WO2016143549A1 - フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート - Google Patents

フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート Download PDF

Info

Publication number
WO2016143549A1
WO2016143549A1 PCT/JP2016/055770 JP2016055770W WO2016143549A1 WO 2016143549 A1 WO2016143549 A1 WO 2016143549A1 JP 2016055770 W JP2016055770 W JP 2016055770W WO 2016143549 A1 WO2016143549 A1 WO 2016143549A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
fluoride polymer
mass
polymer composition
parts
Prior art date
Application number
PCT/JP2016/055770
Other languages
English (en)
French (fr)
Inventor
日高 知之
和元 鈴木
直人 赤津
慧 山口
鈴木 康弘
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2016143549A1 publication Critical patent/WO2016143549A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a vinylidene fluoride polymer composition suitable for uses such as a back sheet for a solar cell module, a polymer film formed from the composition, and a laminate and a solar cell including a layer made of the film It relates to a module backsheet.
  • a solar cell is a power generator that directly converts sunlight into electrical energy.
  • Solar cells are broadly classified into those using silicon semiconductors and those using compound semiconductors.
  • Silicon semiconductor solar cells include single crystal silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon solar cells.
  • a typical module of a solar cell includes a surface protective material, a sealing material, a solar battery cell, a back surface protective material (hereinafter sometimes referred to as “back sheet”), and a frame.
  • the main components of the solar cell module include a surface protective material, a sealing material, a solar battery cell, and a back surface protective material.
  • a plurality of solar cells are connected in series by wiring to constitute a solar cell module.
  • a frame is disposed at an end portion or a peripheral portion of the solar cell module.
  • the surface protective material for example, a tempered glass plate, a transparent plastic plate, or a transparent plastic film is used.
  • a sealing material an ethylene-vinyl acetate copolymer is widely used.
  • back surface protective material for example, a single-layer or multilayer plastic film, a plastic plate, a tempered glass plate, or a metal plate (aluminum plate, painted steel plate, etc.) is used.
  • the frame for example, aluminum that is lightweight and excellent in environmental resistance is widely used.
  • the structure of the solar cell differs depending on the type of solar cell.
  • a silicon semiconductor solar cell typically has a structure in which n-type silicon and p-type silicon are joined and electrodes are arranged on each.
  • As another solar battery cell for example, there is one having a layer configuration of “collecting electrode / transparent conductive layer / semiconductor photoactive layer / reflective layer / conductive substrate”.
  • the semiconductor photoactive layer is, for example, an amorphous silicon semiconductor.
  • a solar cell module is formed by connecting a plurality of solar cells in a package using a surface protective material, a sealing material, and a back surface protective material. What connected several solar cell modules is called a solar cell array.
  • Solar cell modules (including arrays) are generally installed outdoors, and then maintained in operation for a long period.
  • the surface protection material, the sealing material, and the back surface protection material (back sheet) of the solar cell module have a function of protecting solar cells over a long period of time in a harsh natural environment surrounding the solar cell module. It is demanded.
  • the back sheet for the solar cell module is directly exposed to the outdoors on the surface (outermost surface) opposite to the solar cell, while the surface on the solar cell side (adjacent surface to the sealing material) is the surface of each solar cell. It is exposed to sunlight through gaps.
  • the solar cell backsheet has light resistance, weather resistance, heat resistance, moisture resistance, water vapor barrier properties, electrical insulation, voltage resistance, mechanical properties, chemical resistance, salt resistance, antifouling properties, It is required to be excellent in various properties such as adhesiveness with a sealing material.
  • a back sheet for a solar cell module As a back sheet for a solar cell module, a single layer or multilayer plastic film, a plastic plate, a tempered glass plate, a metal plate, a composite of a plastic film and a metal plate, a composite of a plastic film and a metal foil, or the like is generally used. It has been.
  • the metal plate one having a synthetic resin coating film formed on the surface thereof is also used.
  • the plastic film includes a fluororesin film, a polyethylene terephthalate (PET) film, and these. These composite films are preferably used.
  • Patent Document 1 discloses, as an outer surface resin layer, ethylene / tetrafluoroethylene copolymer (ETFE) resin, tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) / vinylidene fluoride. (VDF) terpolymer, polyvinyl fluoride (PVF), vinylidene fluoride polymer (PVDF), polychlorotrifluoroethylene (PCTFE), and a solar equipped with a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer A battery back surface protection sheet is disclosed.
  • EFE ethylene / tetrafluoroethylene copolymer
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • VDF vinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • a battery back surface protection sheet is disclosed.
  • Patent Document 2 discloses a back protective sheet for a solar cell provided with a film containing polyvinylidene fluoride and polymethyl methacrylate in the outermost layer.
  • the vinylidene fluoride polymer usually has a melting point of about 177 ° C., a thermal decomposition start temperature of about 350 ° C., and the wide range from the melting point to the thermal decomposition start temperature is It shows that the processing temperature range for coalescence is wide. From the viewpoints of such processability and mechanical characteristics, vinylidene fluoride polymers are preferably used.
  • the solar cell module backsheet has a beautiful appearance on the surface of the solar battery cell, and also efficiently reflects sunlight incident on the backsheet. It is required to have a function to If the incident light transmitted through the gaps between the solar cells can be efficiently reflected by the back sheet, the power conversion efficiency of the solar cells is improved by the reflected light.
  • a white resin film in which an inorganic white pigment is blended with a thermoplastic resin in order to increase the reflectance of sunlight and increase the power generation efficiency of a solar cell is known.
  • titanium oxide is particularly excellent in color tone and hiding power (light scattering property) among inorganic white pigments and contributes to improvement in color tone and reflection characteristics of the white resin film. That is, titanium oxide is particularly excellent in color tone and hiding power (light scattering property) among inorganic white pigments, and can contribute to improvement in color tone and reflection characteristics of the white resin film.
  • a film formed from a vinylidene fluoride polymer composition containing a colorant such as titanium oxide in a vinylidene fluoride polymer is used as a back sheet for a solar cell module, the appearance can be made beautiful. It is expected to contribute to the improvement of the power conversion efficiency of solar cells.
  • the thermal decomposition temperature of the vinylidene fluoride polymer is significantly reduced. That is, in order to form a white resin film containing a vinylidene fluoride polymer, it is necessary to contain a large amount of titanium oxide in the vinylidene fluoride polymer.
  • a white resin film including a sheet
  • the resulting white resin film turns brown or is contained in the film. It has been found that vinylidene polymers are susceptible to thermal decomposition.
  • a vinylidene fluoride polymer composition containing titanium oxide in an amount ratio sufficient to provide concealability and whiteness suitable for a back sheet for a solar cell module in a vinylidene fluoride polymer is obtained by thermogravimetric analysis ( When thermogravimetric measurement is performed by TGA), the 10% thermogravimetric decrease temperature, which will be described in detail later, is reduced by about 40 to 45 ° C. compared to the case of vinylidene fluoride polymer alone containing no titanium oxide, and the thermal decomposition resistance is lowered.
  • the 10% thermal weight loss temperature of vinylidene fluoride polymers is typically above about 380 ° C.
  • the 10% thermal weight loss temperature of the vinylidene fluoride polymer composition containing 30 parts by mass of titanium oxide with respect to 100 parts by mass of the vinylidene fluoride polymer is reduced to about 335 ° C. .
  • a film formed from a vinylidene fluoride polymer containing a large amount of titanium oxide when subjected to a heat resistance test in a gear oven at a temperature of 230 to 270 ° C., turns a brown color after a few hours, Foaming, which is presumed to be a trace of the generation of cracked gas, is also observed, and the thermal durability is reduced.
  • polymethyl methacrylate (methyl methacrylate polymer) having compatibility with the vinylidene fluoride polymer may be contained in the vinylidene fluoride polymer composition containing the vinylidene fluoride polymer and titanium oxide. However, it is not possible to improve the degradation of thermal decomposition resistance and thermal durability caused by titanium oxide.
  • the vinylidene fluoride polymer film has excellent properties suitable for a back sheet for a solar cell module.
  • titanium oxide a white pigment
  • the heat resistance and appearance are remarkably deteriorated and the heat durability is increased. Inferior to that. Therefore, by using a vinylidene fluoride polymer composition obtained by blending a large amount of titanium oxide with a vinylidene fluoride polymer, the appearance of the solar cell module can be made beautiful, and the power conversion efficiency of the solar cell can be increased, and It was extremely difficult to obtain a white resin film excellent in heat durability.
  • Patent Document 5 contains a vinylidene fluoride polymer and titanium oxide, and as a heat stabilizer, polyhydroxymonocarboxylic acid calcium salt, aliphatic carboxylic acid calcium salt having 5 to 30 carbon atoms, calcium carbonate, hydroxide
  • a vinylidene fluoride polymer composition containing at least one compound selected from the group consisting of calcium, zinc oxide, and magnesium oxide is disclosed.
  • the vinylidene fluoride polymer composition has a 10% thermal weight loss temperature of usually 345 ° C. or higher, preferably 350 ° C. or higher, more preferably 355 ° C. or higher, more preferably 365 ° C. or higher. Is described.
  • the film formed from this vinylidene fluoride polymer composition has heat resistance such as excellent thermal durability with little discoloration in a heat test in a gear oven.
  • the vinylidene fluoride polymer composition used for applications such as backsheets for solar cell modules is required to have better heat resistance such as thermal durability depending on the use environment and use conditions. It has become like this.
  • the film formed from the vinylidene fluoride polymer composition has excellent properties suitable for the use of the back sheet for the solar cell module, it is seen when a large amount of titanium oxide is contained in order to improve the concealability. It is required to further suppress and improve the heat resistance such as heat durability and the deterioration of the appearance. Therefore, there is a need for a vinylidene fluoride polymer composition that contains a large amount of titanium oxide to improve concealability, has excellent heat resistance such as thermal durability, and is suitable for film applications such as a back sheet for a solar cell module. Furthermore, there has been a demand for a film or laminate formed from the vinylidene fluoride polymer composition, and a back sheet for a solar cell module.
  • An object of the present invention is to contain a large amount of titanium oxide in order to improve the concealing property, excellent in heat resistance such as heat durability, and suitable for film use such as a back sheet for a solar cell module, a vinylidene fluoride polymer composition And a vinylidene fluoride polymer film and the like.
  • the present inventors have included a specific stabilizer in a vinylidene fluoride polymer composition containing a large amount of titanium oxide in order to improve concealability.
  • the present inventors have found that the problems can be solved and completed the present invention.
  • a vinylidene fluoride polymer composition characterized by containing 0.01 to 10 parts by mass of a phosphite stabilizer is provided.
  • the following vinylidene fluoride polymer compositions (1) to (5) are provided as preferred embodiments of the vinylidene fluoride polymer composition.
  • the said vinylidene fluoride polymer composition in which a vinylidene fluoride polymer contains at least one of a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer.
  • the said vinylidene fluoride polymer composition which contains 30 mass parts or less of other thermoplastic resins with respect to 100 mass parts of vinylidene fluoride polymers.
  • a vinylidene fluoride polymer film formed from the above-mentioned vinylidene fluoride polymer composition, a laminate including a layer made of the vinylidene fluoride polymer film, and an inorganic pigment The laminate is provided with a layer comprising a vinylidene fluoride polymer film formed from a composition of vinylidene fluoride polymer not contained.
  • a back sheet for a solar cell module comprising a layer comprising the above-mentioned vinylidene fluoride polymer film, a back sheet for a solar cell module comprising the above-mentioned laminate, and a fluorine-containing sheet containing no inorganic pigment.
  • a solar cell module backsheet comprising the above laminate comprising a layer comprising a vinylidene fluoride polymer film formed from a vinylidene fluoride polymer composition as an outer surface layer.
  • the present invention contains 15 to 100 parts by mass of titanium oxide with respect to 100 parts by mass of vinylidene fluoride polymer, and a phosphite system with respect to 100 parts by mass of the total amount of vinylidene fluoride polymer and titanium oxide.
  • seat for solar cell modules excellent in property, is provided can be show
  • the present invention provides a heat durability by being a laminate comprising a vinylidene fluoride polymer film formed from the above-mentioned vinylidene fluoride polymer composition, and a layer comprising the vinylidene fluoride polymer film. It is possible to provide an effect of providing a vinylidene fluoride polymer film and a laminate that are excellent in heat resistance such as a solar cell module backsheet and the like.
  • the present invention provides heat resistance such as thermal durability as a back sheet for a solar cell module comprising a layer comprising the above-mentioned vinylidene fluoride polymer film or a back sheet for a solar cell module comprising the above laminate.
  • seat for solar cell modules is provided can be show
  • vinylidene fluoride polymer composition Vinylidene fluoride polymer composition
  • the vinylidene fluoride polymer contained in the vinylidene fluoride polymer composition of the present invention is a homopolymer of vinylidene fluoride or a vinylidene fluoride copolymer having a main component of vinylidene fluoride. Means coalescence.
  • the vinylidene fluoride polymer used in the present invention is a crystalline resin having various crystal structures such as ⁇ -type, ⁇ -type, ⁇ -type, and ⁇ - p- type.
  • the vinylidene fluoride polymer used in the present invention is not an elastomer (fluorine rubber) that has lost its crystallinity.
  • the vinylidene fluoride polymer preferably contains at least one of a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer.
  • the vinylidene fluoride unit formed from vinylidene fluoride is usually 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol%. As described above, it is a copolymer containing 95 mol% or more if desired, and having other fluorine comonomer units formed from other fluorine-containing comonomers, and further having other comonomer units formed from other comonomers as desired. is there.
  • the copolymerization ratio of the vinylidene fluoride copolymer that is, the ratio of comonomer units formed from the comonomer is usually 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less. More preferably, it is 10 mol% or less, and optionally 5 mol% or less (the total of vinylidene fluoride units and comonomer units is 100 mol%). If the ratio of comonomer units is too high, the vinylidene fluoride copolymer may lose crystallinity and become an elastomer.
  • the other fluorine-containing comonomer that forms another fluorine-containing comonomer unit is not particularly limited as long as it can be copolymerized with vinylidene fluoride to obtain a vinylidene fluoride copolymer.
  • Conventional vinylidene fluoride copolymers Fluorine-containing monomers used to obtain can be used as comonomers. Specifically, hexafluoropropylene (HFP), tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene, vinyl fluoride, 1,2-difluoroethylene, perfluoro (methyl vinyl) ether, etc.
  • Perfluoro (alkyl vinyl) ether, perfluoro (1,3-dioxole), and the like preferably at least one selected from the group consisting of HFP, TFE, CTFE, and trifluoroethylene.
  • these 1 type (s) or 2 or more types can be used in combination.
  • TFE and HFP, CTFE and HFP can be used in combination.
  • the ratio of the other fluorine-containing comonomer units in the vinylidene fluoride copolymer is usually 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less, still more preferably 10 mol% or less, as desired. Is 5 mol% or less (the total of monomer units including vinylidene fluoride units and other fluorine-containing comonomer units is 100 mol%).
  • preferred vinylidene fluoride copolymers include vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, vinylidene fluoride- And trifluoroethylene copolymers, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene terpolymers, vinylidene fluoride-chlorotrifluoroethylene-hexafluoropropylene terpolymers, and the like.
  • the mixture of 2 or more types of a polymer is mentioned.
  • the vinylidene fluoride copolymer contained in the vinylidene fluoride polymer composition of the present invention is derived from other monomers (comonomer) in addition to the vinylidene fluoride unit and other fluorine-containing comonomer units, if desired. Other monomer units may be included.
  • the other comonomer is not particularly limited as long as it can be copolymerized with vinylidene fluoride and / or other fluorine-containing comonomer described above to obtain a vinylidene fluoride copolymer. Comonomers that are used to obtain coalesces can be used.
  • the ratio of other comonomer units in the vinylidene fluoride copolymer is usually in the range of 0 to 10 mol%, preferably 0 to 5 mol%, more preferably 0 to 3 mol% (containing vinylidene fluoride units and other fluorine-containing units).
  • the total of the monomer units including the comonomer unit is 100 mol%.), And particularly preferably 0 mol%.
  • vinylidene fluoride homopolymers or vinylidene fluoride-hexa from the viewpoints of melt moldability, mechanical properties, antifouling properties, solvent resistance, secondary workability, etc.
  • a fluoropropylene copolymer is particularly preferred.
  • a vinylidene fluoride polymer (homopolymer or copolymer) can be generally produced by a suspension polymerization method or an emulsion polymerization method.
  • a chemically stable fluorine-based emulsifier is used to emulsify vinylidene fluoride alone or vinylidene fluoride and a comonomer such as hexafluoropropylene in an aqueous medium. Subsequently, it superposes
  • a vinylidene fluoride or the vinylidene fluoride and a comonomer are suspended in an aqueous medium using a suspending agent such as methylcellulose.
  • a suspending agent such as methylcellulose.
  • an organic percarbonate eg, di-n-propyl peroxydicarbonate
  • the critical temperature of vinylidene fluoride is 30.1 ° C. or lower, preferably 10 to 30
  • Polymerization is started at 0 ° C., more preferably 20 to 28 ° C. to produce primary polymer particles, and the temperature is raised to 30 to 90 ° C., preferably 40 to 80 ° C. as necessary, and the polymerization reaction is continued.
  • To produce secondary polymer particles To produce secondary polymer particles.
  • the melt viscosity of the vinylidene fluoride polymer contained in the vinylidene fluoride polymer composition of the present invention is not particularly limited as long as a film can be formed by melt molding, but usually 700 to 2500 Pa ⁇ s, preferably The range is 800 to 2200 Pa ⁇ s.
  • the melt viscosity is measured at a temperature of 245 ° C. and a shear rate of 91 sec ⁇ 1 .
  • the melting point of the vinylidene fluoride polymer contained in the vinylidene fluoride polymer composition of the present invention is an index of the melting temperature when forming a film by melt molding, and the resulting film has the required mechanical properties. Although it is not particularly limited as long as it can have (elongation and strength), it is usually in the range of 150 to 185 ° C., preferably 155 to 180 ° C.
  • the melting point is measured by differential scanning calorimetry (DSC).
  • Titanium oxide The vinylidene fluoride polymer composition of the present invention contains 15 to 100 parts by mass of titanium oxide with respect to 100 parts by mass of the vinylidene fluoride polymer.
  • the concealability required for applications such as a battery module backsheet can be improved.
  • the content of titanium oxide is preferably 20 to 90 parts by mass, more preferably 25 to 80 parts by mass, and further preferably 30 to 70 parts by mass with respect to 100 parts by mass of the vinylidene fluoride polymer.
  • Titanium oxide is widely used in two crystal forms, anatase and rutile. In the present invention, any of these two crystal forms can be used. However, since it is excellent in dispersibility in a vinylidene fluoride polymer at a high temperature such as a molding process and has extremely low volatility, it is a rutile type. Titanium oxide having the following crystal form is preferred. As the titanium oxide, pigment grades can be preferably used.
  • the average particle diameter (average primary particle diameter) of titanium oxide by image analysis of transmission electron microscope images is usually in the range of 150 to 1000 nm, preferably 200 to 700 nm, more preferably 200 to 400 nm. When the average particle diameter of titanium oxide is too small, the hiding power is reduced.
  • Titanium oxide is generally present in the form of secondary particles in which primary particles are aggregated.
  • the specific surface area of titanium oxide by the BET method is usually in the range of 1 to 15, and in many cases 5 to 15.
  • Titanium oxide can be improved in properties such as dispersibility, concealability, and weather resistance by surface treatment with a surface treatment agent.
  • the surface treating agent include metal oxides such as aluminum, silicon, zirconium, tin, cerium, and bismuth; hydrated metal oxides such as zinc oxide; organometallic compounds such as organoaluminum compounds, organotitanium compounds, and organozirconium compounds; Examples thereof include organosilicon compounds such as silane coupling agents and polysiloxanes; phosphorus compounds such as aluminum phosphates and organophosphates; amine compounds.
  • titanium oxide By coating titanium oxide with a surface treatment agent, the reaction between the titanium oxide surface and the surrounding environment can be suppressed.
  • the surface-treated titanium oxide is excellent in dispersibility in the vinylidene fluoride polymer.
  • the surface-treated titanium oxide can be dispersed in the vinylidene fluoride polymer at a high concentration.
  • the vinylidene fluoride polymer composition of the present invention in addition to a predetermined amount of vinylidene fluoride polymer and titanium oxide, in addition to 100 parts by mass of the total amount of vinylidene fluoride polymer and titanium oxide, It contains 0.01 to 10 parts by mass of a phosphite stabilizer.
  • the phosphite stabilizer is a compound in which 1 to 3 phosphorus atoms (trivalent) are ester-bonded to a polyhydric alcohol having 3 to 5 carbon atoms such as pentaerythritol or propanetriol or an oligomer thereof, and P ⁇ A phosphite stabilizer obtained by transesterification of 1 to 3 phosphite esters represented by (O-alkyl or phenyl) 3 with the polyhydric alcohol is preferred.
  • Examples thereof include phosphite and trimethylolpropane phosphite.
  • tri (alkyl group-substituted or unsubstituted phenyl) phosphites such as tris (nonylphenyl) phosphite, trialkyl phosphites such as tris (2-ethylhexyl) phosphite, tris (tridecyl) phosphite, etc.
  • Diphenyl mono (2-ethylhexyl) phosphite can also be used.
  • a particularly preferred phosphite stabilizer is bis- (2,6-di-tert-butyl-4-methylphenyl) -pentaerythritol diphos from the viewpoint of heat resistance such as heat durability and moldability.
  • Examples thereof include phosphite stabilizers having a pentaerythritol skeleton such as phyto and distearyl pentaerythritol diphosphite.
  • Examples of commercially available products include ADEKA Corporation's ADK STAB (registered trademark) PEP-36, PEP-8, and Johoku Chemical.
  • An example is JPP-2000PT manufactured by Kogyo Co., Ltd.
  • the content of the phosphite stabilizer in the vinylidene fluoride polymer composition is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of vinylidene fluoride polymer and titanium oxide, but preferably 0. .05 to 8 parts by mass, more preferably 0.1 to 7 parts by mass, and still more preferably 0.2 to 6 parts by mass. If the content of the phosphite stabilizer is too small, the effect of heat resistance such as heat durability is reduced, for example, the vinylidene fluoride polymer contained in the film formed from the vinylidene fluoride polymer composition It becomes difficult to sufficiently suppress the decrease in the 10% thermal weight loss temperature.
  • the film may have an adverse effect on the concealability, color tone, mechanical properties and the like.
  • the content ratio of the phosphite stabilizer is usually preferably smaller than the content ratio of titanium oxide, and the mass ratio of titanium oxide and phosphite stabilizer is 120: 1 to 3: 1, more preferably 110. : 1 to 4: 1, more preferably 100: 1 to 5: 1.
  • phosphite stabilizer for example, as disclosed in JP-A-9-208784 and International Publication No. 1999/05212, 100 parts by weight of vinylidene fluoride resin, 2 to 20 parts by weight of a polyester plasticizer, phosphite compound 0
  • a vinylidene fluoride resin composition comprising 0.01 to 0.5 parts by weight and 0 to 10 parts by weight of a phenol compound based on a phosphite compound is known.
  • the composition is not a composition that is suitable for applications such as a back sheet for a solar cell module, but simply “a pigment or the like may be added”, and the composition of the present invention containing a large amount of titanium oxide. It does not suggest a vinylidene fluoride polymer composition, or even solves a unique technical problem of reduced heat resistance such as thermal durability in a vinylidene fluoride polymer composition containing a large amount of titanium oxide. It does not suggest any.
  • thermoplastic resins or other additives The vinylidene fluoride polymer composition of the present invention is added to a predetermined amount of vinylidene fluoride polymer, titanium oxide and a phosphite stabilizer, as required. These thermoplastic resins or other additives may be contained.
  • the vinylidene fluoride polymer composition of the present invention may contain other thermoplastic resin as a resin component in order to improve properties such as processability, impact resistance, adhesion, and heat resistance, if desired. it can.
  • thermoplastic resins examples include polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; methyl methacrylate polymer (PMMA) and the like Acrylic resins such as polystyrene, polyacrylonitrile, polyvinyl chloride, polyoxymethylene, polycarbonate, polyphenylene oxide, polyester urethane, poly m-phenylene isophthalamide, poly p-phenylene terephthalamide, and the like.
  • polyolefins such as polyethylene and polypropylene
  • polyamides such as nylon 6 and nylon 66
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate
  • PMMA methyl methacrylate polymer
  • Acrylic resins such as polystyrene, polyacrylonitrile, polyvinyl chloride,
  • the other thermoplastic resin is preferably a methyl methacrylate polymer (PMMA).
  • PMMA methyl methacrylate polymer
  • the vinylidene fluoride polymer composition of the present invention contains another thermoplastic resin as a resin component, the other thermoplastic resin is usually 30 parts by mass or less with respect to 100 parts by mass of the vinylidene fluoride polymer. The amount is preferably 25 parts by mass or less, more preferably 23 parts by mass or less.
  • the other thermoplastic resin is usually 2 parts by mass or more, preferably 7 parts by mass or more, more preferably 12 parts by mass with respect to 100 parts by mass of the vinylidene fluoride polymer. It is preferable that the amount be at least part.
  • additives In the vinylidene fluoride polymer composition of the present invention, other stabilizers (thermal stabilizer, light stabilizer, antioxidant, etc.) other than phosphite stabilizers, ultraviolet absorbers, and color adjustment are optionally added.
  • Other additives such as additives, pigment dispersants, other pigments or dyes, matting agents, lubricants, nucleating agents (sometimes referred to as “crystal nucleating agents”), processing aids, mechanical property improving agents, etc. Can do.
  • the vinylidene fluoride polymer composition of the present invention can contain other stabilizers (thermal stabilizers, etc.) other than phosphite stabilizers.
  • Other stabilizers include phenols such as tetrakis- [methylene-3- (3 ′, 5′-di-tert-butyl-4-hydroxyphenyl) propionate] methane and 4,4′-isopropylidenediphenol.
  • Stabilizers (sometimes referred to as “phenolic antioxidants”), polyhydroxymonocarboxylic acid calcium salts such as calcium gluconate; calcium acetate, and further having 5 to 30 carbon atoms such as calcium stearate and calcium oleate Aliphatic carboxylic acid calcium salts; inorganic calcium compounds such as calcium carbonate and calcium hydroxide; metal-containing stabilizers such as metal oxides such as zinc oxide and magnesium oxide.
  • the vinylidene fluoride polymer composition contains a metal-containing stabilizer such as calcium carbonate, calcium hydroxide, and zinc oxide, that is, the combined use with a phosphite stabilizer further improves the heat resistance of the composition. Specifically, it is preferable because the thermal decomposition resistance expressed by a 10% thermogravimetric decrease temperature described later can be increased. Other stabilizers can be used alone or in combination of two or more.
  • the vinylidene fluoride polymer composition of the present invention may contain a mechanical property improver.
  • Mechanical property improvers are conventionally used to improve mechanical properties such as elongation, tensile strength, and impact resistance of films formed from vinylidene fluoride polymer compositions.
  • core-shell type impact resistance modifiers and copolymer acrylic flow modifiers are known.
  • Kaneace registered trademark
  • Metabrene registered trademark
  • Paraloid registered trademark
  • Rohm and Haas etc.
  • the mechanical property improvers can be used alone or in combination of two or more.
  • the vinylidene fluoride polymer composition of the present invention has excellent mechanical properties by containing a vinylidene fluoride polymer having a specific comonomer composition, it is usually necessary to contain the above-mentioned mechanical property improver. Not.
  • the vinylidene fluoride polymer composition of the present invention contains a lubricant, a nucleating agent, a processing aid and the like, thereby facilitating the formation of a film suitable for the use such as a back sheet for a solar cell module. can do.
  • lubricants include monohydric alcohol esters of fatty acids, monohydric alcohol esters of polybasic acids, polyhydric alcohol fatty acid esters, and derivatives thereof, glycerin fatty acid esters, and acrylic processing aids. It is done.
  • an acrylic processing aid there is one commercially available as METABRENE (registered trademark) P series manufactured by Mitsubishi Rayon Co., Ltd.
  • additives are used in proportions suitable for each, and in the vinylidene fluoride polymer composition, each is independently usually 0.01 to 10% by mass, preferably 0.1 to 8% by mass, More preferably, it is in the range of 0.3 to 5% by mass.
  • content of other stabilizers such as metal-containing stabilizers that are preferably used because the heat resistance can be further improved by increasing the thermal decomposition temperature of the vinylidene fluoride polymer composition. .
  • the vinylidene fluoride polymer composition of the present invention contains 15 to 100 parts by mass of titanium oxide with respect to 100 parts by mass of the vinylidene fluoride polymer, and the vinylidene fluoride polymer and It is characterized by containing 0.01 to 10 parts by mass of a phosphite stabilizer with respect to 100 parts by mass of the total amount of titanium oxide. Since the vinylidene fluoride polymer composition of the present invention has this unique composition, the vinylidene fluoride polymer composition containing a large amount of titanium oxide in order to improve the concealability may be found at a low temperature.
  • the vinylidene fluoride polymer composition of the present invention usually contains 40 to 87% by mass of the vinylidene fluoride polymer in 100% by mass of the vinylidene fluoride polymer composition.
  • the heat resistance of the vinylidene fluoride polymer composition of the present invention can be confirmed by evaluating the thermal durability by the method described below. That is, after kneading a vinylidene fluoride polymer composition using a screw-type kneader, it is press-molded to a length of 5 cm, a width of 5 cm, and a thickness of 5 mm to prepare a plate-like body of the vinylidene fluoride polymer composition. Next, the plate-like body is cut into four equal parts by cutting to obtain a vinylidene fluoride polymer composition sample (2.5 cm in length, 2.5 cm in width, 5 cm in thickness, 5 mm in size).
  • the sample was placed on a plate made of polytetrafluoroethylene, left in a gear oven at a temperature of 250 ° C. for 10 hours for heat treatment, and then the surface of the sample after the heat treatment ( Measurement is performed on the surface opposite to the surface in contact with the plate made of polytetrafluoroethylene, and the lightness (L value) of the surface after heat treatment of the sample is obtained.
  • the lightness (L value) means that white is 100 and black is 0, and the larger the value, the brighter.
  • the surface brightness (L value) after heat treatment of the sample is usually 60 or more, preferably 63 or more. Preferably it is 67 or more, more preferably 70 or more. Therefore, even if it is placed in an environment at a temperature of 250 ° C. for 10 hours, the discoloration is small and the whiteness is maintained. This is a combined composition.
  • the vinylidene fluoride polymer composition of the present invention has a surface brightness (L value) after heat treatment of the sample after heat treatment of the sample obtained from the vinylidene fluoride polymer composition containing no phosphite stabilizer. Compared to the lightness (L value) of the surface, it is usually 5 or more, preferably 7 or more, more preferably 10 or more. It can be seen that this is a vinylidene fluoride polymer composition having excellent heat resistance.
  • the vinylidene fluoride polymer composition of the present invention has a 10% thermogravimetric reduction temperature of 340 ° C. or higher, preferably 350 ° C. when thermogravimetric analysis is performed by thermogravimetric analysis (TGA).
  • TGA thermogravimetric analysis
  • the upper limit of the 10% thermal weight reduction temperature is not particularly limited, but is usually about 450 ° C.
  • thermogravimetric decrease temperature is measured by thermogravimetric analysis (TGA). That is, 10 mg of a sample cut out from the vinylidene fluoride polymer composition sample (2.5 cm long, 2.5 cm wide, 5 mm thick) obtained by the method described above was placed in a platinum pan, and 40 mL of dry nitrogen was added. When the temperature is increased from 50 ° C. to 500 ° C. at a rate of temperature increase of 10 ° C./min in an atmosphere at a rate of 10 min. Is the 10% thermal weight loss temperature (unit: ° C.).
  • the 10% thermogravimetric reduction temperature of the vinylidene fluoride polymer composition of the present invention may vary depending on the type of titanium oxide or the type of metal-containing stabilizer that is optionally contained. Compared with the vinylidene fluoride polymer composition not containing (containing 100 to 100 parts by mass of titanium oxide with respect to 100 parts by mass of the vinylidene fluoride polymer), it is usually 5 ° C. or higher, more preferably 15 ° C. or higher. Preferably, it can be increased by 25 ° C. or more, more preferably by 30 ° C. or more, still more preferably by 35 ° C. or more, particularly preferably by 40 ° C. or more, and most preferably by 45 ° C. or more.
  • the vinylidene fluoride polymer composition of the present invention comprises a predetermined amount of vinylidene fluoride polymer, titanium oxide and a phosphite stabilizer, and other heat to be contained as required.
  • the preparation method is not particularly limited as long as raw materials such as a plastic resin or other additives can be uniformly mixed to form a composition.
  • it can be prepared by a method of dry blending raw materials.
  • the vinylidene fluoride polymer powder or pellets may be supplied together with other raw materials to an extruder, melt-kneaded, melt-extruded into a strand, cut into a predetermined length, and pelletized.
  • vinylidene fluoride polymer film The vinylidene fluoride polymer composition of the present invention is excellent in heat resistance and heat resistance such as heat decomposability, if desired, such as extrusion molding, injection molding, press molding, etc. A molded product can be obtained by melt molding. In particular, when molding a vinylidene fluoride polymer film formed from the vinylidene fluoride polymer composition by melt molding such as extrusion molding, thermal discoloration, surface properties deteriorate, mechanical strength Will not drop.
  • the vinylidene fluoride polymer film formed from the vinylidene fluoride polymer composition of the present invention (hereinafter sometimes referred to as “the vinylidene fluoride polymer film of the present invention”), only a film having a thickness of less than 250 ⁇ m is used. Instead, the sheet includes a sheet (including a plate) having a thickness of 250 ⁇ m to 3 mm.
  • the lower limit of the thickness of the vinylidene fluoride polymer film of the present invention is usually 2 ⁇ m, preferably 3 ⁇ m, more preferably 4 ⁇ m, and even more preferably 5 ⁇ m.
  • the upper limit of the thickness of the film is usually 500 ⁇ m, preferably 300 ⁇ m, more preferably 200 ⁇ m, and still more preferably 120 ⁇ m. If the thickness of the film is too thin, it may be difficult to obtain sufficient color tone and hiding power, and the mechanical properties may be deteriorated. When the thickness of the film is too thick, flexibility may be impaired, or weight reduction may be difficult. Therefore, the vinylidene fluoride polymer film of the present invention can exhibit good characteristics particularly in the range of 5 to 100 ⁇ m.
  • the vinylidene fluoride polymer film of the present invention can be produced by employing a resin film production method known per se by extrusion.
  • the vinylidene fluoride polymer film of the present invention is usually an unstretched (unoriented) film.
  • unstretched (unoriented) film For example, using an extruder equipped with a slit-shaped T die, the vinylidene fluoride polymer composition of the present invention is melt-kneaded and extruded into a sheet at a die temperature of 210 to 280 ° C.
  • the vinylidene fluoride polymer film of the present invention can be obtained by forming an unstretched sheet by quenching and solidifying with a cooling drum maintained at the surface temperature.
  • the vinylidene fluoride polymer film of the present invention may be a stretched (oriented) film if desired.
  • the stretching temperature is 20 to 160 ° C., preferably 30 to 150 ° C.
  • the area magnification is 2 to 100-fold, preferably 4 to 60-fold, uniaxial stretching, or sequential or simultaneous biaxial stretching, followed by relaxation at a temperature of 80 to 200 ° C., preferably 90 to 160 ° C., or less than 20% Heat treatment under.
  • what is necessary is just to select the optimal range for these temperature conditions and extending
  • Laminate comprising a layer composed of a vinylidene fluoride polymer film
  • the vinylidene fluoride polymer composition of the present invention is used as a single-layer vinylidene fluoride polymer film, for example, for applications such as a back sheet for a solar cell module. However, it can be set as the laminated body provided with the layer which consists of this vinylidene fluoride polymer film.
  • a laminate comprising a layer comprising the vinylidene fluoride polymer film of the present invention (hereinafter sometimes referred to as “the vinylidene fluoride polymer laminate of the present invention”) comprises the vinylidene fluoride polymer film of the present invention. It is a laminated body provided with a layer and other layers other than the layer which consists of a vinylidene fluoride polymer film of this invention.
  • the vinylidene fluoride polymer laminate of the present invention has a layer composed of the vinylidene fluoride polymer of the present invention (generally one layer may be sufficient, but if desired, two or more layers composed of the vinylidene fluoride polymer of the present invention may be used.
  • the composition of the vinylidene fluoride polymer composition of the present invention may be the same or different.
  • “other layers” as described below, Various properties such as mechanical strength such as impact resistance and flexibility, heat resistance such as thermal durability, and surface characteristics can be further improved. For example, it is more suitable for applications such as back sheets for solar cell modules. It can be set as a laminated body.
  • the “other layer” provided in the vinylidene fluoride polymer laminate of the present invention can be selected in consideration of the characteristics that are required to be further improved in the various characteristics described above.
  • the vinylidene fluoride polymer laminate of the present invention is a fluoride that does not contain an inorganic pigment such as titanium oxide. It is set as the said laminated body provided with the layer (henceforth a "pigment-free vinylidene fluoride polymer film layer") which consists of a vinylidene fluoride polymer film formed from the composition of a vinylidene polymer. it can.
  • the vinylidene fluoride polymer laminate of the present invention includes a pigment-free vinylidene fluoride polymer film layer as the “other layer”, for example, as described in detail later, By setting it as a solar cell module backsheet provided with a united film layer as an outer surface layer, the surface characteristics and mechanical strength of the outer surface layer of the solar cell module backsheet can be improved.
  • the vinylidene fluoride polymer contained in the composition of the vinylidene fluoride polymer film used to form the pigment-free vinylidene fluoride polymer film layer is contained in the vinylidene fluoride polymer composition of the present invention.
  • the vinylidene fluoride polymer may be the same, but may be a different vinylidene fluoride polymer. Either a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer can be used, and a vinylidene fluoride homopolymer is preferable from the viewpoint of weather resistance, light resistance, stain resistance, and the like.
  • the vinylidene fluoride polymer laminate of the present invention is provided with a pigment-free vinylidene fluoride polymer film layer as the “other layer”, a layer composed of the vinylidene fluoride polymer film of the present invention and a pigment-free fluoride film.
  • the thickness ratio to the vinylidene chloride polymer film layer is preferably in the range of 20: 1 to 1: 1, more preferably 15: 1 to 1.5: 1, and even more preferably 12: 1 to 2: 1. .
  • the “other layer” other than the layer comprising the vinylidene fluoride polymer film of the present invention that can be provided in the vinylidene fluoride polymer laminate of the present invention is replaced with a pigment-free vinylidene fluoride polymer film layer.
  • polyolefins such as polyethylene and polypropylene; polyamides such as nylon 6 and nylon 66; polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; methacrylate resins such as PMMA; polystyrene, polyacrylonitrile, polychlorinated Vinyl, polyoxymethylene, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyether ether ketone, polyester urethane, poly m-phenylene isophthalamide, poly p-phenyle A layer consisting of films formed from other resins such terephthalamide (hereinafter, "other resin film layer”) can be mentioned.
  • other resin film layer consisting of films formed from other resins such terephthalamide
  • the layer which consists of resin films formed from fluorine-type resin other than vinylidene fluoride polymers, such as polytetrafluoroethylene and polyvinyl fluoride is mentioned.
  • the vinylidene fluoride polymer laminate of the present invention can easily have, for example, mechanical properties such as strength required for a back sheet for a solar cell module. it can.
  • the other resin film layers one or more of the above-exemplified resins are selected in consideration of required mechanical properties, heat resistance, weather resistance, light resistance, etc., and stabilizers are added as necessary. Further, additives such as ultraviolet absorbers, pigments or dyes, and other thermoplastic resins other than those exemplified can be contained.
  • barrier layers The vinylidene fluoride polymer laminate of the present invention, depending on the specific application and application site, etc., if desired, instead of or in addition to the layer made of the other resin film mentioned above, Other layers such as a barrier layer may be provided.
  • other layers such as a barrier layer include a metal plate; a metal foil, a resin film provided with a metal vapor deposition layer or an inorganic oxide (silicon oxide, aluminum oxide, etc.) vapor deposition layer, an ethylene-vinyl alcohol copolymer (hereinafter referred to as “ EVOH ”))
  • Barrier layers such as barrier resin films such as films; moisture-proof films; tempered glass plates and the like.
  • the thickness of the vinylidene fluoride polymer laminate of the present invention (which may include other layers such as the other resin film layer and / or the barrier layer) is not particularly limited. Although it can be appropriately determined depending on the constitution and combination of the layers provided, it is usually 10 to 500 ⁇ m, preferably 12 to 400 ⁇ m, more preferably 15 to 300 ⁇ m, and further preferably 18 to 250 ⁇ m. If the thickness of the vinylidene fluoride polymer laminate is too small, the strength of the laminate may be insufficient, and required mechanical properties may not be obtained.
  • the ratio of the layer thickness of the vinylidene fluoride polymer film of the present invention in the vinylidene fluoride polymer laminate of the present invention is not particularly limited, but is preferably 1 to 92%, more preferably 2 to 90%, More preferably, it is 3 to 88%, and particularly preferably 5 to 85%.
  • the production method of the vinylidene fluoride polymer laminate of the present invention is not particularly limited, and adhesive lamination using an adhesive (dry lamination, hot melt adhesion, etc.), co-extrusion, extrusion lamination (extrusion coating), coating, etc.
  • adhesive lamination using an adhesive dry lamination, hot melt adhesion, etc.
  • co-extrusion, extrusion lamination extrusion lamination (extrusion coating), coating, etc.
  • Ordinarily employed laminating methods can be employed, and these laminating methods can be appropriately combined depending on the layer configuration and material combination of the vinylidene fluoride polymer laminate.
  • Back sheet for solar cell module The vinylidene fluoride polymer film of the present invention or the laminate for back sheet of the present invention is suitable for use as a back sheet for a solar cell module.
  • a solar cell module As a solar cell module, the thing of a structure provided with a surface protection material, a sealing material, a photovoltaic cell, and a back sheet
  • the surface protective material examples include, but are not limited to, a tempered glass plate, a transparent plastic plate, a single-layer or multilayer transparent plastic film, or a composite material obtained by combining these.
  • the sealing material transparent resin such as ethylene-vinyl acetate copolymer (EVA), butyral resin, silicon resin, epoxy resin, fluorinated polyimide resin is used, but it is not limited to EVA. Is particularly preferably used.
  • EVA ethylene-vinyl acetate copolymer
  • butyral resin silicon resin
  • epoxy resin fluorinated polyimide resin
  • EVA is often supplied as a sheet.
  • the solar battery cell can be sealed with EVA by sandwiching the solar battery cell between the two EVA sheets and heating and pressing.
  • seat as a sealing material it can compound and supply in advance with the vinylidene fluoride polymer film etc. of this invention.
  • the single-layer film of the vinylidene fluoride polymer film of the present invention or the vinylidene fluoride polymer laminate of the present invention can be used as the back sheet (back surface protective material) for the solar cell module.
  • the layer made of the vinylidene fluoride polymer film of the present invention is excellent in heat durability and, if desired, heat resistance such as thermal decomposition resistance. It is preferable to arrange the battery module on the back side, that is, at a position far from the solar battery cell.
  • the pigment-free vinylidene fluoride polymer film layer is provided as an outer surface layer, that is, the farthest position from the solar cell. It is preferable to arrange on the back side. According to this, the vinylidene fluoride polymer film of the present invention containing a large amount of titanium oxide is not exposed on the outer surface, and as a result, the outer surface layer of the solar cell module backsheet, that is, the solar cell module is mounted. On the surface facing the placed roof or the like, the non-gloss derived from titanium oxide is not observed, and the effect that the surface becomes beautiful is achieved.
  • a back sheet for a solar cell module comprising a layer made of the vinylidene fluoride polymer film of the present invention
  • a back sheet for a solar cell module comprising a vinylidene fluoride polymer laminate of the present invention
  • the backsheet which has a layer structure of a several layer showed the surface near the photovoltaic cell (and sealing material) as the right end in the display of the following layer structures.
  • the pigment-free vinylidene fluoride polymer film layer is expressed as “pigment-free”, and other layers other than the layer made of the vinylidene fluoride polymer film of the present invention are expressed as “other layers”. .
  • Vinylidene fluoride polymer film that is, a back sheet for a single-layer solar cell module
  • Pigment-free / vinylidene fluoride polymer film 2) Pigment-free / vinylidene fluoride polymer film 3) Pigment-free / vinylidene fluoride polymer film / other layers
  • Pigment-free / vinylidene fluoride polymer film / adhesive / other layers 5) Pigments No content / Vinylidene fluoride polymer film / Adhesive / EVA 6) Pigment free / vinylidene fluoride polymer film / other layers / adhesive / EVA 7) Pigment free / vinylidene fluoride polymer film / adhesive / other layers / adhesive / EVA 8) Pigment-free / vinylidene fluoride polymer film / adhesive / other layer / adhesive / vinylidene fluoride polymer film 9) Other layer / vinylidene fluoride polymer film 10) Other
  • the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
  • the measuring method of the heat durability which is a heat resistance parameter
  • the thermal durability of the vinylidene fluoride polymer composition was confirmed by evaluating the thermal durability by the method described below. That is, a vinylidene fluoride polymer composition was kneaded and pelletized using a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd.), and then press-molded to a length of 5 cm, a width of 5 cm and a thickness of 5 mm, and the vinylidene fluoride polymer composition A plate was prepared. Subsequently, the plate-like body was cut into four equal parts by cutting to obtain a vinylidene fluoride polymer composition sample (2.5 cm in length, 2.5 cm in width, 5 cm in thickness, 5 mm in size).
  • the sample was placed on a plate made of polytetrafluoroethylene, left in a gear oven at a temperature of 250 ° C. for 10 hours for heat treatment, and then the surface of the sample after heat treatment (using a color difference meter ( Measurement was performed on the surface opposite to the surface in contact with the plate made of polytetrafluoroethylene, and the lightness (L value) of the surface after heat treatment of the sample was determined.
  • thermogravimetric decrease temperature As the thermal decomposition resistance of the vinylidene fluoride polymer composition, the following 10% thermogravimetric decrease temperature was measured.
  • the 10% thermogravimetric decrease temperature was measured using a thermogravimetric analyzer TGA / SDTA851 manufactured by METTLER TOLEDO Co., Ltd., and a vinylidene fluoride polymer composition sample (2.5 cm long ⁇ 2 cm wide) obtained by the method described above. 10 cm of sample cut out from 5 cm thickness 5 mm) is put in a platinum pan and heated at a rate of 10 ° C./min from 50 ° C. to 500 ° C. in an atmosphere of 40 mL / min dry nitrogen. Then, the weight loss rate during the measurement was measured, and the temperature when the mass decreased by 10 mass% from the mass of the sample at the start of measurement was defined as a 10% thermal weight loss temperature (unit: ° C).
  • Example 1 Vinylidene fluoride polymer [KF (registered trademark) # 850 manufactured by Kureha Co., Ltd .; suspension polymerized product. Hereinafter, it may be referred to as “PVDF”.
  • PVDF Vinylidene fluoride polymer
  • Titanium oxide with respect to 70 parts by mass [TI-PURE (registered trademark) R101 manufactured by DuPont; rutile titanium oxide, average particle size 0.29 ⁇ m, surface-treated product.
  • TiO 2 a phosphite stabilizer
  • ADEKA STAB registered trademark
  • System stabilizer A "or simply” stabilizer A ")] 0.5 parts by mass (0.5 parts by mass with respect to 100 parts by mass of PVDF and TiO 2 in total) Is applied to a twin screw extruder (manufactured by Toshiba Machine Co., Ltd.), melt-kneaded at a cylinder temperature of 220 ° C., And then extruded into strands and cut in cold water to produce pellets of the vinylidene fluoride polymer composition. A sample obtained from this pellet was measured for thermal durability [lightness (L value)] and 10% thermal weight loss temperature.
  • this pellet is supplied to a single screw extruder (manufactured by Pla Giken Co., Ltd.), melt-extruded from a T die at a resin temperature of 240 ° C., and cooled with a 90 ° C. cooling roll, resulting in a color change of 20 ⁇ m in thickness.
  • a white vinylidene fluoride polymer film could be produced.
  • Table 1 shows the results of measuring the thermal durability [brightness (L value)] and 10% thermogravimetric temperature reduction temperature of the vinylidene fluoride polymer composition (hereinafter sometimes collectively referred to as “heat resistance”). Show.
  • Example 2 5 parts by mass of the phosphite stabilizer A (corresponds to a ratio of 5 parts by mass with respect to 100 parts by mass of PVDF and TiO 2 and corresponds to a ratio of 7.1 parts by mass with respect to 100 parts by mass of PVDF. ) Except for the inclusion, the heat resistance test and the film production operation were performed in the same manner as in Example 1 to produce a white vinylidene fluoride polymer film having no thickness change of 20 ⁇ m. did it. Table 1 shows the heat resistance of the vinylidene fluoride polymer composition.
  • phosphite stabilizer B a phosphite stabilizer [Adekastab (registered trademark) PEP-8 manufactured by ADEKA Corporation (hereinafter referred to as “phosphite stabilizer B”) Agent B ”))] 0.5 parts by mass (corresponding to a ratio of 0.5 parts by mass with respect to 100 parts by mass of PVDF and TiO 2, and 0.7 parts by mass with respect to 100 parts by mass of PVDF
  • phosphite stabilizer B Agent B
  • Table 1 shows the heat resistance of the vinylidene fluoride polymer composition.
  • Example 4 Operation of heat resistance test and film production in the same manner as in Example 1 except that 2.5 parts by mass of calcium carbonate (CaCO 3 ) was contained as a metal-containing stabilizer together with the phosphite stabilizer A. As a result, it was possible to produce a white vinylidene fluoride polymer film having no thickness change of 20 ⁇ m. Table 1 shows the heat resistance of the vinylidene fluoride polymer composition.
  • Example 5 In place of the phosphite stabilizer A, 0.5 parts by weight of the phosphite stabilizer B was used, and the heat resistance test and film production were performed in the same manner as in Example 4. A white vinylidene fluoride polymer film having no discoloration of 20 ⁇ m or the like could be produced. Table 1 shows the heat resistance of the vinylidene fluoride polymer composition.
  • Example 6 As a metal-containing stabilizer, in place of calcium carbonate (CaCO 3 ), in the same manner as in Example 4 except that 2.5 parts by mass of zinc oxide (ZnO) was contained, a heat resistance test and film production were performed. As a result of the operation, a white vinylidene fluoride polymer film having no thickness change of 20 ⁇ m or the like could be produced. Table 1 shows the heat resistance of the vinylidene fluoride polymer composition.
  • Example 7 As a metal-containing stabilizer, heat resistance was obtained in the same manner as in Example 4 except that 2.5 parts by mass of calcium hydroxide [Ca (OH) 2 ] was used instead of calcium carbonate (CaCO 3 ). As a result of the test and the film preparation, a white vinylidene fluoride polymer film having no discoloration of 20 ⁇ m in thickness could be prepared. Table 1 shows the heat resistance of the vinylidene fluoride polymer composition.
  • Example 8 Example, except that instead of 70 parts by mass of PVDF, a mixture of 58 parts by mass of PVDF and 12 parts by mass of methyl methacrylate resin (PMMA) [SUMIPEX (registered trademark) LG21 manufactured by Sumitomo Chemical Co., Ltd.] was used. In the same manner as in No.
  • Example 1 A heat resistance test was conducted in the same manner as in Example 1 except that no phosphite stabilizer (stabilizer A or stabilizer B) was contained. Table 1 shows the heat resistance of the vinylidene fluoride polymer composition.
  • the vinylidene fluoride polymer compositions of Examples 4 to 7 containing 0.01 to 10 parts by mass and further containing a metal-containing stabilizer had a 10% thermal weight loss temperature of 376 to 399 ° C.
  • the vinylidene fluoride polymer composition of Comparative Example 1 which does not contain a phosphite stabilizer it was found to have excellent thermal decomposition resistance because it increased by 40 ° C. or more.
  • the vinylidene fluoride polymer composition of the present invention is excellent in heat resistance such as thermal durability even if it contains a large amount of titanium oxide in order to improve the concealing property. It can be said that it is a vinylidene fluoride polymer composition suitable for film applications such as a back sheet.
  • the vinylidene fluoride polymer composition of Comparative Example 1 that contains a large amount of titanium oxide and does not contain a phosphite stabilizer in order to improve the concealability has a lightness (L value) of 57. From this, it was found that when placed in an environment at a temperature of about 250 ° C. for about 10 hours, the color may change and the whiteness may be impaired, and the heat resistance such as thermal durability is not sufficient.
  • the present invention contains 15 to 100 parts by mass of titanium oxide with respect to 100 parts by mass of vinylidene fluoride polymer, and a phosphite system with respect to 100 parts by mass of the total amount of vinylidene fluoride polymer and titanium oxide.
  • a vinylidene fluoride polymer composition characterized by containing 0.01 to 10 parts by mass of a stabilizer, so that it contains a large amount of titanium oxide in order to improve concealability, and has heat resistance such as heat durability. Since the vinylidene fluoride polymer composition suitable for film use such as a back sheet for a solar cell module can be provided, the industrial applicability is high.
  • the present invention also provides a vinylidene fluoride polymer film formed from the above-mentioned vinylidene fluoride polymer composition, a laminate comprising a layer comprising the vinylidene fluoride polymer film, and these vinylidene fluoride polymers.
  • a solar cell module backsheet comprising a layer made of a film or a laminate
  • a solar cell module backsheet having excellent heat resistance such as heat durability can be provided, and thus industrial applicability is high. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

 隠蔽性を向上させるために酸化チタンを多量に含有し、熱耐久性等の耐熱性が優れる、太陽電池モジュール用バックシート等のフィルム用途に適する、フッ化ビニリデン重合体組成物;及び、フッ化ビニリデン重合体フィルム等を提供することを目的とする。本発明で提供されるフッ化ビニリデン重合体組成物は、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有する。さらに、本発明は、該組成物から形成されるフッ化ビニリデン重合体フィルム、該フィルムからなる層を備える積層体、並びに、太陽電池モジュール用バックシートを提供する。

Description

フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート
 本発明は、太陽電池モジュール用バックシート等の用途に適するフッ化ビニリデン重合体組成物、並びに、該組成物から形成される重合体フィルム、並びに、該フィルムからなる層を備える積層体及び太陽電池モジュール用バックシートに関する。
 太陽電池は、太陽光を直接電気エネルギーに変換する発電装置である。太陽電池には、シリコン半導体を材料にするものと、化合物半導体を材料にするものとに大別される。シリコン半導体太陽電池には、単結晶シリコン太陽電池、多結晶シリコン太陽電池、及びアモルファスシリコン太陽電池がある。
 太陽電池の代表的なモジュールは、表面保護材、封止材、太陽電池セル、裏面保護材(以下、「バックシート」ということがある。)、及びフレームから構成されている。太陽電池モジュールの主要な構成要素は、表面保護材、封止材、太陽電池セル及び裏面保護材からなる。複数の太陽電池セルを配線により直列に接続し、太陽電池モジュールを構成する。太陽電池モジュールの端部または周縁部には、フレームが配置されている。
 表面保護材としては、例えば、強化ガラス板、透明プラスチック板、透明プラスチックフィルムが用いられている。封止材としては、エチレン-酢酸ビニル共重合体が汎用されている。裏面保護材(バックシート)としては、例えば、単層または多層のプラスチックフィルム、プラスチック板、強化ガラス板、金属板(アルミニウム板、塗装鋼板など)が用いられている。フレームとしては、例えば、軽量で耐環境性に優れるアルミニウムが汎用されている。
 太陽電池セルの構造は、太陽電池の種類によって異なる。例えば、シリコン半導体太陽電池セルは、n型シリコンとp型シリコンとを接合し、それぞれに電極を配置した構造のものが代表的なものである。他の太陽電池セルとして、例えば、「集電電極/透明導電層/半導体光活性層/反射層/導電性基体」の層構成を有するものがある。半導体光活性層は、例えば、アモルファスシリコン半導体である。複数の太陽電池セルを配列して接続し、表面保護材、封止材、及び裏面保護材を用いてパッケージにしたものを太陽電池モジュールという。複数の太陽電池モジュールを連結したものを太陽電池アレイという。
 太陽電池モジュール(アレイを含む)は、一般に屋外に設置され、その後、長期間にわたって稼動状態が維持される。太陽電池モジュールが屋外で長期間にわたって満足に稼動するには、苛酷な環境下で優れた耐久性を有する必要がある。このため、太陽電池モジュールの表面保護材、封止材、及び裏面保護材(バックシート)には、該太陽電池モジュールを取り巻く苛酷な自然環境下で長期間にわたって太陽電池セルを保護する機能を有することが求められている。
 太陽電池モジュール用バックシートは、太陽電池セルと反対側の表面(最外面)が屋外に直接暴露される一方、太陽電池セル側の表面(封止材との隣接面)が各太陽電池セルの間隙等で太陽光に曝される。このため、太陽電池用バックシートには、耐光性、耐候性、耐熱性、耐湿性、水蒸気バリア性、電気絶縁性、耐電圧性、機械的特性、耐薬品性、耐塩性、防汚性、封止材との接着性などの諸特性に優れることが求められている。
 太陽電池モジュール用バックシートとして、一般に、単層または多層のプラスチックフィルム、プラスチック板、強化ガラス板、金属板、プラスチックフィルムと金属板との複合体、プラスチックフィルムと金属箔との複合体などが用いられている。金属板としては、その表面に合成樹脂塗膜を形成したものも用いられている。
 プラスチックフィルムとしては、太陽電池モジュール用バックシートに求められる耐光性、耐候性、耐熱性、防汚性などの諸特性を満足させる観点からは、フッ素樹脂フィルム、ポリエチレンテレフタレート(PET)フィルム、及びこれらの複合フィルムが好ましく使用される。
 フッ素樹脂フィルムを使用する例として、特許文献1には、外面樹脂層として、エチレン・テトラフルオロエチレン共重合体(ETFE)樹脂、テトラフルオロエチレン(TFE)・ヘキサフルオロプロピレン(HFP)・フッ化ビニリデン(VDF)の三元共重合体、ポリフッ化ビニル(PVF)、フッ化ビニリデン重合体(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体などを備える太陽電池用裏面保護シートが開示されている。また、特許文献2には、最外層に、ポリフッ化ビニリデンとポリメチルメタクリレートを含有するフィルムを備えた太陽電池用裏面保護シートが開示されている。フッ素樹脂のなかで、フッ化ビニリデン重合体は、通常融点が177℃程度で、熱分解開始温度が350℃程度であり、融点から熱分解開始温度までの領域が広いことは、フッ化ビニリデン重合体の加工温度領域が広いことを示している。このような加工性や機械的特性等の観点から、フッ化ビニリデン重合体が好ましく使用されるようになっている。
 太陽電池モジュール用バックシートには、上記諸特性に優れることに加えて、その太陽電池セル側の表面の外観が美麗であること、さらには、該バックシートに入射した太陽光を効率的に反射する機能を有することが求められている。各太陽電池セルの間隙を透過した入射光をバックシートにより効率的に反射することができれば、反射光により太陽電池セルの電力変換効率が向上する。
 このため、該バックシートに着色剤を配合してなる、太陽電池モジュール用の着色バックシートが知られている。
 着色剤としては、太陽光の反射率を高めて太陽電池の発電効率を高めるために、熱可塑性樹脂に無機白色顔料を配合した白色樹脂フィルムが知られており、特許文献3や特許文献4には、酸化チタンが、無機白色顔料の中でも色調と隠蔽力(光散乱性)が特に優れており、白色樹脂フィルムの色調と反射特性の向上に寄与することが開示されている。すなわち、酸化チタンは、無機白色顔料の中でも色調と隠蔽力(光散乱性)が特に優れており、白色樹脂フィルムの色調と反射特性の向上に寄与することができるものである。
 したがって、フッ化ビニリデン重合体に酸化チタン等の着色剤を含有させたフッ化ビニリデン重合体組成物から形成されるフィルムを太陽電池モジュール用バックシートとして用いれば、外観を美麗にすることができる上、太陽電池セルの電力変換効率の向上に寄与することが期待される。
 ところが、本発明者らの研究結果によれば、フッ化ビニリデン重合体に酸化チタンを含有させると、フッ化ビニリデン重合体の熱分解温度が大幅に低下することが判明した。すなわち、フッ化ビニリデン重合体を含有する白色樹脂フィルムを形成するには、フッ化ビニリデン重合体に多量の酸化チタンを含有させることが必要となる。多量の酸化チタンを含有するフッ化ビニリデン重合体組成物を用いて、白色樹脂フィルム(シートを含む)を押出成形すると、得られる白色樹脂フィルムが褐色に変色したり、フィルムに含有されるフッ化ビニリデン重合体が熱分解しやすくなることが判明した。
 例えば、フッ化ビニリデン重合体に、太陽電池モジュール用バックシートに適した隠蔽性と白色度を備えるに足る量比で酸化チタンを含有させたフッ化ビニリデン重合体組成物は、熱重量分析法(TGA)により熱重量測定を行うと、酸化チタンを含有しないフッ化ビニリデン重合体単独の場合に比べて、後に詳述する10%熱重量減少温度が約40~45℃下がり、耐熱分解性が低下することが分かった。具体的には、フッ化ビニリデン重合体の10%熱重量減少温度は、典型的には約380℃を上回る程度である。これに対して、例えば、該フッ化ビニリデン重合体100質量部に対して酸化チタン30質量部を含有するフッ化ビニリデン重合体組成物の10%熱重量減少温度は、約335℃程度まで低下する。
 それに加えて、酸化チタンを多量に含有するフッ化ビニリデン重合体から形成されたフィルムは、温度230~270℃のギアオーブン中で耐熱試験を行うと、数時間後には茶褐色に変色してしまい、分解ガスが発生した痕跡と推定される発泡も認められ、熱耐久性の低下がみられる。なお、フッ化ビニリデン重合体と酸化チタンとを含有するフッ化ビニリデン重合体組成物に、フッ化ビニリデン重合体との相溶性があるポリメチルメタクリレート(メタクリル酸メチル系重合体)を含有させても、酸化チタンに起因する耐熱分解性や熱耐久性の低下を改善することはできない。
 フッ化ビニリデン重合体フィルムは、太陽電池モジュール用バックシートに適した優れた諸特性を有するものの、白色顔料の酸化チタンを含有させた場合には、耐熱性や外観の低下が著しく、熱耐久性に劣ったものとなる。このため、フッ化ビニリデン重合体に多量の酸化チタンをブレンドしたフッ化ビニリデン重合体組成物を用いて、太陽電池モジュールの外観を美麗にし、太陽電池セルの電力変換効率を高めることができ、かつ、熱耐久性に優れた白色樹脂フィルムを得ることは極めて困難であった。
 そこで、特許文献5として、フッ化ビニリデン重合体及び酸化チタンを含有し、熱安定剤として、ポリヒドロキシモノカルボン酸カルシウム塩、炭素数5~30の脂肪族カルボン酸カルシウム塩、炭酸カルシウム、水酸化カルシウム、酸化亜鉛、及び酸化マグネシウムからなる群より選ばれる少なくとも一種の化合物を含有するフッ化ビニリデン重合体組成物が開示されている。特許文献5には、このフッ化ビニリデン重合体組成物は、前記の10%熱重量減少温度が、通常345℃以上、好ましくは350℃以上、より好ましくは355℃以上、更に好ましくは365℃以上を示すことが記載されている。また、このフッ化ビニリデン重合体組成物から形成されたフィルムは、ギアオーブン中での耐熱試験において変色が少ない優れた熱耐久性等の耐熱性を有するものである。
 太陽電池の普及に伴い、太陽電池モジュール用バックシート等の用途に使用するフッ化ビニリデン重合体組成物としては、使用環境や使用条件によっては、更に優れた熱耐久性等の耐熱性が求められるようになってきた。
 フッ化ビニリデン重合体組成物から形成されるフィルムは、太陽電池モジュール用バックシートの用途に適する優れた諸特性を有するものの、隠蔽性を向上させるために酸化チタンを多量に含有する場合にみられる熱耐久性等の耐熱性や外観の低下を、更に抑制し、改善することが求められている。このため、隠蔽性を向上させるために酸化チタンを多量に含有し、熱耐久性等の耐熱性が優れる、太陽電池モジュール用バックシート等のフィルム用途に適する、フッ化ビニリデン重合体組成物が求められており、更に、該フッ化ビニリデン重合体組成物から形成されるフィルムや積層体、及び太陽電池モジュール用バックシートが求められていた。
特開2008-181929号公報 特開2008-211034号公報 特開2002-100788号公報 特開2007-208179号公報 国際公開第2010/122936号
 本発明の課題は、隠蔽性を向上させるために酸化チタンを多量に含有し、熱耐久性等の耐熱性が優れる、太陽電池モジュール用バックシート等のフィルム用途に適する、フッ化ビニリデン重合体組成物;及び、フッ化ビニリデン重合体フィルム等を提供することにある。
 本発明者らは、前記課題を解決するために鋭意研究した結果、隠蔽性を向上させるために酸化チタンを多量に含有するフッ化ビニリデン重合体組成物に、特定の安定剤を含有させることにより、課題を解決することができることを見いだし、本発明を完成した。
 すなわち、本発明によれば、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有することを特徴とするフッ化ビニリデン重合体組成物が提供される。
 また、本発明によれば、フッ化ビニリデン重合体組成物の発明の好ましい態様として、以下(1)~(5)のフッ化ビニリデン重合体組成物が提供される。
(1)フッ化ビニリデン重合体が、フッ化ビニリデン単独重合体またはフッ化ビニリデン共重合体の少なくとも一方を含有する前記のフッ化ビニリデン重合体組成物。
(2)酸化チタンが、ルチル型結晶形を有する酸化チタンである前記のフッ化ビニリデン重合体組成物。
(3)金属含有安定剤を含有する前記のフッ化ビニリデン重合体組成物。
(4)他の熱可塑性樹脂を、フッ化ビニリデン重合体100質量部に対して30質量部以下含有する前記のフッ化ビニリデン重合体組成物。
(5)他の熱可塑性樹脂が、メタクリル酸メチル系重合体である前記のフッ化ビニリデン重合体組成物。
 さらに、本発明によれば、前記のフッ化ビニリデン重合体組成物から形成されるフッ化ビニリデン重合体フィルム、並びに、該フッ化ビニリデン重合体フィルムからなる層を備える積層体、及び、無機顔料を含有しないフッ化ビニリデン重合体の組成物から形成されるフッ化ビニリデン重合体フィルムからなる層を備える前記の積層体が提供される。
 そしてまた、本発明によれば、前記のフッ化ビニリデン重合体フィルムからなる層を備える太陽電池モジュール用バックシート、前記の積層体からなる太陽電池モジュール用バックシート、並びに、無機顔料を含有しないフッ化ビニリデン重合体の組成物から形成されるフッ化ビニリデン重合体フィルムからなる層を外表面層として備える前記の積層体からなる太陽電池モジュール用バックシートが提供される。
 本発明は、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有することを特徴とするフッ化ビニリデン重合体組成物であることにより、隠蔽性を向上させるために酸化チタンを多量に含有し、熱耐久性等の耐熱性が優れる、太陽電池モジュール用バックシート等のフィルム用途に適する、フッ化ビニリデン重合体組成物が提供されるという効果を奏することができる。
 また、本発明は、前記のフッ化ビニリデン重合体組成物から形成されるフッ化ビニリデン重合体フィルム、並びに、該フッ化ビニリデン重合体フィルムからなる層を備える積層体であることにより、熱耐久性等の耐熱性が優れる、太陽電池モジュール用バックシート等の用途に適するフッ化ビニリデン重合体フィルム並びに積層体が提供されるという効果を奏することができる。
 さらに、本発明は、前記のフッ化ビニリデン重合体フィルムからなる層を備える太陽電池モジュール用バックシート、または、前記の積層体からなる太陽電池モジュール用バックシートとして、熱耐久性等の耐熱性が優れる太陽電池モジュール用バックシートが提供されるという効果を奏することができる。
I.フッ化ビニリデン重合体組成物
1.フッ化ビニリデン重合体
 本発明のフッ化ビニリデン重合体組成物に含有されるフッ化ビニリデン重合体とは、フッ化ビニリデンの単独重合体、または、フッ化ビニリデンを主成分とするフッ化ビニリデン共重合体を意味する。本発明で使用するフッ化ビニリデン重合体は、α型、β型、γ型、αp型などの様々な結晶構造を示す結晶性樹脂である。本発明で使用するフッ化ビニリデン重合体は、結晶性を喪失したエラストマー(フッ素ゴム)ではない。本発明のフッ化ビニリデン重合体組成物は、フッ化ビニリデン重合体が、フッ化ビニリデン単独重合体またはフッ化ビニリデン共重合体の少なくとも一方を含有するものであることが好ましい。
〔フッ化ビニリデン共重合体〕
 前記のフッ化ビニリデン共重合体は、フッ化ビニリデンから形成されるフッ化ビニリデン単位を、通常50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上、所望によっては95モル%以上を含有し、他のフッ素含有コモノマーから形成される他のフッ素コモノマー単位、所望によっては更に、その他のコモノマーから形成されるその他のコモノマー単位を有する共重合体である。したがって、前記のフッ化ビニリデン共重合体の共重合比率、すなわち、前記のコモノマーから形成されるコモノマー単位の比率が、通常50モル%以下、好ましくは30モル%以下、より好ましくは20モル%以下、更に好ましくは10モル%以下であり、所望によっては5モル%以下である(フッ化ビニリデン単位及びコモノマー単位の合計を100モル%とする。)。コモノマー単位の比率が高すぎると、フッ化ビニリデン共重合体は、結晶性を喪失してエラストマーとなることがある。
(他のフッ素含有コモノマー)
 他のフッ素含有コモノマー単位を形成する他のフッ素含有コモノマーとしては、フッ化ビニリデンと共重合してフッ化ビニリデン共重合体を得ることができる限り、特に限定されず、従来フッ化ビニリデン共重合体を得るために使用されているフッ素含有モノマーをコモノマーとして使用することができる。具体的には、ヘキサフルオロプロピレン(HFP)、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、フッ化ビニル、1,2-ジフルオロエチレン、パーフルオロ(メチルビニル)エーテル等のパーフルオロ(アルキルビニル)エーテル、パーフルオロ(1,3-ジオキソール)などが挙げられ、好ましくはHFP、TFE、CTFE、及びトリフルオロエチレンからなる群より選ばれる少なくとも1種である。他のフッ素含有コモノマーとしては、これらの1種または2種以上を組み合わせて使用することができる。例えば、TFEとHFP、CTFEとHFPを組み合わせて使用することができる。フッ化ビニリデン共重合体における他のフッ素含有コモノマー単位の比率は、通常50モル%以下であり、好ましくは30モル%以下、より好ましくは20モル%以下、更に好ましくは10モル%以下、所望によっては5モル%以下である(フッ化ビニリデン単位及び他のフッ素含有コモノマー単位を含むモノマー単位の合計を100モル%とする。)。
 したがって、好ましいフッ化ビニリデン共重合体としては、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン三元共重合体、フッ化ビニリデン-クロロトリフルオロエチレン-ヘキサフルオロプロピレン三元共重合体などが挙げられ、更にこれらの共重合体の2種以上の混合物が挙げられる。
(その他のコモノマー)
 本発明のフッ化ビニリデン重合体組成物に含有されるフッ化ビニリデン共重合体は、所望によっては、フッ化ビニリデン単位及び他のフッ素含有コモノマー単位のほかに、更にその他のモノマー(コモノマー)に由来するその他のモノマー単位を有していてもよい。その他のコモノマーとしては、フッ化ビニリデン及び/または先に説明した他のフッ素含有コモノマーと共重合してフッ化ビニリデン共重合体を得ることができる限り、特に限定されず、従来フッ化ビニリデン共重合体を得るために使用されているコモノマーを使用することができる。具体的には、エチレン、プロピレン、ブタジエン及びスチレンなどの公知のビニルモノマーが挙げられる。フッ化ビニリデン共重合体におけるその他のコモノマー単位の比率は、通常0~10モル%、好ましくは0~5モル%、より好ましくは0~3モル%の範囲(フッ化ビニリデン単位及び他のフッ素含有コモノマー単位を含むモノマー単位の合計を100モル%とする。)であり、特に好ましくは0モル%である。
 熱耐久性等の耐熱性に加えて、溶融成形性、機械的特性、防汚性、耐溶剤性、二次加工性等の観点から、フッ化ビニリデン単独重合体、または、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体が、特に好ましく挙げられる。
 フッ化ビニリデン重合体(単独重合体または共重合体)は、一般に、懸濁重合法または乳化重合法により製造することができる。乳化重合法では、化学的に安定なフッ素系乳化剤を使用して、フッ化ビニリデン単独またはフッ化ビニリデンとヘキサフルオロプロピレンなどのコモノマーとを水系媒体中に乳化させる。次いで、重合開始剤として、無機過酸化物、有機過酸化物、有機パーカーボネート化合物などを使用して、重合を行う。乳化重合後、サブミクロン単位の微小なラテックスを凝集剤により析出し、凝集させると、フッ化ビニリデン重合体を適当な大きさの粒子として回収することができる。
 懸濁重合法では、メチルセルロースなどの懸濁剤を用いて、フッ化ビニリデンまたは該フッ化ビニリデンとコモノマーとを水系媒体中に懸濁させる。例えば、重合開始剤として、低温で活性を示す有機パーカーボネート(例えば、ジn-プロピルパーオキシジカーボネート)を用いて、フッ化ビニリデンの臨界温度30.1℃以下の温度、好ましくは10~30℃、より好ましくは20~28℃で重合を開始して一次重合体粒子を生成させ、必要に応じて、温度を30~90℃、好ましくは40~80℃に上昇させて、重合反応を継続し、二次重合体粒子を生成させる。
〔溶融粘度〕
 本発明のフッ化ビニリデン重合体組成物に含有されるフッ化ビニリデン重合体の溶融粘度は、溶融成形によってフィルムを形成することができる限り、特に限定されないが、通常700~2500Pa・s、好ましくは800~2200Pa・sの範囲である。なお、溶融粘度は、温度245℃、せん断速度91sec-1で測定するものである。
〔融点〕
 本発明のフッ化ビニリデン重合体組成物に含有されるフッ化ビニリデン重合体の融点は、溶融成形によってフィルムを形成する際の溶融温度の指標となるものであり、得られるフィルムが所要の機械特性(伸度や強度)を有するものとすることができる限り、特に限定されないが、通常150~185℃、好ましくは155~180℃の範囲である。なお、融点は示差走査熱量測定法(DSC)によって測定するものである。
2.酸化チタン
 本発明のフッ化ビニリデン重合体組成物は、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有するものであり、酸化チタンを多量に含有することにより太陽電池モジュール用バックシート等の用途に求められる隠蔽性を向上させることができる。酸化チタンの含有量は、フッ化ビニリデン重合体100質量部に対して、好ましくは20~90質量部、より好ましくは25~80質量部、更に好ましくは30~70質量部である。
 酸化チタンは、アナタース型とルチル型の2種類の結晶形のものが広く利用されている。本発明においては、これら2種類の結晶形のいずれのものも用いることができるが、成形加工等、高温においてフッ化ビニリデン重合体への分散性に優れ、揮発性が極めて小さいことから、ルチル型の結晶形を有する酸化チタンが好ましい。酸化チタンとしては、顔料用グレードのものを好ましく用いることができる。透過型電子顕微鏡撮影画像の画像解析による酸化チタンの平均粒子径(平均一次粒子径)は、通常150~1000nm、好ましくは200~700nm、より好ましくは200~400nmの範囲内である。酸化チタンの平均粒子径が小さすぎると、隠蔽力が低下する。酸化チタンは、その平均粒子径が前記範囲内にあることによって、屈折率が大きく光散乱性が強いため、白色顔料としての隠蔽力が高くなる。酸化チタンは、一般に、一次粒子が凝集した二次粒子の形態で存在している。酸化チタンのBET法による比表面積は、通常1~15、多くの場合5~15の範囲内である。
 酸化チタンは、表面処理剤で表面処理することにより、分散性、隠蔽性、耐候性などの特性を向上させることができる。表面処理剤としては、アルミニウム、ケイ素、ジルコニウム、錫、セリウム、ビスマスなどの金属酸化物;酸化亜鉛などの水和金属酸化物;有機アルミニウム化合物、有機チタニウム化合物、有機ジルコニウム化合物などの有機金属化合物;シランカップリング剤やポリシロキサンなどの有機ケイ素化合物;リン酸アルミニウム、有機リン酸エステルなどのリン化合物;アミン化合物;などが挙げられる。
 酸化チタンを表面処理剤で被覆することにより、酸化チタン表面と周囲環境との間の反応を抑制することができる。表面処理した酸化チタンは、フッ化ビニリデン重合体への分散性に優れている。表面処理した酸化チタンは、高濃度でフッ化ビニリデン重合体中に分散させることができる。
3.ホスファイト系安定剤
 本発明のフッ化ビニリデン重合体組成物は、所定量のフッ化ビニリデン重合体及び酸化チタンに加えて、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有することを特徴とする。
 ホスファイト系安定剤としては、ペンタエリスリトール、プロパントリオール等の炭素数3~5の多価アルコールまたはそのオリゴマーに1~3個のリン原子(3価)がエステル結合した化合物であって、P≡(O-アルキルまたはフェニル)3で表されるホスファイトエステルの1~3個が上記多価アルコールとのエステル交換により得られるホスファイト系安定剤が好ましく挙げられる。より具体的には、ビス-(2,6-ジ-tert-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス-(トリデシル)ペンタエリスリトールジホスファイト、テトラ(ジフェニルホスファイト)ペンタエリスリトール、ジフェニルペンタエリスリトールジホスファイト、トリフェニルジペンタエリスリトールホスファイト、トリペンタエリスリトールジホスファイト、フェニルネオペンチルホスファイト、トリメチロールプロパンホスファイトなどを例示できる。また、トリ(アルキル基置換または無置換フェニル)ホスファイト、例えばトリス(ノニルフェニル)ホスファイト、トリアルキルホスファイト、例えば、トリス(2-エチルヘキシル)ホスファイト、トリス(トリデシル)ホスファイトなど、更にはジフェニルモノ(2-エチルヘキシル)ホスファイトなども用いることができる。特に好ましいホスファイト系安定剤としては、熱耐久性等の耐熱性の効果や成形性等の観点から、ビス-(2,6-ジ-tert-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイトやジステアリルペンタエリスリトールジホスファイト等のペンタエリスリトール骨格を有するホスファイト系安定剤が挙げられ、市販品としては、株式会社ADEKA製のアデカスタブ(登録商標)PEP-36やPEP-8、城北化学工業株式会社製のJPP-2000PT等が挙げられる。
 フッ化ビニリデン重合体組成物におけるホスファイト系安定剤の含有量は、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、0.01~10質量部であるが、好ましくは0.05~8質量部、より好ましくは0.1~7質量部、更に好ましくは0.2~6質量部の範囲である。ホスファイト系安定剤の含有量が少なすぎると、熱耐久性等の耐熱性の効果が小さくなり、例えば、フッ化ビニリデン重合体組成物から形成されるフィルムに含有されるフッ化ビニリデン重合体の10%熱重量減少温度の低下を十分に抑制することが困難になる。ホスファイト系安定剤の含有量が多すぎると、前記フィルムの隠蔽性や色調、機械特性などに悪影響を及ぼすおそれがある。ホスファイト系安定剤の効果を効率的に高めるために、フッ化ビニリデン重合体組成物中の酸化チタンの含有割合に応じて、ホスファイト系安定剤の含有割合を調整することが好ましい。ホスファイト系安定剤の含有割合は、通常、酸化チタンの含有割合よりも小さくすることが好ましく、酸化チタンとホスファイト系安定剤の質量比は、120:1~3:1、より好ましくは110:1~4:1、更に好ましくは100:1~5:1の範囲である。
 なお、ホスファイト系安定剤に関しては、例えば特開平9-208784号公報や国際公開第1999/05212号として、フッ化ビニリデン系樹脂100重量部とポリエステル可塑剤2~20重量部、ホスファイト化合物0.01~0.5重量部及びホスファイト化合物に対して0~10重量部のフェノール化合物からなるフッ化ビニリデン系樹脂組成物が知られている。しかしながら、該組成物は、太陽電池モジュール用バックシート等の用途に適合する組成物ではなく、単に「顔料などを加えることは差し支えない」とするもので、酸化チタンを多量に含有する本発明のフッ化ビニリデン重合体組成物を示唆するものではなく、ましてや、酸化チタンを多量に含有するフッ化ビニリデン重合体組成物における熱耐久性等の耐熱性の低下という独自の技術的課題を解決することを何ら示唆するものではない。
4.他の熱可塑性樹脂またはその他の添加剤
 本発明のフッ化ビニリデン重合体組成物は、所定量のフッ化ビニリデン重合体、酸化チタン及びホスファイト系安定剤に加えて、必要に応じて更に、他の熱可塑性樹脂またはその他の添加剤を含有してもよい。
〔他の熱可塑性樹脂〕
 本発明のフッ化ビニリデン重合体組成物は、所望により、加工性、耐衝撃性、接着性、耐熱性等の特性を改善するために、樹脂成分として、他の熱可塑性樹脂を含有することができる。
 前記の他の熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン66等のポリアミド;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;メタクリル酸メチル系重合体(PMMA)等のアクリル樹脂;ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリオキシメチレン、ポリカーボネート、ポリフェニレンオキシド、ポリエステルウレタン、ポリm-フェニレンイソフタルアミド、ポリp-フェニレンテレフタルアミドなどが挙げられる。
 フッ化ビニリデン系重合体と相溶性があり、フッ化ビニリデン重合体組成物から形成されるフッ化ビニリデン重合体フィルムからなる層を備える積層体等を形成する場合、他の部材に対する接着性向上効果があることから、他の熱可塑性樹脂が、メタクリル酸メチル系重合体(PMMA)であることが好ましい。本発明のフッ化ビニリデン重合体組成物が、樹脂成分として他の熱可塑性樹脂を含有する場合、他の熱可塑性樹脂は、フッ化ビニリデン重合体100質量部に対して、通常30質量部以下、好ましくは25質量部以下、より好ましくは23質量部以下とすることが好適である。樹脂成分として他の熱可塑性樹脂を含有する場合、他の熱可塑性樹脂は、フッ化ビニリデン重合体100質量部に対して、通常2質量部以上、好ましくは7質量部以上、より好ましくは12質量部以上とすることが好適である。
〔その他の添加剤〕
 本発明のフッ化ビニリデン重合体組成物には、所望により、ホスファイト系安定剤以外の他の安定剤(熱安定剤、光安定剤、酸化防止剤等)、紫外線吸収剤、色味の調整剤、顔料分散剤、他の顔料または染料、つや消し剤、滑剤、核剤(「結晶核剤」ということもある。)、加工助剤、機械物性改良剤などのその他の添加剤を含有させることができる。
 例えば、本発明のフッ化ビニリデン重合体組成物は、ホスファイト系安定剤以外の他の安定剤(熱安定剤等)を含有するものとすることができる。該他の安定剤としては、テトラキス-〔メチレン-3-(3',5'-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、4,4'-イソプロピリデンジフェノール等のフェノール系安定剤(「フェノール系酸化防止剤」ということもある。)や、グルコン酸カルシウム等のポリヒドロキシモノカルボン酸カルシウム塩;酢酸カルシウム、更に、ステアリン酸カルシウム、オレイン酸カルシウム等の炭素数5~30の脂肪族カルボン酸カルシウム塩;炭酸カルシウム、水酸化カルシウム等の無機カルシウム化合物;酸化亜鉛、酸化マグネシウム等の金属酸化物などの金属含有安定剤が挙げられる。中でも、フッ化ビニリデン重合体組成物が、炭酸カルシウム、水酸化カルシウム、酸化亜鉛等の金属含有安定剤を含有し、すなわち、ホスファイト系安定剤との併用により、組成物の耐熱性を更に向上することができる、具体的には、後に説明する10%熱重量減少温度で表される耐熱分解性を高くすることができるので好ましい。他の安定剤は、それぞれ単独で、または2種以上を組み合わせて使用することができる。
 また、本発明のフッ化ビニリデン重合体組成物は、機械物性改良剤を含有するものとすることができる。機械物性改良剤は、フッ化ビニリデン重合体の組成物から形成されるフィルムの伸度、引張強度、耐衝撃性などの機械特性を向上させるために、従来から使用されることがあるものであり、例えば、コアシェル型耐衝撃改質剤や共重合アクリル系流動改質剤が知られている。市販品としては、株式会社カネカ製のカネエース(登録商標)、三菱レイヨン株式会社製のメタブレン(登録商標)、ローム・アンド・ハース社製のパラロイド(登録商標)などの中から選択することができる。機械物性改良剤は、単独で、または2種以上を組み合わせて使用することができる。本発明のフッ化ビニリデン重合体組成物は、特有のコモノマー組成を有するフッ化ビニリデン重合体を含有することにより、優れた機械特性を有するので、通常上記した機械物性改良剤を含有させることは必要でない。
 さらに、本発明のフッ化ビニリデン重合体組成物は、滑剤、核剤や加工助剤等を含有するものとすることによって、太陽電池モジュール用バックシート等の用途に適合するフィルムの成形を容易とすることができる。これら滑剤、核剤や加工助剤としては、従来フッ素系樹脂フィルムの成形において使用されるものを使用することができる。例えば、加工助剤としては、脂肪酸の1価アルコールエステル、多塩基酸の1価アルコールエステル、多価アルコール脂肪酸エステル、及びそれらの誘導体、グリセリン脂肪酸エステル、更には、アクリル系加工助剤などが挙げられる。アクリル系加工助剤としては、三菱レイヨン株式会社製のメタブレン(登録商標)Pシリーズとして市販されているものがある。
 これらその他の添加剤は、それぞれに適した割合で用いられ、フッ化ビニリデン重合体組成物中において、各々独立して、通常0.01~10質量%、好ましくは0.1~8質量%、より好ましくは0.3~5質量%の範囲である。なお、フッ化ビニリデン重合体組成物の熱分解温度を高くすることにより耐熱性を更に向上することができることから好ましく使用される金属含有安定剤等の他の安定剤の含有量についても同様である。
5.フッ化ビニリデン重合体組成物
 本発明のフッ化ビニリデン重合体組成物は、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有することを特徴とする。本発明のフッ化ビニリデン重合体組成物は、この特有の組成を有することにより、隠蔽性を向上させるために酸化チタンを多量に含有するフッ化ビニリデン重合体組成物においてみられることがある低温での熱分解を、長期間に亘って抑制することができるので、熱耐久性等の耐熱性に優れるフッ化ビニリデン重合体組成物を提供するものである。
 本発明のフッ化ビニリデン重合体組成物は、通常はフッ化ビニリデン重合体組成物100質量%中に、フッ化ビニリデン重合体を40~87質量%含む。
〔熱耐久性〕
 本発明のフッ化ビニリデン重合体組成物の耐熱性は、以下に説明する方法により熱耐久性を評価することによって確認することができる。すなわち、フッ化ビニリデン重合体組成物をスクリュー式混練機を使用して混練した後、縦5cm横5cm厚み5mmにプレス成形してフッ化ビニリデン重合体組成物の板状体を調製する。次いで、上記の板状体を切削加工により、4等分してフッ化ビニリデン重合体組成物試料(縦2.5cm横2.5cm厚み5mmの大きさである。)を得る。前記試料をポリテトラフルオロエチレン製のプレートの上に載置し、温度250℃のギアオーブン中に10時間静置して熱処理した後、色差計を使用して、該試料の熱処理後の表面(ポリテトラフルオロエチレン製のプレートに接していた面の反対側の面)について測定を行い、試料の熱処理後の表面の明度(L値)を求める。明度(L値)は、白色が100で黒色が0であり、数値が大きいほど明るいことを意味する。
 所定量の酸化チタン及びホスファイト系安定剤を含有する本発明のフッ化ビニリデン重合体組成物は、試料の熱処理後の表面の明度(L値)が、通常60以上、好ましくは63以上、より好ましくは67以上、更に好ましくは70以上であるので、温度250℃の環境に10時間置かれても、変色が少なく白度が維持される、熱耐久性に優れ耐熱性を有するフッ化ビニリデン重合体組成物である。また、本発明のフッ化ビニリデン重合体組成物は、試料の熱処理後の表面の明度(L値)が、ホスファイト系安定剤を含有しないフッ化ビニリデン重合体組成物から得た試料の熱処理後の表面の明度(L値)と比較して、通常5以上、好ましくは7以上、より好ましくは10以上大きいことにより、温度250℃で10時間の熱処理によっても、変色が少ないので、熱耐久性に優れ、耐熱性があるフッ化ビニリデン重合体組成物であることが分かる。
〔10%熱重量減少温度〕
 また、本発明のフッ化ビニリデン重合体組成物は、組成によっては、熱重量分析法(TGA)により熱重量測定を行ったときの10%熱重量減少温度が、340℃以上、好ましくは350℃以上、より好ましくは360℃以上、更に好ましくは370℃以上であることにより、より優れた耐熱性、具体的には耐熱分解性を有するものとすることができる。前記10%熱重量減少温度の上限値は、特に限定がないが、通常450℃程度である。
 10%熱重量減少温度は、熱重量分析法(TGA)により測定するものである。すなわち、先に説明した方法により得たフッ化ビニリデン重合体組成物試料(縦2.5cm横2.5cm厚み5mmの大きさである。)から切り出した試料10mgを白金パンに入れ、乾燥窒素40mL/分の雰囲気下で温度50℃から500℃まで10℃/分の昇温速度で昇温して、その間の重量減少率を測定し、測定開始時の試料の質量から10質量%減少したときの温度を10%熱重量減少温度(単位:℃)とする。
 本発明のフッ化ビニリデン重合体組成物の前記10%熱重量減少温度は、酸化チタンの種類や所望により含有する金属含有安定剤の種類等によって変動することがあるが、ホスファイト系安定剤を含有しないフッ化ビニリデン重合体組成物(フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有する。)と比較して、通常5℃以上、更には15℃以上、好ましくは25℃以上、より好ましくは30℃以上、更に好ましくは35℃以上上昇するものとでき、特に好ましくは40℃以上、最も好ましくは45℃以上上昇するものとできることもある。
6.フッ化ビニリデン重合体組成物の調製方法
 本発明のフッ化ビニリデン重合体組成物は、所定量のフッ化ビニリデン重合体、酸化チタン及びホスファイト系安定剤、並びに必要に応じて含有させる他の熱可塑性樹脂またはその他の添加剤などの原材料を均一に混合して組成物とすることができる限り、特にその調製方法は限定されない。例えば、原材料をドライブレンドする方法等により調製することができる。また、フッ化ビニリデン重合体の粉末またはペレットを、他の原材料とともに、押出機に供給して溶融混練し、ストランド状に溶融押出し、所定長さにカットしてペレット化してもよい。
II.フッ化ビニリデン重合体フィルム
 本発明のフッ化ビニリデン重合体組成物は、熱耐久性、所望によっては更に耐熱分解性等の耐熱性に優れているので、例えば、押出成形、射出成形、プレス成形等の溶融成形により成形品を得ることができる。特に、押出成形等の溶融成形により、該フッ化ビニリデン重合体組成物から形成されるフッ化ビニリデン重合体フィルムを成形する場合には、熱変色したり、表面性状が悪化したり、機械的強度が低下したりすることがない。本発明のフッ化ビニリデン重合体組成物から形成されるフッ化ビニリデン重合体フィルム(以下、「本発明のフッ化ビニリデン重合体フィルム」ということがある。)としては、厚みが250μm未満のフィルムだけではなく、厚みが250μm~3mmのシート(板を含む)まで含むものとする。本発明のフッ化ビニリデン重合体フィルムの厚みの下限値は、通常2μm、好ましくは3μm、より好ましくは4μm、更に好ましくは5μmである。前記フィルムの厚みの上限値は、通常500μm、好ましくは300μm、より好ましくは200μm、更に好ましくは120μmである。前記フィルムの厚みが薄すぎると、十分な色調や隠蔽力を得ることが困難になり、機械的特性も低下することがある。前記フィルムの厚みが厚すぎると、柔軟性が損なわれたり、軽量化が困難になったりすることがある。したがって、本発明のフッ化ビニリデン重合体フィルムの厚みは、特に5~100μmの範囲内で良好な特性を発揮することができる。
〔フッ化ビニリデン重合体フィルムの製造方法〕
 本発明のフッ化ビニリデン重合体フィルムは、それ自体公知の押出成形による樹脂フィルムの製造方法を採用して製造することができる。また、本発明のフッ化ビニリデン重合体フィルムは、通常、未延伸(未配向)のフィルムである。例えば、スリット状のTダイを備える押出成形機を使用し、本発明のフッ化ビニリデン重合体組成物を溶融混練し、210~280℃のダイス温度で、シート状に押し出し、40~150℃の表面温度に保持した冷却ドラムで急冷固化させて未延伸シートを形成することにより、本発明のフッ化ビニリデン重合体フィルムを得ることができる。なお、通常は必要ないが、所望により、本発明のフッ化ビニリデン重合体フィルムは、延伸(配向)されたフィルムとしてもよい。その場合は、本発明のフッ化ビニリデン重合体組成物を溶融製膜して、未延伸のシートを製造した後、延伸温度20~160℃、好ましくは30~150℃で、面積倍率で2~100倍、好ましくは4~60倍で、一軸延伸、または、逐次若しくは同時二軸延伸を行い、その後、80~200℃、好ましくは90~160℃の温度で、緊張下または20%以下の弛緩下で熱処理する。なお、これらの温度条件及び延伸条件は、樹脂の組成に応じて最適範囲を選定すればよい。
III.フッ化ビニリデン重合体フィルムからなる層を備える積層体
 本発明のフッ化ビニリデン重合体組成物は、単層のフッ化ビニリデン重合体フィルムとして、例えば、太陽電池モジュール用バックシート等の用途に使用することができるが、該フッ化ビニリデン重合体フィルムからなる層を備える積層体とすることができる。
 本発明のフッ化ビニリデン重合体フィルムからなる層を備える積層体(以下、「本発明のフッ化ビニリデン重合体積層体」ということがある。)は、本発明のフッ化ビニリデン重合体フィルムからなる層と、本発明のフッ化ビニリデン重合体フィルムからなる層以外のその他の層とを備える積層体である。本発明のフッ化ビニリデン重合体積層体は、本発明のフッ化ビニリデン重合体からなる層(通常1層でよいが、所望によっては、本発明のフッ化ビニリデン重合体からなる層を2層以上備えてもよく、その際、本発明のフッ化ビニリデン重合体組成物の組成は、同一でも異なるものでもよい。)に加えて、以下に説明するような「その他の層」を備えることにより、耐衝撃性や柔軟性等の機械的強度、熱耐久性等の耐熱性、更には表面特性などの諸特性を一層向上させることができ、例えば、太陽電池モジュール用バックシート等の用途により適合する積層体とすることができる。本発明のフッ化ビニリデン重合体積層体に備えられる「その他の層」としては、先に説明した諸特性において一層の向上が求められる特性を考慮して選択することができる。
〔無機顔料を含有しないフッ化ビニリデン重合体の組成物から形成されるフッ化ビニリデン重合体フィルムからなる層〕
 本発明のフッ化ビニリデン重合体積層体の表面特性を一層向上させる観点から、本発明のフッ化ビニリデン重合体積層体は、「その他の層」として、酸化チタン等の無機顔料を含有しないフッ化ビニリデン重合体の組成物から形成されるフッ化ビニリデン重合体フィルムからなる層(以下、「顔料不含有フッ化ビニリデン重合体フィルム層」ということがある。)を備える前記の積層体とすることができる。本発明のフッ化ビニリデン重合体積層体は、「その他の層」として、顔料不含有フッ化ビニリデン重合体フィルム層を備えることにより、例えば、後に詳述するように、顔料不含有フッ化ビニリデン重合体フィルム層を外表面層として備える太陽電池モジュール用バックシートとすることにより、太陽電池モジュール用バックシートの外表面層の表面特性や機械的強度を良好なものとすることができる。
 顔料不含有フッ化ビニリデン重合体フィルム層を形成するために使用するフッ化ビニリデン重合体の組成物に含有されるフッ化ビニリデン重合体としては、本発明のフッ化ビニリデン重合体組成物に含有されるフッ化ビニリデン重合体と同一でもよいが、異なるフッ化ビニリデン重合体でもよい。フッ化ビニリデン単独重合体またはフッ化ビニリデン共重合体のいずれを使用することもでき、耐候性、耐光性や耐汚染性等の観点から、好ましくはフッ化ビニリデン単独重合体である。
 本発明のフッ化ビニリデン重合体積層体が、「その他の層」として、顔料不含有フッ化ビニリデン重合体フィルム層を備える場合、本発明のフッ化ビニリデン重合体フィルムからなる層と顔料不含有フッ化ビニリデン重合体フィルム層との厚みの比率は、好ましくは20:1~1:1、より好ましくは15:1~1.5:1、更に好ましくは12:1~2:1の範囲である。
〔その他の樹脂フィルム層〕
 本発明のフッ化ビニリデン重合体積層体に備えることができる、本発明のフッ化ビニリデン重合体フィルムからなる層以外の「その他の層」としては、顔料不含有フッ化ビニリデン重合体フィルム層に代えて、または更に加えて、ポリエチレン、ポリプロピレン等のポリオレフィン;ナイロン6、ナイロン66等のポリアミド;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;PMMA等のメタクリレート樹脂;ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリオキシメチレン、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリエステルウレタン、ポリm-フェニレンイソフタルアミド、ポリp-フェニレンテレフタルアミドなどのその他の樹脂から形成されるフィルムからなる層(以下、「その他の樹脂フィルム層」)が挙げられる。また、その他の樹脂フィルム層としては、ポリテトラフルオロエチレン、ポリフッ化ビニル等のフッ化ビニリデン重合体以外のフッ素系樹脂から形成される樹脂フィルムからなる層が挙げられる。本発明のフッ化ビニリデン重合体積層体は、これらその他の樹脂フィルム層を備えることにより、例えば、太陽電池モジュール用バックシートに求められる強度等の機械特性を有することを容易に可能とすることができる。その他の樹脂フィルム層には、所要の機械特性、耐熱性、耐候性、耐光性などを考慮して、先に例示した樹脂の1種または2種以上を選択し、必要に応じて、安定剤、紫外線吸収剤、顔料または染料などの添加剤や、更に例示した以外の他の熱可塑性樹脂を含有させることができる。
〔バリア層等その他の層〕
 本発明のフッ化ビニリデン重合体積層体は、具体的な用途や適用部位等に応じて、所望により、先に挙げたその他の樹脂フィルムからなる層に代えて、またはこれに加えて、更に、バリア層等その他の層を備えるものとすることができる。バリア層等その他の層としては、例えば、金属板;金属箔、金属蒸着層または無機酸化物(酸化ケイ素や酸化アルミニウム等)蒸着層を備える樹脂フィルム、エチレン-ビニルアルコール共重合体(以下、「EVOH」ということがある。)フィルム等のバリア性樹脂フィルムなどのバリア層;防湿フィルム;強化ガラス板などが挙げられる。
〔積層体の厚み〕
 本発明のフッ化ビニリデン重合体積層体(前記その他の樹脂フィルム層及び/または前記バリア層等その他の層を備えてもよいものである。)の厚みは、特に限定されず、該積層体に備えられる層の構成や組合せによって適宜定めることができるが、通常10~500μmであり、好ましくは12~400μm、より好ましくは15~300μm、更に好ましくは18~250μmである。フッ化ビニリデン重合体積層体の厚みが小さすぎると、該積層体の強度が不足し、所要の機械特性が得られないおそれがある。一方、フッ化ビニリデン重合体積層体の厚みが大きすぎると、フッ化ビニリデン重合体積層体の柔軟性が不足するおそれがあり、また、軽量化や薄肉化を図ることができない。本発明のフッ化ビニリデン重合体積層体における、本発明のフッ化ビニリデン重合体フィルムからなる層の厚みの比率は、特に限定されないが、好ましくは1~92%、より好ましくは2~90%、更に好ましくは3~88%、特に好ましくは5~85%の範囲である。
〔積層体の製造方法〕
 本発明のフッ化ビニリデン重合体積層体の製造方法は、特に限定されず、接着剤を使用する接着積層(ドライラミ、ホットメルト接着等)、共押出、押出ラミネーション(押出被覆)、塗工その他、通常採用される積層方法を採用することができ、フッ化ビニリデン重合体積層体の層構成及び材料の組合せに応じて、これらの積層方法を適宜組み合わせて行うことができる。
IV.太陽電池モジュール用バックシート
 本発明のフッ化ビニリデン重合体フィルム、または、本発明のバックシート用積層体は、太陽電池モジュール用バックシートとして使用するのに適するものである。
〔太陽電池モジュール〕
 太陽電池モジュールとしては、通常、表面保護材、封止材、太陽電池セル、及び、バックシート(裏面保護材)を順次備える構造のものが採用される。そして、複数の太陽電池セルを配線により直列に接続することにより、太陽電池モジュールを構成する。太陽電池モジュールの端部または周縁部には、フレームが配置されている。
 表面保護材としては、例えば、強化ガラス板、透明プラスチック板、単層若しくは多層の透明プラスチックフィルム、または、これらを複合化した複合材料などが用いられるが、これらに限定されない。封止材としては、エチレン-酢酸ビニル共重合体(EVA)、ブチラール樹脂、シリコン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂などの透明な樹脂が用いられ、これらに限定されるものではないが、EVAが特に好ましく使用される。なお、封止材としてEVAを使用する場合、EVAはシートとして供給されることが多い。太陽電池セルを2枚のEVAシートで挟んで、加熱加圧することにより、太陽電池セルをEVAで封止することもできる。また、封止材としてEVAシートを用いる場合は、本発明のフッ化ビニリデン重合体フィルム等とあらかじめ複合化して供給することができる。
〔太陽電池モジュール用バックシート〕
 本発明によれば、太陽電池モジュール用バックシート(裏面保護材)として、本発明のフッ化ビニリデン重合体フィルムの単層フィルムや、本発明のフッ化ビニリデン重合体積層体を使用することができる。太陽電池モジュール用バックシートとして、該積層体を使用する場合、本発明のフッ化ビニリデン重合体フィルムからなる層は、熱耐久性、所望によっては更に耐熱分解性等の耐熱性に優れるので、太陽電池モジュールの裏面側、すなわち太陽電池セルから遠い位置に配置されることが好ましい。
 太陽電池モジュール用バックシートが、顔料不含有フッ化ビニリデン重合体フィルム層を備える場合は、該顔料不含有フッ化ビニリデン重合体フィルム層を外表面層として備える、すなわち、太陽電池セルから最も遠い位置である最裏面側に配置することが好ましい。これによれば、酸化チタンを多量に含有する本発明のフッ化ビニリデン重合体フィルムが外表面に露出せず、その結果、太陽電池モジュール用バックシートの外表面層、すなわち、太陽電池モジュールを載置する屋根等に対向する表面に、酸化チタンに由来する非光沢が観察されることがなく、表面が美麗なものとなるという効果が奏される。
 本発明のフッ化ビニリデン重合体フィルムからなる層を備える太陽電池モジュール用バックシート、更に、本発明のフッ化ビニリデン重合体積層体からなる太陽電池モジュール用バックシートの好ましい層構成としては、例えば、以下を例示することができるが、これらに限定されるものではない。なお、複数層の層構成を有するバックシートは、以下の層構成の表示において、太陽電池セル(及び封止材)に近い側の面を右端として示した。なお、顔料不含有フッ化ビニリデン重合体フィルム層を「顔料不含有」と表し、それ以外の本発明のフッ化ビニリデン重合体フィルムからなる層以外のその他の層を「その他の層」と表記した。
1)フッ化ビニリデン重合体フィルム(すなわち単層の太陽電池モジュール用バックシートである。)
2)顔料不含有/フッ化ビニリデン重合体フィルム
3)顔料不含有/フッ化ビニリデン重合体フィルム/その他の層
4)顔料不含有/フッ化ビニリデン重合体フィルム/接着剤/その他の層
5)顔料不含有/フッ化ビニリデン重合体フィルム/接着剤/EVA
6)顔料不含有/フッ化ビニリデン重合体フィルム/その他の層/接着剤/EVA
7)顔料不含有/フッ化ビニリデン重合体フィルム/接着剤/その他の層/接着剤/EVA
8)顔料不含有/フッ化ビニリデン重合体フィルム/接着剤/その他の層/接着剤/フッ化ビニリデン重合体フィルム
9)その他の層/フッ化ビニリデン重合体フィルム
10)その他の層/接着剤/フッ化ビニリデン重合体フィルム
11)その他の層/フッ化ビニリデン重合体フィルム/接着剤/EVA
12)その他の層/接着剤/フッ化ビニリデン重合体フィルム/接着剤/EVA
13)顔料不含有/その他の層/フッ化ビニリデン重合体フィルム
14)顔料不含有/その他の層/接着剤/フッ化ビニリデン重合体フィルム
15)顔料不含有/その他の層/フッ化ビニリデン重合体フィルム/接着剤/EVA
16)顔料不含有/その他の層/接着剤/フッ化ビニリデン重合体フィルム/接着剤/EVA
17)ガラス板/接着剤/フッ化ビニリデン重合体フィルム
18)ガラス板/接着剤/フッ化ビニリデン重合体フィルム/接着剤/EVA
19)金属板/接着剤/フッ化ビニリデン重合体フィルム
20)金属板/接着剤/フッ化ビニリデン重合体フィルム/接着剤/EVA
 以下、本発明について、実施例及び比較例を挙げてより具体的に説明するが、本発明は、これら実施例に限定されない。また、耐熱性の指標である熱耐久性及び耐熱分解性の測定方法は、次のとおりである。
〔熱耐久性〕
 フッ化ビニリデン重合体組成物の熱耐久性は、以下に説明する方法により熱耐久性を評価することによって確認した。すなわち、フッ化ビニリデン重合体組成物を、二軸押出機(東芝機械株式会社製)を使用して混練ペレット化した後、縦5cm横5cm厚み5mmにプレス成形してフッ化ビニリデン重合体組成物の板状体を調製した。次いで、上記の板状体を切削加工により、4等分してフッ化ビニリデン重合体組成物試料(縦2.5cm横2.5cm厚み5mmの大きさである。)を得た。前記試料をポリテトラフルオロエチレン製のプレートの上に載置し、温度250℃のギアオーブン中に10時間静置して熱処理した後、色差計を使用して、該試料の熱処理後の表面(ポリテトラフルオロエチレン製のプレートに接していた面の反対側の面)について測定を行い、試料の熱処理後の表面の明度(L値)を求めた。
〔耐熱分解性-10%熱重量減少温度〕
 フッ化ビニリデン重合体組成物の耐熱分解性として、以下に示す10%熱重量減少温度を測定した。10%熱重量減少温度は、メトラー・トレド株式会社製の熱重量分析装置TGA/SDTA851を使用して、先に説明した方法により得たフッ化ビニリデン重合体組成物試料(縦2.5cm横2.5cm厚み5mmの大きさである。)から切り出した試料10mgを白金パンに入れ、乾燥窒素40mL/分の雰囲気下で温度50℃から500℃まで10℃/分の昇温速度で昇温して、その間の重量減少率を測定し、測定開始時の試料の質量から10質量%減少したときの温度を10%熱重量減少温度(単位:℃)とした。
[実施例1]
 フッ化ビニリデン重合体〔株式会社クレハ製KF(登録商標)♯850;懸濁重合品。以下、「PVDF」ということがある。〕70質量部に対して、酸化チタン〔デュポン社製TI-PURE(登録商標)R101;ルチル型酸化チタン、平均粒子径0.29μm、表面処理品。以下、「TiO2」と表記することがある。〕30質量部(PVDF100質量部に対して42.9質量部の割合に該当する。)と、ホスファイト系安定剤〔株式会社ADEKA製のアデカスタブ(登録商標)PEP-36(以下、「ホスファイト系安定剤A」ということがあり、また、単に「安定剤A」ということがある。)〕0.5質量部(PVDF及びTiO2の合計量100質量部に対して0.5質量部の割合に該当し、PVDF100質量部に対して0.7質量部の割合に該当する。)とを二軸押出機(東芝機械株式会社製)に供給し、シリンダー温度220℃で溶融混練し、ダイからストランド状に溶融押出し、冷水中でカットして、フッ化ビニリデン重合体組成物のペレットを作製した。このペレットから調製して得た試料について、熱耐久性〔明度(L値)〕と10%熱重量減少温度を測定した。また、このペレットを1軸スクリュー押出成形機(株式会社プラ技研製)に供給し、Tダイから樹脂温度240℃で溶融押出し、90℃の冷却ロールで冷却することにより、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた。フッ化ビニリデン重合体組成物の熱耐久性〔明度(L値)〕及び10%熱重量減少温度を測定した結果(以下、総称して、「耐熱性」ということがある。)を表1に示す。
[実施例2]
 ホスファイト系安定剤Aを5質量部(PVDF及びTiO2の合計量100質量部に対して5質量部の割合に該当し、PVDF100質量部に対して7.1質量部の割合に該当する。)含有させたことを除いて、実施例1と同様にして、耐熱性試験及びフィルム作製の操作を行ったところ、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
[実施例3]
 ホスファイト系安定剤Aに代えて、ホスファイト系安定剤〔株式会社ADEKA製のアデカスタブ(登録商標)PEP-8(以下、「ホスファイト系安定剤B」ということがあり、また、単に「安定剤B」ということがある。)〕0.5質量部(PVDF及びTiO2の合計量100質量部に対して0.5質量部の割合に該当し、PVDF100質量部に対して0.7質量部の割合に該当する。)を使用したことを除いて、実施例1と同様にして、耐熱性試験及びフィルム作製の操作を行ったところ、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
[実施例4]
 ホスファイト系安定剤Aとともに、金属含有安定剤として、炭酸カルシウム(CaCO3)2.5質量部を含有させたことを除いて、実施例1と同様にして、耐熱性試験及びフィルム作製の操作を行ったところ、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
[実施例5]
 ホスファイト系安定剤Aに代えて、ホスファイト系安定剤B0.5質量部を使用したことを除いて、実施例4と同様にして、耐熱性試験及びフィルム作製の操作を行ったところ、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
[実施例6]
 金属含有安定剤として、炭酸カルシウム(CaCO3)に代えて、酸化亜鉛(ZnO)2.5質量部を含有させたことを除いて、実施例4と同様にして、耐熱性試験及びフィルム作製の操作を行ったところ、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
[実施例7]
 金属含有安定剤として、炭酸カルシウム(CaCO3)に代えて、水酸化カルシウム〔Ca(OH)2〕2.5質量部を含有させたことを除いて、実施例4と同様にして、耐熱性試験及びフィルム作製の操作を行ったところ、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
[実施例8]
 PVDF70質量部に代えて、該PVDF58質量部とメタクリル酸メチル系樹脂(PMMA)〔住友化学株式会社製のスミペックス(登録商標)LG21〕12質量部との混合物を使用したことを除いて、実施例1と同様にして、耐熱性試験及びフィルム作製の操作を行ったところ、厚み20μmの変色等がなく白色のフッ化ビニリデン重合体フィルムを作製することができた(ホスファイト系安定剤Aの含有量は、PVDF及びTiO2の合計量100質量部に対して0.6質量部の割合に該当し、PVDF100質量部に対して0.9質量部の割合に該当する。)。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
[比較例1]
 ホスファイト系安定剤(安定剤Aまたは安定剤B)を含有させなかったことを除いて、実施例1と同様にして、耐熱性試験を行った。フッ化ビニリデン重合体組成物の耐熱性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有する実施例1~8のフッ化ビニリデン重合体組成物は、明度(L値)が、64以上であって、ホスファイト系安定剤を含有しない比較例1のフッ化ビニリデン重合体組成物と比較して、7以上の明度(L値)の向上があることから、温度250℃の環境に10時間置かれても、変色が少なく白度が維持され、優れた熱耐久性を有するものであることが分かった。さらに、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有し、更に、金属含有安定剤を含有する実施例4~7のフッ化ビニリデン重合体組成物は、10%熱重量減少温度が、376~399℃であって、ホスファイト系安定剤を含有しない比較例1のフッ化ビニリデン重合体組成物と比較して、40℃以上上昇していることから、優れた耐熱分解性を有するものであることが分かった。
 したがって、本発明のフッ化ビニリデン重合体組成物は、隠蔽性を向上させるために酸化チタンを多量に含有しても、熱耐久性等の耐熱性に優れたものであるので、太陽電池モジュール用バックシート等のフィルム用途に適する、フッ化ビニリデン重合体組成物であるということができる。
 これに対して、隠蔽性を向上させるために酸化チタンを多量に含有し、ホスファイト系安定剤を含有しない比較例1のフッ化ビニリデン重合体組成物は、明度(L値)が57であることから、温度250℃程度の環境に10時間程度置かれると、変色して白度が損なわれるおそれがあり、熱耐久性等の耐熱性が十分でないものであることが分かった。
 本発明は、フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有することを特徴とするフッ化ビニリデン重合体組成物であることによって、隠蔽性を向上させるために酸化チタンを多量に含有し、熱耐久性等の耐熱性が優れる、太陽電池モジュール用バックシート等のフィルム用途に適する、フッ化ビニリデン重合体組成物を提供することができるので、産業上の利用性が高い。
 また、本発明は、前記のフッ化ビニリデン重合体組成物から形成されるフッ化ビニリデン重合体フィルム、該フッ化ビニリデン重合体フィルムからなる層を備える積層体、並びに、これらのフッ化ビニリデン重合体フィルムからなる層を備え、または積層体からなる太陽電池モジュール用バックシートとして、熱耐久性等の耐熱性に優れる太陽電池モジュール用バックシートを提供することができるので、産業上の利用性が高い。

Claims (12)

  1.  フッ化ビニリデン重合体100質量部に対して、酸化チタン15~100質量部を含有し、かつ、フッ化ビニリデン重合体及び酸化チタンの合計量100質量部に対して、ホスファイト系安定剤0.01~10質量部を含有することを特徴とするフッ化ビニリデン重合体組成物。
  2.  フッ化ビニリデン重合体が、フッ化ビニリデン単独重合体またはフッ化ビニリデン共重合体の少なくとも一方を含有する請求項1記載のフッ化ビニリデン重合体組成物。
  3.  酸化チタンが、ルチル型結晶形を有する酸化チタンである請求項1または2記載のフッ化ビニリデン重合体組成物。
  4.  金属含有安定剤を含有する請求項1乃至3のいずれか1項に記載のフッ化ビニリデン重合体組成物。
  5.  他の熱可塑性樹脂を、フッ化ビニリデン重合体100質量部に対して30質量部以下含有する請求項1乃至4のいずれか1項に記載のフッ化ビニリデン重合体組成物。
  6.  他の熱可塑性樹脂が、メタクリル酸メチル系重合体である請求項5記載のフッ化ビニリデン重合体組成物。
  7.  請求項1乃至6のいずれか1項に記載のフッ化ビニリデン重合体組成物から形成されるフッ化ビニリデン重合体フィルム。
  8.  請求項7記載のフッ化ビニリデン重合体フィルムからなる層を備える積層体。
  9.  無機顔料を含有しないフッ化ビニリデン重合体の組成物から形成されるフッ化ビニリデン重合体フィルムからなる層を備える請求項8記載の積層体。
  10.  請求項7記載のフッ化ビニリデン重合体フィルムからなる層を備える太陽電池モジュール用バックシート。
  11.  請求項8または9記載の積層体からなる太陽電池モジュール用バックシート。
  12.  無機顔料を含有しないフッ化ビニリデン重合体の組成物から形成されるフッ化ビニリデン重合体フィルムからなる層を外表面層として備える請求項9記載の積層体からなる太陽電池モジュール用バックシート。
PCT/JP2016/055770 2015-03-09 2016-02-26 フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート WO2016143549A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015046098 2015-03-09
JP2015-046098 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143549A1 true WO2016143549A1 (ja) 2016-09-15

Family

ID=56880087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055770 WO2016143549A1 (ja) 2015-03-09 2016-02-26 フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート

Country Status (1)

Country Link
WO (1) WO2016143549A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912915A (zh) * 2018-10-19 2019-06-21 辽宁旭日新能源科技有限公司 一种高耐性太阳能电池背膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122936A1 (ja) * 2009-04-20 2010-10-28 株式会社クレハ ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート
WO2012172876A1 (ja) * 2011-06-15 2012-12-20 株式会社クレハ ポリフッ化ビニリデン樹脂フィルム、多層フィルム、及び太陽電池モジュール用バックシート、並びに、フィルムの製造方法
WO2013008885A1 (ja) * 2011-07-13 2013-01-17 電気化学工業株式会社 フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
CN103265779A (zh) * 2011-09-01 2013-08-28 苏州斯迪克新材料科技股份有限公司 用于光伏背膜的改性含氟树脂切片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122936A1 (ja) * 2009-04-20 2010-10-28 株式会社クレハ ポリフッ化ビニリデン樹脂組成物、白色樹脂フィルム、及び太陽電池モジュール用バックシート
WO2012172876A1 (ja) * 2011-06-15 2012-12-20 株式会社クレハ ポリフッ化ビニリデン樹脂フィルム、多層フィルム、及び太陽電池モジュール用バックシート、並びに、フィルムの製造方法
WO2013008885A1 (ja) * 2011-07-13 2013-01-17 電気化学工業株式会社 フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
CN103265779A (zh) * 2011-09-01 2013-08-28 苏州斯迪克新材料科技股份有限公司 用于光伏背膜的改性含氟树脂切片及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912915A (zh) * 2018-10-19 2019-06-21 辽宁旭日新能源科技有限公司 一种高耐性太阳能电池背膜及其制备方法

Similar Documents

Publication Publication Date Title
KR101334571B1 (ko) 폴리불화비닐리덴 수지 조성물, 백색 수지 필름, 및 태양 전지 모듈용 백시트
JP5871922B2 (ja) ポリフッ化ビニリデン樹脂フィルム、多層フィルム、及び太陽電池モジュール用バックシート、並びに、フィルムの製造方法
JP5482661B2 (ja) 太陽電池モジュール用バックシート
JP5628054B2 (ja) ポリフッ化ビニリデン樹脂組成物、着色樹脂フィルム、及び太陽電池モジュール用バックシート
KR102009136B1 (ko) 불화비닐리덴계 수지 조성물, 수지 필름, 태양전지용 백시트 및 태양전지 모듈
TWI554399B (zh) 用於太陽能電池之環保背板及其製備方法
JP5641081B2 (ja) ポリクロロトリフルオロエチレンフィルム及び太陽電池用裏面保護シート
WO2015114983A1 (ja) フッ素系樹脂組成物、樹脂フィルム、積層体及び太陽電池モジュール用バックシート
TWI550010B (zh) 氟系樹脂薄膜及太陽能電池模組
WO2016143549A1 (ja) フッ化ビニリデン重合体組成物、重合体フィルム、積層体及び太陽電池モジュール用バックシート
KR101227552B1 (ko) 단층 PVdF 연신 필름 및 이를 이용한 태양전지 백시트
WO2016143548A1 (ja) フッ化ビニリデン系樹脂組成物、樹脂成形体、樹脂フィルム、及び保護シート
JP2016167506A (ja) 太陽電池モジュールのバックシート用フッ化ビニリデン重合体組成物、樹脂フィルム、積層体及び太陽電池モジュールのバックシート
JPWO2014156824A1 (ja) 熱線遮断性フッ素樹脂フィルム
WO2015133399A1 (ja) フッ素系樹脂フィルム、その製造方法、積層体及び太陽電池モジュール用バックシート
KR101889082B1 (ko) 내후성 다층 필름 및 이의 제조방법
KR101831901B1 (ko) 내후성 다층 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP