WO2010125850A1 - ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法 - Google Patents
ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法 Download PDFInfo
- Publication number
- WO2010125850A1 WO2010125850A1 PCT/JP2010/053260 JP2010053260W WO2010125850A1 WO 2010125850 A1 WO2010125850 A1 WO 2010125850A1 JP 2010053260 W JP2010053260 W JP 2010053260W WO 2010125850 A1 WO2010125850 A1 WO 2010125850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- group iii
- iii nitride
- gallium oxide
- oxide substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 152
- 238000000034 method Methods 0.000 title claims abstract description 91
- 229910002601 GaN Inorganic materials 0.000 title claims description 143
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims description 59
- 239000000758 substrate Substances 0.000 claims abstract description 213
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims abstract description 149
- 229910001195 gallium oxide Inorganic materials 0.000 claims abstract description 143
- 150000004767 nitrides Chemical class 0.000 claims abstract description 143
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000001257 hydrogen Substances 0.000 claims abstract description 49
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 49
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229940095676 wafer product Drugs 0.000 claims abstract description 34
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 31
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 19
- 239000012298 atmosphere Substances 0.000 claims description 46
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 230000003287 optical effect Effects 0.000 claims description 30
- 230000007704 transition Effects 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 4
- 239000013078 crystal Substances 0.000 abstract description 15
- 239000007789 gas Substances 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 6
- -1 GaN Chemical class 0.000 abstract description 5
- 238000004020 luminiscence type Methods 0.000 abstract 1
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 229910052594 sapphire Inorganic materials 0.000 description 23
- 239000010980 sapphire Substances 0.000 description 23
- 150000002431 hydrogen Chemical class 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 239000011800 void material Substances 0.000 description 10
- 238000000605 extraction Methods 0.000 description 9
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 238000002407 reforming Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- 229910020658 PbSn Inorganic materials 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
Definitions
- the present invention relates to a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device.
- Non-Patent Document 1 describes GaN epitaxial growth by metalorganic vapor phase epitaxy on a (100) ⁇ -Ga 2 O 3 substrate.
- GaN epitaxial growth a low-temperature GaN buffer layer is grown on a Ga 2 O 3 substrate at 600 degrees Celsius.
- a 1000 nm GaN layer is grown directly on this low temperature GaN buffer layer at 1070 degrees Celsius.
- Non-Patent Document 2 describes an InGaN-based light emitting diode.
- the light-emitting diode uses a patterned sapphire substrate, and a plurality of gallium nitride based semiconductor layers are grown on the sapphire substrate via a buffer layer.
- the light extraction efficiency is improved by forming a pattern on the sapphire substrate.
- Non-Patent Document 3 describes an InGaN-GaN light emitting diode.
- the light emitting diode includes a GaN-based film grown on a sapphire substrate.
- the sapphire substrate is separated from the GaN-based film using laser light.
- the gallium oxide substrate can be used for manufacturing a gallium nitride based semiconductor optical device.
- gallium oxide is affected by the hydrogen-containing atmosphere used for the growth of gallium nitride based semiconductor layers.
- a film forming sequence is used in which the gallium oxide substrate is not exposed to a high-temperature hydrogen atmosphere.
- the inventors have found that a low-temperature buffer layer in contact with gallium oxide can be modified in a sequence of growing a gallium nitride based semiconductor layer for a gallium nitride based semiconductor optical device on a gallium oxide substrate. It was.
- One aspect of the present invention is a method for producing a wafer product for a gallium nitride based semiconductor optical device.
- the method includes (a) a step of preparing a gallium oxide substrate, (b) a step of forming a layered body made of a group III nitride on the main surface of the gallium oxide substrate, and (c) the layered body.
- the method includes a step of forming an active layer, and (d) a step of growing a second group III nitride semiconductor layer on the active layer.
- step of forming the stacked body (b1) a step of growing a group III nitride buffer layer on the main surface of the gallium oxide substrate at a first temperature after the gallium oxide substrate is placed in a growth furnace; (B2) changing the substrate temperature from the first temperature to a second temperature higher than the first temperature after growing the group III nitride buffer layer; and (b3) in the growth furnace Exposing the gallium oxide substrate and the group III nitride buffer layer to the growth furnace atmosphere at a substrate temperature of the second temperature while supplying hydrogen and nitrogen; and (b4) the gallium oxide substrate and the III Depositing a group III nitride semiconductor layer for the gallium nitride based semiconductor optical device by metal organic vapor phase epitaxy after exposing the group nitride buffer layer to the growth furnace atmosphere.
- the group III nitride semiconductor layer has a first conductivity type, and the gallium nitride based semiconductor layer has a second conductivity type.
- the thickness of the group III nitride buffer layer is smaller than the thickness of the group III nitride semiconductor layer.
- the gallium oxide substrate and the group III nitride buffer layer are brought into an atmosphere containing hydrogen and nitrogen. Expose. Prior to the growth of the group III nitride semiconductor layer, the group III nitride buffer layer is modified in an atmosphere containing hydrogen, and the deposition of the group III nitride semiconductor is performed on the modified group III nitride buffer layer. To be done. An active layer is provided on the group III nitride semiconductor layer grown after the modification. Therefore, the light extraction efficiency from the gallium nitride based semiconductor optical device having the modified group III nitride buffer layer is improved.
- the thickness of the group III nitride buffer layer is smaller than the thickness of the group III nitride semiconductor layer, and modification by an atmosphere containing hydrogen and nitrogen is caused near the surface of the gallium oxide substrate.
- the flow rate of hydrogen is equal to or higher than the flow rate of nitrogen
- the second temperature is 950 degrees Celsius or higher, preferably around 1050 degrees Celsius.
- the substrate temperature is 950 degrees Celsius or higher when hydrogen is included in the atmosphere, and better, when the substrate temperature is about 1050 degrees Celsius
- the Group III nitride buffer layer is formed prior to the growth of the Group III nitride semiconductor layer.
- the III nitride semiconductor is deposited on the modified III nitride buffer layer.
- the hydrogen flow rate is preferably equal to or higher than the nitrogen flow rate when the gallium oxide substrate and the group III nitride buffer layer are exposed to the growth furnace atmosphere. At this time, good reforming is performed.
- the time in the step of exposing to the atmosphere may be 10 seconds or more.
- this time is 10 seconds or longer, preferably 1 minute or longer, the above modification can be effectively caused.
- the group III nitride buffer layer may include a GaN layer.
- the buffer layer includes a GaN layer, the modification occurs due to the reaction between GaN and hydrogen, thereby providing a technical contribution by the modification.
- the group III nitride semiconductor layer may be composed of GaN and AlGaN.
- a group III nitride semiconductor layer is formed from these materials, a technical contribution by modification can be obtained.
- the main surface of the gallium oxide substrate may be a (100) plane.
- the crystal plane of the main surface of the gallium oxide substrate is substantially a (100) plane, a c-plane or a plane slightly inclined from the c-plane is formed on the surface of the group III nitride semiconductor layer.
- the stacked body includes a transition layer formed at an interface between the gallium oxide substrate and the stacked body, and the transition layer covers the main surface of the gallium oxide substrate. Yes.
- a transition layer is formed at the interface by the modification treatment.
- the transition layer can include a group III nitride region.
- Another aspect of the present invention is a method for fabricating a gallium nitride based semiconductor optical device.
- This method includes (a) a step of preparing a gallium oxide substrate, and (b) a step of forming a laminated body made of a group III nitride on the main surface of the gallium oxide substrate.
- step of forming the stacked body (b1) a step of growing a group III nitride buffer layer on the main surface of the gallium oxide substrate at a first temperature after the gallium oxide substrate is placed in a growth furnace; (B2) changing the substrate temperature from the first temperature to a second temperature higher than the first temperature after growing the group III nitride buffer layer; and (b3) in the growth furnace Exposing the gallium oxide substrate and the group III nitride buffer layer to the growth furnace atmosphere at a substrate temperature of the second temperature while supplying hydrogen and nitrogen; and (b4) the gallium oxide substrate and the III Depositing a first group III nitride semiconductor layer for the gallium nitride based semiconductor optical device by metal organic vapor phase epitaxy after exposing the group nitride buffer layer to the growth furnace atmosphere.
- the group III nitride semiconductor layer has a first conductivity type, and the gallium nitride based semiconductor layer has a second conductivity type.
- the thickness of the group III nitride buffer layer is smaller than the thickness of the first group III nitride semiconductor layer.
- the time in the step of exposing to the atmosphere can be 10 seconds or more.
- this time is 10 seconds or longer, and better still 1 minute or longer, the above modification can be effectively caused.
- the thickness of the group III nitride buffer layer may be 2 nanometers or more.
- the thickness of the buffer layer is 2 nanometers or more, and better still 10 nanometers, the crystal quality of the group III nitride semiconductor layer is good.
- the group III nitride semiconductor layer may be composed of GaN and AlGaN.
- a group III nitride semiconductor layer is formed from these materials, a technical contribution by modification can be obtained.
- the main surface of the gallium oxide substrate may be a (100) plane.
- the surface of the group III nitride semiconductor layer has a c plane or a plane slightly inclined from the c plane.
- the stacked body includes a modified layer positioned at an interface between the gallium oxide substrate and the stacked body, and the modified layer is the gallium oxide substrate in the growth furnace. And exposing the III-nitride buffer layer to an atmosphere containing hydrogen and nitrogen.
- the modified layer may include a plurality of voids formed at an interface between the gallium oxide substrate and the stacked body.
- the modified layer has a transition layer that covers the main surface of the gallium oxide substrate.
- the thickness of the group III nitride buffer layer may be 100 nanometers or less. According to this method, when the thickness of the group III nitride buffer layer is 100 nanometers or less, an increase in resistance due to the buffer layer can be reduced.
- the method according to another aspect of the present invention includes a step of etching the active layer and the gallium nitride based semiconductor layer to expose the group III nitride semiconductor layer, and providing a potential to the group III nitride semiconductor layer. Forming a first electrode on the wafer product, and forming a second electrode on the wafer product to provide a potential to the gallium nitride based semiconductor layer.
- a light-emitting element provided with the first and second electrodes on one element surface is provided.
- a method for producing a wafer product that includes an active layer grown on a gallium oxide substrate and can improve emission intensity.
- a method for producing a gallium nitride based semiconductor optical device including an active layer grown on a gallium oxide substrate and capable of improving the emission intensity.
- FIG. 1 is a drawing showing a main process flow in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to the present embodiment.
- FIG. 2 shows a monoclinic gallium oxide wafer and a crystal lattice of monoclinic gallium oxide.
- FIG. 3 is a drawing schematically showing main steps in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to the present embodiment.
- FIG. 4 is a drawing schematically showing main steps in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to the present embodiment.
- FIG. 1 is a drawing showing a main process flow in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to the present embodiment.
- FIG. 2 shows a monoclinic gallium oxide wafer and
- FIG. 5 is a drawing schematically showing main steps in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to the present embodiment.
- 6 is a drawing showing an SEM image in Example 1.
- FIG. 7 is a drawing showing an SEM image in Example 1.
- FIG. 8 is a drawing showing an SEM image in Example 1.
- FIG. 9 is a drawing showing an SEM image in Example 1.
- FIG. 10 is a drawing showing the structure of a light emitting diode in Example 2.
- FIG. 11 is a diagram showing light emission characteristics in Example 2.
- FIG. 12 is a drawing showing main process flows in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to another embodiment.
- FIG. 12 is a drawing showing main process flows in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to another embodiment.
- FIG. 13 is a drawing schematically showing main steps in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to another embodiment.
- FIG. 14 is a drawing schematically showing main steps in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to another embodiment.
- FIG. 15 is a diagram showing the time required for peeling by relative values.
- FIG. 1 is a drawing showing a main process flow in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to the present embodiment.
- a semiconductor optical device is manufactured as a gallium nitride based semiconductor optical device.
- step S101 of the process flow 100a a gallium oxide substrate 11 having a main surface made of monoclinic gallium oxide is prepared.
- a gallium oxide substrate 11 is shown.
- the substrate 11 is made of, for example, ⁇ -Ga 2 O 3 single crystal.
- the substrate 11 includes a main surface 11a and a back surface 11b having a main surface made of monoclinic gallium oxide.
- the main surface 11a and the back surface 11b are parallel to each other.
- the main surface 11a of the substrate 11 is, for example, a (100) plane of monoclinic gallium oxide. This main surface 11a can be inclined at an angle of, for example, 1 degree or less and 0 degree or more with respect to the (100) plane.
- FIG. 2A shows a crystal coordinate system CR, which has an a axis, a b axis, and a c axis.
- FIG. 2 (b) a crystal lattice of monoclinic gallium oxide is shown.
- the lattice constants of the a-axis, b-axis, and c-axis of the monoclinic gallium oxide crystal lattice are 1.223 nm, 0.304 nm, and 0.58 nm, respectively.
- Vectors Va, Vb, and Vc indicate the directions of the a-axis, b-axis, and c-axis, respectively.
- the vectors Va and Vb define the (001) plane
- the vectors Vb and Vc define the (100) plane
- the vectors Vc and Va define the (010) plane.
- the angle ⁇ formed by the vectors Va and Vb and the angle ⁇ formed by the vectors Vb and Vc are 90 degrees, and the angle ⁇ formed by the vectors Vc and Va is 103.7 degrees.
- the substrate main surface 11a is shown by a one-dot chain line in FIG. According to this substrate 11, an epitaxial layer having a good morphology is grown on the substrate main surface 11a of the monoclinic gallium oxide (100) surface.
- the surface of the group III nitride semiconductor layer for the gallium nitride based semiconductor optical device is slightly inclined from the c plane or the c plane. Has a curved surface.
- step S102 shown in FIG. 1 the substrate 11 is placed on the susceptor 10a of the growth reactor 10, as shown in FIG.
- step S103 a stacked structure including a plurality of group III nitride films is formed to produce an epitaxial substrate.
- the group III nitride film is grown by, for example, a metal organic chemical vapor deposition (MOVPE) method.
- MOVPE metal organic chemical vapor deposition
- the gas G0 is supplied to the growth reactor 10 while the gallium oxide substrate 11 in the growth reactor 10 is supplied as shown in FIG. Change the susceptor temperature.
- the gas G0 can contain, for example, nitrogen gas.
- the gallium oxide substrate 11 is in contact with nitrogen supplied to the growth furnace 10, the gallium oxide substrate 11 is not attacked by hydrogen. Therefore, the susceptor temperature can be increased compared to when hydrogen is supplied to the growth furnace 10.
- the substrate temperature for the gallium oxide substrate 11 can be, for example, 600 degrees Celsius.
- the group III nitride buffer layer 13 is grown on the main surface 11a of the gallium oxide substrate 11 at the first temperature T1 in step S105.
- the buffer layer 13 is made of a group III nitride such as GaN, AlGaN, or AlN.
- group III nitride an organic gallium raw material, an organic aluminum raw material, a nitrogen raw material, or the like is used as a raw material gas.
- the growth reactor 10 is supplied with a source gas G1 containing trimethylgallium (TMG) and ammonia (NH 3 ).
- TMG trimethylgallium
- NH 3 ammonia
- the growth furnace 10 is supplied with a source gas G1 containing TMG, trimethylaluminum (TMA), and NH 3 .
- TMG trimethylgallium
- TMA trimethylaluminum
- NH 3 a source gas G1 containing TMG, trimethylaluminum
- the use of an AlGaN layer buffer provides a technical contribution that the second temperature T2 can be used up to a higher temperature because it is more thermally stable than the GaN buffer layer.
- the growth gas 10 is supplied with a source gas G1 containing TMA and NH 3 .
- the use of the AlN layer buffer provides a technical contribution that the second temperature T2 can be used up to a higher temperature because it is more thermally stable than the GaN buffer layer.
- the growth temperature T1 of the buffer layer 13 is in a range of, for example, 400 degrees Celsius or more and 800 degrees Celsius, and the buffer layer 13 is called a so-called low temperature buffer layer.
- the film thickness of the buffer layer 13 can be 2 nanometers or more, for example. When the thickness of the buffer layer is 2 nanometers or more, and preferably 10 nanometers or more, the crystal quality of the subsequently grown group III nitride semiconductor layer is good. Also, the thickness of the buffer layer can be 100 nanometers or less. When the thickness of the buffer layer 13 is 100 nanometers or less, the crystal quality of the group III nitride semiconductor layer is improved.
- step S106 after the buffer layer 13 is grown, the substrate temperature of the growth reactor 10 is changed to a second temperature T2 higher than the first temperature T1.
- step S107 as shown in FIG. 3C, while supplying the gas G2 containing hydrogen and nitrogen to the growth reactor 10, the gallium oxide substrate 11 and the buffer layer at the substrate temperature of the second temperature T2. 13 is exposed to the atmosphere of the growth furnace 11.
- the gas G2 can further contain ammonia.
- the atmosphere contains hydrogen.
- the flow rate of hydrogen is equal to or higher than the flow rate of nitrogen.
- the second temperature T2 is 950 degrees Celsius or higher, and better, about 1050 degrees Celsius.
- the buffer layer 13 is changed to the modified buffer layer 14.
- the second temperature T2 is 1200 degrees Celsius or less. This is because the film is so modified that a good epi film cannot be deposited.
- This modification is performed prior to the growth of the group III nitride semiconductor layer for the gallium nitride based semiconductor optical device, and the group III nitride semiconductor is deposited on the modified buffer layer 14. Further, when the thickness of the buffer layer 13 is smaller than the thickness of the group III nitride semiconductor layer 15, the modification by the atmosphere containing hydrogen and nitrogen is caused in the buffer layer near the surface of the gallium oxide substrate 11.
- the treatment time exposed to the atmosphere can be 10 seconds or more.
- the time for reforming is 10 seconds or longer, and preferably 1 minute or longer, the above reforming can be effectively caused.
- a group III nitride semiconductor layer 15 for a gallium nitride based semiconductor optical device is deposited by metal organic vapor phase epitaxy.
- a group III nitride such as GaN, AlGaN, InGaN, AlN or the like is deposited on the buffer layer 14, this deposit is epitaxially grown on the gallium oxide substrate 11 to obtain a hexagonal group III nitride semiconductor layer 15. It is done.
- the initial growth layer and the buffer layer 14 may be collectively referred to as a modified layer 14.
- the group III nitride semiconductor layer 15 can be made of GaN, InGaN, or AlGaN. When the group III nitride semiconductor layer 15 is formed of these materials, good crystal quality can be obtained on the modified buffer layer 14.
- the film thickness of the group III nitride semiconductor layer 15 can be, for example, in the range of 1 micrometer or more and 20 micrometers or less.
- the growth temperature T3 of the group III nitride semiconductor layer 15 is in the range of, for example, 950 degrees Celsius or more and 1200 degrees Celsius or less.
- the group III nitride semiconductor layer 15 is a semiconductor layer constituting a gallium nitride based semiconductor device, and can be undoped, p-type dopant added, and n-type dopant added.
- a dopant gas is supplied in addition to the source gas when the group III nitride semiconductor layer 15 is grown.
- cyclopentadienyl magnesium (Cp 2 Mg) can be used for p-type conductivity
- silane eg, SiH 4
- the growth gas is supplied with a source gas G3 containing TMG, NH 3 and SiH 4 . Through these steps, the stacked body 16 is formed on the gallium oxide substrate 11.
- the gallium oxide is performed at a substrate temperature of 950 degrees Celsius or higher, and more preferably at a substrate temperature of about 1050 degrees Celsius.
- the substrate 11 and the buffer layer 13 are exposed to an atmosphere containing hydrogen and nitrogen to form a modified buffer layer 14.
- the flow rate of hydrogen is greater than or equal to the flow rate of nitrogen and the substrate temperature is 950 degrees Celsius or higher, and even better, the substrate temperature is 1050 degrees Celsius, the buffer layer 14 is sufficiently modified. Quality is given.
- the group III nitride semiconductor is deposited on the modified buffer layer 14.
- a gallium nitride based semiconductor layer 19 is formed on the active layer 17 as shown in FIG.
- the gallium nitride based semiconductor layer 19 can include, for example, a p-type electron block layer 21 and a p-type contact layer 23.
- the wafer product E is obtained by the conventional deposition of the gallium nitride based semiconductor as shown in FIG.
- the wafer product E includes a gallium oxide wafer 11 and a semiconductor stack 25 grown on the gallium oxide wafer 11.
- the semiconductor stack 25 includes a group III nitride semiconductor layer 15 (for example, a first conductivity type epitaxial layer), an active layer 17, and a gallium nitride based semiconductor layer 19 (for example, a second conductivity type epitaxial layer).
- the active layer 17 is provided between the first conductivity type epitaxial layer and the second conductivity type epitaxial layer.
- the gallium oxide substrate 11, the group III nitride semiconductor layer 15, the active layer 17, and the gallium nitride based semiconductor layer 19 constitute a wafer product. Subsequently, in the process, a first electrode that provides a potential to the group III nitride semiconductor layer 15 is formed on the wafer product E, and a second electrode that provides a potential to the gallium nitride based semiconductor layer 19 is formed on the wafer product E. To form. Carriers injected into the active layer 17 are provided from the first and second electrodes. The carriers reach the active layer 17 through the conductive gallium oxide substrate 11.
- step S112 as shown in FIG. 5B, the wafer product E is etched to form the semiconductor mesa 27.
- the wafer product E is etched to form the semiconductor mesa 27.
- a part of the semiconductor stack 25 is removed, a part of the group III nitride semiconductor layer 15 in the semiconductor stack 25 is exposed, and an upper surface 27d of the semiconductor mesa 27 (a surface 19d of the gallium nitride based semiconductor layer 19c). ) Is formed.
- the modified buffer layer 14 has the following structure. Further, when the active layer 17 is grown after the modification step, the emission intensity in the active layer 17 is improved.
- the laminate 16 can include a plurality of voids formed at the interface between the gallium oxide substrate 11 and the laminate 16. By the reforming process, a plurality of voids are formed at the interface.
- the stacked body 16 includes a transition layer formed at the interface between the gallium oxide substrate 11 and the stacked body 16, and the transition layer covers the main surface 11 a of the gallium oxide substrate 11. By the modification treatment, a transition layer is formed at the interface.
- the transition layer can include a group III nitride region.
- Example 1 Experimental Example 1 (No void or transition layer at the interface of gallium oxide substrate / epitaxial layer) A (100) plane gallium oxide substrate was prepared. The main surface of the gallium oxide substrate is not intentionally off-angled. An AlN buffer layer was grown by MOVPE on the (100) just surface of the gallium oxide substrate. The growth temperature of this AlN was 600 degrees Celsius. The thickness of the AlN layer was 10 nanometers. The temperature was raised from 600 degrees Celsius to 1050 degrees Celsius over 4 minutes. When the temperature was raised, the flow rate of hydrogen (H 2 ) was 5 liters / minute, the flow rate of ammonia (NH 3 ) was 5 liters / minute, and the flow rate of nitrogen (N 2 ) was 10 liters / minute. It was. Thereafter, a GaN epitaxial layer was grown on the AlN layer by the MOVPE method. The thickness of this GaN layer was 3 micrometers. Through these steps, an epitaxial substrate EW1 was obtained.
- H 2 hydrogen
- NH 3
- FIG. 6 is a cross-sectional SEM image of a sapphire substrate, an AlN buffer layer, and a GaN epitaxial layer. Regarding the full width at half maximum of XRC of the GaN layer, the surface roughness of the atomic force microscope, etc., they were at the same level as the quality in the reference example on the sapphire substrate.
- the interface of the epitaxial layer / gallium oxide substrate is also observed at the interface in this embodiment, as in the reference example on the sapphire substrate. Was not.
- the AlN buffer layer was maintained at 950 degrees Celsius for 1 minute in a mixed atmosphere of hydrogen and nitrogen, and a modification process was performed.
- a GaN epitaxial layer was grown on the modified buffer layer by the MOVPE method. The thickness of this GaN layer was 3 micrometers. Through these steps, an epitaxial substrate EW2 was obtained. Regarding the full width at half maximum of XRC of the GaN layer, the surface roughness of the atomic force microscope, etc., they were at the same level as the quality in the reference example on the sapphire substrate.
- FIG. 7 is a drawing showing cross-sectional SEM images of the gallium oxide substrate, the AlN buffer layer, and the GaN epitaxial layer in Experimental Example 2. Unlike the reference example on the sapphire substrate, a void having a size (width) of about 100 nm was observed at the interface in this example. Depending on growth conditions such as temperature and hydrogen ratio, the void size could be changed in the range of about 10 nm to 1 ⁇ m.
- Such a transition layer can be formed at the interface according to the film formation conditions of low-temperature growth GaN and low-temperature growth AlGaN and heat treatment after the buffer layer is formed. Is possible.
- the AlN buffer layer was held at 1050 degrees Celsius for 1 minute in a mixed atmosphere of hydrogen and nitrogen to perform a modification process.
- a GaN epitaxial layer was grown on the modified buffer layer by MOVPE. The thickness of this GaN layer was 3 micrometers. Through these steps, an epitaxial substrate EW3 was obtained. Regarding the full width at half maximum of XRC of the GaN layer, the surface roughness of the atomic force microscope, etc., they were at the same level as the quality in the reference example on the sapphire substrate.
- FIG. 8 is a drawing showing cross-sectional SEM images of the gallium oxide substrate, the AlN buffer layer, and the GaN epitaxial layer in Experimental Example 3. Unlike the reference example on the sapphire substrate, a void having a size (width) of about 100 nm was observed at the interface in this example. Depending on the growth conditions such as temperature and hydrogen ratio, the size of the void could be changed in the range of about 10 nm to 1 ⁇ m and even larger.
- a transition layer was formed at the interface between the gallium oxide substrate and the epitaxial layer
- a (100) plane gallium oxide substrate was prepared.
- the main surface of the gallium oxide substrate is not intentionally off-angled.
- a GaN buffer layer was grown on the (100) just surface of the gallium oxide substrate by the MOVPE method.
- the growth temperature of this GaN was 500 degrees Celsius.
- the thickness of the GaN layer was 25 nanometers.
- the temperature was raised from 600 degrees Celsius to 1050 degrees Celsius over 4 minutes. When the temperature was raised, the flow rate of hydrogen (H 2 ) was 10 liters / minute, the flow rate of ammonia (NH 3 ) was 5 liters / minute, and the flow rate of nitrogen (N 2 ) was 5 liters / minute. It was.
- the GaN epitaxial layer prior to the growth of the GaN epitaxial layer, a heat treatment was performed by holding the GaN buffer layer at 1050 degrees Celsius for 1 minute in a mixed atmosphere of hydrogen and nitrogen. Next, a GaN epitaxial layer was grown by MOVPE on the heat-treated buffer layer. The thickness of this GaN layer was 3 micrometers. Through these steps, an epitaxial substrate EW4 was obtained. Regarding the full width at half maximum of XRC of the GaN layer and the surface roughness of the atomic force microscope, the quality was the same as the quality in the reference example on the sapphire substrate.
- FIG. 9 is a drawing showing cross-sectional SEM images of the gallium oxide substrate, the GaN buffer layer, and the GaN epitaxial layer in Experimental Example 4.
- a transition layer having a thickness of about 2 ⁇ m was observed at the interface in this example.
- This transition layer is composed of Ga, N, and O, and is a layer in which GaN, Ga 2 O 3 and the like are mixed.
- the transition layer can include, for example, a porous group III nitride region.
- GaN buffer layer was used in this experimental example, it is possible to produce such a transition layer at the interface according to the film formation conditions of low-temperature growth AlN and low-temperature growth AlGaN and the heat treatment after the buffer layer is formed. Is possible.
- Example 2 Epitaxial structures for light emitting diodes (LEDs) were formed using the epitaxial substrates EW0 to EW4 produced in Example 1.
- FIG. 10 shows an epitaxial structure in Example 2.
- the light emitting diode structure LED includes a modified layer 35, an n-type GaN layer 37, an active layer 39, and a p-type GaN-based layer 41.
- the modified layer 35, the n-type GaN layer 37, the active layer 39, and the p-type GaN-based semiconductor layer 41 are provided on the main surface 31a of the gallium oxide substrate 31, and the p-type GaN-based semiconductor layer is provided.
- the light emitting diode structure LED includes a semiconductor mesa 33 formed by etching.
- a p-type GaN contact layer is exposed on the upper surface 33 a of the semiconductor mesa 33.
- the semiconductor mesa 33 includes an exposed n-type GaN layer 37.
- the n-type GaN layer 37 includes an exposed region 33b.
- a p-side electrode 43a was formed on the upper surface 33a.
- An n-side electrode 43b was formed on the exposed region 33b.
- the thickness of the buffer layer can be 100 nanometers or less, and even better, 30 nanometers or less in order to reduce the increase in electrical resistance due to the thickness of the buffer layer. .
- FIG. 12 is a drawing showing a main process flow in a method for producing a wafer product and a method for producing a gallium nitride based semiconductor optical device according to another embodiment.
- step S101 of the process flow 100b a gallium oxide substrate 11 having a main surface made of monoclinic gallium oxide is prepared.
- Steps S101 to S103 and S110 to S111 are performed in the same manner as the process flow 100a shown in FIG.
- a conductive support 55 for bonding is prepared.
- the substrate 55 is made of, for example, a Si substrate or a heat sink. Further, as shown in FIG. 13B, the substrate product SP1 and the substrate 55 are arranged so that the electrode 51 on the substrate product SP1 faces the conductive support 55.
- the substrate product SP2 is produced by attaching the conductive support 55 to the substrate product SP1.
- the conductive support 55 is electrically connected to the electrode 53. This bonding is performed using, for example, a conductive adhesive 57 as shown in FIG.
- the conductive adhesive 57 can be, for example, solder such as AuSn or PbSn.
- step 117 the gallium oxide substrate 11 of the substrate product SP2 is irradiated with a laser beam 59.
- the wavelength of the laser beam 59 is shorter than the wavelength corresponding to the band gap of the gallium oxide substrate 11 and larger than the wavelength corresponding to the band gap of the group III nitride semiconductor layer 15.
- the laser light is provided by, for example, an excimer laser.
- FIG. 14B the gallium oxide substrate 11 is separated from the semiconductor stack 25a of the substrate product SP2, and a substrate product SP3 including the semiconductor stack 25a and the conductive support 55 is produced. To do.
- the modification layer 14 facilitates lift-off.
- the group III nitride semiconductor layer 15 is exposed. Roughness remains on the surface of the group III nitride semiconductor layer 15 of the semiconductor stack 25a exposed by the lift-off.
- Example 3 An experiment was conducted to examine substrate peeling using laser light. The back surface of the gallium oxide substrate was irradiated with excimer laser light to peel off the gallium oxide substrate from the epitaxial film. In the peeling experiment, a test piece having a size of 10 mm ⁇ 10 mm was cut out from the wafer product. The test piece was irradiated with a laser to measure the time required for peeling.
- FIG. 15 is a diagram showing the time required for peeling by relative values. Referring to FIG. 13, the time required for peeling is shown as relative values of 0.36, 0.38, 0.17, and 0.08.
- gallium oxide Ga 2 O 3
- sapphire Al 2 O 3
- the relative values are 0.28 and 0.17 depending on the size of the voids.
- the relative value becomes 0.08 according to the density of the transition layer. Since voids and transition layers are formed at the gallium oxide substrate / epitaxial film interface, the time required for peeling by laser lift-off is further reduced.
- Non-Patent Document 2 the sapphire substrate is undulated to improve the light extraction efficiency. Further, in Non-Patent Document 3, undulations are formed on the back surface of the epitaxial film together with substrate peeling to improve light extraction efficiency.
- GaN film When epitaxially growing a GaN film on a sapphire substrate, epitaxial growth of GaN is performed on a low-temperature AlN buffer layer or a low-temperature GaN buffer layer. At this time, no void or the like is formed at the interface of the GaN epitaxial film / sapphire substrate.
- a void or the like can be formed at the interface of the GaN epitaxial film / gallium oxide substrate by devising the growth method. Moreover, depending on the modification conditions, not only voids but also altered layers and roughness can be formed.
- undulations or voids can be formed at the epitaxial film / gallium oxide substrate interface depending on the growth conditions.
- the modification of the interface is provided by, for example, an atmosphere in a temperature rising atmosphere (high hydrogen partial pressure, low nitrogen partial pressure) and / or annealing treatment at a high temperature close to the GaN film forming temperature. Further, by increasing the annealing time, the roughness of the epitaxial film / gallium oxide substrate interface can be roughened, and voids and altered layers can be formed. Even without using a processed sapphire substrate or the like, the light extraction efficiency is improved by modifying the region near the interface of the epitaxial film / gallium oxide substrate. As a result, the light emission efficiency of the light emitting diode can be improved.
- the GaN nucleus is used as a mask at the initial stage of growth of the GaN epitaxial film, and the gallium oxide substrate is etched with high-temperature hydrogen gas.
- Gallium oxide is damaged by a high temperature atmosphere, particularly hydrogen, because the bond between gallium and oxygen is weak. Therefore, it is important to avoid undesired damage to the gallium oxide substrate during the temperature rise after the buffer layer is deposited.
- DESCRIPTION OF SYMBOLS 10 ... Growth furnace, 10a ... Susceptor, 11 ... Gallium oxide substrate, 11a ... Substrate main surface, 11b ... Substrate back surface, 13 ... Group III nitride buffer layer, 14 ... Buffer layer, modified layer, 15 ... Group III nitride Semiconductor layer 16 ... Laminated body 17 ... Active layer 19 ... Gallium nitride based semiconductor layer 21 ... P-type electron block layer 23 ... P-type contact layer Wafer product E ... 25, 25a ... Semiconductor laminate 27 ... Semiconductor mesa, 29a, 29b ... electrodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Led Devices (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
実験例1(酸化ガリウム基板/エピタキシャル層の界面にボイドや遷移層などがない)
(100)面の酸化ガリウム基板を準備した。酸化ガリウム基板の主面には意図的にオフ角をつけていない。酸化ガリウム基板の(100)ジャスト面に対して、AlNバッファ層をMOVPEで成長した。このAlNの成長温度は摂氏600度であった。AlN層の厚みは10ナノメートルであった。4分かけて摂氏600度から摂氏1050度まで昇温した。この昇温する際、水素(H2)の流量は5リットル/分であり、アンモニア(NH3)の流量は5リットル/分であり、窒素(N2)の流量は10リットル/分であった。この後に、このAlN層上にGaNエピタキシャル層をMOVPE法で成長した。このGaN層の厚さ3マイクロメートであった。これらの工程によってエピタキシャル基板EW1が得られた。
(100)面の酸化ガリウム基板を準備した。酸化ガリウム基板の主面には意図的にオフ角をつけていない。酸化ガリウム基板の(100)ジャスト面に対して、AlNバッファ層をMOVPEで成長した。このAlNの成長温度は摂氏600度であった。AlN層の厚みは10ナノメートルであった。4分かけて摂氏600度から摂氏950度まで昇温した。この昇温する際、水素(H2)の流量は10リットル/分であり、アンモニア(NH3)の流量は5リットル/分であり、窒素(N2)の流量は5リットル/分であった。この後に、GaNエピタキシャル層の成長に先立って、水素及び窒素の混合雰囲気にAlNバッファ層を摂氏950度に1分間保持して、改質処理を行った。次いで、改質処理されたバッファ層上にGaNエピタキシャル層をMOVPE法で成長した。このGaN層の厚さ3マイクロメートであった。これらの工程によってエピタキシャル基板EW2が得られた。GaN層のXRCの半値全幅及び原子間力顕微鏡の表面粗さ等に関しては、サファイア基板上の参考例における品質と同等レベルだった。
(100)面の酸化ガリウム基板を準備した。酸化ガリウム基板の主面には意図的にオフ角をつけていない。酸化ガリウム基板の(100)ジャスト面に対して、AlNバッファ層をMOVPE法で成長した。このAlNの成長温度は摂氏600度であった。AlN層の厚みは10ナノメートルであった。4分かけて摂氏600度から摂氏1050度まで昇温した。この昇温する際、水素(H2)の流量は10リットル/分であり、アンモニア(NH3)の流量は5リットル/分であり、窒素(N2)の流量は5リットル/分であった。この後に、GaNエピタキシャル層の成長に先立って、水素及び窒素の混合雰囲気にAlNバッファ層を摂氏1050度に1分間保持して、改質処理を行った。次いで、改質処理されたバッファ層上にGaNエピタキシャル層をMOVPEで成長した。このGaN層の厚さ3マイクロメートであった。これらの工程によってエピタキシャル基板EW3が得られた。GaN層のXRCの半値全幅及び原子間力顕微鏡の表面粗さ等に関しては、サファイア基板上の参考例における品質と同等レベルだった。
(100)面の酸化ガリウム基板を準備した。酸化ガリウム基板の主面には意図的にオフ角をつけていない。酸化ガリウム基板の(100)ジャスト面に対して、GaNバッファ層をMOVPE法で成長した。このGaNの成長温度は摂氏500度であった。GaN層の厚みは25ナノメートルであった。4分かけて摂氏600度から摂氏1050度まで昇温した。この昇温する際、水素(H2)の流量は10リットル/分であり、アンモニア(NH3)の流量は5リットル/分であり、窒素(N2)の流量は5リットル/分であった。この後に、GaNエピタキシャル層の成長に先立って、水素及び窒素の混合雰囲気にGaNバッファ層を摂氏1050度に1分間保持して、熱処理を行った。次いで、熱処理されたバッファ層上にGaNエピタキシャル層をMOVPEで成長した。このGaN層の厚さ3マイクロメートであった。これらの工程によってエピタキシャル基板EW4が得られた。GaN層のXRCの半値全幅及び原子間力顕微鏡の表面粗さ等に関しては、サファイア基板上の参考例における品質と同等レベルだった。
実施例1において作製されたエピタキシャル基板EW0~EW4を用いて発光ダイオード(LED)のためのエピタキシャル構造を形成した。図10は、実施例2におけるエピタキシャル構造を示す。発光ダイオード構造LEDは、改質層35、n型GaN層37、活性層39、及びp型GaN系層41を含む。発光ダイオードLEDでは、改質層35、n型GaN層37、活性層39、及びp型GaN系半導体層41は酸化ガリウム基板31の主面31a上に設けられており、p型GaN系半導体層41はp型AlGaNブロック層及びp型GaNコンタクト層を含む。発光ダイオード構造LEDは、エッチングにより形成された半導体メサ33を含む。半導体メサ33の上面33aにはp型GaNコンタクト層が露出されている。半導体メサ33は、露出されたn型GaN層37を含む。n型GaN層37は露出領域33bを含む。上面33aにはp側電極43aを形成した。露出領域33b上にn側電極43bを形成した。これらの工程により、エピタキシャル基板EW0~EW4を用いてそれぞれ発光ダイオード構造LED0~LED4が得られた。発光ダイオード構造LED0~LED4の各々をプローバ上に配置した後に、発光ダイオード構造LED0~LED4に20mAの電流を印加して、発光強度を測定した。発光ダイオード構造LED1~LED4では、バッファ層の厚さに起因する電気抵抗の増加を低減するために、バッファ層の厚さは100ナノメートル以下、更に良いものとして30ナノメートル以下であることができる。
レーザ光を用いた基板剥離を調べる実験を行った。酸化ガリウム基板の裏面にエキシマレーザ光を照射して、エピタキシャル膜から酸化ガリウム基板を剥離させた。剥離の実験は、ウエハ生産物から10mm×10mmのサイズの実験片を切り出した。実験片にレーザを照射して剥離に要する時間を測定した。図15は、剥離に要する時間を相対値により示す図面である。図13を参照すると、剥離に要する時間が、相対値として0.36、0.38、0.17、0.08として示されている。このように、酸化ガリウム(Ga2O3)は、サファイア(Al2O3)に比べて化学結合の点で弱いので、相対値が0.36であり、レーザによる剥離が容易である。これに加え、酸化ガリウム基板/エピタキシャル膜の界面にボイドが形成されたとき、ボイドのサイズに応じて相対値が0.28、0.17となる。また、酸化ガリウム基板/エピタキシャル膜の界面に遷移層が形成されたとき、遷移層の粗密に応じて相対値が0.08となる。酸化ガリウム基板/エピタキシャル膜の界面にボイドや遷移層が作製されているので、レーザリフトオフによる剥離のために要する時間はさらに短縮される。
Claims (24)
- 窒化ガリウム系半導体光素子のためのウエハ生産物を作製する方法であって、
酸化ガリウム基板を準備する工程と、
前記酸化ガリウム基板の主面上に、III族窒化物からなる積層体を形成する工程と、
前記積層体を形成した後に、活性層を形成する工程と、
前記活性層上に窒化ガリウム系半導体層を成長する工程と
を備え、
前記積層体を形成する前記工程では、
前記酸化ガリウム基板を成長炉に配置した後に、前記酸化ガリウム基板の主面上にIII族窒化物バッファ層を第1の温度で成長する工程と、
前記III族窒化物バッファ層を成長した後に、前記第1の温度よりも高い第2の温度に前記第1の温度から基板温度を変更する工程と、
前記成長炉に水素及び窒素を供給しながら、前記第2の温度の基板温度で前記酸化ガリウム基板及び前記III族窒化物バッファ層を前記成長炉の雰囲気にさらす工程と、
前記酸化ガリウム基板及び前記III族窒化物バッファ層を前記成長炉の雰囲気にさらした後に、有機金属気相成長法で、前記窒化ガリウム系半導体光素子のためのIII族窒化物半導体層を堆積する工程と
を備え、
前記III族窒化物半導体層は第1導電型を有し、
前記窒化ガリウム系半導体層は第2導電型を有し、
前記III族窒化物バッファ層の厚さは、前記III族窒化物半導体層の厚さより薄い、ことを特徴とする方法。 - 前記第2の温度は摂氏950度以上である、ことを特徴とする請求項1に記載された方法。
- 前記酸化ガリウム基板及び前記III族窒化物バッファ層を前記成長炉の雰囲気にさらす際において、水素の流量は窒素の流量以上である、ことを特徴とする請求項1又は請求項2に記載された方法。
- 前記雰囲気にさらす工程における処理時間は10秒以上である、ことを特徴とする請求項1~請求項3のいずれか一項に記載された方法。
- 前記III族窒化物バッファ層の厚さは2ナノメートル以上である、ことを特徴とする請求項1~請求項4のいずれか一項に記載された方法。
- 前記III族窒化物バッファ層はGaN層、AlGaN層及びAlN層の少なくともいずれかを含む、ことを特徴とする請求項1~請求項5のいずれか一項に記載された方法。
- 前記III族窒化物バッファ層はGaN層を含む、ことを特徴とする請求項1~請求項6のいずれか一項に記載された方法。
- 前記III族窒化物半導体層は、GaN及びAlGaNからなる、ことを特徴とする請求項1~請求項7のいずれか一項に記載された方法。
- 前記酸化ガリウム基板の前記主面は(100)面である、ことを特徴とする請求項1~請求項8のいずれか一項に記載された方法。
- 前記積層体は、前記酸化ガリウム基板と前記積層体との界面に形成された複数のボイドを含む、ことを特徴とする請求項1~請求項9のいずれか一項に記載された方法。
- 前記積層体は、前記酸化ガリウム基板と前記積層体との界面に形成された遷移層を含み、
前記遷移層は前記酸化ガリウム基板の前記主面を覆っている、ことを特徴とする請求項1~請求項9のいずれか一項に記載された方法。 - 窒化ガリウム系半導体光素子を作製する方法であって、
酸化ガリウム基板を準備する工程と、
前記酸化ガリウム基板の主面上に、III族窒化物からなる積層体を形成する工程と、
前記積層体を形成した後に、活性層を形成する工程と、
前記活性層上に窒化ガリウム系半導体層を成長する工程と
を備え、
前記積層体を形成する前記工程では、
前記酸化ガリウム基板を成長炉に配置した後に、前記酸化ガリウム基板の主面上にIII族窒化物バッファ層を第1の温度で成長する工程と、
前記III族窒化物バッファ層を成長した後に、前記第1の温度よりも高い第2の温度に前記第1の温度から基板温度を変更する工程と、
前記成長炉に水素及び窒素を供給しながら、前記第2の温度の基板温度で前記酸化ガリウム基板及び前記III族窒化物バッファ層を前記成長炉の雰囲気にさらす工程と、
前記酸化ガリウム基板及び前記III族窒化物バッファ層を前記成長炉の雰囲気にさらした後に、有機金属気相成長法で、前記窒化ガリウム系半導体光素子のためのIII族窒化物半導体層を堆積する工程と
を備え、
前記III族窒化物半導体層は第1導電型を有し、
前記窒化ガリウム系半導体層は第2導電型を有し、
前記III族窒化物バッファ層の厚さは前記III族窒化物半導体層の厚さよりも薄い、ことを特徴とする方法。 - 前記第2の温度は摂氏950度以上である、ことを特徴とする請求項12に記載された方法。
- 前記酸化ガリウム基板及び前記III族窒化物バッファ層を前記成長炉の雰囲気にさらす際において、水素の流量は窒素の流量以上である、ことを特徴とする請求項12又は請求項13に記載された方法。
- 前記雰囲気にさらす工程における処理時間は10秒以上である、ことを特徴とする請求項12~請求項14のいずれか一項に記載された方法。
- 前記III族窒化物バッファ層の厚さは2ナノメートル以上である、ことを特徴とする請求項12~請求項15のいずれか一項に記載された方法。
- 前記酸化ガリウム基板の前記主面は(100)面である、ことを特徴とする請求項12~請求項16のいずれか一項に記載された方法。
- 前記III族窒化物バッファ層はGaN層、AlGaN層及びAlN層の少なくともいずれかを含む、ことを特徴とする請求項12~請求項17のいずれか一項に記載された方法。
- 前記III族窒化物半導体層はGaN及びAlGaNからなる、ことを特徴とする請求項12~請求項18のいずれか一項に記載された方法。
- 前記積層体は、前記酸化ガリウム基板と前記積層体との界面に位置する改質層を含み、
前記改質層は、前記成長炉において前記酸化ガリウム基板及び前記III族窒化物バッファ層を水素及び窒素を含む雰囲気にさらすことによって生成され、
前記改質層は、前記酸化ガリウム基板と前記積層体との界面に形成された複数のボイドを含む、ことを特徴とする請求項12~請求項19のいずれか一項に記載された方法。 - 前記積層体は、前記酸化ガリウム基板と前記積層体との界面に位置する改質層を含み、
前記改質層は、前記成長炉において前記酸化ガリウム基板及び前記III族窒化物バッファ層を水素及び窒素を含む雰囲気にさらすことによって生成され、
前記改質層は、前記酸化ガリウム基板の前記主面を覆う遷移層を有している、ことを特徴とする請求項12~請求項19のいずれか一項に記載された方法。 - 前記酸化ガリウム基板、前記III族窒化物半導体層、前記活性層、及び前記窒化ガリウム系半導体層は、ウエハ生産物を構成し、
当該方法は、
前記III族窒化物半導体層に電位を提供する第1の電極を前記ウエハ生産物に形成する工程と、
前記窒化ガリウム系半導体層に電位を提供する第2の電極を前記ウエハ生産物に形成する工程と
を更に備える、ことを特徴とする請求項12~請求項21のいずれか一項に記載された方法。 - 前記III族窒化物バッファ層の厚さは100ナノメートル以下である、ことを特徴とする請求項22に記載された方法。
- 前記活性層及び前記窒化ガリウム系半導体層をエッチングして、前記III族窒化物半導体層を露出させる工程と、
前記III族窒化物半導体層に電位を提供する第1の電極を前記ウエハ生産物に形成する工程と、
前記窒化ガリウム系半導体層に電位を提供する第2の電極を前記ウエハ生産物に形成する工程と
を更に備える、ことを特徴とする請求項12~請求項21のいずれか一項に記載された方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/318,039 US8415180B2 (en) | 2009-04-30 | 2010-03-01 | Method for fabricating wafer product and method for fabricating gallium nitride based semiconductor optical device |
CN201080019145.6A CN102414796B (zh) | 2009-04-30 | 2010-03-01 | 制作晶片产品的方法及制作氮化镓基半导体光元件的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009111197A JP5491065B2 (ja) | 2009-04-30 | 2009-04-30 | ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法 |
JP2009-111197 | 2009-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010125850A1 true WO2010125850A1 (ja) | 2010-11-04 |
Family
ID=43032004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053260 WO2010125850A1 (ja) | 2009-04-30 | 2010-03-01 | ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8415180B2 (ja) |
JP (1) | JP5491065B2 (ja) |
CN (2) | CN102414796B (ja) |
TW (1) | TW201108486A (ja) |
WO (1) | WO2010125850A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140361247A1 (en) * | 2012-02-24 | 2014-12-11 | Seoul Viosys Co., Ltd. | Gallium nitride-based light emitting diode |
US20180226472A1 (en) * | 2013-07-09 | 2018-08-09 | Flosfia Inc. | Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013089616A (ja) * | 2011-10-13 | 2013-05-13 | Tamura Seisakusho Co Ltd | 結晶積層構造体及びその製造方法 |
CN103918061A (zh) | 2011-10-13 | 2014-07-09 | 株式会社田村制作所 | 结晶层叠结构体及其制造方法以及半导体元件 |
JP2013086976A (ja) * | 2011-10-13 | 2013-05-13 | Tamura Seisakusho Co Ltd | 結晶積層構造体の製造方法 |
JP2013089617A (ja) * | 2011-10-13 | 2013-05-13 | Tamura Seisakusho Co Ltd | 結晶積層構造体及びその製造方法、並びに半導体素子 |
JP2013251439A (ja) * | 2012-06-01 | 2013-12-12 | Tamura Seisakusho Co Ltd | 半導体積層構造体及び半導体素子 |
WO2014057748A1 (ja) * | 2012-10-12 | 2014-04-17 | 住友電気工業株式会社 | Iii族窒化物複合基板およびその製造方法、ならびにiii族窒化物半導体デバイスの製造方法 |
JP6322890B2 (ja) | 2013-02-18 | 2018-05-16 | 住友電気工業株式会社 | Iii族窒化物複合基板およびその製造方法、ならびにiii族窒化物半導体デバイスの製造方法 |
US9923063B2 (en) | 2013-02-18 | 2018-03-20 | Sumitomo Electric Industries, Ltd. | Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same |
KR20140104756A (ko) | 2013-02-21 | 2014-08-29 | 삼성전자주식회사 | 질화물 반도체 발광소자 및 그 제조방법 |
DE112014005131T5 (de) * | 2013-11-07 | 2016-07-28 | Ngk Insulators, Ltd. | GaN-Vorlagensubstrat und Einrichtungssubstrat |
KR102188493B1 (ko) * | 2014-04-25 | 2020-12-09 | 삼성전자주식회사 | 질화물 단결정 성장방법 및 질화물 반도체 소자 제조방법 |
JP2014199939A (ja) * | 2014-06-10 | 2014-10-23 | 株式会社タムラ製作所 | 結晶積層構造体及び半導体素子 |
CN104393130B (zh) * | 2014-12-15 | 2017-04-12 | 聚灿光电科技股份有限公司 | 一种GaN基LED外延结构及其制备方法 |
JP6195125B2 (ja) * | 2015-02-25 | 2017-09-13 | 株式会社タムラ製作所 | 窒化物半導体テンプレート及びその製造方法 |
GB201705755D0 (en) * | 2017-04-10 | 2017-05-24 | Norwegian Univ Of Science And Tech (Ntnu) | Nanostructure |
CN107587190A (zh) * | 2017-08-14 | 2018-01-16 | 南京大学 | 一种制备GaN衬底材料的方法 |
JP2020186153A (ja) * | 2019-05-15 | 2020-11-19 | トヨタ自動車株式会社 | 半導体層の成長方法、半導体装置の製造方法、及び、バルク結晶の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003077853A (ja) * | 2001-06-18 | 2003-03-14 | Toyoda Gosei Co Ltd | p型半導体の製造方法及び半導体素子 |
JP2006032739A (ja) * | 2004-07-16 | 2006-02-02 | Koha Co Ltd | 発光素子 |
JP2007134463A (ja) * | 2005-11-09 | 2007-05-31 | Koha Co Ltd | 窒化物半導体成長基板及びその製造方法 |
JP2008053608A (ja) * | 2006-08-28 | 2008-03-06 | Stanley Electric Co Ltd | 窒化物半導体結晶ないしそれを用いた発光素子及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999066565A1 (en) * | 1998-06-18 | 1999-12-23 | University Of Florida | Method and apparatus for producing group-iii nitrides |
WO2002103769A1 (en) * | 2001-06-18 | 2002-12-27 | Toyoda Gosei Co., Ltd. | P-type semiconductor manufacturing method and semiconductor device |
KR100691159B1 (ko) * | 2005-04-30 | 2007-03-09 | 삼성전기주식회사 | 질화갈륨계 반도체의 제조 방법 |
US20070134833A1 (en) * | 2005-12-14 | 2007-06-14 | Toyoda Gosei Co., Ltd. | Semiconductor element and method of making same |
JP2007165626A (ja) * | 2005-12-14 | 2007-06-28 | Toyoda Gosei Co Ltd | 発光素子及びその製造方法 |
JP5378829B2 (ja) * | 2009-02-19 | 2013-12-25 | 住友電気工業株式会社 | エピタキシャルウエハを形成する方法、及び半導体素子を作製する方法 |
-
2009
- 2009-04-30 JP JP2009111197A patent/JP5491065B2/ja not_active Expired - Fee Related
-
2010
- 2010-03-01 WO PCT/JP2010/053260 patent/WO2010125850A1/ja active Application Filing
- 2010-03-01 US US13/318,039 patent/US8415180B2/en not_active Expired - Fee Related
- 2010-03-01 CN CN201080019145.6A patent/CN102414796B/zh not_active Expired - Fee Related
- 2010-03-01 CN CN201410211067.XA patent/CN104022201A/zh active Pending
- 2010-03-17 TW TW099107867A patent/TW201108486A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003077853A (ja) * | 2001-06-18 | 2003-03-14 | Toyoda Gosei Co Ltd | p型半導体の製造方法及び半導体素子 |
JP2006032739A (ja) * | 2004-07-16 | 2006-02-02 | Koha Co Ltd | 発光素子 |
JP2007134463A (ja) * | 2005-11-09 | 2007-05-31 | Koha Co Ltd | 窒化物半導体成長基板及びその製造方法 |
JP2008053608A (ja) * | 2006-08-28 | 2008-03-06 | Stanley Electric Co Ltd | 窒化物半導体結晶ないしそれを用いた発光素子及びその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140361247A1 (en) * | 2012-02-24 | 2014-12-11 | Seoul Viosys Co., Ltd. | Gallium nitride-based light emitting diode |
US9853182B2 (en) * | 2012-02-24 | 2017-12-26 | Seoul Viosys Co., Ltd. | Gallium nitride-based light emitting diode |
US20180226472A1 (en) * | 2013-07-09 | 2018-08-09 | Flosfia Inc. | Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same |
Also Published As
Publication number | Publication date |
---|---|
CN102414796B (zh) | 2014-06-11 |
JP5491065B2 (ja) | 2014-05-14 |
US20120070929A1 (en) | 2012-03-22 |
JP2010263007A (ja) | 2010-11-18 |
US8415180B2 (en) | 2013-04-09 |
CN102414796A (zh) | 2012-04-11 |
CN104022201A (zh) | 2014-09-03 |
TW201108486A (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5491065B2 (ja) | ウエハ生産物を作製する方法、及び窒化ガリウム系半導体光素子を作製する方法 | |
US6541293B2 (en) | Semiconductor light-emitting device and manufacturing method thereof | |
JP4652888B2 (ja) | 窒化ガリウム系半導体積層構造体の製造方法 | |
WO2008054994A2 (en) | Deep ultraviolet light emitting device and method for fabricating same | |
TW200814369A (en) | III nitride compound semiconductor laminated structure | |
JP2013016711A (ja) | 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子 | |
JP2009526379A (ja) | 窒化ガリウム系半導体ヘテロ構造体の成長方法 | |
WO2014073139A1 (ja) | 紫外半導体発光素子およびその製造方法 | |
JP4882351B2 (ja) | 半導体積層基板、その製造方法及び発光素子 | |
JPH11145514A (ja) | 窒化ガリウム系半導体素子およびその製造方法 | |
JP4724901B2 (ja) | 窒化物半導体の製造方法 | |
JP2008118049A (ja) | GaN系半導体発光素子 | |
JP5128335B2 (ja) | GaN系半導体基板、その製造方法および半導体素子 | |
JP2008108924A (ja) | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 | |
KR100742986B1 (ko) | 컴플라이언트 기판을 갖는 질화갈륨계 화합물 반도체 소자의 제조 방법 | |
KR20120039324A (ko) | 질화갈륨계 반도체 발광소자 및 그 제조방법 | |
JP2005340762A (ja) | Iii族窒化物半導体発光素子 | |
JP2020070221A (ja) | 半導体成長用基板、半導体素子、半導体発光素子および半導体成長用基板の製造方法 | |
JP2001119065A (ja) | p型窒化物半導体及びその製造方法 | |
WO2008056632A1 (fr) | Élément électroluminescent semi-conducteur gan | |
JP2006128653A (ja) | 3−5族化合物半導体、その製造方法及びその用途 | |
JP2006024903A (ja) | 窒化ガリウム系半導体積層構造体 | |
KR100834698B1 (ko) | 질화 갈륨 박막 형성 방법 및 이 방법에 의해 제조된 질화갈륨 박막 기판 | |
JP2005340789A (ja) | Iii族窒化物半導体発光素子 | |
JP2014123765A (ja) | ウエハ生産物、窒化ガリウム系半導体光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080019145.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10769550 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13318039 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10769550 Country of ref document: EP Kind code of ref document: A1 |