉄基混合粉末 | |
JP5170390B2 (ja) | 粉末冶金用鉄基混合粉末 | |
TW200533760A (en) | Metal powder composition and preparation thereof | |
WO2016190039A1 (ja) | 鉄基粉末冶金用混合粉及びそれを用いて作製した焼結体 | |
JP6480266B2 (ja) | 鉄基粉末冶金用混合粉及びその製造方法、並びに、焼結体 | |
JP6480265B2 (ja) | 鉄基粉末冶金用混合粉及びその製造方法並びに焼結体及びその製造方法 | |
CN1662329A (zh) | 含有粘合润滑剂的金属粉末组合物及含有硬脂酸甘油酯的粘合润滑剂 | |
JP5439926B2 (ja) | 粉末冶金用鉄基混合粉末 | |
CN1705533A (zh) | 通过高压压制制备铁基部件的方法 | |
JP5245728B2 (ja) | 粉末冶金用鉄基混合粉末 | |
CN111741824A (zh) | 粉末冶金用混合粉 | |
JP5223547B2 (ja) | 粉末冶金用鉄基混合粉末 | |
JP2024017984A (ja) | 粉末冶金用鉄基混合粉、鉄基焼結体、および焼結機械部品 | |
JP2010007176A (ja) | 粉末冶金用鉄基混合粉末 | |
JP2010007175A (ja) | 粉末冶金用鉄基混合粉末 | |
WO2018230568A1 (ja) | 粉末冶金用粉末混合物およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080023231.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10780688 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117027349 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2762898 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010780688 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13320391 Country of ref document: US |