WO2010122936A1 - ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート - Google Patents

ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート Download PDF

Info

Publication number
WO2010122936A1
WO2010122936A1 PCT/JP2010/056705 JP2010056705W WO2010122936A1 WO 2010122936 A1 WO2010122936 A1 WO 2010122936A1 JP 2010056705 W JP2010056705 W JP 2010056705W WO 2010122936 A1 WO2010122936 A1 WO 2010122936A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
resin composition
weight
fluoride resin
titanium oxide
Prior art date
Application number
PCT/JP2010/056705
Other languages
English (en)
French (fr)
Inventor
日高知之
鈴木和元
會田光徳
坂部宏
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2011510297A priority Critical patent/JP5593309B2/ja
Priority to CN201080016407.3A priority patent/CN102395624B/zh
Priority to EP10766993.9A priority patent/EP2423259B1/en
Priority to US13/265,182 priority patent/US9029453B2/en
Priority to KR1020117027482A priority patent/KR101334571B1/ko
Publication of WO2010122936A1 publication Critical patent/WO2010122936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a polyvinylidene fluoride resin composition containing titanium oxide, a white resin film formed from the resin composition, and a back sheet for a solar cell module including the white resin film.
  • a solar cell is a power generator that directly converts sunlight into electrical energy.
  • Solar cells are broadly classified into those using silicon semiconductors and those using compound semiconductors.
  • Silicon semiconductor solar cells include single crystal silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon solar cells.
  • a compound semiconductor is a semiconductor formed by combining a plurality of elements.
  • the compound semiconductor battery includes a solar battery using a group III-V compound semiconductor (for example, GaAs) made of a combination of a group III element such as Al, Ga and In and a group V element such as As and Sb. Zn, Cd And a solar cell using a II-VI compound semiconductor (for example, CdS, CdTe) composed of a combination of a Group II element such as S and Se and Te.
  • group III-V compound semiconductor for example, GaAs
  • group V element such as Al, Ga and In
  • a group V element such as As and Sb. Zn
  • a solar cell using a II-VI compound semiconductor for example, CdS, CdTe
  • copper indium selenide solar cells, dye-sensitized solar cells, organic thin-film solar cells, and the like are being developed.
  • a typical module of a solar cell includes a surface protective material, a sealing material, a solar battery cell, a back surface protective material, and a frame.
  • the main components of the solar cell module 71 include a surface protective material 72, a sealing material 73, solar cells 74, and a back surface protective material 76.
  • a plurality of solar cells 74 are connected in series by wiring 75 to constitute a solar cell module.
  • a frame (not shown) is disposed at the end or peripheral edge of the solar cell module.
  • the surface protective material 72 for example, a tempered glass plate, a transparent plastic plate, or a transparent plastic film is used.
  • the sealing material 73 an ethylene-vinyl acetate copolymer is widely used.
  • the back surface protective material 76 for example, a single-layer or multilayer plastic film, a plastic plate, a tempered glass plate, or a metal plate (aluminum plate, painted steel plate, etc.) is used.
  • the frame for example, aluminum that is lightweight and excellent in environmental resistance is widely used.
  • the structure of the solar battery cell 74 varies depending on the type of solar battery.
  • a silicon semiconductor solar cell typically has a structure in which n-type silicon and p-type silicon are joined and electrodes are arranged on each.
  • As another solar battery cell for example, there is one having a layer configuration of “collecting electrode / transparent conductive layer / semiconductor photoactive layer / reflective layer / conductive substrate”.
  • the semiconductor photoactive layer is, for example, an amorphous silicon semiconductor.
  • a solar cell module is formed by connecting a plurality of solar cells in a package using a surface protective material, a sealing material, and a back surface protective material. What connected several solar cell modules is called a solar cell array.
  • Solar cell modules (including arrays) are generally installed outdoors, and then maintained in operation for a long period.
  • the solar cell module surface protection material, sealing material, and back surface protection material (hereinafter referred to as “back sheet”) are provided with solar cells over a long period of time in the harsh natural environment surrounding the solar cell module. It is required to have a protective function.
  • the back sheet for the solar cell module is directly exposed to the outdoor surface (outermost surface) opposite to the solar cell.
  • the surface (adjacent surface with the sealing material) of the solar cell back sheet on the solar cell side is exposed to sunlight through the gaps between the solar battery cells and the gaps between the solar battery modules.
  • the solar cell backsheet has light resistance, weather resistance, heat resistance, moisture resistance, water vapor barrier properties, electrical insulation, voltage resistance, mechanical properties, chemical resistance, salt resistance, antifouling properties, It is required to be excellent in various properties such as adhesiveness with a sealing material.
  • the solar cell module backsheet has a beautiful appearance on the surface of the solar battery cell, and also efficiently reflects sunlight incident on the backsheet. It is required to have a function to If the incident light transmitted through the gaps between the solar cells can be efficiently reflected by the back sheet, the power conversion efficiency of the solar cells is improved by the reflected light.
  • Patent Document 1 JP 2002-1000078 discloses a three-layer laminate of a hydrolysis-resistant resin film, a metal oxide-coated film, and a white resin film; and a hydrolysis-resistant film coated with a metal oxide.
  • a back sheet for a solar cell cover material comprising a two-layer laminate of a decomposable resin film and a white resin film is disclosed.
  • Patent Document 1 by disposing a white resin film on the innermost side of the back sheet, the light incident on the back sheet can be effectively reflected and reused, and the power conversion efficiency of the solar cell can be increased.
  • a white resin film comprising a resin composition in which a white pigment such as titanium oxide is added to a thermoplastic resin such as polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyacrylate, polyethylene naphthalate, and acrylic. ing.
  • Patent Document 2 discloses a solar cell module in which a cured coating film of a curable functional group-containing fluoropolymer paint is formed on at least one surface of a water-impermeable sheet. A backsheet for use is disclosed.
  • Patent Document 2 it is desirable to add a white pigment such as titanium oxide or a black pigment such as carbon black to a curable functional group-containing fluoropolymer paint in order to make the appearance of the solar cell module beautiful.
  • a white pigment such as titanium oxide or a black pigment such as carbon black
  • Patent Document 2 exemplifies a wide variety of fluoropolymers. Among them, tetrafluoroethylene (TFE) polymer is a pigment having dispersibility, weather resistance, and a curable functional group-containing monomer. It is described as preferable because it is excellent in copolymerizability and chemical resistance.
  • TFE tetrafluoroethylene
  • the example of Patent Document 2 shows a back sheet in which a white cured coating film is formed on a water-impermeable sheet using a white paint containing a curable TFE polymer and titanium oxide.
  • Patent Document 3 discloses a plastic film for a solar cell back surface protective film having an average reflectance in the wavelength range of 600 to 1400 nm of 70% or more. This plastic film for a solar cell back surface protective film has high reflection characteristics in both the visible light region and the near-infrared light region, and exhibits a function of increasing photovoltaic power generation efficiency.
  • Patent Document 3 describes that an inorganic white pigment such as titanium oxide is blended in the plastic constituting the plastic film in order to achieve high reflection characteristics.
  • Patent Document 3 exemplifies a wide variety of thermoplastic resins as plastics, and among them, it is described that polyester is particularly preferable.
  • a plastic film made of a resin composition in which an inorganic white pigment such as titanium oxide is added to a polyethylene terephthalate copolymer is shown.
  • Patent Document 4 discloses a solar cell module including a back sheet made of a functionalized polyvinylidene fluoride (PVDF) resin composition.
  • PVDF resin composition forms the outermost layer of the backsheet.
  • a coating layer of a PVDF resin composition is formed on a polyethylene terephthalate (PET) film using a coating liquid containing PVDF resin, polymethyl methacrylate, and titanium oxide. A laminated film is shown.
  • Patent Document 5 discloses an invention relating to a multilayer structure including a PVDF film and a polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) sheet.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Examples 1 and 2 a multilayer film including a resin composition layer containing PVDF resin, titanium oxide, and polymethyl methacrylate (PMMA) is shown.
  • Patent Document 6 discloses a solar cell module including a transparent glossy material composed of a solid thermoplastic support layer and a PVDF outer layer, It has been shown that the PVDF outer layer may be blended with PMMA. This PVDF outer layer is disposed on the surface layer of the solar cell module, and is not a white resin film containing titanium oxide.
  • a back sheet for a solar cell module As a back sheet for a solar cell module, a single layer or multilayer plastic film, a plastic plate, a tempered glass plate, a metal plate, a composite of a plastic film and a metal plate, a composite of a plastic film and a metal foil, or the like is generally used. It has been.
  • the metal plate one having a synthetic resin coating film formed on the surface thereof is also used.
  • a fluororesin film, a PET film, and a composite film thereof are preferable from the viewpoint of satisfying various properties required for the solar cell module backsheet. From the viewpoint of light resistance, weather resistance, heat resistance, antifouling property, etc., a fluororesin film or a composite film of a fluororesin film and a PET film is more preferable.
  • a polyvinyl fluoride (PVF) resin film is usually used as the fluororesin film of the back sheet for a solar cell module.
  • PVDF polyvinylidene fluoride
  • a white resin film made of a PVDF resin composition containing titanium oxide in PVDF resin as a back sheet for a solar cell module can improve the appearance and contribute to improving the power conversion efficiency of solar cells. Is expected to do.
  • PVDF resin contains titanium oxide
  • the thermal decomposition temperature of the PVDF resin is significantly reduced.
  • PVDF resin has a melting point of 177 ° C. and a thermal decomposition starting temperature of 350 ° C. When heated to a temperature of 350 ° C. or higher, it generates hydrogen fluoride (HF) gas and decomposes.
  • HF hydrogen fluoride
  • thermal decomposition temperatures are both typical values of PVDF resin.
  • a wide range from the melting point to the thermal decomposition start temperature indicates that the processing temperature range of the PVDF resin is wide.
  • titanium oxide is particularly excellent in color tone and hiding power (light scattering property) among inorganic white pigments, and can contribute to improvement in color tone and reflection characteristics of the white resin film.
  • PVDF resin composition containing titanium oxide in a sufficient quantity ratio with concealability and whiteness suitable for a solar cell module backsheet to PVDF resin is thermogravimetrically measured by thermogravimetry (TGA). It has been found that the 10% thermal weight loss temperature is reduced from about 40 ° C. to about 45 ° C. compared to the case of PVDF resin alone.
  • the 10% thermal weight loss temperature of PVDF resin is typically in the range of about 382 ° C to about 385 ° C.
  • the 10% thermal weight reduction temperature of the PVDF resin composition containing 30 parts by weight of titanium oxide in 100 parts by weight of the PVDF resin is lowered to a range of about 336 ° C. to about 342 ° C. .
  • a film formed from a PVDF resin composition containing PVDF resin and titanium oxide turns brown after several hours when subjected to a heat resistance test in a gear oven heated to a temperature of 230 to 270 ° C. Therefore, foaming estimated to be a trace of the generation of cracked gas is also observed. Even if polymethylmethacrylate compatible with the PVDF resin is contained in the resin composition containing the PVDF resin and titanium oxide, the heat resistance reduction and thermal discoloration caused by the titanium oxide cannot be improved. Such a defect cannot be eliminated even if a method of forming a coating film using the PVDF resin composition as a coating liquid is employed.
  • PVDF resin film has excellent properties suitable for solar cell module backsheets, but when white pigment titanium oxide is included, the heat resistance and appearance are significantly reduced and the durability is poor. It becomes. For this reason, using a PVDF resin composition obtained by blending titanium oxide with PVDF resin, the appearance of the solar cell module can be made beautiful, the power conversion efficiency of the solar cell can be increased, and the white resin having excellent durability Obtaining a film was extremely difficult.
  • An object of the present invention is to provide a polyvinylidene fluoride resin composition in which thermal decomposition and coloring are suppressed even when a relatively large amount of titanium oxide is contained in the polyvinylidene fluoride resin.
  • Another object of the present invention is to use a resin composition containing a relatively large amount of titanium oxide in a polyvinylidene fluoride resin, and can suppress thermal decomposition and thermal discoloration during molding processing.
  • the present invention is to provide a white resin film that is remarkably suppressed in thermal discoloration and that is excellent in appearance, hiding power (light scattering property), and durability.
  • Still another object of the present invention is to use a PVDF resin composition containing a polyvinylidene fluoride resin and titanium oxide, and have various characteristics suitable for a back sheet for a solar cell module, and a white resin excellent in durability. To provide a film.
  • PVDF resin polyvinylidene fluoride resin
  • the white resin film (including the sheet) formed from the PVDF resin composition of the present invention is remarkably suppressed in thermal decomposition and thermal discoloration, and is excellent in appearance, hiding power (light scattering property), heat resistance, and durability. And have various characteristics suitable for a back sheet for a solar cell module.
  • the present invention has been completed based on these findings.
  • a polyvinylidene fluoride resin composition containing a polyvinylidene fluoride resin and titanium oxide, (A) the content of the titanium oxide is in the range of 5 to 100 parts by weight with respect to 100 parts by weight of the polyvinylidene fluoride resin; (B) The polyvinylidene fluoride resin composition contains, as a heat stabilizer, a polyhydroxymonocarboxylic acid calcium salt, an aliphatic carboxylic acid calcium salt having 5 to 30 carbon atoms, calcium carbonate, calcium hydroxide, zinc oxide, and oxidation.
  • the content ratio of the heat stabilizer is in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the polyvinylidene fluoride resin
  • (D) A polyvinylidene fluoride resin composition is provided in which the weight ratio of the titanium oxide to the heat stabilizer is in the range of 100: 1 to 3: 1.
  • a white resin film formed from a polyvinylidene fluoride resin composition containing a polyvinylidene fluoride resin and titanium oxide (I) the content of the titanium oxide is in the range of 5 to 100 parts by weight with respect to 100 parts by weight of the polyvinylidene fluoride resin; (Ii) The polyvinylidene fluoride resin composition contains, as a heat stabilizer, a polyhydroxymonocarboxylic acid calcium salt, an aliphatic carboxylic acid calcium salt having 5 to 30 carbon atoms, calcium carbonate, calcium hydroxide, zinc oxide, and oxidation Containing at least one compound selected from the group consisting of magnesium, (Iii) The content of the heat stabilizer is in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the polyvinylidene fluoride resin, and (Iv) There is provided a white resin film formed from a polyvinylidene fluoride resin composition, wherein the
  • seat for solar cell modules containing the layer which consists of this white resin film is provided.
  • a polyvinylidene fluoride resin composition capable of suppressing thermal decomposition and thermal discoloration during molding even when a relatively large amount of titanium oxide is contained in the PVDF resin.
  • it consists of a resin composition containing a relatively large amount of titanium oxide in PVDF resin, and can suppress thermal decomposition and thermal discoloration during molding, and further, thermal decomposition and thermal discoloration over time can be prevented.
  • a white resin film that is remarkably suppressed and excellent in appearance, hiding power (light scattering property), heat resistance, and durability is provided.
  • a white resin film which is formed from a PVDF resin composition containing PVDF resin and titanium oxide, has various properties suitable for a solar cell module backsheet, and has excellent durability.
  • FIG. 1 shows the thermogravimetric method (TGA) of each PVDF resin composition prepared in Reference Example 1 (REx.1), Examples 1 to 7 (Ex.1 to 7), and Comparative Example 1 (CEx.1). It is a graph which shows the thermogravimetry measurement result by.
  • FIG. 2 shows Reference Example 1 (REx.1), Comparative Example 1 (CEx.1), Comparative Example 5 (CEx.5), Comparative Example 8 (CEx.8), and Comparative Examples 15 to 16 (CEx.15).
  • 16 is a graph showing the results of thermogravimetry of each PVDF resin composition prepared in (16) by thermogravimetry (TGA).
  • FIG. 3 shows thermogravimetry by thermogravimetry (TGA) of each PVDF resin composition prepared in Reference Example 2 (REx.2), Example 8 (Ex.8), and Comparative Example 2 (CEx.2). It is another graph which shows a result.
  • FIG. 4 shows thermogravimetric measurement by thermogravimetry (TGA) of each PVDF resin composition prepared in Reference Example 1 (REx.1), Example 9 (Ex.9), and Comparative Example 3 (CEx.3). It is a graph which shows a result.
  • 5 is a graph showing the relationship between the elapsed time and the YI value in the heating test of each white resin film prepared in Example 10 (Ex. 10) and Comparative Examples 17 to 19 (CEx. 17 to 19). is there.
  • 6 is a graph showing the results of thermogravimetry of the PVDF resin composition prepared in Example 11 (Ex. 11) by thermogravimetry (TGA).
  • FIG. 7 is a schematic cross-sectional view of an example of a solar cell module.
  • PVDF resin used in the present invention means a homopolymer of vinylidene fluoride and a vinylidene fluoride copolymer mainly composed of vinylidene fluoride.
  • the PVDF resin used in the present invention is a crystalline resin having various crystal structures such as ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ p-type.
  • the PVDF resin used in the present invention is not an elastomer (fluoro rubber) that has lost its crystallinity.
  • Examples of the vinylidene fluoride copolymer include a vinylidene fluoride-hexafluoropropylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, a vinylidene fluoride-chlorotrifluoroethylene copolymer, and a vinylidene fluoride-tri A fluoroethylene copolymer, a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene terpolymer, a vinylidene fluoride-chlorotrifluoroethylene-hexafluoropropylene terpolymer, and a mixture of two or more thereof. Can be mentioned.
  • These vinylidene fluoride copolymers have a comonomer copolymerization ratio of preferably 15 mol% or less, more preferably 10 mol% or less, and particularly preferably 5 mol% or less.
  • the copolymerization ratio of the comonomer is 15 mol% or less, the vinylidene fluoride copolymer becomes a thermoplastic resin having crystallinity.
  • the lower limit of the comonomer is preferably 1 mol%. If the comonomer ratio becomes too high, the vinylidene fluoride copolymer loses crystallinity and becomes an elastomer.
  • the homopolymer of vinylidene fluoride is a crystalline resin.
  • a commercially available polyvinylidene fluoride elastomer has a comonomer copolymerization ratio of 20 mol% or more.
  • the PVDF resin at least one selected from the group consisting of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer having a comonomer copolymerization ratio of 15 mol% or less can be used.
  • PVDF resins vinylidene fluoride homopolymers and vinylidene fluoride-hexafluoropropylene copolymers containing hexafluoropropylene units in a ratio of 15 mol% or less are heat resistance, melt moldability, mechanical properties, From the viewpoint of antifouling property, solvent resistance, secondary workability, etc., it is particularly preferable.
  • PVDF resin can be generally produced by a suspension polymerization method or an emulsion polymerization method.
  • a chemically stable fluorine-based emulsifier is used to emulsify vinylidene fluoride alone or vinylidene fluoride and a comonomer such as hexafluoropropylene in an aqueous medium.
  • a comonomer such as hexafluoropropylene in an aqueous medium.
  • a fine latex of submicron units is precipitated with a flocculant and agglomerated to collect PVDF resin as particles of an appropriate size.
  • a vinylidene fluoride or the vinylidene fluoride and a comonomer are suspended in an aqueous medium using a suspending agent such as methylcellulose.
  • a suspending agent such as methylcellulose.
  • an organic percarbonate eg, di-n-propyl peroxydicarbonate
  • the critical temperature of vinylidene fluoride is 30.1 ° C. or lower, preferably 10 to 30
  • Polymerization is started at 0 ° C., more preferably 20 to 28 ° C. to produce primary polymer particles, and the temperature is raised to 30 to 90 ° C., preferably 40 to 80 ° C. as necessary, and the polymerization reaction is continued.
  • To produce secondary polymer particles To produce secondary polymer particles.
  • the intrinsic viscosity of the PVDF resin is preferably in the range of 0.70 to 1.50 dl / g, more preferably 0.80 to 1.30 dl / g.
  • the intrinsic viscosity of the PVDF resin is a logarithmic viscosity at 30 ° C. measured using a Ubbelohde viscometer for a solution obtained by dissolving 4 g of PVDF resin in 1 liter of N, N-dimethylformamide.
  • the melting point of PVDF resin is usually in the range of 130 to 177 ° C, and in many cases 150 to 177 ° C.
  • the melting point of PVDF resin is a value measured by a differential scanning calorimeter (DSC).
  • the melting point of the vinylidene fluoride homopolymer obtained by the suspension polymerization method is 177 ° C.
  • PVDF resin generates HF gas and decomposes when heated to a temperature of 350 ° C. or higher.
  • PVDF resin has a wide processable temperature range from the melting point to the decomposition point.
  • the melt processing temperature of PVDF resin is usually in the range of 200 to 250 ° C.
  • Titanium oxide is widely used in two crystal forms, anatase and rutile. In the present invention, these two types of crystal forms can be used, but among these, since they are excellent in dispersibility in PVDF resin at high temperatures and have extremely low volatility, they have a rutile type crystal form. Titanium oxide is preferred.
  • the average particle diameter (average primary particle diameter) of titanium oxide by image analysis of transmission electron microscope images is usually in the range of 150 to 1000 nm, preferably 200 to 700 nm, more preferably 200 to 400 nm.
  • the average particle diameter of titanium oxide is too small, the hiding power is reduced. Since the average particle diameter of titanium oxide is within the above range, the refractive index is large and the light scattering property is strong, so that the hiding power as a white pigment is increased.
  • Titanium oxide is generally present in the form of secondary particles in which primary particles are aggregated.
  • the specific surface area of titanium oxide by the BET method is usually in the range of 1 to 15, and in many cases 5 to 15.
  • Titanium oxide can be improved in properties such as dispersibility, concealability, and weather resistance by surface treatment with a surface treatment agent.
  • the surface treating agent include metal oxides such as aluminum, silicon, zirconium, tin, cerium, and bismuth; hydrated metal oxides such as zinc oxide; organometallic compounds such as organoaluminum compounds, organotitanium compounds, and organozirconium compounds; Examples thereof include organosilicon compounds such as silane coupling agents and polysiloxanes; phosphorus compounds such as aluminum phosphates and organophosphates; amine compounds.
  • titanium oxide By coating titanium oxide with a surface treatment agent, the reaction between the titanium oxide surface and the surrounding environment can be suppressed.
  • the surface-treated titanium oxide is excellent in dispersibility in PVDF resin.
  • the surface-treated titanium oxide can be dispersed in the PVDF resin at a high concentration.
  • the amount of surface treatment agent attached is extremely small, so that the amount should not be included in the amount of heat stabilizer of the present invention. And In fact, the heat resistance of the PVDF resin composition cannot be improved even when titanium oxide surface-treated with the same material as that used in the present invention is used.
  • the heat stabilizer used in the present invention includes at least one selected from the group consisting of polyhydroxymonocarboxylic acid calcium salt; aliphatic carboxylic acid calcium salt having 5 to 30 carbon atoms; calcium carbonate and calcium hydroxide.
  • polyhydroxymonocarboxylic acid calcium salt is effective as a heat stabilizer.
  • Polyhydroxymonocarboxylic acid is a compound belonging to hydroxycarboxylic acid, and is a general term for compounds having one carboxyl group and a plurality of alcoholic hydroxyl groups in one molecule.
  • examples of the polyhydroxymonocarboxylic acid include glyceric acid, 2,3-diphospho-D-glyceric acid, 9,10-dihydroxyoctadecanoic acid, gluconic acid and the like.
  • the polyhydroxymonocarboxylic acid calcium salts can be used alone or in combination of two or more.
  • As the polyhydroxymonocarboxylic acid calcium salt calcium gluconate is preferable.
  • the polyhydroxymonocarboxylic acid calcium salt may be a hydrate, and when there is an isomer, the type of the isomer is not limited.
  • a commercially available calcium salt of polyhydroxymonocarboxylic acid for example, calcium gluconate monohydrate (special grade reagent manufactured by Kanto Chemical) can be mentioned.
  • the calcium salt of hydroxycarboxylic acid for example, when a calcium salt of monohydroxymonocarboxylic acid such as calcium lactate is used, the effect of suppressing thermal decomposition is insufficient or the effect of suppressing thermal decomposition is exhibited. However, it may show coloring or foaming in a high temperature environment.
  • an aliphatic carboxylic acid calcium salt having 5 to 30 carbon atoms is effective as a heat stabilizer.
  • the aliphatic carboxylic acid having 5 to 30 carbon atoms include pivalic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, lauric acid, palmitic acid, heptadecanoic acid, stearic acid, and icosanoic acid.
  • Saturated aliphatic monocarboxylic acids having 5 to 30 carbon atoms such as angelic acid, tiglic acid, 4-pentenoic acid, ⁇ -ethylcrotonic acid, 10-undecenoic acid, olein C5-30 unsaturated aliphatic mono-acids such as acid, elaidic acid, erucic acid, brassic acid, 21-triacontenoic acid, sorbic acid, linoleic acid, ⁇ -eleostearic acid, ⁇ -linolenic acid, arachidonic acid, etc.
  • Carboxylic acid; These aliphatic carboxylic acid calcium salts can be used alone or in combination of two or more.
  • saturated aliphatic monocarboxylic acid calcium salt a saturated fatty acid calcium salt having 10 to 30 carbon atoms such as calcium stearate is more preferable in that it is excellent in coloring and thermal decomposition suppressing effect.
  • unsaturated aliphatic monocarboxylic acid calcium salt an unsaturated fatty acid calcium salt having 11 to 30 carbon atoms such as calcium oleate is preferable.
  • commercially available aliphatic carboxylic acid calcium salts include calcium stearate (first grade reagent manufactured by Kanto Chemical), calcium oleate (first grade reagent manufactured by Kanto Chemical), and the like.
  • the calcium carboxylate is a calcium carboxylate having a small number of carbon atoms such as calcium acetate, the effect of suppressing thermal decomposition cannot be obtained. Even when a free aliphatic carboxylic acid that does not form a calcium salt such as stearic acid is used, the effect of inhibiting thermal decomposition cannot be obtained.
  • At least one inorganic calcium compound selected from the group consisting of calcium carbonate and calcium hydroxide can be used.
  • Calcium carbonate and calcium hydroxide are preferred because they have a particularly excellent effect of suppressing thermal decomposition.
  • examples of commercially available inorganic calcium compounds include calcium carbonate (SL-1500 manufactured by Takehara Chemical Co., Ltd.), calcium hydroxide (special grade reagent manufactured by Pure Chemical), and the like. Even if it is an inorganic calcium compound, when other inorganic calcium compounds, such as calcium chloride, are used, the thermal decomposition inhibitory effect cannot be obtained.
  • At least one metal oxide selected from the group consisting of zinc oxide and magnesium oxide is effective as the heat stabilizer.
  • Examples of commercially available metal oxides include zinc oxide (fine zinc oxide manufactured by Sakai Chemical Industry), magnesium oxide (special grade reagent manufactured by Kanto Chemical), and the like. Even if it is a metal oxide, when other metal oxides such as silicon oxide, aluminum oxide, iron (III) oxide and zirconium oxide are used, the thermal decomposition inhibitory effect cannot be obtained, or the thermal decomposition inhibitory effect Is insufficient.
  • calcium carbonate, calcium hydroxide, calcium gluconate, zinc oxide, calcium oleate, magnesium oxide, and calcium stearate are preferable in terms of excellent thermal decomposition suppression effect
  • calcium carbonate, Calcium hydroxide, calcium gluconate, zinc oxide, calcium oleate, and magnesium oxide are more preferable
  • calcium carbonate, calcium hydroxide, calcium gluconate, and zinc oxide are more preferable
  • calcium carbonate and calcium hydroxide are particularly preferable.
  • heat stabilizers are usually used in the form of powder from the viewpoint of dispersibility in PVDF resin.
  • an inorganic calcium compound such as calcium carbonate and a metal oxide such as zinc oxide have an average particle diameter (average primary particle diameter) in the range of 0.05 to 2 ⁇ m by image analysis of a transmission electron microscope image.
  • the average particle size of the inorganic calcium compound or metal oxide is more preferably in the range of 0.05 to 1 ⁇ m.
  • the content ratio of titanium oxide in the PVDF resin composition of the present invention is usually 5 to 100 parts by weight, preferably 10 to 80 parts by weight, more preferably 15 to 70 parts by weight with respect to 100 parts by weight of the PVDF resin. Parts, particularly preferably in the range of 20 to 60 parts by weight.
  • the content ratio of titanium oxide is too small, it becomes difficult to obtain a resin film having whiteness and hiding power that can be used as a back sheet for a solar cell module.
  • the content ratio of titanium oxide is too large, it becomes difficult to produce a resin film by extrusion, and the mechanical strength of the resin film is lowered.
  • the content ratio of the heat stabilizer in the PVDF resin composition of the present invention is usually 0.1 to 20 parts by weight, preferably 0.3 to 15 parts by weight, more preferably 0. It is in the range of 5 to 10 parts by weight, particularly preferably 0.8 to 8 parts by weight.
  • the content ratio of the heat stabilizer is too small, the heat stabilization effect is reduced, and it is difficult to sufficiently suppress the decrease in the thermal decomposition temperature of the PVDF resin component in the PVDF resin composition.
  • the content ratio of the heat stabilizer is too large, the hiding power, color tone, mechanical properties, etc. of the resin film may be adversely affected.
  • the content ratio of the heat stabilizer is usually smaller than the content ratio of titanium oxide.
  • the weight ratio of titanium oxide to heat stabilizer is usually in the range of 100: 1 to 3: 1, preferably 80: 1 to 4: 1, more preferably 50: 1 to 5: 1.
  • the PVDF resin composition of the present invention includes a pigment dispersant, an ultraviolet absorber, a light stabilizer, a matting agent, a lubricant, a color adjuster (for example, a colorant such as carbon black), a crystal nucleating agent, Other additives such as a mechanical property improver (for example, an elastomer such as an acrylic elastomer) can be included. These additives are used in proportions suitable for each as desired. When these additives are used, they are each independently preferably used in a proportion of 10 parts by weight or less, more preferably 5 parts by weight or less, and particularly preferably 3 parts by weight or less with respect to 100 parts by weight of the PVDF resin. It is done. When these additives are used, the lower limit of the content is usually 0.001 parts by weight, and in many cases 0.01 parts by weight, independently of 100 parts by weight of the PVDF resin.
  • the PVDF resin composition of the present invention can contain other thermoplastic resins such as polymethyl methacrylate compatible with PVDF resin.
  • the other thermoplastic resin is preferably used in a proportion of 30 parts by weight or less, more preferably 25 parts by weight or less, with respect to 100 parts by weight of the PVDF resin.
  • the lower limit is usually 0.01 parts by weight, preferably 0.1 parts by weight, more preferably 1 part by weight.
  • polymethyl methacrylate (PMMA) is particularly preferable because it is excellent in compatibility with the PVDF resin and improves the adhesion of the white resin film formed from the PVDF resin composition to other materials.
  • the PVDF resin composition can be prepared by a method of dry blending PVDF resin powder, titanium oxide, and a heat stabilizer. PVDF resin powder or pellets, together with titanium oxide and a heat stabilizer, can be supplied to an extruder, melt-kneaded, melt-extruded into a strand, cut, and pelletized. When other additives and / or other thermoplastic resins are used, they are contained in the blending step or the pellet step.
  • the PVDF resin composition When the PVDF resin composition is used as a powder coating, the PVDF resin composition is prepared by dry blending PVDF resin powder, titanium oxide, and a heat stabilizer. When other additives and / or other thermoplastic resins are used, they are contained in the blending step. Such a dry blend can be used not only as a powder coating material but also supplied to an extruder and melt-extruded as a film (including a sheet).
  • the PVDF resin composition can be in the form of an organosol paint if desired.
  • the organosol coating is prepared by a conventional method using PVDF resin powder, titanium oxide, heat stabilizer, acrylic resin (film forming aid), other additives and / or other thermoplastic resins, and an organic solvent as required. It can be prepared by a dispersion method using a sand grinder or the like. PVDF resin composition can also be made into the form of a dispersion paint by a conventional method.
  • the 10% thermogravimetric decrease temperature is usually 345 ° C or higher, preferably 350 ° C or higher, more preferably 355 ° C or higher. Particularly preferably, it exhibits 365 ° C. or higher.
  • the 10% thermal weight loss temperature of the PVDF resin composition of the present invention may vary depending on the type of titanium oxide, but the PVDF resin composition of the present invention contains only titanium oxide and does not contain a thermal stabilizer.
  • the degree of increase in the 10% thermal weight loss temperature is usually 10 ° C or higher, preferably 12 ° C or higher, more preferably 15 ° C or higher, still more preferably 19 ° C or higher, particularly preferably 20 ° C or 25 ° C. Shown above °C.
  • the degree of decrease in the 10% thermal weight loss temperature is usually 30 ° C. or less, preferably 25 ° C. or less, more preferably 20 ° C. or less, and particularly preferably 15%. It shows below °C.
  • the PVDF resin composition can be formed into a white resin film by supplying it to an extruder and melt-extruding it into a film from a T-die placed at the tip of the extruder.
  • the resin film includes not only a film having a thickness of less than 250 ⁇ m but also a sheet (including a plate) having a thickness of 250 ⁇ m to 3 mm.
  • the lower limit of the thickness of the white resin film is usually 5 ⁇ m, preferably 10 ⁇ m, more preferably 12 ⁇ m, and particularly preferably 15 ⁇ m.
  • the upper limit value of the thickness of the white resin film is preferably 500 ⁇ m, more preferably 300 ⁇ m, and particularly preferably 100 ⁇ m or 50 ⁇ m. If the thickness of the white resin film is too thin, it will be difficult to obtain sufficient whiteness and hiding power, and the mechanical properties will also deteriorate. If the thickness of the white resin film is too thick, flexibility may be impaired or weight reduction may be difficult.
  • the thickness of the white resin film can exhibit good characteristics particularly in the range of 15 to 50 ⁇ m.
  • the PVDF resin composition of the present invention When used in the form of a powder paint, an organosol paint or a dispersion paint, it is coated on a heat-resistant substrate such as a metal plate, a glass plate or a heat-resistant resin film and heated. It can be formed into a film by the method to do.
  • a heat-resistant substrate such as a metal plate, a glass plate or a heat-resistant resin film
  • the solar cell module includes a surface protection material 72, a sealing material 73, solar cells 74, and a back surface protection material 76.
  • a plurality of solar cells 74 are connected in series by wiring 75 to constitute a solar cell module.
  • a frame (not shown) is disposed at the end or peripheral edge of the solar cell module.
  • the surface protective material 72 examples include, but are not limited to, a tempered glass plate, a transparent plastic plate, a single-layer or multilayer transparent plastic film, and a composite material obtained by combining these.
  • a transparent resin such as ethylene-vinyl acetate copolymer (EVA), butyral resin, silicon resin, epoxy resin, fluorinated polyimide resin is used, but is not limited thereto.
  • EVA ethylene-vinyl acetate copolymer
  • the structure of the solar battery cell 74 varies depending on the type of the solar battery, but various solar battery cells can be used.
  • the back surface protective material (back sheet) 76 a single-layer white resin film made of the PVDF resin composition of the present invention, the white resin film and another resin film (for example, PET film) are combined.
  • Multilayer films and composite materials can have an adhesive layer between each layer.
  • Examples of the moisture-proof film include a composite film in which a deposited film of an inorganic oxide such as silicon oxide or aluminum oxide is formed on one surface of a base film.
  • Examples of the commercially available moisture-proof film include CELLEL (registered trademark) T030 manufactured by Kureha Corporation.
  • EVA When using EVA as a sealing material, EVA is supplied as a sheet.
  • the solar battery cell can be sealed with EVA by sandwiching the solar battery cell between two EVA sheets and pressurizing and heating.
  • the EVA sheet can be supplied in combination with a white resin film made of a PVDF resin composition.
  • the back sheet having a multi-layer structure shows the surface on the side in contact with the solar cell module as the right end.
  • the back sheet for a solar cell module of the present invention is a multilayer sheet including a white resin film
  • the white resin film is adjacent to the sealing material (for example, EVA) layer directly or via an adhesive layer.
  • thermogravimetric reduction temperature Using a thermogravimetric analyzer TC11 manufactured by METTLER, 20 mg of a sample vacuum-dried at 30 ° C. for 6 hours or more is placed in a platinum pan, and then from 50 ° C. under an atmosphere of dry nitrogen 10 ml / min. The temperature was raised to 450 ° C. at a rate of 10 ° C./min, and the weight reduction rate was measured during that time. The temperature when the sample weight was reduced by 10% by weight from the sample weight at the start of measurement was defined as a 10% thermogravimetric decrease temperature.
  • Titanium oxide [TI-PURE (registered trademark) R101 manufactured by DuPont; rutile type titanium oxide, average particle size of 0.1% relative to 100 parts by weight of polyvinylidene fluoride resin [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd.]. 29 ⁇ m, surface-treated product with amine compound] 30 parts by weight were supplied to a single screw extruder, melt kneaded at a cylinder temperature of 220 ° C., melt extruded from a die into a strand, and cut in cold water to produce pellets. Using this pellet, the 10% thermal weight loss temperature was measured and found to be 342 ° C. The results are shown in Table 1.
  • Titanium oxide (TI-PURE (registered trademark) R101 manufactured by DuPont); rutile titanium oxide, average particle size 0.29 ⁇ m, amine based on 100 parts by weight of polyvinylidene fluoride resin (Kyner (registered trademark) 720 manufactured by Arkema) Surface-treated product by compound] 30 parts by weight were supplied to a single screw extruder, melt kneaded at a cylinder temperature of 220 ° C., melt extruded from a die into a strand, and cut in cold water to produce pellets. Using this pellet, the 10% thermal weight loss temperature was measured and found to be 342 ° C. The results are shown in Table 1.
  • Comparative Example 3 Comparative Example 1 except that the titanium oxide was changed from TI-PURE (registered trademark) R101 manufactured by DuPont to TI-PURE (registered trademark) R105 manufactured by DuPont (rutile titanium oxide, surface-treated with silicon dioxide).
  • TI-PURE registered trademark
  • TI-PURE registered trademark
  • R105 rutile titanium oxide, surface-treated with silicon dioxide
  • Comparative Example 4 The same operation as in Comparative Example 1 was performed except that a mixture of 80 parts by weight of polyvinylidene fluoride resin and 20 parts by weight of polymethyl methacrylate was used instead of 100 parts by weight of the polyvinylidene fluoride resin. As a result, the 10% thermal weight loss temperature of the obtained PVDF resin composition decreased from 342 ° C to 334 ° C. The results are shown in Table 1.
  • A1 Polyvinylidene fluoride resin [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd .; suspension polymerization product]
  • A2 Polyvinylidene fluoride resin [Kyner (registered trademark) 720 manufactured by Arkema, Inc .; emulsion polymerization product]
  • B1 Titanium oxide [TI-PURE (registered trademark) R101 manufactured by DuPont]
  • B2 Titanium oxide [TI-PURE (registered trademark) R105, manufactured by DuPont]
  • D1 Polymethyl methacrylate (PMMA) [Del Powder (registered trademark) 70H manufactured by Asahi Kasei Chemicals Corporation]
  • a resin composition obtained by blending 30 parts by weight of titanium oxide (TI-PURE (registered trademark) R101, manufactured by DuPont) with 100 parts by weight of PVDF resin (suspension polymer) (comparison) Example 1) is inferior in heat resistance because the 10% thermogravimetric temperature decrease is as low as 40 ° C compared to the case of PVDF resin alone (Reference Example 1).
  • a resin composition (Comparative Example 2) obtained by blending 30 parts by weight of titanium oxide [TI-PURE (registered trademark) R101] manufactured by DuPont with 100 parts by weight of PVDF resin (emulsion polymerized product) is a PVDF resin alone. Compared to the case (Reference Example 2), the 10% thermogravimetric temperature decrease temperature is lowered by 43 ° C., which is inferior in heat resistance.
  • the resin composition (Comparative Example 3) in which 30 parts by weight of titanium oxide [TI-PURE (registered trademark) R105] manufactured by DuPont is blended with 100 parts by weight of PVDF resin (suspension polymerized product) is obtained when PVDF resin alone is used. Compared to (Reference Example 1), the 10% thermogravimetric decrease temperature is lowered by 46 ° C., which is inferior in heat resistance. Even if polymethyl methacrylate (PMMA) is contained as a resin component (Comparative Example 4), thermal decomposition cannot be suppressed.
  • TI-PURE registered trademark
  • PVDF resin suspension polymerized product
  • Titanium oxide [TI-PURE (registered trademark) R101 manufactured by DuPont; rutile type titanium oxide, average particle size of 0.1% relative to 100 parts by weight of polyvinylidene fluoride resin [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd.]. 29 ⁇ m, surface-treated product) 30 parts by weight and calcium carbonate (SL-1500 manufactured by Takehara Chemical Industry) 5 parts by weight are supplied to a single screw extruder, melt kneaded at a cylinder temperature of 220 ° C., and melt extruded from a die into a strand. The pellet was prepared by cutting in cold water. The weight ratio of titanium oxide to calcium carbonate was 6: 1. Using this pellet, the 10% thermal weight loss temperature was measured and found to be 389 ° C.
  • the difference between the 10% thermal weight loss temperature (389 ° C.) of the sample of Example 1 and the 10% thermal weight loss temperature (342 ° C.) of the sample of Comparative Example 1 is + 47 ° C.
  • the 10% thermal weight reduction temperature (389 ° C.) of the sample of Example 1 is + 7 ° C. different from the 10% thermal weight reduction temperature (382 ° C.) of the sample of Reference Example 1, and PVDF resin alone is used. It was found that the heat resistance was improved. Thus, the performance of calcium carbonate as a heat stabilizer was remarkable.
  • Table 2 The results are shown in Table 2.
  • Examples 2 to 7 As a heat stabilizer, instead of calcium carbonate, pellets were prepared in the same manner as in Example 1 except that the compounds shown in Table 2 were used in the quantitative ratios shown in Table 2, and the 10% thermogravimetric reduction temperature was measured. did. The weight ratio of titanium oxide to thermal stabilizer was 6: 1 (Examples 2-4 and Example 6) or 30: 1 (Examples 5 and 7). The results are shown in Table 2.
  • A1 Polyvinylidene fluoride resin [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd.]
  • B1 Titanium oxide [TI-PURE (registered trademark) R101 manufactured by DuPont]
  • C1 Calcium carbonate (SL-1500, Takehara Chemical Industries)
  • C2 Calcium hydroxide (special grade chemical reagent)
  • C3 Calcium gluconate monohydrate (special grade reagent manufactured by Kanto Chemical)
  • C4 Zinc oxide (fine zinc oxide manufactured by Sakai Chemical Industry)
  • C5 Calcium oleate (Kanto Chemical 1st grade reagent)
  • C6 Magnesium oxide (special grade reagent manufactured by Kanto Chemical)
  • C7 Calcium stearate (first grade reagent manufactured by Kanto Chemical)
  • A1 Polyvinylidene fluoride resin [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd.]
  • B1 Titanium oxide [TI-PURE (registered trademark) R101 manufactured by DuPont]
  • C8 Silicon oxide [Aerosil RX-200 manufactured by Nippon Aerosil Co., Ltd.]
  • C9 Molybdenum disulfide (1st grade reagent manufactured by Wako Pure Chemical Industries)
  • C10 Zirconium tetrachloride (Wako Pure Chemicals Reagent)
  • C11 Calcium chloride (special grade reagent manufactured by Kanto Chemical)
  • C12 Calcium acetate monohydrate (special grade reagent manufactured by Kanto Chemical)
  • C13 Aluminum oxide (Kanto Chemical deer special reagent)
  • C14 Iron (III) oxide (Wako Pure Chemicals Reagent)
  • C15 Zirconium oxide (special grade reagent manufactured by Wako Pure Chemical Industries)
  • C16 Magne
  • Example 8 Example 1 except that the polyvinylidene fluoride resin was changed from Kureha KF (registered trademark) # 850 (suspension polymerized product) to Arkema Kainer (registered trademark) 720 (emulsion polymerized product). The same operation was performed. The results are shown in Table 4.
  • A2 Polyvinylidene fluoride resin [Kyner (registered trademark) 720 manufactured by Arkema Co., Ltd .; emulsion polymerization product]
  • B1 Titanium oxide [TI-PURE (registered trademark) R101 manufactured by DuPont]
  • C1 Calcium carbonate (SL-1500, Takehara Chemical Industries)
  • Example 9 The operation was performed in the same manner as in Example 1 except that TI-PURE (registered trademark) R101 manufactured by DuPont was replaced with TI-PURE (registered trademark) R105 manufactured by DuPont. The results are shown in Table 5.
  • A1 Polyvinylidene fluoride resin [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd.]
  • B2 Titanium oxide [TI-PURE (registered trademark) R105, manufactured by DuPont]
  • C1 Calcium carbonate (SL-1500, Takehara Chemical Industries)
  • Examples 1 to 6, 8, and 9 When calcium carbonate, calcium hydroxide, calcium gluconate, zinc oxide, calcium oleate, and magnesium oxide are used as heat stabilizers (Examples 1 to 6, 8, and 9), the thermal weight is reduced by 10%. The temperature has risen by over 15 ° C. When calcium carbonate, calcium hydroxide, calcium gluconate, and zinc oxide are used as heat stabilizers (Examples 1 to 4, 8, and 9), the 10% thermal weight loss temperature rises by 20 ° C. or more. is doing.
  • the PVDF resin composition of the present invention (Examples 1 to 9) has a degree of decrease in the 10% thermal weight loss temperature of usually 30 ° C. or less, preferably compared to the case of PVDF resin alone (Reference Examples 1 and 2). Indicates 25 ° C. or lower.
  • FIG. 1 shows a graph obtained by performing thermogravimetry on the samples of Reference Example 1, Comparative Example 1, and Examples 1 to 7 by thermogravimetry (TGA).
  • FIG. 2 shows a graph obtained by thermogravimetrically measuring the samples of Reference Example 1 and Comparative Examples 1, 5, 8, 15, and 16 using TGA.
  • FIG. 3 shows a graph obtained by performing thermogravimetry with TGA for the samples of Reference Example 2, Comparative Example 2, and Example 8.
  • FIG. 4 shows a graph obtained by performing thermogravimetry with TGA for the samples of Reference Example 1, Comparative Example 3, and Example 9.
  • Example 10 The pellets (resin composition containing PVDF resin, titanium oxide, and calcium carbonate) prepared in Example 1 were supplied to a single screw extruder (Pura Giken Co., Ltd.), and the resin temperature from a T die with a lip clearance of 1 mm. It melt-extruded at 240 degreeC and cooled with the 90 degreeC cooling roll, and produced the 30-micrometer-thick resin film. This resin film was put in a thermostat kept at a temperature of 250 ° C., and the relationship between the elapsed time and the YI value was measured. The results are shown in FIG.
  • Comparative Example 17 A resin film was produced in the same manner as in Example 10, except that the pellet produced in Comparative Example 1 (resin composition containing PVDF resin and titanium oxide) was used instead of the pellet produced in Example 1. The relationship between elapsed time and YI value was measured. The results are shown in FIG.
  • Comparative Example 18 It replaced with the pellet produced in Example 1, and it carried out similarly to Example 10 except having used the pellet produced in Comparative Example 13 (resin composition containing PVDF resin, titanium oxide, and magnesium hydroxide). A resin film was prepared, and the relationship between elapsed time and YI value was measured. The results are shown in FIG.
  • Comparative Example 19 Resin film in the same manner as in Example 10 except that instead of the pellet produced in Example 1, the pellet produced in Comparative Example 4 (resin composition containing PVDF resin, titanium oxide, and PMMA) was used. And the relationship between elapsed time and YI value was measured. The results are shown in FIG.
  • Titanium oxide [TI-PURE (registered trademark) R101 manufactured by DuPont; rutile type titanium oxide, average particle size of 0.1% relative to 100 parts by weight of polyvinylidene fluoride resin [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd.].
  • Denka Black (registered trademark) 0.04 parts by weight is supplied to the single screw extruder, cylinder Kneaded at a temperature 220 ° C., molten from a die into strands extruded to prepare a pellet was cut in cold water. Using this pellet, the 10% thermal weight loss temperature was measured and found to be 382 ° C.
  • the difference between the 10% thermal weight reduction temperature (382 ° C.) of the sample of Example 11 and the 10% thermal weight reduction temperature (382 ° C.) of the sample of Reference Example 1 (PVDF resin alone) is substantially 0 ° C. there were.
  • the weight ratio of titanium oxide to the heat stabilizer (total amount of calcium carbonate and calcium stearate) in the PVDF resin composition of Example 11 was 15: 1.
  • the PVDF resin composition of the present invention can be used as a raw material for a white resin film.
  • the white resin film of the present invention can be used as a back sheet for a solar cell module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 ポリフッ化ビニリデン樹脂及び酸化チタンを含有し、酸化チタンの含有割合が、ポリフッ化ビニリデン樹脂100重量部に対して、5~100重量部であり、熱安定剤として、ポリヒドロキシモノカルボン酸カルシウム塩、炭素数5~30の脂肪族カルボン酸カルシウム塩、炭酸カルシウム、水酸化カルシウム、酸化亜鉛、及び酸化マグネシウムからなる群より選ばれる少なくとも一種の化合物を0.1~20重量部含有し、並びに酸化チタンと熱安定剤との重量比が100:1~3:1であるポリフッ化ビニリデン樹脂組成物。

Description

ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート
 本発明は、酸化チタンを含有するポリフッ化ビニリデン樹脂組成物、該樹脂組成物から形成された白色樹脂フィルム、及び該白色樹脂フィルムを含む太陽電池モジュール用バックシートに関する。
 太陽電池は、太陽光を直接電気エネルギーに変換する発電装置である。太陽電池には、シリコン半導体を材料にするものと、化合物半導体を材料にするものとに大別される。シリコン半導体太陽電池には、単結晶シリコン太陽電池、多結晶シリコン太陽電池、及びアモルファスシリコン太陽電池がある。
 化合物半導体は、複数の元素が結合してできた半導体である。化合物半導体電池には、Al、Ga、InなどのIII族元素とAs、SbなどのV族元素との組み合わせからなるIII-V族化合物半導体(例えば、GaAs)を使用した太陽電池、Zn、CdなどのII族元素とS、Se、TeなどのVI族元素との組み合わせからなるII-VI族化合物半導体(例えば、CdS、CdTe)を使用した太陽電池などがある。この他、銅インジウムセレナイド太陽電池、色素増感型太陽電池、有機薄膜型太陽電池などの開発も進められている。
 太陽電池の代表的なモジュールは、表面保護材、封止材、太陽電池セル、裏面保護材、及びフレームから構成されている。図7に示すように、太陽電池モジュール71の主要な構成要素は、表面保護材72、封止材73、太陽電池セル74、及び裏面保護材76からなる。複数の太陽電池セル74を配線75により直列に接続し、太陽電池モジュールを構成する。太陽電池モジュールの端部または周縁部には、フレーム(図示せず)が配置されている。
 表面保護材72としては、例えば、強化ガラス板、透明プラスチック板、透明プラスチックフィルムが用いられている。封止材73としては、エチレン-酢酸ビニル共重合体が汎用されている。裏面保護材76としては、例えば、単層または多層のプラスチックフィルム、プラスチック板、強化ガラス板、金属板(アルミニウム板、塗装鋼板など)が用いられている。フレームとしては、例えば、軽量で耐環境性に優れるアルミニウムが汎用されている。
 太陽電池セル74の構造は、太陽電池の種類によって異なる。例えば、シリコン半導体太陽電池セルは、n型シリコンとp型シリコンとを接合し、それぞれに電極を配置した構造のものが代表的なものである。他の太陽電池セルとして、例えば、「集電電極/透明導電層/半導体光活性層/反射層/導電性基体」の層構成を有するものがある。半導体光活性層は、例えば、アモルファスシリコン半導体である。複数の太陽電池セルを配列して接続し、表面保護材、封止材、及び裏面保護材を用いてパッケージにしたものを太陽電池モジュールという。複数の太陽電池モジュールを連結したものを太陽電池アレイという。
 太陽電池モジュール(アレイを含む)は、一般に屋外に設置され、その後、長期間にわたって稼動状態が維持される。太陽電池モジュールが屋外で長期間にわたって満足に稼動するには、苛酷な環境下で優れた耐久性を有する必要がある。このため、太陽電池モジュールの表面保護材、封止材、及び裏面保護材(以下、「バックシート」という)には、該太陽電池モジュールを取り巻く苛酷な自然環境下で長期間にわたって太陽電池セルを保護する機能を有することが求められている。
 太陽電池モジュール用バックシートは、その太陽電池セルとは反対側の表面(最外面)が屋外に直接暴露される。太陽電池用バックシートの太陽電池セル側の表面(封止材との隣接面)は、各太陽電池セルの間隙や各太陽電池モジュールの間隙で太陽光に曝される。このため、太陽電池用バックシートには、耐光性、耐候性、耐熱性、耐湿性、水蒸気バリア性、電気絶縁性、耐電圧性、機械的特性、耐薬品性、耐塩性、防汚性、封止材との接着性などの諸特性に優れることが求められている。
 太陽電池モジュール用バックシートには、上記諸特性に優れることに加えて、その太陽電池セル側の表面の外観が美麗であること、さらには、該バックシートに入射した太陽光を効率的に反射する機能を有することが求められている。各太陽電池セルの間隙を透過した入射光をバックシートにより効率的に反射することができれば、反射光により太陽電池セルの電力変換効率が向上する。
 特開2002-100788号公報(特許文献1)には、耐加水分解性樹脂フィルム、金属酸化物被着フィルム、及び白色樹脂フィルムの3層積層体;並びに金属酸化物が被着された耐加水分解性樹脂フィルム、及び白色樹脂フィルムの2層積層体からなる太陽電池カバー材用バックシートが開示されている。
 特許文献1には、バックシートの最内側に白色樹脂フィルムを配置することにより、該バックシートに入射した光を有効に反射させて再利用し、太陽電池の電力変換効率を高めることができることが記載されている。特許文献1には、ポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンナフタレート、アクリルなどの熱可塑性樹脂に、酸化チタンなどの白色顔料を添加した樹脂組成物からなる白色樹脂フィルムが開示されている。
 特開2007-35694号公報(特許文献2;EP1938967A1に対応)には、水不透過性シートの少なくとも一方の面に、硬化性官能基含有フッ素ポリマー塗料の硬化塗膜が形成された太陽電池モジュール用バックシートが開示されている。特許文献2には、太陽電池モジュールの外観を美麗にするために、硬化性官能基含有フッ素ポリマー塗料に、酸化チタンなどの白色顔料、またはカーボンブラックなどの黒色顔料を配合するのが望ましいことが記載されている。
 特許文献2には、広範な種類のフッ素ポリマーが例示されているが、それらの中でも、テトラフルオロエチレン(TFE)ポリマーが、顔料の分散性、耐候性、硬化性官能基含有単量体との共重合性、耐薬品性に優れることから好ましいと記載されている。特許文献2の実施例には、硬化性TFEポリマーと酸化チタンを含有する白色塗料を用いて、水不透過性シート上に白色の硬化塗膜を形成したバックシートが示されている。
 特開2007-208179号公報(特許文献3)には、600~1400nmの波長範囲における平均反射率が70%以上の太陽電池裏面保護膜用プラスチックフィルムが開示されている。この太陽電池裏面保護膜用プラスチックフィルムは、可視光領域及び近赤外光領域の双方において高い反射特性を備えており、光発電効率を高める機能を発揮する。特許文献3には、高い反射特性を達成するために、プラスチックフィルムを構成するプラスチックに酸化チタンなどの無機白色顔料を配合することが記載されている。特許文献3には、プラスチックとして、広範な種類の熱可塑性樹脂が例示されているが、それらの中でもポリエステルが特に好ましいと記載されている。特許文献3の実施例には、ポリエチレンテレフタレート共重合体に酸化チタンなどの無機白色顔料を添加した樹脂組成物からなるプラスチックフィルムが示されている。
 国際公開第2008/157159号(特許文献4;EP2158614A1に対応)には、官能化されたポリフッ化ビニリデン(PVDF)樹脂組成物からなるバックシートを備えた太陽電池モジュールが開示されている。該PVDF樹脂組成物は、バックシートの最外層を形成する。特許文献4の実施例1~2には、PVDF樹脂とポリメチルメタクリレートと酸化チタンとを含有する塗工液を用いて、ポリエチレンテレフタレート(PET)フィルム上にPVDF樹脂組成物の塗工層を形成した積層フィルムが示されている。
 国際公開第2007/085769号(特許文献5;US2009/0275251A1に対応)には、PVDFフィルムと、ポリエチレンテレフタレート(PET)またはポリエチレンナフタレート(PEN)シートを含む多層構造体に関する発明が開示されており、その実施例1及び2には、PVDF樹脂と酸化チタンとポリメチルメタクリレート(PMMA)とを含有する樹脂組成物層を含む多層フィルムが示されている。
 国際公開第2008/019229号(特許文献6;US2010/0000601A1に対応)には、固体熱可塑性支持体層とPVDF外層とからなる透明な艶のある材料を含む太陽電池モジュールが開示されており、PVDF外層には、PMMAをブレンドしてもよいことが示されている。このPVDF外層は、太陽電池モジュールの表面層に配置されるものであって、酸化チタンを含有する白色樹脂フィルムではない。
 太陽電池モジュール用バックシートとして、一般に、単層または多層のプラスチックフィルム、プラスチック板、強化ガラス板、金属板、プラスチックフィルムと金属板との複合体、プラスチックフィルムと金属箔との複合体などが用いられている。金属板としては、その表面に合成樹脂塗膜を形成したものも用いられている。
 プラスチックフィルムとしては、太陽電池モジュール用バックシートに求められる諸特性を満足させる観点からは、フッ素樹脂フィルム、PETフィルム、及びこれらの複合フィルムが好ましい。耐光性、耐候性、耐熱性、防汚性などの観点から、フッ素樹脂フィルムまたはフッ素樹脂フィルムとPETフィルムとの複合フィルムがより好ましい。
 太陽電池モジュール用バックシートのフッ素樹脂フィルムとしては、通常、ポリフッ化ビニル(PVF)樹脂フィルムが用いられている。しかし、耐候性、防汚性、耐熱性などの観点からは、PVF樹脂フィルムよりもポリフッ化ビニリデン(PVDF)樹脂フィルムの方が太陽電池モジュール用バックシートとして適している。PVDF樹脂に酸化チタンを含有させたPVDF樹脂組成物からなる白色樹脂フィルムを太陽電池モジュール用バックシートとして用いると、外観を美麗にすることができる上、太陽電池セルの電力変換効率の向上に寄与することが期待される。
 ところが、本発明者らの研究結果によれば、PVDF樹脂に酸化チタンを含有させると、PVDF樹脂の熱分解温度が大幅に低下することが判明した。PVDF樹脂は、融点が177℃で、熱分解開始温度が350℃であり、350℃以上の温度に加熱すると、フッ化水素(HF)ガスを発生して分解する。これらの融点及び熱分解温度は、いずれもPVDF樹脂の代表値である。融点から熱分解開始温度までの領域が広いことは、PVDF樹脂の加工温度領域が広いことを示している。他方、酸化チタンは、無機白色顔料の中でも色調と隠蔽力(光散乱性)が特に優れており、白色樹脂フィルムの色調と反射特性の向上に寄与することができるものである。
 PVDF樹脂から白色樹脂フィルムを形成するには、PVDF樹脂に比較的多量の酸化チタンをブレンドする必要がある。PVDF樹脂に比較的多量の酸化チタンを含有させたPVDF樹脂組成物を用いて白色樹脂フィルム(シートを含む)を押出成形すると、得られた白色樹脂フィルムが褐色に変色したり、PVDF樹脂が熱分解しやすくなることが判明した。PVDF樹脂に、太陽電池モジュール用バックシートに適した隠蔽性と白色度を備える足る量比で酸化チタンを含有させたPVDF樹脂組成物は、熱重量法(TGA)により熱重量測定を行うと、PVDF樹脂単独の場合に比べて、10%熱重量減少温度が約40℃から約45℃も低下することが分かった。PVDF樹脂の10%熱重量減少温度は、典型的には約382℃から約385℃の範囲内である。これに対して、例えば、該PVDF樹脂100重量部に酸化チタン30重量部を含有させたPVDF樹脂組成物の10%熱重量減少温度は、約336℃から約342℃の範囲内にまで低下する。
 それに加えて、PVDF樹脂と酸化チタンとを含有するPVDF樹脂組成物から形成されたフィルムは、230~270℃の温度に加熱したギアオーブン中で耐熱試験を行うと、数時間後には茶褐色に変色してしまい、分解ガスが発生した痕跡と推定される発泡も認められる。PVDF樹脂と酸化チタンとを含有する樹脂組成物に、PVDF樹脂と相溶性のあるポリメチルメタクリレートを含有させても、酸化チタンに起因する耐熱性の低下と熱変色を改善することはできない。このような欠点は、PVDF樹脂組成物を塗工液として用いて、塗工膜を形成する方法を採用しても解消することができない。
 PVDF樹脂フィルムは、太陽電池モジュール用バックシートに適した優れた諸特性を有するものの、白色顔料の酸化チタンを含有させた場合には、耐熱性や外観の低下が著しく、耐久性に劣ったものとなる。このため、PVDF樹脂に酸化チタンをブレンドしたPVDF樹脂組成物を用いて、太陽電池モジュールの外観を美麗にし、太陽電池セルの電力変換効率を高めることができ、かつ、耐久性に優れた白色樹脂フィルムを得ることは極めて困難であった。
特開2002-100788号公報 特開2007-35694号公報(EP1938967A1に対応) 特開2007-208179号公報 国際公開第2008/157159号(EP2158614A1に対応) 国際公開第2007/085769号(US2009/0275251A1に対応) 国際公開第2008/019229号(US2010/0000601A1に対応)
 本発明の課題は、ポリフッ化ビニリデン樹脂に比較的多量の酸化チタンを含有させた場合であっても、熱分解と着色が抑制されたポリフッ化ビニリデン樹脂組成物を提供することにある。
 本発明の他の課題は、ポリフッ化ビニリデン樹脂に比較的多量の酸化チタンを含有させた樹脂組成物を用いて、成形加工時の熱分解と熱変色を抑制することができ、経時による熱分解と熱変色が顕著に抑制され、その上、外観、隠蔽力(光散乱性)、及び耐久性に優れた白色樹脂フィルムを提供することにある。
 本発明の更なる他の課題は、ポリフッ化ビニリデン樹脂と酸化チタンを含有するPVDF樹脂組成物を用いて、太陽電池モジュール用バックシートに適した諸特性を有し、耐久性に優れた白色樹脂フィルムを提供することにある。
 本発明者らは、前記課題を解決するために鋭意研究した結果、ポリフッ化ビニリデン樹脂(PVDF樹脂)に酸化チタンと共に特定の化合物を添加すると、該化合物が熱安定剤として作用し、その結果、比較的多量の酸化チタンをブレンドした場合であっても、成形加工時や経時による熱分解と熱変色を十分に抑制することができるPVDF樹脂組成物の得られることを見出した。
 本発明のPVDF樹脂組成物から形成された白色樹脂フィルム(シートを含む)は、熱分解や熱変色が顕著に抑制され、外観、隠蔽力(光散乱性)、耐熱性、及び耐久性に優れており、太陽電池モジュール用バックシートに適した諸特性を有している。本発明は、これらの知見に基づいて完成するに至ったものである。
 本発明によれば、ポリフッ化ビニリデン樹脂及び酸化チタンを含有するポリフッ化ビニリデン樹脂組成物であって、
(a)該酸化チタンの含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、5~100重量部の範囲内であり、
(b)該ポリフッ化ビニリデン樹脂組成物が、熱安定剤として、ポリヒドロキシモノカルボン酸カルシウム塩、炭素数5~30の脂肪族カルボン酸カルシウム塩、炭酸カルシウム、水酸化カルシウム、酸化亜鉛、及び酸化マグネシウムからなる群より選ばれる少なくとも一種の化合物を含有するものであり、
(c)該熱安定剤の含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、0.1~20重量部の範囲内であり、並びに、
(d)該酸化チタンと該熱安定剤との重量比が、100:1~3:1の範囲内である
ことを特徴とするポリフッ化ビニリデン樹脂組成物が提供される。
 また、本発明によれば、ポリフッ化ビニリデン樹脂及び酸化チタンを含有するポリフッ化ビニリデン樹脂組成物から形成された白色樹脂フィルムであって、
(i)該酸化チタンの含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、5~100重量部の範囲内であり、
(ii)該ポリフッ化ビニリデン樹脂組成物が、熱安定剤として、ポリヒドロキシモノカルボン酸カルシウム塩、炭素数5~30の脂肪族カルボン酸カルシウム塩、炭酸カルシウム、水酸化カルシウム、酸化亜鉛、及び酸化マグネシウムからなる群より選ばれる少なくとも一種の化合物を含有するものであり、
(iii)該熱安定剤の含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、0.1~20重量部の範囲内であり、並びに、
(iv)該酸化チタンと該熱安定剤との重量比が100:1~3:1の範囲内である
ことを特徴とするポリフッ化ビニリデン樹脂組成物から形成された白色樹脂フィルムが提供される。
 さらに、本発明によれば、該白色樹脂フィルムからなる層を含む太陽電池モジュール用バックシートが提供される。
 本発明によれば、PVDF樹脂に比較的多量の酸化チタンを含有させた場合であっても、成形加工時の熱分解と熱変色を抑制することができるポリフッ化ビニリデン樹脂組成物が提供される。本発明によれば、PVDF樹脂に比較的多量の酸化チタンを含有させた樹脂組成物からなり、成形加工時の熱分解と熱変色を抑制することができ、しかも経時による熱分解と熱変色が顕著に抑制され、外観、隠蔽力(光散乱性)、耐熱性、及び耐久性に優れた白色樹脂フィルムが提供される。さらに、本発明によれば、PVDF樹脂と酸化チタンを含有するPVDF樹脂組成物から形成され、太陽電池モジュール用バックシートに適した諸特性を有し、耐久性に優れた白色樹脂フィルムが提供される。
図1は、参考例1(REx.1)、実施例1~7(Ex.1~7)、及び比較例1(CEx.1)で調製した各PVDF樹脂組成物の熱重量法(TGA)による熱重量測定結果を示すグラフである。 図2は、参考例1(REx.1)、比較例1(CEx.1)、比較例5(CEx.5)、比較例8(CEx.8)、及び比較例15~16(CEx.15~16)で調製した各PVDF樹脂組成物の熱重量法(TGA)による熱重量測定結果を示すグラフである。 図3は、参考例2(REx.2)、実施例8(Ex.8)、及び比較例2(CEx.2)で調製した各PVDF樹脂組成物の熱重量法(TGA)による熱重量測定結果を示す他のグラフである。 図4は、参考例1(REx.1)、実施例9(Ex.9)、及び比較例3(CEx.3)で調製した各PVDF樹脂組成物の熱重量法(TGA)による熱重量測定結果を示すグラフである。 図5は、実施例10(Ex.10)、及び比較例17~19(CEx.17~19)で調製した各白色樹脂フィルムの加熱試験での経過時間とYI値との関係を示すグラフである。 図6は、実施例11(Ex.11)で調製したPVDF樹脂組成物の熱重量法(TGA)による熱重量測定結果を示すグラフである。 図7は、太陽電池モジュールの一例の断面略図である。
 71:太陽電池モジュール
 72:表面保護材
 73:封止材
 74:太陽電池セル
 75:配線
 76:裏面保護材(バックシート)
1.ポリフッ化ビニリデン樹脂
 本発明で使用するポリフッ化ビニリデン樹脂(PVDF樹脂)とは、フッ化ビニリデンの単独重合体、及びフッ化ビニリデンを主成分とするフッ化ビニリデン共重合体を意味する。本発明で使用するPVDF樹脂は、α型、β型、γ型、αp型などの様々な結晶構造を示す結晶性樹脂である。本発明で使用するPVDF樹脂は、結晶性を喪失したエラストマー(フッ素ゴム)ではない。
 フッ化ビニリデン共重合体としては、例えば、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、フッ化ビニリデン-クロロトリフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、及びこれらの2種以上の混合物が挙げられる。
 これらのフッ化ビニリデン共重合体は、コモノマーの共重合比率が好ましくは15モル%以下、より好ましくは10モル%以下、特に好ましくは5モル%以下である。コモノマーの共重合比率が15モル%以下であることにより、フッ化ビニリデン共重合体は、結晶性を有する熱可塑性樹脂となる。コモノマーの下限値は、好ましくは1モル%である。コモノマーの比率が高くなりすぎると、フッ化ビニリデン共重合体は、結晶性を喪失してエラストマーとなる。
 フッ化ビニリデンの単独重合体は、結晶性樹脂である。フッ化ビニリデンとコモノマーとの共重合によって、結晶性を喪失させてエラストマーとするには、コモノマーの共重合比率を大きくする必要がある。実際、市販のポリフッ化ビニリデンエラストマーは、コモノマーの共重合比率が20モル%以上である。
 PVDF樹脂として、フッ化ビニリデン単独重合体、及びコモノマーの共重合比率が15モル%以下のフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種を用いることができる。PVDF樹脂の中でも、フッ化ビニリデン単独重合体、及びヘキサフルオロプロピレン単位を15モル%以下の比率で含有するフッ化ビニリデン-ヘキサフルオロプロピレン共重合体が、耐熱性、溶融成形性、機械的特性、防汚性、耐溶剤性、二次加工性などの観点から、特に好ましい。
 PVDF樹脂は、一般に、懸濁重合法または乳化重合法により製造することができる。乳化重合法では、化学的に安定なフッ素系乳化剤を使用して、フッ化ビニリデン単独またはフッ化ビニリデンとヘキサフルオロプロピレンなどのコモノマーとを水系媒体中に乳化させる。次いで、重合開始剤として、無機過酸化物、有機過酸化物、有機パーカーボネート化合物などを使用して、重合を行う。乳化重合後、サブミクロン単位の微小なラテックスを凝集剤により析出し、凝集させると、PVDF樹脂を適当な大きさの粒子として回収することができる。
 懸濁重合法では、メチルセルロースなどの懸濁剤を用いて、フッ化ビニリデンまたは該フッ化ビニリデンとコモノマーとを水系媒体中に懸濁させる。例えば、重合開始剤として、低温で活性を示す有機パーカーボネート(例えば、ジn-プロピルパーオキシジカーボネート)を用いて、フッ化ビニリデンの臨界温度30.1℃以下の温度、好ましくは10~30℃、より好ましくは20~28℃で重合を開始して一次重合体粒子を生成させ、必要に応じて、温度を30~90℃、好ましくは40~80℃に上昇させて、重合反応を継続し、二次重合体粒子を生成させる。
 PVDF樹脂の固有粘度は、好ましくは0.70~1.50dl/g、より好ましくは0.80~1.30dl/gの範囲内である。PVDF樹脂の固有粘度は、PVDF樹脂4gを1リットルのN,N-ジメチルホルムアミドに溶解させた溶液について、ウベローデ粘度計を用いて測定した30℃における対数粘度である。
 PVDF樹脂の融点は、通常130~177℃、多くの場合150~177℃の範囲内である。PVDF樹脂の融点は、示差走査熱量計(DSC)により測定される値である。懸濁重合法により得られたフッ化ビニリデン単独重合体の融点は、177℃である。PVDF樹脂は、350℃以上の温度に加熱すると、HFガスを発生して分解する。PVDF樹脂は、融点と分解点までの加工可能な温度領域が広い。PVDF樹脂の溶融加工温度は、通常、200~250℃の範囲内である。
2.酸化チタン
 酸化チタンは、アナタース型とルチル型の2種類の結晶形のものが広く利用されている。本発明では、これら2種類の結晶形のものを用いることができるが、これらの中でも、高温でのPVDF樹脂への分散性に優れ、揮発性が極めて小さいことから、ルチル型の結晶形を有する酸化チタンが好ましい。
 酸化チタンとしては、顔料用グレードのものを好ましく用いることができる。透過型電子顕微鏡撮影画像の画像解析による酸化チタンの平均粒子径(平均一次粒子径)は、通常150~1000nm、好ましくは200~700nm、より好ましくは200~400nmの範囲内である。酸化チタンの平均粒子径が小さすぎると、隠蔽力が低下する。酸化チタンは、その平均粒子径が前記範囲内にあることによって、屈折率が大きく光散乱性が強いため、白色顔料としての隠蔽力が高くなる。酸化チタンは、一般に、一次粒子が凝集した二次粒子の形態で存在している。酸化チタンのBET法による比表面積は、通常1~15、多くの場合5~15の範囲内である。
 酸化チタンは、表面処理剤で表面処理することにより、分散性、隠蔽性、耐候性などの特性を向上させることができる。表面処理剤としては、アルミニウム、ケイ素、ジルコニウム、錫、セリウム、ビスマスなどの金属酸化物;酸化亜鉛などの水和金属酸化物;有機アルミニウム化合物、有機チタニウム化合物、有機ジルコニウム化合物などの有機金属化合物;シランカップリング剤やポリシロキサンなどの有機ケイ素化合物;リン酸アルミニウム、有機リン酸エステルなどのリン化合物;アミン化合物;などが挙げられる。
 酸化チタンを表面処理剤で被覆することにより、酸化チタン表面と周囲環境との間の反応を抑制することができる。表面処理した酸化チタンは、PVDF樹脂への分散性に優れている。表面処理した酸化チタンは、高濃度でPVDF樹脂中に分散させることができる。
 本発明で熱安定剤として用いるのと同じ物質で表面処理した酸化チタンを用いる場合には、表面処理剤の付着量が極めて少ないため、その量を本発明の熱安定剤の量に含めないこととする。実際、本発明で熱安定剤として用いるのと同じ物質で表面処理した酸化チタンを用いても、PVDF樹脂組成物の耐熱性を向上させることはできない。
3.熱安定剤
 本発明で使用する熱安定剤としては、ポリヒドロキシモノカルボン酸カルシウム塩;炭素数5~30の脂肪族カルボン酸カルシウム塩;炭酸カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも一種の無機カルシウム化合物;並びに、酸化亜鉛及び酸化マグネシウムからなる群より選ばれる少なくとも一種の金属酸化物が挙げられる。これらの熱安定剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 熱安定剤として、ポリヒドロキシモノカルボン酸カルシウム塩が有効であることが見出された。ポリヒドロキシモノカルボン酸は、ヒドロキシカルボン酸に属する化合物であって、1分子中に1個のカルボキシル基と複数個のアルコール性水酸基とを持つ化合物の総称である。ポリヒドロキシモノカルボン酸としては、例えば、グリセリン酸、2,3-ジホスホ-D-グリセリン酸、9,10-ジヒドロキシオクタデカン酸、グルコン酸などが挙げられる。ポリヒドロキシモノカルボン酸カルシウム塩は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。ポリヒドロキシモノカルボン酸カルシウム塩としては、グルコン酸カルシウムが好ましい。ポリヒドロキシモノカルボン酸カルシウム塩は、水和物であってもよく、また、異性体がある場合には、その異性体の種類に制限はない。市販のポリヒドロキシモノカルボン酸カルシウム塩としては、例えば、グルコン酸カルシウム1水和物(関東化学製特級試薬)が挙げられる。
 ヒドロキシカルボン酸カルシウム塩であっても、例えば、乳酸カルシウムなどのモノヒドロキシモノカルボン酸カルシウム塩を用いた場合には、熱分解抑制効果が不十分であるか、熱分解抑制効果を示すものであっても、高温環境下で着色や発泡を示すことがある。
 熱安定剤として、炭素数5~30の脂肪族カルボン酸カルシウム塩が有効であることが見出された。炭素数5~30の脂肪族カルボン酸としては、例えば、ピバル酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ラウリン酸、パルミチン酸、ヘプタデカン酸、ステアリン酸、イコサン酸、ベヘン酸、セロチン酸、トリアコンタン酸などの炭素数5~30の飽和脂肪族モノカルボン酸;例えば、アンゲリカ酸、チグリン酸、4-ペンテン酸、α-エチルクロトン酸、10-ウンデセン酸、オレイン酸、エライジン酸、エルカ酸、ブラスジン酸、21-トリアコンテン酸、ソルビン酸、リノール酸、α-エレオステアリン酸、α-リノレン酸、アラキドン酸などの炭素数5~30の不飽和脂肪族モノカルボン酸;を挙げることができる。これらの脂肪族カルボン酸カルシウム塩は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 着色と熱分解の抑制効果に優れる点で、飽和脂肪族モノカルボン酸カルシウム塩としては、ステアリン酸カルシウムなどの炭素数10~30の飽和脂肪酸カルシウム塩がより好ましい。不飽和脂肪族モノカルボン酸カルシウム塩としては、オレイン酸カルシウムなどの炭素数11~30の不飽和脂肪酸カルシウム塩が好ましい。市販の脂肪族カルボン酸カルシウム塩としては、例えば、ステアリン酸カルシウム(関東化学製1級試薬)、オレイン酸カルシウム(関東化学製1級試薬)などが挙げられる。
 カルボン酸カルシウム塩であっても、酢酸カルシウムなどの炭素数が少ないカルボン酸カルシウム塩の場合には、熱分解抑制効果を得ることができない。ステアリン酸などのカルシウム塩を形成していない遊離の脂肪族カルボン酸を用いた場合においても、熱分解抑制効果を得ることができない。
 熱安定剤として、炭酸カルシウム及び水酸化カルシウムからなる群より選ばれる少なくとも一種の無機カルシウム化合物を使用することができる。炭酸カルシウム及び水酸化カルシウムは、熱分解抑制効果が特に優れているので好ましい。市販の無機カルシウム化合物としては、例えば、炭酸カルシウム(竹原化学工業製SL-1500)、水酸化カルシウム(純正化学製特級試薬)などが挙げられる。無機カルシウム化合物であっても、塩化カルシウムなどの他の無機カルシウム化合物を用いた場合には、熱分解抑制効果を得ることができない。
 熱安定剤として、酸化亜鉛及び酸化マグネシウムからなる群より選ばれる少なくとも一種の金属酸化物が有効であることが見出された。金属酸化物の市販品としては、例えば、酸化亜鉛(堺化学工業製微細酸化亜鉛)、酸化マグネシウム(関東化学製特級試薬)などが挙げられる。金属酸化物であっても、酸化ケイ素、酸化アルミニウム、酸化鉄(III)、酸化ジルコニウムなどの他の金属酸化物を用いた場合には、熱分解抑制効果が得られないか、熱分解抑制効果が不十分である。
 その他の無機化合物であっても、例えば、二硫化モリブデン、四塩化ジルコニウム、塩化カルシウム、水酸化マグネシウムなどを用いた場合には、熱分解抑制効果が不十分であるか、かえって熱分解が促進されることがある。また、塩化鉄のように、優れた熱分解抑制効果を示すものであっても、フィルムなどの成形品に成形すると、表面が不均一で脱落片が生じるなど、外観が不良となるものがある。
 本発明で使用する熱安定剤としては、熱分解抑制効果に優れる点で、炭酸カルシウム、水酸化カルシウム、グルコン酸カルシウム、酸化亜鉛、オレイン酸カルシウム、酸化マグネシウム、及びステアリン酸カルシウムが好ましく、炭酸カルシウム、水酸化カルシウム、グルコン酸カルシウム、酸化亜鉛、オレイン酸カルシウム、及び酸化マグネシウムがより好ましく、炭酸カルシウム、水酸化カルシウム、グルコン酸カルシウム、及び酸化亜鉛がさらに好ましく、炭酸カルシウム及び水酸化カルシウムが特に好ましい。
 これらの熱安定剤は、PVDF樹脂中への分散性の観点から、通常、粉末の形状のものが用いられる。例えば、炭酸カルシウムなどの無機カルシウム化合物、及び酸化亜鉛などの金属酸化物は、透過型電子顕微鏡撮影画像の画像解析による平均粒子径(平均一次粒子径)が、0.05~2μmの範囲内にあることが好ましい。この平均粒子径は、小さくなるほど、PVDF樹脂の熱分解温度を向上させる効果を発揮することができる。そのため、無機カルシウム化合物や金属酸化物の平均粒子径は、0.05~1μmの範囲内にあることがより好ましい。
4.PVDF樹脂組成物
 本発明のPVDF樹脂組成物における酸化チタンの含有割合は、PVDF樹脂100重量部に対して、通常5~100重量部、好ましくは10~80重量部、より好ましくは15~70重量部、特に好ましくは20~60重量部の範囲内である。酸化チタンの含有割合が小さすぎると、太陽電池モジュール用バックシートとして利用可能な白色度と隠蔽力を有する樹脂フィルムを得ることが困難になる。酸化チタンの含有割合が大きすぎると、押出加工による樹脂フィルムの製造が困難になる上、樹脂フィルムの機械的強度が低下する。
 本発明のPVDF樹脂組成物中の熱安定剤の含有割合は、PVDF樹脂100重量部に対して、通常0.1~20重量部、好ましくは0.3~15重量部、より好ましくは0.5~10重量部、特に好ましくは0.8~8重量部の範囲内である。熱安定剤の含有割合が小さすぎると、熱安定化効果が小さくなり、PVDF樹脂組成物中のPVDF樹脂成分の熱分解温度の低下を十分に抑制することが困難になる。熱安定剤の含有割合が大きすぎると、樹脂フィルムの隠蔽力や色調、機械的特性などに悪影響を及ぼすおそれがある。
 熱安定剤による熱安定化効果を効率的に高めるために、PVDF樹脂組成物中の酸化チタンの含有割合に応じて、熱安定剤の含有割合を調整することが好ましい。熱安定剤の含有割合は、通常、酸化チタンの含有割合よりも小さくする。酸化チタンと熱安定剤の重量比は、通常100:1~3:1、好ましくは80:1~4:1、より好ましくは50:1~5:1の範囲内である。
 本発明のPVDF樹脂組成物には、所望により、顔料分散剤、紫外線吸収剤、光安定剤、つや消し剤、滑剤、色味の調整剤(例えば、カーボンブラックなどの着色剤)、結晶核剤、機械物性改良剤(例えば、アクリルエラストマーなどのエラストマー)などの他の添加剤を含有させることができる。これらの添加剤は、所望により、それぞれに適した割合で用いられる。これらの添加剤を用いる場合には、PVDF樹脂100重量部に対して、各々独立して、好ましくは10重量部以下、より好ましくは5重量部以下、特に好ましくは3重量部以下の割合で用いられる。これらの添加剤を用いる場合、その含有割合の下限は、PVDF樹脂100重量部に対して、各々独立して、通常0.001重量部、多くの場合0.01重量部である。
 本発明のPVDF樹脂組成物には、PVDF樹脂と相溶性のあるポリメチルメタクリレートなどの他の熱可塑性樹脂を含有させることができる。他の熱可塑性樹脂は、PVDF樹脂100重量部に対して、好ましくは30重量部以下、より好ましくは25重量部以下の割合で用いられる。他の熱可塑性樹脂を用いる場合、その下限値は、通常0.01重量部、好ましくは0.1重量部、より好ましくは1重量部である。他の熱可塑性樹脂の中でも、ポリメチルメタクリレート(PMMA)は、PVDF樹脂と相溶性に優れる上、PVDF樹脂組成物から形成された白色樹脂フィルムの他材に対する接着性を向上させるため、特に好ましい。
 PVDF樹脂組成物は、PVDF樹脂粉末、酸化チタン、及び熱安定剤をドライブレンドする方法により調製することができる。PVDF樹脂の粉末またはペレットを酸化チタン及び熱安定剤と共に、押出機に供給して溶融混練し、ストランド状に溶融押出し、カットしてペレット化することができる。他の添加剤及び/または他の熱可塑性樹脂を用いる場合には、前記のブレンド工程やペレット工程で含有させる。
 PVDF樹脂組成物を粉体塗料として使用する場合には、PVDF樹脂粉末、酸化チタン、及び熱安定剤をドライブレンドする方法によりPVDF樹脂組成物を調製する。他の添加剤及び/または他の熱可塑性樹脂を用いる場合には、該ブレンド工程で含有させる。このようなドライブレンド物は、粉体塗料として使用できるだけではなく、押出成形機に供給して、フィルム(シートを含む)として溶融押出成形することができる。
 PVDF樹脂組成物は、所望により、オルガノゾル塗料の形態とすることができる。オルガノゾル塗料は、常法により、PVDF樹脂粉末、酸化チタン、熱安定剤、アクリル樹脂(製膜助剤)、所望により他の添加剤及び/または他の熱可塑性樹脂、及び有機溶媒を、ロールミル、サンドグラインダーなどを用いて分散する方法により調製することができる。PVDF樹脂組成物は、常法によりディスパージョン塗料の形態とすることもできる。
 本発明のPVDF樹脂組成物は、熱重量法(TGA)により熱重量測定を行ったときに、10%熱重量減少温度が、通常345℃以上、好ましくは350℃以上、より好ましくは355℃以上、特に好ましくは365℃以上を示すものである。
 本発明のPVDF樹脂組成物の10%熱重量減少温度は、酸化チタンの種類によって変動することがあるが、本発明のPVDF樹脂組成物は、酸化チタンのみを含有し熱安定剤を含有しないPVDF樹脂組成物に比べて、10%熱重量減少温度の上昇の程度が通常10℃以上、好ましくは12℃以上、より好ましくは15℃以上、さらに好ましくは19℃以上、特に好ましくは20℃または25℃以上を示す。本発明のPVDF樹脂組成物は、PVDF樹脂単独に比べて、10%熱重量減少温度の低下の程度が、通常30℃以下、好ましくは25℃以下、より好ましくは20℃以下、特に好ましくは15℃以下を示す。
5.白色樹脂フィルム
 PVDF樹脂組成物は、押出成形機に供給し、押出成形機の先端に配置したTダイからフィルム状に溶融押出することにより、白色樹脂フィルムに成形することができる。本発明において、樹脂フィルムとは、厚みが250μm未満のフィルムだけではなく、厚みが250μm~3mmのシート(板を含む)まで含むものとする。
 白色樹脂フィルムの厚みの下限値は、通常5μm、好ましくは10μm、より好ましくは12μm、特に好ましくは15μmである。白色樹脂フィルムの厚みの上限値は、好ましくは500μm、より好ましくは300μm、特に好ましくは100μmまたは50μmである。白色樹脂フィルムの厚みが薄すぎると、十分な白色度や隠蔽力を得ることが困難になり、機械的特性も低下する。白色樹脂フィルムの厚みが厚すぎると、柔軟性が損なわれたり、軽量化が困難になったりする。白色樹脂フィルムの厚みは、特に15~50μmの範囲内で良好な特性を発揮することができる。
 本発明のPVDF樹脂組成物を粉体塗料、オルガノゾル塗料またはディスパージョン塗料の形態で用いる場合には、金属板やガラス板、耐熱性樹脂フィルムなどの耐熱性基材の上に塗工し、加熱する方法により製膜することができる。
6.太陽電池モジュール及びそのバックシート
 本発明の太陽電池モジュール用バックシートを配置することができる太陽電池モジュールとしては、例えば、図7に示す断面構造のものを例示することができる。図7に示すように、太陽電池モジュールは、表面保護材72、封止材73、太陽電池セル74、及び裏面保護材76から構成される。複数の太陽電池セル74を配線75により直列に接続し、太陽電池モジュールを構成する。太陽電池モジュールの端部または周縁部には、フレーム(図示せず)が配置されている。
 表面保護材72としては、例えば、強化ガラス板、透明プラスチック板、単層若しくは多層の透明プラスチックフィルム、これらを複合化した複合材料などが用いられるが、これらに限定されない。封止材73としては、エチレン-酢酸ビニル共重合体(EVA)、ブチラール樹脂、シリコン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂などの透明な樹脂が用いられるが、これらに限定されない。これらの封止材の中でも、EVAが好ましい。太陽電池セル74の構造は、太陽電池の種類によって異なるが、各種太陽電池セルを用いることができる。
 本発明において、裏面保護材(バックシート)76としては、本発明のPVDF樹脂組成物からなる単層の白色樹脂フィルム、該白色樹脂フィルムと他の樹脂フィルム(例えば、PETフィルム)とを複合化した多層フィルム、該白色樹脂フィルムと防湿フィルムとを複合化した多層フィルム、該白色樹脂フィルムと強化ガラス板とを複合化した複合材料、該白色樹脂フィルムと金属板とを複合化した複合材料、該白色樹脂フィルムと他の樹脂フィルム、防湿フィルム、強化ガラス板などの2種以上とを複合化した複合材料などが用いられる。多層フィルムや複合材料は、各層間に接着剤層を配置することができる。防湿フィルムとしては、基材フィルムの片面に、酸化ケイ素や酸化アルミニウムなどの無機酸化物の蒸着膜を形成した複合フィルムなどが挙げられる。市販の防湿フィルムとしては、例えば、株式会社クレハ製セレール(CELLEL)(登録商標)T030が挙げられる。
 封止材としてEVAを用いる場合、EVAは、シートとして供給される。太陽電池セルを2枚のEVAシートで挟んで、加熱加圧することにより、太陽電池セルをEVAで封止することができる。EVAシートは、PVDF樹脂組成物からなる白色樹脂フィルムと複合化して供給することができる。
 本発明の太陽電池モジュール用バックシートの好ましい層構成としては、例えば、以下のようなものを例示することができるが、これらに限定されない。複数層の層構成を有するバックシートは、太陽電池モジュールに当接する側の面を右端として示す。
(1)白色樹脂フィルム
(2)白色樹脂フィルム/接着剤/EVA
(3)他の樹脂フィルム/白色樹脂フィルム
(4)他の樹脂フィルム/接着剤/白色樹脂フィルム
(5)他の樹脂フィルム/白色樹脂フィルム/接着剤/EVA
(6)他の樹脂フィルム/接着剤/白色樹脂フィルム/接着剤/EVA
(7)ガラス板/接着剤/白色樹脂フィルム
(8)ガラス板/接着剤/白色樹脂フィルム/接着剤/EVA
(9)金属板/接着剤/白色樹脂フィルム
(10)金属板/接着剤/白色樹脂フィルム/接着剤/EVA
(11)上記層構成に防湿フィルムを付加した層構成
 本発明の太陽電池モジュール用バックシートが白色樹脂フィルムを含む多層シートの場合、白色樹脂フィルムを封止材(例えば、EVA)層に直接または接着剤層を介して隣接させる。
 以下、本発明について、実施例を挙げてより具体的に説明する。物性または特性の評価方法は、次の通りである。
(1)10%熱重量減少温度
 メトラー社製の熱重量分析機TC11を用い、30℃で6時間以上真空乾燥したサンプル20mgを白金パンに入れ、乾燥窒素10ml/分の雰囲気下で50℃から450℃まで10℃/分の昇温速度で昇温し、その間の重量減少率を測定した。測定開始時のサンプル重量から10重量%減少したときの温度を10%熱重量減少温度とした。
(2)イエローインデックス(YI)値
 日本電色工業社製の色差計(ZE2000)を使用し、ASTM D-1925に従ってYI値を測定した。
[参考例1]
 ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850;懸濁重合品〕の10%熱重量減少温度を測定したところ、382℃であった。結果を表1に示す。
[参考例2]
 ポリフッ化ビニリデン樹脂〔アルケマ社製カイナー(KYNAR)(登録商標)720;乳化重合品〕の10%熱重量減少温度を測定したところ、385℃であった。結果を表1に示す。
[比較例1]
 ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850〕100重量部に対して、酸化チタン〔デュポン社製TI-PURE(登録商標)R101;ルチル型酸化チタン、平均粒子径0.29μm、アミン化合物による表面処理品〕30重量部を単軸押出機に供給し、シリンダー温度220℃で溶融混練し、ダイからストランド状に溶融押出し、冷水中でカットしてペレットを作製した。このペレットを用いて、10%熱重量減少温度を測定したところ、342℃であった。結果を表1に示す。
[比較例2]
 ポリフッ化ビニリデン樹脂〔アルケマ社製カイナー(登録商標)720〕100重量部に対して、酸化チタン〔デュポン社製TI-PURE(登録商標)R101;ルチル型酸化チタン、平均粒子径0.29μm、アミン化合物による表面処理品〕30重量部を単軸押出機に供給し、シリンダー温度220℃で溶融混練し、ダイからストランド状に溶融押出し、冷水中でカットしてペレットを作製した。このペレットを用いて、10%熱重量減少温度を測定したところ、342℃であった。結果を表1に示す。
[比較例3]
 酸化チタンを、デュポン社製TI-PURE(登録商標)R101からデュポン社製TI-PURE(登録商標)R105(ルチル型酸化チタン、二酸化ケイ素による表面処理品)に代えたこと以外は、比較例1と同様に操作した。その結果、得られたPVDF樹脂組成物の10%熱重量減少温度は、336℃であった。結果を表1に示す。
[比較例4]
 ポリフッ化ビニリデン樹脂100重量部に代えて、ポリフッ化ビニリデン樹脂80重量部とポリメチルメタクリレート20重量部との混合物を用いたこと以外は、比較例1と同様に操作した。その結果、得られたPVDF樹脂組成物の10%熱重量減少温度は、342℃から334℃に低下した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(脚注)
A1:ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850;懸濁重合品〕
A2:ポリフッ化ビニリデン樹脂〔アルケマ社製カイナー(登録商標)720;乳化重合品〕
B1:酸化チタン〔デュポン社製TI-PURE(登録商標)R101〕
B2:酸化チタン〔デュポン社製TI-PURE(登録商標)R105〕
D1:ポリメチルメタクリレート(PMMA)〔旭化成ケミカルズ株式会社製デルパウダ(登録商標)70H〕
<考察>
 表1の結果から明らかなように、PVDF樹脂(懸濁重合品)100重量部に対し、酸化チタン〔デュポン社製TI-PURE(登録商標)R101〕30重量部をブレンドした樹脂組成物(比較例1)は、PVDF樹脂単独の場合(参考例1)に比べて、10%熱重量減少温度が40℃も低下しており、耐熱性に劣るものである。同様に、PVDF樹脂(乳化重合品)100重量部に対し、酸化チタン〔デュポン社製TI-PURE(登録商標)R101〕30重量部をブレンドした樹脂組成物(比較例2)は、PVDF樹脂単独の場合(参考例2)に比べて、10%熱重量減少温度が43℃も低下しており、耐熱性に劣るものである。
 PVDF樹脂(懸濁重合品)100重量部に対し、酸化チタン〔デュポン社製TI-PURE(登録商標)R105〕30重量部をブレンドした樹脂組成物(比較例3)は、PVDF樹脂単独の場合(参考例1)に比べて、10%熱重量減少温度が46℃も低下しており、耐熱性に劣るものである。樹脂成分として、ポリメチルメタクリレート(PMMA)を含有させても(比較例4)、熱分解を抑制することはできない。
[実施例1]
 ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850〕100重量部に対して、酸化チタン〔デュポン社製TI-PURE(登録商標)R101;ルチル型酸化チタン、平均粒子径0.29μm、表面処理品)30重量部、及び炭酸カルシウム(竹原化学工業製SL-1500)5重量部を単軸押出機に供給し、シリンダー温度220℃で溶融混練し、ダイからストランド状に溶融押出し、冷水中でカットしてペレットを作製した。酸化チタンと炭酸カルシウムとの重量比は、6:1であった。このペレットを用いて、10%熱重量減少温度を測定したところ、389℃であった。
 この実施例1のサンプルの10%熱重量減少温度(389℃)と比較例1のサンプルの10%熱重量減少温度(342℃)との差は、+47℃であり、炭酸カルシウムを添加すると、熱分解抑制効果が顕著に優れることが分かった。また、実施例1のサンプルの10%熱重量減少温度(389℃)は、参考例1のサンプルの10%熱重量減少温度(382℃)との差が+7℃であり、PVDF樹脂単独の場合よりも耐熱性が向上していることが判明した。このように、炭酸カルシウムの熱安定剤としての性能は顕著であった。結果を表2に示す。
[実施例2~7]
 熱安定剤として、炭酸カルシウムに代えて、表2に示す化合物を表2に示す量比で使用したこと以外は、実施例1と同様にしてペレットを作製し、10%熱重量減少温度を測定した。酸化チタンと熱安定剤との重量比は、6:1(実施例2~4、及び実施例6)または30:1(実施例5及び7)であった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(脚注)
A1:ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850〕
B1:酸化チタン〔デュポン社製TI-PURE(登録商標)R101〕
C1:炭酸カルシウム(竹原化学工業製SL-1500)
C2:水酸化カルシウム(純正化学製特級試薬)
C3:グルコン酸カルシウム1水和物(関東化学製特級試薬)
C4:酸化亜鉛(堺化学工業製微細酸化亜鉛)
C5:オレイン酸カルシウム(関東化学製1級試薬)
C6:酸化マグネシウム(関東化学製特級試薬)
C7:ステアリン酸カルシウム(関東化学製1級試薬)
[比較例5~16]
 熱安定剤として、炭酸カルシウムに代えて、表3に示す化合物(添加剤)を表3に示す量比で使用したこと以外は、実施例1と同様にしてペレットを作製し、10%熱重量減少温度を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(脚注)
A1:ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850〕
B1:酸化チタン〔デュポン社製TI-PURE(登録商標)R101〕
C8:酸化ケイ素〔日本アエロジル社製アエロジルRX-200〕
C9:二硫化モリブデン(和光純薬製1級試薬)
C10:四塩化ジルコニウム(和光純薬製試薬)
C11:塩化カルシウム(関東化学製特級試薬)
C12:酢酸カルシウム1水和物(関東化学製特級試薬)
C13:酸化アルミニウム(関東化学製鹿特級試薬)
C14:酸化鉄(III)(和光純薬製試薬)
C15:酸化ジルコニウム(和光純薬製特級試薬)
C16:水酸化マグネシウム(神島化学工業製N-6)
C17:ステアリン酸(関東化学製1級試薬)
C18:酸化アルミニウム(超微粒子)(細川ミクロン製粉砕品)
C19:塩化鉄(和光純薬製試薬)
1)塩化鉄を含有するPVDF樹脂組成物は、10%熱重量減少温度が大幅に向上しているが、該PVDF樹脂組成物を用いて成形したフィルムの表面が緊密に一体化されておらず、ボロボロの状態であり、外観不良と評価される。
[実施例8]
 ポリフッ化ビニリデン樹脂を、(株)クレハ製KF(登録商標)#850(懸濁重合品)からアルケマ社製カイナー(登録商標)720(乳化重合品)に代えたこと以外は、実施例1と同様に操作した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(脚注)
A2:ポリフッ化ビニリデン樹脂〔アルケマ社製カイナー(登録商標)720;乳化重合品〕
B1:酸化チタン〔デュポン社製TI-PURE(登録商標)R101〕
C1:炭酸カルシウム(竹原化学工業製SL-1500)
[実施例9]
 酸化チタンを、デュポン社製TI-PURE(登録商標)R101からデュポン社製TI-PURE(登録商標)R105に代えたこと以外は、実施例1と同様に操作した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
(脚注)
A1:ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850〕
B2:酸化チタン〔デュポン社製TI-PURE(登録商標)R105〕
C1:炭酸カルシウム(竹原化学工業製SL-1500)
<考察>
 表2乃至表5に示されている対比実験結果から明らかなように、特定の化合物を熱安定剤として含有させたPVDF樹脂組成物(実施例1~9)は、PVDF樹脂と酸化チタンとを含有する樹脂組成物(比較例1~3)に比べて、10%熱重量減少温度が10℃以上も上昇しており、熱分解抑制効果に優れることが分かる。
 熱安定剤として、炭酸カルシウム、水酸化カルシウム、グルコン酸カルシウム、酸化亜鉛、オレイン酸カルシウム、及び酸化マグネシウムを用いた場合(実施例1~6、8、及び9)には、10%熱重量減少温度が15℃以上も上昇している。熱安定剤として、炭酸カルシウム、水酸化カルシウム、グルコン酸カルシウム、及び酸化亜鉛を用いた場合(実施例1~4、8、及び9)には、10%熱重量減少温度が20℃以上も上昇している。本発明のPVDF樹脂組成物(実施例1~9)は、PVDF樹脂単独の場合(参考例1及び2)に比べて、10%熱重量減少温度の低下の程度が、通常30℃以下、好ましくは25℃以下を示す。
 これに対して、本発明で用いる特定の熱安定剤に属しない化合物を添加した場合(比較例5~15)には、熱分解抑制効果が小さいか、むしろ10%熱重量減少温度が更に低下傾向を示す。塩化鉄を添加した場合(比較例16)には、10%熱重量減少温度が23℃も上昇するものの、そのPVDF樹脂組成物から形成されたフィルムは、表面の緊密性に欠けるものであって、外観が著しく悪く、製品としての価値がないものである。
 参考例1、比較例1、及び実施例1~7のサンプルについて、熱重量法(TGA)により熱重量測定を行って得られたグラフを図1に示す。参考例1、比較例1、5、8、15、及び16のサンプルについて、TGAにより熱重量測定を行って得られたグラフを図2に示す。参考例2、比較例2、及び実施例8のサンプルについて、TGAにより熱重量測定を行って得られたグラフを図3に示す。参考例1、比較例3、及び実施例9のサンプルについて、TGAにより熱重量測定を行って得られたグラフを図4に示す。
[実施例10]
 実施例1で作製したペレット(PVDF樹脂、酸化チタン、及び炭酸カルシウムを含有する樹脂組成物)を1軸スクリュー押出成形機(プラ技研社製)に供給し、リップクリアランス1mmのTダイから樹脂温度240℃で溶融押出し、90℃の冷却ロールで冷却して、厚み30μmの樹脂フィルムを作製した。この樹脂フィルムを250℃の温度に保持した恒温槽中に入れて、経過時間とYI値との関係を測定した。結果を図5に示す。
[比較例17]
 実施例1で作製したペレットに代えて、比較例1で作製したペレット(PVDF樹脂と酸化チタンを含有する樹脂組成物)を用いたこと以外は、実施例10と同様にして樹脂フィルムを作製し、経過時間とYI値との関係を測定した。結果を図5に示す。
[比較例18]
 実施例1で作製したペレットに代えて、比較例13で作製したペレット(PVDF樹脂、酸化チタン、及び水酸化マグネシウムを含有する樹脂組成物)を用いたこと以外は、実施例10と同様にして樹脂フィルムを作製し、経過時間とYI値との関係を測定した。結果を図5に示す。
[比較例19]
 実施例1で作製したペレットに代えて、比較例4で作製したペレット(PVDF樹脂、酸化チタン、及びPMMAを含有する樹脂組成物)を用いたこと以外は、実施例10と同様にして樹脂フィルムを作製し、経過時間とYI値との関係を測定した。結果を図5に示す。
<考察>
 図5の結果から明らかなように、本発明のPVDF樹脂組成物を用いて作製した白色樹脂フィルム(実施例10)は、250℃の加熱試験で経時変化を観察したところ、10時間経過後もYI値が低水準に保持されている。
 これに対して、PVDF樹脂に酸化チタン(R101)を含有させた白色樹脂フィルム(比較例17)、PVDF樹脂に酸化チタンと水酸化マグネシウムを含有させた白色樹脂フィルム(比較例18)、及びPVDF樹脂に酸化チタンとPMMAを含有させた白色樹脂フィルム(比較例19)は、経時によるYI値の上昇傾向が急激であることが分かる。
[実施例11]
 ポリフッ化ビニリデン樹脂〔(株)クレハ製KF(登録商標)#850〕100重量部に対して、酸化チタン〔デュポン社製TI-PURE(登録商標)R101;ルチル型酸化チタン、平均粒子径0.29μm、表面処理品)55.6重量部、炭酸カルシウム(竹原化学工業製SL-1500)2.8重量部、ステアリン酸カルシウム(関東化学製1級試薬)0.9重量部、ポリメチルメタクリレート(PMMA)〔旭化成ケミカルズ株式会社製デルパウダ(登録商標)70H〕23.4重量部、アクリルエラストマー〔ダウケミカル社製パラロイド(PALALOID)(登録商標)EXL-2315〕2.5重量部、及びカーボンブラック〔電気化学工業社製デンカブラック(DENKA BLACK)(登録商標)〕0.04重量部を単軸押出機に供給し、シリンダー温度220℃で溶融混練し、ダイからストランド状に溶融押出し、冷水中でカットしてペレットを作製した。このペレットを用いて、10%熱重量減少温度を測定したところ、382℃であった。
 この実施例11のサンプルの10%熱重量減少温度(382℃)と参考例1のサンプル(PVDF樹脂単独)の10%熱重量減少温度(382℃)との差は、実質的に0℃であった。このように、PVDF樹脂に多量の酸化チタンを含有させても、熱安定剤として炭酸カルシウムとステアリン酸カルシウムとを含有させることにより、10%熱重量減少温度の低下が殆ど観察されないことが分かる。実施例11のPVDF樹脂組成物における酸化チタンと熱安定剤(炭酸カルシウム及びステアリン酸カルシウムの合計量)との重量比は、15:1であった。
 本発明のPVDF樹脂組成物は、白色樹脂フィルムの原料として利用することができる。本発明の白色樹脂フィルムは、太陽電池モジュール用バックシートとして利用することができる。

Claims (15)

  1.  ポリフッ化ビニリデン樹脂及び酸化チタンを含有するポリフッ化ビニリデン樹脂組成物であって、
    (a)該酸化チタンの含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、5~100重量部の範囲内であり、
    (b)該ポリフッ化ビニリデン樹脂組成物が、熱安定剤として、ポリヒドロキシモノカルボン酸カルシウム塩、炭素数5~30の脂肪族カルボン酸カルシウム塩、炭酸カルシウム、水酸化カルシウム、酸化亜鉛、及び酸化マグネシウムからなる群より選ばれる少なくとも一種の化合物を含有するものであり、
    (c)該熱安定剤の含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、0.1~20重量部の範囲内であり、並びに、
    (d)該酸化チタンと該熱安定剤との重量比が100:1~3:1の範囲内である
    ことを特徴とするポリフッ化ビニリデン樹脂組成物。
  2.  該ポリフッ化ビニリデン樹脂が、フッ化ビニリデン単独重合体及びフッ化ビニリデン共重合体からなる群より選ばれる少なくとも一種の結晶性樹脂である請求項1記載のポリフッ化ビニリデン樹脂組成物。
  3.  該フッ化ビニリデン共重合体が、それぞれコモノマーの共重合比率が15モル%以下のフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、及びフッ化ビニリデン-クロロトリフルオロエチレン-ヘキサフルオロプロピレン三元共重合体からなる群より選ばれる少なくとも一種のフッ化ビニリデン共重合体である請求項2記載のポリフッ化ビニリデン樹脂組成物。
  4.  該ポリフッ化ビニリデン樹脂が、フッ化ビニリデン単独重合体、及びヘキサフルオロプロピレン単位を15モル%以下の比率で含有するフッ化ビニリデン-ヘキサフルオロプロピレン共重合体からなる群より選ばれる少なくとも一種である請求項1記載のポリフッ化ビニリデン樹脂組成物。
  5.  該酸化チタンが、ルチル型結晶形を有する酸化チタンである請求項1記載のポリフッ化ビニリデン樹脂組成物。
  6.  該ポリヒドロキシモノカルボン酸カルシウム塩が、グリセリン酸、2,3-ジホスホ-D-グリセリン酸、9,10-ジヒドロキシオクタデカン酸、及びグルコン酸からなる群より選ばれる少なくとも一種のポリヒドロキシモノカルボン酸のカルシウム塩である請求項1記載のポリフッ化ビニリデン樹脂組成物。
  7.  該炭素数5~30の脂肪族カルボン酸カルシウム塩が、炭素数5~30の飽和脂肪族モノカルボン酸、及び炭素数5~30の不飽和脂肪族モノカルボン酸からなる群より選ばれる少なくとも一種の脂肪族カルボン酸のカルシウム塩である請求項1記載のポリフッ化ビニリデン樹脂組成物。
  8.  該炭素数5~30の脂肪族モノカルボン酸が、炭素数10~30の飽和脂肪酸カルシウム塩または炭素数11~30の不飽和脂肪酸カルシウム塩、若しくはこれらの混合物である請求項1記載のポリフッ化ビニリデン樹脂組成物。
  9.  該熱安定剤が、グルコン酸カルシウム、炭酸カルシウム、水酸化カルシウム、オレイン酸カルシウム、ステアリン酸カルシウム、酸化亜鉛、及び酸化マグネシウムからなる群より選ばれる少なくとも一種である請求項1記載のポリフッ化ビニリデン樹脂組成物。
  10.  該熱安定剤が、透過型電子顕微鏡撮影画像の画像解析により測定した平均一次粒子径が0.05~2μmの範囲内にあるものである請求項1記載のポリフッ化ビニリデン樹脂組成物。
  11.  顔料分散剤、紫外線吸収剤、光安定剤、つや消し剤、滑剤、色味の調整剤、結晶核剤、及びエラストマーからなる群より選ばれる少なくとも一種の他の添加剤を、ポリフッ化ビニリデン樹脂100重量部に対して、各々独立して10重量部以下の割合でさらに含有する請求項1記載のポリフッ化ビニリデン樹脂組成物。
  12.  他の熱可塑性樹脂を、ポリフッ化ビニリデン樹脂100重量部に対して、30重量部以下の割合でさらに含有する請求項1記載のポリフッ化ビニリデン樹脂組成物。
  13.  他の熱可塑性樹脂が、ポリメチルメタクリレートである請求項12記載のポリフッ化ビニリデン樹脂組成物。
  14.  ポリフッ化ビニリデン樹脂及び酸化チタンを含有するポリフッ化ビニリデン樹脂組成物から形成された白色樹脂フィルムであって、
    (i)該酸化チタンの含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、5~100重量部の範囲内であり、
    (ii)該ポリフッ化ビニリデン樹脂組成物が、熱安定剤として、ポリヒドロキシモノカルボン酸カルシウム塩、炭素数5~30の脂肪族カルボン酸カルシウム塩、炭酸カルシウム、水酸化カルシウム、酸化亜鉛、及び酸化マグネシウムからなる群より選ばれる少なくとも一種の化合物を含有するものであり、
    (iii)該熱安定剤の含有割合が、該ポリフッ化ビニリデン樹脂100重量部に対して、0.1~20重量部の範囲内であり、並びに、
    (iv)該酸化チタンと該熱安定剤との重量比が100:1~3:1の範囲内である
    ことを特徴とするポリフッ化ビニリデン樹脂組成物から形成された白色樹脂フィルム。
  15.  請求項14記載の白色樹脂フィルムからなる層を含む太陽電池モジュール用バックシート。
PCT/JP2010/056705 2009-04-20 2010-04-14 ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート WO2010122936A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011510297A JP5593309B2 (ja) 2009-04-20 2010-04-14 ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート
CN201080016407.3A CN102395624B (zh) 2009-04-20 2010-04-14 聚1,1-二氟乙烯树脂组合物、白色树脂膜和太阳能电池模块用背板
EP10766993.9A EP2423259B1 (en) 2009-04-20 2010-04-14 Polyvinylidene fluoride resin composition, white resin film, and backsheet for solar cell module
US13/265,182 US9029453B2 (en) 2009-04-20 2010-04-14 Polyvinylidene fluoride resin composition, white resin film, and backsheet for solar cell module
KR1020117027482A KR101334571B1 (ko) 2009-04-20 2010-04-14 폴리불화비닐리덴 수지 조성물, 백색 수지 필름, 및 태양 전지 모듈용 백시트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009102302 2009-04-20
JP2009-102302 2009-04-20

Publications (1)

Publication Number Publication Date
WO2010122936A1 true WO2010122936A1 (ja) 2010-10-28

Family

ID=43011054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056705 WO2010122936A1 (ja) 2009-04-20 2010-04-14 ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート

Country Status (6)

Country Link
US (1) US9029453B2 (ja)
EP (1) EP2423259B1 (ja)
JP (1) JP5593309B2 (ja)
KR (1) KR101334571B1 (ja)
CN (1) CN102395624B (ja)
WO (1) WO2010122936A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134359A (zh) * 2011-01-07 2011-07-27 东华大学 一种太阳能电池背膜及其制备方法
JP2012149152A (ja) * 2011-01-18 2012-08-09 Kureha Corp ポリフッ化ビニリデン樹脂組成物、着色樹脂フィルム、及び太陽電池モジュール用バックシート
WO2012172876A1 (ja) * 2011-06-15 2012-12-20 株式会社クレハ ポリフッ化ビニリデン樹脂フィルム、多層フィルム、及び太陽電池モジュール用バックシート、並びに、フィルムの製造方法
JP2013104022A (ja) * 2011-11-15 2013-05-30 Denki Kagaku Kogyo Kk フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
WO2014069482A1 (ja) * 2012-10-30 2014-05-08 旭硝子株式会社 樹脂フィルム、太陽電池モジュールのバックシートおよび太陽電池モジュール
CN104114595A (zh) * 2012-02-16 2014-10-22 阿科玛股份有限公司 用于光伏背板的辐射可固化的粘合剂组合物
WO2015068849A1 (ja) * 2013-11-11 2015-05-14 東洋アルミニウム株式会社 太陽電池用裏面保護シート
WO2015114983A1 (ja) * 2014-01-29 2015-08-06 株式会社クレハ フッ素系樹脂組成物、樹脂フィルム、積層体及び太陽電池モジュール用バックシート
WO2015133399A1 (ja) * 2014-03-04 2015-09-11 株式会社クレハ フッ素系樹脂フィルム、その製造方法、積層体及び太陽電池モジュール用バックシート
WO2016143549A1 (ja) * 2015-03-09 2016-09-15 株式会社クレハ フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート
KR101678990B1 (ko) * 2011-01-18 2016-11-24 에스케이씨 주식회사 내후성이 우수한 백색 폴리비닐리덴 플루오라이드계 필름
WO2024117095A1 (ja) * 2022-12-01 2024-06-06 三菱ケミカル株式会社 炭素材、炭素材の製造方法、負極の製造方法、及び二次電池の製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948943B1 (fr) * 2009-08-05 2012-03-16 Arkema France Film a base de polymere fluore et d'oxyde de zinc sans odeur acrylique pour application photovoltaique
KR101371856B1 (ko) * 2011-03-17 2014-03-10 주식회사 엘지화학 친환경 태양전지용 백시트 및 이의 제조방법
US20130122309A1 (en) * 2011-11-14 2013-05-16 Arkema Inc. Polyvinylidene fluoride dispersion
KR20130054920A (ko) * 2011-11-17 2013-05-27 주식회사 엘지화학 수분산 조성물, 친환경 광전지 모듈용 백시트 및 이의 제조방법
WO2014021436A1 (ja) * 2012-08-02 2014-02-06 旭硝子株式会社 樹脂フィルム、太陽電池モジュールのバックシート、太陽電池モジュール
JP2014216492A (ja) * 2013-04-25 2014-11-17 大日本印刷株式会社 太陽電池モジュール
CN104744859A (zh) * 2013-12-30 2015-07-01 江苏昊华光伏科技有限公司 一种太阳能背板膜
CN104744862A (zh) * 2013-12-31 2015-07-01 江苏昊华光伏科技有限公司 一种pvdf板材
US12021162B2 (en) 2014-06-02 2024-06-25 California Institute Of Technology Ultralight photovoltaic power generation tiles
US11362228B2 (en) 2014-06-02 2022-06-14 California Institute Of Technology Large-scale space-based solar power station: efficient power generation tiles
KR101648919B1 (ko) 2014-07-25 2016-08-17 롯데케미칼 주식회사 고분자 수지 조성물 및 불화비닐리덴계 고분자 수지 성형품
WO2016143548A1 (ja) * 2015-03-09 2016-09-15 株式会社クレハ フッ化ビニリデン系樹脂組成物、樹脂成形体、樹脂フィルム、及び保護シート
CN108285599A (zh) * 2018-02-05 2018-07-17 常州回天新材料有限公司 一种回收利用废旧pvdf膜制造接线盒原料的方法
JP7191681B2 (ja) * 2018-12-27 2022-12-19 株式会社クレハ ポリフッ化ビニリデン樹脂組成物および成形体
US20230011730A1 (en) * 2019-12-30 2023-01-12 3M Innovative Properties Company Ultraviolet-c radiation-protective films and methods of making the same
KR20230125234A (ko) * 2020-12-23 2023-08-29 알케마 인코포레이티드 분산 점도가 감소된 코팅을 위한 신규한 pvdf 분말
CN113698896B (zh) * 2021-07-30 2023-06-09 苏州福斯特光伏材料有限公司 树脂组合物、母粒及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933942A (ja) * 1972-07-28 1974-03-28
JPS61275344A (ja) * 1985-05-31 1986-12-05 Denki Kagaku Kogyo Kk 光拡散性フツ化ビニリデン系樹脂組成物
JPH06316663A (ja) * 1991-07-05 1994-11-15 Kyowa Chem Ind Co Ltd 安定化された含ハロゲン樹脂組成物
JPH11207887A (ja) * 1998-01-21 1999-08-03 Denki Kagaku Kogyo Kk 金属調の色合いを有するフッ化ビニリデン系樹脂フィルム
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2007035694A (ja) 2005-07-22 2007-02-08 Daikin Ind Ltd 太陽電池のバックシート
WO2007085769A2 (fr) 2006-01-25 2007-08-02 Arkema France Film flexible a base de polymere fluore
JP2007208179A (ja) 2006-02-06 2007-08-16 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用プラスチックフィルムおよび太陽電池裏面保護膜
WO2008019229A2 (en) 2006-08-04 2008-02-14 Arkema France Photovoltaic modules having a polyvinylidene fluoride surface
WO2008157159A1 (en) 2007-06-15 2008-12-24 Arkema Inc. Photovoltaic modules having a polyvinylidene fluoride backsheet
JP2009071236A (ja) * 2007-09-18 2009-04-02 Tomoegawa Paper Co Ltd 太陽電池用バックシート

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919392B1 (en) * 1978-08-29 2005-07-19 Arkema Inc. Stabilization of vinyl halide polymers
US4692381A (en) 1984-07-16 1987-09-08 Pennwalt Corporation Foamable polyvinylidene fluoride and methods
JPH0933942A (ja) * 1995-07-21 1997-02-07 Fuji Xerox Co Ltd 空間光変調素子およびその製造方法
US6610766B1 (en) * 1998-03-12 2003-08-26 Kureha Kagaku Kogyo K.K. Polyvinylidene fluoride resin composition
US6335479B1 (en) * 1998-10-13 2002-01-01 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
US6197220B1 (en) * 2000-06-06 2001-03-06 Therm-O-Disc Corporation Conductive polymer compositions containing fibrillated fibers and devices
US20020161090A1 (en) * 2001-03-13 2002-10-31 Blok Edward J. PTC conductive polymer compositions
US6660795B2 (en) * 2001-03-13 2003-12-09 Therm-O-Disc, Incorporated PTC conductive polymer compositions
JP4676832B2 (ja) * 2005-07-22 2011-04-27 ソニーケミカル&インフォメーションデバイス株式会社 電気化学セルの製造方法
JP4851254B2 (ja) * 2006-07-14 2012-01-11 株式会社クレハ フッ化ビニリデン系樹脂組成物およびその製造方法
JPWO2008032724A1 (ja) * 2006-09-14 2010-01-28 東レ株式会社 光導波路フィルム
KR100921476B1 (ko) * 2007-08-29 2009-10-13 한국과학기술연구원 전기방사에 의한 금속산화물 나노입자를 포함하는금속산화물층을 구비한 염료감응형 태양전지 및 그 제조방법

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933942A (ja) * 1972-07-28 1974-03-28
JPS61275344A (ja) * 1985-05-31 1986-12-05 Denki Kagaku Kogyo Kk 光拡散性フツ化ビニリデン系樹脂組成物
JPH06316663A (ja) * 1991-07-05 1994-11-15 Kyowa Chem Ind Co Ltd 安定化された含ハロゲン樹脂組成物
JPH11207887A (ja) * 1998-01-21 1999-08-03 Denki Kagaku Kogyo Kk 金属調の色合いを有するフッ化ビニリデン系樹脂フィルム
JP2002100788A (ja) 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
EP1938967A1 (en) 2005-07-22 2008-07-02 Daikin Industries, Ltd. Back sheet of solar cell
JP2007035694A (ja) 2005-07-22 2007-02-08 Daikin Ind Ltd 太陽電池のバックシート
WO2007085769A2 (fr) 2006-01-25 2007-08-02 Arkema France Film flexible a base de polymere fluore
US20090275251A1 (en) 2006-01-25 2009-11-05 Arkema France` Flexible film based on fluorinated polymer
JP2007208179A (ja) 2006-02-06 2007-08-16 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用プラスチックフィルムおよび太陽電池裏面保護膜
WO2008019229A2 (en) 2006-08-04 2008-02-14 Arkema France Photovoltaic modules having a polyvinylidene fluoride surface
US20100000601A1 (en) 2006-08-04 2010-01-07 Arkema France Photovoltaic modules having a polyvinylidene fluoride surface
WO2008157159A1 (en) 2007-06-15 2008-12-24 Arkema Inc. Photovoltaic modules having a polyvinylidene fluoride backsheet
EP2158614A1 (en) 2007-06-15 2010-03-03 Arkema, Inc. Photovoltaic modules having a polyvinylidene fluoride backsheet
JP2009071236A (ja) * 2007-09-18 2009-04-02 Tomoegawa Paper Co Ltd 太陽電池用バックシート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423259A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134359A (zh) * 2011-01-07 2011-07-27 东华大学 一种太阳能电池背膜及其制备方法
JP2012149152A (ja) * 2011-01-18 2012-08-09 Kureha Corp ポリフッ化ビニリデン樹脂組成物、着色樹脂フィルム、及び太陽電池モジュール用バックシート
KR101678990B1 (ko) * 2011-01-18 2016-11-24 에스케이씨 주식회사 내후성이 우수한 백색 폴리비닐리덴 플루오라이드계 필름
WO2012172876A1 (ja) * 2011-06-15 2012-12-20 株式会社クレハ ポリフッ化ビニリデン樹脂フィルム、多層フィルム、及び太陽電池モジュール用バックシート、並びに、フィルムの製造方法
EP2722362A1 (en) 2011-06-15 2014-04-23 Kureha Corporation Polyvinylidene fluoride resin film, multilayer film, backsheet for solar cell module, and film manufacturing process
JPWO2012172876A1 (ja) * 2011-06-15 2015-02-23 株式会社クレハ ポリフッ化ビニリデン樹脂フィルム、多層フィルム、及び太陽電池モジュール用バックシート、並びに、フィルムの製造方法
JP2013104022A (ja) * 2011-11-15 2013-05-30 Denki Kagaku Kogyo Kk フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
CN104114595A (zh) * 2012-02-16 2014-10-22 阿科玛股份有限公司 用于光伏背板的辐射可固化的粘合剂组合物
JP2015516309A (ja) * 2012-02-16 2015-06-11 アーケマ・インコーポレイテッド 光電池のバックシートのための放射線硬化性接着剤組成物
JPWO2014069482A1 (ja) * 2012-10-30 2016-09-08 旭硝子株式会社 樹脂フィルム、太陽電池モジュールのバックシートおよび太陽電池モジュール
WO2014069482A1 (ja) * 2012-10-30 2014-05-08 旭硝子株式会社 樹脂フィルム、太陽電池モジュールのバックシートおよび太陽電池モジュール
WO2015068849A1 (ja) * 2013-11-11 2015-05-14 東洋アルミニウム株式会社 太陽電池用裏面保護シート
CN105706251A (zh) * 2013-11-11 2016-06-22 东洋铝株式会社 太阳能电池用背面保护片
JPWO2015068849A1 (ja) * 2013-11-11 2017-03-09 東洋アルミニウム株式会社 太陽電池用裏面保護シート
WO2015114983A1 (ja) * 2014-01-29 2015-08-06 株式会社クレハ フッ素系樹脂組成物、樹脂フィルム、積層体及び太陽電池モジュール用バックシート
WO2015133399A1 (ja) * 2014-03-04 2015-09-11 株式会社クレハ フッ素系樹脂フィルム、その製造方法、積層体及び太陽電池モジュール用バックシート
WO2016143549A1 (ja) * 2015-03-09 2016-09-15 株式会社クレハ フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート
WO2024117095A1 (ja) * 2022-12-01 2024-06-06 三菱ケミカル株式会社 炭素材、炭素材の製造方法、負極の製造方法、及び二次電池の製造方法

Also Published As

Publication number Publication date
JP5593309B2 (ja) 2014-09-17
CN102395624A (zh) 2012-03-28
JPWO2010122936A1 (ja) 2012-10-25
CN102395624B (zh) 2014-11-12
KR101334571B1 (ko) 2013-11-28
KR20120001808A (ko) 2012-01-04
US20120041122A1 (en) 2012-02-16
EP2423259A1 (en) 2012-02-29
EP2423259A4 (en) 2013-03-27
EP2423259B1 (en) 2014-09-03
US9029453B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
JP5593309B2 (ja) ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート
JP5628054B2 (ja) ポリフッ化ビニリデン樹脂組成物、着色樹脂フィルム、及び太陽電池モジュール用バックシート
JP5871922B2 (ja) ポリフッ化ビニリデン樹脂フィルム、多層フィルム、及び太陽電池モジュール用バックシート、並びに、フィルムの製造方法
JP5482661B2 (ja) 太陽電池モジュール用バックシート
TWI490261B (zh) 聚偏二氟乙烯系樹脂組成物、薄膜、背板及太陽電池模組
TWI554399B (zh) 用於太陽能電池之環保背板及其製備方法
EP2660050B1 (en) Multilayer film and photovoltaic module including same
TW201033259A (en) Fluorine resin film and use thereof
EP2337817A1 (en) Opaque fluoropolymer composition comprising white pigments for photovoltaic elements of solar cells
JP2015513478A (ja) フレキシブルな薄膜光起電力デバイスおよび発光ダイオードデバイスのための耐候性複合材
JP6075802B2 (ja) 水分散組成物、親環境光電池モジュール用バックシート及びその製造方法
WO2015114983A1 (ja) フッ素系樹脂組成物、樹脂フィルム、積層体及び太陽電池モジュール用バックシート
EP3075799A1 (en) Ir-reflective material
KR101293898B1 (ko) 고반사율 태양전지용 백시트
WO2013069493A1 (ja) フッ素系樹脂フィルム及び太陽電池モジュール
WO2015133399A1 (ja) フッ素系樹脂フィルム、その製造方法、積層体及び太陽電池モジュール用バックシート
JP5812817B2 (ja) フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
WO2016143549A1 (ja) フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート
JP2016167506A (ja) 太陽電池モジュールのバックシート用フッ化ビニリデン重合体組成物、樹脂フィルム、積層体及び太陽電池モジュールのバックシート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016407.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510297

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13265182

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010766993

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117027482

Country of ref document: KR

Kind code of ref document: A