WO2010123004A1 - 真空蒸着システム及び真空蒸着方法 - Google Patents

真空蒸着システム及び真空蒸着方法 Download PDF

Info

Publication number
WO2010123004A1
WO2010123004A1 PCT/JP2010/057011 JP2010057011W WO2010123004A1 WO 2010123004 A1 WO2010123004 A1 WO 2010123004A1 JP 2010057011 W JP2010057011 W JP 2010057011W WO 2010123004 A1 WO2010123004 A1 WO 2010123004A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
chamber
vacuum deposition
substrate
vacuum
Prior art date
Application number
PCT/JP2010/057011
Other languages
English (en)
French (fr)
Inventor
鉄也 島田
真典 飛田
秀幸 小田木
瞬 三上
信 青代
利春 倉内
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020117024826A priority Critical patent/KR101388890B1/ko
Priority to JP2011510325A priority patent/JP5372144B2/ja
Priority to EP10767061.4A priority patent/EP2423348A4/en
Publication of WO2010123004A1 publication Critical patent/WO2010123004A1/ja
Priority to US13/275,696 priority patent/US20120082778A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for manufacturing a lithium secondary battery using a solid electrolyte, and more particularly to a technique for forming a negative electrode layer by vacuum deposition.
  • lithium ion secondary batteries have been widely known as power sources for mobile phones and personal computers.
  • a lithium ion secondary battery uses a liquid electrolyte, liquid leakage, ignition, etc. may occur, and there are safety issues.
  • an all-solid-state lithium secondary battery using a solid material as an electrolyte material has been proposed, and its development is progressing.
  • an all-solid-state lithium secondary battery using a solid material an all-solid-type lithium secondary battery including a thin film is expected as a power source for a card-type electronic component or the like.
  • an all-solid-state lithium secondary battery made of a thin film forms a negative electrode made of lithium (Li) by vacuum vapor deposition.
  • lithium is a material that reacts very easily with water and air, When bringing the evaporating material into the vapor deposition chamber, it is necessary to pay sufficient attention to the atmosphere of the transfer path.
  • the present invention has been made in view of the problems of the prior art as described above.
  • the object of the present invention is to improve the film thickness and film quality when highly reactive lithium is continuously formed by vacuum deposition.
  • An object of the present invention is to provide a technique capable of efficiently forming a uniform film with an apparatus having a simple configuration.
  • the present invention has been made to solve the above problems, a vacuum vapor deposition chamber for depositing an evaporation material on a substrate by vapor deposition, a substrate connected to the vacuum vapor deposition chamber, the substrate being supplied between the vacuum vapor deposition chamber, and A substrate supply exchange system for exchanging, and a material supply exchange system for supplying and exchanging the evaporation material to and from the vacuum deposition chamber.
  • a material preparation area in which the evaporation material is disposed in the evaporation container and an evaporation container transfer area in which the evaporation container is transferred between the vacuum evaporation chamber are provided in an atmosphere blocked against the vacuum evaporation.
  • the material supply exchange system is connected to the material charging chamber for disposing the evaporation material in the evaporation container in a dry atmosphere cut off from the atmosphere, and connected to the material charging chamber, and This is also effective in the case of having a material supply exchange chamber for supplying and exchanging the evaporating material with a vacuum deposition chamber.
  • the heating means is also effective when it is a lamp heating type heater.
  • the present invention is a vacuum deposition method using any one of the above vacuum deposition systems, the step of arranging a predetermined amount of evaporation material in the evaporation container in the material charging region, and from the material charging region A step of conveying the evaporation container and carrying it into the vacuum deposition chamber and supplying the evaporation material; a step of heating the evaporation container in the vacuum deposition chamber to perform vacuum deposition on the substrate; and the end of the vacuum deposition And a step of discharging the evaporation container from the vacuum deposition chamber and returning it to the material charging region of the material supply exchange system.
  • the present invention is also effective when supplying and exchanging the evaporating material by transporting the container transport member using a container transport member to which a plurality of the evaporation containers can be detachably attached.
  • the present invention is most effective when the evaporating material is made of lithium.
  • the substrate is connected to the vacuum deposition chamber, the substrate is supplied to and exchanged with the vacuum deposition chamber, and the evaporation material is supplied between the vacuum deposition chamber.
  • a material supply exchange system for exchanging and the material supply exchange system has a material charging region for arranging the evaporation material in the evaporation container in a dry atmosphere cut off from the atmosphere. Since an evaporation container transport mechanism is provided for transporting the evaporation container to and from the vacuum deposition chamber, when the highly reactive lithium evaporation material is carried into the vacuum deposition chamber, the evaporation container is evacuated after completion of the deposition. When returning from the vapor deposition chamber to the material supply exchange system, it is possible to prevent moisture or the like from adhering to the evaporation material or the evaporation container and deteriorating the evaporation material.
  • heating means for heating the evaporation container supplied from the material supply exchange system is provided in the vacuum evaporation chamber, and the evaporation container is heated to perform vacuum evaporation on the substrate.
  • the evaporation material can be heated rapidly, and the evaporation container can be rapidly cooled after the deposition is completed.
  • the evaporation material can be used up in the evaporation, so a shutter or a film thickness monitor is used. Therefore, a film having a desired film thickness can be formed with an apparatus having a simple configuration. In addition, it is possible to reliably prevent deterioration of the lithium evaporating material due to change with time and change in atmosphere.
  • a plurality of evaporating containers can be provided by using a container transporting member to which a plurality of evaporating containers can be detachably attached and transporting the container transporting member to supply and replace the evaporating material Since the evaporation material can be supplied and exchanged in a batch, the efficiency of each process can be greatly improved.
  • a film having a uniform film thickness and film quality can be efficiently formed with an apparatus having a simple configuration.
  • FIG. ) Schematic configuration front view of an embodiment of a vacuum deposition system according to the present invention
  • A Plan view of a tray body showing an example of a material transport tray used in the embodiment
  • FIG. 1 is a schematic front view of an embodiment of a vacuum deposition system according to the present invention.
  • the vacuum vapor deposition system 1 of this Embodiment has the vacuum vapor deposition chamber 2 connected to the vacuum exhaust system which is not shown in figure.
  • the vacuum vapor deposition chamber 2 is configured to introduce, for example, an argon (Ar) gas that is a rare gas.
  • a substrate holder 20 that holds the substrate 50 is provided in the upper portion of the vacuum deposition chamber 2.
  • the substrate holder 20 is configured to rotate in a state in which the substrate 50 is directed in the horizontal direction by a drive motor 21 provided at the upper part of the vacuum vapor deposition chamber 2, for example.
  • a heater (heating means) 22 for heating the evaporation material 10 accommodated in the evaporation container 7 described later is disposed in the lower part of the vacuum vapor deposition chamber 2.
  • the evaporating container 7 containing the evaporating material 10 is configured to be indirectly heated at a predetermined distance.
  • the substrate 50 is supplied to and exchanged with the substrate 50 in the vacuum deposition chamber 2, and the evaporation material 10 is supplied to the vacuum deposition chamber 2.
  • the material supply exchange system 4 for supplying and exchanging them is connected.
  • the substrate supply exchange system 3 has a substrate transfer chamber 31 connected to the vacuum deposition chamber 2 via a gate valve 30.
  • the substrate transfer chamber 31 is formed in a vertically long shape, for example, and is connected to a vacuum exhaust system (not shown).
  • a substrate transfer robot 32 that can place the substrate 50 and move up and down is disposed.
  • the substrate preparation chamber 34 is connected to the upper portion of the substrate transfer chamber 31 via the gate valve 33, and further, for example, the substrate take-out chamber is connected to the lower portion of the substrate transfer chamber 31 via the gate valve 35. 36 is connected.
  • the substrate preparation chamber 34 and the substrate take-out chamber 36 are each connected to a vacuum exhaust system (not shown).
  • the material supply exchange system 4 has a material exchange chamber 43 connected to the vacuum deposition chamber 2 via a gate valve 40.
  • the material exchange chamber 43 is connected to a vacuum exhaust system (not shown) and is divided into a first material exchange chamber 41 and a second material exchange chamber 42.
  • the material exchange chamber 43 is configured to introduce, for example, argon (Ar) gas.
  • a tray transfer robot 44 for supplying and exchanging the material transfer tray (container transfer member) 6 is provided in the first material exchange chamber 41 adjacent to the vacuum deposition chamber 2.
  • the second material exchange chamber 42 is connected to a material charging chamber (material charging region) 45 described later via a gate valve 46.
  • FIG. 2 (a) to 2 (c) show examples of the material transport tray used in the present embodiment.
  • FIG. 2 (a) is a plan view of the tray body
  • FIG. 2 (b) is a view of the tray body.
  • FIG. 2C is a plan view showing a state in which the evaporation container is mounted
  • FIG. 2C is a cross-sectional view taken along line AA in FIG.
  • the material carrying tray 6 of the present embodiment has a tray body 60 made of, for example, a flat plate member.
  • the tray body 60 As a material of the tray body 60, for example, an inorganic material such as quartz glass, a metal material such as stainless steel, a carbon material, or the like can be used.
  • the tray main body 60 is provided with a plurality of circular mounting holes 61 for mounting the evaporation container (boat) 7 so as to penetrate the tray main body 60.
  • the evaporation container 7 is made of a metal material such as stainless steel, and has a substantially cup-shaped (bottomed cylindrical shape) body portion 70, and at the edge of the opening portion of the body portion 70.
  • a ring-shaped flange portion 71 is provided.
  • the body portion 70 of the evaporation container 7 has an outer diameter slightly smaller than the mounting hole 61 of the tray main body 60, and the flange portion 71 is formed to have an outer diameter slightly larger than the mounting hole 61 of the tray main body 60. Has been.
  • each evaporation container 7 is positioned at a predetermined position.
  • the evaporating material 10 is inserted and arranged in a state where each evaporating container 7 is mounted on the tray main body 60. The material 10 is conveyed together with the tray main body 60 in a state of being accommodated in each evaporation container 7.
  • the supply of the evaporation material 10 to the material transport tray 6 is performed in the material preparation chamber 45 described above (see FIG. 1).
  • the material charging chamber 45 is composed of a glove box that can be manually operated. By introducing, for example, argon (Ar) gas into the material charging chamber 45, the dew point temperature in the chamber is maintained at about ⁇ 50 ° C. to ⁇ 60 ° C., and a dry atmosphere cut off from the atmosphere is maintained. It is like that.
  • the evaporation material 10 made of lithium having a predetermined size and shape (for example, particle shape) is inserted into the evaporation container 7 attached to the tray body 60 by hand, for example, one by one. .
  • the amount of the evaporating material 10 accommodated in each evaporating container 7 is not particularly limited, but from the viewpoint of preventing the film thickness and film quality from changing due to changes over time, etc., once. It is preferable to set the amount to be evaporated by the vapor deposition step.
  • the amount of the evaporation material 10 accommodated in each evaporation container 7 can be appropriately changed depending on the size of the substrate, the position of the evaporation container 7 in the tray body 60, and the like.
  • a plurality of material transport trays 6 in which the evaporation material 10 is accommodated in each evaporation container 7 are mounted in the material supply cassette 8 and stored in the material charging chamber 45.
  • a material cassette raising / lowering mechanism 47 for raising and lowering the material supply cassette 8 is provided in the lower part of the second material exchange chamber 42.
  • the material cassette raising / lowering mechanism 47 has a stage 47a that is driven in the vertical direction by a drive motor 48 provided at the lower part of the second material exchange chamber 42, for example, and supports, for example, one material supply cassette 8 placed thereon. In this state, the stage 47a is moved up and down.
  • 3 to 6 are explanatory diagrams showing an example of the vapor deposition process in the present embodiment.
  • the substrate 50 carried into the substrate transfer chamber 31 via the substrate preparation chamber 34, The substrate is transferred into the vacuum deposition chamber 2 by the substrate transfer robot 32 and mounted on the substrate holder 20.
  • the material supply cassette 8 in which the evaporation material 10 is previously mounted on the material transport tray 6 is manually carried into the second material exchange chamber 42. Then, using the tray transfer robot 44, one material transfer tray 6 at a predetermined position (here, the uppermost stage) is carried into the vacuum vapor deposition chamber 2 via the first material exchange chamber 41, and this material transfer tray 6 Is positioned at a predetermined film formation position in the vacuum vapor deposition chamber 2, for example, a position above the heater 22 and away from the heater.
  • the pressure in the vacuum vapor deposition chamber 2 is adjusted to a predetermined value, and the heater 22 is operated to heat the evaporation material 10 through the evaporation container 7 as shown in FIG. All of the evaporation material 10 in the evaporation container 7 is evaporated to form a lithium layer on the substrate 50.
  • vapor deposition is performed while operating the drive motor 21 and rotating the substrate 50 in the horizontal direction.
  • the substrate 50 to be vapor-deposited next is carried into the substrate preparation chamber 34 in advance during vapor deposition.
  • the evaporating material 10 is inserted into the evaporating container 7 attached to the tray body 60 in the material charging chamber 45. It is preferable to perform the work as necessary.
  • the substrate 50 detached from the substrate holder 20 is carried into the substrate transfer chamber 31 by the substrate transfer robot 32 as shown in FIG. Further, the substrate transfer robot 32 is lowered, the substrate 50 is carried into the substrate take-out chamber 36 via the gate valve 35, and the substrate 50 is discharged from the substrate take-out chamber 36 using a substrate transfer robot (not shown).
  • the material transport tray 6 that has used up the evaporated material 10 is carried into the second material exchange chamber 42 from the vacuum vapor deposition chamber 2 via the first material exchange chamber 41 by the tray transport robot 44, and the material supply cassette.
  • the substrate transfer robot 32 is raised in the substrate transfer chamber 31, and the substrate 50 in the substrate preparation chamber 34 is transferred into the vacuum deposition chamber 2 by the substrate transfer robot 32, and the substrate holder Attach to 20.
  • the drive motor 48 is operated to raise the cassette lifting / lowering mechanism 47 in the second material exchange chamber 42, and for example, the middle material transport tray 6 of the material supply cassette 8 is moved to the first material transport cassette 6 using the tray transport robot 44.
  • the material is transferred into the vacuum vapor deposition chamber 2 through the material exchange chamber 41, and the material transport tray 6 is positioned at a film formation position in the vacuum vapor deposition chamber 2, for example, a film formation position above the heater 22.
  • the heater 22 is operated to heat the evaporation material 10 through the evaporation container 7, and all the evaporation material 10 in each evaporation container 7 is evaporated to be on the substrate 50. Li layer is formed.
  • the above-described steps are repeated. That is, the substrate 50 that has been deposited is carried into the substrate take-out chamber 36 by the substrate carrying robot 32 through the substrate carrying chamber 31, and the substrate 50 is discharged from the substrate take-out chamber 36.
  • the material transport tray 6 after the vapor deposition is carried into the second material exchange chamber 42 from the vacuum vapor deposition chamber 2 via the first material exchange chamber 41 by the tray transport robot 44, and the material supply cassette 8 is loaded. Attach to the position. Thereafter, when all of the evaporation material 10 in the material transport tray 6 of the material supply cassette 8 in the second material exchange chamber 42 is used up, the material supply cassette 8 is manually returned to the material preparation chamber 45 to supply a new material. The cassette 8 is manually carried into the second material exchange chamber 42.
  • the substrate 50 is connected to the vacuum deposition chamber 2, the substrate 50 is supplied to and exchanged with the vacuum deposition chamber 2, and the evaporation material 10 is supplied to the vacuum deposition chamber 2.
  • a material supply exchange system 4 for supplying and exchanging the material to and from the material, and the material supply exchange system 4 is an evaporation material in the evaporation container 7 in a dry atmosphere cut off from the atmosphere.
  • a material preparation area material preparation chamber 45
  • a tray transfer robot 44 for transferring the evaporation container 7 to and from the vacuum deposition chamber 2 is provided.
  • the vacuum deposition chamber 2 is provided with the heater 22 for heating the evaporation container 7 supplied from the material supply exchange system 4.
  • the evaporation material 10 can be rapidly heated, and the evaporation container 7 can be rapidly cooled after the evaporation is completed.
  • the evaporation material 10 can be used up in the evaporation, so that the shutter or the film A film having a desired film thickness can be formed with an apparatus having a simple configuration without using a thickness monitor.
  • the process of returning the evaporation container 7 to the material charging chamber 45 is repeated, whereby the inside of the vacuum deposition chamber 2 is changed.
  • the evaporation material 10 can be supplied in a high vacuum state.
  • a material transport tray 6 to which a plurality of evaporation containers 7 can be detachably attached is used, and the evaporation material 10 is supplied and exchanged by transporting the material transport tray 6.
  • the evaporating container 7 can be transported collectively to supply and replace the evaporating material 10, and the efficiency of each process can be greatly improved.
  • the present invention is not limited to the above-described embodiment, and various changes can be made.
  • the evaporating container 7 is mounted on the material transport tray 6 to supply and replace the evaporating material 10, but the present invention is not limited to this.
  • a transport robot or the like is used. It is also possible to supply and exchange a plurality of evaporation containers 7.
  • each chamber in the above embodiment is an example, and can be appropriately changed according to a required process.
  • the material supply exchange system can be configured as one large chamber.
  • the present invention can be applied to substrates of various materials, shapes, and sizes, such as silicon substrates, ceramic substrates, heat resistant resin substrates, mica substrates, and the like. Furthermore, although the present invention can be applied to materials other than lithium, it is most effective for a technique for manufacturing a lithium secondary battery using lithium for the negative electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、反応性の高いリチウムを真空蒸着によって連続的に成膜する場合に、膜厚及び膜質の均一な膜を効率良く簡素な構成の装置で形成することができる技術を提供するものである。本発明の真空蒸着システムは、基板50上に蒸発材料10を蒸着によって蒸着する真空蒸着室2と、真空蒸着室2に接続され、真空蒸着室2との間で基板50を供給し、かつ、交換するための基板供給交換系3と、蒸発材料10を真空蒸着室2との間で供給し、かつ、交換するための材料供給交換系4とを有する。材料供給交換系4は、大気に対して遮断された雰囲気中で、蒸発容器7内に蒸発材料10を配置する材料仕込み室45と、真空蒸着室2との間で蒸発容器7を搬送する材料交換室43とが設けられる。真空蒸着室2内には、材料供給交換系4から供給された蒸発容器7を加熱するためのヒータ22が設けられている。

Description

真空蒸着システム及び真空蒸着方法
 本発明は、固体電解質を用いたリチウム二次電池を製造する技術に関し、特に真空蒸着によって負極層を形成する技術に関する。
 従来から、携帯電話やパーソナルコンピュータの電源として、リチウムイオン二次電池が広く知られている。
 しかし、リチウムイオン二次電池は、液体電解質を用いているため、液漏れや発火等が発生する場合があり、安全性についての課題がある。
 そこで、近年、電解質の材料として固体材料を用いた全固体型のリチウム二次電池が提案されており、その開発が進展している。
 特に、固体材料を用いた全固体型のリチウム二次電池として、薄膜からなる全固体型のリチウム二次電池は、カード型の電子部品等の電源用として期待されている。
 ところで、薄膜からなる全固体型のリチウム二次電池は、リチウム(Li)からなる負極を真空蒸着によって形成するが、リチウムは水や空気に対して非常に反応しやすい材料であるため、リチウムからなる蒸発材料を蒸着室に搬入する際には、搬送経路の雰囲気に十分気を配る必要がある。
 さらに、従来技術においてリチウムを真空蒸着によって連続的に成膜する場合には、シャッタ機構や膜厚モニタを用い、膜厚の制御を行うようにしているが、従来技術では、装置構成が複雑化するとともに、リチウムの経時変化や雰囲気の変化等によってリチウムが劣化して膜厚や膜質が変化するおそれがある。
 なお、本発明に関連する先行技術文献としては、例えば以下のようなものがある。
特開2007-214109号公報
 本発明は、このような従来の技術の課題に鑑みてなされたもので、その目的とするところは、反応性の高いリチウムを真空蒸着によって連続的に成膜する場合に、膜厚及び膜質の均一な膜を効率良く簡素な構成の装置で形成することができる技術を提供することにある。
 上記課題を解決するためになされた本発明は、基板上に蒸発材料を蒸着によって蒸着する真空蒸着室と、前記真空蒸着室に接続され、当該真空蒸着室との間で基板を供給し、かつ、交換するための基板供給交換系と、前記蒸発材料を前記真空蒸着室との間で供給し、かつ、交換するための材料供給交換系とを有し、前記材料供給交換系は、大気に対して遮断された雰囲気中で、蒸発容器内に前記蒸発材料を配置する材料仕込み領域と、前記真空蒸着室との間で前記蒸発容器を搬送する蒸発容器搬送領域とが設けられ、前記真空蒸着室内には、前記材料供給交換系から供給された前記蒸発容器を加熱するための加熱手段が設けられている真空蒸着システムである。
 本発明において、前記材料供給交換系は、大気に対して遮断された乾燥雰囲気中で前記蒸発容器内に前記蒸発材料を配置する材料仕込み室と、当該材料仕込み室に接続され、真空中で前記真空蒸着室との間で前記蒸発材料の供給及び交換を行う材料供給交換室とを有する場合にも効果的である。
 本発明において、前記加熱手段は、ランプ加熱方式のヒータである場合にも効果的である。
 また、本発明は、前記いずれかの真空蒸着システムを用いた真空蒸着方法であって、前記材料仕込み領域において前記蒸発容器内に所定量の蒸発材料を配置する工程と、前記材料仕込み領域から前記蒸発容器を搬送して前記真空蒸着室内に搬入し前記蒸発材料を供給する工程と、前記真空蒸着室内において、前記蒸発容器を加熱して前記基板上に真空蒸着を行う工程と、前記真空蒸着終了後、前記真空蒸着室から前記蒸発容器を排出して前記材料供給交換系の前記材料仕込み領域に戻す工程とを有するものである。
 本発明では、複数の前記蒸発容器を着脱自在に装着可能な容器搬送部材を用い、当該容器搬送部材を搬送することにより、前記蒸発材料の供給及び交換を行う場合にも効果的である。
 本発明では、前記蒸発材料がリチウムからなる場合に最も効果的である。
 本発明装置の場合、真空蒸着室に接続され、当該真空蒸着室との間で基板を供給し、かつ、交換するための基板供給交換系と、蒸発材料を真空蒸着室との間で供給し、かつ、交換するための材料供給交換系とを有しており、材料供給交換系は、大気に対して遮断された乾燥雰囲気中で蒸発容器内に蒸発材料を配置する材料仕込み領域を有するとともに、真空蒸着室との間で蒸発容器を搬送する蒸発容器搬送機構が設けられていることから、反応性の高いリチウム蒸発材料を真空蒸着室に搬入する際、また、蒸着終了後に蒸発容器を真空蒸着室から材料供給交換系に戻す際において、水分等が蒸発材料や蒸発容器に付着して蒸発材料が劣化することを阻止できる。
 また、本発明によれば、真空蒸着室内には、材料供給交換系から供給された蒸発容器を加熱するための加熱手段が設けられており、この蒸発容器を加熱して基板上に真空蒸着を行うことにより、急速に蒸発材料を加熱し、蒸着終了後には、蒸発容器を急速に冷却することができる。
 また、本発明の場合、例えば、蒸発材料の量を1回の蒸着工程によって全て蒸発する量に設定することにより、蒸着の際に蒸発材料を使い切ることができるため、シャッタや膜厚モニタを用いることなく、簡素な構成の装置で所望の膜厚の成膜を行うことができる。また、特に経時変化や雰囲気変化に起因するリチウム蒸発材料の劣化を確実に防止することができる。
 さらに、本発明方法のように、例えばリチウムを収容した蒸発容器を用いて蒸着を行った後、この蒸発容器を材料仕込み領域に戻す工程を繰り返すことにより、真空蒸着室内を高真空にした状態で蒸発材料の供給が可能になる。
 本発明方法において、複数の蒸発容器を着脱自在に装着可能な容器搬送部材を用い、当該容器搬送部材を搬送することにより、前記蒸発材料の供給及び交換を行うようにすれば、複数の蒸発容器を一括して搬送して蒸発材料の供給及び交換が可能になるため、各工程の効率を大幅に向上させることができる。
 本発明によれば、反応性の高いリチウムを真空蒸着によって連続的に成膜する場合に、膜厚及び膜質の均一な膜を効率良く簡素な構成の装置で形成することができる。
本発明に係る真空蒸着システムの実施の形態の概略構成正面図 (a):同実施の形態に用いる材料搬送トレイの例を示すトレイ本体の平面図、(b):材料搬送トレイに蒸発容器を装着した状態を示す平面図、(c):図2(b)のA-A線断面図 同実施の形態における蒸着工程の一例を示す説明図(その1) 同実施の形態における蒸着工程の一例を示す説明図(その2) 同実施の形態における蒸着工程の一例を示す説明図(その3) 同実施の形態における蒸着工程の一例を示す説明図(その4)
1…真空蒸着システム、2…真空蒸着室、3…基板供給交換系、4…材料供給交換系、6…材料搬送トレイ(容器搬送部材)、7…蒸発容器、8…材料供給カセット、9…保護層形成室、10…蒸発材料、22…ヒータ(加熱手段)、31…基板搬送室、32…基板搬送ロボット、34…基板仕込み室、36…基板取り出し室、41…第1の材料交換室、42…第2の材料交換室、43…材料交換室、44…トレイ搬送ロボット、45…材料仕込み室(材料仕込み領域)、50…基板
 以下、本発明の好ましい実施の形態を図面を参照して詳細に説明する。
 図1は、本発明に係る真空蒸着システムの実施の形態の概略構成正面図である。
 図1に示すように、本実施の形態の真空蒸着システム1は、図示しない真空排気系に接続された真空蒸着室2を有している。また、真空蒸着室2は、希ガスである例えばアルゴン(Ar)ガスを導入するように構成されている。
 この真空蒸着室2内の上部には、基板50を保持する基板ホルダー20を有している。ここで、基板ホルダー20は、例えば真空蒸着室2の上部に設けられた駆動モータ21によって、基板50を水平方向に向けた状態で回転するように構成されている。
 一方、真空蒸着室2内の下部には、後述する蒸発容器7内に収容された蒸発材料10を加熱するためのヒータ(加熱手段)22が配置されている。
 本発明の場合、特に限定されることはないが、蒸発材料10を急速に加熱し、かつ、蒸発容器7を急速に冷却する観点からは、ヒータ22として、ランプ加熱方式のものを用い、後述するように、蒸発材料10を収容する蒸発容器7を所定の距離をおいて間接的に加熱するように構成することが好ましい。
 本実施の形態の場合、真空蒸着室2には、基板50を真空蒸着室2との間で供給し、かつ、交換するための基板供給交換系3と、蒸発材料10を真空蒸着室2との間で供給し、かつ、交換するための材料供給交換系4とが接続されている。
 基板供給交換系3は、ゲートバルブ30を介して真空蒸着室2に接続された基板搬送室31を有している。
 この基板搬送室31は、例えば縦長形状に形成され、図示しない真空排気系に接続されている。そして、基板搬送室31内には、基板50を載置して昇降可能な基板搬送ロボット32が配置されている。
 本実施の形態では、例えば基板搬送室31の上側部分においてゲートバルブ33を介して基板仕込み室34が接続され、さらに、例えば基板搬送室31の下側部分においてゲートバルブ35を介して基板取り出し室36が接続されている。
 これら基板仕込み室34、基板取り出し室36は、それぞれ図示しない真空排気系に接続されている。
 一方、材料供給交換系4は、ゲートバルブ40を介して真空蒸着室2に接続された材料交換室43を有している。この材料交換室43は、図示しない真空排気系に接続されており、第1の材料交換室41と第2の材料交換室42に区分けされている。
 また、材料交換室43は、例えばアルゴン(Ar)ガスを導入するように構成されている。
 真空蒸着室2に隣接する第1の材料交換室41内には、材料搬送トレイ(容器搬送部材)6を供給・交換するためのトレイ搬送ロボット44が設けられている。
 また、第2の材料交換室42は、後述する材料仕込み室(材料仕込み領域)45が、ゲートバルブ46を介して接続されている。
 図2(a)~(c)は、本実施の形態に用いる材料搬送トレイの例を示すもので、図2(a)は、トレイ本体の平面図、図2(b)は、トレイ本体に蒸発容器を装着した状態を示す平面図、図2(c)は、図2(b)のA-A線断面図である。
 図2(a)に示すように、本実施の形態の材料搬送トレイ6は、例えば平板状の部材からなるトレイ本体60を有している。
 このトレイ本体60の材料としては、例えば、石英ガラス等の無機材料、ステンレス等の金属材料、炭素材料等を用いることができる。
 また、トレイ本体60には、蒸発容器(ボート)7を装着するための例えば円形の装着孔61が、トレイ本体60を貫通するように複数個設けられている。
 本例では、トレイ本体60に、3×3=9個の装着孔61が行列状に設けられている。
 一方、本例の場合、蒸発容器7は、例えばステンレス等金属材料からなるもので、ほぼコップ形状(有底円筒形状)の胴体部70を有し、この胴体部70の開口部分の縁部に、例えばリング形状のフランジ部71が設けられている。
 ここで、蒸発容器7の胴体部70は、トレイ本体60の装着孔61より若干小さい外径を有し、フランジ部71は、トレイ本体60の装着孔61より若干大きい外径を有するように形成されている。
 このような構成により、トレイ本体60の各装着孔61内に、それぞれ上方から蒸発容器7の胴体部70を挿入した場合に、蒸発容器7のフランジ部71がトレイ本体60の表面に当接して、各蒸発容器7が所定の位置に位置決めされるようになっている。
 そして、本実施の形態の材料搬送トレイ6は、図2(c)に示すように、各蒸発容器7が、トレイ本体60に装着された状態で蒸発材料10が挿入配置され、これにより各蒸発材料10が、各蒸発容器7に収容された状態でトレイ本体60と共に搬送されることになる。
 本実施の形態、材料搬送トレイ6への蒸発材料10の供給は、上述した材料仕込み室45内において行う(図1参照)。
 この材料仕込み室45は、人手で作業が可能なグローブボックスから構成されている。
 材料仕込み室45内には、例えばアルゴン(Ar)ガスを導入することにより、室内の露点温度が-50℃~-60℃程度に保たれ、大気に対して遮断された乾燥雰囲気が保たれるようになっている。
 そして、材料仕込み室45内において、所定の大きさ・形状(例えば粒子形状)のリチウムからなる蒸発材料10を、トレイ本体60に装着された蒸発容器7内に、例えば1個づつ人手によって挿入する。
 本発明の場合、各蒸発容器7内に収容される蒸発材料10の量は特に限定されることはないが、経時変化等によって膜厚や膜質が変化することを防止する観点からは、1回の蒸着工程によって全て蒸発する量に設定することが好ましい。
 なお、各蒸発容器7内に収容される蒸発材料10の量は、基板の大きさやトレイ本体60における蒸発容器7の位置等によって適宜変更することができる。
 ここで、各蒸発容器7内に蒸発材料10が収容された材料搬送トレイ6は、材料供給カセット8に複数個装着され、材料仕込み室45内に保管される。
 そして、必要に応じてこの材料供給カセット8を人手によって第2の材料交換室42内に搬入する。
 第2の材料交換室42内の下部には、材料供給カセット8を昇降させるための材料カセット昇降機構47が設けられている。
 この材料カセット昇降機構47は、例えば第2の材料交換室42の下部に設けられた駆動モータ48によって上下方向に駆動されるステージ47aを有し、例えば一つの材料供給カセット8を載置支持した状態で、このステージ47aを昇降させるように構成されている。
 図3~図6は、本実施の形態における蒸着工程の一例を示す説明図である。
 本実施の形態において、基板50上にリチウムからなる蒸発材料10の蒸着を行う場合には、図3に示すように、基板仕込み室34を介して基板搬送室31内に搬入した基板50を、基板搬送ロボット32によって真空蒸着室2内に搬入し、基板ホルダー20に装着する。
 その一方、予め蒸発材料10を材料搬送トレイ6に装着しておいた材料供給カセット8を人手によって第2の材料交換室42内に搬入する。そして、トレイ搬送ロボット44を用い、所定の位置(ここでは最上段)の一つの材料搬送トレイ6を第1の材料交換室41を介して真空蒸着室2内に搬入し、この材料搬送トレイ6を、真空蒸着室2内の所定の成膜位置、例えばヒータ22の上方にヒータに対して離間した位置に位置決めする。
 そして、この状態で、真空蒸着室2内の圧力を所定の値に調整し、図4に示すように、ヒータ22を動作させて蒸発容器7を介して蒸発材料10を加熱することにより、各蒸発容器7内の蒸発材料10を全て蒸発させ基板50上にリチウム層を形成する。
 本工程では、駆動モータ21を動作させ、基板50を水平方向に向けて回転させながら蒸着を行う。
 なお、効率良く連続的に蒸着を行う観点からは、例えば、図4に示すように、蒸着中に、次に蒸着を行うべき基板50を予め基板仕込み室34内に搬入しておくことが好ましい。
 また、同様に効率良く連続的に蒸着を行う観点からは、例えば、図4に示すように、材料仕込み室45内において、トレイ本体60に装着された蒸発容器7内への蒸発材料10の挿入作業を適宜必要に応じて行うことが好ましい。
 蒸着工程終了後は、図5に示すように、基板ホルダー20から離脱させた基板50を、基板搬送ロボット32によって基板搬送室31内に搬入する。
 さらに基板搬送ロボット32を下降させ、ゲートバルブ35を介して基板取り出し室36内に基板50を搬入し、さらに、図示しない基板搬送ロボットを用いて基板取り出し室36から基板50を排出する。
 その一方、蒸発材料10を使い切った材料搬送トレイ6を、トレイ搬送ロボット44によって真空蒸着室2から第1の材料交換室41を介して第2の材料交換室42内に搬入し、材料供給カセット8の元の最上段の位置に装着する。
 その後、図6に示すように、基板搬送室31内において、基板搬送ロボット32を上昇させ、基板仕込み室34内の基板50を、基板搬送ロボット32によって真空蒸着室2内に搬入し、基板ホルダー20に装着する。
 その一方、駆動モータ48を動作させて第2の材料交換室42内においてカセット昇降機構47を上昇させ、トレイ搬送ロボット44を用い、材料供給カセット8の例えば中段の材料搬送トレイ6を第1の材料交換室41を介して真空蒸着室2内に搬入し、この材料搬送トレイ6を、真空蒸着室2内の成膜位置例えばヒータ22の上方の成膜位置に位置決めする。
 そして、上述したように、真空蒸着室2内において、ヒータ22を動作させて蒸発容器7を介して蒸発材料10を加熱し、各蒸発容器7内の蒸発材料10を全て蒸発させ基板50上にLi層を形成する。
 蒸着終了後は、上述した工程を繰り返す。すなわち、蒸着が終了した基板50を、基板搬送ロボット32によって基板搬送室31を介して基板取り出し室36内に搬入し、さらに基板取り出し室36から基板50を排出する。
 また、蒸着が終了した材料搬送トレイ6を、トレイ搬送ロボット44によって真空蒸着室2から第1の材料交換室41を介して第2の材料交換室42内に搬入し、材料供給カセット8の元の位置に装着する。
 その後、第2の材料交換室42内における材料供給カセット8の材料搬送トレイ6の蒸発材料10を全て使い切った場合には、人手によって材料供給カセット8を材料仕込み室45に戻し、新たな材料供給カセット8を人手によって第2の材料交換室42内に搬入する。
 以下、上述した工程を繰り返すようにする。
 なお、蒸着が終了した蒸発容器7については、純水を用いて洗浄するとよい。
 純水を用いれば、リチウムを効率良くほぼ完全に除去することができる。
 本実施の形態の場合、真空蒸着室2に接続され、真空蒸着室2との間で基板50を供給し、かつ、交換するための基板供給交換系3と、蒸発材料10を真空蒸着室2との間で供給し、かつ、交換するための材料供給交換系4とを有しており、材料供給交換系4は、大気に対して遮断された乾燥雰囲気中で蒸発容器7内に蒸発材料10を配置する材料仕込み領域(材料仕込み室45)を有するとともに、真空蒸着室2との間で蒸発容器7を搬送するトレイ搬送ロボット44が設けられていることから、反応性の高いリチウムからなる蒸発材料10を真空蒸着室2に搬入する際、また、蒸着終了後に蒸発容器7を真空蒸着室2から材料供給交換系4に戻す際において、水分等が蒸発材料10や蒸発容器7に付着して蒸発材料10が劣化することを阻止できる。
 また、本実施の形態によれば、真空蒸着室2内には、材料供給交換系4から供給された蒸発容器7を加熱するためのヒータ22が設けられており、この蒸発容器7を加熱して基板50上に真空蒸着を行うことにより、急速に蒸発材料10を加熱し、蒸着終了後には、蒸発容器7を急速に冷却することができる。
 また、本実施の形態の場合、例えば、蒸発材料10の量を1回の蒸着工程によって全て蒸発する量に設定することにより、蒸着の際に蒸発材料10を使い切ることができるため、シャッタや膜厚モニタを用いることなく、簡素な構成の装置で所望の膜厚の成膜を行うことができる。また、特に経時変化や雰囲気変化に起因するリチウムからなる蒸発材料10の劣化を確実に防止することができる。
 さらに、本実施の形態のように、例えばリチウムを収容した蒸発容器7を用いて蒸着を行った後、この蒸発容器7を材料仕込み室45に戻す工程を繰り返すことにより、真空蒸着室2内を高真空にした状態で蒸発材料10の供給が可能になる。
 一方、本実施の形態では、複数の蒸発容器7を着脱自在に装着可能な材料搬送トレイ6を用い、この材料搬送トレイ6を搬送することにより蒸発材料10の供給及び交換を行うことから、複数の蒸発容器7を一括して搬送して蒸発材料10の供給及び交換ができ、各工程の効率を大幅に向上させることができる。
 なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
 例えば、上述の実施の形態においては、蒸発容器7を材料搬送トレイ6に装着して蒸発材料10の供給及び交換を行うようにしたが、本発明はこれに限られず、例えば搬送ロボット等を用いて複数の蒸発容器7の供給及び交換を行うことも可能である。
 ただし、蒸着工程を効率良く行う観点からは、上記実施の形態のように、蒸発容器7を材料搬送トレイ6に装着して蒸発材料10の供給及び交換を行うことが好ましい。
 また、上記実施の形態における各室の配置構成は一例であり、必要とするプロセスに応じて適宜変更することができる。例えば、材料供給交換系を一つの大きな室として構成することもできる。
 さらに、本発明は、種々の材料、形状、大きさの基板、例えば、シリコン基板、セラミックス基板、耐熱樹脂基板、雲母基板等に適用することができるものである。
 さらにまた、本発明はリチウム以外の材料にも適用することができるが、負極にリチウムを用いるリチウム二次電池を製造する技術に最も有効となるものである。 

Claims (6)

  1.  基板上に蒸発材料を蒸着によって蒸着する真空蒸着室と、
     前記真空蒸着室に接続され、当該真空蒸着室との間で基板を供給し、かつ、交換するための基板供給交換系と、前記蒸発材料を前記真空蒸着室との間で供給し、かつ、交換するための材料供給交換系とを有し、
     前記材料供給交換系は、大気に対して遮断された雰囲気中で、蒸発容器内に前記蒸発材料を配置する材料仕込み領域と、前記真空蒸着室との間で前記蒸発容器を搬送する蒸発容器搬送領域とが設けられ、
     前記真空蒸着室内には、前記材料供給交換系から供給された前記蒸発容器を加熱するための加熱手段が設けられている真空蒸着システム。
  2.  前記材料供給交換系は、大気に対して遮断された乾燥雰囲気中で前記蒸発容器内に前記蒸発材料を配置する材料仕込み室と、当該材料仕込み室に接続され、真空中で前記真空蒸着室との間で前記蒸発材料の供給及び交換を行う材料供給交換室とを有する請求項1記載の真空蒸着システム。
  3.  前記加熱手段は、ランプ加熱方式のヒータである請求項1又は2のいずれか1項記載の真空蒸着システム。
  4.  基板上に蒸発材料を蒸着によって蒸着する真空蒸着室と、前記真空蒸着室に接続され、当該真空蒸着室との間で基板を供給し、かつ、交換するための基板供給交換系と、前記蒸発材料を前記真空蒸着室との間で供給し、かつ、交換するための材料供給交換系とを有し、前記材料供給交換系は、大気に対して遮断された雰囲気中で、蒸発容器内に前記蒸発材料を配置する材料仕込み領域と、前記真空蒸着室との間で前記蒸発容器を搬送する蒸発容器搬送領域とが設けられ、前記真空蒸着室内には、前記材料供給交換系から供給された前記蒸発容器を加熱するための加熱手段が設けられている真空蒸着システムを用いた真空蒸着方法であって、
     前記材料仕込み領域において前記蒸発容器内に所定量の蒸発材料を配置する工程と、
     前記材料仕込み領域から前記蒸発容器を搬送して前記真空蒸着室内に搬入し前記蒸発材料を供給する工程と、
     前記真空蒸着室内において、前記蒸発容器を加熱して前記基板上に真空蒸着を行う工程と、
     前記真空蒸着終了後、前記真空蒸着室から前記蒸発容器を排出して前記材料供給交換系の前記材料仕込み領域に戻す工程とを有する真空蒸着方法。
  5.  複数の前記蒸発容器を着脱自在に装着可能な容器搬送部材を用い、当該容器搬送部材を搬送することにより、前記蒸発材料の供給及び交換を行う請求項4記載の真空蒸着方法。
  6.  前記蒸発材料は、リチウムからなる請求項4又は5のいずれか1項記載の真空蒸着方法。
     
PCT/JP2010/057011 2009-04-21 2010-04-20 真空蒸着システム及び真空蒸着方法 WO2010123004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117024826A KR101388890B1 (ko) 2009-04-21 2010-04-20 진공 증착 시스템 및 진공 증착 방법
JP2011510325A JP5372144B2 (ja) 2009-04-21 2010-04-20 真空蒸着システム及び真空蒸着方法
EP10767061.4A EP2423348A4 (en) 2009-04-21 2010-04-20 STEERING SYSTEM AND STEAMING PROCEDURE
US13/275,696 US20120082778A1 (en) 2009-04-21 2011-10-18 Vacuum deposition system and vacuum deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-103431 2009-04-21
JP2009103431 2009-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/275,696 Continuation US20120082778A1 (en) 2009-04-21 2011-10-18 Vacuum deposition system and vacuum deposition method

Publications (1)

Publication Number Publication Date
WO2010123004A1 true WO2010123004A1 (ja) 2010-10-28

Family

ID=43011121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057011 WO2010123004A1 (ja) 2009-04-21 2010-04-20 真空蒸着システム及び真空蒸着方法

Country Status (5)

Country Link
US (1) US20120082778A1 (ja)
EP (1) EP2423348A4 (ja)
JP (1) JP5372144B2 (ja)
KR (1) KR101388890B1 (ja)
WO (1) WO2010123004A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005126A1 (ja) * 2010-07-06 2012-01-12 本城金属株式会社 リチウム積層部材およびその製造方法
JP2016014175A (ja) * 2014-07-02 2016-01-28 株式会社アルバック 成膜装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526164B (zh) * 2013-10-23 2015-09-09 京东方科技集团股份有限公司 一种蒸镀设备
US20160281212A1 (en) 2015-03-24 2016-09-29 Siva Power, Inc. Thermal management of evaporation sources
CN104789930B (zh) * 2015-04-24 2016-05-11 京东方科技集团股份有限公司 蒸镀设备及采用该蒸镀设备的操作方法
CN105154832B (zh) * 2015-10-15 2018-06-08 京东方科技集团股份有限公司 蒸镀设备和蒸镀方法
JP6595421B2 (ja) * 2016-08-24 2019-10-23 東芝メモリ株式会社 気化システム
JP6959680B1 (ja) * 2020-11-13 2021-11-05 株式会社シンクロン 成膜装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173767A (ja) * 1989-11-30 1991-07-29 Mitsubishi Electric Corp 薄膜形成装置
JP2000223269A (ja) * 1999-01-28 2000-08-11 Anelva Corp 有機薄膜形成装置
JP2002097564A (ja) * 2000-07-19 2002-04-02 Sumitomo Electric Ind Ltd アルカリ金属薄膜部材およびその製造方法
JP2007002291A (ja) * 2005-06-23 2007-01-11 Utec:Kk 蒸発源、蒸着装置及び蒸着方法
JP2007214109A (ja) 2006-01-10 2007-08-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI262034B (en) * 2002-02-05 2006-09-11 Semiconductor Energy Lab Manufacturing system, manufacturing method, method of operating a manufacturing apparatus, and light emitting device
TWI277363B (en) * 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
US20040123804A1 (en) * 2002-09-20 2004-07-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
JP2007231368A (ja) * 2006-03-01 2007-09-13 Fujifilm Corp 蒸着材料蒸発装置
KR100855582B1 (ko) * 2007-01-12 2008-09-03 삼성전자주식회사 액 공급 장치 및 방법, 상기 장치를 가지는 기판 처리설비, 그리고 기판 처리 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173767A (ja) * 1989-11-30 1991-07-29 Mitsubishi Electric Corp 薄膜形成装置
JP2000223269A (ja) * 1999-01-28 2000-08-11 Anelva Corp 有機薄膜形成装置
JP2002097564A (ja) * 2000-07-19 2002-04-02 Sumitomo Electric Ind Ltd アルカリ金属薄膜部材およびその製造方法
JP2007002291A (ja) * 2005-06-23 2007-01-11 Utec:Kk 蒸発源、蒸着装置及び蒸着方法
JP2007214109A (ja) 2006-01-10 2007-08-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005126A1 (ja) * 2010-07-06 2012-01-12 本城金属株式会社 リチウム積層部材およびその製造方法
JP2016014175A (ja) * 2014-07-02 2016-01-28 株式会社アルバック 成膜装置

Also Published As

Publication number Publication date
KR101388890B1 (ko) 2014-04-23
JP5372144B2 (ja) 2013-12-18
JPWO2010123004A1 (ja) 2012-10-25
KR20120000094A (ko) 2012-01-03
EP2423348A1 (en) 2012-02-29
US20120082778A1 (en) 2012-04-05
EP2423348A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5372144B2 (ja) 真空蒸着システム及び真空蒸着方法
JP2859632B2 (ja) 成膜装置及び成膜方法
JP5247570B2 (ja) 薄膜リチウム二次電池製造装置及び薄膜リチウム二次電池製造方法
JP4312289B2 (ja) 有機薄膜形成装置
CN114908326B (zh) 半导体工艺设备及形成叠层薄膜结构的方法
JP4570403B2 (ja) 蒸発装置、蒸着装置および蒸着装置における蒸発装置の切替方法
KR101206162B1 (ko) 하향식 열적 유도 증착에 의한 선형의 대면적 유기소자양산장비
JP5116525B2 (ja) スパッタ装置
WO2009157228A1 (ja) スパッタリング装置、スパッタリング方法及び発光素子の製造方法
JP2020097779A (ja) 成膜装置
JP2008038225A (ja) 成膜装置、成膜システムおよび成膜方法
JP5526240B2 (ja) 薄膜リチウム二次電池製造装置及び薄膜リチウム二次電池製造方法
TW200832517A (en) Film deposition apparatus, film deposition system, and film deposition method
JPH11126686A (ja) 有機エレクトロルミネセンス素子の製造装置
CN214458286U (zh) 一种集成原子层沉积功能的磁控溅射镀膜系统
US6884299B2 (en) Deposition apparatus for organic light-emitting devices
JPWO2010032817A1 (ja) プラズマディスプレイパネルの基板への保護膜の形成方法及び同保護膜の形成装置
KR20100137723A (ko) 스퍼터 장치
JP5764409B2 (ja) 薄膜リチウム二次電池製造装置及び薄膜リチウム二次電池製造方法
JP2009299173A (ja) 真空装置
JP2010242152A (ja) 真空装置及びサセプタのセット
JP4837163B2 (ja) スパッタリング装置
JP2003347393A (ja) 基板保持装置、及びその基板保持装置を用いた真空処理装置
JP3775909B2 (ja) 有機薄膜製造方法、及び有機蒸着装置
JP2001254171A (ja) アーク式イオンプレーティング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510325

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117024826

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010767061

Country of ref document: EP