WO2010134165A1 - 車両用動力伝達装置の制御装置 - Google Patents

車両用動力伝達装置の制御装置 Download PDF

Info

Publication number
WO2010134165A1
WO2010134165A1 PCT/JP2009/059208 JP2009059208W WO2010134165A1 WO 2010134165 A1 WO2010134165 A1 WO 2010134165A1 JP 2009059208 W JP2009059208 W JP 2009059208W WO 2010134165 A1 WO2010134165 A1 WO 2010134165A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
vehicle
speed
power
shift
Prior art date
Application number
PCT/JP2009/059208
Other languages
English (en)
French (fr)
Inventor
健太 熊▲崎▼
松原 亨
田端 淳
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011514244A priority Critical patent/JP5229385B2/ja
Priority to PCT/JP2009/059208 priority patent/WO2010134165A1/ja
Priority to CN200980160528.2A priority patent/CN102625886B/zh
Priority to DE112009005064T priority patent/DE112009005064T5/de
Priority to US13/321,428 priority patent/US8874290B2/en
Publication of WO2010134165A1 publication Critical patent/WO2010134165A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0015Transmission control for optimising fuel consumptions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/022Calculation or estimation of optimal gear ratio, e.g. best ratio for economy drive or performance according driver preference, or to optimise exhaust emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a technique for improving the fuel consumption of a vehicle having an automatic transmission.
  • control device for a vehicle power transmission device that performs shifting of a stepped automatic transmission provided between an engine and a drive wheel based on a preset shift map (shift diagram).
  • the control device for a vehicle power transmission device described in Patent Document 1 is the same.
  • the control device for a vehicle power transmission device disclosed in Patent Document 1 has two types of travel modes: a normal travel mode and a fuel-saving travel mode in which travel is performed with a lower engine rotation speed than in the normal travel mode. .
  • the control device stores in advance the shift map for the normal travel mode and the shift map for the fuel-saving travel mode in order to realize these two types of travel modes.
  • the vehicle speed and the accelerator opening are parameters. That is, the shift point of the automatic transmission is set by the vehicle speed and the accelerator opening.
  • the control device for a vehicle power transmission device of Patent Document 1 does not change the parameters of the shift map from the vehicle speed and the accelerator opening in any of the two types of travel modes.
  • the operating point of the engine changes to a higher output side even though the vehicle speed and the accelerator opening do not change. If the operating point of the engine changes in this way, the input to the vehicle power transmission device (automatic transmission) changes, so that the power transmission efficiency of the vehicle power transmission device (automatic transmission) (hereinafter referred to as “power transmission efficiency”) (hereinafter referred to as “power transmission efficiency”) It may be considered that the “transmission efficiency” simply changes. That is, as long as the vehicle speed and the accelerator opening do not change, the automatic transmission is not shifted based on the shift map, but the transmission efficiency of the vehicle power transmission device may change.
  • an object of the present invention is to appropriately perform a shift of an automatic transmission that constitutes a part of a power transmission path between an engine and a drive wheel. Accordingly, an object of the present invention is to provide a control device for a vehicle power transmission device that can improve fuel consumption.
  • the gist of the invention according to claim 1 for achieving the above object is that: (a) a stepped automatic transmission that constitutes a part of a power transmission path between the engine and the drive wheels is provided.
  • a control device for a vehicle power transmission device that sets a shift point of the automatic transmission based on a driver's requested driving force and vehicle speed, and (b) when the vehicle is in a predetermined fuel consumption priority traveling state, The shift point of the automatic transmission is set by the rotational speed of the engine and the vehicle speed instead of the required driving force.
  • the gist of the invention according to claim 2 is that when the vehicle is in the fuel consumption priority traveling state, a fuel efficiency priority traveling mode in which fuel efficiency is improved as compared to when the vehicle is not selected is manually selected. It is a case.
  • the gist of the invention according to claim 3 is that: (a) a power storage device charged by a generator driven to rotate by the engine is provided; and (b) the vehicle is in the fuel consumption priority running state.
  • the case is that the output request amount required for the engine to charge the power storage device is equal to or greater than a predetermined output request amount determination value.
  • the gist of the invention according to claim 4 is that when the vehicle is in the fuel consumption priority traveling state, the remaining amount of fuel supplied to the engine is less than a predetermined remaining fuel amount determination value. It is a case.
  • the gist of the invention according to claim 5 is that: (a) a power storage device charged by a generator driven to rotate by the engine is provided; and (b) the vehicle is in the fuel consumption priority running state. Is the amount of charge remaining in the power storage device is less than a predetermined remaining amount determination value, and the output request amount required for the engine to charge the power storage device is a predetermined output request amount. It is a case where it is more than a judgment value.
  • a gist of the invention according to claim 6 is that: (a) a power storage device that is charged by a generator that is rotationally driven by the engine; and an air conditioner that air-conditions the vehicle interior by the output of the engine are provided. (B) when the vehicle is in the fuel consumption priority running state, the air conditioner required power required to drive the air conditioner is equal to or greater than a predetermined air conditioner required power determination value, and the power storage device This is a case where the required output amount required for the engine to charge the battery is equal to or greater than a predetermined required output amount determination value.
  • the gist of the invention according to claim 7 is that when the amount of change in the required driving force within a predetermined period is equal to or greater than a predetermined required driving force change amount determination value, It is prohibited to set the shift point of the automatic transmission according to the vehicle speed.
  • the gist of the invention according to claim 8 is that the rotation of the engine is performed when a power driving mode that improves acceleration response during vehicle driving is selected manually compared to when it is not selected. It is prohibited to set the shift point of the automatic transmission according to the speed and the vehicle speed.
  • a gist of the invention according to claim 9 is that a differential mechanism connected between the engine and the automatic transmission, and a first electric motor connected to the differential mechanism so as to be able to transmit power. And a second electric motor coupled to the drive wheel so that power can be transmitted, and the differential state of the differential mechanism is controlled by controlling the operating state of the first electric motor. Is provided.
  • the differential mechanism is a planetary gear device having a first rotating element, a second rotating element, and a third rotating element
  • the first rotating element is the engine.
  • the second rotating element is connected to the first electric motor
  • the third rotating element is connected to the second electric motor and an input rotating member of the automatic transmission.
  • the automatic transmission shifts when one of the plurality of shift stages having different gear ratios and mechanically set in advance is switched to another shift stage. Is done. Then, the automatic transmission is shifted by re-holding the engaging element that it has.
  • the control device basically sets the shift point of the automatic transmission based on the driver's requested driving force and the vehicle speed.
  • the shift point of the automatic transmission is set based on the rotational speed and vehicle speed of the engine instead of the required driving force. Therefore, even if the required driving force does not change, If the operating point changes, it can be determined whether or not the gear should be shifted immediately, and the automatic transmission has a higher transmission efficiency of the vehicle power transmission device compared to the case where the shifting point is always set based on the required driving force and the vehicle speed. It is possible to shift to the next gear stage.
  • the fuel efficiency can be improved by improving the transmission efficiency.
  • the shift point of the automatic transmission is set based on the driver's requested driving force and the vehicle speed, so that a response that can immediately respond to a transient change in the requested driving force.
  • a good automatic transmission can be secured. Since the driver's required driving force is a driving force that the driver requests the vehicle, the accelerator opening actually corresponds to the driving force. That is, the driver's required driving force can be said to be a superordinate concept of the amount of change indicating it, such as the accelerator opening.
  • the case where the vehicle is in the fuel consumption priority traveling state is a case where a fuel efficiency priority traveling mode in which fuel efficiency is improved as compared to when the vehicle is not selected is manually selected. Therefore, in the travel mode where priority should be given to improving the fuel consumption of the vehicle, an appropriate shift of the automatic transmission is performed so as to improve the fuel consumption.
  • a power storage device charged by a generator driven to rotate by the engine is provided, and (b) the vehicle is in the fuel consumption priority traveling state.
  • the required output amount required for the engine to charge the power storage device is equal to or greater than a predetermined required output amount determination value, so that the vehicle power transmission device is changed by shifting the automatic transmission.
  • the case where the vehicle is in the fuel consumption priority traveling state is a case where the remaining amount of fuel supplied to the engine is less than a predetermined remaining fuel amount determination value. Therefore, when it is highly necessary to prioritize the improvement of fuel consumption over the acceleration response of the vehicle or the like, the appropriate automatic transmission is shifted so as to improve the fuel consumption.
  • a power storage device charged by a generator driven to rotate by the engine is provided, and (b) the vehicle is in the fuel consumption priority running state.
  • the remaining amount of charge of the power storage device is less than a predetermined remaining amount determination value, and an output request amount required for the engine to charge the power storage device is greater than or equal to a predetermined output request amount determination value Therefore, it is highly necessary to prioritize the improvement of fuel consumption over the acceleration response of the vehicle, and the transmission efficiency of the vehicle power transmission device can be improved by the shift of the automatic transmission. In such a case, it is possible to perform an appropriate shift of the automatic transmission so as to improve fuel efficiency by improving the transmission efficiency.
  • a power storage device charged by a generator driven to rotate by the engine, and an air conditioner that air-conditions the vehicle interior by the output of the engine are provided.
  • the air conditioner required power required to drive the air conditioner is equal to or greater than a predetermined air conditioner required power determination value, and the power storage device is charged. Therefore, since the required output amount required for the engine is greater than or equal to a predetermined required output amount determination value, it is possible to improve the transmission efficiency of the vehicle power transmission device by shifting the automatic transmission. In such a case, an appropriate automatic transmission can be shifted so as to improve fuel efficiency by improving the transmission efficiency.
  • the engine speed and the vehicle speed are Setting the shift point of the automatic transmission is prohibited.
  • the shift point of the automatic transmission is set by the driver's required driving force and vehicle speed.
  • the amount of change in the required driving force is large, it is considered that it is necessary to realize traveling with good acceleration response of the vehicle as compared with the case where the required driving force hardly changes. Therefore, when traveling with good acceleration response of the vehicle is regarded as important, it is possible to secure the shift of the automatic transmission with good response that can immediately cope with a transient change in the required driving force.
  • the eighth aspect of the present invention when the power travel mode in which acceleration response during vehicle travel is improved compared to when the vehicle is not selected is manually selected, the engine speed and the vehicle speed are increased. And prohibiting the setting of the shift point of the automatic transmission. As a result, the shift point of the automatic transmission is set by the driver's required driving force and vehicle speed. Therefore, when traveling with good acceleration response of the vehicle is regarded as important, it is possible to secure the shift of the automatic transmission with good response that can immediately cope with a transient change in the required driving force.
  • the differential mechanism connected between the engine and the automatic transmission, the first electric motor connected to the differential mechanism so as to transmit power, and the drive And a second electric motor coupled to the wheel so as to be capable of transmitting power, and an electric differential unit is provided in which a differential state of the differential mechanism is controlled by controlling an operation state of the first motor. Therefore, the automatic transmission is a stepped transmission that changes its gear ratio step by step. However, the vehicle power transmission device as a whole is changed its speed by controlling the differential state of the differential mechanism. It is possible to function as a continuously variable transmission capable of continuously changing the ratio.
  • the fuel consumption priority traveling mode is a traveling mode in which fuel efficiency is prioritized over the vehicle traveling performance.
  • the required driving force corresponds to an accelerator opening that is an operation amount of an accelerator pedal, and the required driving force increases as the accelerator opening increases.
  • the air conditioner includes a compressor that compresses the refrigerant by being rotationally driven by the output of the engine.
  • FIG. 1 is a skeleton diagram illustrating a vehicle power transmission device to which a control device of the present invention is applied.
  • 2 is an operation chart for explaining a relationship between a shift operation of an automatic transmission unit provided in the vehicle power transmission device of FIG. 1 and an operation combination of a hydraulic friction engagement device used therefor.
  • FIG. 2 is a collinear diagram illustrating a relative rotational speed of each gear stage in the vehicle power transmission device of FIG. 1. It is a figure explaining the input-output signal of the electronic controller for controlling the power transmission device for vehicles of FIG. It is a functional block diagram explaining the principal part of the control function with which the electronic control apparatus of FIG. 4 was equipped.
  • FIG. 1 is a skeleton diagram illustrating a vehicle power transmission device to which a control device of the present invention is applied.
  • 2 is an operation chart for explaining a relationship between a shift operation of an automatic transmission unit provided in the vehicle power transmission device of FIG. 1 and an operation combination of a hydraulic friction engagement device used therefor.
  • FIG. 2
  • FIG. 2 is a shift diagram in which a pre-stored vehicle speed and a driver's required driving force as variables are based on a shift determination of an automatic transmission unit provided in the vehicle power transmission device of FIG. 1.
  • FIG. 6 is a shift diagram with variables of the vehicle speed and the accelerator opening as another example corresponding to FIG. 6 stored in advance as a basis for shift determination of the automatic transmission unit provided in the vehicle power transmission device of FIG. 1. is there.
  • FIG. 2 is a diagram showing the relationship between the overall gear ratio of the vehicle power transmission device and its transmission efficiency at each gear stage (1st to 4th) of the automatic transmission unit provided in the vehicle power transmission device of FIG. 1;
  • FIG. 13 is a diagram for explaining the relationship between the shift diagrams of FIGS.
  • FIG. 2 is a shift diagram in which a prestored vehicle speed and an actual engine rotation speed, which are a basis for shift determination of an automatic transmission unit provided in the vehicle power transmission device of FIG. 1, are variables.
  • FIG. 5 is a flowchart for explaining a main part of a control operation of the electronic control device of FIG. 4, that is, a control operation for switching a variable for setting a shift point of an automatic transmission unit.
  • FIG. 1 is a skeleton diagram illustrating a vehicle power transmission device 10 (hereinafter referred to as “power transmission device 10”) to which the control device of the present invention is applied.
  • This power transmission device 10 is suitable for a hybrid vehicle.
  • a power transmission device 10 includes an input shaft as an input rotation member disposed on a common axis in a transmission case 12 (hereinafter referred to as “case 12”) as a non-rotation member attached to a vehicle body. 14, a differential unit 11 as a continuously variable transmission unit directly connected to the input shaft 14 or indirectly through a pulsation absorbing damper (vibration damping device) (not shown), the differential unit 11 and a drive wheel 34 (see FIG.
  • an automatic transmission unit 20 as a power transmission unit connected in series via a transmission member 18 in a power transmission path between the power transmission unit 34 and an output rotating member connected to the automatic transmission unit 20 As an output shaft 22 in series.
  • the power transmission device 10 is suitably used for an FR (front engine / rear drive) type vehicle that is installed vertically in the vehicle 6 (see FIG. 5), for example, and directly or directly to the input shaft 14 or pulsation absorption (not shown).
  • a driving power source directly connected via a damper is provided between an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine and a pair of drive wheels 34, and power from the engine 8 is supplied.
  • the differential gear device (final reduction gear) 32 constituting a part of the power transmission path and the pair of axles are sequentially transmitted to the pair of drive wheels 34.
  • the engine 8 and the differential unit 11 are directly connected.
  • This direct connection means that the connection is made without using a hydraulic power transmission device such as a torque converter or a fluid coupling.
  • the connection via the pulsation absorbing damper is included in this direct connection. Since the power transmission device 10 is configured symmetrically with respect to its axis, the lower side is omitted in the skeleton diagram of FIG.
  • the differential unit 11 is connected to the power distribution mechanism 16 and the power distribution mechanism 16 so as to be capable of transmitting power, and functions as a differential motor for controlling the differential state of the power distribution mechanism 16; It is an electric differential part provided with the 2nd electric motor M2 connected so that power transmission was possible so that it might rotate integrally with the transmission member 18.
  • the transmission member 18 is an output side rotating member of the differential unit 11, but also corresponds to an input side rotating member of the automatic transmission unit 20.
  • the first electric motor M1 and the second electric motor M2 are so-called motor generators having a function as a motor that generates mechanical driving force from electric energy and a function as a generator that generates electric energy from mechanical driving force. is there.
  • the electric motor M can function as an alternative to the engine 8 that is the main power source, or as a power source (sub power source) that generates driving force for traveling together with the engine 8.
  • electric energy is generated by regeneration from the driving force generated by another power source and supplied to another electric motor M via the inverter 54 (see FIG. 5), or the electric energy is stored in the power storage device 56 (see FIG. 5). (See 5).
  • the first electric motor M1 has at least a generator (power generation) function for generating a reaction force.
  • the second electric motor M2 is coupled to the drive wheel 34 so as to be able to transmit power, and has at least a motor (electric motor) function to function as a traveling motor that outputs a driving force as a second driving force source for traveling.
  • each of the first electric motor M1 and the second electric motor M2 is configured such that the power generation amount as the generator can be continuously changed.
  • the first electric motor M ⁇ b> 1 and the second electric motor M ⁇ b> 2 are provided in a case 12 that is a casing of the power transmission device 10, and are cooled by hydraulic oil of the automatic transmission unit 20 that is a working fluid of the power transmission device 10.
  • the power distribution mechanism 16 is a differential mechanism connected between the engine 8 and the automatic transmission unit 20, and is a single pinion type differential unit planetary having a predetermined gear ratio ⁇ 0 of about “0.416”, for example.
  • the gear mechanism 24 is a main mechanism that mechanically distributes the output of the engine 8 input to the input shaft 14.
  • the differential unit planetary gear unit 24 includes a differential unit sun gear S0, a differential unit planetary gear P0, a differential unit carrier CA0 that supports the differential unit planetary gear P0 so as to rotate and revolve, and a differential unit planetary gear P0.
  • the differential part ring gear R0 meshing with the differential part sun gear S0 is provided as a rotating element (element).
  • the differential carrier CA0 is connected to the input shaft 14, that is, the engine 8, the differential sun gear S0 is connected to the first electric motor M1, and the differential ring gear R0 is connected to the transmission member 18. ing.
  • the differential unit sun gear S0, the differential unit carrier CA0, and the differential unit ring gear R0 which are the three elements of the differential unit planetary gear unit 24, can be rotated relative to each other.
  • the differential action is operable, that is, the differential action is enabled (differential state), so that the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18 and distributed.
  • the differential unit 11 Since a part of the output of the engine 8 is stored with electric energy generated from the first electric motor M1 or the second electric motor M2 is rotationally driven, the differential unit 11 (power distribution mechanism 16) is electrically
  • the differential unit 11 is set to a so-called continuously variable transmission state (electric CVT state) by functioning as a differential device, and the rotation of the transmission member 18 is continuously changed regardless of the predetermined rotation of the engine 8. That is, when the power distribution mechanism 16 is in a differential state, the differential unit 11 is also in a differential state, and the differential unit 11 has a gear ratio ⁇ 0 (the rotational speed N IN of the input shaft 14 / the rotational speed of the transmission member 18).
  • N 18 is in a continuously variable transmission state that functions as an electric continuously variable transmission in which N 18 ) is continuously changed from the minimum value ⁇ 0 min to the maximum value ⁇ 0 max.
  • the power distribution mechanism 16 is set to the differential state in this way, one or both of the operating states of the first electric motor M1 and the second electric motor M2 connected to the power distribution mechanism 16 (differential unit 11) so as to be able to transmit power are provided.
  • the differential state of the power distribution mechanism 16 that is, the differential state of the rotational speed of the input shaft 14 and the rotational speed of the transmission member 18 is controlled.
  • the rotational speed N IN of the input shaft 14 hereinafter, referred to as "input shaft rotational speed N IN"
  • N E the engine rotational speed N E and the same rotational speed.
  • the automatic transmission unit 20 corresponding to the automatic transmission of the present invention includes a single pinion type first planetary gear device 26 and a single pinion type second planetary gear device 28, and is provided between the engine 8 and the drive wheels 34.
  • This is a planetary gear type multi-stage transmission that functions as a stepped automatic transmission that constitutes a part of the power transmission path and mechanically sets a plurality of gear ratios in stages.
  • the first planetary gear unit 26 includes a first sun gear S1, a first planetary gear P1, a first carrier CA1 that supports the first planetary gear P1 so as to rotate and revolve, and a first sun gear S1 via the first planetary gear P1.
  • the first ring gear R1 meshing with the first gear R1 has a predetermined gear ratio ⁇ 1 of about “0.488”, for example.
  • the second planetary gear device 28 includes a second sun gear S2 via a second sun gear S2, a second planetary gear P2, a second carrier CA2 that supports the second planetary gear P2 so as to rotate and revolve, and a second planetary gear P2.
  • the second ring gear R2 that meshes with the second gear R2 has a predetermined gear ratio ⁇ 2 of about “0.455”, for example.
  • the gear ratio ⁇ 1 is ZS1 / ZR1.
  • the gear ratio ⁇ 2 is ZS2 / ZR2.
  • the first sun gear S1 is connected to the transmission member 18 via the third clutch C3 and selectively connected to the case 12 via the first brake B1, and the first carrier CA1 and the second ring gear are connected.
  • R2 is integrally connected to the transmission member 18 via the second clutch C2, and is selectively connected to the case 12 via the second brake B2, and the first ring gear R1 and the second carrier CA2 Are integrally connected to the output shaft 22, and the second sun gear S2 is selectively connected to the transmission member 18 via the first clutch C1.
  • first carrier CA1 and the second ring gear R2 are connected to a case 12 which is a non-rotating member via a one-way clutch F1, and is allowed to rotate in the same direction as the engine 8 and is prohibited from rotating in the reverse direction.
  • first carrier CA1 and the second ring gear R2 function as rotating members that cannot rotate in reverse.
  • clutch-to-clutch shift is executed by releasing the disengagement side engagement device and engagement of the engagement side engagement device, and a plurality of gear stages (shift stages) are generated.
  • the first speed gear stage having a gear ratio of about “3.20” is established by the engagement of the first clutch C1 and the one-way clutch F1
  • the first gear C1 and the first brake B1 are engaged to establish a second speed gear stage with a gear ratio of about “1.72”
  • the first clutch C1 and the second clutch C2 are engaged to change the gear ratio.
  • the third speed gear stage that is about “1.00” is established, and the fourth speed gear stage that is about “0.67” is established by engagement of the second clutch C2 and the first brake B1.
  • the reverse gear stage in which the gear ratio becomes about “2.04” is established by the engagement of the third clutch C3 and the second brake B2.
  • the neutral “N" state is established by releasing the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2.
  • the second brake B2 is engaged during the engine braking of the first gear.
  • the power transmission path in the automatic transmission unit 20 is a combination of the operation of engagement and release of the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2.
  • the state is switched between a power transmission enabling state that enables power transmission through the power transmission path and a power transmission cutoff state that interrupts power transmission. That is, any one of the first to fourth gear stages and the reverse gear stage is established, so that the power transmission path is in a state capable of transmitting power, and none of the gear stages is established.
  • the neutral “N” state is established, the power transmission path is brought into a power transmission cutoff state.
  • the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2 are conventional automatic transmissions for vehicles.
  • a hydraulic friction engagement device as an engagement element often used in a machine, and a wet multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, or an outer peripheral surface of a rotating drum
  • One end of one or two bands wound around is composed of a band brake or the like that is tightened by a hydraulic actuator, and is for selectively connecting the members on both sides of the band brake.
  • the differential unit 11 that functions as a continuously variable transmission and the automatic transmission unit 20 constitute a continuously variable transmission as a whole. Further, by controlling the gear ratio of the differential unit 11 to be constant, the differential unit 11 and the automatic transmission unit 20 can configure a state equivalent to a stepped transmission.
  • the differential unit 11 functions as a continuously variable transmission
  • the automatic transmission unit 20 in series with the differential unit 11 functions as a stepped transmission, whereby at least one shift of the automatic transmission unit 20 is performed.
  • the rotational speed input to the automatic transmission unit 20 with respect to the stage M (hereinafter referred to as “input rotational speed of the automatic transmission unit 20”), that is, the rotational speed of the transmission member 18 (hereinafter referred to as “transmission member rotational speed N 18 ”). Is continuously changed, and a continuously variable transmission ratio width is obtained at the gear M.
  • Overall speed ratio ⁇ T of the power transmission device 10 is the total speed ratio ⁇ T of the entire power transmission device 10 which is formed on the basis of the gear ratio gamma AT gear ratio ⁇ 0 and the automatic transmission portion 20 of the differential portion 11 .
  • first gear or transmission member rotational speed N 18 is continuously variable varying for each gear of the fourth gear and the reverse gear position of the automatic transmission portion 20 indicated in the table of FIG. 2
  • each gear stage has a continuously variable transmission ratio width. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio ⁇ T of the power transmission device 10 as a whole can be obtained continuously.
  • the gear ratio of the differential unit 11 is controlled to be constant, and the clutch C and the brake B are selectively engaged and operated, and either the first gear to the fourth gear or the reverse drive
  • a total gear ratio ⁇ T of the power transmission device 10 that changes in a substantially equal ratio is obtained for each gear stage. Therefore, a state equivalent to the stepped transmission is configured in the power transmission device 10.
  • FIG. 3 illustrates a gear stage in a power transmission device 10 including a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and an automatic transmission unit 20 that functions as a stepped transmission unit or a second transmission unit.
  • the collinear diagram which can represent on a straight line the relative relationship of the rotational speed of each rotation element from which a connection state differs for every is shown.
  • the collinear diagram of FIG. 3 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ⁇ of each planetary gear unit 24, 26, and 28 and a vertical axis indicating the relative rotational speed.
  • the lower horizontal line X1 of the horizontal lines indicates zero rotational speed
  • the upper horizontal line X2 indicates the rotational speed “1.0”, that is, the rotational speed N E of the engine 8 connected to the input shaft 14 (hereinafter referred to as “engine rotational speed”).
  • N E the rotational speed of the engine 8 connected to the input shaft 14
  • the horizontal line XG (X3) indicates the rotational speed N 18 of the transmission member 18, that is, the rotational speed of the third rotational element RE 3 described later input from the differential unit 11 to the automatic transmission unit 20. .
  • three vertical lines Y1, Y2, and Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential unit 11 indicate the differential corresponding to the second rotation element (second element) RE2 in order from the left side.
  • These intervals are determined according to the gear ratio ⁇ 0 of the differential planetary gear unit 24.
  • the four vertical lines Y4, Y5, Y6, and Y7 of the automatic transmission unit 20 indicate, in order from the left, the second sun gear S2 corresponding to the fourth rotation element (fourth element) RE4 and the fifth rotation element RE5 (
  • the first ring gear R1 and the second carrier CA2 connected to each other corresponding to the fifth element) are connected to the first carrier CA1 and the second ring gear R2 connected to each other corresponding to the sixth rotation element (sixth element) RE6.
  • the interval between the carrier and the ring gear is set to an interval corresponding to the gear ratio ⁇ of the planetary gear device. That is, in the differential section 11, the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ⁇ 0. Further, in the automatic transmission unit 20, the interval between the sun gear and the carrier is set to correspond to "1" for each of the first and second planetary gear devices 26 and 28, and the interval between the carrier and the ring gear corresponds to ⁇ . Set to the interval to be
  • the power transmission device 10 of the present embodiment is configured so that the power distribution mechanism 16 (differential unit 11) has the first rotating element RE1 (The differential carrier CA0) is connected to the input shaft 14, that is, the engine 8, the second rotating element RE2 is connected to the first electric motor M1, and the third rotating element (differential ring gear R0) RE3 is connected to the transmission member 18 and the second rotating element RE2. It is connected to the electric motor M2, and is configured to transmit (input) the rotation of the input shaft 14 to the automatic transmission unit 20 via the transmission member 18.
  • the relationship between the rotational speed of the differential section sun gear S0 and the rotational speed of the differential section ring gear R0 is shown by an oblique straight line L0 passing through the intersection of Y2 and X2.
  • the first rotation element RE1 to the third rotation element RE3 are in a differential state in which they can rotate relative to each other, and the difference indicated by the intersection of the straight line L0 and the vertical line Y3.
  • the rotational speed of the moving part ring gear R0 is substantially constant by being constrained by the vehicle speed V
  • the differential part sun gear indicated by the intersection of the straight line L0 and the vertical line Y1 is controlled by controlling the rotational speed of the first electric motor M1.
  • the rotation of S0 is raised or lowered, the rotational speed, or the engine rotational speed N E of the carrier CA0, represented by an intersecting point between the straight line L0 and the vertical line Y2 is increased or decreased.
  • the rotation of the differential portion sun gear S0 is the same speed as the engine speed N E by controlling the rotational speed of the first electric motor M1 such speed ratio ⁇ 0 of the differential portion 11 is fixed to "1" If that, the straight line L0 is aligned with the horizontal line X2, the rotational speed, i.e., the power transmitting member 18 of the differential portion ring gear R0 at a speed equal to the engine speed N E is rotated. Alternatively, by controlling the rotational speed of the first electric motor M1 so that the speed ratio ⁇ 0 of the differential section 11 is fixed to a value smaller than “1”, for example, about 0.7, the rotation of the differential section sun gear S0 becomes zero. Once, the straight line L0 is the state shown in FIG. 3, it is higher than the engine speed N E and the power transmitting member 18 is rotated.
  • the fourth rotation element RE4 is selectively connected to the transmission member 18 via the first clutch C1
  • the fifth rotation element RE5 is connected to the output shaft 22
  • the sixth rotation element RE6 is the sixth rotation element RE6. It is selectively connected to the transmission member 18 via the second clutch C2 and selectively connected to the case 12 via the second brake B2 and the seventh rotating element RE7 is connected to the transmission member 18 via the third clutch C3. It is selectively connected to the case 12 via the first brake B1.
  • the vehicle 6 of this embodiment includes an air conditioner 42.
  • the air conditioner 42 is a generally known car air conditioner that performs air conditioning of the passenger compartment by the output of the engine 8. Specifically, the air conditioner 42 compresses the refrigerant when the compressor 43 included in the air conditioner 42 is rotationally driven by the output of the engine 8, and air-conditions the vehicle interior via the refrigerant.
  • the air conditioner 42 When the air conditioner 42 is turned on, the operating point of the engine 8 is changed to a high output side to rotate the compressor 43. For example, even if the running load does not change compared to the OFF state of the air conditioner 42, the engine speed N E is raised.
  • FIG. 4 illustrates a signal input to the electronic control device 80 that is a control device for controlling the power transmission device 10 of the present embodiment and a signal output from the electronic control device 80.
  • the electronic control unit 80 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in the ROM in advance while using a temporary storage function of the RAM.
  • various controls such as the hybrid drive control for the engine 8 and each electric motor M and the shift control of the automatic transmission unit 20 are executed.
  • the electronic control unit 80 includes a signal representing the engine water temperature TEMP W that is the temperature of the cooling fluid of the engine 8, a shift position P SH of the shift lever operated by the driver, from each sensor and switch as shown in FIG. a manual shift running position signal representative of the number of operations such as in the "M" position, a signal indicative of engine rotational speed N E, the signal for instructing the M mode (manual shift running mode), a signal representing the operation of the air conditioner 42, a vehicle speed sensor
  • the vehicle speed V corresponding to the rotational speed N OUT of the output shaft 22 detected by 72 hereinafter referred to as “output shaft rotational speed N OUT ”), a signal indicating the traveling direction of the vehicle 6, and the hydraulic oil temperature of the automatic transmission unit 20 signal representing the T OIL, the signal representative of the emergency brake operation, the wheel brake system which imparts a braking torque (braking force) to (drive wheels 34, driven wheels, not shown)
  • Well-known foot brake system brake operation signal representing the operation of the brake pedal (ON) B
  • an accelerator opening an accelerator opening signal representative of the accelerator opening Acc is an operation amount of the accelerator pedal corresponding to the required driving force F R of the detected driver by degrees sensor 78, a signal indicative of a cam angle, a signal indicative of a snow mode setting, vehicle 6, a signal representing the longitudinal acceleration G, a signal representing the auto cruise traveling, a signal representing the weight (vehicle weight) of the vehicle 6, a signal representing the wheel speed of each wheel, a M1 rotational speed sensor 74 comprising a resolver and the like.
  • first electric motor speed N M1 rotational speed N M1 of the first electric motor M1
  • second electric motor speed N M2 a signal indicating the direction of rotation, between the respective electric motors M1, M2
  • a signal indicating the remaining charge (charged state) SOC of the power storage device 56 see FIG.
  • a power driving mode switch (power mode switch) 46 that is manually operated to select a power driving mode (power mode) that can improve the acceleration response of A signal indicating that the operation has been performed is supplied.
  • an engine output control unit 58 for controlling the output P E of the engine 8 (unit: “kW”; hereinafter referred to as “engine output P E ”).
  • Control signal for example, a drive signal to the throttle actuator 64 for operating the throttle valve opening ⁇ TH of the electronic throttle valve 62 provided in the intake pipe 60 of the engine 8, the intake pipe 60 by the fuel injection device 66 or the in-cylinder of the engine 8
  • a fuel supply amount signal for controlling the fuel supply amount to the engine, an ignition signal for instructing the ignition timing of the engine 8 by the ignition device 68, a supercharging pressure adjustment signal for adjusting the supercharging pressure, and an air conditioner for operating the air conditioner 42
  • Drive signal command signal for commanding operation of motors M1, M2, shift position (operation position) display signal for operating shift indicator, gear Gear ratio display signal for displaying the gear ratio, snow mode display signal for displaying that it is in the snow mode, wheel brake operation signal for operating the wheel brake device, and displaying that the M mode is selected
  • M1, M2 shift position (operation position)
  • a valve command signal to be operated a signal for adjusting the line oil pressure by a regulator valve (pressure adjusting valve) provided in the oil pressure control circuit 70, and an electric oil pressure that is a source of the original pressure for adjusting the line oil pressure Drive command signal for operating pump, signal for driving electric heater, computer for cruise control control Issue etc., it is output.
  • a regulator valve pressure adjusting valve
  • FIG. 5 is a functional block diagram illustrating a main part of the control function provided in the electronic control unit 80.
  • the stepped shift control unit that is, the stepped shift control unit 82 functions as a shift control unit that shifts the automatic transmission unit 20.
  • the solid line in FIG. 6 is a shift line for determining an upshift (upshift line), and the broken line is a shift line for determining a downshift (downshift line). .
  • the required driving force F R of the driver since the driver is driving force required for the vehicle 6, actually corresponds to it, such as the accelerator opening Acc, for example, the driver's requested driving force F R is for the larger accelerator opening Acc is larger, is determined based on the accelerator opening Acc.
  • a request driving force F R of the driver which is a higher concept of variation indicating it, such as the accelerator opening Acc.
  • the stepped shift control means 82 should execute the shift of the automatic transmission unit 20 based on the shift diagram of FIG. 7 using the vehicle speed V and the accelerator opening Acc as axis parameters instead of FIG. It may be judged.
  • the required driving force F R the accelerator opening Acc by the driver as an axis parameter
  • the required driving force F R (accelerator opening Acc ) Has a merit that it is possible to secure a shift of the automatic transmission unit 20 with a good response that can immediately cope with a transitional change.
  • the stepped shift control means 82 determines whether or not the shift of the automatic transmission unit 20 should be executed based on the shift diagram of FIG. 11 instead of the shift diagram of FIG. 6 or FIG. Although automatic shift control may be executed, this point will be described later.
  • the stepped transmission control means 82 is involved in the shift of the automatic transmission unit 20 so that the gear stage is achieved according to the engagement table shown in FIG.
  • a command for engaging and / or releasing the hydraulic friction engagement device (shift output command, hydraulic pressure command), that is, the release-side engagement device involved in the shift of the automatic transmission unit 20 and the engagement-side engagement device are released.
  • the hydraulic control circuit 70 Is applied to the hydraulic control circuit 70 to execute clutch-to-clutch shift.
  • the hydraulic control circuit 70 releases the disengagement side engagement device and engages the engagement side engagement device so that the shift of the automatic transmission unit 20 is executed.
  • a linear solenoid valve is actuated to actuate a hydraulic actuator of a hydraulic friction engagement device that is involved in the speed change.
  • the hybrid control unit that is, the hybrid control means 86, functions as engine drive control means for controlling the drive of the engine 8 via the engine output control device 58, and is driven by the first electric motor M1 and the second electric motor M2 via the inverter 54.
  • a function as a motor operation control means for controlling the operation as a power source or a generator is included, and hybrid drive control by the engine 8, the first motor M1, and the second motor M2 is executed by these control functions.
  • the hybrid control means 86 operates the engine 8 in an efficient operating range, while optimizing the reaction force due to the distribution of the driving force between the engine 8 and the second electric motor M2 and the power generation of the first electric motor M1.
  • the target vehicle 6 from the accelerator opening Acc and the vehicle speed V as a required driving force F R of the driver (requested) is calculated output, charge demand value and the target output of the vehicle 6
  • the target engine output (required engine output) PER is calculated in consideration of transmission loss, auxiliary load, assist torque of the second motor M2, etc. so that the total target output can be obtained. and controls the output to the generator of the motor M to control the output torque the engine 8 so as to (engine torque) T E of the engine rotational speed N E and the engine 8 in which the target engine output P ER is obtained.
  • overall speed ratio ⁇ T is the transmission ratio of the whole of the power transmission device 10 includes a gear ratio gamma AT of the automatic transmission portion 20 controlled by the step-variable shifting control means 82 is controlled by the hybrid control means 86
  • the speed ratio ⁇ 0 of the differential unit 11 is determined. That is, the hybrid control means 86 and the stepped speed change control means 82 are within the range of the shift range corresponding to the shift position P SH , the hydraulic control circuit 70, the engine output control device 58, the first electric motor M1, and the second electric motor M2. And the like, and functions as a transmission control means for controlling the overall transmission ratio ⁇ T, which is the transmission ratio of the power transmission device 10 as a whole.
  • the hybrid control means 86 executes control of the engine 8 and each electric motor M in consideration of the gear position of the automatic transmission unit 20 in order to improve power performance and fuel consumption.
  • the differential unit 11 is caused to function as an electric continuously variable transmission.
  • the engine rotational speed N E and engine torque T E and experimentally determined in advance was example 10 to both the drivability and the fuel consumption when the continuously-variable shifting control in a two-dimensional coordinate composed of
  • An optimal fuel consumption rate curve (fuel consumption map, relationship), which is a kind of operation curve of the engine 8 as shown by the solid line L EG , is stored in advance in the storage means 84, and the hybrid control means 86 displays the optimal fuel consumption rate curve in the above-described optimal fuel consumption rate curve.
  • a target output total target output, required driving force F R
  • the engine torque T E and the engine rotational speed N E for generating an output P E determines the target value of the overall speed ratio ⁇ T of the power transmission device 10, its target value Is such that the output torque of the first electric motor M1 (hereinafter, referred to as "first electric motor torque") T M1 is changed by feedback control by controlling the speed ratio ⁇ 0 of the differential portion 11, the shifting of the overall speed ratio ⁇ T Control within the possible range of change.
  • first electric motor torque the above-mentioned engine operating point, indicating the operating state of the engine rotational speed N E and the engine 8 in a two-dimensional coordinates with coordinate axes state quantity indicating the operating state of the engine 8 is exemplified by such engine torque T E operation Is a point.
  • the fuel consumption is a travel distance per unit fuel consumption
  • the improvement in fuel consumption is an increase in the travel distance per unit fuel consumption, or as a whole vehicle.
  • the reduction (deterioration) in fuel consumption means that the travel distance per unit fuel consumption is shortened, or the fuel consumption rate of the entire vehicle is increased.
  • the hybrid control means 86 supplies, for example, the electric energy generated by the first electric motor M1 to the power storage device 56 and the second electric motor M2 through the inverter 54, so that the main part of the power of the engine 8 (engine output P E ) Is mechanically transmitted to the transmission member 18, but a part of the motive power of the engine 8 is consumed for the electric power generation of the electric motor M and is converted into electric energy there, and the electric energy is transferred to the other electric motor M through the inverter 54.
  • the driving force supplied and output from the electric motor M by electric energy is transmitted to the transmission member 18.
  • a part of the motive power of the engine 8 is converted into electric energy by equipment related from generation of electric energy by the electric motor M related to power generation to consumption by the electric motor M related to driving, and the electric energy is converted into mechanical energy.
  • An electrical path is formed until conversion.
  • the engine output PE is transmitted to the transmission member 18 through two power transmission paths of the mechanical path and the electric path mechanically transmitted from the input shaft 14 to the transmission member 18.
  • the power storage device 56 is an electric energy source that can supply power to the first motor M1 and the second motor M2 and receive power from the motors M1 and M2.
  • the first motor It is an electric energy source capable of transferring power to each of M1 and the second electric motor M2.
  • the power storage device 56 is an electric energy source that is charged by one or both of the first electric motor M1 and the second electric motor M2 that function as a generator that is rotationally driven by the engine 8, for example, a lead storage battery.
  • a lead storage battery Such as a battery or a capacitor.
  • the hybrid control means 86 controls the first motor rotation speed N M1 and / or the second motor rotation speed N M2 by the electric CVT function of the differential section 11 regardless of whether the vehicle 6 is stopped or traveling. rotation control any rotational speed or to maintain a substantially constant engine speed N E Te.
  • the hybrid control means 86 rotating the first electric motor speed N M1 and / or the second electric motor rotation speed N M2 while controlling any rotational speed or to maintain the engine speed N E substantially constant for any The rotation can be controlled to the speed.
  • the hybrid control means 86 as can be seen from the diagram of FIG. 3 when raising the engine rotation speed N E during running of the vehicle, the second electric motor rotation speed N which depends on the vehicle speed V (driving wheels 34)
  • the first motor rotation speed N M1 is increased while maintaining M2 substantially constant.
  • the hybrid control means 86 when maintaining the engine speed N E at the nearly fixed level during the shifting of the automatic shifting portion 20, due to the shift of the automatic transmission portion 20 while maintaining the engine speed N E substantially constant
  • the first motor rotation speed N M1 is changed in the direction opposite to the change of the second motor rotation speed N M2 .
  • the hybrid control means 86 controls the opening and closing of the electronic throttle valve 62 by the throttle actuator 64 for throttle control, and controls the fuel injection amount and injection timing by the fuel injection device 66 for fuel injection control.
  • a command to control the ignition timing by the ignition device 68 such as an igniter for controlling alone or in combination with output to the engine output control device 58, an output control of the engine 8 so as to generate the necessary engine output P E Execute. That is, it functions as an engine drive control means for controlling the drive of the engine 8.
  • the hybrid controller 86 basically drives the throttle actuator 64 based on the accelerator opening Acc from a previously stored relationship (not shown), and increases the throttle valve opening ⁇ TH as the accelerator opening Acc increases. Throttle control is executed so that In addition, the engine output control device 58 controls the opening and closing of the electronic throttle valve 62 by the throttle actuator 64 for throttle control according to the command from the hybrid control means 86, and also performs fuel injection by the fuel injection device 66 for fuel injection control.
  • the engine torque control is executed by controlling the ignition timing by an ignition device 68 such as an igniter for controlling the ignition timing.
  • the hybrid control means 86 drives the second electric motor M2 for traveling without using the engine 8, for example, by the electric CVT function (differential action) of the differential section 11 regardless of whether the engine 8 is stopped or in an idle state.
  • Motor traveling (EV mode traveling) can be performed as a power source. For example, starting not shown, in the two-dimensional coordinates of the vehicle speed V and the driver's requested driving force F R (accelerator opening Acc) and a variable, the vehicle 6 as a driving force source for running the engine 8 /
  • the engine travel region where the so-called engine travel for traveling (hereinafter referred to as travel) is performed, and the motor travel region where the so-called motor travel for traveling the vehicle 6 using the second electric motor M2 as a driving power source for traveling are configured.
  • a driving force source switching diagram (driving force source map) is stored in the storage means 84 in advance. Then, the hybrid control means 86 from the driving force source switching diagram stored in the storage means 84, based on the vehicle condition represented by the actual vehicle speed V and the driver's requested driving force F R, the motor drive region And the engine running region are determined, and motor running or engine running is executed.
  • the motor drive region is generally relatively low required driving force F R engine efficiency is poor compared to the high driving force zone area (relatively low accelerator opening Acc), that is, a low engine torque T E region, or is set to a relatively low vehicle speed, that is, when the low load region of the vehicle speed V.
  • the hybrid control means 86 controls the first motor rotation speed N M1 at a negative rotation speed so as to suppress dragging of the stopped engine 8 and improve fuel efficiency during the motor running, for example, the first electric motor M1 is rotated in idle and by the unloaded state, to maintain the engine speed N E at zero or substantially zero as needed by the electric CVT function of differential portion 11 (differential action).
  • the hybrid control means 86 is an electric energy and / or power storage device 56 from the first electric motor M1 by the electric path described above even in an engine driving region where the engine 8 is driven using the engine 8 as a driving power source for driving.
  • the so-called torque assist for assisting the power of the engine 8 is possible by supplying the electric energy from the second motor M2 and driving the second motor M2 to apply torque to the drive wheels 34. Therefore, the engine traveling of this embodiment includes a case where the engine 8 is used as a driving power source for traveling and a case where both the engine 8 and the second electric motor M2 are used as driving power sources for traveling.
  • the motor travel in this embodiment is travel that stops the engine 8 and uses the second electric motor M2 as a driving force source for travel.
  • the hybrid control means 86 switches the operating state of the engine 8 between an operating state and a stopped state in order to switch between engine running and motor running, that is, an engine start / stop control unit that starts and stops the engine 8.
  • a start / stop control means 88 is provided.
  • the engine start / stop control means 88 starts or stops the engine 8 when the hybrid control means 86 determines, for example, switching between motor travel and engine travel based on the vehicle state from the driving force source switching diagram. To do.
  • engine start stop control means 88 the required driving force F R increases the accelerator pedal is depressing the vehicle state from the motor drive region of the drive power source switching diagram by the hybrid control means 86 to the engine drive region
  • the first motor M1 is energized to rotate the first motor rotation speed. raising the N M1, i.e.
  • the engine rotational speed N E complete combustion can be predetermined rotational speed N E 'for example the idle speed more autonomous rotatable predetermined autonomous rotating It performs the engine rotation driving control to increase above the speed N EIDL, fuel at a predetermined rotational speed N E 'or Supplying fuel by injector 66 (injection) and ignited by the ignition device 68 to start the engine 8 by performing the engine torque generation control that generates engine torque T E, the switching from the motor running to the engine running.
  • engine start stop control means 88 when it is returned the accelerator pedal is required driving force F R is smaller becomes the vehicle state has changed from the engine drive region of the drive power source switching diagram to the motor drive region, the fuel The fuel supply is stopped by the injection device 66, that is, the engine 8 is stopped by fuel cut, and the engine running by the hybrid control means 86 is switched to the motor running.
  • the hybrid control means 86 makes the first electric motor M1 in a no-load state and freely rotates, that is, idles, so that the differential unit 11 cannot transmit torque, that is, the power transmission path in the differential unit 11 is blocked. It is possible to make the state equivalent to the state in which the output from the differential unit 11 is not generated. That is, the hybrid control means 86 can bring the differential unit 11 into a neutral state (neutral state) in which the power transmission path is electrically cut off by setting the first electric motor M1 to a no-load state.
  • the hybrid control means 86 does not operate the engine 8 in order to improve fuel consumption (reduce the fuel consumption rate) during inertial running with the accelerator off (coast running) or wheel brake operation by operating the brake pedal.
  • regenerative control is performed in which the kinetic energy of the vehicle 6 transmitted from the driving wheels 34 is converted into electric energy by the differential unit 11.
  • the second motor M2 is rotationally driven by the reverse driving force transmitted from the drive wheel 34 to the engine 8 side to operate as a generator, and the electric energy, that is, the second motor generated current is passed through the inverter 54.
  • Regenerative control for charging power storage device 56 is executed. That is, the hybrid control means 86 functions as a regeneration control means for executing the regeneration control.
  • FIG. 8 is a diagram showing the relationship between the overall gear ratio ⁇ T of the power transmission device 10 and the transmission efficiency ⁇ of the power transmission device 10 at each gear stage (1st to 4th) of the automatic transmission unit 20.
  • the transmission efficiency ⁇ of the power transmission device 10 depends on the gear ratio ⁇ 0 of the differential unit 11 and the gear stage of the automatic transmission unit 20, that is, the total gear ratio ⁇ T of the power transmission device 10. Change. For example, if attention is paid to one of the first to fourth gears of the automatic transmission unit 20, it is assumed that the gear ratio ⁇ AT of the automatic transmission unit 20 does not change.
  • the transmission efficiency ⁇ of 10 reaches a maximum value at a specific total speed ratio ⁇ T, that is, a specific speed ratio ⁇ 0 of the differential section 11, and decreases as the speed ratio ⁇ 0 of the differential section 11 deviates from the specific speed ratio ⁇ 0. It shows the trend of changing transmission efficiency. In FIG. 8, the transmission efficiency change tendency moves substantially parallel to the direction in which the overall transmission ratio ⁇ T changes due to the shift of the automatic transmission unit 20.
  • each upshift line and each downshift line are set so as to be kept high. At this time, for example, each upshift line and each downshift line are set on the premise of a predetermined state in which the load of auxiliary equipment such as the air conditioner 42 is small and the remaining charge SOC of the power storage device 56 is sufficient.
  • a curve (transmission efficiency curve) representing the relationship between the overall speed ratio ⁇ T and the transmission efficiency ⁇ of the power transmission device 10 at each gear stage (1st to 4th) in FIG. 9 is the same as that in FIG.
  • the engine output PE is basically spent for traveling the vehicle. For example, when the load on the auxiliary devices is large, or the remaining charge SOC of the power storage device 56 is close to the lower limit value and needs to be charged. If this happens, the engine output PE may be increased for purposes other than vehicle travel.
  • the load on the auxiliary devices is large, or the remaining charge SOC of the power storage device 56 is close to the lower limit value and needs to be charged. If this happens, the engine output PE may be increased for purposes other than vehicle travel.
  • Figure 10 is a diagram for explaining how engine operating point when the engine output P E changes how changes.
  • the automatic shifting portion 20 is increased to 110kW from 100kW to charge to the engine output P E is the electric storage device 56 when in the second speed position (2nd).
  • the 100kW is an engine output P E since the vehicle traveling purposes.
  • the hybrid control means 86 operates the engine 8 while keeping the engine operating point along the operating curve (optimum fuel consumption rate curve) L EG of the engine 8. from the intersection P01 EG between the curve L1 PE and operating curve L EG, changing the intersection P02 EG with equal power curve L2 PE and operating curve L EG of 110kW.
  • the engine rotational speed N E is increased from N E _01 of the intersection point P01 EG indicates the N E _02 showing the intersection P02 EG is.
  • the transmission efficiency ⁇ of the power transmission device 10 changes from the point P01 EF to the point P02 EF on the transmission efficiency curve of the second speed gear stage (2nd).
  • the value decreases from ⁇ _01 to ⁇ _02.
  • the transmission efficiency ⁇ of the power transmission device 10 changes from the point P01 EF to the point P02 EF ′.
  • the value increases from ⁇ _01 to ⁇ _02 ′.
  • FIG. 7 in order to determine whether or not the shift of the automatic transmission unit 20 should be executed while suppressing the deterioration of the fuel efficiency due to the decrease in the transmission efficiency ⁇ , FIG. The shift diagram in FIG. 7 is switched to another shift diagram.
  • the main part of the control function for that purpose will be described.
  • the electronic control unit 80 includes the stepped shift control means 82, the storage means 84, and the hybrid control means 86 described above, and in addition, the fuel consumption as a fuel consumption priority running state determination unit.
  • a priority traveling state determination unit 92, a shift point setting unit 94 as a shift point setting unit, and a shift point setting change prohibiting unit 96 as a shift point setting change prohibiting unit are provided.
  • the storage means 84 is replaced with the vehicle speed V and the actual engine speed N E (actual) as shown in FIG.
  • a shift diagram having an upshift line (solid line) and a downshift line (broken line) is stored in advance with the engine speed as a variable (axis parameter).
  • the output shaft rotational speed N OUT has a one-to-one correspondence with the vehicle speed V, and the overall gear ratio ⁇ T, which is the horizontal axis in FIG. 9, is “N E / N OUT ”.
  • the gradient of each downshift line is determined with hysteresis with respect to the corresponding upshift line.
  • Fuel consumption priority traveling state determination means 92 determines whether or not the vehicle 6 is in a predetermined fuel consumption priority traveling state.
  • the fuel consumption priority traveling state is a vehicle state in which improvement in fuel efficiency is given priority over acceleration response and comfort in vehicle traveling. More specifically, the case where the vehicle 6 is in the fuel consumption priority traveling state can be considered in various cases.
  • the case where the vehicle 6 is in the fuel consumption priority traveling state is a case where the fuel efficiency priority traveling mode in which fuel efficiency is improved as compared with the non-selection is manually selected.
  • the fuel efficiency priority traveling state determination unit 92 determines that the vehicle 6 is in the fuel efficiency priority traveling state when the fuel efficiency priority traveling mode is manually selected.
  • the fuel consumption priority traveling mode is selected by operating the eco mode switch 44 to the ON state. In the fuel efficiency priority travel mode, the fuel efficiency is prioritized over the travel performance of the vehicle 6 and, for example, the air-fuel ratio of the engine 8 is changed so as to improve the fuel efficiency as compared with when it is not selected.
  • the required output amount P EEX required for the engine 8 to charge the power storage device 56 (unit: “kW”, for example) Is a predetermined output request amount determination value P1 EEX or more.
  • the fuel consumption priority travel state determination unit 92 determines that the vehicle 6 is in the fuel efficiency priority travel state when the output request amount P EEX is equal to or greater than the output request amount determination value P1 EEX .
  • the output request amount P EEX is calculated by the hybrid control means 86 based on, for example, the remaining charge SOC of the power storage device 56 and the current running state, and the hybrid control means 86 uses the engine as described above with reference to FIG.
  • the operating point is changed, and the engine output P E obtained by adding the output required amount P EEX to the output (power) necessary for vehicle travel is caused to be exhibited by the engine 8.
  • the engine output P E obtained by adding the output required amount P EEX to the output (power) necessary for vehicle travel is caused to be exhibited by the engine 8.
  • the requested output amount determination value P1 EEX when the requested output amount P EEX becomes higher, as the automatic transmission portion 20 is not shifting, the fuel economy by the engine operating point is shifted due to the charging of the battery 56 It is an experimentally set determination value that is considered to cause a decrease in the connected transmission efficiency ⁇ .
  • the remaining charge SOC of the power storage device 56 is less than a predetermined remaining power determination value X1 SOC and the power storage device 56 is charged.
  • the required output amount P EEX required for the engine 8 is equal to or greater than the required output amount determination value P1 EEX .
  • the fuel consumption priority traveling state determination unit 92 has the remaining charge SOC of the power storage device 56 less than the remaining amount determination value X1 SOC , and the output request amount P EEX is the output request amount determination value P1 EEX. In the case described above, it is determined that the vehicle 6 is in the fuel consumption priority traveling state.
  • the remaining amount determination value X1 SOC is an experimentally set determination value that is considered to reduce power consumption from the power storage device 56 as much as possible if the remaining charge SOC of the power storage device 56 is less than that. Thus, for example, a value larger than the lower limit allowable value of the remaining charge SOC but close thereto is set.
  • the air conditioner required power P RAC (unit: “kW”, for example) necessary for driving the air conditioner 42 is a predetermined air conditioner required power.
  • the output request amount P EEX required for the engine 8 to charge the power storage device 56 is not less than the determination value P1 RAC and not less than the output request amount determination value P1 EEX .
  • the fuel efficiency priority running state determination means 92 is such that the air conditioner required power P RAC is equal to or greater than the air conditioner required power determination value P1 RAC , and the output request amount P EEX is equal to or greater than the output request amount determination value P1 EEX.
  • the air conditioner power demand P RAC is determined for the air conditioner power demand P RAC.
  • the air conditioner required power P RAC is calculated based on the driver's air conditioner operation content, vehicle interior temperature, and the like, and the hybrid control means 86 performs the vehicle operation in the same manner as the engine operating point change described above with reference to FIG. to required driving output (power) by adding the air-conditioning power demand P RAC engine output P E exert the engine 8. Therefore, the air conditioning power demand P RAC is no problem even if paraphrased and minute of the engine output P E exerted to drive the air conditioner 42.
  • the air conditioner required power determination value P1 RAC is determined that when the air conditioner required power P RAC becomes greater than that, the automatic transmission unit 20 is not shifted when the output request amount P EEX is equal to or greater than the output request amount determination value P1 EEX. This is an experimentally set determination value that is considered to cause a decrease in the transmission efficiency ⁇ that leads to a deterioration in fuel consumption due to a shift of the engine operating point for driving the air conditioner 42.
  • the case where the vehicle 6 is in the fuel consumption priority traveling state is a case where the remaining amount of fuel ST FL supplied to the engine 8 is less than a predetermined remaining fuel amount determination value ST1 FL.
  • the fuel consumption priority traveling state determination unit 92 determines that the vehicle 6 is in the fuel consumption priority traveling state when the remaining fuel amount ST FL is less than the remaining fuel amount determination value ST1 FL . Since the need to improve fuel consumption when the remaining amount ST FL decreases the fuel is considered to increase, it is determined for the remaining amount ST FL of the fuel.
  • the fuel remaining amount STFL is detected by, for example, a fuel remaining amount sensor provided in a fuel tank of the vehicle 6.
  • the fuel remaining amount determination value ST1 FL is an experimentally set determination value that is considered to improve the fuel consumption as much as possible if the fuel remaining amount STFL becomes less than that.
  • the shift point setting means 94 is configured so that the transmission efficiency ⁇ of the power transmission device 10 is maintained high over the entire region where the overall transmission ratio ⁇ T changes, and specifically, the relationship between the overall transmission ratio ⁇ T and the transmission efficiency ⁇ .
  • the shift points of the automatic transmission portion 20 (shift line) as a variable the driver's required driving force F R and the vehicle speed V as shown in FIG. 6, in other words, the driver setting the shift point of the automatic transmission portion 20 (shift line) by the driving force request F R and the vehicle speed V.
  • shift point (shift line) is set in the automatic shifting portion 20 is stored in the memory means 84 by the driver's required driving force F R and the vehicle speed V Therefore, the shift point setting unit 94 instructs the stepped shift control unit 82 to shift the automatic transmission unit 20 based on the shift diagram of FIG. In other words, the set shift point of the automatic transmission portion 20 (shift line) by the vehicle speed V required driving force F R of the driver through the command. Then, the step-variable shifting control means 82 which receives the instruction, as described above, on the basis of the vehicle condition represented by the actual vehicle speed V and the driver's requested driving force F R from the shift diagram of FIG.
  • the automatic It is determined whether or not the shift of the transmission unit 20 is to be executed, that is, the shift stage of the automatic transmission unit 20 to be shifted is determined, and the automatic shift control of the automatic transmission unit 20 is executed so that the determined shift stage is obtained. To do.
  • Shift point setting means 94 when the vehicle 6 is determined to the a fuel economy priority running state by the fuel consumption priority running state determining means 92, the engine speed N E in place of the required driving force F R of the driver
  • the shift point (shift line) of the automatic transmission unit 20 is set based on the vehicle speed V. In other words, as shown in FIG. 11, the shift point (shift) of the automatic transmission unit 20 using the engine speed NE and the vehicle speed V as variables. Line).
  • the shift point setting means 94 sets the shift point (shift line) of the automatic transmission unit 20 so that the transmission efficiency ⁇ of the power transmission device 10 is maintained high over the entire region where the overall transmission ratio ⁇ T changes. There is no change to the point to do.
  • the shift diagram of FIG. 11 in which the shift point (shift line) of the automatic transmission unit 20 is set by the engine speed NE and the vehicle speed V is stored in the storage means 84 in advance.
  • the gear shift point setting unit 94 indicates to the stepped shift control unit 82 according to the shift diagram of FIG.
  • the automatic transmission unit 20 is commanded to shift. That is, according to this command, the shift point (shift line) of the automatic transmission unit 20 is set by the engine rotational speed NE and the vehicle speed V.
  • the step-variable shifting control means 82 which receives the command, as in the case based on the shift diagram of FIG.
  • the shift point setting means 94 when the vehicle 6 is determined to the a fuel economy priority running state by the fuel consumption priority running state determining means 92, the engine rotation in place of the required driving force F R of the driver
  • the shift point of the automatic transmission unit 20 is set based on the speed NE and the vehicle speed V.
  • the shift point setting change prohibiting unit 96 sets the shift point of the automatic transmission unit 20 based on the engine rotational speed NE and the vehicle speed V. May be prohibited. This prohibited case will be described below.
  • Shift point setting change prohibition means 96 the amount of change in the required driving force F R of the driver's within a predetermined time period TIME1 VF R (hereinafter, "requested driving force variation VF R" hereinafter) reaches a predetermined required drive force variation it is determined whether the determination value VF1 R above, when the required driving force within a predetermined time period TIME1 variation VF R is the driving force demand change evaluation value VF1 R above, the shift point setting means 94 However, it is prohibited to set the shift point of the automatic transmission unit 20 based on the engine speed NE and the vehicle speed V.
  • the judgment about the required driving force variation VF R is performed, if transient change width of the required driving force F R (accelerator opening Acc) is large, the required driving force F R variables 1 One adopted to that shift diagram of FIG. 6 is used, in order to allow to change the required driving force F R is the transmission of good response automatic shifting portion 20 is performed.
  • the predetermined period TIME1 is shift point setting change prohibition means 96 are for example several seconds or several minutes immediately before the determination, the responsiveness to changes in the required driving force F R in order not to cause discomfort to the driver This is an experimentally determined period for determining whether a good shift of the automatic transmission unit 20 is necessary.
  • the required driving force variation VF R is, for example, the difference between the maximum value and the minimum value of the required driving force F R within the predetermined time period TIME1 (absolute value).
  • the required driving force variation determining value VF1 R may be any required driving force variation amount in the predetermined time period TIME1 VF R is more, the response to changes in the required driving force F R in order not to cause discomfort to the driver This is an experimentally set determination value that is considered to require shifting of the automatic transmission 20 with good characteristics.
  • the shift point setting change prohibition means 96 because the required driving force F R of the driver which corresponds to the accelerator opening Acc, the shift point setting change prohibition means 96, the amount of change in the accelerator opening Acc in the predetermined time period TIME1 is the required driving It is determined whether or not it is greater than or equal to a predetermined accelerator opening determination value corresponding to the force change amount determination value VF1 R, and the change amount of the accelerator opening Acc within the predetermined period TIME1 is greater than or equal to the above accelerator opening determination value.
  • the shift point setting means 94 may be prohibited from setting the shift point of the automatic transmission unit 20 based on the engine speed NE and the vehicle speed V.
  • the shift point setting change prohibiting means 96 determines whether or not the power travel mode in which acceleration response during vehicle travel is improved compared to when it is not selected is manually selected.
  • the shift point setting means 94 is prohibited from setting the shift point of the automatic transmission unit 20 based on the engine speed NE and the vehicle speed V.
  • the power running mode is selected by operating the power mode switch 46 to the ON state. In the power travel mode, for example, the air-fuel ratio of the engine 8 is changed so as to improve the acceleration response when the vehicle travels compared to when the engine 8 is not selected.
  • the shift point setting unit 94 is not shown in FIG. setting the shift point of the automatic transmission portion 20 (shift line) as a variable the driver's required driving force F R and the vehicle speed V as shown in the shift diagram of FIG. 6, in other words, the driver's requested driving force setting the shift point of the automatic transmission portion 20 (shift line) by the F R and the vehicle speed V.
  • the shift diagram of FIG. 7 may be used to determine the shift of the automatic transmission unit 20 instead of FIG. For example, if the shift diagram of FIG. 7 is used instead of FIG.
  • the shift point setting means 94 changes the setting of the shift point of the automatic transmission unit 20 based on the engine speed NE and the vehicle speed V.
  • the shift point (shift line) of the automatic transmission unit 20 is set by the accelerator opening Acc and the vehicle speed V as shown in the shift diagram of FIG. 7 instead of FIG. Will be set.
  • FIG. 12 is a flowchart for explaining the main part of the control operation of the electronic control unit 80, that is, the control operation for switching the variable for setting the shift point of the automatic transmission unit 20, for example, several msec to several tens msec. It is repeatedly executed with an extremely short cycle time.
  • step (hereinafter, “step” is omitted) SA1 it is determined whether or not the fuel efficiency priority travel mode is manually selected. This fuel consumption priority traveling mode is selected by operating the eco mode switch 44 to the ON state. If the determination at SA1 is affirmative, that is, if the fuel efficiency priority travel mode is manually selected, the process proceeds to SA4. On the other hand, if the determination at SA1 is negative, the operation goes to SA2.
  • the remaining charge SOC of the power storage device 56 is determined in addition to the output request amount P EEX , the remaining charge SOC of the power storage device 56 is less than the remaining power determination value X1 SOC , and It is determined whether the output request amount P EEX is equal to or greater than the output request amount determination value P1 EEX .
  • the determination of SA2 is affirmed when the remaining charge SOC is less than the remaining amount determination value X1 SOC and the output request amount P EEX is equal to or greater than the output request amount determination value P1 EEX . Otherwise, the determination of SA2 is denied.
  • the air conditioner required power P RAC is further determined in addition to the output request amount P EEX , the air conditioner required power P RAC is equal to or greater than the air conditioner required power determination value P1 RAC , and the output request It is determined whether the amount P EEX is greater than or equal to the output request amount determination value P1 EEX .
  • the determination of SA2 is affirmative when the air conditioner required power P RAC is equal to or greater than the air conditioner required power determination value P1 RAC and the output request amount P EEX is equal to or greater than the output request amount determination value P1 EEX. Otherwise, the determination of SA2 is denied.
  • SA3 the remaining amount ST FL of the fuel is equal to or less than the fuel quantity determination value ST1 FL is determined. If the determination in SA3 is positive, that is, when the remaining amount ST FL of the fuel is less than the fuel quantity determination value ST1 FL proceeds to SA4. On the other hand, if the determination at SA2 is negative, the operation goes to SA7.
  • SA1, SA2, and SA3 correspond to the fuel consumption priority traveling state determination unit 92.
  • the required driving force variation VF R of within the predetermined period TIME1 is whether or not the required driving force variation determining value VF1 R or not is determined.
  • the predetermined period variation in the accelerator opening Acc in the TIME1 is the required driving force change amount determination value It may be determined whether or not the accelerator opening determination value corresponding to VF1 R is equal to or greater.
  • SA5 it is determined whether or not the power running mode is manually selected.
  • the power running mode is selected by operating the power mode switch 46 to the ON state. If the determination at SA5 is affirmative, that is, if the power travel mode is selected manually, setting of the shift point of the automatic transmission unit 20 based on the engine speed NE and the vehicle speed V is prohibited. Therefore, it moves to SA7. On the other hand, if the determination at SA5 is negative, the operation goes to SA6.
  • SA4 and SA5 correspond to the shift point setting change prohibiting means 96.
  • the required driving force F R of the driver is the axis parameters of the shift diagram of FIG. 6 is changed to the engine rotational speed N E as shown in the shift diagram of FIG. 11. That is, as shown in the shift diagram of FIG. 11, the shift point (shift line) of the automatic transmission unit 20 is set by the engine speed NE and the vehicle speed V. Therefore, the automatic transmission 20 is shifted based on the shift diagram of FIG.
  • the shift point setting means 94 basically, as shown in the shift diagram of FIG. 6, the automatic transmission portion 20 by the driver's required driving force F R and the vehicle speed V when setting the shift point (shift line), when the vehicle 6 is determined to the a fuel economy priority running state by the fuel consumption priority running state determining means 92, instead of the required driving force F R of the driver engine setting the shift point of the automatic transmission portion 20 (shift line) by the rotational speed N E and the vehicle speed V, in other words, as variables the engine rotational speed N E and the vehicle speed V as shown in the shift diagram of FIG. 11 A shift point (shift line) of the automatic transmission unit 20 is set.
  • the required driving force F even R is not changed can determine whether to immediately shift change would the engine operating point is always required driving force F R as in the case of setting the shift point by a vehicle speed V
  • the fuel efficiency can be improved by improving the transmission efficiency ⁇ in the fuel efficiency priority running state where priority should be given to improving the fuel efficiency.
  • the request driving force F R (accelerator opening Acc ) Of the automatic transmission unit 20 with good responsiveness capable of immediately responding to the transitional change of the above.
  • the case where the vehicle 6 is in the fuel consumption priority traveling state is a case where the fuel efficiency priority traveling mode in which fuel efficiency is improved as compared with the non-selection is manually selected. Therefore, in the travel mode where priority should be given to improving the fuel consumption of the vehicle 6, an appropriate shift of the automatic transmission unit 20 is performed so as to improve the fuel consumption.
  • the output request amount P EEX required for the engine 8 to charge the power storage device 56 (unit: “KW”) is equal to or greater than the predetermined output request amount determination value P1 EEX. Therefore, when the transmission efficiency ⁇ of the power transmission device 10 can be improved by the shift of the automatic transmission unit 20, the transmission efficiency is increased. Appropriate shifting of the automatic transmission unit 20 can be performed so as to improve fuel efficiency by improving ⁇ .
  • the remaining fuel amount ST FL supplied to the engine 8 is less than the predetermined remaining fuel amount determination value ST1 FL .
  • the automatic transmission 20 is appropriately shifted so as to improve the fuel consumption.
  • the remaining charge SOC of the power storage device 56 is less than the predetermined remaining capacity determination value X1 SOC and Since the output request amount P EEX required for the engine 8 to charge the device 56 is equal to or greater than the output request amount determination value P1 EEX , priority is given to improving fuel economy over acceleration response of the vehicle 6 and the like.
  • the transmission efficiency ⁇ of the power transmission device 10 can be improved by the shift of the automatic transmission unit 20 and the transmission efficiency of the power transmission device 20 can be improved, the appropriate automatic transmission unit is improved so as to improve the fuel efficiency by improving the transmission efficiency ⁇ . Twenty shifts can be performed.
  • the air conditioner required power P RAC necessary for driving the air conditioner 42 is the predetermined air conditioner required power determination value P1 RAC. Since the above is the case where the output request amount P EEX required for the engine 8 to charge the power storage device 56 is equal to or greater than the output request amount determination value P1 EEX , the shift of the automatic transmission unit 20 is performed. Thus, when the transmission efficiency ⁇ of the power transmission device 10 can be improved, an appropriate shift of the automatic transmission unit 20 can be performed so as to improve fuel efficiency by improving the transmission efficiency ⁇ .
  • the shift point setting change prohibition means 96 the required driving force variation VF R of within the predetermined period TIME1 is in the required driving force variation determining value VF1 R or
  • the shift point setting means 94 is prohibited from setting the shift point of the automatic transmission unit 20 based on the engine speed NE and the vehicle speed V.
  • the shift point setting means 94 will set the shift point of the automatic transmission portion 20 (shift line) by driver's required driving force F R and the vehicle speed V.
  • the required driving force variation VF R is large, as compared with the case where the required driving force F R of the driver is hardly changed, as necessary to achieve a good running of acceleration response of the vehicle 6 is high and Conceivable.
  • the engine rotational speed N E which is a variable of the vertical axis of the shift diagram of FIG. 11 is changed with a certain degree of delay with respect to changes in the accelerator opening Acc (required driving force F R). Therefore, if the acceleration response good running of the vehicle 6 is emphasized on the basis of the shift diagram of FIG. 6, immediate action can be highly responsive automatic shifting the transient change in the required driving force F R The shift of the part 20 can be ensured. That is, drivability can be improved.
  • the shift point setting change prohibiting means 96 is in the case where the power travel mode in which the acceleration responsiveness during vehicle travel is improved as compared with the non-selection is manually selected.
  • the shift point setting means 94 is prohibited from setting the shift point of the automatic transmission unit 20 based on the engine speed NE and the vehicle speed V.
  • the shift point setting means 94 will set the shift point of the automatic transmission unit 20 (shift line) by the required driving force of the driver's F R and the vehicle speed V. Therefore, if the acceleration response good running of the vehicle 6 is emphasized on the basis of the shift diagram of FIG. 6, immediate action can be highly responsive automatic shifting the transient change in the required driving force F R The shift of the part 20 can be ensured. That is, drivability can be improved.
  • the power distribution mechanism 16 connected between the engine 8 and the automatic transmission unit 20, the first electric motor M1 connected to the power distribution mechanism 16 so as to be able to transmit power, A differential unit 11 having a second electric motor M2 coupled to the drive wheel 34 so as to be capable of transmitting power, wherein the differential state of the power distribution mechanism 16 is controlled by controlling the operating state of the first electric motor M1.
  • the automatic transmission unit 20 is a stepped transmission that changes its gear ratio ⁇ AT step by step
  • the power transmission device 10 as a whole is controlled by controlling the differential state of the power distribution mechanism 16.
  • driving force of the vehicle 6 is an output torque T OUT of the power transmission device 10 (automatic transmission portion 20) because the corresponding one-to-one, no problem be replaced by a required output torque of the power transmission device 10 that requests the driver requested driving force F R on the vertical axis in FIG. 6 (automatic transmission portion 20).
  • the shift point setting unit 94 operates as shown in FIG. required driving force of the person but instead F R to set the shift point of the automatic transmission portion 20 by the vehicle speed V engine rotational speed N E, it is desirable to set the shift point at the time of engine running.
  • the vehicle 6 is provided with the eco mode switch 44 and the power mode switch 46, but these switches 44 and 46 are selected without being turned on at the same time. It may be a structure in which it is turned ON or both are turned OFF at the same time.
  • a flowchart without any one or both of SA4 and SA5 in FIG. For example, in a flowchart without both SA4 and SA5, if any of SA1, SA2, and SA3 is affirmed, the process proceeds to SA6. In the flowchart with SA4 but not SA5, if the determination of SA4 is negative, the process proceeds to SA6. In the flowchart with SA5 but without SA4, if any of SA1, SA2, and SA3 is affirmed, the process proceeds to SA5.
  • the required driving force variation VF R is, for example, the difference between the maximum value and the minimum value of the required driving force F R within the predetermined period TIME1 (absolute value) Description
  • the present invention is not limited to this, and any index can be used as long as it indicates the magnitude of the change in the required driving force F R (accelerator opening Acc).
  • the vehicle 6 includes the power distribution mechanism 16 as the differential mechanism and the first electric motor M1.
  • the vehicle 6 does not include the first electric motor M1 and the power distribution mechanism 16.
  • the so-called parallel hybrid vehicle in which the engine 8, the clutch, the second electric motor M2, the automatic transmission unit 20, and the drive wheels 34 are connected in series may be used.
  • the said clutch between the engine 8 and the 2nd electric motor M2 is provided as needed, the structure where the said parallel hybrid vehicle is not equipped with the clutch can also be considered.
  • vehicle 6 of the above-described embodiment is a hybrid vehicle, it may be a normal engine vehicle that does not include the power distribution mechanism 16 and the motors M1 and M2.
  • the second electric motor M2 is directly connected to the transmission member 18.
  • the connection position of the second electric motor M2 is not limited thereto, and the engine 8 or the transmission member 18 to the drive wheels 34 are not limited thereto. It may be directly or indirectly connected to a power transmission path between them via a transmission, a planetary gear device, an engagement device or the like.
  • the differential unit 11 by controlling the operating state of the first electric motor M1, the differential unit 11 has the electric gear ratio ⁇ 0 continuously changed from the minimum value ⁇ 0min to the maximum value ⁇ 0max.
  • the gear ratio ⁇ 0 of the differential section 11 may be changed stepwise by using a differential action instead of continuously.
  • the differential carrier CA0 is connected to the engine 8, the differential sun gear S0 is connected to the first electric motor M1, and the differential ring gear R0 is connected to the transmission member 18.
  • the connection relationship is not necessarily limited thereto, and the engine 8, the first electric motor M1, and the transmission member 18 are the three elements CA0, S0, and R0 of the differential planetary gear unit 24. It can be connected to either of these.
  • the engine 8 is directly connected to the input shaft 14.
  • the engine 8 only needs to be operatively connected via, for example, a gear, a belt, or the like, and needs to be disposed on a common shaft center. Absent.
  • the first electric motor M1 and the second electric motor M2 are disposed concentrically with the input shaft 14, the first electric motor M1 is connected to the differential sun gear S0, and the second electric motor M2 is connected to the transmission member 18.
  • the first motor M1 is operatively connected to the differential unit sun gear S0 through, for example, a gear, a belt, a speed reducer, etc.
  • the second motor M2 is It may be connected to the transmission member 18.
  • the hydraulic friction engagement device such as the first clutch C1 and the second clutch C2 is a magnetic type such as a powder (magnetic powder) clutch, an electromagnetic clutch, an engagement type dog clutch, an electromagnetic type, You may be comprised from the mechanical engagement apparatus.
  • the hydraulic control circuit 70 is configured by a switching device, an electromagnetic switching device, or the like that switches an electrical command signal circuit to the electromagnetic clutch, not a valve device that switches an oil passage.
  • the engine 8 and the differential unit 11 are directly connected.
  • the engine 8 and the differential unit 11 are not necessarily connected directly, and are connected via a clutch between the engine 8 and the differential unit 11. May be.
  • the differential unit 11 and the automatic transmission unit 20 are connected in series.
  • the power transmission device 10 as a whole has a structure having a function of performing a shift on a principle different from the shift based on the electrical differential, and the differential unit 11 and the automatic transmission unit 20 include A configuration that is not mechanically independent may be used. Further, the arrangement position and arrangement order of these are not particularly limited.
  • the automatic transmission unit 20 may be provided so as to constitute a part of the power transmission path from the engine 8 to the drive wheels 34.
  • the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear devices (differential planetary gear device 24), but is composed of two or more planetary gear devices in a non-differential state ( In the constant shift state), it may function as a transmission having three or more stages.
  • the differential planetary gear device 24 is not limited to a single pinion type, and may be a double pinion type planetary gear device.
  • the engine 8 the first and second electric motors M1 and M2, the transmission member 18, and the output depending on the configuration are provided to each rotating element of these planetary gear devices.
  • the shaft 22 may be connected so as to be able to transmit power, and the stepped speed change and the stepless speed change may be switched by the control of the clutch C and the brake B connected to the rotating elements of the planetary gear device.
  • the first electric motor M1 and the second rotating element RE2 are directly connected, and the second electric motor M2 and the third rotating element RE3 are directly connected.
  • the electric motor M1 may be connected to the second rotating element RE2 via an engaging element such as a clutch, and the second electric motor M2 may be connected to the third rotating element RE3 via an engaging element such as a clutch.
  • the second electric motor M2 is connected to the transmission member 18 constituting a part of the power transmission path from the engine 8 to the drive wheels 34.
  • the second electric motor M2 is connected to the power transmission path. In addition to being connected, it can be connected to the power distribution mechanism 16 via an engagement element such as a clutch, and the differential state of the power distribution mechanism 16 by the second electric motor M2 instead of the first electric motor M1.
  • the power transmission device 10 may be configured to be able to control.
  • the differential unit 11 includes the first electric motor M1 and the second electric motor M2.
  • the first electric motor M1 and the second electric motor M2 are separate from the differential unit 11 in the power transmission device. 10 may be provided.
  • Vehicle 8 Engine 10: Power transmission device (vehicle power transmission device) 11: Differential part (electrical differential part) 16: Power distribution mechanism (differential mechanism) 20: Automatic transmission (automatic transmission) 34: Drive wheel 42: Air conditioner 56: Power storage device 80: Electronic control device (control device) M1: First motor (generator) M2: Second motor (generator)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 自動変速機の変速を適切に行うことにより、燃費向上を図ることができる車両用動力伝達装置の制御装置を提供する。 変速点設定手段94は、基本的には、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点を設定するところ、燃費優先走行状態判断手段92により車両6が所定の燃費優先走行状態であると判断された場合には、上記要求駆動力Fに替えてエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定する。従って、前記要求駆動力Fが変化しなくてもエンジン動作点が変化すれば直ちに変速すべきか否かを判断でき、常に要求駆動力Fと車速Vとにより前記変速点を設定する場合と比較して、動力伝達装置10の伝達効率ηがより高い自動変速部20のギヤ段に変速することができる。その結果として、燃費向上を優先すべき前記燃費優先走行状態である場合において上記伝達効率ηの向上により燃費向上を図ることができる。

Description

車両用動力伝達装置の制御装置
 本発明は、自動変速機を有する車両の燃費を向上させる技術に関するものである。
 エンジンと駆動輪との間に設けられた有段の自動変速機の変速を予め設定された変速マップ(変速線図)に基づいて行う車両用動力伝達装置の制御装置が、従来から知られている。例えば、特許文献1に記載された車両用動力伝達装置の制御装置がそれである。その特許文献1の車両用動力伝達装置の制御装置は、通常走行モードとその通常走行モードよりもエンジン回転速度を抑えた走行を行う省燃費走行モードとの2種類の走行モードを有している。上記制御装置は、この2種類の走行モードを実現するため、上記通常走行モード用の変速マップと上記省燃費走行モード用の変速マップとを予め記憶している。そして、何れの上記変速マップでも、車速とアクセル開度とがパラメータとされており、すなわち、前記自動変速機の変速点はその車速とアクセル開度とにより設定されている。
特開2007-231963号公報
 前記特許文献1の車両用動力伝達装置の制御装置は、2種類の走行モードの何れにおいても、前記変速マップのパラメータを車速及びアクセル開度から変更するものではなかった。
 例えば、エアコンなどの補器類の電力要求(電力需要)が大きくなる場合など、車両走行以外の目的でのエンジン出力の消費量が増大した場合には、エンジン出力により発電量等を高めるため上記車速及びアクセル開度が変化しないにも拘わらずエンジンの動作点がより高出力側に変化する場合がある。そして、そのようにエンジンの動作点が変化すれば前記車両用動力伝達装置(自動変速機)への入力が変化するので、その車両用動力伝達装置(自動変速機)の動力伝達効率(以下、単に「伝達効率」という)が変化する場合が考えられる。すなわち、前記車速及びアクセル開度が変化しない以上、前記変速マップに基づけば前記自動変速機の変速は行われないが、前記車両用動力伝達装置の伝達効率が変化する場合が考えられる。
 これらのことから、前記車両用動力伝達装置の伝達効率が変化する場合に、自動変速機の現状の変速段で最もその伝達効率が高ければ問題ないが、自動変速機の変速をした方が現状の変速段を維持するよりも上記伝達効率を高めることができるとすれば、前記車速及びアクセル開度をパラメータとする前記変速マップに基づいて現状の変速段を維持することは、かえって燃費の悪化を生じさせる可能性があると考えられた。なお、このような課題は未公知のことである。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、エンジンと駆動輪との間の動力伝達経路の一部を構成する自動変速機の変速を適切に行うことにより、燃費向上を図ることができる車両用動力伝達装置の制御装置を提供することにある。
 上記目的を達成するための請求項1に係る発明の要旨とするところは、(a)エンジンと駆動輪との間の動力伝達経路の一部を構成する有段の自動変速機を備えており、運転者の要求駆動力と車速とにより前記自動変速機の変速点を設定する車両用動力伝達装置の制御装置であって、(b)車両が所定の燃費優先走行状態である場合には、前記要求駆動力に替えて前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定することを特徴とする。
 また、請求項2に係る発明の要旨とするところは、前記車両が前記燃費優先走行状態である場合とは、非選択時よりも燃費向上が図られる燃費優先走行モードが手動により選択されている場合であることを特徴とする。
 また、請求項3に係る発明の要旨とするところは、(a)前記エンジンで回転駆動される発電機により充電される蓄電装置が設けられており、(b)前記車両が前記燃費優先走行状態である場合とは、その蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合であることを特徴とする。
 また、請求項4に係る発明の要旨とするところは、前記車両が前記燃費優先走行状態である場合とは、前記エンジンへ供給される燃料の残量が所定の燃料残量判定値未満である場合であることを特徴とする。
 また、請求項5に係る発明の要旨とするところは、(a)前記エンジンで回転駆動される発電機により充電される蓄電装置が設けられており、(b)前記車両が前記燃費優先走行状態である場合とは、その蓄電装置の充電残量が所定の残量判定値未満であり、且つ、その蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合であることを特徴とする。
 また、請求項6に係る発明の要旨とするところは、(a)前記エンジンで回転駆動される発電機により充電される蓄電装置と、そのエンジンの出力で車室内の空調を行うエアコンとが設けられており、(b)前記車両が前記燃費優先走行状態である場合とは、前記エアコンを駆動するために必要なエアコン要求パワーが所定のエアコン要求パワー判定値以上であり、且つ、前記蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合であることを特徴とする。
 また、請求項7に係る発明の要旨とするところは、所定期間内での前記要求駆動力の変化量が所定の要求駆動力変化量判定値以上である場合には、前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定することを禁止することを特徴とする。
 また、請求項8に係る発明の要旨とするところは、非選択時よりも車両走行時の加速応答性の向上が図られるパワー走行モードが手動により選択されている場合には、前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定することを禁止することを特徴とする。
 また、請求項9に係る発明の要旨とするところは、前記エンジンと前記自動変速機との間に連結された差動機構と、その差動機構に動力伝達可能に連結された第1電動機と、前記駆動輪に動力伝達可能に連結された第2電動機とを有し、前記第1電動機の運転状態が制御されることにより前記差動機構の差動状態が制御される電気式差動部が設けられていることを特徴とする。
 ここで、好適には、(a)前記差動機構は、第1回転要素と第2回転要素と第3回転要素とを有する遊星歯車装置であり、(b)前記第1回転要素は前記エンジンに連結され、前記第2回転要素は前記第1電動機に連結され、前記第3回転要素は前記第2電動機および前記自動変速機の入力回転部材に連結されている。
 また、好適には、前記自動変速機は、相互に異なる変速比を有して予め機械的に設定された複数の変速段の中で一の変速段が他の変速段に切り換えられることにより変速される。そして、その自動変速機はそれが有する係合要素の掴み替えにより変速される。
 請求項1に係る発明によれば、その発明の係る制御装置は、基本的には、運転者の要求駆動力と車速とにより前記自動変速機の変速点を設定するところ、車両が所定の燃費優先走行状態である場合には、前記要求駆動力に替えて前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定するので、前記要求駆動力が変化しなくても上記エンジンの動作点が変化すれば直ちに変速すべきか否かを判断でき、常に要求駆動力と車速とにより前記変速点を設定する場合と比較して、車両用動力伝達装置の伝達効率がより高い自動変速機のギヤ段に変速することができる。その結果として、燃費向上を優先すべき前記燃費優先走行状態である場合において、その伝達効率の向上により燃費向上を図ることができる。また、上記燃費優先走行状態ではない場合には、運転者の要求駆動力と車速とにより前記自動変速機の変速点が設定されるので、その要求駆動力の過渡的な変化に直ちに対応できる応答性のよい自動変速機の変速を確保できる。なお、上記運転者の要求駆動力とは、運転者が車両に対して要求する駆動力であるので、実際には、アクセル開度などがそれに対応する。すなわち、上記運転者の要求駆動力とは、アクセル開度などのそれを示す変化量の上位概念と言える。
 また、請求項2に係る発明によれば、前記車両が前記燃費優先走行状態である場合とは、非選択時よりも燃費向上が図られる燃費優先走行モードが手動により選択されている場合であるので、車両の燃費向上を優先すべき走行モードにおいて、燃費を向上させるように適切な自動変速機の変速が行われる。
 また、請求項3に係る発明によれば、(a)前記エンジンで回転駆動される発電機により充電される蓄電装置が設けられており、(b)前記車両が前記燃費優先走行状態である場合とは、その蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合であるので、前記自動変速機の変速により前記車両用動力伝達装置の伝達効率を向上させることが可能な場合に、その伝達効率向上により燃費を向上させるように適切な自動変速機の変速が行われるようにすることができる。
 また、請求項4に係る発明によれば、前記車両が前記燃費優先走行状態である場合とは、前記エンジンへ供給される燃料の残量が所定の燃料残量判定値未満である場合であるので、車両の加速応答性などよりも燃費向上を優先する必要性が高い場合に、燃費を向上させるように適切な自動変速機の変速が行われる。
 また、請求項5に係る発明によれば、(a)前記エンジンで回転駆動される発電機により充電される蓄電装置が設けられており、(b)前記車両が前記燃費優先走行状態である場合とは、その蓄電装置の充電残量が所定の残量判定値未満であり、且つ、その蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合であるので、車両の加速応答性などよりも燃費向上を優先する必要性が高く、且つ、前記自動変速機の変速により前記車両用動力伝達装置の伝達効率を向上させることが可能な場合に、その伝達効率向上により燃費を向上させるように適切な自動変速機の変速が行われるようにすることができる。
 また、請求項6に係る発明によれば、(a)前記エンジンで回転駆動される発電機により充電される蓄電装置と、そのエンジンの出力で車室内の空調を行うエアコンとが設けられており、(b)前記車両が前記燃費優先走行状態である場合とは、前記エアコンを駆動するために必要なエアコン要求パワーが所定のエアコン要求パワー判定値以上であり、且つ、前記蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合であるので、前記自動変速機の変速により前記車両用動力伝達装置の伝達効率を向上させることが可能な場合に、その伝達効率向上により燃費を向上させるように適切な自動変速機の変速が行われるようにすることができる。
 また、請求項7に係る発明によれば、所定期間内での前記要求駆動力の変化量が所定の要求駆動力変化量判定値以上である場合には、前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定することを禁止する。その結果、前記自動変速機の変速点は、運転者の要求駆動力と車速とにより設定されることになる。ここで、その要求駆動力の変化量が大きければ、その要求駆動力が殆ど変化しない場合と比較して、車両の加速応答性のよい走行を実現する必要があるものと考えられる。従って、車両の加速応答性のよい走行が重視される場合には、その要求駆動力の過渡的な変化に直ちに対応できる応答性のよい自動変速機の変速を確保できる。
 また、請求項8に係る発明によれば、非選択時よりも車両走行時の加速応答性の向上が図られるパワー走行モードが手動により選択されている場合には、前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定することを禁止する。その結果、前記自動変速機の変速点は、運転者の要求駆動力と車速とにより設定されることになる。従って、車両の加速応答性のよい走行が重視される場合には、その要求駆動力の過渡的な変化に直ちに対応できる応答性のよい自動変速機の変速を確保できる。
 また、請求項9に係る発明によれば、前記エンジンと前記自動変速機との間に連結された差動機構と、その差動機構に動力伝達可能に連結された第1電動機と、前記駆動輪に動力伝達可能に連結された第2電動機とを有し、前記第1電動機の運転状態が制御されることにより前記差動機構の差動状態が制御される電気式差動部が設けられているので、前記自動変速機は段階的にその変速比を変更する有段変速機であるが、上記差動機構の差動状態が制御されることにより車両用動力伝達装置全体としてはその変速比を連続的に変更することができる無段変速機として機能させることが可能である。
 ここで、好適には、前記燃費優先走行モードとは、前記車両の走行性能よりも燃費性能が優先される走行モードである。
 また、好適には、前記要求駆動力はアクセルペダルの操作量であるアクセル開度に対応しており、そのアクセル開度が大きいほどその要求駆動力は大きくなる。
 また、好適には、前記エアコンは、前記エンジンの出力で回転駆動されることにより冷媒を圧縮するコンプレッサを備えている。
本発明の制御装置が適用される車両用動力伝達装置を説明する骨子図である。 図1の車両用動力伝達装置に備えられた自動変速部の変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。 図1の車両用動力伝達装置における各ギヤ段の相対回転速度を説明する共線図である。 図1の車両用動力伝達装置を制御するための電子制御装置の入出力信号を説明する図である。 図4の電子制御装置に備えられた制御機能の要部を説明する機能ブロック線図である。 図1の車両用動力伝達装置に備えられた自動変速部の変速判断の基となる予め記憶された車速と運転者の要求駆動力とを変数とする変速線図である。 図1の車両用動力伝達装置に備えられた自動変速部の変速判断の基となる予め記憶された図6に相当する別の例としての車速とアクセル開度とを変数とする変速線図である。 図1の車両用動力伝達装置に備えられた自動変速部の各ギヤ段(1st~4th)において、車両用動力伝達装置の総合変速比とそれの伝達効率との関係を示した図である。 図6、図7、及び図11の変速線図と図8に示された車両用動力伝達装置の伝達効率との関係を説明する図である。 図1の車両用動力伝達装置の入力軸に連結されたエンジンの出力が変化した場合にエンジン動作点がどのように変化するかを説明するための図である。 図1の車両用動力伝達装置に備えられた自動変速部の変速判断の基となる予め記憶された車速と実エンジン回転速度とを変数とする変速線図である。 図4の電子制御装置の制御作動の要部、すなわち、自動変速部の変速点を設定するための変数を切り替える制御作動を説明するためのフローチャートである。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明の制御装置が適用される車両用動力伝達装置10(以下、「動力伝達装置10」と表す)を説明する骨子図であり、この動力伝達装置10はハイブリッド車両に好適に用いられる。図1において、動力伝達装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、「ケース12」と表す)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部としての差動部11と、その差動部11と駆動輪34(図5参照)との間の動力伝達経路で伝達部材18を介して直列に連結されている動力伝達部としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この動力伝達装置10は、例えば車両6(図5参照)において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪34との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)32(図5参照)及び一対の車軸等を順次介して一対の駆動輪34へ伝達する。
 このように、本実施例の動力伝達装置10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。尚、動力伝達装置10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。
 差動部11は、動力分配機構16と、動力分配機構16に動力伝達可能に連結されて動力分配機構16の差動状態を制御するための差動用電動機として機能する第1電動機M1と、伝達部材18と一体的に回転するように動力伝達可能に連結されている第2電動機M2とを備える電気式差動部である。なお、伝達部材18は差動部11の出力側回転部材であるが自動変速部20の入力側回転部材にも相当するものである。
 第1電動機M1及び第2電動機M2は、電気エネルギから機械的な駆動力を発生させる発動機としての機能及び機械的な駆動力から電気エネルギを発生させる発電機としての機能を有する所謂モータジェネレータである。換言すれば、動力伝達装置10において、電動機Mは主動力源であるエンジン8の代替として、或いはそのエンジン8と共に走行用の駆動力を発生させる動力源(副動力源)として機能し得る。また、他の動力源により発生させられた駆動力から回生により電気エネルギを発生させ、インバータ54(図5参照)を介して他の電動機Mに供給したり、その電気エネルギを蓄電装置56(図5参照)に充電する等の作動を行う。
 第1電動機M1は、反力を発生させるためのジェネレータ(発電)機能を少なくとも備える。また、第2電動機M2は、駆動輪34に動力伝達可能に連結されており、走行用の第2駆動力源として駆動力を出力する走行用電動機として機能するためモータ(電動機)機能を少なくとも備える。また、好適には、第1電動機M1及び第2電動機M2は、何れもその発電機としての発電量を連続的に変更可能に構成されたものである。また、第1電動機M1及び第2電動機M2は、動力伝達装置10の筐体であるケース12内に備えられ、動力伝達装置10の作動流体である自動変速部20の作動油により冷却される。
 動力分配機構16は、エンジン8と自動変速部20との間に連結された差動機構であって、例えば「0.416」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24を主体として構成されており、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構である。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転及び公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。なお、差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。
 この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。このように構成された動力分配機構16は、差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動可能状態(差動状態)とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されると共に、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11も差動状態とされ、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。このように動力分配機構16が差動状態とされると、動力分配機構16(差動部11)に動力伝達可能に連結された第1電動機M1及び第2電動機M2の一方又は両方の運転状態(動作点)が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18の回転速度の差動状態が制御される。なお、本実施例では、図1から判るように、入力軸14の回転速度NIN(以下、「入力軸回転速度NIN」という)は、エンジン回転速度Nと同一回転速度である。
 本発明の自動変速機に対応する自動変速部20は、シングルピニオン型の第1遊星歯車装置26及びシングルピニオン型の第2遊星歯車装置28を備えており、エンジン8と駆動輪34との間の動力伝達経路の一部を構成し、機械的に複数の変速比が段階的に設定される有段の自動変速機として機能する遊星歯車式の多段変速機である。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転及び公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、例えば「0.488」程度の所定のギヤ比ρ1を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転及び公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.455」程度の所定のギヤ比ρ2を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2である。
 自動変速部20では、第1サンギヤS1は第3クラッチC3を介して伝達部材18に連結されると共に第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1と第2リングギヤR2とが一体的に連結されて第2クラッチC2を介して伝達部材18に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2とが一体的に連結されて出力軸22に連結され、第2サンギヤS2が第1クラッチC1を介して伝達部材18に選択的に連結されている。更に第1キャリヤCA1と第2リングギヤR2とは一方向クラッチF1を介して非回転部材であるケース12に連結されてエンジン8と同方向の回転が許容され逆方向の回転が禁止されている。これにより、第1キャリヤCA1及び第2リングギヤR2は、逆回転不能な回転部材として機能する。
 以上のように構成された自動変速部20では、解放側係合装置の解放と係合側係合装置の係合とにより例えばクラッチツゥクラッチ変速が実行されて複数のギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γAT(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。例えば、図2の係合作動表に示されるように、第1クラッチC1の係合及び一方向クラッチF1により変速比が「3.20」程度となる第1速ギヤ段が成立させられ、第1クラッチC1及び第1ブレーキB1の係合により変速比が「1.72」程度となる第2速ギヤ速段が成立させられ、第1クラッチC1及び第2クラッチC2の係合により変速比が「1.00」程度となる第3速ギヤ段が成立させられ、第2クラッチC2及び第1ブレーキB1の係合により変速比が「0.67」程度となる第4速ギヤ段が成立させられ、第3クラッチC3及び第2ブレーキB2の係合により変速比が「2.04」程度となる後進ギヤ段が成立させられる。また、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の解放によりニュートラル「N」状態とされる。また、第1速ギヤ段のエンジンブレーキの際には、第2ブレーキB2が係合させられる。
 このように、自動変速部20内の動力伝達経路は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2の係合と解放との作動の組合せにより、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、動力伝達を遮断する動力伝達遮断状態との間で切り換えられる。つまり、第1速ギヤ段乃至第4速ギヤ段及び後進ギヤ段の何れかが成立させられることで上記動力伝達経路が動力伝達可能状態とされ、何れのギヤ段も成立させられないことで例えばニュートラル「N」状態が成立させられることで上記動力伝達経路が動力伝達遮断状態とされる。
 前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、及び第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本又は2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。
 以上のように構成された動力伝達装置10において、無段変速機として機能する差動部11と自動変速部20とで全体として無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
 具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度(以下、「自動変速部20の入力回転速度」という)すなわち伝達部材18の回転速度(以下、「伝達部材回転速度N18」という)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、動力伝達装置10の総合変速比γT(=入力軸回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、動力伝達装置10において無段変速機が構成される。この動力伝達装置10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γATとに基づいて形成される動力伝達装置10全体としてのトータル変速比γTである。例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、動力伝達装置10全体としてのトータル変速比γTが無段階に得られる。
 また、差動部11の変速比が一定となるように制御され、且つクラッチC及びブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する動力伝達装置10のトータル変速比γTが各ギヤ段毎に得られる。したがって、動力伝達装置10において有段変速機と同等の状態が構成される。
 図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される動力伝達装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度N(以下、「エンジン回転速度N」という)を示し、横線XG(X3)が伝達部材18の回転速度N18すなわち差動部11から自動変速部20に入力される後述する第3回転要素RE3の回転速度を示している。
 また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。更に、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応する第2サンギヤS2を、第5回転要素RE5(第5要素)に対応する相互に連結された第1リングギヤR1及び第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する相互に連結された第1キャリヤCA1及び第2リングギヤR2を、第7回転要素(第7要素)RE7に対応する第1サンギヤS1をそれぞれ表し、それらの間隔は第1、第2遊星歯車装置26、28のギヤ比ρ1、ρ2に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
 上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18及び第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。
 例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される差動部リングギヤR0の回転速度が車速Vに拘束されて略一定である場合には、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転が上昇或いは下降させられると、直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度すなわちエンジン回転速度Nが上昇或いは下降させられる。また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転がエンジン回転速度Nと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で差動部リングギヤR0の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって差動部サンギヤS0の回転が零とされると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて伝達部材18が回転させられる。
 また、自動変速部20において第4回転要素RE4は第1クラッチC1を介して伝達部材18に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6は第2クラッチC2を介して伝達部材18に選択的に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第7回転要素RE7は第3クラッチC3を介して伝達部材18に選択的に連結されると共に第1ブレーキB1を介してケース12に選択的に連結されている。
 自動変速部20では、図3に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X3との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第1速(1st)の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第2速(2nd)の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第3速(3rd)の出力軸22の回転速度が示され、第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの直線L4と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第4速(4th)の出力軸22の回転速度が示される。
 本実施例の車両6はエアコン42を備えている。このエアコン42は、エンジン8の出力で車室内の空調を行う一般的に知られたカーエアコンである。具体的には、このエアコン42は、それが有するコンプレッサ43がエンジン8の出力で回転駆動されることにより冷媒を圧縮し、その冷媒を介して車室内の空調を行う。エアコン42がONになると、コンプレッサ43を回転駆動するためエンジン8の動作点が高出力側に変更され、例えば、エアコン42のOFF状態と比較して走行負荷に変化が無くてもエンジン回転速度Nが引き上げられる。
 図4は、本実施例の動力伝達装置10を制御するための制御装置である電子制御装置80に入力される信号及びその電子制御装置80から出力される信号を例示している。この電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8や各電動機Mに関するハイブリッド駆動制御、自動変速部20の変速制御等の各種制御を実行するものである。
 電子制御装置80には、図4に示すような各センサやスイッチなどから、エンジン8の冷却流体の温度であるエンジン水温TEMPを表す信号、運転者が操作するシフトレバーのシフトポジションPSHや手動変速走行ポジションである「M」ポジションにおける操作回数等を表す信号、エンジン回転速度Nを表す信号、Mモード(手動変速走行モード)を指令する信号、エアコン42の作動を表す信号、車速センサ72により検出された出力軸22の回転速度NOUT(以下、「出力軸回転速度NOUT」と表す)に対応する車速V及び車両6の進行方向を表す信号、自動変速部20の作動油温TOILを表す信号、サイドブレーキ操作を表す信号、車輪(駆動輪34、不図示の従動輪)にブレーキトルク(制動力)を付与する制動装置としての良く知られたフットブレーキ装置(ホイールブレーキ装置)の作動中(すなわちフットブレーキ操作中)を示すブレーキペダルの操作(オン)BONを表すブレーキ操作信号、触媒温度を表す信号、アクセル開度センサ78により検出された運転者の要求駆動力Fに対応するアクセルペダルの操作量であるアクセル開度Accを表すアクセル開度信号、カム角を表す信号、スノーモード設定を表す信号、車両6の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両6の重量(車重)を表す信号、各車輪の車輪速を表す信号、レゾルバ等からなるM1回転速度センサ74により検出された第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」と表す)及びその回転方向を表す信号、レゾルバ等からなるM2回転速度センサ76により検出された第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」と表す)及びその回転方向を表す信号、各電動機M1,M2との間でインバータ54を介して充放電を行う蓄電装置56(図5参照)の充電残量(充電状態)SOCを表す信号、蓄電装置(バッテリ)56のバッテリ温度THBATを表す信号、非選択時よりも燃費向上が図られる燃費優先走行モード(エコモード)を選択するために手動操作される燃費優先走行モードスイッチ(エコモードスイッチ)44が操作されたことを表す信号、非選択時よりも車両走行時の加速応答性の向上が図られるパワー走行モード(パワーモード)を選択するために手動操作されるパワー走行モードスイッチ(パワーモードスイッチ)46が操作されたことを表す信号などが、それぞれ供給される。
 また、上記電子制御装置80からは、エンジン8の出力P(単位は例えば「kW」。以下、「エンジン出力P」と表す。)を制御するエンジン出力制御装置58(図5参照)への制御信号例えばエンジン8の吸気管60に備えられた電子スロットル弁62のスロットル弁開度θTHを操作するスロットルアクチュエータ64への駆動信号や燃料噴射装置66による吸気管60或いはエンジン8の筒内への燃料供給量を制御する燃料供給量信号や点火装置68によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、エアコン42を作動させるためのエアコン駆動信号、電動機M1、M2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、ホイールブレーキ装置を作動させるためのホイールブレーキ作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路70(図5参照)に含まれる電磁弁(ソレノイドバルブ)等を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧を調圧するための信号、そのライン油圧が調圧されるための元圧の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
 図5は、電子制御装置80に備えられた制御機能の要部を説明する機能ブロック線図である。図5において、有段変速制御部すなわち有段変速制御手段82は、自動変速部20の変速を行う変速制御手段として機能するものである。有段変速制御手段82は、図6に示すような車速Vと運転者の要求駆動力Fとを変数(軸パラメータ)として記憶部すなわち記憶手段84に予め記憶されたアップシフト線(実線)及びダウンシフト線(破線)を有する関係(変速線図、変速マップ)から実際の車速Vとアクセル開度Acc等に対応する要求駆動力Fとで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。前記図6について詳述すると、図6の実線はアップシフトが判断されるための変速線(アップシフト線)であり、破線はダウンシフトが判断されるための変速線(ダウンシフト線)である。この図6の変速線図における変速線は、例えば運転者の要求駆動力Fを示す横線上において実際の車速Vが線を横切ったか否か、また例えば車速Vを示す縦線上において運転者の要求駆動力Fが線を横切ったか否か、すなわち変速線上の変速を実行すべき値(変速点)を横切ったか否かを判断するためのものであり、この変速点の連なりとして予め記憶されている。なお、運転者の要求駆動力Fとは、運転者が車両6に対して要求する駆動力であるので、実際にはアクセル開度Accなどがそれに対応し、例えば、運転者の要求駆動力Fは、アクセル開度Accが大きいほど大きくなるものであり、そのアクセル開度Accに基づき決定される。すなわち、上記運転者の要求駆動力Fとは、アクセル開度Accなどのそれを示す変化量の上位概念であると言える。例えば、有段変速制御手段82は、図6に替えて、車速Vとアクセル開度Accとを軸パラメータとする図7の変速線図に基づいて、自動変速部20の変速を実行すべきか否かを判断してもよい。上述の図6及び図7に示す変速線図のように、軸パラメータとして運転者の要求駆動力Fやアクセル開度Accが採用されることで、その要求駆動力F(アクセル開度Acc)の過渡的な変化に直ちに対応できる応答性のよい自動変速部20の変速を確保できるというメリットがある。有段変速制御手段82は、図6または図7の変速線図に替えて図11の変速線図に基づいて自動変速部20の変速を実行すべきか否かを判断し、自動変速部20の自動変速制御を実行する場合もあるが、この点については後述する。
 有段変速制御手段82は、上記自動変速部20の自動変速制御を実行する場合、例えば,図2に示す係合表に従って変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合及び/又は解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合することによりクラッチツゥクラッチ変速を実行させる指令を油圧制御回路70へ出力する。油圧制御回路70は、その指令に従って、例えば解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路70内のリニアソレノイドバルブを作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。
 ハイブリッド制御部すなわちハイブリッド制御手段86は、エンジン出力制御装置58を介してエンジン8の駆動を制御するエンジン駆動制御手段としての機能と、インバータ54を介して第1電動機M1及び第2電動機M2による駆動力源又は発電機としての作動を制御する電動機作動制御手段としての機能を含んでおり、それら制御機能によりエンジン8、第1電動機M1、及び第2電動機M2によるハイブリッド駆動制御等を実行する。
 また、ハイブリッド制御手段86は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の要求駆動力Fとしてのアクセル開度Accや車速Vから車両6の目標(要求)出力を算出し、その車両6の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力(要求エンジン出力)PERを算出し、その目標エンジン出力PERが得られるエンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとなるようにエンジン8を制御すると共に各電動機Mの出力乃至発電を制御する。
 以上のように、動力伝達装置10全体としての変速比である総合変速比γTは、有段変速制御手段82によって制御される自動変速部20の変速比γATと、ハイブリッド制御手段86によって制御される差動部11の変速比γ0とによって決定される。すなわち、ハイブリッド制御手段86及び有段変速制御手段82は、シフトポジションPSHに対応するシフトレンジの範囲内において、油圧制御回路70、エンジン出力制御装置58、第1電動機M1、及び第2電動機M2等を介して動力伝達装置10全体としての変速比である総合変速比γTを制御する変速制御手段として機能する。
 例えば、ハイブリッド制御手段86は、動力性能や燃費向上などのために自動変速部20の変速段を考慮してエンジン8及び各電動機Mの制御を実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速V及び自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、エンジン回転速度NとエンジントルクTとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められた例えば図10に実線LEGとして示すようなエンジン8の動作曲線の一種である最適燃費率曲線(燃費マップ、関係)が、記憶手段84に予め記憶されており、ハイブリッド制御手段86は、上記最適燃費率曲線にエンジン8の動作点(以下、「エンジン動作点」と表す)を沿わせつつエンジン8を作動させるように、例えば目標出力(トータル目標出力、要求駆動力F)を充足するために必要なエンジン出力Pを発生するためのエンジントルクTとエンジン回転速度Nとなるように、動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように第1電動機M1の出力トルク(以下、「第1電動機トルク」と表す)TM1をフィードバック制御により変化させて差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内で制御する。ここで、上記エンジン動作点とは、エンジン回転速度N及びエンジントルクTなどで例示されるエンジン8の動作状態を示す状態量を座標軸とした二次元座標においてエンジン8の動作状態を示す動作点である。なお、本実施例で例えば、燃費とは単位燃料消費量当たりの走行距離等であり、燃費の向上とはその単位燃料消費量当たりの走行距離が長くなることであり、或いは、車両全体としての燃料消費率(=燃料消費量/駆動輪出力)が小さくなることである。逆に、燃費の低下(悪化)とはその単位燃料消費量当たりの走行距離が短くなることであり、或いは、車両全体としての燃料消費率が大きくなることである。
 このとき、ハイブリッド制御手段86は、例えば第1電動機M1により発電された電気エネルギをインバータ54を通して蓄電装置56や第2電動機M2へ供給するので、エンジン8の動力(エンジン出力P)の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は電動機Mの発電のために消費されてそこで電気エネルギに変換され、インバータ54を通してその電気エネルギが他の電動機Mへ供給され、電気エネルギによりその電動機Mから出力される駆動力が伝達部材18へ伝達される。この発電に係る電動機Mによる電気エネルギの発生から駆動に係る電動機Mで消費されるまでに関連する機器により、エンジン8の動力の一部が電気エネルギに変換され、その電気エネルギが機械的エネルギに変換されるまでの電気パスが構成される。要するに、差動部11において、エンジン出力Pは、入力軸14から機械的に伝達部材18へ伝達される機械パスと前記電気パスとの2系統の動力伝達経路を介して、伝達部材18に伝達される。なお、前記蓄電装置56は、第1電動機M1および第2電動機M2に電力を供給し且つそれらの電動機M1,M2から電力の供給を受けることが可能な電気エネルギ源であり、要するに、第1電動機M1及び第2電動機M2のそれぞれに対し電力授受可能な電気エネルギ源である。換言すれば、蓄電装置56は、エンジン8で回転駆動される発電機として機能する第1電動機M1及び第2電動機M2の何れか一方または両方により充電される電気エネルギ源であり、例えば、鉛蓄電池などのバッテリ、又は、キャパシタなどである。
 また、ハイブリッド制御手段86は、車両6の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1及び/又は第2電動機回転速度NM2を制御してエンジン回転速度Nを略一定に維持したり任意の回転速度に回転制御する。言い換えれば、ハイブリッド制御手段86は、エンジン回転速度Nを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1及び/又は第2電動機回転速度NM2を任意の回転速度に回転制御することができる。
 例えば、図3の共線図からもわかるようにハイブリッド制御手段86は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪34)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。また、ハイブリッド制御手段86は自動変速部20の変速中にエンジン回転速度Nを略一定に維持する場合には、エンジン回転速度Nを略一定に維持しつつ自動変速部20の変速に伴う第2電動機回転速度NM2の変化とは反対方向に第1電動機回転速度NM1を変化させる。
 また、ハイブリッド制御手段86は、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御させる他、燃料噴射制御のために燃料噴射装置66による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置58に出力して、必要なエンジン出力Pを発生するようにエンジン8の出力制御を実行する。すなわち、エンジン8の駆動を制御するエンジン駆動制御手段として機能する。
 例えば、ハイブリッド制御手段86は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ64を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、エンジン出力制御装置58は、ハイブリッド制御手段86による指令に従って、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御する他、燃料噴射制御のために燃料噴射装置66による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御するなどしてエンジントルク制御を実行する。
 また、ハイブリッド制御手段86は、エンジン8の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能(差動作用)によって、例えばエンジン8を用いず第2電動機M2を走行用の駆動力源とするモータ走行(EVモード走行)をさせることができる。例えば、図示されていないが、車速Vと運転者の要求駆動力F(アクセル開度Acc)とを変数とする二次元座標において、エンジン8を走行用の駆動力源として車両6を発進/走行(以下、走行という)させる所謂エンジン走行が行われるエンジン走行領域と、第2電動機M2を走行用の駆動力源として車両6を走行させる所謂モータ走行が行われるモータ走行領域とから構成された駆動力源切換線図(駆動力源マップ)が記憶手段84に予め記憶されている。そして、ハイブリッド制御手段86は、上記記憶手段84に記憶されている駆動力源切換線図から、実際の車速V及び運転者の要求駆動力Fで示される車両状態に基づいて、モータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。なお、上記駆動力源切換線図において、前記モータ走行領域は、一般的にエンジン効率が高駆動力域に比較して悪いとされる比較的要求駆動力Fの低い領域(比較的低アクセル開度Acc)すなわち低エンジントルクT域、或いは、車速Vの比較的低車速時すなわち低負荷域に設定されている。
 また、ハイブリッド制御手段86は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、第1電動機回転速度NM1を負の回転速度で制御して例えば第1電動機M1を無負荷状態とすることにより空転させて、差動部11の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度Nを零乃至略零に維持する。
 また、ハイブリッド制御手段86は、エンジン8を走行用の駆動力源とするエンジン走行を行うエンジン走行領域であっても、前述した電気パスによる第1電動機M1からの電気エネルギ及び/又は蓄電装置56からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪34にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。よって、本実施例のエンジン走行にはエンジン8を走行用の駆動力源とする場合と、エンジン8及び第2電動機M2の両方を走行用の駆動力源とする場合とがある。そして、本実施例のモータ走行とはエンジン8を停止して第2電動機M2を走行用の駆動力源とする走行である。
 ハイブリッド制御手段86は、エンジン走行とモータ走行とを切り換えるために、エンジン8の作動状態を運転状態と停止状態との間で切り換える、すなわちエンジン8の始動および停止を行うエンジン始動停止制御部すなわちエンジン始動停止制御手段88を備えている。このエンジン始動停止制御手段88は、ハイブリッド制御手段86により例えば前記駆動力源切換線図から車両状態に基づいてモータ走行とエンジン走行と切換えが判断された場合に、エンジン8の始動または停止を実行する。
 例えば、エンジン始動停止制御手段88は、アクセルペダルが踏込操作されて要求駆動力Fが大きくなり、ハイブリッド制御手段86により車両状態が前記駆動力源切換線図のモータ走行領域からエンジン走行領域へ変化したと判断されてモータ走行からエンジン走行への切り換えが判断された場合、すなわち、ハイブリッド制御手段86によりエンジン始動が判断された場合には、第1電動機M1に通電して第1電動機回転速度NM1を引き上げることで、すなわち第1電動機M1をスタータとして機能させることで、エンジン回転速度Nを完爆可能な所定回転速度N’例えばアイドル回転速度以上の自律回転可能な所定の自律回転速度NEIDL以上に引き上げるエンジン回転駆動制御を行うと共に、所定回転速度N’以上にて燃料噴射装置66により燃料を供給(噴射)し点火装置68により点火してエンジントルクTを発生させるエンジントルク発生制御を行うことによってエンジン8を始動し、モーター走行からエンジン走行へ切り換える。また、エンジン始動停止制御手段88は、アクセルペダルが戻されて要求駆動力Fが小さくなり車両状態が前記駆動力源切換線図のエンジン走行領域からモータ走行領域へ変化した場合には、燃料噴射装置66により燃料供給を停止させるように、すなわちフューエルカットによりエンジン8の停止を行って、ハイブリッド制御手段86によるエンジン走行からモータ走行へ切り換える。
 また、ハイブリッド制御手段86は、第1電動機M1を無負荷状態として自由回転すなわち空転させることにより、差動部11がトルクの伝達を不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段86は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とすることが可能である。
 また、ハイブリッド制御手段86は、アクセルオフの惰性走行時(コースト走行時)やブレーキペダルの操作によるホイールブレーキ作動時などには、燃費を向上(燃料消費率を低減)させるためにエンジン8を非駆動状態にして、駆動輪34から伝達される車両6の運動エネルギを差動部11で電気エネルギに変換する回生制御を実行する。具体的には、駆動輪34からエンジン8側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ54を介して蓄電装置56へ充電する回生制御を実行する。すなわち、ハイブリッド制御手段86は上記回生制御を実行する回生制御手段として機能する。
 図8は、自動変速部20の各ギヤ段(1st~4th)において、動力伝達装置10の総合変速比γTと動力伝達装置10の伝達効率ηとの関係を示した図である。動力伝達装置10の伝達効率ηとは、動力伝達装置10が動力を伝達する効率のことであり、例えば、蓄電装置56の電力収支が零であるとすれば、動力伝達装置10への入力パワーであるエンジン出力Pに対する動力伝達装置10の出力POUT(単位は例えば「kW」)の割合(=POUT/P)で表される。
 図8に示すように、動力伝達装置10の伝達効率ηは、差動部11の変速比γ0及び自動変速部20のギヤ段に応じて、すなわち、動力伝達装置10の総合変速比γTに応じて変化する。例えば、自動変速部20の第1速~第4速ギヤ段のうちの1のギヤ段に着目すれば、自動変速部20の変速比γATが変化しないことが前提になるので、動力伝達装置10の伝達効率ηは、特定の総合変速比γTすなわち差動部11の特定の変速比γ0で最大値になり、差動部11の変速比γ0がその特定の変速比γ0からずれるほど低下する伝達効率変化傾向を示す。そして、図8では、自動変速部20の変速により、その伝達効率変化傾向が総合変速比γTの変化する方向に略平行に移動する。
 そこで、動力伝達装置10の伝達効率ηを高く維持することは燃費向上につながるので、図8に示す自動変速部20の各ギヤ段における上記伝達効率変化傾向から、前述した図6及び図7の変速線図では、総合変速比γTと伝達効率ηとの関係が図9の二点鎖線L01に沿って変化するように、すなわち、総合変速比γTの変化する全域に渡って上記伝達効率ηが高く維持されるように、各アップシフト線と各ダウンシフト線が設定されている。このとき、例えば、エアコン42等の補器類の負荷が小さく蓄電装置56の充電残量SOCが十分である所定状態を前提として、各アップシフト線と各ダウンシフト線が設定されている。なお、図9の各ギヤ段(1st~4th)における動力伝達装置10の総合変速比γTと伝達効率ηとの関係を表した曲線(伝達効率曲線)は、図8のそれと同じものである。
 ところで、エンジン出力Pは基本的には車両走行のため費やされるが、例えば前記補器類の負荷が大きい場合や蓄電装置56の充電残量SOCがその下限値に近くなって充電が必要になった場合には、車両走行以外の目的でエンジン出力Pが増大されることがある。その一例を図10を用いて説明する。
 図10は、エンジン出力Pが変化した場合にエンジン動作点がどのように変化するかを説明するための図である。例えば、自動変速部20が第2速ギヤ段(2nd)であるときにエンジン出力Pが蓄電装置56への充電のために100kWから110kWに増大させられる場合を想定する。この100kWは車両走行目的のでエンジン出力Pである。その場合、図10において、ハイブリッド制御手段86は、エンジン8の動作曲線(最適燃費率曲線)LEGにエンジン動作点を沿わせつつエンジン8を作動させるので、エンジン動作点を、100kWの等パワー曲線L1PEと動作曲線LEGとの交点P01EGから、110kWの等パワー曲線L2PEと動作曲線LEGとの交点P02EGへ変更する。そうすると、エンジン回転速度Nは上記交点P01EGが示すNE_01から上記交点P02EGが示すNE_02へ上昇する。このとき、車速Vに変化はないので上記エンジン回転速度Nの上昇は差動部11の変速比γ0の変化で吸収され、運転者の要求駆動力F(アクセル開度Acc)が変化したわけではないので図6もしくは図7の変速線図に基づけば、自動変速部20は第2速ギヤ段のまま変速されない。
 しかし、このようなエンジン動作点の変化を図8に示すと、動力伝達装置10の伝達効率ηは、第2速ギヤ段(2nd)の伝達効率曲線上で点P01EFから点P02EFへ変化して、η_01からη_02へと低下することが考えられる。一方で、もし、自動変速部20が第2速ギヤ段から第1速ギヤ段へ変速されていたとすれば、動力伝達装置10の伝達効率ηは、点P01EFから点P02EF’へ変化して、η_01からη_02’へと上昇することが考えられる。
 このような動力伝達装置10の伝達効率ηの変化からすると、自動変速部20の変速を実行すべきか否かが、運転者の要求駆動力F(アクセル開度Acc)及び車速Vを軸パラメータとする図6もしくは図7の変速線図に基づいて判断されることで、かえって動力伝達装置10の伝達効率ηが低下し、燃費悪化を生じさせる場合が考えられる。
 そこで、本実施例では、上記伝達効率ηの低下による燃費悪化を抑えて自動変速部20の変速を実行すべきか否かが判断されるようにするために、所定の条件のもとで図6(図7)の変速線図を他の変速線図に切り替える。以下、そのための制御機能の要部について説明する。
 図5に示すように、電子制御装置80は、前述の有段変速制御手段82、記憶手段84、及び、ハイブリッド制御手段86を備えており、それに加えて、燃費優先走行状態判断部としての燃費優先走行状態判断手段92、変速点設定部としての変速点設定手段94、及び、変速点設定変更禁止部としての変速点設定変更禁止手段96を備えている。
 記憶手段84は、前述の機能に加えて、前記図6または図7の変速線図の他に、それに替わるものとして、図11に示すような、車速Vと実際のエンジン回転速度N(実エンジン回転速度)とを変数(軸パラメータ)としてアップシフト線(実線)及びダウンシフト線(破線)を有する変速線図を予め記憶している。この図11では、全ての変速線(アップシフト線、ダウンシフト線)は原点(V=0,N=0)を通る直線であり、各変速線は、総合変速比γTと伝達効率ηとの関係が図9の二点鎖線L01に沿って変化するように設定されている。例えば、出力軸回転速度NOUTは車速Vと一対一で対応し、図9の横軸である総合変速比γTは「N/NOUT」であるので、図11の第1速から第2速へのアップシフト線の勾配(=N/V)は、第1速ギヤ段における伝達効率ηと第2速ギヤ段における伝達効率ηとの高低が反転する総合変速比γT_01(図9参照)から算出されて決定されている。これと同様に、図11の第2速から第3速へのアップシフト線の勾配、及び、第3速から第4速へのアップシフト線の勾配はそれぞれ、図9の総合変速比γT_02及びγT_03から算出されて決定されている。そして、各ダウンシフト線の勾配はそれに対応するアップシフト線に対してヒステリシスを有して決定されている。
 燃費優先走行状態判断手段92は、車両6が所定の燃費優先走行状態であるか否かを判断する。その燃費優先走行状態とは、車両走行において加速応答性や快適性などよりも燃費向上が優先される車両状態である。車両6が上記燃費優先走行状態である場合とは、具体的に言えば種々の場合が考えられる。第1の例として、前記車両6が前記燃費優先走行状態である場合とは、非選択時よりも燃費向上が図られる前記燃費優先走行モードが手動により選択されている場合である。この例では、燃費優先走行状態判断手段92は、上記燃費優先走行モードが手動により選択されている場合に、車両6が前記燃費優先走行状態であると判断する。上記燃費優先走行モードはエコモードスイッチ44がON状態に操作されることにより選択される。燃費優先走行モードでは、車両6の走行性能等よりも燃費性能が優先され、例えば、エンジン8の空燃比等が非選択時よりも燃費を向上させるように変更される。
 また、第2の例として、車両6が前記燃費優先走行状態である場合とは、蓄電装置56へ充電するためにエンジン8に対し要求される出力要求量PEEX(単位は例えば「kW」)が所定の出力要求量判定値P1EEX以上である場合である。この例では、燃費優先走行状態判断手段92は、上記出力要求量PEEXが上記出力要求量判定値P1EEX以上である場合に、車両6が前記燃費優先走行状態であると判断する。上記出力要求量PEEXは、例えば蓄電装置56の充電残量SOCや現在の走行状態などに基づいてハイブリッド制御手段86により算出され、ハイブリッド制御手段86は、図10を用いて前述したようにエンジン動作点を変更して、車両走行に必要な出力(パワー)に上記出力要求量PEEXを加えたエンジン出力Pをエンジン8に発揮させる。図10を用いて説明すると、例えば、ハイブリッド制御手段86により蓄電装置56への充電のためにエンジン動作点が点P01EGから点P02EGへ変更されたとすれば、そのときの前記出力要求量PEEXは10kW(=110kW-100kW)であると言える。従って、前記出力要求量PEEXは、蓄電装置56へ充電するために発揮される分のエンジン出力Pと言い換えられても差し支えない。上記出力要求量判定値P1EEXは、前記出力要求量PEEXがそれ以上になると、自動変速部20が変速されないとして、蓄電装置56への充電のためにエンジン動作点がずれることにより燃費悪化につながる前記伝達効率ηの低下が生じ得ると考えられる実験的に設定された判定値である。
 また、第3の例として、車両6が前記燃費優先走行状態である場合とは、蓄電装置56の充電残量SOCが所定の残量判定値X1SOC未満であり、且つ、蓄電装置56へ充電するためにエンジン8に対し要求される前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合である。この例では、燃費優先走行状態判断手段92は、蓄電装置56の充電残量SOCが前記残量判定値X1SOC未満であり、且つ、前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合に、車両6が前記燃費優先走行状態であると判断する。上記残量判定値X1SOCは、蓄電装置56の充電残量SOCがそれ未満になれば蓄電装置56からの電力消費をできるだけ抑制する必要があると考えられる実験的に設定された判定値であって、例えば、上記充電残量SOCの下限許容値よりは大きいがそれに近い値が設定される。
 また、第4の例として、車両6が前記燃費優先走行状態である場合とは、エアコン42を駆動するために必要なエアコン要求パワーPRAC(単位は例えば「kW」)が所定のエアコン要求パワー判定値P1RAC以上であり、且つ、蓄電装置56へ充電するためにエンジン8に対し要求される前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合である。この例では、燃費優先走行状態判断手段92は、前記エアコン要求パワーPRACが前記エアコン要求パワー判定値P1RAC以上であり、且つ、前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合に、車両6が前記燃費優先走行状態であると判断する。エアコン42は車両6に備えられた補器類の中でエンジン出力Pを大きく消費するものであるので、上記エアコン要求パワーPRACについて判断される。例えば、上記エアコン要求パワーPRACは、運転者のエアコン操作内容や車室内温度など基づいて算出され、ハイブリッド制御手段86は、図10を用いて前述したエンジン動作点の変更と同様にして、車両走行に必要な出力(パワー)に上記エアコン要求パワーPRACを加えたエンジン出力Pをエンジン8に発揮させる。従って、前記エアコン要求パワーPRACは、エアコン42を駆動するために発揮される分のエンジン出力Pと言い換えられても差し支えない。上記エアコン要求パワー判定値P1RACは、前記エアコン要求パワーPRACがそれ以上になると、前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合に自動変速部20が変速されないとして、エアコン42の駆動のためにエンジン動作点がずれることにより燃費悪化につながる前記伝達効率ηの低下が生じ得ると考えられる実験的に設定された判定値である。
 また、第5の例として、車両6が前記燃費優先走行状態である場合とは、エンジン8へ供給される燃料の残量STFLが所定の燃料残量判定値ST1FL未満である場合である。この例では、燃費優先走行状態判断手段92は、前記燃料の残量STFLが前記燃料残量判定値ST1FL未満である場合に、車両6が前記燃費優先走行状態であると判断する。燃料の残量STFLが少なくなると燃費向上を図る必要性が高まると考えられるので、上記燃料の残量STFLについて判断される。上記燃料の残量STFLは、例えば、車両6の燃料タンクに設けられた燃料残量センサにより検出される。前記燃料残量判定値ST1FLは、前記燃料の残量STFLがそれ未満になればできるだけ燃費向上を図る必要があると考えられる実験的に設定された判定値である。
 変速点設定手段94は、総合変速比γTの変化する全域に渡って動力伝達装置10の伝達効率ηが高く維持されるように、具体的には、総合変速比γTと伝達効率ηとの関係が図9の二点鎖線L01に沿って変化するように、自動変速部20の変速点(変速線)を設定する。その場合、基本的には、図6に示すように運転者の要求駆動力Fと車速Vとを変数として自動変速部20の変速点(変速線)を設定する、換言すれば、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)を設定する。具体的に本実施例では、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)が設定された図6の変速線図が記憶手段84に予め記憶されているので、変速点設定手段94は、有段変速制御手段82に対し、図6の変速線図に基づいて自動変速部20の変速を行うよう指令する。すなわち、この指令により運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)を設定したことになる。そして、その指令を受けた有段変速制御手段82は、前述したように、図6の変速線図から実際の車速V及び運転者の要求駆動力Fで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。
 変速点設定手段94は、燃費優先走行状態判断手段92により車両6が前記燃費優先走行状態であると判断された場合には、運転者の要求駆動力Fに替えてエンジン回転速度Nと車速Vとにより自動変速部20の変速点(変速線)を設定する、換言すれば、図11に示すようにエンジン回転速度Nと車速Vとを変数として自動変速部20の変速点(変速線)を設定する。このとき、変速点設定手段94は、総合変速比γTの変化する全域に渡って動力伝達装置10の伝達効率ηが高く維持されるように、自動変速部20の変速点(変速線)を設定する点に変わりはない。具体的に本実施例では、エンジン回転速度Nと車速Vとにより自動変速部20の変速点(変速線)が設定された図11の変速線図が記憶手段84に予め記憶されているので、変速点設定手段94は、燃費優先走行状態判断手段92により車両6が前記燃費優先走行状態であると判断された場合には、有段変速制御手段82に対し、図11の変速線図に基づいて自動変速部20の変速を行うよう指令する。すなわち、この指令によりエンジン回転速度Nと車速Vとにより自動変速部20の変速点(変速線)を設定したことになる。そして、その指令を受けた有段変速制御手段82は、図6の変速線図に基づく場合と同様に、図11の変速線図から実際の車速V及びエンジン回転速度Nで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。
 このように、変速点設定手段94は、燃費優先走行状態判断手段92により車両6が前記燃費優先走行状態であると判断された場合には、運転者の要求駆動力Fに替えてエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定するが、変速点設定変更禁止手段96が、そのエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを禁止する場合がある。この禁止される場合について以下に説明する。
 変速点設定変更禁止手段96は、所定期間TIME1内での運転者の要求駆動力Fの変化量VFR(以下、「要求駆動力変化量VFR」という)が所定の要求駆動力変化量判定値VF1R以上であるか否かを判断し、所定期間TIME1内での要求駆動力変化量VFRが前記要求駆動力変化量判定値VF1R以上である場合には、変速点設定手段94がエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを禁止する。この要求駆動力変化量VFRについて判断が行われるのは、上記要求駆動力F(アクセル開度Acc)の過渡的な変化幅が大きい場合には、その要求駆動力Fを変数の1つに採用する図6の変速線図が用いられることで、その要求駆動力Fの変化に対し応答性よく自動変速部20の変速が行われるようにするためである。前記所定期間TIME1は、変速点設定変更禁止手段96が上記の判断をする直前の例えば数秒間もしくは数分間であり、運転者に違和感を生じさせないために要求駆動力Fの変化に対する応答性のよい自動変速部20の変速が必要であるかを判断するための実験的に定められた期間である。前記要求駆動力変化量VFRは、例えば、上記所定期間TIME1内における要求駆動力Fの最大値と最小値との差(絶対値)である。前記要求駆動力変化量判定値VF1Rは、上記所定期間TIME1内の要求駆動力変化量VFRがそれ以上であれば、運転者に違和感を生じさせないために要求駆動力Fの変化に対する応答性のよい自動変速部20の変速が必要であると考えられる実験的に設定された判定値である。なお、運転者の要求駆動力Fはアクセル開度Accに対応するものであるので、変速点設定変更禁止手段96は、前記所定期間TIME1内でのアクセル開度Accの変化量が前記要求駆動力変化量判定値VF1Rに対応する所定のアクセル開度判定値以上であるか否かを判断し、その所定期間TIME1内でのアクセル開度Accの変化量が上記アクセル開度判定値以上である場合には、変速点設定手段94がエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを禁止するとされても差し支えない。
 更に、変速点設定変更禁止手段96は、非選択時よりも車両走行時の加速応答性の向上が図られる前記パワー走行モードが手動により選択されているか否かを判断し、そのパワー走行モードが手動により選択されている場合には、変速点設定手段94がエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを禁止する。そのパワー走行モードが選択されているか否かについて判断が行われるのは、パワー走行モードの選択時には、運転者が要求駆動力F(アクセル開度Acc)に対する応答性のよい走行を志向しており、その要求駆動力Fの変化に対し応答性よく自動変速部20の変速が行われるようにするためである。上記パワー走行モードはパワーモードスイッチ46がON状態に操作されることにより選択される。パワー走行モードでは、例えば、エンジン8の空燃比等が非選択時よりも車両走行時の加速応答性を向上させるように変更される。
 そして、変速点設定手段94は、エンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを変速点設定変更禁止手段96により禁止された場合には、図11ではなく図6の変速線図に示すように運転者の要求駆動力Fと車速Vとを変数として自動変速部20の変速点(変速線)を設定する、換言すれば、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)を設定する。また、この場合も、前述したように図6に替えて図7の変速線図が自動変速部20の変速を判断するために用いられてもよい。例えば、図7の変速線図が図6に替えて用いられるとすれば、変速点設定手段94は、エンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを変速点設定変更禁止手段96により禁止された場合には、図11ではなく図7の変速線図に示すように、アクセル開度Accと車速Vとにより自動変速部20の変速点(変速線)を設定することになる。
 図12は、電子制御装置80の制御作動の要部、すなわち、自動変速部20の変速点を設定するための変数を切り替える制御作動を説明するためのフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。
 先ず、ステップ(以下、「ステップ」を省略する)SA1においては、前記燃費優先走行モードが手動により選択されているか否かが判断される。この燃費優先走行モードはエコモードスイッチ44がON状態に操作されることにより選択される。このSA1の判断が肯定された場合、すなわち、前記燃費優先走行モードが手動により選択されている場合には、SA4に移る。一方、このSA1の判断が否定された場合には、SA2に移る。
 SA2においては、運転者の要求以外でエンジン8に対し要求されるエンジン出力Pの要求量が、その要求量が無い場合に対するエンジン動作点の変化が燃費悪化につながることを判断するための実験的に設定された所定値以上であるか否かが判断される。具体的には、蓄電装置56へ充電するためにエンジン8に対し要求される出力要求量PEEXが前記出力要求量判定値P1EEX以上であるか否かが判断される。このSA2の判断が肯定された場合、すなわち、上記出力要求量PEEXが上記出力要求量判定値P1EEX以上である場合には、SA4に移る。一方、このSA2の判断が否定された場合には、SA3に移る。
 ここで、SA2においては、上記出力要求量PEEXに加えて更に蓄電装置56の充電残量SOCまたは前記エアコン要求パワーPRACについて判断された結果、このSA2の判断結果が肯定あるいは否定とされてもよい。
 例えば、上記出力要求量PEEXに加えて更に蓄電装置56の充電残量SOCについて判断されるのであれば、蓄電装置56の充電残量SOCが前記残量判定値X1SOC未満であり、且つ、前記出力要求量PEEXが前記出力要求量判定値P1EEX以上であるか否かが判断される。そして、SA2の判断は、上記充電残量SOCが前記残量判定値X1SOC未満であり、且つ、前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合には肯定され、そうでなければSA2の判断は否定される。
 また、上記出力要求量PEEXに加えて更に前記エアコン要求パワーPRACについて判断されるのであれば、上記エアコン要求パワーPRACが前記エアコン要求パワー判定値P1RAC以上であり、且つ、前記出力要求量PEEXが前記出力要求量判定値P1EEX以上であるか否かが判断される。そして、SA2の判断は、上記エアコン要求パワーPRACが前記エアコン要求パワー判定値P1RAC以上であり、且つ、前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合には肯定され、そうでなければSA2の判断は否定される。
 SA3においては、前記燃料の残量STFLが前記燃料残量判定値ST1FL未満であるか否かが判断される。このSA3の判断が肯定された場合、すなわち、上記燃料の残量STFLが上記燃料残量判定値ST1FL未満である場合には、SA4に移る。一方、このSA2の判断が否定された場合には、SA7に移る。なお、SA1、SA2、及びSA3は燃費優先走行状態判断手段92に対応する。
 SA4においては、前記所定期間TIME1内での前記要求駆動力変化量VFRが前記要求駆動力変化量判定値VF1R以上であるか否かが判断される。ここで、運転者の要求駆動力Fはアクセル開度Accに対応するものであるので、SA4では、前記所定期間TIME1内でのアクセル開度Accの変化量が前記要求駆動力変化量判定値VF1Rに対応する前記アクセル開度判定値以上であるか否かが判断されてもよい。このSA4の判断が肯定された場合、すなわち、前記所定期間TIME1内での前記要求駆動力変化量VFRが前記要求駆動力変化量判定値VF1R以上である場合には、エンジン回転速度Nと車速Vとによる自動変速部20の変速点の設定が禁止されるので、SA7に移る。一方、このSA4の判断が否定された場合には、SA5に移る。
 SA5においては、前記パワー走行モードが手動により選択されているか否かが判断される。上記パワー走行モードはパワーモードスイッチ46がON状態に操作されることにより選択される。このSA5の判断が肯定された場合、すなわち、上記パワー走行モードが手動により選択されている場合には、エンジン回転速度Nと車速Vとによる自動変速部20の変速点の設定が禁止されるので、SA7に移る。一方、このSA5の判断が否定された場合には、SA6に移る。なお、SA4及びSA5は変速点設定変更禁止手段96に対応する。
 SA6においては、図6の変速線図の軸パラメータである運転者の要求駆動力Fが、図11の変速線図に示すようにエンジン回転速度Nに変更される。つまり、図11の変速線図に示すように、エンジン回転速度Nと車速Vとにより自動変速部20の変速点(変速線)が設定される。従って、図11の変速線図に基づいて自動変速部20の変速が行われる。
 SA7においては、図6の変速線図の軸パラメータは変更されず、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)が設定される。従って、図6の変速線図に基づいて自動変速部20の変速が行われる。なお、SA6及びSA7は変速点設定手段94に対応する。
 本実施例には次のような効果(A1)乃至(A9)がある。(A1)本実施例によれば、変速点設定手段94は、基本的には、図6の変速線図に示すように、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)を設定するところ、燃費優先走行状態判断手段92により車両6が前記燃費優先走行状態であると判断された場合には、運転者の要求駆動力Fに替えてエンジン回転速度Nと車速Vとにより自動変速部20の変速点(変速線)を設定する、換言すれば、図11の変速線図に示すようにエンジン回転速度Nと車速Vとを変数として自動変速部20の変速点(変速線)を設定する。従って、前記要求駆動力Fが変化しなくても前記エンジン動作点が変化すれば直ちに変速すべきか否かを判断でき、常に要求駆動力Fと車速Vとにより前記変速点を設定する場合と比較して、動力伝達装置10の伝達効率ηがより高い自動変速部20のギヤ段に変速することができる。その結果として、燃費向上を優先すべき前記燃費優先走行状態である場合において、その伝達効率ηの向上により燃費向上を図ることができる。また、上記燃費優先走行状態ではない場合には、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点が設定されるので、その要求駆動力F(アクセル開度Acc)の過渡的な変化に直ちに対応できる応答性のよい自動変速部20の変速を確保できる。
 (A2)また、本実施例によれば、車両6が前記燃費優先走行状態である場合とは、非選択時よりも燃費向上が図られる前記燃費優先走行モードが手動により選択されている場合であるので、車両6の燃費向上を優先すべき走行モードにおいて、燃費を向上させるように適切な自動変速部20の変速が行われる。
 (A3)また、本実施例によれば、車両6が前記燃費優先走行状態である場合とは、蓄電装置56へ充電するためにエンジン8に対し要求される出力要求量PEEX(単位は例えば「kW」)が所定の出力要求量判定値P1EEX以上である場合であるので、自動変速部20の変速により動力伝達装置10の伝達効率ηを向上させることが可能な場合に、その伝達効率η向上により燃費を向上させるように適切な自動変速部20の変速が行われるようにすることができる。
 (A4)また、本実施例によれば、車両6が前記燃費優先走行状態である場合とは、エンジン8へ供給される燃料の残量STFLが所定の燃料残量判定値ST1FL未満である場合であるので、車両6の加速応答性などよりも燃費向上を優先する必要性が高い場合に、燃費を向上させるように適切な自動変速部20の変速が行われる。
 (A5)また、本実施例によれば、車両6が前記燃費優先走行状態である場合とは、蓄電装置56の充電残量SOCが所定の残量判定値X1SOC未満であり、且つ、蓄電装置56へ充電するためにエンジン8に対し要求される前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合であるので、車両6の加速応答性などよりも燃費向上を優先する必要性が高く、且つ、自動変速部20の変速により動力伝達装置10の伝達効率ηを向上させることが可能な場合に、その伝達効率η向上により燃費を向上させるように適切な自動変速部20の変速が行われるようにすることができる。
 (A6)また、本実施例によれば、車両6が前記燃費優先走行状態である場合とは、エアコン42を駆動するために必要なエアコン要求パワーPRACが所定のエアコン要求パワー判定値P1RAC以上であり、且つ、蓄電装置56へ充電するためにエンジン8に対し要求される前記出力要求量PEEXが前記出力要求量判定値P1EEX以上である場合であるので、自動変速部20の変速により動力伝達装置10の伝達効率ηを向上させることが可能な場合に、その伝達効率η向上により燃費を向上させるように適切な自動変速部20の変速が行われるようにすることができる。
 (A7)また、本実施例によれば、変速点設定変更禁止手段96は、前記所定期間TIME1内での前記要求駆動力変化量VFRが前記要求駆動力変化量判定値VF1R以上である場合には、変速点設定手段94がエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを禁止する。その結果、変速点設定手段94は、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)を設定することになる。ここで、上記要求駆動力変化量VFRが大きければ、運転者の要求駆動力Fが殆ど変化しない場合と比較して、車両6の加速応答性のよい走行を実現する必要が高いものと考えられる。また、図11の変速線図の縦軸の変数であるエンジン回転速度Nはアクセル開度Acc(要求駆動力F)の変化に対してある程度の遅れを有して変化する。従って、車両6の加速応答性のよい走行が重視される場合には、図6の変速線図に基づいて、上記要求駆動力Fの過渡的な変化に直ちに対応できる応答性のよい自動変速部20の変速を確保できる。すなわち、ドライバビリティの向上を図り得る。
 (A8)また、本実施例によれば、変速点設定変更禁止手段96は、非選択時よりも車両走行時の加速応答性の向上が図られる前記パワー走行モードが手動により選択されている場合には、変速点設定手段94がエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定することを禁止する。その結果、変速点設定手段94は、運転者の要求駆動力Fと車速Vとにより自動変速部20の変速点(変速線)を設定することになる。従って、車両6の加速応答性のよい走行が重視される場合には、図6の変速線図に基づいて、上記要求駆動力Fの過渡的な変化に直ちに対応できる応答性のよい自動変速部20の変速を確保できる。すなわち、ドライバビリティの向上を図り得る。
 (A9)また、本実施例によれば、エンジン8と自動変速部20との間に連結された動力分配機構16と、動力分配機構16に動力伝達可能に連結された第1電動機M1と、駆動輪34に動力伝達可能に連結された第2電動機M2とを有し、第1電動機M1の運転状態が制御されることにより動力分配機構16の差動状態が制御される差動部11が設けられているので、自動変速部20は段階的にその変速比γATを変更する有段変速機であるが、動力分配機構16の差動状態が制御されることにより動力伝達装置10全体としてはその総合変速比γTを連続的に変更することができる無段変速機として機能させることが可能である。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
 例えば、前述の本実施例においては、図6の縦軸は運転者の要求駆動力Fであるが、車両6の駆動力は動力伝達装置10(自動変速部20)の出力トルクTOUTと一対一で対応するので、図6の縦軸の要求駆動力Fを運転者が要求する動力伝達装置10(自動変速部20)の要求出力トルクに置き換えても差し支えない。
 また、前述の本実施例において、変速点設定手段94は、燃費優先走行状態判断手段92により車両6が前記燃費優先走行状態であると判断された場合には、図11に示すように、運転者の要求駆動力Fに替えてエンジン回転速度Nと車速Vとにより自動変速部20の変速点を設定するが、エンジン走行時においてその変速点の設定をするのが望ましい。
 また、前述の本実施例においては、車両6にはエコモードスイッチ44とパワーモードスイッチ46とが設けられているが、それらのスイッチ44、46は、両方が同時にON状態にはならずに択一的にON状態になるか或いは両方が同時にOFF状態になる構造であってもよい。
 また、前述の本実施例の図12において、SA1、SA2、及びSA3のうち何れか1つのステップだけが設けられており他の2つのステップが無いフローチャートも考え得る。例えば、SA2だけが設けられておりSA1とSA3とが無いフローチャートでは、先ず、SA2に移り、SA2の判断が肯定された場合にはSA4に移る一方で、SA2の判断が否定された場合にはSA7に移ることになる。
 また、前述の本実施例の図12において、SA4とSA5との何れか一方または両方が無いフローチャートも考え得る。例えば、SA4とSA5との両方が無いフローチャートでは、SA1とSA2とSA3との何れかの判断が肯定された場合には、SA6に移る。また、SA4はあるがSA5が無いフローチャートでは、SA4の判断が否定された場合には、SA6に移る。また、SA5はあるがSA4が無いフローチャートでは、SA1とSA2とSA3との何れかの判断が肯定された場合には、SA5に移る。
 また、前述の本実施例においては、前記要求駆動力変化量VFRは、例えば、前記所定期間TIME1内における要求駆動力Fの最大値と最小値との差(絶対値)であると説明されているが、それに限定されるものではなく、その要求駆動力F(アクセル開度Acc)の変化の大きさを表せる指標であればよい。
 また、前述の本実施例において、車両6は、差動機構としての動力分配機構16と第1電動機M1とを備えているが、例えば、第1電動機M1及び動力分配機構16を備えてはおらず、エンジン8,クラッチ,第2電動機M2,自動変速部20,駆動輪34が直列に連結された所謂パラレルハイブリッド車両であってもよい。なお、エンジン8と第2電動機M2との間の上記クラッチは必要に応じて設けられるものであるので、上記パラレルハイブリッド車両がそのクラッチを備えていない構成も考え得る。
 また、前述の本実施例の車両6はハイブリッド車両であるが、動力分配機構16及び電動機M1,M2を備えていない通常のエンジン車両であってもよい。
 また、前述の実施例では、第2電動機M2は、伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、エンジン8又は伝達部材18から駆動輪34までの間の動力伝達経路に直接的或いは変速機、遊星歯車装置、係合装置等を介して間接的に連結されていてもよい。
 また、前述の実施例では、第1電動機M1の運転状態が制御されることにより、差動部11はその変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能するものであったが、たとえば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであってよい。
 また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちのいずれと連結されていても差し支えない。
 また、前述の実施例では、エンジン8は入力軸14と直結されていたが、たとえばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
 また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、たとえばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
 また、前述の実施例では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁紛)クラッチ、電磁クラッチ、噛合型のドグクラッチなどの磁紛式、電磁式、機械式係合装置から構成されていてもよい。たとえば電磁クラッチであるような場合には、油圧制御回路70は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。
 また、前述の実施例ではエンジン8と差動部11とが直接連結されているが、必ずしも直接連結される必要はなく、エンジン8と差動部11との間にクラッチを介して連結されていてもよい。
 また、前述の実施例では、差動部11と自動変速部20とが直列接続されたような構成となっているが、特にこのような構成に限定されず、例えば、動力伝達装置10全体として電気式差動を行う機能と、動力伝達装置10全体として電気式差動による変速とは異なる原理で変速を行う機能とを備えた構成であって、差動部11と自動変速部20とが機械的に独立していない構成であっても差し支えない。また、これらの配設位置や配設順序も特に限定されない。要するに、自動変速部20は、エンジン8から駆動輪34への動力伝達経路の一部を構成するように設けられておればよい。
 また、前述の実施例の動力分配機構16は、1組の遊星歯車装置(差動部遊星歯車装置24)から構成されていたが2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、差動部遊星歯車装置24はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。また、このような2以上の遊星歯車装置から構成された場合においても、これらの遊星歯車装置の各回転要素にエンジン8、第1および第2電動機M1、M2、伝達部材18、構成によっては出力軸22が動力伝達可能に連結され、さらに遊星歯車装置の各回転要素に接続されたクラッチCおよびブレーキBの制御により有段変速と無段変速とが切り換えられるような構成であっも構わない。
 また、前述の実施例の動力伝達装置10において、第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。
 また、前述の実施例において、第2電動機M2はエンジン8から駆動輪34までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする動力伝達装置10の構成であってもよい。
 また、前述の実施例において、差動部11が、第1電動機M1及び第2電動機M2を備えているが、第1電動機M1及び第2電動機M2は差動部11とは別個に動力伝達装置10に備えられていてもよい。
 その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
6:車両
8:エンジン
10:動力伝達装置(車両用動力伝達装置)
11:差動部(電気式差動部)
16:動力分配機構(差動機構)
20:自動変速部(自動変速機)
34:駆動輪
42:エアコン
56:蓄電装置
80:電子制御装置(制御装置)
M1:第1電動機(発電機)
M2:第2電動機(発電機)

Claims (9)

  1.  エンジンと駆動輪との間の動力伝達経路の一部を構成する有段の自動変速機を備えており、運転者の要求駆動力と車速とにより前記自動変速機の変速点を設定する車両用動力伝達装置の制御装置であって、
     車両が所定の燃費優先走行状態である場合には、前記要求駆動力に替えて前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定する
     ことを特徴とする車両用動力伝達装置の制御装置。
  2.  前記車両が前記燃費優先走行状態である場合とは、非選択時よりも燃費向上が図られる燃費優先走行モードが手動により選択されている場合である
     ことを特徴とする請求項1に記載の車両用動力伝達装置の制御装置。
  3.  前記エンジンで回転駆動される発電機により充電される蓄電装置が設けられており、
     前記車両が前記燃費優先走行状態である場合とは、該蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合である
     ことを特徴とする請求項1又は2に記載の車両用動力伝達装置の制御装置。
  4.  前記車両が前記燃費優先走行状態である場合とは、前記エンジンへ供給される燃料の残量が所定の燃料残量判定値未満である場合である
     ことを特徴とする請求項1乃至3の何れか1項に記載の車両用動力伝達装置の制御装置。
  5.  前記エンジンで回転駆動される発電機により充電される蓄電装置が設けられており、
     前記車両が前記燃費優先走行状態である場合とは、該蓄電装置の充電残量が所定の残量判定値未満であり、且つ、該蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合である
     ことを特徴とする請求項1又は2に記載の車両用動力伝達装置の制御装置。
  6.  前記エンジンで回転駆動される発電機により充電される蓄電装置と、該エンジンの出力で車室内の空調を行うエアコンとが設けられており、
     前記車両が前記燃費優先走行状態である場合とは、前記エアコンを駆動するために必要なエアコン要求パワーが所定のエアコン要求パワー判定値以上であり、且つ、前記蓄電装置へ充電するために前記エンジンに対し要求される出力要求量が所定の出力要求量判定値以上である場合である
     ことを特徴とする請求項1又は2に記載の車両用動力伝達装置の制御装置。
  7.  所定期間内での前記要求駆動力の変化量が所定の要求駆動力変化量判定値以上である場合には、前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定することを禁止する
     ことを特徴とする請求項1乃至6の何れか1項に記載の車両用動力伝達装置の制御装置。
  8.  非選択時よりも車両走行時の加速応答性の向上が図られるパワー走行モードが手動により選択されている場合には、前記エンジンの回転速度と車速とにより前記自動変速機の変速点を設定することを禁止する
     ことを特徴とする請求項1乃至7の何れか1項に記載の車両用動力伝達装置の制御装置。
  9.  前記エンジンと前記自動変速機との間に連結された差動機構と、該差動機構に動力伝達可能に連結された第1電動機と、前記駆動輪に動力伝達可能に連結された第2電動機とを有し、前記第1電動機の運転状態が制御されることにより前記差動機構の差動状態が制御される電気式差動部が設けられている
     ことを特徴とする請求項1乃至8の何れか1項に記載の車両用動力伝達装置の制御装置。
PCT/JP2009/059208 2009-05-19 2009-05-19 車両用動力伝達装置の制御装置 WO2010134165A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011514244A JP5229385B2 (ja) 2009-05-19 2009-05-19 車両用動力伝達装置の制御装置
PCT/JP2009/059208 WO2010134165A1 (ja) 2009-05-19 2009-05-19 車両用動力伝達装置の制御装置
CN200980160528.2A CN102625886B (zh) 2009-05-19 2009-05-19 车辆用动力传递装置的控制装置
DE112009005064T DE112009005064T5 (de) 2009-05-19 2009-05-19 Steuervorrichtung für einefahrzeugleistungsübertragungsvorrichtung
US13/321,428 US8874290B2 (en) 2009-05-19 2009-05-19 Control device for vehicle power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059208 WO2010134165A1 (ja) 2009-05-19 2009-05-19 車両用動力伝達装置の制御装置

Publications (1)

Publication Number Publication Date
WO2010134165A1 true WO2010134165A1 (ja) 2010-11-25

Family

ID=43125865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059208 WO2010134165A1 (ja) 2009-05-19 2009-05-19 車両用動力伝達装置の制御装置

Country Status (5)

Country Link
US (1) US8874290B2 (ja)
JP (1) JP5229385B2 (ja)
CN (1) CN102625886B (ja)
DE (1) DE112009005064T5 (ja)
WO (1) WO2010134165A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427744A (zh) * 2012-05-21 2013-12-04 三菱电机株式会社 车辆用发电装置及其发电控制方法
KR101619245B1 (ko) 2014-09-23 2016-05-10 현대자동차 주식회사 변속패턴 제어시스템 및 그 방법
WO2018216389A1 (ja) * 2017-05-26 2018-11-29 株式会社デンソー 冷凍システム

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858501B2 (ja) * 2008-07-14 2012-01-18 トヨタ自動車株式会社 車両用自動変速機の制御装置
JP4890595B2 (ja) 2009-06-19 2012-03-07 トヨタ自動車株式会社 車両の制御装置
JP5273121B2 (ja) * 2010-10-19 2013-08-28 株式会社デンソー 発進支援装置
JP5185993B2 (ja) * 2010-12-01 2013-04-17 三菱電機株式会社 車両用発電制御装置
GB2487733B (en) * 2011-02-01 2018-01-24 Jaguar Land Rover Ltd Hybrid electric vehicle controller and method of controlling a hybrid electric vehicle
JP5712780B2 (ja) * 2011-05-12 2015-05-07 株式会社デンソー 電気自動車用の空調制御装置
JP5891774B2 (ja) * 2011-12-22 2016-03-23 三菱自動車工業株式会社 ハイブリッド車
US9638096B2 (en) * 2012-04-25 2017-05-02 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
US20130289836A1 (en) * 2012-04-27 2013-10-31 Wei Li Transmission control system
US20130297162A1 (en) * 2012-05-07 2013-11-07 Ford Global Technologies, Llc Dynamic shift scheduling in a hybrid vehicle having a step ratio automatic transmission
JP6155917B2 (ja) * 2013-07-11 2017-07-05 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2015016781A (ja) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5928443B2 (ja) * 2013-12-24 2016-06-01 トヨタ自動車株式会社 車両の制御装置
JP6131922B2 (ja) * 2014-09-12 2017-05-24 トヨタ自動車株式会社 車両
FR3029155B1 (fr) * 2014-12-02 2016-12-02 Renault Sa Procede de controle des changements etat d'une chaine cinematique
US9884622B2 (en) * 2015-12-29 2018-02-06 Thunder Power New Energy Vehicle Development Company Limited Vehicle condition detection and warning system
JP6524019B2 (ja) * 2016-05-18 2019-06-05 日立建機株式会社 建設機械
US10029694B2 (en) 2016-10-05 2018-07-24 Caterpillar Inc. Control strategy for a powertrain system
JP6683290B2 (ja) * 2017-04-04 2020-04-15 日産自動車株式会社 ハイブリッド車両の制御方法
JP7172689B2 (ja) * 2019-02-08 2022-11-16 トヨタ自動車株式会社 車両の制御装置
JP7215380B2 (ja) * 2019-09-19 2023-01-31 トヨタ自動車株式会社 車両の変速制御装置
US11167643B2 (en) * 2019-09-24 2021-11-09 GM Global Technology Operations LLC Electric-drive vehicles, powertrains, and logic for comprehensive vehicle control during towing
CN113442896A (zh) * 2020-03-27 2021-09-28 株式会社电装 车辆的控制装置
CN114248777B (zh) * 2021-12-13 2024-03-19 潍柴动力股份有限公司 降低油耗的方法、装置、存储介质和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273183A (ja) * 1986-05-19 1987-11-27 ヤマハ発動機株式会社 車両用無段自動変速機の走行制御装置
JPH06144085A (ja) * 1992-11-11 1994-05-24 Toyota Motor Corp エンジンと変速機の総合制御装置
JPH09133208A (ja) * 1995-11-07 1997-05-20 Mazda Motor Corp 自動変速機の制御装置
JPH09184567A (ja) * 1996-01-04 1997-07-15 Nissan Motor Co Ltd 自動変速機の変速制御方法
JP2003322249A (ja) * 2002-04-25 2003-11-14 Toyota Motor Corp 車両用駆動制御装置
JP2006046521A (ja) * 2004-08-05 2006-02-16 Honda Motor Co Ltd 無段変速機の変速制御装置
JP2009041629A (ja) * 2007-08-07 2009-02-26 Toyota Motor Corp 車両用動力伝達装置の制御装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211930A (en) 1978-07-24 1980-07-08 Fengler Werner H Vehicle propulsion system by individual stepping motors from continuously-running engine-driven alternator and/or pulsating battery current
JP3062197B2 (ja) * 1987-10-30 2000-07-10 マツダ株式会社 自動変速機の制御装置
JPH03219163A (ja) 1990-01-24 1991-09-26 Fuji Heavy Ind Ltd アルコールエンジン用自動変速機
US5275069A (en) 1991-03-31 1994-01-04 Mazda Motor Corporation Control system for automatic transmission
JPH04316759A (ja) 1991-04-12 1992-11-09 Fuji Heavy Ind Ltd 無段変速機の制御装置
JPH0579556A (ja) 1991-09-20 1993-03-30 Japan Electron Control Syst Co Ltd 車両用自動変速機の変速制御装置
DE4344053B4 (de) 1993-01-08 2005-06-16 Volkswagen Ag Verfahren zum Betrieb eines Hybridfahrzeugs und Vorrichtung zum Durchführen des Verfahrens
JP3610672B2 (ja) 1996-04-02 2005-01-19 トヨタ自動車株式会社 内燃機関の燃料性状検出装置
JP4178573B2 (ja) * 1998-01-30 2008-11-12 マツダ株式会社 自動変速機の制御装置
GB0028598D0 (en) 2000-11-23 2001-01-10 Ricardo Consulting Eng Improvements in hybrid power sources
JP3547732B2 (ja) * 2002-03-15 2004-07-28 本田技研工業株式会社 ハイブリッド車両の駆動力制御装置
JP3849615B2 (ja) * 2002-08-27 2006-11-22 トヨタ自動車株式会社 車両の制御装置
JP3941708B2 (ja) 2003-02-19 2007-07-04 トヨタ自動車株式会社 車両の制御装置
US6914410B2 (en) 2003-06-27 2005-07-05 General Motors Corporation Electric differential traction-control drive system
JP4026604B2 (ja) 2004-02-26 2007-12-26 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP4442398B2 (ja) 2004-02-25 2010-03-31 トヨタ自動車株式会社 車両用駆動装置の制御装置
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
FR2870911B1 (fr) * 2004-05-28 2007-08-31 Renault Sas Procede de commande d'une transmission automatisee pour un vehicule automobile, en fonction des modes de conduite automatique ou manuel avec commande impulsionnelle et dispositif correspondant
JP4367399B2 (ja) * 2005-10-21 2009-11-18 トヨタ自動車株式会社 車両の駆動力制御装置
JP4945139B2 (ja) * 2006-01-27 2012-06-06 日立オートモティブシステムズ株式会社 自動車の制御装置
JP2007231963A (ja) 2006-02-27 2007-09-13 Aisin Seiki Co Ltd 車両用自動変速機の変速制御装置
DE102006009589A1 (de) 2006-03-02 2007-09-06 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Automatgetriebes und Getriebesteuereinrichtung mit Verbrauchskennfeld-Ermittlungsvorrichtung
JP2008120266A (ja) 2006-11-13 2008-05-29 Toyota Motor Corp ハイブリッド車両の燃料性状推定装置
US7568994B2 (en) * 2006-11-17 2009-08-04 Gm Global Technology Operations, Inc. Control architecture for selection of optimal mode or gear and input speed for a hybrid powertrain system
DE102007056883A1 (de) 2006-12-20 2008-06-26 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Steuerung eines Kraftfahrzeuggetriebes
JP4197036B2 (ja) * 2007-02-07 2008-12-17 トヨタ自動車株式会社 動力伝達装置の制御装置
JP4412346B2 (ja) * 2007-04-20 2010-02-10 トヨタ自動車株式会社 ハイブリッド車両の駆動制御装置
JP4600421B2 (ja) 2007-04-25 2010-12-15 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5076654B2 (ja) 2007-06-07 2012-11-21 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP4941139B2 (ja) * 2007-07-09 2012-05-30 トヨタ自動車株式会社 ロックアップクラッチの制御装置
US7555374B2 (en) 2007-10-23 2009-06-30 Gm Global Technology Operations, Inc. Method for monitoring a motor speed sensor
JP4600549B2 (ja) * 2008-08-29 2010-12-15 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273183A (ja) * 1986-05-19 1987-11-27 ヤマハ発動機株式会社 車両用無段自動変速機の走行制御装置
JPH06144085A (ja) * 1992-11-11 1994-05-24 Toyota Motor Corp エンジンと変速機の総合制御装置
JPH09133208A (ja) * 1995-11-07 1997-05-20 Mazda Motor Corp 自動変速機の制御装置
JPH09184567A (ja) * 1996-01-04 1997-07-15 Nissan Motor Co Ltd 自動変速機の変速制御方法
JP2003322249A (ja) * 2002-04-25 2003-11-14 Toyota Motor Corp 車両用駆動制御装置
JP2006046521A (ja) * 2004-08-05 2006-02-16 Honda Motor Co Ltd 無段変速機の変速制御装置
JP2009041629A (ja) * 2007-08-07 2009-02-26 Toyota Motor Corp 車両用動力伝達装置の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427744A (zh) * 2012-05-21 2013-12-04 三菱电机株式会社 车辆用发电装置及其发电控制方法
CN103427744B (zh) * 2012-05-21 2015-11-18 三菱电机株式会社 车辆用发电装置及其发电控制方法
KR101619245B1 (ko) 2014-09-23 2016-05-10 현대자동차 주식회사 변속패턴 제어시스템 및 그 방법
WO2018216389A1 (ja) * 2017-05-26 2018-11-29 株式会社デンソー 冷凍システム
JP2018200135A (ja) * 2017-05-26 2018-12-20 株式会社デンソー 冷凍システム

Also Published As

Publication number Publication date
JP5229385B2 (ja) 2013-07-03
JPWO2010134165A1 (ja) 2012-11-08
US8874290B2 (en) 2014-10-28
CN102625886B (zh) 2014-05-14
CN102625886A (zh) 2012-08-01
US20120072064A1 (en) 2012-03-22
DE112009005064T5 (de) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5229385B2 (ja) 車両用動力伝達装置の制御装置
JP4215092B2 (ja) ハイブリッド車両のエンジン起動装置
JP4998164B2 (ja) 車両用動力伝達装置の制御装置
JP5267656B2 (ja) 車両用動力伝達装置の制御装置
JP4605256B2 (ja) 車両用動力伝達装置の制御装置
JP4983453B2 (ja) 車両用駆動装置の制御装置
JP5083312B2 (ja) 車両用動力伝達装置の制御装置
JP5098402B2 (ja) 車両用駆動装置の制御装置
WO2010070750A1 (ja) 車両用動力伝達装置の制御装置
WO2010137123A1 (ja) 車両用動力伝達装置の変速制御装置
JP4930261B2 (ja) 車両用動力伝達装置の制御装置
JP4683137B2 (ja) 動力伝達装置の制御装置
JP2008207690A (ja) 車両用駆動装置の制御装置
JP2008290555A (ja) 車両用駆動装置の制御装置
JP2008296648A (ja) 車両用動力伝達装置の制御装置
JP5445306B2 (ja) 車両用自動変速機の変速段設定方法
JP2009280176A (ja) 車両用動力伝達装置の制御装置
JP4998072B2 (ja) 車両用動力伝達装置の制御装置
JP5018452B2 (ja) 車両用動力伝達装置の制御装置
JP2009280177A (ja) 車両用動力伝達装置の制御装置
JP2011183990A (ja) 車両用動力伝達装置の制御装置
JP4853410B2 (ja) ハイブリッド車両用動力伝達装置の制御装置
JP2010083199A (ja) 車両用駆動装置の制御装置
JP4483892B2 (ja) ハイブリッド車両用駆動装置の制御装置
JP2009166741A (ja) 車両用動力伝達装置の変速制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160528.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844899

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011514244

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13321428

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120090050646

Country of ref document: DE

Ref document number: 112009005064

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844899

Country of ref document: EP

Kind code of ref document: A1