WO2010131317A1 - 熱交換器、半導体装置、及び、これらの製造方法 - Google Patents

熱交換器、半導体装置、及び、これらの製造方法 Download PDF

Info

Publication number
WO2010131317A1
WO2010131317A1 PCT/JP2009/058740 JP2009058740W WO2010131317A1 WO 2010131317 A1 WO2010131317 A1 WO 2010131317A1 JP 2009058740 W JP2009058740 W JP 2009058740W WO 2010131317 A1 WO2010131317 A1 WO 2010131317A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
heat exchanger
refrigerant
wall portion
flow path
Prior art date
Application number
PCT/JP2009/058740
Other languages
English (en)
French (fr)
Inventor
正裕 森野
靖治 竹綱
栄作 垣内
悠也 高野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN200980159301.6A priority Critical patent/CN102422413B/zh
Priority to PCT/JP2009/058740 priority patent/WO2010131317A1/ja
Priority to EP09844591.9A priority patent/EP2432012A4/en
Priority to US13/259,370 priority patent/US8593812B2/en
Priority to JP2011513139A priority patent/JP5370481B2/ja
Publication of WO2010131317A1 publication Critical patent/WO2010131317A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • H05K7/20918Forced ventilation, e.g. on heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49373Tube joint and tube plate structure
    • Y10T29/49375Tube joint and tube plate structure including conduit expansion or inflation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49384Internally finned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49393Heat exchanger or boiler making with metallurgical bonding

Definitions

  • the present invention relates to a heat exchanger that cools a heating element such as a semiconductor element by a refrigerant flowing inside the heat exchanger, a semiconductor device having the heat exchanger and the semiconductor element, and a method of manufacturing the same.
  • An inverter device having a power conversion function is used as a power source for a hybrid vehicle or the like.
  • the inverter device includes a plurality of semiconductor elements as switching elements. Since the semiconductor element of this inverter device generates heat with power conversion or the like, it must be actively cooled.
  • a heat exchanger for cooling a heating element such as a semiconductor element for example, by arranging a plurality of linearly extending fins in parallel inside the frame forming the outer frame, the flow path of the refrigerant is set. What was formed is known (for example, refer to Patent Document 1).
  • an insulator having electrical insulation may be interposed between the heat exchanger and the semiconductor element.
  • the insulator is welded (for example, brazed) to a wall portion of a frame (for example, an aluminum frame) of a heat exchanger.
  • the coefficient of linear expansion tends to be different between the insulator and the frame. For this reason, at the time of welding (for example, brazing) between the insulator and the wall portion of the frame, when the insulator and the frame wall portion are heated and then cooled, the shrinkage rate (line) between the insulator and the frame wall portion is reduced.
  • the insulator and the frame may be warped (curved) due to the difference in expansion coefficient. This problem occurs not only when the insulator is welded to the wall of the frame, but also between the frame wall and an interposition member having a linear expansion coefficient different from that of the frame (between the frame wall and a heating element such as a semiconductor element). This may happen in the case of welding a member interposed between the two.
  • the present invention has been made in view of the present situation, and is capable of suppressing warpage (curving) of the interposition member and the frame when the interposition member having a different linear expansion coefficient and the wall portion of the frame are welded. It is an object of the present invention to provide an exchanger and a manufacturing method thereof, a semiconductor device in which warpage (curving) of an interposed member and a frame is suppressed, and a manufacturing method thereof.
  • One aspect of the present invention is a heat exchanger that cools a heating element, in which a fin member that includes a plurality of fins that form a flow path of a refrigerant is disposed inside a frame that forms an outer frame.
  • the frame includes a first wall portion to which an interposed member interposed between the frame and the heating element and having a linear expansion coefficient different from that of the frame is welded.
  • 1 wall part is a heat exchanger containing the elastically deformable part which can be elastically deformed in the creeping direction along the arrangement
  • the first wall portion of the frame (the wall portion to which the interposed member interposed between the frame and the heating element is welded) is disposed on the outer surface of the first wall portion.
  • An elastically deformable portion that is elastically deformable in a creeping direction along the arrangement surface is included. Therefore, when the interposition member and the first wall portion of the frame having different linear expansion rates are welded, when the interposition member and the first wall portion are heated and then cooled, the contraction rate of the first wall portion and the interposition member ( The elastically deformable portion of the first wall portion is elastically deformed in the creeping direction according to the difference in linear expansion coefficient. Thereby, the curvature (curvature) which arises by the difference of the contraction rate (linear expansion coefficient) of a 1st wall part and an interposition member can be suppressed.
  • welding includes brazing using a brazing material, soldering using solder, a method of melting and joining a base material (member to be joined), and joining by heating and melting. How to do.
  • the heating element includes all components that generate heat with use, such as a semiconductor element.
  • the elastically deformable portion is a protruding portion that protrudes into the frame, and has a U-shaped cross section that opens outward from the frame, along the arrangement surface.
  • a heat exchanger that is a U-shaped groove-like projecting portion that extends linearly in a direction intersecting the refrigerant flow direction may be used.
  • the protruding portion protruding into the frame constitutes the elastically deformable portion described above.
  • the projecting portion has a U-shaped cross-section opening outward from the frame, and has a U-shaped groove shape extending linearly along the arrangement surface of the first wall portion.
  • the protruding portion has a U-shaped groove extending linearly in a creeping direction along the arrangement surface of the first wall portion (corresponding to a direction orthogonal to the cross-section). It has a shape.
  • the protruding portion having such a shape can be elastically deformed in the creeping direction along the arrangement surface of the first wall portion by expanding and contracting the opening of the U-shaped groove. For this reason, this protrusion part elastically deforms in the creeping direction along the arrangement surface of the first wall part, thereby suppressing warpage caused by a difference in contraction rate (linear expansion coefficient) between the first wall part and the interposition member. can do.
  • the heat-collected fins mainly exchange heat only with the refrigerant in the boundary layer formed around the fins, and heat exchange with the refrigerant flowing in the region other than the boundary layer is performed. Almost never done. As a result, there is a problem that heat cannot be effectively exchanged with the refrigerant flowing inside the heat exchanger, and a high cooling effect cannot be obtained.
  • the projecting portion projecting into the frame extends linearly in a direction intersecting with the flow direction of the refrigerant. For this reason, the refrigerant flowing through the flow path can be agitated by colliding with the protrusions. Thereby, a turbulent flow is generated in the flow of the refrigerant, and the formation of the boundary layer can be effectively suppressed. Thereby, the refrigerant
  • the protrusion may be a heat exchanger formed integrally with the first wall by drawing.
  • the protruding portion is integrally formed with the first wall portion by drawing.
  • the protrusion can be formed easily and at a low cost by integrally forming the protrusion with the first wall by drawing. Therefore, the above-described heat exchanger is inexpensive.
  • the protrusion may be a heat exchanger that extends to the inner wall surfaces of both side walls of the frame in a direction intersecting with the flow direction of the refrigerant.
  • the refrigerant flowing through all the flow paths formed between the fins is surely secured. It can collide with a protrusion part and can stir. Thereby, a turbulent flow can be reliably generated for the refrigerant flowing through all the flow paths, and the formation of the boundary layer can be more effectively suppressed. Thereby, the refrigerant
  • the protrusion may be a heat exchanger that extends linearly in a direction orthogonal to the flow direction of the refrigerant.
  • the maximum flow resistance can be formed in the direction intersecting with the flow direction of the refrigerant by making the protruding portion linearly extend in a direction orthogonal to the flow direction of the refrigerant.
  • the protrusions are juxtaposed at a predetermined interval in the refrigerant flow direction, and the fins are adjacent to the refrigerant flow direction. It is preferable to use a heat exchanger arranged between the two.
  • the refrigerant flowing through the flow path formed between the fins can be appropriately collided with the protrusions and stirred. Thereby, formation of a boundary layer can be suppressed and a high cooling effect can be obtained.
  • the heat exchanger is a heat exchanger that cools the plurality of heating elements arranged side by side in the flow direction of the refrigerant, and among the first wall portion,
  • a portion where the heat generating element having a relatively small amount of heat generation among the plurality of heat generating elements is disposed through the interposition member is a low heat generating portion
  • the flow path with respect to the low heat generating portion of the projecting portion is preferable that the projecting portion located adjacent to the upstream side of the heat exchanger is a heat exchanger having a projecting height that projects into the frame lower than the other projecting portions.
  • the higher the protrusion height of the protrusion the higher the flow resistance of the refrigerant flowing through the flow path.
  • the protruding height of the protruding portion is too high, the pressure loss of the flow path becomes too large, and the flow rate of the refrigerant is greatly reduced, and on the contrary, the cooling effect is reduced.
  • a heating element having a relatively small amount of heat generation among the plurality of heating elements may have a lower degree of cooling than other heating elements (heating elements having a relatively large amount of heat generation).
  • the heat generating element having a relatively small heat generation amount among the plurality of heat generating elements among the plurality of heat generating elements is disposed via the interposition member.
  • frame was made lower than the other protrusion part.
  • the stirring ability of the refrigerant is lower than in the other projecting portions. Therefore, in the channel portion located adjacent to the downstream side of the projecting portion with the lower projecting height, , The effect of suppressing the boundary layer is reduced.
  • the protruding height of the protruding portion located adjacent to the upstream side of the flow path with respect to the low heat generating portion is lowered. That is, a portion of the first wall portion that is located adjacent to the downstream side (downstream side of the flow path) of the protruding portion having a low protruding height is defined as a low heat generating portion. Therefore, the part where the cooling capacity is reduced is limited to the low heat generation part. Thus, by reducing the cooling capacity only in the low heat generating portion, each heat generating element can be appropriately cooled according to the amount of heat generated.
  • the flow path portion including the low heat generation portion in the flow path of the refrigerant has a flow path depth deeper than other flow path portions. It is better to use a heat exchanger.
  • the flow path portion including the low heat generation portion in the flow path of the refrigerant is made deeper than the other flow path portions. ing. Since the flow resistance of the refrigerant flowing through the flow path can be reduced by increasing the flow path depth of the flow path portion including the low heat generating portion, the pressure loss of the flow path can be further reduced.
  • the flow rate portion with a deeper flow channel depth has a lower flow velocity than other flow channel portions, and the cooling capacity tends to decrease.
  • the flow path depth is increased only for the flow path portion including the low heat generation portion.
  • any one of the above heat exchangers, the semiconductor element that is the heating element, and the first wall portion of the frame are welded to the semiconductor element and the first wall portion. And an interposition member located between them.
  • the above-described semiconductor device includes the above-described heat exchanger. Therefore, a semiconductor device in which warpage (curvature) of the interposition member and the frame is suppressed is obtained.
  • Another aspect of the present invention is a heat exchanger that cools a heating element, and a fin member that includes a plurality of fins that form refrigerant flow paths is disposed inside a frame that forms an outer frame.
  • the frame in the molding step, includes a first wall portion to which an intervening member interposed between the frame and the heating element is welded.
  • An assembly step of assembling the heat exchanger by arranging the fin member inside the molded frame, and the molding step is a projecting portion that projects into the frame by drawing.
  • a U-shaped projecting portion having a U-shaped cross section that opens to the outside of the frame and extending linearly along an arrangement surface on which the interposition member is disposed among the outer surfaces of the first wall portion, Molded integrally with the first wall It is a method of manufacturing the exchanger.
  • the projecting portion that projects into the frame is integrally formed with the first wall portion (the wall portion to which the interposition member is welded) by drawing.
  • the protrusion can be formed easily and at low cost by integrally forming the protrusion with the first wall by drawing.
  • the projecting portion has a U-shaped cross section that opens to the outside of the frame, and has a U-shaped groove shape that linearly extends along an arrangement surface on the outer surface of the first wall portion where the interposed member is disposed.
  • the protruding portion having such a shape can be elastically deformed in the creeping direction along the arrangement surface of the first wall portion by expanding and contracting the opening of the U-shaped groove. For this reason, when the interposed member is welded to the first wall portion, the protruding portion follows the arrangement surface of the first wall portion according to the difference in contraction rate (linear expansion coefficient) between the first wall portion and the interposed member. By being elastically deformed in the creeping direction, it is possible to suppress warping caused by a difference in contraction rate (linear expansion coefficient) between the first wall portion and the interposition member.
  • a heat exchanger manufactured by the above heat exchanger manufacturing method, a semiconductor element that is the heating element, the first wall portion of the frame, and the semiconductor element.
  • a method of manufacturing a semiconductor device comprising the interposition member interposed therebetween, the interposition member having a linear expansion coefficient different from that of the frame, wherein the interposition member is disposed on the arrangement surface of the first wall portion of the frame
  • an interposition member having a linear expansion coefficient different from that of the frame is welded to the first wall portion of the frame.
  • the interposition member (insulator) and the wall portion of the frame are welded, when the insulator and the wall portion of the frame are heated and then cooled, the shrinkage rate between the interposition member and the wall portion of the frame ( Due to the difference in linear expansion coefficient, the intervening member and the frame may be warped (curved).
  • the U-shaped protrusion having a U-shaped cross-section opening outward from the frame and extending linearly along the arrangement surface on the outer surface of the first wall portion where the interposed member is disposed.
  • a part frame is integrally formed with the first wall part.
  • FIG. 1 is a perspective view of a semiconductor device according to Example 1.
  • FIG. It is a perspective view of the heat exchanger concerning Example 1.
  • FIG. It is a perspective view of the fin member of the same heat exchanger.
  • FIG. 5 is a cross-sectional view of the first frame member and corresponds to a cross-sectional view taken along the line CC of FIG. 1 is a top view of a semiconductor device according to Example 1.
  • FIG. FIG. 7 is a cross-sectional view of the same semiconductor device, and corresponds to a cross-sectional view taken along the line DD in FIG. 6. It is a figure explaining the formation process (drawing process) concerning Examples 1 and 2.
  • FIG. FIG. 7 is a cross-sectional view of the same semiconductor device, and corresponds to a cross-section
  • FIG. 7 is a perspective view of a semiconductor device according to Example 2.
  • FIG. It is a perspective view of the heat exchanger concerning Example 2.
  • FIG. It is a perspective view of the fin member of the same heat exchanger.
  • FIG. 17 is a cross-sectional view of the first frame member and corresponds to a cross-sectional view taken along the line FF in FIG. 16.
  • 7 is a top view of a semiconductor device according to Example 2.
  • FIG. FIG. 19 is a cross-sectional view of the semiconductor device, and corresponds to a cross-sectional view taken along the line GG in FIG. 18.
  • Example 1 Next, Example 1 of the present invention will be described with reference to the drawings.
  • the semiconductor device 1 includes semiconductor elements 71 to 74 (corresponding to heating elements) and a heat exchanger 10 that cools them.
  • the heat exchanger 10 includes a frame 30 that forms an outer frame, and a fin member 20 that is accommodated in the frame 30.
  • the frame 30 and the fin member 20 are joined by brazing. 1 and 2
  • the A direction indicates the flow direction of the refrigerant (for example, water) flowing inside the heat exchanger 10
  • the B direction indicates the direction orthogonal thereto.
  • the fin member 20 is made of aluminum and includes a base 21 having a rectangular flat plate shape and a plurality of (40 in the first embodiment) fins 22 protruding from one surface of the base 21 as shown in FIG. .
  • the fin 22 has a rectangular flat plate shape. In the longitudinal direction of the base 21 (a direction coinciding with the A direction), four fins 22 are arranged in a line with a certain gap. Further, ten fins 22 are arranged in a line with a certain gap in the short direction of the base 21 (the direction coinciding with the B direction). Between each fin 22, a refrigerant flow path 25 having a predetermined width and guiding the refrigerant in the A direction is formed.
  • the fin member 20 can be integrally formed by, for example, aluminum extrusion.
  • the frame 30 has a first aluminum frame member 31 having a rectangular flat plate shape, and a second aluminum frame member 32 having a U-shaped cross section (see FIG. 2).
  • the first frame member 31 and the second frame member 32 are joined by brazing. Thereby, the frame 30 forms a rectangular cylinder shape.
  • one end in the longitudinal direction (direction matching the A direction) is an inlet 30 a for introducing the refrigerant, and the other end in the longitudinal direction (direction matching the A direction) is the discharge port 30 b for discharging the refrigerant. It has become.
  • the first frame member 31 has flat arrangement surfaces 31g on four sides of the outer surface 31f on which insulating plates 60 (corresponding to interposed members) interposed between the frame 30 and the semiconductor elements 71 to 74 are arranged. (See FIGS. 1, 4 and 5).
  • the insulating plate 60 is made of an electrically insulating member (for example, ceramic such as alumina) and has a rectangular flat plate shape.
  • the four insulating plates 60 arranged on the respective arrangement surfaces 31g are arranged in a line in the longitudinal direction of the first frame member 31 (the direction corresponding to the A direction) with an equal gap therebetween (FIG. 1, (See FIG. 6). These insulating plates 60 are joined to the arrangement surface 31g of the first frame member 31 by brazing.
  • the first frame member 31 corresponds to the first wall portion.
  • the first frame member 31 has a plurality of (four in the first embodiment) protruding portions 31b, 31c, 31d, and 31e protruding into the frame 30 (see FIGS. 2 and 5). These protrusions 31b to 31e all have the same shape. Specifically, as shown in FIGS. 4 and 5, the projecting portions 31b to 31e have a U-shaped cross section that opens outward (upward in FIG. 5) of the frame 30, and along the arrangement surface 31g in the B direction. It has a U-shaped groove shape extending linearly in a direction perpendicular to the refrigerant flow direction (vertical direction in FIG. 4). These protrusions 31b to 31e are integrally formed with the first frame member 31 by drawing.
  • the linear expansion coefficient is different between the insulating plate 60 and the frame 30 (first frame member 31).
  • the coefficient of linear expansion is about 7 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the frame 30 (first frame member 31) made of aluminum is about 23 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the frame 30 (first frame member 31) is three times or more the linear expansion coefficient of the insulating plate 60.
  • the insulating plate and the first frame member are cooled after being heated (for example, brazing) between the insulating plate made of alumina and the frame (first frame member) made of aluminum, the insulating plate Due to the difference in shrinkage rate (linear expansion rate) between the first frame member and the first frame member, the insulator and the frame may be warped (curved).
  • the first frame member 31 is provided with a plurality of (four in the first embodiment) protruding portions 31b, 31c, 31d, and 31e that protrude into the frame 30. It is integrally molded (see FIG. 2). These protrusions 31b to 31e have a U-shaped cross section that opens outward (upward in FIG. 5) of the frame 30, and have a U-shaped groove shape that extends linearly in the B direction along the arrangement surface 31g. .
  • the protrusions 31b to 31e having such a configuration are elastically deformed in the creeping direction (the left-right direction in FIGS. 5 and 11) along the arrangement surface 31g of the first frame member 31 by expanding and contracting the opening of the U-shaped groove. It is possible (see FIG. 11).
  • the projecting portions 31b to 31e cause the contraction rate (line) of the insulating plate 60 and the first frame member 31 to be reduced.
  • the first frame member 31 is elastically deformed in the creeping direction (left-right direction in FIG. 11) along the arrangement surface 31g of the first frame member 31.
  • the curvature (curvature) which arises by the difference of the shrinkage
  • the protruding portions 31b to 31e correspond to elastically deformable portions.
  • the heat-collected fins mainly exchange heat only with the refrigerant in the boundary layer formed around the fins, and heat exchange with the refrigerant flowing in the region other than the boundary layer is performed. Almost never done. As a result, there is a problem that heat cannot be effectively exchanged with the refrigerant flowing inside the heat exchanger, and a high cooling effect cannot be obtained.
  • the protrusions 31b to 31e protruding inside the frame 30 are linear in the direction (B direction) orthogonal to the refrigerant flow direction. It extends (see FIG. 2). Therefore, as shown in FIG. 7, the refrigerant flowing through the flow path 25 can be agitated by colliding with the protruding portions 31b to 31e. Thereby, as shown by the arrow in FIG. 7, a turbulent flow is generated in the flow of the refrigerant, and the formation of the boundary layer can be effectively suppressed. Thereby, the refrigerant
  • the protrusions 31b to 31e are arranged so that the inner wall surfaces 33b and 34b of the both side walls 33 and 34 of the second frame member 32 in the B direction (direction orthogonal to the refrigerant flow direction). (See FIG. 2).
  • the refrigerant flowing through all the flow paths 25 formed between the fins 22 adjacent to each other in the B direction and between the fins 22 and the side walls 33 and 34 is reliably transferred to the protrusions 31b to 31e.
  • a turbulent flow can be reliably generated for the refrigerant flowing through all the flow paths 25, and the formation of the boundary layer can be more effectively suppressed. Therefore, the refrigerant flowing inside the heat exchanger 10 can be more effectively used to obtain a higher cooling effect.
  • the protrusions 31b to 31e are arranged in parallel in the A direction (the refrigerant flow direction) at a predetermined interval, and are adjacent to the A direction (the refrigerant flow direction).
  • a plurality of fins 22 are arranged between the protrusions that fit.
  • the semiconductor elements 71 to 74 generate heat with use. These heats are transmitted to the frame 30 (first frame member 31) through the insulating plate 60, and further to each fin 22 of the fin member 20 housed in the frame 30.
  • a refrigerant for example, water
  • the refrigerant introduced into the frame 30 passes through the flow paths 25 formed between the fins 22 adjacent to each other in the B direction and between the fins 22 and the side walls 33 and 34, as shown in FIG. It flows in the direction.
  • the refrigerant flowing through the flow path 25 collides with the protrusions 31b to 31e and is stirred, and flows in the A direction while generating turbulent flow (see FIG. 7). For this reason, formation of a boundary layer can be suppressed.
  • each fin 22 of the fin member 20 can efficiently exchange heat with the refrigerant flowing through the flow path 25. That is, the heat transferred from the semiconductor elements 71 to 74 to each fin 22 can be efficiently released to the refrigerant flowing through the flow path 25.
  • the high cooling effect in the heat exchanger 10 is as described above.
  • the refrigerant that has absorbed the heat of the fins 22 while flowing through the flow path 25 is discharged to the outside of the frame 30 through the discharge port 30b. In this way, the generated semiconductor elements 71 to 74 can be effectively cooled.
  • an aluminum fin member 20 is prepared.
  • the fin member 20 can be integrally formed by, for example, aluminum extrusion.
  • a base having a rectangular flat plate shape is formed by extrusion molding of aluminum, and a plurality (ten in the first embodiment) extending from one surface of the base and extending in the longitudinal direction of the base (corresponding to the A direction).
  • a long fin member including the long fin is formed.
  • a part of the long fin is cut out at a predetermined interval in the longitudinal direction of the base (corresponding to the A direction).
  • the long fin member is cut into a predetermined length to thereby provide a base 21 having a rectangular flat plate shape, and a plurality (40 in the first embodiment) of fins 22 protruding from one surface of the base 21. 20 (see FIG. 3) is completed.
  • This production method is described in detail in Japanese Patent Application No. 2008-106809 (see FIG. 5).
  • first frame member 31 made of aluminum and a second frame member 32 made of aluminum are prepared.
  • the first frame member 31 was molded as follows using the first restraining die 91, the second restraining die 92, and the drawing die 93 (see FIG. 8).
  • the diaphragm 93 has a rectangular flat plate shape, and its longitudinal direction (the direction perpendicular to the paper surface in FIG. 8 and coincides with the B direction) is slightly shorter than the length in the B direction of the protruding portions 31b to 31e.
  • the first holding die 91 is formed with a through hole 91b through which the drawing die 93 can be inserted.
  • the second suppression die 92 is formed with a through hole 92b having a width dimension (dimension in the left-right direction in FIG. 8) larger than that of the through hole 91b.
  • a rectangular flat aluminum plate 31A is prepared.
  • the aluminum plate 31 ⁇ / b> A is sandwiched and fixed by the first restraining die 91 disposed on the upper surface side of the aluminum plate 31 ⁇ / b> A and the second restraining die 92 disposed on the lower surface side of the aluminum plate 31 ⁇ / b> A.
  • the drawing die 93 is lowered from the upper surface side of the aluminum plate 31A, the drawing die 93 is inserted into the through hole 91b of the first holding die 91, and a part of the aluminum plate 31A is moved by the drawing die 93. Press down.
  • a portion of the aluminum plate 31A that is pressed downward by the drawing die 93 passes through the through hole 92b of the second holding die 92 and is pushed out below the second holding die 92 to form the protruding portion 31b.
  • the protrusions 31c to 31e are formed in the same manner as the protrusion 31b.
  • the protrusions 31b to 31e were formed by drawing.
  • the second frame member 32 can be manufactured by pressing a rectangular flat aluminum plate into a U-shape.
  • the process proceeds to the assembly process, and the fin member 20 is disposed on the inner surface 31h of the first frame member 31, as shown in FIG. Specifically, the fin member 20 is placed on the inner surface 31h of the first frame member 31 so that the protrusions 31c to 31e of the first frame member 31 enter the gap between the fins 22 adjacent to each other in the A direction of the fin member 20. To place. Thereafter, the second frame member 32 is disposed on the inner surface 31 h of the first frame member 31 so as to surround the fin member 20. At this time, the back surface 21b of the base 21 of the fin member 20 and the bottom surface 32b of the second frame member 32 come into contact with each other. Note that a brazing material (melting point 600 ° C.) is applied in advance to the inner surface 31 h of the first frame member 31 and the bottom surface 32 b of the second frame member 32.
  • a brazing material melting point 600 ° C.
  • a combination (combined body) of the fin member 20, the first frame member 31, and the second frame member 32 is accommodated in an electric furnace (not shown).
  • the temperature in the electric furnace is raised to 600 ° C. to melt the brazing material.
  • the combination is taken out from the electric furnace and cooled to cure the brazing material.
  • the fin member 20, the 1st frame member 31, and the 2nd frame member 32 can be joined by brazing.
  • the heat exchanger 10 of Example 1 is completed.
  • four insulating plates 60 are welded to the first frame member 31 of the heat exchanger 10 (in the first embodiment, brazed). Specifically, first, four insulating plates 60 (for example, ceramic plates made of alumina) are placed on the arrangement surface 31g of the first frame member 31 of the heat exchanger 10 with an equal gap therebetween (the protruding portions 31c to 31c). 31e), the first frame member 31 is arranged in a line in the longitudinal direction (the direction matching the A direction) (see FIG. 10). Note that a brazing material (melting point 550 ° C.) is applied to the arrangement surface 31 g of the first frame member 31 after the heat exchanger 10 is completed and before the insulating plate 60 is arranged.
  • a brazing material melting point 550 ° C.
  • the temperature in the electric furnace is raised to 550 ° C. to melt the brazing material.
  • the brazing material joining the heat exchanger 10 does not melt because the melting point is 600 ° C. For this reason, the joining state of the heat exchanger 10 can be maintained reliably.
  • the heat exchanger 10 having the insulating plate 60 is taken out from the electric furnace and cooled to cure the brazing material. Thereby, the four insulating plates 60 can be brazed to the first frame member 31 of the heat exchanger 10.
  • the coefficient of linear expansion differs between the insulating plate 60 and the frame 30 (first frame member 31).
  • the linear expansion coefficient of the frame 30 (first frame member 31) made of aluminum is three times or more the linear expansion coefficient of the insulating plate 60. Therefore, conventionally, when the insulating plate and the first frame member are cooled after being heated (for example, brazing) between the insulating plate made of alumina and the frame (first frame member) made of aluminum, the insulating plate Due to the difference in shrinkage rate (linear expansion rate) between the first frame member and the first frame member, the insulator and the frame may be warped (curved).
  • a plurality of (four in the first embodiment) protruding portions 31b, 31c, 31d, and 31e protruding into the frame 30 are integrally formed on the first frame member 31.
  • These protrusions 31b to 31e have a U-shaped cross section that opens outward (upward in FIG. 5) of the frame 30, and have a U-shaped groove shape that extends linearly in the B direction along the arrangement surface 31g. .
  • the protrusions 31b to 31e having such a configuration are elastically deformed in the creeping direction (the left-right direction in FIGS. 5 and 11) along the arrangement surface 31g of the first frame member 31 by expanding and contracting the opening of the U-shaped groove. It is possible (see FIG. 11).
  • Embodiment 2 of the present invention will be described with reference to the drawings.
  • the semiconductor device 100 of the second embodiment (see FIG. 12) is different from the semiconductor device 1 of the first embodiment (see FIG. 1) only in the heat exchanger, and the others are the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the heat exchanger 110 includes a frame 130 that forms an outer frame, and fin members 120 and 220 accommodated in the frame 130.
  • the frame 130 and the fin members 120 and 220 are joined by brazing.
  • the A direction indicates the flow direction of the refrigerant (for example, water) flowing inside the heat exchanger 110, and the B direction indicates a direction orthogonal to the flow direction.
  • the frame 130 has a first aluminum frame member 131 having a rectangular flat plate shape and a second aluminum frame member 132 having a U-shaped cross section (see FIG. 13).
  • the first frame member 131 and the second frame member 132 are joined by brazing.
  • the 1st frame member 131 has four protrusion parts similarly to the 1st frame member 31 of Example 1 (refer to Drawing 16 and Drawing 17).
  • the shape of two of the four protrusions is different.
  • the first frame member 131 has a protruding height lower than the protruding portions 131b and 131c having the same shape as the protruding portions 31b and 31c of the first embodiment and the protruding portions 31d and 31e of the first embodiment. Projections 131d and 131e differing only in point.
  • These protrusions 131b to 131e are integrally formed with the first frame member 131 by drawing as in the first embodiment.
  • the protrusion height of the protrusions 131b and 131c is L1
  • the protrusion height of the protrusions 131d and 131e is L2.
  • the second frame member 132 is, as compared with the second frame member 32 of the first embodiment, the depth on the downstream side of the flow path 125 extending in the A direction (the refrigerant flow direction) (the vertical dimension in FIG. 13). ) Is different.
  • the bottom surface 132b of the second frame member 132 has a downward staircase shape in the A direction.
  • the flow path depth (the vertical dimension in FIG. 13) of the flow path 125 extending in the A direction (the refrigerant flow direction) is deeper on the downstream side than on the upstream side.
  • the downstream flow path depth H2 is deeper than the upstream flow path depth H1.
  • the flow path 125 is formed between the fin 22 and the fin 22 adjacent in the B direction, between the fin 22 and the side walls 133 and 134, between the fin 222 and the fin 222 adjacent in the B direction, and the fin 222. It is formed between the side walls 133 and 134.
  • the fin member 120 is a member corresponding to one when the fin member 20 of the first embodiment is divided into four equal parts in the A direction.
  • the fin member 120 is made of aluminum, and as shown in FIG. 14, a base 121 having a rectangular flat plate shape and a plurality (ten in the first embodiment) of fins 22 protruding from one surface of the base 121.
  • the fin member 120 is disposed between the protrusion 131b and the protrusion 131c of the first frame member 131 and between the protrusion 131c and the protrusion 131d (see FIG. 13). Thereby, the fin member 120 is disposed on the upstream side of the flow path 125.
  • coolant which has a predetermined width and guides a refrigerant
  • the fin member 120 can be integrally formed by, for example, known extrusion molding.
  • the fin member 220 is made of aluminum, and includes a base 121 having a rectangular flat plate shape and a plurality of (ten in the first embodiment) fins 222 protruding from one surface of the base 121 as shown in FIG. ing.
  • the fin member 220 is disposed between the protrusion 131d and the protrusion 131e of the first frame member 131 and at a position adjacent to the protrusion 131e in the A direction (see FIG. 13).
  • the fin member 220 is disposed on the downstream side of the flow path 125. For this reason, in the fin member 220, compared with the fin member 120, only the protrusion height (dimension concerning an up-down direction in FIG. 15) differs.
  • the protrusion height of the fin 222 is set to the fin height by the dimension (H 2 ⁇ H 1) obtained by subtracting the upstream flow path depth H 1 from the downstream flow path depth H 2 of the flow path 125. It is made higher than the fin 22 of the member 120.
  • coolant flow path 125 which has a predetermined width and guides a refrigerant
  • the fin member 220 can be integrally formed by, for example, known extrusion molding.
  • the flow resistance of the refrigerant flowing through the flow path can be increased as the protruding height of the protruding portion of the first frame member is increased.
  • the capability to stir the refrigerant flowing through the flow path is increased, the effect of suppressing the formation of the boundary layer can be enhanced.
  • the protruding height of the protruding portion is too high, the pressure loss of the flow path becomes too large, and the flow rate of the refrigerant is greatly reduced, and on the contrary, the cooling effect is reduced.
  • each semiconductor element may be cooled according to the heat generation amount. Accordingly, a semiconductor element that generates a relatively small amount of heat among a plurality of semiconductor elements may have a lower degree of cooling than other semiconductor elements.
  • the semiconductor elements 73 and 74 among the semiconductor elements 71 to 74 generate less heat than the semiconductor elements 71 and 72. Therefore, in the heat exchanger 110 of the second embodiment, as shown in FIG. 19, the protrusions 131b to 131e are adjacent to the low heat generation part 131k upstream of the flow path 125 (on the right side in FIG. 19).
  • the protruding height L2 of the protruding portions 131d and 131e is set lower than the protruding height L1 of the other protruding portions 131b and 131c.
  • the low heat generating portion 131k is a portion of the first frame member 131 where the semiconductor elements 73 and 74 that generate a relatively small amount of heat are disposed via the insulating plate 60.
  • the pressure loss of the flow path 125 can be suppressed by reducing the protruding height of some of the protruding portions 131d and 131e.
  • the refrigerant stirring ability is lower than that of the other protrusions 131b and 131c.
  • the protrusion heights of the protrusions 131d and 131e located adjacent to the low heat generation part 131k on the upstream side (right side in FIG. 19) of the flow path 125 are reduced. That is, a portion of the first frame member 131 that is located adjacent to the downstream side (left side in FIG.
  • the flow path portions 125d and 125e configured to include the low heat generating portion 131k in the refrigerant flow path 125 are replaced with other flow path portions.
  • the flow path depth is deepened.
  • the high heat generating portion 131j is a portion of the first frame member 131 where the semiconductor elements 71 and 72 that generate a relatively large amount of heat are disposed via the insulating plate 60.
  • the flow path depth is increased only for the flow path portions 125d and 125e including the low heat generating portion 131k.
  • the semiconductor elements 71 to 74 can be appropriately cooled according to the respective heat generation amounts.
  • the semiconductor elements 71 to 74 generate heat with use. These heats are transmitted to the frame 130 (first frame member 131) through the insulating plate 60, and further to the fins 22 of the fin member 120 and the fins 222 of the fin member 220 housed in the frame 130. .
  • a refrigerant for example, water
  • the refrigerant introduced into the frame 130 flows in the A direction through the flow path 125.
  • the refrigerant flowing in the flow path 125 collides with the protrusions 131b to 131e and is stirred, and flows in the A direction while generating turbulent flow (see FIG. 19). Thereby, formation of a boundary layer can be suppressed.
  • the fin 22 of the fin member 120 and the fin 222 of the fin member 220 can efficiently exchange heat with the refrigerant flowing through the flow path 125. That is, the heat transferred from the semiconductor elements 71 to 74 to the fins 22 and 222 can be efficiently released to the refrigerant flowing through the flow path 125.
  • the refrigerant that has absorbed the heat of the fins 22 and 222 while flowing through the flow path 125 is discharged to the outside of the frame 130 through the discharge port 130b. In this way, the generated semiconductor elements 71 to 74 can be effectively cooled.
  • the protruding heights of the protruding portions 131d and 131e are lowered and the flow path depths of the flow path portions 125d and 125e are increased.
  • the pressure loss of the flow path 125 can be reduced effectively. For this reason, a decrease in the flow rate of the refrigerant can be suppressed, so that the semiconductor elements 71 to 74 that have generated heat can be appropriately cooled.
  • first frame member 131 made of aluminum and a second frame member 132 made of aluminum are prepared.
  • the first frame member 131 was molded in the same manner as in Example 1 by using the first restraining die 91, the second restraining die 92, and the drawing die 93 (see FIG. 8).
  • the amount of lowering (drawing amount) of the drawing die 93 is made smaller than in the drawing processing of the protruding portions 131b and 131c.
  • the second frame member 132 can be manufactured by pressing a rectangular flat aluminum plate.
  • the process proceeds to the assembling process, and the fin members 120 and 220, the first frame member 131, and the second frame member 132 are combined as shown in FIG.
  • a brazing material (melting point 600 ° C.) is applied in advance to the inner surface 131 h of the first frame member 131 and the bottom surface 132 b of the second frame member 132.
  • the combined body is cooled to cure the brazing material.
  • the fin members 120 and 220, the first frame member 131, and the second frame member 132 can be joined by brazing. In this way, the heat exchanger 110 of the second embodiment is completed.
  • the process proceeds to the welding process, and four insulating plates 60 are brazed to the first frame member 131 of the heat exchanger 110 in the same procedure as in the first embodiment. Specifically, first, four insulating plates 60 are arranged on the arrangement surface 131g (see FIGS. 16 and 17) of the first frame member 131. Note that a brazing material (melting point 550 ° C.) is applied to the arrangement surface 131 g of the first frame member 131 after the heat exchanger 110 is completed and before the insulating plate 60 is arranged. Subsequently, after accommodating these in an electric furnace (not shown), the temperature in the electric furnace is raised to 550 ° C. to melt the brazing material.
  • a brazing material melting point 550 ° C.
  • the melting point of the brazing material joining the heat exchanger 110 is 600 ° C., it does not melt. For this reason, the joining state of the heat exchanger 110 can be maintained reliably. Thereafter, the heat exchanger 110 having the insulating plate 60 is taken out from the electric furnace and cooled to cure the brazing material. Thereby, the four insulating plates 60 can be brazed to the first frame member 131 of the heat exchanger 110.
  • the linear expansion coefficient is different between the insulating plate 60 and the frame 130 (first frame member 131).
  • the linear expansion coefficient of the aluminum frame 130 (first frame member 131) is three times or more the linear expansion coefficient of the insulating plate 60. Therefore, conventionally, when the insulating plate and the first frame member are cooled after being heated (for example, brazing) between the insulating plate made of alumina and the frame (first frame member) made of aluminum, the insulating plate Due to the difference in shrinkage rate (linear expansion rate) between the first frame member and the first frame member, the insulator and the frame may be warped (curved).
  • a plurality of (four in the first embodiment) protruding portions 131b, 131c, 131d, and 131e that protrude into the frame 130 are integrally formed on the first frame member 131.
  • These protrusions 131b to 131e have a U-shaped cross section that opens outward (upward in FIG. 17) of the frame 130, and have a U-shaped groove shape extending linearly in the B direction along the arrangement surface 131g. .
  • the protrusions 131b to 131e having such a configuration are elastically deformed in the creeping direction (the left-right direction in FIGS. 11 and 17) along the arrangement surface 131g of the first frame member 131 as the opening of the U-shaped groove expands and contracts. It is possible (see FIG. 11).
  • the protruding portions 131b to 131e when the insulating plate 60 and the first frame member 131 are welded (in the present embodiment 2, brazing), when the insulating plate 60 and the first frame member 131 are heated and then cooled, the protruding portions 131b to 131e. Is elastically deformed in the creeping direction (left-right direction in FIG. 11) along the arrangement surface 131g of the first frame member 131 according to the difference in shrinkage rate (linear expansion rate) between the insulating plate 60 and the first frame member 131. (Shrink). Thereby, the curvature (curvature) which arises by the difference of the shrinkage
  • Example 1 after the fin member 20, the first frame member 31, and the second frame member 32 are joined by brazing to complete the heat exchanger 10, the first frame of the heat exchanger 10 is used.
  • An insulating plate 60 is brazed to the member 31.
  • the fin member 20, the first frame member 31, the second frame member 32, and the insulating plate 60 may be brazed simultaneously. In this case, all brazing materials having the same melting point (for example, 600 ° C.) can be used.
  • the insulating plate 60 is brazed to the first frame member 31 of the heat exchanger 10 at the same time as the heat exchanger 10 is completed. The same can be said for Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 線膨張率が異なる介在部材とフレームの壁部とを溶接したときの介在部材及びフレームの反り(湾曲)を抑制することができる熱交換器及びその製造方法、並びに、介在部材及びフレームの反り(湾曲)が抑制された半導体装置及びその製造方法を提供する。熱交換器10では、外枠を形成するフレーム30の内部に、冷媒の流路25を形成する複数のフィン22を備えたフィン部材20が配置されている。フレーム30は、フレーム30と発熱体(半導体素子71~74)との間に介在する絶縁板60(介在部材)が溶接される第1フレーム部材31(第1壁部)を有している。絶縁板60(介在部材)は、フレーム30と線膨張率が異なる。第1フレーム部材31は、その外面31fのうち絶縁板60(介在部材)が配置される配置面31gに沿った沿面方向に弾性変形可能な突出部31b~31e(弾性変形可能部)を含む。

Description

熱交換器、半導体装置、及び、これらの製造方法
 本発明は、熱交換器内部を流れる冷媒により半導体素子等の発熱体を冷却する熱交換器、この熱交換器と半導体素子を有する半導体装置、及びこれらの製造方法に関する。
 ハイブリッド自動車等の電源として、電力変換機能を有するインバータ装置が用いられている。インバータ装置は、スイッチング素子として複数の半導体素子を備えている。このインバータ装置の半導体素子は、電力変換等に伴って発熱するため、積極的に冷却される必要がある。
 ここで、半導体素子等の発熱体を冷却する熱交換器としては、例えば、外枠を形成するフレームの内部に、直線状に延びる複数のフィンを平行に配置することにより、冷媒の流路を形成したものが知られている(例えば、特許文献1参照)。
特開2007-335588号公報
 ところで、熱交換器によって半導体素子を冷却する場合、熱交換器と半導体素子との間を電気的に絶縁するのが望ましい。このため、熱交換器と半導体素子との間に電気絶縁性を有する絶縁体を介在させることがある。この絶縁体は、例えば、熱交換器のフレーム(例えば、アルミニウム製のフレーム)の壁部に、溶接(例えばロウ付け)される。
 ところが、絶縁体とフレームとでは、線膨張率が異なる傾向にある。このため、絶縁体とフレームの壁部との溶接(例えばロウ付け)時に、絶縁体及びフレームの壁部が加熱された後冷却されたとき、絶縁体とフレームの壁部との収縮率(線膨張率)の差が原因で、絶縁体及びフレームに反りが発生する(湾曲する)ことがあった。この問題は、絶縁体をフレームの壁部に溶接する場合のみならず、フレームの壁部に、フレームとは線膨張率の異なる介在部材(フレームの壁部と半導体素子等の発熱体との間に介在させる部材)を溶接する場合において起こりうることであった。
 本発明は、かかる現状に鑑みてなされたものであって、線膨張率が異なる介在部材とフレームの壁部とを溶接したときの介在部材及びフレームの反り(湾曲)を抑制することができる熱交換器及びその製造方法、並びに、介在部材及びフレームの反り(湾曲)が抑制された半導体装置及びその製造方法を提供することを目的とする。
 本発明の一態様は、発熱体を冷却する熱交換器であって、外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器において、上記フレームは、当該フレームと上記発熱体との間に介在する介在部材であって当該フレームと線膨張率が異なる介在部材が溶接される第1壁部を有し、上記フレームの上記第1壁部は、当該第1壁部の外面のうち上記介在部材が配置される配置面に沿った沿面方向に弾性変形可能な弾性変形可能部を含む熱交換器である。
 上述の熱交換器では、フレームの第1壁部(フレームと発熱体との間に介在する介在部材が溶接される壁部)が、当該第1壁部の外面のうち介在部材が配置される配置面に沿った沿面方向に弾性変形可能な弾性変形可能部を含んでいる。このため、線膨張率が異なる介在部材とフレームの第1壁部との溶接時に、介在部材及び第1壁部が加熱された後冷却されたとき、第1壁部と介在部材の収縮率(線膨張率)の差に応じて、第1壁部の弾性変形可能部が沿面方向に弾性変形する。これにより、第1壁部と介在部材との収縮率(線膨張率)の差によって生じる反り(湾曲)を抑制することができる。
 なお、本願において、溶接とは、ロウ材を用いたロウ付け、ハンダを用いたハンダ付け、母材(接合対象部材)を溶融させて接合する方法等を含むものであり、加熱溶融して接合する方法をいう。
 また、発熱体は、半導体素子など、使用に伴って発熱する部品全般を含むものである。
 さらに、上記の熱交換器であって、前記弾性変形可能部は、前記フレームの内部に突出する突出部であって、前記フレームの外方に開口する断面U字状で、前記配置面に沿って前記冷媒の流れ方向と交差する方向に直線状に延びるU字溝形状の突出部である熱交換器とすると良い。
 上述の熱交換器では、フレームの内部に突出する突出部が、前述の弾性変形可能部を構成している。この突出部は、フレームの外方に開口する断面U字状で、第1壁部の配置面に沿って直線状に延びるU字溝形状をなしている。換言すれば、突出部は、フレームの外方に開口するU字状の断面が第1壁部の配置面に沿う沿面方向(断面に直交する方向に一致する)に直線状に延びるU字溝形状をなしている。このような形態の突出部は、U字溝の開口が拡縮することで、第1壁部の配置面に沿った沿面方向に弾性変形可能である。このため、この突出部が、第1壁部の配置面に沿った沿面方向に弾性変形することで、第1壁部と介在部材との収縮率(線膨張率)の差によって生じる反りを抑制することができる。
 ところで、外枠を形成するフレームの内部に冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器について、フィン間を流れる冷媒の速度分布を調査したところ、フィンに近づくにつれて冷媒の速度が遅くなる傾向にあった。これは、冷媒の粘性の影響により、冷媒がフィンに引っ張られるためである。これにより、フィン付近には、他の領域に比べて冷媒の流れる速度が遅いか又は冷媒がほとんど停止した領域(以下、これを境界層ともいう)が形成される。この境界層が形成されると、集熱したフィンは、主にフィン周辺に形成された境界層内の冷媒のみと熱交換することになり、境界層以外の領域を流れる冷媒との熱交換がほとんど行われなくなる。その結果、熱交換器の内部を流れる冷媒と有効に熱交換が行われず、高い冷却効果を得ることができないという問題があった。
 これに対し、上述の熱交換器では、フレームの内部に突出する突出部が、冷媒の流れ方向と交差する方向に直線状に延びている。このため、流路を流れる冷媒を、この突出部に衝突させて攪拌することができる。これにより、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 さらに、上記の熱交換器であって、前記突出部は、絞り加工により前記第1壁部と一体成形されてなる熱交換器とすると良い。
 上述の熱交換器では、突出部が、絞り加工により第1壁部と一体成形されている。絞り加工により、突出部を第1壁部と一体成形することで、突出部を容易且つ低コストに形成することができる。従って、上述の熱交換器は、安価となる。
 さらに、上記いずれかの熱交換器であって、前記突出部は、前記冷媒の流れ方向と交差する方向における前記フレームの両側壁の内壁面まで延設されている熱交換器とすると良い。
 フレームの内部に突出する突出部を、冷媒の流れ方向と交差する方向におけるフレームの両側壁の内壁面まで延設することにより、各フィン間に形成される全ての流路を流れる冷媒を、確実に突出部に衝突させて攪拌することができる。これにより、すべての流路を流れる冷媒について確実に乱流を発生させて、境界層の形成をより効果的に抑制することができる。これにより、熱交換器の内部を流れる冷媒をさらに有効に活用して、より高い冷却効果を得ることができる。
 さらに、上記いずれかの熱交換器であって、前記突出部は、前記冷媒の流れ方向と直交する方向に直線状に延びる熱交換器とすると良い。
 突出部を、冷媒の流れ方向と直交する方向に直線状に延びる形態とすることで、冷媒の流れ方向と交差する方向の中で最大の流れ抵抗を形成することができる。これにより、最も効果的に乱流を発生させて、冷却効果をより確実に高めることができる。
 さらに、上記いずれかの熱交換器であって、前記突出部は、前記冷媒の流れ方向に所定間隔をおいて並設されており、前記フィンは、上記冷媒の流れ方向に隣り合う上記突出部の間に配置されてなる熱交換器とすると良い。
 フィンを、冷媒の流れ方向に隣り合う突出部の間に配置することで、各フィン間に形成される流路を流れる冷媒を、適切に突出部に衝突させて攪拌することができる。これにより、境界層の形成を抑制して、高い冷却効果を得ることができる。
 さらに、上記の熱交換器であって、前記熱交換器は、前記冷媒の流れ方向に並んで配置される複数の前記発熱体を冷却する熱交換器であり、前記第1壁部のうち、上記複数の発熱体の中で相対的に発熱量が少ない発熱体が前記介在部材を介して配置される部分を低発熱部とすると、前記突出部のうち、上記低発熱部に対し前記流路の上流側に隣り合って位置する突出部は、他の突出部に比べて前記フレームの内部に突出する突出高さが低い熱交換器とすると良い。
 突出部の突出高さを高くするほど、流路を流れる冷媒の流れ抵抗を高めることができる。これにより、流路を流れる冷媒を攪拌する能力が高まるので、境界層の形成を抑制する効果を高めることができる。しかしながら、突出部の突出高さを高くし過ぎると、流路の圧力損失が大きくなり過ぎて、冷媒の流量が大きく低下し、却って、冷却効果を低下させることになる。
 ところで、発熱量の異なる複数の発熱体(半導体素子など)を冷却する場合、全ての発熱体を一律に冷却する必要はなく、発熱量に応じて各々の発熱体を冷却すれば良い。従って、複数の発熱体の中で相対的に発熱量が少ない発熱体は、他の発熱体(相対的に発熱量が多い発熱体)よりも、冷却の程度を低くしても構わない。
 そこで、上述の熱交換器では、突出部のうち、低発熱部(第1壁部のうち、複数の発熱体の中で相対的に発熱量が少ない発熱体が介在部材を介して配置される部分)に対し流路の上流側に隣り合って位置する突出部について、フレームの内部に突出する突出高さを、他の突出部よりも低くした。このように、一部の突出部の突出高さを低くすることで、流路の圧力損失を抑制することができる。
 一方、突出高さを低くした突出部では、他の突出部に比べて、冷媒の攪拌能力が低下するので、突出高さを低くした突出部の下流側に隣り合って位置する流路部分では、境界層の抑制効果が低下する。しかしながら、上述の熱交換器では、低発熱部に対し流路の上流側に隣り合って位置する突出部について、突出高さを低くしている。すなわち、第1壁部のうち、突出高さを低くした突出部の下流側(流路の下流側)に隣り合って位置する部分を、低発熱部としている。従って、冷却能力が低下する部位は、低発熱部に限られる。このように、低発熱部においてのみ冷却能力を低下させることで、各々の発熱体を発熱量に応じて適切に冷却することができる。
 さらに、上記の熱交換器であって、前記冷媒の流路のうち前記低発熱部を含んで構成される流路部分は、他の流路部分に比べて、流路深さが深くされてなる熱交換器とすると良い。
 上述の熱交換器では、冷媒の流路のうち低発熱部を含んで構成される流路部分を、他の流路部分に比べて、流路深さ(流路の深さ)を深くしている。低発熱部を含んで構成される流路部分の流路深さを深くした分、流路を流れる冷媒の流れ抵抗を低減できるので、流路の圧力損失をより一層低減することができる。
 なお、流路深さを深くした流路部分では、他の流路部分に比べて流速が小さくなり、冷却能力が低下する傾向にある。しかしながら、上述の熱交換器では、低発熱部を含んで構成される流路部分についてのみ、流路深さを深くしている。このように、低発熱部においてのみ冷却能力を低下させることで、各々の発熱体を発熱量に応じて適切に冷却することができる。
 本発明の他の態様は、上記いずれかの熱交換器と、前記発熱体である半導体素子と、前記フレームの前記第1壁部に溶接されて、上記半導体素子と上記第1壁部との間に位置する前記介在部材と、を備える半導体装置である。
 上述の半導体装置は、前述の熱交換器を備えている。従って、介在部材及びフレームの反り(湾曲)が抑制された半導体装置となる。
 また、本発明の他の態様は、発熱体を冷却する熱交換器であって、外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器の製造方法において、上記フレームであって、当該フレームと上記発熱体との間に介在する介在部材が溶接される第1壁部を有するフレームを成形する成形工程と、上記成形工程で成形された上記フレームの内部に上記フィン部材を配置して、上記熱交換器を組み立てる組立工程と、を有し、上記成形工程は、絞り加工により、上記フレームの内部に突出する突出部であって、上記フレームの外方に開口する断面U字状で、上記第1壁部の外面のうち上記介在部材が配置される配置面に沿って直線状に延びるU字溝形状の突出部を、上記第1壁部と一体成形する熱交換器の製造方法である。
 上述の熱交換器の製造方法では、フレームを成形する成形工程において、絞り加工により、フレームの内部に突出する突出部を、第1壁部(介在部材が溶接される壁部)と一体成形する。このように、絞り加工により、突出部を第1壁部と一体成形することで、突出部を容易且つ低コストに形成することができる。
 しかも、この突出部を、フレームの外方に開口する断面U字状で、第1壁部の外面のうち介在部材が配置される配置面に沿って直線状に延びるU字溝形状とする。このような形態の突出部は、U字溝の開口が拡縮することで、第1壁部の配置面に沿った沿面方向に弾性変形可能である。このため、介在部材を第1壁部に溶接したとき、この突出部が、第1壁部と介在部材の収縮率(線膨張率)の差に応じて、第1壁部の配置面に沿った沿面方向に弾性変形することで、第1壁部と介在部材との収縮率(線膨張率)の差によって生じる反りを抑制することができる。
 また、本発明の他の態様は、上記の熱交換器の製造方法により製造された熱交換器と、前記発熱体である半導体素子と、前記フレームの前記第1壁部と上記半導体素子との間に介在する前記介在部材であって、上記フレームと線膨張率が異なる介在部材と、を備える半導体装置の製造方法であって、上記介在部材を上記フレームの上記第1壁部の前記配置面上に配置して、上記介在部材を上記第1壁部に溶接する溶接工程を備える半導体装置の製造方法である。
 上述の半導体装置の製造方法では、溶接工程において、フレームと線膨張率が異なる介在部材を、フレームの第1壁部に溶接する。従来の製法では、介在部材(絶縁体)とフレームの壁部との溶接時に、絶縁体及びフレームの壁部が加熱された後冷却されたとき、介在部材とフレームの壁部との収縮率(線膨張率)の差が原因で、介在部材及びフレームに反りが発生する(湾曲する)ことがあった。
 しかしながら、上述の製造方法では、フレームの外方に開口する断面U字状で、第1壁部の外面のうち介在部材が配置される配置面に沿って直線状に延びるU字溝形状の突出部を、第1壁部と一体成形したフレームを用いている。このため、前述のように、介在部材を第1壁部に溶接したとき、上記突出部が、第1壁部と介在部材の収縮率(線膨張率)の差に応じて、第1壁部の配置面に沿った沿面方向に弾性変形することで、第1壁部と介在部材との収縮率(線膨張率)の差によって生じる反りを抑制することができる。
 なお、介在部材と第1壁部との溶接方法としては、例えば、ロウ材を用いたロウ付けを挙げることができる。
実施例1にかかる半導体装置の斜視図である。 実施例1にかかる熱交換器の斜視図である。 同熱交換器のフィン部材の斜視図である。 同熱交換器の第1フレーム部材の平面図である。 第1フレーム部材の断面図であり、図4のC-C矢視断面図に相当する。 実施例1にかかる半導体装置の上面図である。 同半導体装置の断面図であり、図6のD-D矢視断面図に相当する。 実施例1,2にかかる成形工程(絞り加工)を説明する図である。 実施例1にかかる組立工程を説明する図である。 実施例1にかかる溶接工程を説明する図である。 同溶接工程における突出部の作用を説明する図である。 実施例2にかかる半導体装置の斜視図である。 実施例2にかかる熱交換器の斜視図である。 同熱交換器のフィン部材の斜視図である。 同熱交換器のフィン部材の斜視図である。 同熱交換器の第1フレーム部材の平面図である。 第1フレーム部材の断面図であり、図16のF-F矢視断面図に相当する。 実施例2にかかる半導体装置の上面図である。 同半導体装置の断面図であり、図18のG-G矢視断面図に相当する。
(実施例1)
 次に、本発明の実施例1について、図面を参照しつつ説明する。
 本実施例1の半導体装置1は、図1に示すように、半導体素子71~74(発熱体に相当する)と、これらを冷却する熱交換器10とを有している。
 熱交換器10は、図2に示すように、外枠を形成するフレーム30と、フレーム30内に収容されたフィン部材20とを備えている。フレーム30とフィン部材20とは、ロウ付けにより接合されている。
 なお、図1及び図2において、A方向は、熱交換器10の内部を流れる冷媒(例えば、水)の流れ方向を示し、B方向はこれに直交する方向を示している。
 フィン部材20は、アルミニウムからなり、図3に示すように、矩形平板状をなすベース21と、ベース21の一面から突出する複数(本実施例1では40個)のフィン22とを備えている。フィン22は、矩形平板状をなしている。ベース21の長手方向(A方向に一致する方向)には、4個のフィン22が、一定の間隙をあけて一列に並べられている。さらに、ベース21の短手方向(B方向に一致する方向)には、10個のフィン22が、一定の間隙をあけて一列に並べられている。各フィン22の間には、所定の幅を有し、A方向へと冷媒を導く冷媒の流路25が形成される。このフィン部材20は、例えば、アルミニウムの押出成形により一体成形することができる。
 フレーム30は、矩形平板状をなすアルミニウム製の第1フレーム部材31と、断面コ字状をなすアルミニウム製の第2フレーム部材32とを有している(図2参照)。第1フレーム部材31と第2フレーム部材32とは、ロウ付けにより接合されている。これにより、フレーム30は、矩形筒状をなす。このフレーム30では、長手方向(A方向に一致する方向)の一端が、冷媒を導入する導入口30aとなり、長手方向(A方向に一致する方向)の他端が、冷媒を排出する排出口30bとなっている。
 第1フレーム部材31は、その外面31fの4箇所に、フレーム30と半導体素子71~74との間に介在する絶縁板60(介在部材に相当する)が配置される平坦な配置面31gを有している(図1、図4、図5参照)。絶縁板60は、電気絶縁性を有する部材(例えば、アルミナ等のセラミック)からなり、矩形平板状をなしている。各々の配置面31g上に配置された4個の絶縁板60は、等しい間隙をあけて、第1フレーム部材31の長手方向(A方向に一致する方向)に一列に並んでいる(図1、図6参照)。これらの絶縁板60は、ロウ付けにより、第1フレーム部材31の配置面31gに接合されている。なお、本実施例1では、第1フレーム部材31が第1壁部に相当する。
 さらに、第1フレーム部材31は、フレーム30の内部に突出する複数(本実施例1では4個)の突出部31b,31c,31d,31eを有している(図2、図5参照)。これらの突出部31b~31eは、いずれも同一形状とされている。具体的には、突出部31b~31eは、図4及び図5に示すように、フレーム30の外方(図5において上方)に開口する断面U字状で、配置面31gに沿ってB方向(冷媒の流れ方向と直交する方向、図4において上下方向)に直線状に延びるU字溝形状をなしている。これらの突出部31b~31eは、絞り加工により、第1フレーム部材31と一体成形されている。
 なお、第1フレーム部材31では、突出部31bと突出部31cとの間、突出部31cと突出部31dとの間、突出部31dと突出部31eとの間、及び突出部31eに対しA方向に隣り合う位置に、配置面31gが存在する。
 ところで、絶縁板60とフレーム30(第1フレーム部材31)とでは、線膨張率が異なる。具体的には、例えば、アルミナからなる絶縁板60を用いた場合、その線膨張率は約7×10-6/℃である。一方、アルミニウムからなるフレーム30(第1フレーム部材31)の線膨張率は、約23×10-6/℃である。この例の場合、フレーム30(第1フレーム部材31)の線膨張率は、絶縁板60の線膨張率の3倍以上となる。
 このため、従来、アルミナからなる絶縁板とアルミニウムからなるフレーム(第1フレーム部材)との溶接(例えばロウ付け)時に、絶縁板及び第1フレーム部材が加熱された後冷却されたとき、絶縁板と第1フレーム部材との収縮率(線膨張率)の差が原因で、絶縁体及びフレームに反りが発生する(湾曲する)ことがあった。
 これに対し、本実施例1では、前述のように、第1フレーム部材31に、フレーム30の内部に突出する複数(本実施例1では4個)の突出部31b,31c,31d,31eを一体成形している(図2参照)。これらの突出部31b~31eは、フレーム30の外方(図5において上方)に開口する断面U字状で、配置面31gに沿ってB方向に直線状に延びるU字溝形状をなしている。このような形態の突出部31b~31eは、U字溝の開口が拡縮することで、第1フレーム部材31の配置面31gに沿った沿面方向(図5、図11において左右方向)に弾性変形可能である(図11参照)。
 従って、各々の絶縁板60を第1フレーム部材31に溶接(本実施例1では、ロウ付け)したとき、突出部31b~31eが、絶縁板60と第1フレーム部材31との収縮率(線膨張率)の差に応じて、第1フレーム部材31の配置面31gに沿った沿面方向(図11において左右方向)に弾性変形する。これにより、絶縁板60と第1フレーム部材31との収縮率(線膨張率)の差によって生じる反り(湾曲)を抑制することができる。なお、本実施例1では、突出部31b~31eが、弾性変形可能部に相当する。
 ところで、外枠を形成するフレームの内部に冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器について、フィン間を流れる冷媒の速度分布を調査したところ、フィンに近づくにつれて冷媒の速度が遅くなる傾向にあった。これは、冷媒の粘性の影響により、冷媒がフィンに引っ張られるためである。これにより、フィン付近には、他の領域に比べて冷媒の流れる速度が遅いか又は冷媒がほとんど停止した領域(以下、これを境界層ともいう)が形成される。この境界層が形成されると、集熱したフィンは、主にフィン周辺に形成された境界層内の冷媒のみと熱交換することになり、境界層以外の領域を流れる冷媒との熱交換がほとんど行われなくなる。その結果、熱交換器の内部を流れる冷媒と有効に熱交換が行われず、高い冷却効果を得ることができないという問題があった。
 これに対し、本実施例1の熱交換器10では、前述のように、フレーム30の内部に突出する突出部31b~31eが、冷媒の流れ方向と直交する方向(B方向)に直線状に延びている(図2参照)。このため、図7に示すように、流路25を流れる冷媒を、突出部31b~31eに衝突させて攪拌することができる。これにより、図7に矢印で示すように、冷媒の流れに乱流を発生させて、境界層の形成を効果的に抑制することができる。これにより、熱交換器10の内部を流れる冷媒を有効に活用して、高い冷却効果を得ることができる。
 さらに、本実施例1の熱交換器10では、突出部31b~31eを、B方向(冷媒の流れ方向と直交する方向)における第2フレーム部材32の両側壁33,34の内壁面33b,34bまで延設している(図2参照)。これにより、B方向に隣り合うフィン22とフィン22との間、及びフィン22と側壁33,34との間に形成される全ての流路25を流れる冷媒を、確実に突出部31b~31eに衝突させて攪拌することができる。これにより、すべての流路25を流れる冷媒について確実に乱流を発生させて、境界層の形成をより効果的に抑制することができる。従って、熱交換器10の内部を流れる冷媒をさらに有効に活用して、より高い冷却効果を得ることができる。
 さらに、本実施例1の熱交換器10では、突出部31b~31eが、A方向(冷媒の流れ方向)に所定間隔をおいて並設されており、A方向(冷媒の流れ方向)に隣り合う突出部の間に、複数のフィン22が配置されている。フィン22を、冷媒の流れ方向(A方向)に隣り合う突出部の間に配置することで、各フィン22間に形成される流路25を流れる冷媒を、適切に突出部に衝突させて攪拌することができる。これにより、境界層の形成を抑制して、高い冷却効果を得ることができる。
 ここで、本実施例1にかかる半導体装置1の熱交換器10による冷却作用について説明する。半導体素子71~74は、使用に伴って発熱する。これらの熱は、絶縁板60を通じて、フレーム30(第1フレーム部材31)に伝えられ、さらに、フレーム30の内部に収納されているフィン部材20の各々のフィン22に伝えられる。
 フレーム30の内部には、図1に矢印で示すように、導入口30aを通じて冷媒(例えば、水)が連続的に導入される。フレーム30の内部に導入された冷媒は、前述のように、B方向に隣り合うフィン22とフィン22との間及びフィン22と側壁33,34との間に形成される流路25を、A方向に流れてゆく。流路25を流れる冷媒は、前述のように、突出部31b~31eに衝突して攪拌され、乱流を発生させながらA方向に流れてゆく(図7参照)。このため、境界層の形成を抑制することができる。
 これにより、フィン部材20の各々のフィン22は、流路25を流れる冷媒と効率良く熱交換を行うことができる。すなわち、半導体素子71~74から各々のフィン22に伝えられた熱を、効率良く、流路25を流れる冷媒に放出することができる。熱交換器10における高い冷却効果については、前述の通りである。流路25を流れつつフィン22の熱を吸収した冷媒は、排出口30bを通じてフレーム30の外部に排出される。このようにして、発熱した半導体素子71~74を、効果的に冷却することができる。
 次に、本実施例1にかかる半導体装置1の製造方法について説明する。
 まず、アルミニウム製のフィン部材20を用意する。フィン部材20は、例えば、アルミニウムの押出成形により一体成形することができる。具体的には、まず、アルミニウムの押出成形により、矩形平板状をなすベースと、ベースの一面から突出してベースの長手方向(A方向に一致する)に延びる複数(本実施例1では10個)のロングフィンとを備えるロングフィン部材を成形する。その直後、未だ、ロングフィン部材が硬化する前(熱を持った柔らかい状態のとき)に、ベースの長手方向(A方向に一致する)について所定の間隔でロングフィンの一部を切除する。その後、ロングフィン部材を所定の長さに切断することで、矩形平板状をなすベース21と、ベース21の一面から突出する複数(本実施例1では40個)のフィン22とを備えるフィン部材20(図3参照)が完成する。なお、この製法は、特願2008-106809(図5参照)に詳述されている。
 また、アルミニウム製の第1フレーム部材31と、アルミニウム製の第2フレーム部材32とを用意する。
 第1フレーム部材31は、成形工程において、第1抑え型91、第2抑え型92、及び絞り型93(図8参照)を用いて、次のようにして成形した。なお、絞り型93は、矩形平板状をなし、その長手方向(図8において紙面に直交する方向、B方向に一致する)の寸法は、突出部31b~31eのB方向長さより僅かに短い。また、第1抑え型91には、絞り型93が挿通可能な貫通孔91bが形成されている。また、第2抑え型92には、貫通孔91bよりも幅寸法(図8において左右方向の寸法)が大きな貫通孔92bが形成されている。
 まず、矩形平板状のアルミニウム板31Aを用意する。次いで、図8に示すように、アルミニウム板31Aの上面側に配置した第1抑え型91と、アルミニウム板31Aの下面側に配置した第2抑え型92とで、アルミニウム板31Aを挟んで固定する。この状態で、アルミニウム板31Aの上面側から絞り型93を降下させてゆき、絞り型93を第1抑え型91の貫通孔91b内を挿通させて、絞り型93によってアルミニウム板31Aの一部を下方に押圧してゆく。アルミニウム板31Aのうち絞り型93によって下方に押圧さる部分は、第2抑え型92の貫通孔92b内を通って第2抑え型92の下方に押し出され、突出部31bとなる。突出部31c~31eについても、突出部31bと同様にして成形する。このように、絞り加工によって、突出部31b~31eを成形した。これにより、突出部31b~31eが一体成形された第1フレーム部材31が完成する。
 また、第2フレーム部材32は、矩形平板状のアルミニウム板を、コの字状にプレス加工することで製造できる。
 次に、組立工程に進み、図9に示すように、フィン部材20を、第1フレーム部材31の内面31h上に配置する。詳細には、フィン部材20のA方向に隣り合うフィン22の間隙に、第1フレーム部材31の突出部31c~31eが入り込むようにして、フィン部材20を、第1フレーム部材31の内面31h上に配置する。その後、フィン部材20を包囲するように、第2フレーム部材32を、第1フレーム部材31の内面31h上に配置する。このとき、フィン部材20のベース21の裏面21bと第2フレーム部材32の底面32bとが接触する。なお、第1フレーム部材31の内面31h及び第2フレーム部材32の底面32bには、予めロウ材(融点600℃)が塗布されている。
 その後、上述のようにして、フィン部材20、第1フレーム部材31、及び第2フレーム部材32を組み合わせたもの(組み合わせ体)を、電気炉(図示なし)内に収容する。次いで、電気炉内の温度を600℃にまで上昇させて、ロウ材を溶融させる。その後、組み合わせ体を電気炉内から取り出し、冷却して、ロウ材を硬化させる。これにより、フィン部材20、第1フレーム部材31、及び第2フレーム部材32を、ロウ付けにより接合することができる。このようにして、本実施例1の熱交換器10が完成する。
 次に、溶接工程に進み、熱交換器10の第1フレーム部材31に、4個の絶縁板60を溶接(本実施例1では、ロウ付け)する。具体的には、まず、熱交換器10の第1フレーム部材31の配置面31gに、4個の絶縁板60(例えば、アルミナからなるセラミック板)を、等しい間隙をあけて(突出部31c~31eを挟んで)、第1フレーム部材31の長手方向(A方向に一致する方向)に一列に配置する(図10参照)。なお、第1フレーム部材31の配置面31gには、熱交換器10を完成させた後、絶縁板60を配置する前に、ロウ材(融点550℃)を塗布している。次いで、これらを電気炉(図示なし)内に収容した後、電気炉内の温度を550℃にまで上昇させて、ロウ材を溶融させる。このとき、熱交換器10を接合しているロウ材は、融点が600℃であるため、溶融することがない。このため、熱交換器10の接合状態を確実に維持することができる。その後、絶縁板60を有する熱交換器10を電気炉内から取り出し、冷却して、ロウ材を硬化させる。これにより、4個の絶縁板60を、熱交換器10の第1フレーム部材31にロウ付けすることができる。
 ところで、絶縁板60とフレーム30(第1フレーム部材31)とでは、線膨張率が異なる。前述のように、例えば、アルミナからなる絶縁板60を用いた場合、アルミニウムからなるフレーム30(第1フレーム部材31)の線膨張率は、絶縁板60の線膨張率の3倍以上となる。このため、従来、アルミナからなる絶縁板とアルミニウムからなるフレーム(第1フレーム部材)との溶接(例えばロウ付け)時に、絶縁板及び第1フレーム部材が加熱された後冷却されたとき、絶縁板と第1フレーム部材との収縮率(線膨張率)の差が原因で、絶縁体及びフレームに反りが発生する(湾曲する)ことがあった。
 しかしながら、本実施例1では、前述のように、第1フレーム部材31に、フレーム30の内部に突出する複数(本実施例1では4個)の突出部31b,31c,31d,31eを一体成形している(図2参照)。これらの突出部31b~31eは、フレーム30の外方(図5において上方)に開口する断面U字状で、配置面31gに沿ってB方向に直線状に延びるU字溝形状をなしている。このような形態の突出部31b~31eは、U字溝の開口が拡縮することで、第1フレーム部材31の配置面31gに沿った沿面方向(図5、図11において左右方向)に弾性変形可能である(図11参照)。
 従って、絶縁板60と第1フレーム部材31との溶接(本実施例1では、ロウ付け)時に、絶縁板60及び第1フレーム部材31が加熱された後冷却されたとき、突出部31b~31eが、絶縁板60と第1フレーム部材31との収縮率(線膨張率)の差に応じて、第1フレーム部材31の配置面31gに沿った沿面方向(図11において左右方向)に弾性変形(収縮)する。これにより、絶縁板60と第1フレーム部材31との収縮率(線膨張率)の差によって生じる反り(湾曲)を抑制することができる。
 その後、各々の絶縁板60の表面に、半導体素子71~74をハンダ付けすることで、本実施例1の半導体装置1(図1、図6参照)が完成する。
(実施例2)
 次に、本発明の実施例2について、図面を参照しつつ説明する。
 本実施例2の半導体装置100(図12参照)は、実施例1の半導体装置1(図1参照)と比較して、熱交換器のみが異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例2の熱交換器110は、図13に示すように、外枠を形成するフレーム130と、フレーム130内に収容されたフィン部材120,220とを備えている。フレーム130とフィン部材120,220とは、ロウ付けにより接合されている。なお、A方向は、熱交換器110の内部を流れる冷媒(例えば、水)の流れ方向を示し、B方向はこれに直交する方向を示している。
 フレーム130は、矩形平板状をなすアルミニウム製の第1フレーム部材131と、断面コ字状をなすアルミニウム製の第2フレーム部材132とを有している(図13参照)。第1フレーム部材131と第2フレーム部材132とは、ロウ付けにより接合されている。
 このうち、第1フレーム部材131は、実施例1の第1フレーム部材31と同様に、4つの突出部を有している(図16、図17参照)。しかしながら、4つの突出部のうち2つの突出部の形状が異なる。具体的には、第1フレーム部材131は、実施例1の突出部31b,31cと同形状の突出部131b,131cと、実施例1の突出部31d,31eに比べて突出高さを低くした点のみが異なる突出部131d,131eとを有している。これらの突出部131b~131eは、実施例1と同様に、絞り加工により、第1フレーム部材131と一体成形されている。なお、図17では、突出部131b,131cの突出高さをL1、突出部131d,131eの突出高さをL2としている。
 また、第2フレーム部材132は、実施例1の第2フレーム部材32と比較して、A方向(冷媒の流れ方向)に延びる流路125の下流側の深さ(図13において上下方向の寸法)を深くしている点が異なっている。換言すれば、第2フレーム部材132の底面132bが、A方向について下りの階段状になっている。これにより、A方向(冷媒の流れ方向)に延びる流路125の流路深さ(図13において上下方向の寸法)は、上流側に比べて、下流側が深くなる。具体的には、図19に示すように、流路125では、上流側の流路深さH1よりも、下流側の流路深さH2が深くなる。
 なお、流路125は、B方向に隣り合うフィン22とフィン22との間、フィン22と側壁133,134との間、B方向に隣り合うフィン222とフィン222との間、及びフィン222と側壁133,134との間に形成される。
 また、フィン部材120(図14参照)は、実施例1のフィン部材20を、A方向に4等分したときの1個分に相当する部材である。具体的には、フィン部材120は、アルミニウムからなり、図14に示すように、矩形平板状をなすベース121と、ベース121の一面から突出する複数(本実施例1では10本)のフィン22とを備えている。このフィン部材120は、第1フレーム部材131の突出部131bと突出部131cとの間、及び、突出部131cと突出部131dとの間に配置される(図13参照)。これにより、フィン部材120は、流路125の上流側に配置される。なお、各フィン22の間には、所定の幅を有し、A方向へと冷媒を導く冷媒の流路125が形成される。フィン部材120は、例えば、公知の押出成形により一体成形することができる。
 また、フィン部材220は、アルミニウムからなり、図15に示すように、矩形平板状をなすベース121と、ベース121の一面から突出する複数(本実施例1では10本)のフィン222とを備えている。このフィン部材220は、第1フレーム部材131の突出部131dと突出部131eとの間、及び、突出部131eに対しA方向に隣り合う位置に配置される(図13参照)。これにより、フィン部材220は、流路125の下流側に配置される。このため、フィン部材220では、フィン部材120と比較して、フィンの突出高さ(図15において上下方向にかかる寸法)のみを異ならせている。詳細には、フィン部材220では、流路125の下流側の流路深さH2から上流側の流路深さH1を差し引いた寸法(H2-H1)だけ、フィン222の突出高さを、フィン部材120のフィン22よりも高くしている。なお、各フィン222の間には、所定の幅を有し、A方向へと冷媒を導く冷媒の流路125が形成される。フィン部材220は、例えば、公知の押出成形により一体成形することができる。
 ところで、第1フレーム部材の突出部の突出高さを高くするほど、流路を流れる冷媒の流れ抵抗を高めることができる。これにより、流路を流れる冷媒を攪拌する能力が高まるので、境界層の形成を抑制する効果を高めることができる。しかしながら、突出部の突出高さを高くし過ぎると、流路の圧力損失が大きくなり過ぎて、冷媒の流量が大きく低下し、却って、冷却効果を低下させることになる。
 また、発熱量の異なる複数の半導体素子を冷却する場合、全ての発熱体を一律に冷却する必要はなく、発熱量に応じて各々の半導体素子を冷却すれば良い。従って、複数の半導体素子の中で相対的に発熱量が少ない半導体素子は、他の半導体素子よりも、冷却の程度を低くしても構わない。
 本実施例2の半導体装置100では、半導体素子71~74のうち半導体素子73,74が、半導体素子71,72に比べて発熱量が少ない。そこで、本実施例2の熱交換器110では、図19に示すように、突出部131b~131eのうち、低発熱部131kに対し流路125の上流側(図19において右側)に隣り合って位置する突出部131d,131eの突出高さL2を、他の突出部131b,131cの突出高さL1よりも低くした。ここで、低発熱部131kとは、第1フレーム部材131のうち、相対的に発熱量が少ない半導体素子73,74が絶縁板60を介して配置される部分である。このように、一部の突出部131d,131eの突出高さを低くすることで、流路125の圧力損失を抑制することができる。
 一方、突出高さを低くした突出部131d,131eでは、他の突出部131b,131cに比べて、冷媒の攪拌能力が低下するので、突出高さを低くした突出部131d,131eに対し流路125の下流側(図19において左側)に隣り合って位置する流路部分125d,125eでは、境界層の抑制効果が低下する。しかしながら、本実施例2では、低発熱部131kに対し流路125の上流側(図19において右側)に隣り合って位置する突出部131d,131eについて、突出高さを低くしている。すなわち、第1フレーム部材131のうち、突出高さを低くした突出部131d,131eに対し流路125の下流側(図19において左側)に隣り合って位置する部分を、低発熱部131kとしている。従って、境界層の抑制効果が低下して冷却能力が低下する部位は、低発熱部131kに限られる。このように、低発熱部131kにおいてのみ冷却能力を低下させることで、半導体素子71~74を各々の発熱量に応じて適切に冷却することができる。
 さらに、本実施例2の熱交換器110では、図19に示すように、冷媒の流路125のうち低発熱部131kを含んで構成される流路部分125d,125eを、他の流路部分(高発熱部131j含んで構成される流路部分125b,125c)に比べて、流路深さを深くしている。このように、流路部分125d,125eの流路深さを深くした分、流路125を流れる冷媒の流れ抵抗を低減できるので、流路125の圧力損失をより一層低減することができる。なお、図19では、流路部分125b,125cの流路深さをH1、流路部分125d,125eの流路深さをH2としている。また、高発熱部131jとは、第1フレーム部材131のうち、相対的に発熱量が多い半導体素子71,72が絶縁板60を介して配置される部分である。
 ところで、流路深さを深くした流路部分では、他の流路部分に比べて流速が速くなり、冷却能力が低下する傾向にある。しかしながら、本実施例2の熱交換器110では、低発熱部131kを含んで構成される流路部分125d,125eについてのみ、流路深さを深くしている。このように、低発熱部131kにおいてのみ冷却能力を低下させることで、半導体素子71~74を各々の発熱量に応じて適切に冷却することができる。
 ここで、本実施例2にかかる半導体装置100の熱交換器110による冷却作用について説明する。半導体素子71~74は、使用に伴って発熱する。これらの熱は、絶縁板60を通じて、フレーム130(第1フレーム部材131)に伝えられ、さらに、フレーム130の内部に収納されているフィン部材120のフィン22及びフィン部材220のフィン222に伝えられる。
 フレーム130の内部には図12に矢印で示すように、導入口130aを通じて冷媒(例えば、水)が連続的に導入される。フレーム130の内部に導入された冷媒は、流路125をA方向に流れてゆく。流路125を流れる冷媒は、突出部131b~131eに衝突して攪拌され、乱流を発生させながらA方向に流れてゆく(図19参照)。これにより、境界層の形成を抑制することができる。
 従って、フィン部材120のフィン22及びフィン部材220のフィン222は、流路125を流れる冷媒と効率良く熱交換を行うことができる。すなわち、半導体素子71~74からフィン22,222に伝えられた熱を、効率良く、流路125を流れる冷媒に放出することができる。流路125を流れつつフィン22,222の熱を吸収した冷媒は、排出口130bを通じてフレーム130の外部に排出される。このようにして、発熱した半導体素子71~74を、効果的に冷却することができる。
 しかも、本実施例2の熱交換器110では、前述のように、突出部131d,131eの突出高さを低くすると共に、流路部分125d,125eの流路深さを深くしている。これにより、流路125の圧力損失を効果的に低減することができる。このため、冷媒の流量の低下を抑制できるので、発熱した半導体素子71~74を適切に冷却することができる。
 次に、本実施例2にかかる半導体装置100の製造方法について説明する。
 まず、アルミニウム製のフィン部材120,220を2個ずつ用意する。フィン部材120,220は、例えば、アルミニウムの押出成形により一体成形することができる。
 また、アルミニウム製の第1フレーム部材131と、アルミニウム製の第2フレーム部材132とを用意する。第1フレーム部材131は、成形工程において、第1抑え型91、第2抑え型92、及び絞り型93(図8参照)を用いて、実施例1と同様にして成形した。但し、突出部131d,131eの絞り加工では、突出部131b,131cの絞り加工に比べて、絞り型93の降下量(絞り量)を小さくしている。第2フレーム部材132は、矩形平板状のアルミニウム板を、プレス加工することで製造できる。
 次に、組立工程に進み、フィン部材120,220、第1フレーム部材131、及び第2フレーム部材132を、図13に示すように組み合わせる(組み合わせ体を構成する)。なお、第1フレーム部材131の内面131h及び第2フレーム部材132の底面132bには、予めロウ材(融点600℃)が塗布されている。次いで、実施例1と同様に、組み合わせ体を電気炉(図示なし)内に収容してロウ材を溶融させた後、組み合わせ体を冷却して、ロウ材を硬化させる。これにより、フィン部材120,220、第1フレーム部材131、及び第2フレーム部材132を、ロウ付けにより接合することができる。このようにして、本実施例2の熱交換器110が完成する。
 次に、溶接工程に進み、実施例1と同様の手順で、熱交換器110の第1フレーム部材131に、4個の絶縁板60をロウ付けする。具体的には、まず、第1フレーム部材131の配置面131g(図16、図17参照)に、4個の絶縁板60を配置する。なお、第1フレーム部材131の配置面131gには、熱交換器110を完成させた後、絶縁板60を配置する前に、ロウ材(融点550℃)を塗布している。次いで、これらを電気炉(図示なし)内に収容した後、電気炉内の温度を550℃にまで上昇させて、ロウ材を溶融させる。このとき、熱交換器110を接合しているロウ材は、融点が600℃であるため、溶融することがない。このため、熱交換器110の接合状態を確実に維持することができる。その後、絶縁板60を有する熱交換器110を電気炉内から取り出し、冷却して、ロウ材を硬化させる。これにより、4個の絶縁板60を、熱交換器110の第1フレーム部材131にロウ付けすることができる。
 ところで、絶縁板60とフレーム130(第1フレーム部材131)とでは、線膨張率が異なる。前述のように、例えば、アルミナからなる絶縁板60を用いた場合、アルミニウムからなるフレーム130(第1フレーム部材131)の線膨張率は、絶縁板60の線膨張率の3倍以上となる。このため、従来、アルミナからなる絶縁板とアルミニウムからなるフレーム(第1フレーム部材)との溶接(例えばロウ付け)時に、絶縁板及び第1フレーム部材が加熱された後冷却されたとき、絶縁板と第1フレーム部材との収縮率(線膨張率)の差が原因で、絶縁体及びフレームに反りが発生する(湾曲する)ことがあった。
 しかしながら、本実施例2では、前述のように、第1フレーム部材131に、フレーム130の内部に突出する複数(本実施例1では4個)の突出部131b,131c,131d,131eを一体成形している(図13、図17参照)。これらの突出部131b~131eは、フレーム130の外方(図17において上方)に開口する断面U字状で、配置面131gに沿ってB方向に直線状に延びるU字溝形状をなしている。このような形態の突出部131b~131eは、U字溝の開口が拡縮することで、第1フレーム部材131の配置面131gに沿った沿面方向(図11、図17において左右方向)に弾性変形可能である(図11参照)。
 従って、絶縁板60と第1フレーム部材131との溶接(本実施例2では、ロウ付け)時に、絶縁板60及び第1フレーム部材131が加熱された後冷却されたとき、突出部131b~131eが、絶縁板60と第1フレーム部材131との収縮率(線膨張率)の差に応じて、第1フレーム部材131の配置面131gに沿った沿面方向(図11において左右方向)に弾性変形(収縮)する。これにより、絶縁板60と第1フレーム部材131との収縮率(線膨張率)の差によって生じる反り(湾曲)を抑制することができる。
 その後、各々の絶縁板60の表面に、半導体素子71~74をハンダ付けすることで、本実施例1の半導体装置100(図12、図18参照)が完成する。
 以上において、本発明を実施例1,2に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
 例えば、実施例1では、フィン部材20と第1フレーム部材31と第2フレーム部材32とを、ロウ付けにより接合して、熱交換器10を完成させた後、熱交換器10の第1フレーム部材31に絶縁板60をロウ付けした。しかしながら、フィン部材20と第1フレーム部材31と第2フレーム部材32と絶縁板60とを、同時にロウ付けするようにしても良い。この場合、ロウ材は、全て同一融点(例えば600℃)のものを用いることができる。この手法では、熱交換器10が完成すると同時に、熱交換器10の第1フレーム部材31に絶縁板60がロウ付けされる。実施例2についても、これと同様なことがいえる。
1,100 半導体装置
10,110 熱交換器
20,120,220 フィン部材
22,222 フィン
25,125 流路
30,130 フレーム
31,131 第1フレーム部材(第1壁部)
31b,31c,31d,31e,131b,131c,131d,131e 突出部(弾性変形可能部)
31f,131f 第1フレーム部材(第1壁部)の外面
31g,131g 配置面
32,132 第2フレーム部材
60 絶縁板(介在部材)
71,72,73,74 半導体素子(発熱体)
125d,125e 低発熱部を含んで構成される流路部分
131k 低発熱部
A 冷媒の流れ方向
B 冷媒の流れ方向と直交(交差)する方向

Claims (11)

  1. 発熱体を冷却する熱交換器であって、外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器において、
     上記フレームは、当該フレームと上記発熱体との間に介在する介在部材であって当該フレームと線膨張率が異なる介在部材が溶接される第1壁部を有し、
     上記フレームの上記第1壁部は、当該第1壁部の外面のうち上記介在部材が配置される配置面に沿った沿面方向に弾性変形可能な弾性変形可能部を含む
    熱交換器。
  2. 請求項1に記載の熱交換器であって、
     前記弾性変形可能部は、
      前記フレームの内部に突出する突出部であって、前記フレームの外方に開口する断面U字状で、前記配置面に沿って前記冷媒の流れ方向と交差する方向に直線状に延びるU字溝形状の突出部である
    熱交換器。
  3. 請求項2に記載の熱交換器であって、
     前記突出部は、絞り加工により前記第1壁部と一体成形されてなる
    熱交換器。
  4. 請求項2または請求項3に記載の熱交換器であって、
     前記突出部は、前記冷媒の流れ方向と交差する方向における前記フレームの両側壁の内壁面まで延設されている
    熱交換器。
  5. 請求項2~請求項4のいずれか一項に記載の熱交換器であって、
     前記突出部は、前記冷媒の流れ方向と直交する方向に直線状に延びる
    熱交換器。
  6. 請求項2~請求項5のいずれか一項に記載の熱交換器であって、
     前記突出部は、前記冷媒の流れ方向に所定間隔をおいて並設されており、
     前記フィンは、上記冷媒の流れ方向に隣り合う上記突出部の間に配置されてなる
    熱交換器。
  7. 請求項6に記載の熱交換器であって、
     前記熱交換器は、前記冷媒の流れ方向に並んで配置される複数の前記発熱体を冷却する熱交換器であり、
     前記第1壁部のうち、上記複数の発熱体の中で相対的に発熱量が少ない発熱体が前記介在部材を介して配置される部分を低発熱部とすると、
     前記突出部のうち、上記低発熱部に対し前記流路の上流側に隣り合って位置する突出部は、他の突出部に比べて前記フレームの内部に突出する突出高さが低い
    熱交換器。
  8. 請求項7に記載の熱交換器であって、
     前記冷媒の流路のうち前記低発熱部を含んで構成される流路部分は、他の流路部分に比べて、流路深さが深くされてなる
    熱交換器。
  9.  請求項1~請求項8のいずれか一項に記載の熱交換器と、
     前記発熱体である半導体素子と、
     前記フレームの前記第1壁部に溶接されて、上記半導体素子と上記第1壁部との間に位置する前記介在部材と、を備える
    半導体装置。
  10. 発熱体を冷却する熱交換器であって、外枠を形成するフレームの内部に、冷媒の流路を形成する複数のフィンを備えたフィン部材を配置した熱交換器の製造方法において、
     上記フレームであって、当該フレームと上記発熱体との間に介在する介在部材が溶接される第1壁部を有するフレームを成形する成形工程と、
     上記成形工程で成形された上記フレームの内部に上記フィン部材を配置して、上記熱交換器を組み立てる組立工程と、を有し、
     上記成形工程は、
      絞り加工により、上記フレームの内部に突出する突出部であって、上記フレームの外方に開口する断面U字状で、上記第1壁部の外面のうち上記介在部材が配置される配置面に沿って直線状に延びるU字溝形状の突出部を、上記第1壁部と一体成形する
    熱交換器の製造方法。
  11.  請求項10に記載の熱交換器の製造方法により製造された熱交換器と、
     前記発熱体である半導体素子と、
     前記フレームの前記第1壁部と上記半導体素子との間に介在する前記介在部材であって、上記フレームと線膨張率が異なる介在部材と、を備える
    半導体装置の製造方法であって、
     上記介在部材を上記フレームの上記第1壁部の前記配置面上に配置して、上記介在部材を上記第1壁部に溶接する溶接工程を備える
    半導体装置の製造方法。
PCT/JP2009/058740 2009-05-11 2009-05-11 熱交換器、半導体装置、及び、これらの製造方法 WO2010131317A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980159301.6A CN102422413B (zh) 2009-05-11 2009-05-11 热交换器、半导体装置及它们的制造方法
PCT/JP2009/058740 WO2010131317A1 (ja) 2009-05-11 2009-05-11 熱交換器、半導体装置、及び、これらの製造方法
EP09844591.9A EP2432012A4 (en) 2009-05-11 2009-05-11 HEAT EXCHANGER, SEMICONDUCTOR DEVICE, METHOD FOR MANUFACTURING THE HEAT EXCHANGER, AND METHOD FOR MANUFACTURING THE SEMICONDUCTOR DEVICE
US13/259,370 US8593812B2 (en) 2009-05-11 2009-05-11 Heat exchanger, semiconductor device, method for manufacturing the heat exchanger, and method for manufacturing the semiconductor device
JP2011513139A JP5370481B2 (ja) 2009-05-11 2009-05-11 熱交換器、半導体装置、及び、これらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058740 WO2010131317A1 (ja) 2009-05-11 2009-05-11 熱交換器、半導体装置、及び、これらの製造方法

Publications (1)

Publication Number Publication Date
WO2010131317A1 true WO2010131317A1 (ja) 2010-11-18

Family

ID=43084707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058740 WO2010131317A1 (ja) 2009-05-11 2009-05-11 熱交換器、半導体装置、及び、これらの製造方法

Country Status (5)

Country Link
US (1) US8593812B2 (ja)
EP (1) EP2432012A4 (ja)
JP (1) JP5370481B2 (ja)
CN (1) CN102422413B (ja)
WO (1) WO2010131317A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156322A (ja) * 2011-01-26 2012-08-16 Toyota Motor Corp 熱交換器
WO2013136493A1 (ja) * 2012-03-15 2013-09-19 トヨタ自動車株式会社 リアクトルユニット
JP2017153269A (ja) * 2016-02-25 2017-08-31 トヨタ自動車株式会社 リアクトルユニットおよびリアクトルユニットを備える燃料電池車両

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920071B2 (ja) * 2009-11-12 2012-04-18 株式会社日本自動車部品総合研究所 半導体素子の冷却装置
FR2954971B1 (fr) 2010-01-06 2012-02-10 Paul Benoit Radiateur electrique utilisant des processeurs de calcul comme source chaude.
TWI454333B (zh) * 2012-03-16 2014-10-01 Inventec Corp 熱交換器的製造方法
CN103324258B (zh) * 2012-03-20 2016-08-31 英业达股份有限公司 热交换器及其制造方法
JP5793473B2 (ja) * 2012-07-20 2015-10-14 株式会社新川 ボンディング装置用ヒータ及びその冷却方法
US9016245B2 (en) * 2012-12-31 2015-04-28 Caterpillar Inc. Engine fluid cooling assembly
WO2016115258A1 (en) * 2015-01-13 2016-07-21 Raytheon Company Tailoring air cooled heat exchanger geometry to achieve environmental protection
US10222125B2 (en) 2015-04-06 2019-03-05 International Business Machines Corporation Burst resistant thin wall heat sink
US10215504B2 (en) * 2015-04-06 2019-02-26 International Business Machines Corporation Flexible cold plate with enhanced flexibility
US9894801B1 (en) 2016-10-31 2018-02-13 International Business Machines Corporation Cold plate
EP3577406B1 (en) * 2017-02-03 2021-04-21 Asetek Danmark A/S Liquid cooling systems for heat generating devices
WO2019053791A1 (ja) * 2017-09-12 2019-03-21 住友精密工業株式会社 ヒートシンク
JP6663899B2 (ja) * 2017-11-29 2020-03-13 本田技研工業株式会社 冷却装置
JP7031524B2 (ja) * 2018-07-27 2022-03-08 日本軽金属株式会社 冷却器
TWI686108B (zh) * 2019-02-26 2020-02-21 嘉聯益科技股份有限公司 線路板模組及其散熱板結構
JP7133762B2 (ja) * 2019-06-07 2022-09-09 株式会社デンソー 電力変換装置とその製造方法
WO2020256638A1 (en) * 2019-06-20 2020-12-24 National University Of Singapore A cold plate for liquid cooling
CN110678043B (zh) * 2019-09-30 2021-01-19 潍柴动力股份有限公司 一种液冷散热器和一种电机控制器
EP3989689A1 (de) * 2020-10-23 2022-04-27 Siemens Aktiengesellschaft Kühlkörper-anordnung und stromrichteranordnung
US11175102B1 (en) * 2021-04-15 2021-11-16 Chilldyne, Inc. Liquid-cooled cold plate
JP2023023518A (ja) * 2021-08-05 2023-02-16 日本電産株式会社 液冷ジャケット、および冷却装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368170A (ja) * 2001-06-04 2002-12-20 Toshiba Corp 冷却器
JP2008288495A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp パワーモジュールの冷却器及びパワーモジュール

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455458A (en) * 1993-08-09 1995-10-03 Hughes Aircraft Company Phase change cooling of semiconductor power modules
JPH0923081A (ja) * 1995-07-05 1997-01-21 Nippondenso Co Ltd 沸騰冷却装置
DE19645636C1 (de) * 1996-11-06 1998-03-12 Telefunken Microelectron Leistungsmodul zur Ansteuerung von Elektromotoren
DE10006215A1 (de) * 2000-02-11 2001-08-16 Abb Semiconductors Ag Baden Kühlvorrichtung für ein Hochleistungs-Halbleitermodul
US6414867B2 (en) * 2000-02-16 2002-07-02 Hitachi, Ltd. Power inverter
DE10051338A1 (de) * 2000-10-17 2002-04-18 Daimlerchrysler Rail Systems Flüssigkeitskühlvorrichtung für ein Hochleistungs-Halbleitermodul und Verfahren für deren Herstellung
US6972957B2 (en) * 2002-01-16 2005-12-06 Rockwell Automation Technologies, Inc. Modular power converter having fluid cooled support
JP4133170B2 (ja) * 2002-09-27 2008-08-13 Dowaホールディングス株式会社 アルミニウム−セラミックス接合体
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
JP2006080211A (ja) 2004-09-08 2006-03-23 Toyota Motor Corp 半導体装置
WO2006100690A2 (en) 2005-03-22 2006-09-28 Bharat Heavy Electricals Limited. Selectively grooved cold plate for electronics cooling
DE102006006175A1 (de) * 2006-02-10 2007-08-23 Ecpe Engineering Center For Power Electronics Gmbh Leistungselektronikanordnung
JP4675283B2 (ja) * 2006-06-14 2011-04-20 トヨタ自動車株式会社 ヒートシンクおよび冷却器
JP2008159946A (ja) * 2006-12-25 2008-07-10 Toyota Motor Corp 半導体モジュールの冷却装置およびその製造方法
JP4789813B2 (ja) * 2007-01-11 2011-10-12 トヨタ自動車株式会社 半導体素子の冷却構造
JP4436843B2 (ja) * 2007-02-07 2010-03-24 株式会社日立製作所 電力変換装置
JP5120605B2 (ja) * 2007-05-22 2013-01-16 アイシン・エィ・ダブリュ株式会社 半導体モジュール及びインバータ装置
JP4485583B2 (ja) 2008-07-24 2010-06-23 トヨタ自動車株式会社 熱交換器及びその製造方法
JP2010101596A (ja) 2008-10-27 2010-05-06 Toyota Motor Corp 熱交換器及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368170A (ja) * 2001-06-04 2002-12-20 Toshiba Corp 冷却器
JP2008288495A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp パワーモジュールの冷却器及びパワーモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2432012A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156322A (ja) * 2011-01-26 2012-08-16 Toyota Motor Corp 熱交換器
WO2013136493A1 (ja) * 2012-03-15 2013-09-19 トヨタ自動車株式会社 リアクトルユニット
JPWO2013136493A1 (ja) * 2012-03-15 2015-08-03 トヨタ自動車株式会社 リアクトルユニット
JP2017153269A (ja) * 2016-02-25 2017-08-31 トヨタ自動車株式会社 リアクトルユニットおよびリアクトルユニットを備える燃料電池車両
US10368470B2 (en) 2016-02-25 2019-07-30 Toyota Jidosha Kabushiki Kaisha Reactor unit and fuel cell vehicle including reactor unit

Also Published As

Publication number Publication date
EP2432012A4 (en) 2014-04-16
JP5370481B2 (ja) 2013-12-18
CN102422413A (zh) 2012-04-18
CN102422413B (zh) 2014-07-30
US20120014066A1 (en) 2012-01-19
EP2432012A1 (en) 2012-03-21
JPWO2010131317A1 (ja) 2012-11-01
US8593812B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
JP5370481B2 (ja) 熱交換器、半導体装置、及び、これらの製造方法
JP5263392B2 (ja) 熱交換器及びその製造方法
JP6247090B2 (ja) 液冷式冷却装置および液冷式冷却装置用放熱器の製造方法
US7900692B2 (en) Component package having heat exchanger
CN102090161B (zh) 控制装置的改进的散热
KR101188150B1 (ko) 냉각 장치
US20130068434A1 (en) Heat exchanger and method for manufacturing same
EP2333476A1 (en) Heat exchanger and method of manufacturing same
JP6775385B2 (ja) パワーモジュール用ベース
US20130058042A1 (en) Laminated heat sinks
JP6554406B2 (ja) 液冷式冷却器
WO2018066311A1 (ja) 放熱ユニットの製造方法
JP2008283067A (ja) Al−AlN複合材料及びその製造方法並びに熱交換器
JP2008282969A (ja) 冷却器及び電子機器
JP6324457B2 (ja) 電気機器
JP2013219127A (ja) 熱交換器
JP5194557B2 (ja) パワー素子搭載用液冷式冷却器とその製造方法
JP2011228508A (ja) パワーモジュール
JP2014013848A (ja) 熱交換器
JP2009194038A (ja) 冷却器及びこれを用いた電力変換装置
JP2002050723A (ja) 放熱器
WO2016067377A1 (ja) 放熱構造
JP2010129584A (ja) ヒートシンクの加工装置及び加工方法
JP2013219125A (ja) 熱交換器
JP2015082590A (ja) 冷却器の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159301.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513139

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13259370

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009844591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009844591

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE