WO2010137090A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2010137090A1 WO2010137090A1 PCT/JP2009/006620 JP2009006620W WO2010137090A1 WO 2010137090 A1 WO2010137090 A1 WO 2010137090A1 JP 2009006620 W JP2009006620 W JP 2009006620W WO 2010137090 A1 WO2010137090 A1 WO 2010137090A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- semiconductor chip
- chip
- semiconductor
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 276
- 239000000758 substrate Substances 0.000 claims description 40
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 238000007789 sealing Methods 0.000 claims description 7
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 238000009413 insulation Methods 0.000 description 9
- 238000002955 isolation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/645—Inductive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0655—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05554—Shape in top view being square
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/1015—Shape
- H01L2924/1016—Shape being a cuboid
- H01L2924/10161—Shape being a cuboid with a rectangular active surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to a semiconductor device, and more particularly to a semiconductor device that transmits a signal while preventing a current from flowing between two circuits.
- optical isolation One method of transmitting signals in a state where the two circuits are insulated is optical isolation.
- a signal is transmitted by light using a photocoupler in which a light emitting diode and a photodiode are combined.
- the input side and the output side can be electrically insulated.
- the photocoupler uses a light emitting diode, it is inferior in reliability and the signal transmission speed is not sufficient.
- a magnetically coupled isolator for example, a first semiconductor chip on which a first inductor is formed and a second semiconductor chip on which a second inductor is formed are opposed to the first inductor and the second inductor.
- a method of arranging and insulatively see, for example, Patent Document 1). In this way, the first semiconductor chip and the second semiconductor chip are coupled via the transformer. Therefore, it is possible to transmit a signal between the two semiconductor chips while ensuring insulation between the two semiconductor chips.
- the method of forming an isolator by combining the two semiconductor chips has the following problems. First, in order to arrange two semiconductor chips in a three-dimensional manner so that the inductors face each other, it is necessary to use a special lead frame. In addition, it is necessary to accurately align the inductors separated into two semiconductor chips so that they face each other. Similar problems occur in the case of capacitively coupled isolators.
- the present disclosure solves the above-described problems, and can realize a semiconductor device that insulates current from flowing between two semiconductor chips and transmits signals between the two semiconductor chips without using a special lead frame.
- the purpose is to.
- the exemplary semiconductor device has a configuration in which at least a part of an isolator is formed on a wiring board.
- an exemplary semiconductor device includes a first semiconductor chip having a first circuit, a second semiconductor chip having a second circuit, and a first semiconductor chip mounted on a mounting surface.
- An isolator having a first portion and a second portion that are insulated from each other and transmitting a signal between the first portion and the second portion, The first part is electrically connected to the first circuit, the second part is electrically connected to the second circuit, and the first semiconductor chip and the second semiconductor chip are insulated from each other.
- the isolator is formed on the wiring board. For this reason, the mounting of the semiconductor chip is facilitated as compared with the case where the first semiconductor chip and the second semiconductor chip each having a part of the isolator are three-dimensionally arranged on the lead frame.
- the first portion is formed on the wiring substrate
- the second portion is formed on or on the wiring substrate
- the first semiconductor chip and the second semiconductor chip are: You may each mount in the area
- the wiring board may include a plurality of wiring layers, and the first portion and the second portion may be inductors formed to face each other on different wiring layers.
- the first part is an inductor formed in the wiring layer of the wiring board, and the second part is opposed to the first part via the insulating film on the mounting surface.
- a formed inductor may be used.
- the first portion and the second portion may be electrodes arranged so as to face each other with an insulating film interposed therebetween.
- one of the first part and the second part may be an inductor, and the other of the first part and the second part may be a magnetic sensor.
- the magnetic sensor may be a giant magnetoresistive element or a magnetoresistive element.
- the first semiconductor chip has a first chip pad electrically connected to the first circuit, and the second semiconductor chip is electrically connected to the second circuit.
- the wiring board is formed on the surface opposite to the mounting surface, and the first chip connection pad and the second chip connection pad are formed on the mounting surface and insulated from each other.
- the first chip connection pad may be electrically connected to the first chip pad, and the second chip connection pad may be electrically connected to the second chip pad.
- the wiring board includes a first isolator connection pad formed on the mounting surface and connected to the first portion, and a second isolator connection pad connected to the second portion.
- One isolator connection pad may be electrically connected to the corresponding first chip pad
- the second isolator connection pad may be electrically connected to the corresponding second chip pad.
- the plurality of isolators correspond to at least a second portion isolated from each other and a second portion of the plurality of second semiconductor chips.
- the second semiconductor chip may be electrically connected to the second circuit of the second semiconductor chip, and the plurality of second semiconductor chips may be mounted on regions of the wiring board that are insulated from each other.
- the illustrated semiconductor device may further include a package for sealing the first semiconductor chip and the second semiconductor chip, and the package may be a resin-sealed package.
- the second semiconductor chip is mounted on the wiring substrate at a distance from the first semiconductor chip, the first portion is formed on the wiring substrate, and the second portion is The first portion and the second portion may be configured to face each other with an insulating film interposed therebetween.
- the wiring board is electrically connected to the first chip connection pad electrically connected to the first circuit, insulated from the first chip connection pad, and electrically connected to the second circuit.
- the second semiconductor chip has a second pad electrically connected to the second circuit, and the second circuit and the second pad are the second pad in the second semiconductor chip.
- the second circuit and the second portion are formed on the surface opposite to the surface on which the second portion is formed, and the second circuit and the second portion may be electrically connected via a through via penetrating the second semiconductor chip. Good.
- the second semiconductor chip has a second pad electrically connected to the second circuit, and the second circuit is in the second semiconductor chip in the second semiconductor chip.
- the second portion is formed on the surface where the second portion is formed, and the second pad is formed on the surface of the second semiconductor chip opposite to the surface where the second portion is formed. This pad may be electrically connected through a through via penetrating the second semiconductor chip.
- the second semiconductor chip and the wiring substrate are integrated, and the first portion is formed on the surface of the first semiconductor chip opposite to the surface on which the first circuit is formed, The second portion is formed on the surface of the second semiconductor chip on which the second circuit is formed, and the first semiconductor chip has the second portion so that the first portion and the second portion face each other.
- the first circuit may be electrically connected to the first portion through a first through via that penetrates the first semiconductor chip. .
- the first portion may be formed on a surface of the first semiconductor chip opposite to the surface on which the first circuit is formed, and the first circuit in the first semiconductor chip. It may be formed on the surface on which is formed.
- the second portion may be formed on a surface of the second semiconductor chip on which the second circuit is formed, or the surface of the second semiconductor chip on which the second circuit is formed. It may be formed on the opposite surface.
- the example semiconductor device it is possible to realize a semiconductor device that insulates current from flowing between two semiconductor chips and transmits a signal between the two semiconductor chips without using a special lead frame.
- (A) And (b) shows the semiconductor device of 1st Embodiment, (a) is a top view, (b) is sectional drawing in the Ib-Ib line
- (A) And (b) shows the modification of the semiconductor device of 1st Embodiment, (a) is a top view, (b) is sectional drawing in the Vb-Vb line
- (A) And (b) shows the modification of the semiconductor device of 2nd Embodiment, (a) is a top view, (b) is sectional drawing in the VIIIb-VIIIb line
- (A) And (b) shows the modification of the semiconductor device of 2nd Embodiment, (a) is a top view, (b) is sectional drawing in the XIb-XIb line
- (A) And (b) shows the modification of the semiconductor device of 3rd Embodiment, (a) is a top view, (b) is sectional drawing in the XVb-XVb line
- (A) And (b) shows the modification of the semiconductor device of 3rd Embodiment, (a) is a top view, (b) is sectional drawing in the XVIIIb-XVIIIb line
- FIG. 1A and 1B show a semiconductor device according to the first embodiment.
- FIG. 1A shows a planar configuration
- FIG. 1B shows a cross-sectional configuration taken along line Ib-Ib in FIG. .
- the description of the resin mold that covers the first semiconductor chip and the second semiconductor chip is omitted. Also, the description of the pads, wirings, etc. is omitted so as to be illustrated.
- the first semiconductor chip 200 and the second semiconductor chip 300 are mounted on the mounting surface of the wiring substrate 100.
- the region where the first semiconductor chip 200 is mounted and the region where the second semiconductor chip 300 is mounted are insulated from each other.
- the wiring substrate 100 is a substrate made of an insulating material such as resin or ceramics, and has a plurality of wiring layers.
- an isolator 105 is formed on the wiring board 100.
- the isolator 105 includes a first inductor 105A that is a first portion and a second inductor 105B that is a second portion.
- the first inductor 105 ⁇ / b> A and the second inductor 105 ⁇ / b> B are formed so that their planar positions overlap with different wiring layers of the wiring board 100.
- the start end and the end end of the first inductor 105A are electrically connected to the first isolator connection pad 111 via the wiring 108, respectively.
- the start end and the end end of the second inductor 105B are electrically connected to the second isolator connection pad 112 via the wiring 109, respectively.
- the first isolator connection pad 111 and the second isolator connection pad 112 are insulated from each other.
- the first chip connection pad 114 and the second chip connection pad 115 are formed on the mounting surface of the wiring board 100.
- External connection pads 116 are formed on the surface (back surface) opposite to the mounting surface of the wiring substrate 100.
- the first chip connection pad 114 and the second chip connection pad are a wiring formed in the wiring layer of the wiring substrate 100, a through via 117 penetrating the wiring substrate 100, and a back wiring 118 formed on the back surface of the wiring substrate 100. Etc., the corresponding external connection pads 116 are connected.
- a bump 119 is formed on the external connection pad 116.
- the first chip connection pad 114 and the second chip connection pad are insulated from each other. Since it is a wiring board, a plurality of insulated regions can be easily formed, and it is easy to insulate the first chip connection pad 114 from the second chip connection pad 115.
- the first semiconductor chip 200 and the second semiconductor chip 300 are mounted on the mounting surface of the wiring board 100.
- the first semiconductor chip 200 includes a first chip 201 that is electrically connected to the first circuit 201 and the first circuit 201 through wiring (not shown).
- the first chip pads 203 are electrically connected to the corresponding first chip connection pads 114 and first isolator connection pads 111 by bonding wires 110.
- the second semiconductor chip 300 includes a second chip 301 that is electrically connected to the second circuit 301 and the second circuit 301 through wiring (not shown).
- the second chip pads 303 are electrically connected to the corresponding second chip connection pads 115 and second isolator connection pads 112 by bonding wires 110.
- the first semiconductor chip 200 and the second semiconductor chip 300 mounted on the mounting surface of the wiring substrate 100 are covered with a sealing resin to form a resin sealing package.
- a sealing resin to form a resin sealing package.
- the package is not limited to the resin-sealed package, and may be a ceramic package or a metal package.
- the first circuit 201 formed in the first semiconductor chip 200 and the second circuit 301 formed in the second semiconductor chip 300 are insulated, and the first circuit No current flows between 201 and the second circuit 301.
- a current change is caused in the first inductor 105A
- a magnetic field change occurs, thereby causing a current change in the second inductor 105B.
- a signal can be transmitted without passing a current between the first inductor 105A and the second inductor 105B.
- FIG. 1 shows an example in which the first inductor 105A and the second inductor 105B are formed in the wiring layer of the wiring board 100.
- the insulating film that insulates the first inductor 105A and the second inductor 105B is an insulating film of the wiring layer.
- an insulating film different from the insulating film of the wiring layer may be used between the first inductor 105A and the second inductor 105B.
- the first inductor 105A may be the outermost wiring of the wiring substrate 100
- the second inductor 105B may be formed on the insulating film 103 formed on the wiring substrate 100. .
- FIGS. 1 to 4 show an example in which the isolator 105 is formed by the first inductor 105A and the second inductor 105B.
- the isolator 105 may be formed by combining the first inductor 105A and the giant magnetoresistive element (GMR) 105C.
- GMR giant magnetoresistive element
- MR magnetoresistive element
- an isolator 105 made of a capacitive element may be formed.
- the isolator 105 may be formed by the first plate electrode 105D and the second plate electrode 105E as shown in FIG.
- the insulating film 103 becomes a capacitive insulating film of the capacitive element.
- the isolator may be formed on the wiring layer of the wiring board as shown in FIG.
- the exemplary semiconductor device can be applied to any application that requires signal or power source isolation.
- the first circuit 201 is an oscillation circuit and its control circuit
- the second circuit 301 is a rectifier circuit and a constant voltage circuit
- an insulated DC-DC converter circuit DC-DC converter
- both the first circuit 201 and the second circuit 301 are buffer circuits and the first circuit 201 is connected to an analog-digital conversion circuit (AD converter) or the like, an isolated input / output circuit can be configured. Can do.
- a conversion circuit or the like can be incorporated in the first circuit 201.
- a sensor such as temperature, pressure, or flow rate can be incorporated in the second circuit 301. Even if it is incorporated in a single semiconductor device, the sensor and the conversion circuit are insulated, so that it is possible to prevent the control circuit from becoming abnormal or damaged when an abnormality occurs in the sensor. . In addition, the influence of noise can be reduced.
- the AD converter but also other conversion circuits or amplifier circuits and sensors can be combined. Further, it can be used for insulation of a serial interface or parallel interface of a computer.
- the control circuit can be protected from a surge caused by the motor. In addition to the motor, it can be applied to a control circuit of a plasma display.
- the illustrated semiconductor device can be easily multi-channeled and has an advantage that it can be easily applied to these applications.
- 1 to 6 show an example in which the first semiconductor chip and the second semiconductor chip are mounted on the wiring board by wire bonding, but it may be flip chip mounting or the like.
- FIGS. 7A and 7B show a semiconductor device according to the second embodiment.
- FIG. 7A shows a planar configuration
- FIG. 7B shows a cross-sectional configuration taken along line VIIb-VIIb in FIG. .
- the description of the resin mold is omitted.
- the description of the pads, wirings, etc. is omitted so as to be illustrated.
- the first semiconductor chip 440 and the second semiconductor chip 460 are mounted on the mounting surface of the wiring substrate 400.
- the wiring substrate 400 is a substrate made of an insulating material such as resin or ceramics, and has a plurality of wiring layers.
- a first inductor 405 is formed in the wiring layer on the mounting surface side of the wiring board 400.
- the first inductor 405 constitutes the isolator 15 together with the second inductor 465 formed in the second semiconductor chip 460. Accordingly, the first inductor 405 becomes the first part of the isolator 15, and the second inductor 465 becomes the second part of the isolator 15.
- the first semiconductor chip 440 is electrically connected to the first semiconductor substrate 441 through the first circuit 443 and the first circuit 443 formed on the first surface of the first semiconductor substrate 441 and the wiring 448.
- the first pad 447 is connected to the first pad 447.
- the second semiconductor chip 460 is electrically connected to the second semiconductor substrate 461, the second circuit 463 formed on the first surface of the second semiconductor substrate 461, the second circuit 463, and the wiring 468.
- the first circuit 443 and the second circuit 463 may be any circuit.
- the second circuit 463 may be a sensor that detects temperature, pressure, flow rate, or the like
- the first circuit 443 may be a signal processing circuit that amplifies and converts the output of the sensor.
- a first chip connection pad 401 and a second chip connection pad 402 insulated from the first chip connection pad 401 are provided on the wiring board 400.
- the first chip connection pad 401 and the first pad 447 are electrically connected by a wire 410.
- the second chip connection pad 402 and the second pad 467 are electrically connected by a wire 410.
- a part of the first chip connection pad 401 is electrically connected to the first inductor 405 through the wiring 408.
- the rest of the first chip connection pad 401 and the second chip connection pad 402 are electrically connected to the external connection pad 403 formed on the back surface of the wiring board 400 through the through via 409 formed in the wiring board 400.
- a bump 412 is connected to the external connection pad 403.
- the first circuit 443 is electrically connected to the first inductor 405.
- at least a part of the wiring 408 is formed three-dimensionally over a plurality of layers in order to connect to the start end and end end of the first portion which is a spiral inductor.
- a back surface wiring 420 is formed on the back surface side of the wiring substrate 400.
- the first inductor 405 is opposed to the second inductor 465 formed on the second semiconductor substrate 461 with the insulating film 407 interposed therebetween. For this reason, the first inductor 405 and the second inductor 465 function as a microtransformer. Therefore, for example, when a change in the magnetic field occurs due to a change in current in the first inductor 405, the change in the magnetic field causes a change in current in the second inductor 465. As a result, it is possible to realize an isolator 15 that is electrically insulated so that no current flows and can transmit signals. As a result, it is possible to realize the isolator 15 that is insulated so that no current flows between the first inductor 405 and the second inductor 465 and can transmit a signal.
- the first circuit 443 and the second circuit 463 are insulated and can transmit signals. Insulation here means that no direct current flows between the two circuits. For this reason, even when the reference potentials of the first circuit 443 and the second circuit 463 are different, a destructive ground loop is not formed. Further, the first circuit 443 can be protected even when a current surge or the like may occur in the second circuit 463.
- the first inductor 405 is formed on the wiring substrate 400, and the second inductor 465 is formed on the second semiconductor chip 460.
- the first inductor 405 can be formed using a normal process for forming wiring on the wiring board 400.
- the second inductor 465 can be formed by a normal semiconductor process. Therefore, the first inductor 405 and the second inductor 465 can be formed with high accuracy, and the size can be easily reduced.
- the withstand voltage between the first inductor 405 and the second inductor 465 can be easily changed by changing the film thickness of the insulating film 407.
- the insulating film 407 may be any film as long as the first inductor 405 and the second inductor 465 can be insulated.
- a die bonding film it is possible to easily mount the second semiconductor chip 460 on the wiring substrate 400 while ensuring insulation between the first inductor 405 and the second inductor 465.
- a desired breakdown voltage can be easily realized by changing the film thickness of the die bonding film.
- the semiconductor film can be formed with high reproducibility by making the insulating film 407 uniform in thickness. Note that the insulating film may be formed by applying a paste-like material instead of using the film-like insulating film.
- FIG. 7 shows an example in which the second inductor 465 and the second circuit 463 are formed on different surfaces of the second semiconductor substrate 461.
- the second inductor 465 and the second circuit 463 may be formed on the same surface of the second semiconductor substrate 461.
- the second inductor 465 and the second circuit 463 are electrically connected via the wiring 468, and the second circuit 463 and the second pad 467 are electrically connected via the through via 469. Is done.
- the second semiconductor chip 460 can be flip-chip mounted.
- the second circuit 463, the second inductor 465, and the second pad 467 are formed on the same surface of the second semiconductor substrate 461, and the second pad 467 and the second chip connection pad 402 are formed. May be connected by a bump 471.
- An insulating film 407 is preferably formed between the first inductor 405 and the second inductor 465 in order to ensure insulation. However, if sufficient insulation between the first inductor 405 and the second inductor 465 can be secured, the insulating film 407 is not necessary.
- a micro-transformer is formed with the first portion of the isolator 15 as the first inductor 405 and the second portion as the second inductor 465.
- the first part or the second part may be a magnetic sensor.
- the second portion may be a magnetic sensor 475
- the isolator 15 may be formed by a combination of the first inductor 405 and the magnetic sensor 475.
- the magnetic sensor 475 may be a giant magnetoresistive element (GMR), a magnetoresistive element (MR), a Hall element, or the like.
- the first part may be a magnetic sensor and the second part may be an inductor.
- the first portion may be a first flat plate electrode 425
- the second portion may be a second flat plate electrode 485
- the isolator 15 may be a capacitive element.
- the insulating film 13 is a capacitive insulating film.
- the isolator 15 is a combination of an inductor and a magnetic sensor or a capacitive element, a configuration as shown in FIG. 8 or FIG. 9 is possible.
- a plurality of isolators 15 may be formed as shown in FIG.
- a plurality of first inductors 405 may be formed on the wiring substrate 400
- a plurality of second inductors 465 may be formed on the second semiconductor chip 460.
- a plurality of second semiconductor chips 460 may be arranged on the wiring substrate 400.
- a plurality of first inductors 405 may be formed on the wiring substrate 400
- the second semiconductor chip 460 having the second inductor 465 may be disposed on the first inductor 405.
- the isolator 15 may be a combination of an inductor and a magnetic sensor or a capacitive element instead of the microtransformer.
- the exemplary semiconductor device can be applied to any application that requires signal or power source isolation.
- the first circuit 443 is an oscillation circuit and its control circuit
- the second circuit 463 is a rectifier circuit and a constant voltage circuit
- an insulated DC-DC converter circuit DC-DC converter
- first circuit 443 and the second circuit 463 are both buffer circuits and the first circuit 443 is connected to an analog-digital conversion circuit (AD converter) or the like, an insulated input / output circuit can be formed. Can do. In this case, a conversion circuit or the like can be incorporated in the first circuit 443. In addition, a sensor such as temperature, pressure, or flow rate can be incorporated in the second circuit 463. Even if incorporated in one semiconductor device, since the sensor and the conversion circuit are insulated, it is possible to prevent the control circuit from being abnormal or damaged when an abnormality occurs in the sensor. . In addition, the influence of noise can be reduced. Not only the AD converter but also other conversion circuits or amplifier circuits and sensors can be combined. Further, it can be used for insulation of a serial interface or parallel interface of a computer.
- AD converter analog-digital conversion circuit
- the control circuit can be protected from a surge caused by the motor. In addition to the motor, it can be applied to a control circuit of a plasma display.
- the illustrated semiconductor device can be easily multi-channeled and has an advantage that it can be easily applied to these applications.
- the wiring substrate 400, the first semiconductor chip 440, and the second semiconductor chip 460 are accommodated in one package.
- the first semiconductor chip 440 and the second semiconductor chip 460 may be covered with a sealing resin and sealed with the resin. By performing resin sealing or the like, deterioration of the first semiconductor chip 440 and the second semiconductor chip 460 can be prevented.
- the isolator 15 formed by the wiring substrate 400 and the second semiconductor chip 460 can be prevented from being deteriorated.
- the mechanical strength of the semiconductor device can be improved.
- a ceramic package or a can package may be used instead of the resin-sealed package.
- FIGS. 14A and 14B show a semiconductor device according to the third embodiment.
- FIG. 14A shows a planar configuration
- FIG. 14B shows a cross-sectional configuration taken along line XIVb-XIVb in FIG. .
- the resin mold is not shown. Also, the description of the pads, wirings, etc. is omitted so as to be illustrated.
- the first semiconductor chip 500 is stacked on the second semiconductor chip 540 with the insulating film 33 interposed therebetween.
- the isolator 15 is formed by the inductor formed in the first semiconductor chip 500 and the inductor formed in the second semiconductor chip 540.
- the first semiconductor chip 500 has a first circuit 501 formed on a first surface which is an element formation surface such as a silicon substrate.
- the first circuit 501 is electrically connected to the first pad 503 formed on the first surface via the wiring 508. Although only two first pads 503 are shown in FIG. 14, three or more first pads 503 may be formed.
- a first inductor 505 is formed on the second surface that is the surface opposite to the element formation surface of the first semiconductor chip 500.
- the first inductor 505 serves as a first part constituting the isolator 15.
- the start end and the end end of the first inductor 505 that is a spiral inductor are each drawn out to the first surface through a through via 507 that penetrates the first semiconductor chip 500, and further through the wiring 509 to the first circuit. 501 is electrically connected.
- the second semiconductor chip 540 includes a second circuit 541 formed on a first surface which is an element formation surface such as a silicon substrate, a second pad 543, and a second inductor 545. .
- the second pad 543 is electrically connected to the second circuit 541 through a wiring 548. Although only two second pads 543 are illustrated in FIG. 14, three or more second pads 543 may be formed.
- the second inductor 545 serves as a second part constituting the isolator 15.
- the start end and the end end of the second inductor 545 are electrically connected to the second circuit 541 via the wiring 549, respectively. Since it is necessary to connect the wiring 549 to the start end and the end end of the second inductor 545 which is a spiral inductor, at least a part of the wiring 549 is formed in a different layer from the second inductor 545.
- the second semiconductor chip 540 is bonded onto the die pad 37a of the lead frame 37.
- the first pads 503 are electrically connected to the leads 37b insulated from the die pad 37a through the wires 38, respectively.
- the second pad 543 is electrically connected to the lead 37 c through the wire 38.
- the first semiconductor chip 500 is mounted on the second semiconductor chip 540 with the insulating film 33 interposed therebetween so that the first inductor 505 and the second inductor 545 face each other. Therefore, the first inductor 505 and the second inductor 545 form a micro transformer. Therefore, for example, when a change in the magnetic field occurs due to a change in current in the first inductor 505, the change in the magnetic field causes a change in current in the second inductor 545. As a result, it is possible to realize an isolator 15 that is electrically insulated so that no current flows and can transmit signals.
- the first circuit 501 and the second circuit 541 are insulated and can transmit signals. Insulation here means that no direct current flows between the two circuits. For this reason, even when the reference potentials of the first circuit 501 and the second circuit 541 are different, a destructive ground loop is not formed. Further, the second circuit 541 can be protected even when there is a possibility that a current surge occurs in the first circuit 501. Note that the second semiconductor chip 540 can be mounted on a wiring board or the like instead of the lead frame.
- the illustrated semiconductor device has a through via 507, and the first inductor 505 and the first pad 503 can be formed on the opposite surfaces of the first semiconductor chip 500. For this reason, it is easy to pull out the wiring from the first semiconductor chip 500. Further, the first semiconductor chip 500 only needs to be laminated on the second semiconductor chip 540 via the insulating film 33, and the first inductor 505 and the second inductor 545 can be easily aligned. .
- the insulating film 33 may be any material as long as the first inductor 505 and the second inductor 545 can be insulated. For example, when a die bonding film is used, it is possible to easily bond the first semiconductor chip 500 and the second semiconductor chip. Further, the film thickness can be uniform and can be formed with good reproducibility.
- the insulating film 33 may be formed so as to cover the entire first surface of the second semiconductor chip 540. Note that the insulating film may be formed by applying a paste-like material instead of using a film-like insulating film.
- the isolator 15 is formed by two inductors. However, the isolator 15 only needs to be a circuit that can cut off a current between the first circuit 501 and the second circuit 541 and transmit a signal. Therefore, as shown in FIG. 15, the second portion of the isolator 15 may be replaced with an inductor and a magnetic sensor 555 such as a giant magnetoresistive element (GMR).
- GMR giant magnetoresistive element
- the magnetic sensor 555 When the magnetic sensor 555 is a GMR, four wirings 549 for connecting the second circuit 541 and the magnetic sensor 555 are usually required. In this case, four wires may be formed in the same layer as the magnetic sensor 555 as shown in FIG. 15, or at least a part thereof may be formed in a different layer as shown in FIG.
- the magnetic sensor 555 may be a magnetoresistive element (MR) or a Hall element instead of the GMR.
- the first portion may be a magnetic sensor and the second portion may be an inductor.
- the isolator 15 may be formed of a capacitive element instead of the inductor.
- the first portion and the second portion may be the first plate electrode 525 and the second plate electrode 565, respectively.
- the insulating film 33 is a capacitive insulating film.
- the first inductor 505 is formed on the surface of the first semiconductor chip 500 opposite to the first circuit 501.
- the first inductor 505 can be formed on the entire back surface of the first semiconductor chip 500 and the size of the first semiconductor chip 500 can be reduced.
- the first inductor 505 and the first circuit 501 may be formed on the same surface of the first semiconductor chip 500.
- an isolator is formed by a combination of an inductor and a magnetic sensor and when an isolator is formed by a capacitive element.
- the first part is a magnetic sensor using a semiconductor element, a configuration in which the magnetic sensor is formed on the same surface as the first circuit 501 of the first semiconductor chip 500 is useful.
- the second inductor 545 may be formed on the surface opposite to the second circuit 541 and the second pad 543.
- the second pad 543 may be connected to the lead frame 37 by the bump 39 instead of the wire.
- a plurality of bumps are actually formed to constitute a ball grid array.
- Only one of the second circuit 541 and the second pad 543 may be formed on the surface opposite to the second inductor 545. The same configuration can be obtained when the isolator 15 is a combination of an inductor and a magnetic sensor and when it is a capacitive element.
- a plurality of isolators 15 may be formed as shown in FIG.
- a plurality of first inductors 505 may be formed on the first semiconductor chip 500 and a plurality of second inductors 545 may be formed on the second semiconductor chip 540.
- a plurality of first semiconductor chips 500 may be arranged on the second semiconductor chip 540.
- a plurality of second inductors 545 may be formed on the second semiconductor chip 540, and the first semiconductor chip 500 having the first inductor 505 may be disposed on the second inductor 545.
- the isolator 15 can be a combination of an inductor and a magnetic sensor or a capacitive element instead of the microtransformer.
- the exemplary semiconductor device can be applied to any application that requires signal or power source isolation.
- the second circuit 541 is an oscillation circuit and its control circuit
- the first circuit 501 is a rectifier circuit and a constant voltage circuit
- an insulated DC-DC converter circuit DC-DC converter
- both the first circuit 501 and the second circuit 541 are buffer circuits and the second circuit is connected to an analog-digital conversion circuit (AD converter) or the like, an insulating input / output circuit can be configured. it can. In this case, a conversion circuit or the like can be incorporated in the second circuit 541.
- the first circuit 501 can also incorporate sensors such as temperature, pressure, or flow rate. Even if incorporated in one semiconductor device, since the sensor and the conversion circuit are insulated, it is possible to prevent the control circuit from being abnormal or damaged when an abnormality occurs in the sensor. . In addition, the influence of noise can be reduced. Not only the AD converter but also other conversion circuits or amplifier circuits and sensors can be combined. Further, it can be used for insulation of a serial interface or parallel interface of a computer.
- the control circuit can be protected from a surge caused by the motor. In addition to the motor, it can be applied to a control circuit of a plasma display.
- the illustrated semiconductor device can be easily multi-channeled and has an advantage that it can be easily applied to these applications.
- the exemplary semiconductor device can realize a semiconductor device that insulates current from flowing between two semiconductor chips mounted on a wiring board and transmits a signal between the two semiconductor chips, and particularly as a semiconductor device such as a sensor. Useful.
- Insulating Film 15 Isolator 33 Insulating Film 37 Lead Frame 37a Die Pad 37b Lead 37c Lead 38 Wire 39 Bump 100 Wiring Board 101A Mounting Area 101B Mounting Area 103 Insulating Film 105 Isolator 105A First Inductor 105B Second Inductor 105C Giant Magnetoresistance Element 105D first plate electrode 105E second plate electrode 108 wiring 109 wiring 110 bonding wire 111 first isolator connection pad 112 second isolator connection pad 114 first chip connection pad 115 second chip connection pad 116 external connection Pad 117 Through-via 118 Back surface wiring 119 Bump 120 Sealing resin 200 First semiconductor chip 201 First circuit 203 One chip pad 300 Second semiconductor chip 301 Second circuit 303 Second chip pad 400 Wiring board 401 First chip connection pad 402 Second chip connection pad 403 External connection pad 405 First inductor 407 Insulating film 408 wiring 409 penetrating via 410 wire 412 bump 420 back surface wiring 425 first flat plate electrode 440 first semiconductor chip 441 first semiconductor substrate 443 first circuit 4
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
半導体装置は、第1の回路201を有する第1の半導体チップ200と、第2の回路301を有する第2の半導体チップ300と、第1の半導体チップ200を搭載面に搭載し、アイソレータ105の少なくとも一部を有する配線基板100とを備えている。アイソレータ105は、互いに絶縁された第1の部分105Aと第2の部分105Bとを有し且つ第1の部分105Aと第2の部分105Bとの間に信号を伝達する。第1の部分105Aは第1の回路201と電気的に接続され、第2の部分105Bは第2の回路301と電気的に接続されている。第1の半導体チップ200と第2の半導体チップ300とは互いに絶縁されている。
Description
本発明は半導体装置に関し、特に2つの回路間に電流が流れることを防止しつつ信号を伝達する半導体装置に関する。
電位の異なる2つの回路間において信号伝達を行う場合、2つの回路間において電流が流れることを防止すると共に信号を伝達する必要がある。また、近年各種の自動制御を行うために、種々のセンサの出力をシーケンサ等の制御機器に入力することが不可欠となっている。しかし、センサの出力を直接制御機器に入力すると、ノイズ等によりセンサに不具合が生じた場合に、制御機器が誤動作したり、破壊されたりするおそれがある。このため、センサと制御機器との間を絶縁することが重要となっている。
2つの回路間が絶縁された状態において信号を伝達する方法の一つに光アイソレーションがある。光アイソレーションは、発光ダイオードとフォトダイオードとを組み合わせたフォトカップラ等を用いて光により信号を伝達する。このため、入力側と出力側とを電気的に絶縁することができる。しかし、フォトカップラは発光ダイオードを用いるため信頼性に劣り、信号の伝達速度も十分ではない。また、サイズの縮小が困難であるという問題を有している。このため、磁界を用いる磁気結合型アイソレータや、静電容量を用いる容量結合型アイソレータ等が注目されている。
磁気結合型アイソレータとして、例えば第1のインダクタが形成された第1の半導体チップと、第2のインダクタが形成された第2の半導体チップとを、第1のインダクタと第2のインダクタとが対向するように絶縁して配置する方法がある(例えば、特許文献1を参照)。このようにすれば、第1の半導体チップと第2の半導体チップとは、トランスを介して結合される。このため、2つの半導体チップ間の絶縁を確保しつつ、2つの半導体チップ間で信号を伝達することが可能となる。
しかしながら、前記の2つの半導体チップを組み合わせてアイソレータを形成する方法には以下のような問題がある。まず、インダクタ同士が対向するように2つの半導体チップを立体的に配置するために、特殊なリードフレームを用いる必要がある。また、2つの半導体チップに別れたインダクタ同士が対向するように正確に位置合わせをする必要がある。同様の問題は、容量結合型のアイソレータの場合にも生じる。
また、リードフレームの場合、ダイパットを支持する制約から複数の絶縁分離領域を形成することが困難であり、互いに絶縁された複数のアイソレータを一つの半導体パッケージに収めることが困難である。
本開示は、前記の問題を解決し、特殊なリードフレームを用いることなく2つの半導体チップ間に電流が流れないように絶縁し且つ2つの半導体チップ間に信号を伝達する半導体装置を実現できるようにすることを目的とする。
前記の目的を達成するため、例示の半導体装置は、アイソレータの少なくとも一部が配線基板に形成された構成とする。
具体的に、例示の半導体装置は、第1の回路を有する第1の半導体チップと、第2の回路を有する第2の半導体チップと、第1の半導体チップを搭載面に搭載し、アイソレータの少なくとも一部を有する配線基板とを備え、アイソレータは、互いに絶縁された第1の部分と第2の部分とを有し且つ第1の部分と第2の部分との間に信号を伝達し、第1の部分は第1の回路と電気的に接続され、第2の部分は第2の回路と電気的に接続され、第1の半導体チップと第2の半導体チップとは互いに絶縁されている。
例示の半導体装置は、アイソレータの少なくとも一部が配線基板に形成されている。このため、それぞれがアイソレータの一部を有する第1の半導体チップと第2の半導体チップとを、リードフレームの上に立体的に配置する場合と比べ、半導体チップの実装が容易となる。
例示の半導体装置において、第1の部分は、配線基板に形成され、第2の部分は、配線基板に又は配線基板の上に形成され、第1の半導体チップと第2の半導体チップとは、配線基板の互いに絶縁された領域にそれぞれ搭載されていてもよい。
例示の半導体装置において、配線基板は複数の配線層を有し、第1の部分及び第2の部分は、互いに異なる配線層に互いに対向するように形成されたインダクタとしてもよい。
例示の半導体装置において、第1の部分は、配線基板の配線層に形成されたインダクタであり、第2の部分は、搭載面の上に絶縁膜を介して第1の部分と対向するように形成されたインダクタとしてもよい。
例示の半導体装置において、第1の部分及び第2の部分は、絶縁膜を介して互いに対向するように配置された電極としてもよい。
例示の半導体装置において、第1の部分及び第2の部分の一方はインダクタであり、第1の部分及び第2の部分の他方は磁気センサとしてもよい。この場合において、磁気センサは、巨大磁気抵抗素子又は磁気抵抗素子としてもよい。
例示の半導体装置において、第1の半導体チップは、第1の回路と電気的に接続された第1のチップパッドを有し、第2の半導体チップは、第2の回路と電気的に接続された第2のチップパッドを有し、配線基板は、搭載面に形成され、互いに絶縁された第1のチップ接続パッド及び第2のチップ接続パッドと、搭載面と反対側の面に形成された複数の外部接続パッドと、第1のチップ接続パッド及び第2のチップ接続パッドと対応する外部接続パッドとをそれぞれ接続する貫通ビアと、複数の外部接続パッドにそれぞれ形成された複数のバンプとを有し、第1のチップ接続パッドは、第1のチップパッドと電気的に接続され、第2のチップ接続パッドは、第2のチップパッドと電気的に接続されていてもよい。
例示の半導体装置において、配線基板は、搭載面に形成され、第1の部分と接続された第1のアイソレータ接続パッド及び第2の部分と接続された第2のアイソレータ接続パッドを有し、第1のアイソレータ接続パッドは、対応する第1のチップパッドと電気的に接続され、第2のアイソレータ接続パッドは、対応する第2のチップパッドと電気的に接続されていてもよい。
例示の半導体装置において、アイソレータ及び第2の半導体チップは複数であり、複数のアイソレータは、少なくとも第2の部分が互いに絶縁され且つ第2の部分が複数の第2の半導体チップのうちの対応する第2の半導体チップの第2の回路と電気的に接続され、複数の第2の半導体チップは、配線基板の互いに絶縁された領域にそれぞれ搭載されていてもよい。
例示の半導体装置は、第1の半導体チップ及び第2の半導体チップを封止するパッケージをさらに備え、パッケージは、樹脂封止パッケージとしてもよい。
例示の半導体装置において、第2の半導体チップは、配線基板の上に第1の半導体チップと間隔をおいて搭載され、第1の部分は、配線基板に形成され、第2の部分は、第2の半導体チップに形成され、第1の部分と第2の部分とは、絶縁膜を介在させて相対する構成としてもよい。
例示の半導体装置において、配線基板は、第1の回路と電気的に接続された第1のチップ接続パッドと、第1のチップ接続パッドと絶縁され且つ第2の回路と電気的に接続された第2のチップ接続パッドと、第1の半導体チップ及び第2の半導体チップが搭載された面と反対側の面に形成された複数の外部接続パッドと、第1のチップ接続パッド及び第2のチップ接続パッドと対応する外部接続パッドとをそれぞれ電気的に接続する貫通ビアと、外部接続パッドにそれぞれ形成された複数のバンプとを有していてもよい。
例示の半導体装置において、第2の半導体チップは、第2の回路と電気的に接続された第2のパッドを有し、第2の回路及び第2のパッドは、第2の半導体チップにおける第2の部分が形成された面と反対側の面に形成され、第2の回路と第2の部分とは、第2の半導体チップを貫通する貫通ビアを介して電気的に接続されていてもよい。
例示の半導体装置において、第2の半導体チップは、第2の回路と電気的に接続された第2のパッドを有し、第2の回路は、第2の半導体チップにおける第2の半導体チップにおける第2の部分が形成された面に形成され、第2のパッドは、第2の半導体チップにおける第2の部分が形成された面と反対側の面に形成され、第2の回路と第2のパッドとは、第2の半導体チップを貫通する貫通ビアを介して電気的に接続されていてもよい。
例示の半導体装置において、第2の半導体チップと配線基板とは一体であり、第1の部分は、第1の半導体チップにおける第1の回路が形成された面と反対側の面に形成され、第2の部分は、第2の半導体チップにおける第2の回路が形成された面に形成され、第1の半導体チップは、第1の部分と第2の部分とが対向するように、第2の半導体チップの上に絶縁膜を介して搭載され、第1の回路は、第1の半導体チップを貫通する第1の貫通ビアを介して第1の部分と電気的に接続されていてもよい。
例示の半導体装置において、第1の部分は、第1の半導体チップにおける第1の回路が形成された面と反対側の面に形成されていてもよく、第1の半導体チップにおける第1の回路が形成された面に形成されていてもよい。
例示の半導体装置において、第2の部分は、第2の半導体チップにおける第2の回路が形成された面に形成されていてもよく、第2の半導体チップにおける第2の回路が形成された面と反対側の面に形成されていてもよい。
例示の半導体装置によれば、特殊なリードフレームを用いることなく2つの半導体チップ間に電流が流れないように絶縁し且つ2つの半導体チップ間に信号を伝達する半導体装置を実現できる。
(第1の実施形態)
図1(a)及び(b)は第1の実施形態に係る半導体装置であり、(a)は平面構成を示し、(b)は(a)のIb-Ib線における断面構成を示している。図1(a)において第1の半導体チップ及び第2の半導体チップを覆う樹脂モールドの記載は省略している。また、パッド及び配線等の記載も図示できるように省略して記載している。
図1(a)及び(b)は第1の実施形態に係る半導体装置であり、(a)は平面構成を示し、(b)は(a)のIb-Ib線における断面構成を示している。図1(a)において第1の半導体チップ及び第2の半導体チップを覆う樹脂モールドの記載は省略している。また、パッド及び配線等の記載も図示できるように省略して記載している。
図1に示すように例示の半導体装置は、配線基板100の搭載面に第1の半導体チップ200及び第2の半導体チップ300が搭載されている。第1の半導体チップ200が搭載された領域と第2の半導体チップ300が搭載された領域とは互いに絶縁されている。配線基板100は、樹脂又はセラミックス等の絶縁材料からなる基板であり、複数の配線層を有している。また、配線基板100にはアイソレータ105が形成されている。アイソレータ105は、第1の部分である第1のインダクタ105Aと第2の部分である第2のインダクタ105Bにより構成されている。第1のインダクタ105A及び第2のインダクタ105Bは、配線基板100の互いに異なる配線層に平面位置が重なるように形成されている。第1のインダクタ105Aの開始端及び終了端はそれぞれ、第1のアイソレータ接続パッド111と配線108を介して電気的に接続されている。第2のインダクタ105Bの開始端及び終了端はそれぞれ、第2のアイソレータ接続パッド112と配線109を介して電気的に接続されている。第1のアイソレータ接続パッド111と第2のアイソレータ接続パッド112とは互いに絶縁されている。
配線基板100の搭載面には、第1のチップ接続パッド114と第2のチップ接続パッド115とが形成されている。配線基板100の搭載面と反対側の面(裏面)には、外部接続パッド116が形成されている。第1のチップ接続パッド114及び第2のチップ接続パッドは、配線基板100の配線層に形成された配線、配線基板100を貫通する貫通ビア117及び配線基板100の裏面に形成された裏面配線118等を介して、対応する外部接続パッド116と接続されている。外部接続パッド116にはバンプ119が形成されている。第1のチップ接続パッド114と第2のチップ接続パッドとは互いに絶縁されている。配線基板であるため、容易に複数の絶縁された領域を形成でき、第1のチップ接続パッド114と第2のチップ接続パッド115とを絶縁することは容易である。
配線基板100の搭載面の上には、第1の半導体チップ200及び第2の半導体チップ300が搭載されている。第1の半導体チップ200は、第1の回路201と第1の回路201と配線(図示せず)を介して電気的に接続された第1のチップパッド203とを有している。第1のチップパッド203は、ボンディングワイヤー110により、対応する第1のチップ接続パッド114及び第1のアイソレータ接続パッド111と電気的に接続されている。第2の半導体チップ300は、第2の回路301と第2の回路301と配線(図示せず)を介して電気的に接続された第2のチップパッド303とを有している。第2のチップパッド303は、ボンディングワイヤー110により、対応する第2のチップ接続パッド115及び第2のアイソレータ接続パッド112と電気的に接続されている。
配線基板100の搭載面の上に搭載された第1の半導体チップ200及び第2の半導体チップ300は、封止樹脂に覆われ樹脂封止パッケージが形成されている。樹脂封止パッケージとすることにより、第1の半導体チップ200及び第2の半導体チップ300の酸化劣化を防止したり、機械強度を向上させたりすることができる。なお、樹脂封止パッケージに限らずセラミックスパッケージ又は金属パッケージ等であってもよい。
以上のような構成とすることにより、第1の半導体チップ200に形成された第1の回路201と第2の半導体チップ300に形成された第2の回路301とは絶縁され、第1の回路201と第2の回路301との間に電流は流れない。しかし、例えば第1のインダクタ105Aに電流変化を生じさせると、磁界変化が生じ、これにより第2のインダクタ105Bに電流変化が生じる。このため、第1のインダクタ105Aと第2のインダクタ105Bとの間に電流を流すことなく、信号を伝送することができる。
図1は、第1のインダクタ105A及び第2のインダクタ105Bを配線基板100の配線層に形成する例を示した。第1のインダクタ105Aと第2のインダクタ105Bとを絶縁する絶縁膜は、配線層の絶縁膜となっている。しかし、第1のインダクタ105Aと第2のインダクタ105Bとの間に配線層の絶縁膜とは別の絶縁膜を用いてもよい。また、図2に示すように、第1のインダクタ105Aを配線基板100の最表面の配線とし、第2のインダクタ105Bを配線基板100の上に形成した絶縁膜103の上に形成してもよい。
図3に示すように配線基板100に複数のアイソレータ105を形成することも可能である。このようにすることにより、多チャンネルの信号を伝送することが可能となる。また、図4に示すように、配線基板100の搭載領域101Aと搭載領域101Bとが互いに絶縁されるようにし、それぞれの搭載領域に第2の半導体チップ300を搭載すれば、一つのパッケージに複数の完全に独立した信号伝達チャンネルを形成することができる。アイソレータ105及び第2の半導体チップ300の数は3つ以上とすることも可能である。
図1~図4には、アイソレータ105を第1のインダクタ105Aと第2のインダクタ105Bとにより形成した例を示した。しかし、インダクタと磁気センサとを組み合わせてアイソレータを形成することも可能である。例えば、図5に示すように第1のインダクタ105Aと巨大磁気抵抗素子(GMR)105Cとを組み合わせてアイソレータ105を形成すればよい。また、GMRに代えて磁気抵抗素子(MR)としてもよい。
また、容量素子からなるアイソレータ105を形成してもよい。この場合には、図6に示すように第1の平板電極105Dと第2の平板電極105Eとによりアイソレータ105を形成すればよい。絶縁膜103は、容量素子の容量絶縁膜となる。リードフレームの場合、容量素子を形成することが困難であるが、配線基板を用いているため容量素子を容易に形成することができる。
アイソレータをインダクタと磁気センサとを組み合わせる場合及び容量素子とする場合においても、図1に示すように配線基板の配線層に形成する構成としてかまわない。
例示の半導体装置は、信号又は電源の絶縁分離が必要なあらゆる用途に適用することができる。例えば、第1の回路201を発振回路及びその制御回路とし、第2の回路301を整流回路及び定電圧回路とすれば、絶縁型の直流-直流変換回路(DC-DCコンバータ)を実現できる。
また、第1の回路201及び第2の回路301を共にバッファ回路とし、第1の回路201をアナログ-デジタル変換回路(ADコンバータ)等と接続すれば、絶縁型の入出力回路を構成することができる。この場合、第1の回路201に変換回路等を組み込むことも可能である。また、第2の回路301に温度、圧力又は流量等のセンサを組み込むことも可能である。一つの半導体装置に組み込まれていても、センサと変換回路とは絶縁されているため、センサに異常が生じた場合に制御回路にまで異常が生じたり、破損したりすることを防ぐことができる。また、ノイズの影響を低減することも可能となる。ADコンバータに限らず、他の変換回路又は増幅回路とセンサとを組み合わせることも可能である。さらに、コンピュータのシリアルインターフェース又はパラレルインターフェースの絶縁に用いることも可能である。
この他、第2の回路301をインバータ等からなるモータ駆動回路とし、第1の回路201をモータ駆動回路の制御回路とすれば、モータによるサージ等から制御回路を保護することが可能となる。また、モータ以外にプラズマディスプレイの制御回路等に応用することも可能である。
このような用途においては、複数の信号を伝達する必要がある場合が多い。例示の半導体装置は容易にマルチチャンネル化することができ、これらの用途への適用が容易であるという利点も有している。
図1~図6において第1の半導体チップ及び第2の半導体チップをワイヤーボンディングにより配線基板に搭載する例を示したが、フリップチップ実装等としてもよい。
(第2の実施形態)
図7(a)及び(b)は第2の実施形態に係る半導体装置であり、(a)は平面構成を示し、(b)は(a)のVIIb-VIIb線における断面構成を示している。図7において樹脂モールドの記載は省略している。また、パッド及び配線等の記載も図示できるように省略して記載している。
図7(a)及び(b)は第2の実施形態に係る半導体装置であり、(a)は平面構成を示し、(b)は(a)のVIIb-VIIb線における断面構成を示している。図7において樹脂モールドの記載は省略している。また、パッド及び配線等の記載も図示できるように省略して記載している。
図7に示すように例示の半導体装置は、配線基板400の搭載面に第1の半導体チップ440及び第2の半導体チップ460が搭載されている。配線基板400は樹脂又はセラミックス等の絶縁材料からなる基板であり、複数の配線層を有している。配線基板400の搭載面側の配線層には、第1のインダクタ405が形成されている。第1のインダクタ405は、第2の半導体チップ460に形成された第2のインダクタ465と共に、アイソレータ15を構成する。従って、第1のインダクタ405はアイソレータ15の第1の部分となり、第2のインダクタ465はアイソレータ15の第2の部分となる。
第1の半導体チップ440は、第1の半導体基板441と、第1の半導体基板441の第1の面に形成された第1の回路443及び第1の回路443と配線448を介して電気的に接続された第1のパッド447を有している。第2の半導体チップ460は、第2の半導体基板461と、第2の半導体基板461の第1の面に形成された第2の回路463及び第2の回路463と配線468を介して電気的に接続された第2のパッド467と、第2の面に形成された第2のインダクタ465と、第2の半導体基板461を貫通し第2のインダクタ465と第2の回路463とを電気的に接続する貫通ビア469とを有している。
第1の回路443及び第2の回路463はどのような回路であってもよい。例えば、第2の回路463は温度、圧力又は流量等を検出するセンサとし、第1の回路443はセンサの出力を増幅及び変換する信号処理回路とすればよい。
配線基板400の上には、第1のチップ接続パッド401と、第1のチップ接続パッド401と絶縁された第2のチップ接続パッド402とを有している。第1のチップ接続パッド401と第1のパッド447とは、ワイヤー410により電気的に接続されている。第2のチップ接続パッド402と第2のパッド467とはワイヤー410により電気的に接続されている。第1のチップ接続パッド401の一部は、配線408を介して第1のインダクタ405と電気的に接続されている。第1のチップ接続パッド401の残り及び第2のチップ接続パッド402は、配線基板400に形成された貫通ビア409を介して配線基板400の裏面に形成された外部接続パッド403と電気的に接続されている。外部接続パッド403にはバンプ412が接続されている。従って、第1の回路443は、第1のインダクタ405と電気的に接続されている。図7においては、スパイラルインダクタである第1の部分の開始端及び終了端と接続するため、配線408の少なくとも一部は、複数の層に亘って立体的に形成されている。また、配線基板400の裏面側には裏面配線420が形成されている。
第1のインダクタ405は、絶縁膜407を介在させて第2の半導体基板461に形成された第2のインダクタ465と対向している。このため、第1のインダクタ405と第2のインダクタ465とは、マイクロトランスとして機能する。従って、例えば第1のインダクタ405に電流変化が生じることにより、磁界の変化が生じると、この磁界の変化は第2のインダクタ465に電流変化を生じさせる。その結果、電流が流れないように電気的に絶縁され且つ信号を伝達することができるアイソレータ15を実現できる。その結果、第1のインダクタ405と第2のインダクタ465との間には電流が流れないように絶縁され且つ信号を伝達することができるアイソレータ15を実現できる。
アイソレータ15により、第1の回路443と第2の回路463とは、絶縁され且つ信号を伝達することが可能となる。ここでいう絶縁とは、2つの回路の間に直流電流が流れないことを意味する。このため、第1の回路443と第2の回路463との基準電位が異なっている場合にも、破壊的なグラウンドループが形成されることがない。また、第2の回路463に電流サージ等が生じるおそれがある場合においても、第1の回路443を保護することができる。
例示の半導体装置は、第1のインダクタ405が配線基板400に形成され、第2のインダクタ465が第2の半導体チップ460に形成されている。第1のインダクタ405は配線基板400に配線を形成する通常のプロセスを用いて形成することができる。第2のインダクタ465は通常の半導体プロセスにより形成することができる。このため、第1のインダクタ405及び第2のインダクタ465を精度良く形成することができ、小型化も容易である。また、絶縁膜407の膜厚を変更することにより、第1のインダクタ405と第2のインダクタ465との間の耐圧を容易に変更することが可能である。
絶縁膜407は、第1のインダクタ405と第2のインダクタ465とを絶縁できればどのようなものであってもよい。例えば、ダイボンディングフィルムを用いれば、第1のインダクタ405と第2のインダクタ465との絶縁を確保しつつ、第2の半導体チップ460を配線基板400の上に容易に搭載することが可能となる。また、ダイボンディングフィルムの膜厚を変えることにより所望の耐圧を容易に実現することができる。さらに、絶縁膜407の膜厚を均一として再現性良く半導体装置を形成することができるという効果も得られる。なお、フィルム状の絶縁膜を用いるのではなく、ペースト状等の材料を塗布することにより絶縁膜を形成してもよい。
図7は、第2のインダクタ465と第2の回路463とが第2の半導体基板461の異なる面に形成された例を示している。しかし、図8に示すように第2のインダクタ465と第2の回路463とが第2の半導体基板461の同一の面に形成されていてもよい。この場合、第2のインダクタ465と第2の回路463とは配線468を介して電気的に接続され、第2の回路463と第2のパッド467とは貫通ビア469を介して電気的に接続される。
また、図9に示すように第2の半導体チップ460をフリップチップ実装することも可能である。この場合には、第2の回路463、第2のインダクタ465及び第2のパッド467を第2の半導体基板461の同一の面に形成し、第2のパッド467と第2のチップ接続パッド402とはバンプ471により接続すればよい。第1のインダクタ405と第2のインダクタ465との間には絶縁を確保するために絶縁膜407を形成することが好ましい。但し、第1のインダクタ405と第2のインダクタ465との絶縁を十分に確保できる場合には、絶縁膜407はなくてもよい。
図7~図9は、アイソレータ15の第1の部分を第1のインダクタ405とし、第2の部分を第2のインダクタ465としてマイクロトランスを形成した。しかし、第1の部分又は第2の部分を磁気センサとしてもよい。例えば、図10に示すように第2の部分を磁気センサ475とし、第1のインダクタ405と磁気センサ475との組み合わせによりアイソレータ15を形成してもよい。磁気センサ475は、巨大磁気抵抗素子(GMR)、磁気抵抗素子(MR)又はホール素子等とすればよい。第1の部分を磁気センサとし、第2の部分をインダクタとすることも可能である。
また、図11に示すように、第1の部分を第1の平板電極425とし、第2の部分を第2の平板電極485とし、アイソレータ15を容量素子としてもよい。アイソレータ15を容量素子とする場合、絶縁膜13は容量絶縁膜となる。
アイソレータ15をインダクタと磁気センサとの組み合わせ又は容量素子とした場合にも、図8又は図9に示すような構成とすることが可能である。
さらに、図12に示すようにアイソレータ15を複数形成することも可能である。この場合には、配線基板400に複数の第1のインダクタ405を形成し、第2の半導体チップ460に複数の第2のインダクタ465を形成すればよい。また、図13に示すように配線基板400の上に、複数の第2の半導体チップ460を配置した構成としてもよい。この場合には、配線基板400に複数の第1のインダクタ405を形成し、第1のインダクタ405の上にそれぞれ第2のインダクタ465を有する第2の半導体チップ460を配置すればよい。これらの場合においても、アイソレータ15は、マイクロトランスに代えて、インダクタと磁気センサとの組み合わせ又は容量素子としてもよい。
図7~図13において第1の半導体チップをワイヤーボンディングにより配線基板に搭載する例を示したが、フリップチップ実装等としてもよい。
例示の半導体装置は、信号又は電源の絶縁分離が必要なあらゆる用途に適用することができる。例えば、第1の回路443を発振回路及びその制御回路とし、第2の回路463を整流回路及び定電圧回路とすれば、絶縁型の直流-直流変換回路(DC-DCコンバータ)を実現できる。
また、第1の回路443及び第2の回路463を共にバッファ回路とし、第1の回路443をアナログ-デジタル変換回路(ADコンバータ)等と接続すれば、絶縁型の入出力回路を構成することができる。この場合、第1の回路443に変換回路等を組み込むことも可能である。また、第2の回路463に温度、圧力又は流量等のセンサを組み込むことも可能である。1つの半導体装置に組み込まれていても、センサと変換回路とは絶縁されているため、センサに異常が生じた場合に制御回路にまで異常が生じたり、破損したりすることを防ぐことができる。また、ノイズの影響を低減することも可能となる。ADコンバータに限らず、他の変換回路又は増幅回路とセンサとを組み合わせることも可能である。さらに、コンピュータのシリアルインターフェース又はパラレルインターフェースの絶縁に用いることも可能である。
この他、第2の回路463をインバータ等からなるモータ駆動回路とし、第1の回路443をモータ駆動回路の制御回路とすれば、モータによるサージ等から制御回路を保護することが可能となる。また、モータ以外にプラズマディスプレイの制御回路等に応用することも可能である。
このような用途においては、複数の信号を伝達する必要がある場合が多い。例示の半導体装置は容易にマルチチャンネル化することができ、これらの用途への適用が容易であるという利点も有している。
なお、図示していないが配線基板400、第1の半導体チップ440及び第2の半導体チップ460は、1つのパッケージに収容されていることが好ましい。例えば、第1の半導体チップ440及び第2の半導体チップ460が封止樹脂に覆われ樹脂封止されていればよい。樹脂封止等を行うことにより、第1の半導体チップ440及び第2の半導体チップ460の劣化を防止できる。また、配線基板400と第2の半導体チップ460とにより形成されたアイソレータ15の劣化も防止できる。さらに、半導体装置の機械強度を向上させることができる。なお、樹脂封止パッケージに代えてセラミックスパッケージ又はキャンパッケージ等であってもよい。
(第3の実施形態)
図14(a)及び(b)は第3の実施形態に係る半導体装置であり、(a)は平面構成を示し、(b)は(a)のXIVb-XIVb線における断面構成を示している。図14において樹脂モールドの記載は省略している。また、パッド及び配線等の記載も図示できるように省略して記載している。
図14(a)及び(b)は第3の実施形態に係る半導体装置であり、(a)は平面構成を示し、(b)は(a)のXIVb-XIVb線における断面構成を示している。図14において樹脂モールドの記載は省略している。また、パッド及び配線等の記載も図示できるように省略して記載している。
図14に示すように例示の半導体装置は、第2の半導体チップ540の上に絶縁膜33を介して第1の半導体チップ500が積層されている。第1の半導体チップ500に形成されたインダクタと、第2の半導体チップ540に形成されたインダクタとによりアイソレータ15が形成されている。
第1の半導体チップ500は、シリコン基板等の素子形成面である第1の面に形成された第1の回路501を有している。第1の回路501は、第1の面に形成された第1のパッド503と配線508を介して電気的に接続されている。図14には第1のパッド503を2つしか図示していないが、第1のパッド503は3つ以上形成されていてもよい。第1の半導体チップ500の素子形成面と反対側の面である第2の面には、第1のインダクタ505が形成されている。第1のインダクタ505は、アイソレータ15を構成する第1の部分となる。スパイラルインダクタである第1のインダクタ505の開始端及び終了端はそれぞれ第1の半導体チップ500を貫通する貫通ビア507を介して第1の面に引き出され、さらに配線509を介して第1の回路501と電気的に接続されている。
第2の半導体チップ540は、シリコン基板等の素子形成面である第1の面に形成された第2の回路541と、第2のパッド543と、第2のインダクタ545とを有している。第2のパッド543は第2の回路541と配線548を介して電気的に接続されている。図14には第2のパッド543を2つしか図示していないが、第2のパッド543は3つ以上形成されていてもよい。第2のインダクタ545は、アイソレータ15を構成する第2の部分となる。第2のインダクタ545の開始端及び終了端はそれぞれ配線549を介して第2の回路541と電気的に接続されている。スパイラルインダクタである第2のインダクタ545の開始端と終了端とにそれぞれ配線549を接続する必要があるため、配線549の少なくとも一部は、第2のインダクタ545と異なる層に形成されている。
第2の半導体チップ540は、リードフレーム37のダイパッド37aの上に接合されている。第1のパッド503は、ワイヤー38を介してダイパッド37aとは絶縁されたリード37bとそれぞれ電気的に接続されている。第2のパッド543は、ワイヤー38を介してリード37cと電気的に接続されている。第1の半導体チップ500は第2の半導体チップ540の上に、第1のインダクタ505と第2のインダクタ545とが互いに対向するようにして、絶縁膜33を介在させて搭載されている。このため、第1のインダクタ505と第2のインダクタ545とによりマイクロトランスが形成される。従って、例えば第1のインダクタ505に電流変化が生じることにより、磁界の変化が生じると、この磁界の変化は第2のインダクタ545に電流変化を生じさせる。その結果、電流が流れないように電気的に絶縁され且つ信号を伝達することができるアイソレータ15を実現できる。
アイソレータ15により、第1の回路501と第2の回路541とは、絶縁され且つ信号を伝達することが可能となる。ここでいう絶縁とは、2つの回路の間に直流電流が流れないことを意味する。このため、第1の回路501と第2の回路541との基準電位が異なっている場合にも、破壊的なグラウンドループが形成されることがない。また、第1の回路501に電流サージが生じるおそれがある場合においても、第2の回路541を保護することができる。なお、第2の半導体チップ540をリードフレームに代えて配線基板等の上に搭載することも可能である。
例示の半導体装置は、貫通ビア507を有しており、第1のインダクタ505と第1のパッド503とを第1の半導体チップ500の互いに反対側の面に形成することができる。このため、第1の半導体チップ500からの配線の引き出しが容易となる。また、第1の半導体チップ500は、第2の半導体チップ540の上に絶縁膜33を介して積層するだけでよく、第1のインダクタ505と第2のインダクタ545との位置合わせも容易となる。
絶縁膜33は、第1のインダクタ505と第2のインダクタ545を絶縁できればどのようなものでもよい。例えば、ダイボンディングフィルムを用いれば、第1の半導体チップ500と第2の半導体チップとの接着を容易に行うことも可能となる。また、膜厚を均一として再現性良く形成することができる。絶縁膜33は第2の半導体チップ540の第1の面全体を覆うように形成してもよい。なお、フィルム状の絶縁膜を用いるのではなくペースト状等の材料を塗布して絶縁膜を形成してもよい。
図14において、アイソレータ15を2つのインダクタにより形成した。しかし、アイソレータ15は、第1の回路501と第2の回路541との間の電流を遮断し且つ信号を伝達できる回路であればよい。このため、図15に示すようにアイソレータ15の第2の部分をインダクタに代えて巨大磁気抵抗素子(GMR)等の磁気センサ555としてもよい。
磁気センサ555をGMRとした場合には、第2の回路541と磁気センサ555とを接続する配線549は通常4本必要となる。この場合、図15に示すように4本の配線を磁気センサ555と同じ層に形成してもよく、図16に示すように少なくとも一部を異なる層に形成してもよい。磁気センサ555は、GMRに代えて、磁気抵抗素子(MR)又はホール素子等としてもよい。なお、第1の部分を磁気センサとし、第2の部分をインダクタとしてもよい。
また、図17に示すように、インダクタに代えて容量素子によりアイソレータ15を形成してもよい。この場合、第1の部分及び第2の部分はそれぞれ第1の平板電極525と第2の平板電極565とすればよい。アイソレータ15を容量素子とする場合、絶縁膜33は容量絶縁膜となる。
図14において、第1のインダクタ505は第1の半導体チップ500における第1の回路501と反対側の面に形成した。このようにすることにより、第1のインダクタ505を第1の半導体チップ500の裏面全体に形成することができ、第1の半導体チップ500のサイズを小さくすることができるという利点がある。しかし、図18に示すように第1のインダクタ505と第1の回路501とを第1の半導体チップ500の同じ面に形成してもよい。インダクタと磁気センサとの組み合わせによりアイソレータを形成する場合及び容量素子によりアイソレータを形成する場合も同様である。特に、第1の部分を半導体素子を用いた磁気センサとする場合には、磁気センサを第1の半導体チップ500の第1の回路501と同じ面に形成する構成が有用である。
また、図19に示すように第2のインダクタ545を第2の回路541及び第2のパッド543と反対側の面に形成してもよい。この場合には、第2のパッド543をワイヤーではなく、バンプ39によりリードフレーム37と接続すればよい。図19においては、バンプ39を1つだけしか図示していないが、実際には複数のバンプが形成され、ボールグリッドアレイを構成している。第2の回路541及び第2のパッド543の一方だけを第2のインダクタ545と反対側の面に形成してもよい。また、アイソレータ15をインダクタと磁気センサとの組み合わせとした場合及び容量素子とした場合にも同様の構成とすることができる。
さらに、図20に示すようにアイソレータ15を複数形成することも可能である。この場合には、第1の半導体チップ500に複数の第1のインダクタ505を形成し、第2の半導体チップ540に複数の第2のインダクタ545を形成すればよい。また、図21に示すように第2の半導体チップ540の上に、複数の第1の半導体チップ500を配置した構成としてもよい。この場合には、第2の半導体チップ540に複数の第2のインダクタ545を形成し、第2のインダクタ545の上にそれぞれ第1のインダクタ505を有する第1の半導体チップ500を配置すればよい。これらの場合においても、アイソレータ15は、マイクロトランスに代えて、インダクタと磁気センサとの組み合わせ又は容量素子とすることができる。
例示の半導体装置は、信号又は電源の絶縁分離が必要なあらゆる用途に適用することができる。例えば、第2の回路541を発振回路及びその制御回路とし、第1の回路501を整流回路及び定電圧回路とすれば、絶縁型の直流-直流変換回路(DC-DCコンバータ)を実現できる。
また、第1の回路501及び第2の回路541を共にバッファ回路とし、第2の回路をアナログ-デジタル変換回路(ADコンバータ)等と接続すれば、絶縁型の入出力回路を構成することができる。この場合、第2の回路541に変換回路等を組み込むことも可能である。また、第1の回路501は温度、圧力又は流量等のセンサを組み込むことも可能である。1つの半導体装置に組み込まれていても、センサと変換回路とは絶縁されているため、センサに異常が生じた場合に制御回路にまで異常が生じたり、破損したりすることを防ぐことができる。また、ノイズの影響を低減することも可能となる。ADコンバータに限らず、他の変換回路又は増幅回路とセンサとを組み合わせることも可能である。さらに、コンピュータのシリアルインターフェース又はパラレルインターフェースの絶縁に用いることも可能である。
この他、第1の回路501をインバータ等からなるモータ駆動回路とし、第2の回路541をモータ駆動回路の制御回路とすれば、モータによるサージ等から制御回路を保護することが可能となる。また、モータ以外にプラズマディスプレイの制御回路等に応用することも可能である。
このような用途においては、複数の信号を伝達する必要がある場合が多い。例示の半導体装置は容易にマルチチャンネル化することができ、これらの用途への適用が容易であるという利点も有している。
例示の半導体装置は、配線基板に搭載された2つの半導体チップ間に電流が流れないように絶縁し且つ2つの半導体チップ間に信号を伝達する半導体装置を実現でき、特にセンサ等の半導体装置として有用である。
13 絶縁膜
15 アイソレータ
33 絶縁膜
37 リードフレーム
37a ダイパッド
37b リード
37c リード
38 ワイヤー
39 バンプ
100 配線基板
101A 搭載領域
101B 搭載領域
103 絶縁膜
105 アイソレータ
105A 第1のインダクタ
105B 第2のインダクタ
105C 巨大磁気抵抗素子
105D 第1の平板電極
105E 第2の平板電極
108 配線
109 配線
110 ボンディングワイヤー
111 第1のアイソレータ接続パッド
112 第2のアイソレータ接続パッド
114 第1のチップ接続パッド
115 第2のチップ接続パッド
116 外部接続パッド
117 貫通ビア
118 裏面配線
119 バンプ
120 封止樹脂
200 第1の半導体チップ
201 第1の回路
203 第1のチップパッド
300 第2の半導体チップ
301 第2の回路
303 第2のチップパッド
400 配線基板
401 第1のチップ接続パッド
402 第2のチップ接続パッド
403 外部接続パッド
405 第1のインダクタ
407 絶縁膜
408 配線
409 貫通ビア
410 ワイヤー
412 バンプ
420 裏面配線
425 第1の平板電極
440 第1の半導体チップ
441 第1の半導体基板
443 第1の回路
447 第1のパッド
448 配線
460 第2の半導体チップ
461 第2の半導体基板
463 第2の回路
465 第2のインダクタ
467 第2のパッド
468 配線
469 貫通ビア
471 バンプ
475 磁気センサ
485 第2の平板電極
500 第1の半導体チップ
501 第1の回路
503 第1のパッド
505 第1のインダクタ
507 貫通ビア
508 配線
509 配線
525 第1の平板電極
540 第2の半導体チップ
541 第2の回路
543 第2のパッド
545 第2のインダクタ
548 配線
549 配線
555 磁気センサ
565 第2の平板電極
15 アイソレータ
33 絶縁膜
37 リードフレーム
37a ダイパッド
37b リード
37c リード
38 ワイヤー
39 バンプ
100 配線基板
101A 搭載領域
101B 搭載領域
103 絶縁膜
105 アイソレータ
105A 第1のインダクタ
105B 第2のインダクタ
105C 巨大磁気抵抗素子
105D 第1の平板電極
105E 第2の平板電極
108 配線
109 配線
110 ボンディングワイヤー
111 第1のアイソレータ接続パッド
112 第2のアイソレータ接続パッド
114 第1のチップ接続パッド
115 第2のチップ接続パッド
116 外部接続パッド
117 貫通ビア
118 裏面配線
119 バンプ
120 封止樹脂
200 第1の半導体チップ
201 第1の回路
203 第1のチップパッド
300 第2の半導体チップ
301 第2の回路
303 第2のチップパッド
400 配線基板
401 第1のチップ接続パッド
402 第2のチップ接続パッド
403 外部接続パッド
405 第1のインダクタ
407 絶縁膜
408 配線
409 貫通ビア
410 ワイヤー
412 バンプ
420 裏面配線
425 第1の平板電極
440 第1の半導体チップ
441 第1の半導体基板
443 第1の回路
447 第1のパッド
448 配線
460 第2の半導体チップ
461 第2の半導体基板
463 第2の回路
465 第2のインダクタ
467 第2のパッド
468 配線
469 貫通ビア
471 バンプ
475 磁気センサ
485 第2の平板電極
500 第1の半導体チップ
501 第1の回路
503 第1のパッド
505 第1のインダクタ
507 貫通ビア
508 配線
509 配線
525 第1の平板電極
540 第2の半導体チップ
541 第2の回路
543 第2のパッド
545 第2のインダクタ
548 配線
549 配線
555 磁気センサ
565 第2の平板電極
Claims (20)
- 半導体装置は、
第1の回路を有する第1の半導体チップと、
第2の回路を有する第2の半導体チップと、
前記第1の半導体チップを搭載面に搭載し、アイソレータの少なくとも一部を有する配線基板とを備え、
前記アイソレータは、互いに絶縁された第1の部分と第2の部分とを有し且つ前記第1の部分と第2の部分との間に信号を伝達し、
前記第1の部分は前記第1の回路と電気的に接続され、
前記第2の部分は前記第2の回路と電気的に接続され、
前記第1の半導体チップと前記第2の半導体チップとは互いに絶縁されている。 - 請求項1に記載の半導体装置において、
前記第1の部分は、前記配線基板に形成され、
前記第2の部分は、前記配線基板又は該配線基板の上に形成され、
前記第1の半導体チップと前記第2の半導体チップとは、前記配線基板の互いに絶縁された領域にそれぞれ搭載されている。 - 請求項2に記載の半導体装置において、
前記配線基板は複数の配線層を有し、
前記第1の部分及び第2の部分は、互いに異なる前記配線層に互いに対向するように形成されたインダクタである。 - 請求項1に記載の半導体装置において、
前記第1の部分は、前記配線基板の配線層に形成されたインダクタであり、
前記第2の部分は、前記搭載面の上に絶縁膜を介して前記第1の部分と対向するように形成されたインダクタである。 - 請求項1に記載の半導体装置において、
前記第1の部分及び第2の部分は、絶縁膜を介して互いに対向するように配置された電極である。 - 請求項1に記載の半導体装置において、
前記第1の部分及び第2の部分の一方はインダクタであり、前記第1の部分及び第2の部分の他方は磁気センサである。 - 請求項6に記載の半導体装置において、
前記磁気センサは、巨大磁気抵抗素子又は磁気抵抗素子である。 - 請求項2に記載の半導体装置において、
前記第1の半導体チップは、前記第1の回路と電気的に接続された第1のチップパッドを有し、
前記第2の半導体チップは、前記第2の回路と電気的に接続された第2のチップパッドを有し、
前記配線基板は、前記搭載面に形成され、互いに絶縁された第1のチップ接続パッド及び第2のチップ接続パッドと、前記搭載面と反対側の面に形成された複数の外部接続パッドと、前記第1のチップ接続パッド及び第2のチップ接続パッドと対応する前記外部接続パッドとをそれぞれ接続する貫通ビアと、前記複数の外部接続パッドにそれぞれ形成された複数のバンプとを有し、
前記第1のチップ接続パッドは、前記第1のチップパッドと電気的に接続され、
前記第2のチップ接続パッドは、前記第2のチップパッドと電気的に接続されている。 - 請求項8に記載の半導体装置において、
前記配線基板は、前記搭載面に形成され、前記第1の部分と接続された第1のアイソレータ接続パッド及び前記第2の部分と接続された第2のアイソレータ接続パッドを有し、
前記第1のアイソレータ接続パッドは、対応する前記第1のチップパッドと電気的に接続され、
前記第2のアイソレータ接続パッドは、対応する前記第2のチップパッドと電気的に接続されている。 - 請求項1に記載の半導体装置において、
前記アイソレータ及び第2の半導体チップは複数であり、
前記複数のアイソレータは、少なくとも前記第2の部分が互いに絶縁され且つ前記第2の部分が前記複数の第2の半導体チップのうちの対応する第2の半導体チップの前記第2の回路と電気的に接続され、
前記複数の第2の半導体チップは、配線基板の互いに絶縁された領域にそれぞれ搭載されている。 - 請求項1に記載の半導体装置は、
前記第1の半導体チップ及び第2の半導体チップを封止するパッケージをさらに備え、
前記パッケージは、樹脂封止パッケージである。 - 請求項1に記載の半導体装置において、
前記第2の半導体チップは、前記配線基板の上に前記第1の半導体チップと間隔をおいて搭載され、
前記第1の部分は、前記配線基板に形成され、
前記第2の部分は、前記第2の半導体チップに形成され、
前記第1の部分と前記第2の部分とは、絶縁膜を介在させて相対する。 - 請求項12に記載の半導体装置において、
前記配線基板は、
前記第1の回路と電気的に接続された第1のチップ接続パッドと、
前記第1のチップ接続パッドと絶縁され且つ前記第2の回路と電気的に接続された第2のチップ接続パッドと、
前記第1の半導体チップ及び第2の半導体チップが搭載された面と反対側の面に形成された複数の外部接続パッドと、
前記第1のチップ接続パッド及び第2のチップ接続パッドと対応する前記外部接続パッドとをそれぞれ電気的に接続する貫通ビアと、
前記外部接続パッドにそれぞれ形成された複数のバンプとを有している。 - 請求項13に記載の半導体装置において、
前記第2の半導体チップは、前記第2の回路と電気的に接続された第2のパッドを有し、
前記第2の回路及び第2のパッドは、前記第2の半導体チップにおける前記第2の部分が形成された面と反対側の面に形成され、
前記第2の回路と前記第2の部分とは、前記第2の半導体チップを貫通する貫通ビアを介して電気的に接続されている。 - 請求項13に記載の半導体装置において、
前記第2の半導体チップは、前記第2の回路と電気的に接続された第2のパッドを有し、
前記第2の回路は、前記第2の半導体チップにおける前記第2の半導体チップにおける前記第2の部分が形成された面に形成され、
前記第2のパッドは、前記第2の半導体チップにおける前記第2の部分が形成された面と反対側の面に形成され、
前記第2の回路と前記第2のパッドとは、前記第2の半導体チップを貫通する貫通ビアを介して電気的に接続されている。 - 請求項1に記載の半導体装置において、
前記第2の半導体チップと前記配線基板とは一体であり、
前記第1の部分は、前記第1の半導体チップにおける前記第1の回路が形成された面と反対側の面に形成され、
前記第2の部分は、前記第2の半導体チップにおける前記第2の回路が形成された面に形成され、
前記第1の半導体チップは、前記第1の部分と前記第2の部分とが対向するように、前記第2の半導体チップの上に絶縁膜を介して搭載され、
前記第1の回路は、前記第1の半導体チップを貫通する第1の貫通ビアを介して前記第1の部分と電気的に接続されている。 - 請求項16に記載の半導体装置において、
前記第1の部分は、前記第1の半導体チップにおける前記第1の回路が形成された面と反対側の面に形成されている。 - 請求項16に記載の半導体装置において、
前記第1の部分は、前記第1の半導体チップにおける前記第1の回路が形成された面に形成されている。 - 請求項16に記載の半導体装置において、
前記第2の部分は、前記第2の半導体チップにおける前記第2の回路が形成された面に形成されている。 - 請求項16に記載の半導体装置において、
前記第2の部分は、前記第2の半導体チップにおける前記第2の回路が形成された面と反対側の面に形成されている。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-129464 | 2009-05-28 | ||
JP2009129464 | 2009-05-28 | ||
JP2009-129504 | 2009-05-28 | ||
JP2009-129484 | 2009-05-28 | ||
JP2009129484 | 2009-05-28 | ||
JP2009129504 | 2009-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010137090A1 true WO2010137090A1 (ja) | 2010-12-02 |
Family
ID=43222235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006620 WO2010137090A1 (ja) | 2009-05-28 | 2009-12-04 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010137090A1 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012182740A (ja) * | 2011-03-02 | 2012-09-20 | Nitto Denko Corp | アイソレータ用回路基板、アイソレータおよびそれらの製造方法 |
EP2509106A1 (en) * | 2011-04-05 | 2012-10-10 | STMicroelectronics S.r.l. | A microstructure device comprising semiconductor devices stacked face to face and coupled by electromagnetic near field and method of forming the microstructure device |
EP2819160A1 (en) * | 2013-06-28 | 2014-12-31 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
CN104637918A (zh) * | 2013-11-08 | 2015-05-20 | 瑞萨电子株式会社 | 半导体器件 |
US20150280785A1 (en) * | 2014-03-26 | 2015-10-01 | Fred T. Brauchler | Systems and devices with common mode noise suppression structures and methods |
US9160423B2 (en) | 2013-12-12 | 2015-10-13 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
US9219028B1 (en) | 2014-12-17 | 2015-12-22 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
US9466413B2 (en) | 2013-06-28 | 2016-10-11 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
JP2017034265A (ja) * | 2016-09-15 | 2017-02-09 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP2017092932A (ja) * | 2015-11-04 | 2017-05-25 | 財團法人工業技術研究院Industrial Technology Research Institute | 電気絶縁体実装構造および電気絶縁体の製造方法 |
JP2017130906A (ja) * | 2016-01-19 | 2017-07-27 | 財團法人工業技術研究院Industrial Technology Research Institute | ガルバニーアイソレータ回路 |
CN107818966A (zh) * | 2016-09-14 | 2018-03-20 | 美国亚德诺半导体公司 | 单一引线‑框架堆叠的芯片电流绝缘子 |
CN108493168A (zh) * | 2018-05-28 | 2018-09-04 | 北京中科格励微科技有限公司 | 一种电绝缘的多腔封装结构 |
CN109524364A (zh) * | 2017-09-19 | 2019-03-26 | 恩智浦美国有限公司 | 具有堆叠管芯的封装式集成电路和其方法 |
JP2020025102A (ja) * | 2013-11-13 | 2020-02-13 | ローム株式会社 | 半導体装置 |
JP2021048222A (ja) * | 2019-09-18 | 2021-03-25 | 株式会社東芝 | デジタルアイソレータ |
US11011297B2 (en) | 2013-11-13 | 2021-05-18 | Rohm Co., Ltd. | Semiconductor device and semiconductor module |
US11170926B2 (en) * | 2017-12-04 | 2021-11-09 | Alpha And Omega Semiconductor (Cayman) Ltd. | Isolated coupling structure |
WO2022020801A1 (en) | 2020-07-24 | 2022-01-27 | Texas Instruments Incorporated | Integrated magnetic assembly |
CN116259620A (zh) * | 2022-08-09 | 2023-06-13 | 中国科学院自动化研究所 | 一种无线互连装置及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62291102A (ja) * | 1986-06-11 | 1987-12-17 | Nec Corp | ハイブリツド・パツケ−ジ |
JP2000232235A (ja) * | 1999-02-09 | 2000-08-22 | Rohm Co Ltd | 半導体装置 |
JP2008227081A (ja) * | 2007-03-12 | 2008-09-25 | Omron Corp | 磁気カプラ素子および磁気結合型アイソレータ |
-
2009
- 2009-12-04 WO PCT/JP2009/006620 patent/WO2010137090A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62291102A (ja) * | 1986-06-11 | 1987-12-17 | Nec Corp | ハイブリツド・パツケ−ジ |
JP2000232235A (ja) * | 1999-02-09 | 2000-08-22 | Rohm Co Ltd | 半導体装置 |
JP2008227081A (ja) * | 2007-03-12 | 2008-09-25 | Omron Corp | 磁気カプラ素子および磁気結合型アイソレータ |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012182740A (ja) * | 2011-03-02 | 2012-09-20 | Nitto Denko Corp | アイソレータ用回路基板、アイソレータおよびそれらの製造方法 |
EP2509106A1 (en) * | 2011-04-05 | 2012-10-10 | STMicroelectronics S.r.l. | A microstructure device comprising semiconductor devices stacked face to face and coupled by electromagnetic near field and method of forming the microstructure device |
US9018730B2 (en) | 2011-04-05 | 2015-04-28 | Stmicroelectronics S.R.L. | Microstructure device comprising a face to face electromagnetic near field coupling between stacked device portions and method of forming the device |
US9466413B2 (en) | 2013-06-28 | 2016-10-11 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
EP2819160A1 (en) * | 2013-06-28 | 2014-12-31 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
CN104253104A (zh) * | 2013-06-28 | 2014-12-31 | 飞思卡尔半导体公司 | 管芯-管芯感应通信装置及方法 |
CN104637918A (zh) * | 2013-11-08 | 2015-05-20 | 瑞萨电子株式会社 | 半导体器件 |
US11011297B2 (en) | 2013-11-13 | 2021-05-18 | Rohm Co., Ltd. | Semiconductor device and semiconductor module |
US11657953B2 (en) | 2013-11-13 | 2023-05-23 | Rohm Co., Ltd. | Semiconductor device and semiconductor module |
JP2020025102A (ja) * | 2013-11-13 | 2020-02-13 | ローム株式会社 | 半導体装置 |
US9362987B2 (en) | 2013-12-12 | 2016-06-07 | Freescale Semiconductor, Inc. | Methods of manufacturing and operating die-to-die inductive communication devices |
US9160423B2 (en) | 2013-12-12 | 2015-10-13 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
US20150280785A1 (en) * | 2014-03-26 | 2015-10-01 | Fred T. Brauchler | Systems and devices with common mode noise suppression structures and methods |
US10992346B2 (en) | 2014-03-26 | 2021-04-27 | Nxp Usa, Inc. | Systems and devices with common mode noise suppression structures and methods |
US9219028B1 (en) | 2014-12-17 | 2015-12-22 | Freescale Semiconductor, Inc. | Die-to-die inductive communication devices and methods |
US9847292B2 (en) | 2015-11-04 | 2017-12-19 | Industrial Technology Research Institute | Electrical isolator packaging structure and manufacturing method for electrical isolator |
JP2017092932A (ja) * | 2015-11-04 | 2017-05-25 | 財團法人工業技術研究院Industrial Technology Research Institute | 電気絶縁体実装構造および電気絶縁体の製造方法 |
JP2017130906A (ja) * | 2016-01-19 | 2017-07-27 | 財團法人工業技術研究院Industrial Technology Research Institute | ガルバニーアイソレータ回路 |
US10044223B2 (en) | 2016-01-19 | 2018-08-07 | Industrial Technology Research Institute | Galvanic isolator circuit |
JP2018046280A (ja) * | 2016-09-14 | 2018-03-22 | アナログ ディヴァイスィズ インク | 単一リードフレーム積層ダイガルバニック絶縁体 |
CN107818966A (zh) * | 2016-09-14 | 2018-03-20 | 美国亚德诺半导体公司 | 单一引线‑框架堆叠的芯片电流绝缘子 |
JP2019195110A (ja) * | 2016-09-14 | 2019-11-07 | アナログ ディヴァイスィズ インク | 単一リードフレーム積層ダイガルバニック絶縁体 |
JP2017034265A (ja) * | 2016-09-15 | 2017-02-09 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
CN109524364A (zh) * | 2017-09-19 | 2019-03-26 | 恩智浦美国有限公司 | 具有堆叠管芯的封装式集成电路和其方法 |
CN109524364B (zh) * | 2017-09-19 | 2023-09-26 | 恩智浦美国有限公司 | 具有堆叠管芯的封装式集成电路和其方法 |
US11170926B2 (en) * | 2017-12-04 | 2021-11-09 | Alpha And Omega Semiconductor (Cayman) Ltd. | Isolated coupling structure |
CN108493168A (zh) * | 2018-05-28 | 2018-09-04 | 北京中科格励微科技有限公司 | 一种电绝缘的多腔封装结构 |
JP2021048222A (ja) * | 2019-09-18 | 2021-03-25 | 株式会社東芝 | デジタルアイソレータ |
JP7244394B2 (ja) | 2019-09-18 | 2023-03-22 | 株式会社東芝 | デジタルアイソレータ |
WO2022020801A1 (en) | 2020-07-24 | 2022-01-27 | Texas Instruments Incorporated | Integrated magnetic assembly |
EP4186081A4 (en) * | 2020-07-24 | 2024-01-17 | Texas Instruments Incorporated | INTEGRATED MAGNETIC ASSEMBLY |
CN116259620A (zh) * | 2022-08-09 | 2023-06-13 | 中国科学院自动化研究所 | 一种无线互连装置及系统 |
CN116259620B (zh) * | 2022-08-09 | 2023-10-31 | 中国科学院自动化研究所 | 一种无线互连装置及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010137090A1 (ja) | 半導体装置 | |
US10068879B2 (en) | Three-dimensional stacked integrated circuit devices and methods of assembling the same | |
JP6865644B2 (ja) | 半導体装置 | |
KR100750764B1 (ko) | 반도체 장치 | |
JP5646830B2 (ja) | 半導体装置、半導体装置の製造方法、及びリードフレーム | |
JP3854054B2 (ja) | 半導体装置 | |
JP5244155B2 (ja) | コイル式トランスジューサ用絶縁体パッケージ | |
US10283699B2 (en) | Hall-effect sensor isolator | |
US20110303993A1 (en) | Semiconductor sensor device, method of manufacturing semiconductor sensor device, package, method of manufacturing package, module, method of manufacturing module, and electronic device | |
TW201244054A (en) | Stacked die package with flip chip die and wire bonding die | |
US20100314730A1 (en) | Stacked hybrid interposer through silicon via (TSV) package | |
US20100140786A1 (en) | Semiconductor power module package having external bonding area | |
JP2008004736A (ja) | 半導体パッケージ | |
JP2007243196A (ja) | 複数のチップ構成を有する集積デバイス及びその製造方法 | |
JP2007123884A (ja) | 電力回路パッケージ及びその製作方法 | |
US9559787B2 (en) | Photocoupling device manufacturing method, photocoupling device, and power conversion system | |
US7677109B2 (en) | Pressure sense die pad layout and method for direct wire bonding to programmable compensation integrated circuit die | |
JP2010028025A (ja) | 電子装置 | |
JP5088059B2 (ja) | アイソレータおよびアイソレータの製造方法 | |
WO2013073082A1 (ja) | 拡張型半導体チップ及び半導体装置 | |
JP2010199548A (ja) | 半導体装置およびその製造方法 | |
US11133291B2 (en) | Chip package structure with multi-chip stack | |
JP2011187823A (ja) | 半導体装置 | |
JP5390246B2 (ja) | 半導体装置 | |
US8129826B2 (en) | Semiconductor package apparatus having redistribution layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845157 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09845157 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |