WO2010126026A2 - 鉛フリー銅系焼結摺動材料及び摺動部品 - Google Patents
鉛フリー銅系焼結摺動材料及び摺動部品 Download PDFInfo
- Publication number
- WO2010126026A2 WO2010126026A2 PCT/JP2010/057424 JP2010057424W WO2010126026A2 WO 2010126026 A2 WO2010126026 A2 WO 2010126026A2 JP 2010057424 W JP2010057424 W JP 2010057424W WO 2010126026 A2 WO2010126026 A2 WO 2010126026A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- lead
- mass
- less
- copper alloy
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/10—Alloys based on copper
- F16C2204/12—Alloys based on copper with tin as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a sliding material obtained by sintering copper or a copper alloy, and in particular, lead-free having excellent sliding characteristics even without containing Pb, which is included for imparting conformability and seizure resistance.
- the present invention relates to a copper-based sintered sliding material and a sliding component.
- Common copper alloys are specified in bronze alloy ingots for casting (JIS H 2203), phosphor bronze ingots for casting (JIS H 2204), and brass ingots for casting (JIS H 2205). Furthermore, wrought phosphor bronze (JIS C5191) and wrought brass (JIS C2801) are also specified. A sintered alloy obtained by sintering these same components is used as a sliding material.
- a sliding material is a material for controlling the friction coefficient between two opposing objects.
- a material intended to lower the friction coefficient for example, a material for engine metal
- a friction coefficient for example, a material for engine metal
- the sliding material in the present invention is a material for the purpose of lowering the coefficient of friction. Specifically, it is used for parts such as automobiles, motorcycles, construction machines, etc., bearings of general machines, and washers.
- Sintered materials of bronze and phosphor bronze have basic components to achieve the above-mentioned purpose of copper-based sliding materials, and are used for bearings in automatic transmissions.
- An end bearing which is a specific application, is a sliding member that is used in a one-way clutch portion of a transmission gear in an automatic transmission and is located between an outer ring and an inner ring. The driving force is transmitted smoothly by sliding the outer circumference of the end bearing with the outer ring and the inner circumference with the inner ring.
- a sliding bearing for supporting a load generated in the radial direction when one of the outer ring and the inner ring rotates is called an end bearing.
- the planetary pinion washer which is another application, is used between the pinion gear and the carrier of the planetary gear portion which is a main component of the automatic transmission.
- hard particles are also added, and the types of hard particles include Fe 2 P, Fe 3 P, FeB, Fe 3 B, Co, Co-based self-fluxing alloy, Ni-based self-fluxing alloy, Fe-Cr, Fe-Mn, Fe-Ni, Fe-Si, Fe-W, Fe-Mo, Fe-V, Fe-Ti, Fe-Nb, CuP ( Patent Document 1: Japanese Patent No. 3298636), Aluminum Nitride (Patent Document 2: Japanese Patent No. 3370785); Fe-Mn-Si Hard Material (Patent Document 3: Japanese Patent No. 3929288); Cu-Al Intermetallic Compound (Patent Document 4: Japanese Patent Laid-Open No. 2002-256731).
- Patent Document 5 WO2005 / 068671.
- This material contains 1 to 30% Bi, 10 to 50% hard particles such as Fe 2 P, Fe 3 P, FeB, Fe 2 B, and Fe 3 B, and a finer Bi phase than the hard particles has a copper matrix.
- the contact length ratio of the hard particles to the entire circumference of the Bi phase is a copper alloy sintered material of 50% or less.
- Bi-containing lead-free copper alloy sintered material has excellent seizure resistance because Bi can be finely and uniformly dispersed in the copper alloy as a soft phase, and Bi has non-adhesion to iron and has a low melting point. It has sex. For this reason, Bi addition is currently the best means in terms of making the copper alloy sliding material lead-free and keeping the seizure resistance equivalent to that of the lead-containing copper alloy sliding material. Used in parts (Non-Patent Document 1: Tribologist Vol. 53 / No. 9/2008, pages 599-604).
- Patent Document 6 in which Mo oxide and Cu sulfide are added: Japanese Patent Application Laid-Open No. 2006-37178
- Patent Document 7 in which a sulfate compound and graphite are added: Japanese Patent Application Laid-Open No. 2005-179692 and MoS 2 particles are plated
- Patent Document 8 Japanese Patent Laid-Open No. 2006-37179 has been proposed. Further MoS 2 and graphite is expensive.
- Japanese Patent No. 3298636 Japanese Patent No. 3370785 Japanese Patent No. 3929288 Japanese Patent Laid-Open No. 2002-256731 WO2005 / 068671 JP 2006-37178 A JP 2005-179692 A JP 2006-37179 A Japanese Patent No. 3274161 Japanese Patent No. 3657742
- the present inventors have intensively studied to exceed the level of the prior art described above, and are selected from the group consisting of talc (talc), mica (mica), kaolinite mineral (kaolinite mineral) and montmorillonite mineral.
- Lead-free copper-based sintered sliding material made of copper or copper alloy containing at least one kind of mineral, and materials that use conventional additives if necessary, and the invention of sliding parts. It was. That is, the sliding material of the present invention must contain copper (alloy) that does not contain Pb as a main component, and talc, mica, kaolinite mineral and / or montmorillonite mineral (hereinafter collectively referred to as “mineral component”). Ingredients.
- the overall configuration of the sintered material according to the present invention will be described. 50% by mass or more of copper or copper alloy, mineral component, 20% by volume or less of known solid lubricant, hard particles, etc.
- mineral component talc, mica, kaolinite mineral and / or montmorillonite mineral are essential components, and the preferred content is 0.05% to 10% by volume. If the proportion of the mineral component exceeds 10% by volume, the sliding characteristics are impaired.
- Copper (alloy) and mineral components contain unavoidable impurities, and in the case of mineral components, decomposition products inevitably generated during the production of the sintered material of the present invention and gangue derived from the mountains are also impurities. Included as Hereinafter, it demonstrates in order of copper (alloy), an ore component, an arbitrary component, and a manufacturing method.
- the ratio of copper (alloy) to the entire sintered sliding material is preferably 80 to 99% by mass, more preferably 90 to 99% by mass, and most preferably 95 to 99% by mass. If the proportion of copper (alloy) is too small, the strength of the sintered material is insufficient, while if the proportion of copper (alloy) is too large, the wear resistance and seizure resistance are insufficient.
- Copper may be pure copper, and in the case of a copper alloy, it may contain one or more of the following additive elements. That is, various components can be contained in the following ratios relative to the copper alloy.
- Sn A common additive element of bronze, Sn that enhances sinterability and sliding characteristics can be contained preferably in an amount of 15% by mass or less, more preferably 3 to 10% by mass.
- B P, which forms a liquid phase and facilitates sintering, is preferably 1% by mass or less, more preferably 0.01 to 0.2% by mass.
- Bi Bi can be contained in an amount of 0.1 to 10% by mass, which produces a liquid phase and improves the conformability and seizure resistance.
- the above-described components (excluding Zn) can be contained in a total amount of 30% by mass or less. When it contains Zn, it can contain the said component of 40 mass% or less in total amount.
- the talc is a pyrophyllite mineral and has the following properties (a) to (e).
- the composition formula is represented by Mg 3 Si 4 O 10 (OH) 2 .
- Mohs hardness is 1.
- the mineral form of SiO 2 which is the main component of the talc composition represented by (b) above is quartz (Mohs hardness 7), tridymite (Mohs hardness 7), cristoballite (Mohs hardness 6.5) Since it is stishovite (Mohs hardness 8.5-9), it is a harder mineral than talc and does not have a layer structure (c).
- (C) The crystal structure of talc is composed of [Si 2 O 5 ] n 2 n- layer and Mg (OH) 2 layer, and each layer is bonded by weak van der Waals force. easy. Mineralogically, the cleavage is complete to ⁇ 001 ⁇ , but from the viewpoint of the sliding material, it does not have a remarkable low friction property due to cleavage like MoS 2 . In other words, talc does not have the low frictional properties like MoS 2 that has been used as a sliding property improver for copper alloys, but it has the stability of the friction coefficient described with reference to FIGS. The inventors have discovered and confirmed that they are effective as additives for improving sliding properties.
- (D) True specific gravity: 2.7 to 2.8.
- FIG. 1 is a graph showing the results of a thrust test of the friction coefficients of talc-added copper alloy sintered material, lead-containing bronze sintered material, and lead-free bronze sintered material.
- the test conditions are as follows. Circumferential speed: 1m / s Load: 1MPa step up (15min-step) Lubricating oil Liquid paraffin oil supply temperature 50 °C Lubrication amount (setting): 0.13L / min
- the above-mentioned lead-containing bronze and lead-free bronze increase and decrease the friction coefficient instantaneously when the load is increased in stages (the friction coefficient increase / decrease period is that of lead-free bronze).
- the talc-added copper alloy sintered material has a coefficient of friction of about 0.05 and remains almost constant, and does not show a peak change although it fluctuates slightly. Since wear occurs when the coefficient of friction increases momentarily in this way, bronze wears more. Furthermore, since the hardness of talc is low (above (b)), it is generally considered that the wear resistance is poor. However, because of the layer structure (c), the friction coefficient is stabilized, resulting in wear resistance. Is considered to be favorable.
- FIG. 2 is a graph showing the results of measuring the friction coefficient of talc-added copper alloy sintered material and lead-free bronze by an adhesion sliding test.
- the test conditions are as follows. Speed: 0.06m / s Load: 500g Lubrication Dry temperature: 1 50 °C Sliding: 15mm once in one direction
- Speed 0.06m / s Load: 500g Lubrication Dry temperature: 1 50 °C
- Sliding 15mm once in one direction
- the talc-added copper alloy sintered material has a stable friction coefficient
- lead-free bronze without talc has a higher coefficient of friction. And reach a very high maximum. Therefore, it is considered that the talc-added copper alloy sintered material is stable with a low coefficient of friction, and as a result, wear resistance is improved.
- the chemical composition is KAl 2 ⁇ AlSi 3 O 10 (OH) 2 , KMg 3 ⁇ AlSi 3 O 10 (OH) 2, etc.
- Mohs hardness is 2.5 to 4 for muscovite and 2.5 to 3 for biotite, which is soft.
- C Mica is a silicate-based mineral having the same hexagonal network structure as talc, and the crystal structure is a layered mineral composed of a tetrahedral layer and an octahedral layer, and thus is easily peeled off between layers.
- D True specific gravity: 2.8-3.0.
- E Available in a flake form.
- the properties of kaolinite mineral are as follows.
- montmorillonite mineral The properties of montmorillonite mineral are as follows.
- A The chemical composition of montmorillonite is expressed as (Na, Ca) 0.33 (Al, Mg) 2 Si 4 O 10 (OH) 2 .nH 2 O.
- B Mohs hardness is 1-2.
- C It has a layered structure and is cleaved.
- D Not in the form of clay-like montmorillonite (referred to as bentonite) but in the form of particles of 10-100 ⁇ m is available.
- Clay-like montmorillonite has the effect of stabilizing the frictional properties of copper alloys as clay in sliding materials, but it fundamentally improves the sliding properties of sliding copper alloys like talc. do not do.
- Montmorillonite in the form of mineral powder of a certain size has a large area in contact with the mating shaft, and fundamentally improves the sliding characteristics like talc.
- E The true specific gravity is 2.4.
- the mineral-added copper alloy sintered sliding material according to the present invention can contain 20 vol% or less of arbitrary components in total. Specifically, graphite, MoS 2 , WS 2 and the like can be added in an amount of 0.1 to 5% by mass, particularly 3% by mass or less in order to impart low friction.
- hard particles those listed in paragraphs 0005 and 0006 can be added in order to improve wear resistance and seizure resistance.
- Fe 2 P, Fe 3 P, FeB, AlN, Mo 2 C, BN, SiO 2 , Si 3 N 4 or the like having a particle size of 50 ⁇ m or less can be added in an amount of 5% by mass or less.
- enstatite When talc is sintered with a copper alloy, depending on the sintering conditions, it is inevitable that a part of the talc decomposes at 450-600 ° C and changes to enthatite.
- the properties of enstatite are as follows.
- (C) The unit cell of diopside has a structure in which twins are repeated. Enstatite is harder than talc and does not have a layered structure.
- talc a considerable amount, specifically less than about 10% by volume of enstatite, hinders the properties of the copper-based sintered alloy sliding material of the present invention. Absent. Nevertheless, the amount of enstatite preferably does not exceed the amount of talc. Impurity minerals having similar properties derived from Yamamoto, which has the same Mohs hardness as Enstite, can be handled in the same way.
- the manufacturing method of the mineral addition copper (alloy) sintered sliding material which concerns on this invention is demonstrated.
- a copper (alloy) powder with an average particle size of 150 ⁇ m or less, a mineral component powder with an average particle size of about 20 ⁇ m, and optional components, if necessary, and then mix these powders thoroughly.
- intermediate rolling is performed, and secondary sintering is performed again within the same sintering condition range as the primary sintering.
- rolling can be performed at a processing rate of 10% or less for adjusting hardness and dimensions.
- a desired part shape such as a bush is finished, and the surface roughness of the sliding surface contacting the shaft is adjusted to a desired value by machining such as cutting.
- the thickness of the sintered layer is preferably 200 to 700 ⁇ m.
- the talc-added copper alloy sintered sliding material (2) of the present invention improves the performance of lead-free bronze (1), and it is clear that talc is a sliding performance improving component. Furthermore, although the material (2) does not contain Bi or Pb, its performance is comparable to Pb / hard particle-added bronze (6) and Bi / hard particle-added bronze (7). Similarly, the talc / Bi-added copper alloy sintered sliding material (3) of the present invention is comparable to Pb / hard particle-added bronze (6) and Bi / hard particle-added bronze (7). The three-step evaluation is the same for mineral components other than talc.
- Example 1 A copper alloy sintered material having the composition shown in Table 2 was prepared using the following raw materials. Copper alloy: Cu-3 to 10% Sn alloy powder, optionally containing Al, Ni, In, etc., atomized powder with an average particle size of 150 ⁇ m or less. Mineral component: Ore sifted powder with an average particle size of 23 ⁇ m, but enstatite has an average particle size of 25 ⁇ m. Graphite: Average particle size 25 ⁇ m MoS 2 : Average particle size 23 ⁇ m In Table 2, Sn, P, Bi, etc. of the copper alloy component indicate the content as a percentage with respect to the copper alloy, and the mineral component and the optional component indicate the content with respect to the entire material.
- Copper alloy Cu-3 to 10% Sn alloy powder, optionally containing Al, Ni, In, etc., atomized powder with an average particle size of 150 ⁇ m or less.
- Mineral component Ore sifted powder with an average particle size of 23 ⁇ m, but enstatite has an average particle size of 25 ⁇
- the above raw material powder is mixed with a V-type blender and sprayed on a steel plate with a thickness of 1.5 mm to a thickness of 800-1200 ⁇ m.
- a V-type blender was sprayed on a steel plate with a thickness of 1.5 mm to a thickness of 800-1200 ⁇ m.
- rolling was performed so that the thickness of the sintered layer was reduced by 500 ⁇ m, and secondary sintering was performed again under the same conditions.
- the obtained bimetallic material was processed into a bush, and a seizure resistance test and an abrasion resistance test were performed under the following conditions.
- talc decomposes to about 50% enstatite under the above sintering conditions. Therefore, the amount of talc shown in Table 2 is a blending amount.
- test numbers 1 to 20 are examples of the present invention, and test numbers 21 to 27 are comparative examples. Since Comparative Examples 19 to 26 do not contain a mineral component, the seizure resistance is inferior. Further, Comparative Example 27 has poor seizure resistance because the mineral component is composed only of enstatite. Examples of the present invention are classified as follows. (A) Does not contain solid lubricant (1-14) (A) Does not contain Bi (1-13) (B) Containing Bi (14) (B) Containing solid lubricant (15, 16) Arrangement in the order of excellent sliding characteristics is (b)>(b)> (b) (a)> comparative example.
- the present invention can improve the wear resistance and seizure resistance of bronze and lower the material price, so that sliding parts are required to have further improved characteristics and cost reduction.
- the place that contributes to the industry is big.
- the price of copper and phosphor bronze which are the standard for the price of sintered copper alloy sliding materials, is about 300 to 1000 yen / kg.
- Conventional additives that have been added to improve the sliding properties work mostly in the direction of increasing the price, starting with about 2,000 yen / kg of bismuth. An exception is lead, which lowers the price of copper alloy sliding materials, but is regulated because it is an environmentally hazardous substance.
- bismuth is not only used as a sliding material as a substitute for lead, but also widely used as a cutting component, so there is a concern that the supply of bismuth will be insufficient in the future. There is no such concern for talc. Furthermore, the cost can be reduced without impairing the performance of the lead-free Bi-containing copper alloy sintered sliding material that currently achieves the highest sliding characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
- Lubricants (AREA)
Abstract
Description
本発明における摺動材料は、摩擦係数を低くすることを目的とする材料であって、具体的には自動車、二輪車、建設機械等の車両及び一般機械の軸受類、ワシャ類の部品に使用される。
(イ)Sn:青銅の一般的な添加元素であり、焼結性と摺動特性を高めるSnを好ましく
は15質量%以下、より好ましくは3~10質量%を含有することができる。(ロ)P:液相を生成し、焼結を容易にするPを好ましくは1質量%以下、より好まし くは0.01~0.2質量%含有することができる。(ハ)Bi:液相を生成し、なじみ性と耐焼付性を高めるBiを0.1~10質量%含有することができる。(ニ)Al,Ni:マトリックスを強化し、耐焼付性を高める好ましくは5質量%以下のAl, 好ましくは10質量%以下のNiを含有することができる。(ホ)Zn:耐硫化性を向上するZnを30質量%以下含有することができる。(ヘ)In:耐焼付性に優れた濃縮相を形成するInを5質量%以下含有することができる。(ト)Ag::銅に固溶して耐焼付性を高め、また表面に潤滑性に優れた化合物を生成する(特許文献10-特許第3657742号)。これらの効果を達成するべく10質量%以下のAgを含有することができる。
上記した成分(但しZnを除く)は総量で30質量%以下含有することができる。Znを含有する場合は総量で40質量%以下の上記成分を含有することができる。
滑石は、パイロフィライト(pyrophyllite)系鉱物であり次のような性質(イ)~(ホ)を有している。
(イ)組成式はMg3Si4O10(OH)2により表される。(ロ)モース硬度は1である。なお、上記(イ)で表わされる滑石組成の主成分であるSiO2の鉱物形態は石英(モース硬度7)、鱗珪石(tridymite)(モース硬度7)、クリストバル石(cristoballite)(モース硬度6.5)、スティショブ石(stishovite)(モース硬度8.5~ 9)であるので、滑石よりも高硬度鉱物であり、また層構造(ハ)をもっていない。(ハ)滑石の結晶構造は、[Si2O5]n2n- 層とMg(OH)2層が積層され、各層間は弱いファンデルワース力で結合しているために、層間ではがれ易い。鉱物学的にはへき開は{001}に完全であるが、摺動材料の観点からは、MoS2のようなへき開による顕著な低摩擦性は有していない。すなわち、滑石は従来銅合金の摺動特性改良剤として使用されていたMoS2のような低摩擦性をもっていないが、図1,2を参照して説明する摩擦係数の安定性をもっていることを本発明者らは発見し、摺動特性改良添加剤として有効であることを確認した。(ニ)真比重:2.7~2.8。
(ホ)50μm以下の粒子径を有する薄片状形状のものが入手できる。なお滑石は価格が
100円/kg程度であり、資源供給の面での制約が少ない。続いて、滑石を添加した銅合金焼結摺動材料の特性を説明する。
図1は、滑石添加銅合金焼結材料、鉛含有青銅焼結材料及び鉛フリー青銅焼結材料の摩擦係数をスラスト試験で測定した結果を示すグラフである。試験条件は次のとおりである。
周速:1m/s
荷重:1MPa ステップアップ(15min-step)
潤滑油 流動パラフィン
給油温度 50℃
給油量(設定): 0.13L/min
図1に示すように、上記した鉛含有青銅及び鉛フリー青銅は荷重が段階的に増加されたときに摩擦係数が瞬間的にピーク状に増減する(なお、摩擦係数増減周期は鉛フリー青銅の方が鉛含有青銅よりも短くなっている)のに対し、滑石添加銅合金焼結材料は摩擦係数が約0.05弱でほぼ一定で推移し、微小変動するもののピーク状変化を示さない。このように摩擦係数が瞬間的に増加した際に摩耗が起こるので、青銅は摩耗が多くなる。さらに、滑石の硬度は低い(上記(ロ))ので一般的には耐摩耗性が不良になると考えられるが、層構造(ハ)をもっているために、摩擦係数が安定し、その結果耐摩耗性が良好になると考えられる。
速度:0.06m/s
荷重:500g
潤滑 ドライ
温度:1 50℃
摺動:15mm 一方向1回
図2に示すように、滑石添加銅合金焼結材料は摩擦係数が安定しているのに対して、滑石が添加されていない鉛フリー青銅は摩擦係数が次第に高くなって、非常に高い極大に達する。したがって、滑石添加銅合金焼結材料は低い摩擦係数で安定しており、その結果耐摩耗性が良好になっていると考えられる。
図1に示した試験において荷重が増加すると、どの材料でも遂には焼付が起こる。しかしながら滑石は摩擦係数の安定性を発揮し、耐焼付性を高める。
(イ)化学組成はKAl2・AlSi3O10(OH)2, KMg3・ AlSi3O10(OH)2などである。(ロ)モース硬度は白雲母が2.5 ~4、黒雲母が2.5~3であり、軟らかい。(ハ)雲母は滑石と同じ六角網構造を有する珪酸塩系鉱物であり、結晶構造は、四面体層と八面体層からなる層状鉱物であるために、層間で剥がれ易い。(ニ)真比重:2.8~3.0。(ホ)薄片形状で入手できる。
(イ)化学組成はAl2Si2O6(OH)4と表される。(ロ)モース硬度は1 ~2である。
(ハ)片状層状構造を有する。(ニ)真比重は2.6である。
(イ)モンモリロナイトの化学組成は(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2・nH2Oと表される。
(ロ)モース硬度は1~2である。(ハ)層状構造を有し、へき開性がある。(ニ)粘土状のモンモリロナイト(ベントナイト(bentonite)といわれる)ではなく、10~100μmの粒子形態のものが入手できる。粘土状モンモリロナイトは摺動材料ではクレー(clay、粘土)として、銅合金の摩擦特性を安定する作用を有しているが、摺動銅合金の摺動特性を滑石のように根本的には改良しない。ある程度の大きさの鉱物粉末形態のモンモリロナイトは相手軸と接触する面積が大きくなり、滑石と同様に摺動特性を根本的に改良する。
(ホ)真比重は2.4である。
先ず、平均粒径が150μm以下の銅(合金)粉末、平均粒径が20μm程度の鉱物成分粉末及び必要により任意成分をそれぞれ用意し、その後これらの粉末を十分に混合し、混合物を鋼板上に厚さが0.5~1.5mmとなるように散布し、700~ 1000℃の温度範囲で、1秒から 30分間還元性雰囲気中で一次焼結する。その後中間圧延を行い、再度一次焼結と同じ焼結条件範囲内で二次焼結を行う。その後、必要により、硬さや寸法調節のために10%以下の加工率で圧延加工を行うことができる。最後に、ブシュなどの所望部品形状に仕上げ、切削などの機械加工により軸と接触する摺動面の表面粗さを所望の値に調節する。焼結層の厚さは200~700μmが好ましい。
本発明の滑石添加銅合金焼結摺動材料及び従来の材料の諸特性を、優◎、良(○)、並(△)、の3段階評価により表わして次の表に示す。
表2に示す配合組成の銅合金焼結材料を次の原料を用いて調製した。
銅合金:Cu-3~10%Sn合金粉末、場合によりAl,Ni,Inなどを含有、平均粒径150μm以下のアトマイズ粉。
鉱物成分:鉱石を篩別して平均粒径23μmとした粉末、但しエンスタタイトは平均粒径25μm。
黒鉛:平均粒径25μm
MoS2:平均粒径23μm
表2において、銅合金成分のSn,P,Bi,その他は銅合金に対する百分率で含有量を示し、鉱物成分及び任意成分は材料全体に対する含有量を示す。
ピンオンディスク試験
周速:1m/s
荷重:1MPa/15min.ステップアップ
潤滑:パラフィン系ベースオイル
ブシュジャーナル摩耗試験機
周速:1m/s 起動―停止サイクル
荷重:2MPa
潤滑:パラフィン系ベースオイル
試験結果を表2に示す。
本発明実施例は次のように分類される。
(イ)固体潤滑剤を含有しないもの(1~14)
(a)Biを含有しないもの(1~13)
(b)Biを含有するもの(14)
(ロ)固体潤滑剤を含有するもの(15,16)
摺動特性がすぐれている順に並べると(イ)(b)>(ロ)>(イ)(a)>比較 例である。
また、銅合金焼結摺動材料の価格の基準となる銅及びりん青銅は価格が300~1000円/kg程度である。この摺動特性を改良するために添加されている従来の添加剤は、ビスマス2000円/kg程度をはじめとしてほとんどは価格を高くする方向に働く。例外は鉛であって、銅合金摺動材料の価格を下げるが、環境負荷物質であるために、規制されている。一方、ビスマスは、鉛の代替材として摺動材料に使用されるだけではなく、改削成分としても広く使用されるため、ビスマスの供給も今後不足することが懸念される。滑石にはこのような懸念がない。
さらに、現在最高の摺動特性を達成している鉛フリーBi含有銅合金焼結摺動材料の性能を損なわずにコストダウンをすることができる。
Claims (10)
- 鉛フリー銅又は銅合金を焼結した摺動材料において、滑石、雲母、カオリナイト鉱物及びモンモリロナイト鉱物から選択された少なくとも1種の鉱物を含むことを特徴とする鉛フリー銅系焼結摺動材料。
- 前記少なくとも1種の鉱物が焼結材料全体に対して0.5~10体積%である請求項1記載の鉛フリー銅系焼結摺動材料。
- 前記銅合金が、当該銅合金に対して15質量%以下のSnを含有し、残部がCu及び不可避的不純物であることを特徴とする請求項1又は2記載の鉛フリー銅系焼結摺動材料。
- 前記銅合金が、当該銅合金に対して1質量%以下のPを含有し、残部がCu及び不可避的不純物であることを特徴とする請求項1から3までの何れか1項記載の鉛フリー銅系焼結摺動材料。
- 前記銅合金が、当該銅合金に対して0.1 ~10質量%のBiを含有し、残部がCu及び不可避的不純物であることを特徴とする請求項1から4までの何れか1項記載の鉛フリー銅系焼結摺動材料。
- 前記銅合金が、当該銅合金に対して5質量%以下のAl,10質量%以下のNi、30質量%以下のZn、5質量%以下のIn、10質量%以下のAgの少なくとも1種を合計で30質量%以下、但しZnが含有される場合は40質量%以下、含有し、残部がCu及び不可避的不純物であることを特徴とする請求項1から5までの何れか1項記載の鉛フリー銅系焼結摺動材料。
- さらに、固体潤滑剤及び硬質粒子の少なくとも1種を含有する請求項1から6までの何れか1項記載の鉛フリー銅系焼結摺動材料。
- 前記固体潤滑剤の含有量が焼結材料全体に対して0.1~5質量%である請求項7記載の鉛フリー銅系焼結摺動材料。
- 前記硬質粒子の含有量が焼結材料全体に対して5質量%以下である請求項7又は8記載の鉛フリー銅系焼結摺動材料。
- 請求項1から9までの何れか1項記載の鉛フリー銅系焼結摺動材料からなる摺動部品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10769724.5A EP2431488A4 (en) | 2009-04-28 | 2010-04-27 | SINTERED LEAD-FREE COPPER SLIP MATERIAL AND SLIPPER PIECE |
US13/265,248 US8845776B2 (en) | 2009-04-28 | 2010-04-27 | Lead-free copper-based sintered sliding material and sliding parts |
JP2011511403A JP5509199B2 (ja) | 2009-04-28 | 2010-04-27 | 鉛フリー銅系焼結摺動材料及び摺動部品 |
KR1020117024963A KR101516852B1 (ko) | 2009-04-28 | 2010-04-27 | 납프리 구리계 소결 슬라이딩 재료 및 슬라이딩 부품 |
CN2010800189140A CN102439183A (zh) | 2009-04-28 | 2010-04-27 | 无铅铜系烧结滑动材料及滑动部件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-109637 | 2009-04-28 | ||
JP2009109637 | 2009-04-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2010126026A2 true WO2010126026A2 (ja) | 2010-11-04 |
WO2010126026A3 WO2010126026A3 (ja) | 2011-01-27 |
WO2010126026A4 WO2010126026A4 (ja) | 2011-03-24 |
Family
ID=43032635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057424 WO2010126026A2 (ja) | 2009-04-28 | 2010-04-27 | 鉛フリー銅系焼結摺動材料及び摺動部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8845776B2 (ja) |
EP (1) | EP2431488A4 (ja) |
JP (1) | JP5509199B2 (ja) |
KR (1) | KR101516852B1 (ja) |
CN (1) | CN102439183A (ja) |
WO (1) | WO2010126026A2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146393A1 (ja) * | 2012-03-30 | 2013-10-03 | カヤバ工業株式会社 | 摺接部材及びピストンポンプ・モータ |
JP2017151268A (ja) * | 2016-02-24 | 2017-08-31 | 株式会社リコー | トナー、トナー収容ユニット、画像形成装置、及び画像形成方法 |
JP2019173060A (ja) * | 2018-03-27 | 2019-10-10 | 大同メタル工業株式会社 | 摺動部材 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103537689A (zh) * | 2013-10-11 | 2014-01-29 | 芜湖市鸿坤汽车零部件有限公司 | 一种粉末冶金合金齿轮及其制备方法 |
CN103537694A (zh) * | 2013-10-11 | 2014-01-29 | 芜湖市鸿坤汽车零部件有限公司 | 粉末冶金链轮及其制备方法 |
CN103695699A (zh) * | 2013-12-20 | 2014-04-02 | 龙工(上海)精工液压有限公司 | 含混合硅酸盐矿粉的烧结耐磨铜合金材料及其制备方法 |
CN104032200B (zh) * | 2014-05-12 | 2016-05-18 | 蚌埠市宏威滤清器有限公司 | 一种抗高温氧化黄铜合金材料及其制备方法 |
CN104152740A (zh) * | 2014-08-12 | 2014-11-19 | 铜陵国鑫光源技术开发有限公司 | 一种含有云母粉的led封装材料及其制备方法 |
US10974317B2 (en) * | 2016-07-22 | 2021-04-13 | Emerson Climate Technologies, Inc. | Controlled-dispersion of solid lubricious particles in a metallic alloy matrix |
CN108754221B (zh) * | 2018-02-28 | 2020-05-22 | 南京工程学院 | 高速列车用电机摩擦盘材料及其制备方法 |
JP2021056023A (ja) * | 2019-09-27 | 2021-04-08 | 大同メタル工業株式会社 | 摺動部材の損傷を監視するための自己検知材料を含む内燃機関の摺動部材 |
CN112725656A (zh) * | 2021-01-19 | 2021-04-30 | 中国科学院兰州化学物理研究所 | 一种用于双金属液压泵马达的柱塞孔内衬材料及其应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3274161B2 (ja) | 1991-12-11 | 2002-04-15 | 株式会社ジーシー | 歯科用接着方法 |
JP3298636B2 (ja) | 1990-08-14 | 2002-07-02 | 大豊工業株式会社 | 摺動材料 |
JP2002256731A (ja) | 2001-03-01 | 2002-09-11 | Tsuji Sekizaiten:Kk | 石 碑 |
JP3370785B2 (ja) | 1994-07-21 | 2003-01-27 | 大豊工業株式会社 | 銅系焼結摺動材料 |
JP3657742B2 (ja) | 1996-06-10 | 2005-06-08 | 大豊工業株式会社 | 耐焼付性にすぐれたすべり軸受 |
JP2005179692A (ja) | 2003-12-16 | 2005-07-07 | Taiho Kogyo Co Ltd | 銅合金焼結摺動材料 |
WO2005068671A1 (ja) | 2004-01-15 | 2005-07-28 | Taiho Kogyo Co., Ltd. | Pbフリー銅合金摺動材料 |
JP2006037178A (ja) | 2004-07-28 | 2006-02-09 | Taiho Kogyo Co Ltd | 耐焼付性に優れたPbフリー銅合金摺動材 |
JP2006037179A (ja) | 2004-07-28 | 2006-02-09 | Taiho Kogyo Co Ltd | 耐焼付性に優れたPbフリー銅合金系複合摺動材 |
JP3929288B2 (ja) | 2001-11-09 | 2007-06-13 | 大豊工業株式会社 | 高温耐摩耗性に優れた銅系軸受材料及びその製造方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0518903B1 (en) * | 1990-03-06 | 1997-07-16 | United States Bronze Powders Incorporated | Improvements in and relating to powder metallurgy compositions |
US5326384A (en) * | 1990-07-31 | 1994-07-05 | Taiho Kogyo Co., Ltd. | Sliding material |
JPH04131338A (ja) * | 1990-09-20 | 1992-05-06 | Mitsubishi Materials Corp | 耐摩耗性に優れた銅基焼結合金 |
JP2680926B2 (ja) * | 1990-10-18 | 1997-11-19 | 日立粉末冶金株式会社 | 焼結金属部品、及びその製造方法 |
US5259860A (en) * | 1990-10-18 | 1993-11-09 | Hitachi Powdered Metals Co., Ltd. | Sintered metal parts and their production method |
JPH05239696A (ja) * | 1992-02-28 | 1993-09-17 | Taiho Kogyo Co Ltd | 摺動部材 |
JPH08134480A (ja) * | 1994-11-09 | 1996-05-28 | Fuji Dies Kk | 固体潤滑剤粒子の製造方法 |
JP3560723B2 (ja) * | 1996-03-14 | 2004-09-02 | 大豊工業株式会社 | 耐焼付性にすぐれた銅合金及びすべり軸受 |
EP0795693B1 (en) | 1996-03-14 | 2004-01-28 | Taiho Kogyo Co., Ltd. | Copper-alloy and sliding bearing having improved seizure resistance |
JP4250219B2 (ja) * | 1998-03-25 | 2009-04-08 | 大豊工業株式会社 | 耐焼付性に優れたすべり軸受 |
US6139598A (en) * | 1998-11-19 | 2000-10-31 | Eaton Corporation | Powdered metal valve seat insert |
JP3421724B2 (ja) * | 1999-09-13 | 2003-06-30 | 大同メタル工業株式会社 | 銅系摺動材料 |
ATE407755T1 (de) | 2001-10-08 | 2008-09-15 | Federal Mogul Corp | Bleifreies lager |
JP2003194061A (ja) * | 2001-12-27 | 2003-07-09 | Daido Metal Co Ltd | 銅系焼結摺動材料およびその製造方法 |
DE10359896A1 (de) * | 2003-12-19 | 2005-07-21 | Hoffmann & Co. Elektrokohle Ag | Kohlebürste sowie Verfahren und Werkstoff zu ihrer Herstellung |
JP4373287B2 (ja) | 2004-06-15 | 2009-11-25 | 株式会社リケン | 二層構造鉄基焼結合金製バルブシート |
JP5328353B2 (ja) | 2006-08-05 | 2013-10-30 | 大豊工業株式会社 | Pbフリー銅合金摺動材料及びその製造方法 |
US20100111753A1 (en) | 2007-02-14 | 2010-05-06 | Taiho Kogyo Co., Ltd. | Pb-FREE COPPER-BASED SINTERED SLIDING MATERIAL |
US20110129173A1 (en) | 2007-05-15 | 2011-06-02 | Taiho Kogyo Co., Ltd. | Pb-FREE COPPER ALLOY SLIDING MATERIAL AND PLAIN BEARINGS |
US9028582B2 (en) | 2008-01-23 | 2015-05-12 | Taiho Kogyo Co., Ltd. | Process for production of sintered copper alloy sliding material and sintered copper alloy sliding material |
CN102149833B (zh) | 2008-09-10 | 2013-07-17 | 大丰工业株式会社 | 不含Pb的Cu-Bi系烧结材料制得的滑动部件 |
-
2010
- 2010-04-27 EP EP10769724.5A patent/EP2431488A4/en not_active Withdrawn
- 2010-04-27 CN CN2010800189140A patent/CN102439183A/zh active Pending
- 2010-04-27 WO PCT/JP2010/057424 patent/WO2010126026A2/ja active Application Filing
- 2010-04-27 JP JP2011511403A patent/JP5509199B2/ja not_active Expired - Fee Related
- 2010-04-27 KR KR1020117024963A patent/KR101516852B1/ko not_active IP Right Cessation
- 2010-04-27 US US13/265,248 patent/US8845776B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3298636B2 (ja) | 1990-08-14 | 2002-07-02 | 大豊工業株式会社 | 摺動材料 |
JP3274161B2 (ja) | 1991-12-11 | 2002-04-15 | 株式会社ジーシー | 歯科用接着方法 |
JP3370785B2 (ja) | 1994-07-21 | 2003-01-27 | 大豊工業株式会社 | 銅系焼結摺動材料 |
JP3657742B2 (ja) | 1996-06-10 | 2005-06-08 | 大豊工業株式会社 | 耐焼付性にすぐれたすべり軸受 |
JP2002256731A (ja) | 2001-03-01 | 2002-09-11 | Tsuji Sekizaiten:Kk | 石 碑 |
JP3929288B2 (ja) | 2001-11-09 | 2007-06-13 | 大豊工業株式会社 | 高温耐摩耗性に優れた銅系軸受材料及びその製造方法 |
JP2005179692A (ja) | 2003-12-16 | 2005-07-07 | Taiho Kogyo Co Ltd | 銅合金焼結摺動材料 |
WO2005068671A1 (ja) | 2004-01-15 | 2005-07-28 | Taiho Kogyo Co., Ltd. | Pbフリー銅合金摺動材料 |
JP2006037178A (ja) | 2004-07-28 | 2006-02-09 | Taiho Kogyo Co Ltd | 耐焼付性に優れたPbフリー銅合金摺動材 |
JP2006037179A (ja) | 2004-07-28 | 2006-02-09 | Taiho Kogyo Co Ltd | 耐焼付性に優れたPbフリー銅合金系複合摺動材 |
Non-Patent Citations (3)
Title |
---|
See also references of EP2431488A4 |
TRIBOLOGIST (IN JAPANESE, vol. 53, no. 9, 2008, pages 599 - 604 |
TRIBOLOGIST, vol. 53, no. 9, 2008, pages 599 - 604 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146393A1 (ja) * | 2012-03-30 | 2013-10-03 | カヤバ工業株式会社 | 摺接部材及びピストンポンプ・モータ |
JPWO2013146393A1 (ja) * | 2012-03-30 | 2015-12-10 | カヤバ工業株式会社 | 摺接部材及びピストンポンプ・モータ |
AU2013238084B2 (en) * | 2012-03-30 | 2016-03-24 | Kyb Corporation | Sliding members and piston pump motor |
RU2597323C2 (ru) * | 2012-03-30 | 2016-09-10 | КейУайБи Корпорейшн | Элементы скольжения и поршневой насос/двигатель |
JP2017151268A (ja) * | 2016-02-24 | 2017-08-31 | 株式会社リコー | トナー、トナー収容ユニット、画像形成装置、及び画像形成方法 |
JP2019173060A (ja) * | 2018-03-27 | 2019-10-10 | 大同メタル工業株式会社 | 摺動部材 |
JP7111484B2 (ja) | 2018-03-27 | 2022-08-02 | 大同メタル工業株式会社 | 摺動部材 |
Also Published As
Publication number | Publication date |
---|---|
KR20110137811A (ko) | 2011-12-23 |
WO2010126026A4 (ja) | 2011-03-24 |
CN102439183A (zh) | 2012-05-02 |
EP2431488A2 (en) | 2012-03-21 |
JP5509199B2 (ja) | 2014-06-04 |
US20120096988A1 (en) | 2012-04-26 |
EP2431488A4 (en) | 2013-12-11 |
WO2010126026A3 (ja) | 2011-01-27 |
US8845776B2 (en) | 2014-09-30 |
JPWO2010126026A1 (ja) | 2012-11-01 |
KR101516852B1 (ko) | 2015-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5509199B2 (ja) | 鉛フリー銅系焼結摺動材料及び摺動部品 | |
CN101576118B (zh) | 无铅铜基滑动轴承材料及其制备方法 | |
JP4188440B2 (ja) | 摺動特性及び被削性に優れた銅系焼結摺動材料 | |
RU2462330C2 (ru) | Износостойкий вкладыш подшипника из не содержащего свинца сплава и способ его изготовления | |
CN105209646A (zh) | 铜合金、铜合金的用途、含铜合金的轴承以及生产由铜合金形成的轴承的方法 | |
US20070231182A1 (en) | Low cost bronze powder for high performance bearings | |
EP2821514B1 (en) | Sintered alloy having excellent abrasion resistance | |
GB2386610A (en) | A sliding bearing material | |
JP2010533756A (ja) | 無鉛焼結潤滑材料及びその製造のための焼結粉末 | |
JP4214519B2 (ja) | 銅系摺動材料およびその製造方法 | |
JP2004083934A (ja) | 複層摺動部品およびその製造方法 | |
US4274874A (en) | Copper-tin type sintered alloy for oil-impregnated bearing excellent in bearing performance as bearing used in low-load and high-velocity region | |
JPH07166278A (ja) | 銅系摺動材とその製造方法 | |
JP4757460B2 (ja) | 耐焼付性に優れたPbフリー銅合金複合摺動材 | |
JP4427410B2 (ja) | 耐焼付性に優れたPbフリー銅合金摺動材 | |
JP3042539B2 (ja) | 摺動材料 | |
JP2001107106A (ja) | 銅系焼結摺動材料 | |
JPWO2003000946A1 (ja) | 摺動部材およびその製造方法 | |
JP2001050273A (ja) | 銅系摺動材料 | |
JP2006037179A (ja) | 耐焼付性に優れたPbフリー銅合金系複合摺動材 | |
JP4794814B2 (ja) | 銅合金焼結摺動材料 | |
JPH0835026A (ja) | 銅系焼結摺動材料 | |
CN112567057A (zh) | 一种无铅超硬自润滑铜合金及其制造方法 | |
JP4203803B2 (ja) | マグネシウム合金摺動部材 | |
JP7129389B2 (ja) | 鉄銅基焼結含油軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080018914.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10769724 Country of ref document: EP Kind code of ref document: A2 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2011511403 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117024963 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010769724 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13265248 Country of ref document: US |