WO2010122767A1 - 弾性波素子と、これを用いた電子機器 - Google Patents

弾性波素子と、これを用いた電子機器 Download PDF

Info

Publication number
WO2010122767A1
WO2010122767A1 PCT/JP2010/002817 JP2010002817W WO2010122767A1 WO 2010122767 A1 WO2010122767 A1 WO 2010122767A1 JP 2010002817 W JP2010002817 W JP 2010002817W WO 2010122767 A1 WO2010122767 A1 WO 2010122767A1
Authority
WO
WIPO (PCT)
Prior art keywords
idt electrode
dielectric layer
acoustic wave
electrode
height
Prior art date
Application number
PCT/JP2010/002817
Other languages
English (en)
French (fr)
Inventor
関俊一
上口洋輝
中西秀和
中村弘幸
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/260,798 priority Critical patent/US8564172B2/en
Priority to CN201080016666.6A priority patent/CN102396154B/zh
Priority to JP2011510190A priority patent/JP5093403B2/ja
Publication of WO2010122767A1 publication Critical patent/WO2010122767A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02842Means for compensation or elimination of undesirable effects of reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to an acoustic wave element and an electronic device using the same.
  • FIG. 10 is a schematic cross-sectional view of a conventional acoustic wave device 1 described in Patent Document 1.
  • the acoustic wave element 1 is, for example, an antenna duplexer for Band 1 of the CDMA standard, and includes a reception filter that passes a signal in a reception frequency band of 2110 MHz to 2170 MHz, and a transmission frequency band of 1920 MHz to 1980 MHz lower than the reception frequency band. And a transmission filter that allows the signal to pass therethrough.
  • the acoustic wave element 1 includes a piezoelectric body 2 made of, for example, a lithium niobate-based or lithium tantalate-based piezoelectric material, and an interdigital transducer (IDT) electrode provided on the piezoelectric body 2 as a resonator electrode of a reception filter. 3 and an IDT electrode 4 provided as an electrode of a resonator of the transmission filter on the piezoelectric body 2.
  • the wavelength ⁇ 501 of the elastic wave propagated to the IDT electrode 3 of the reception filter is shorter than the wavelength ⁇ 502 propagated by the IDT electrode 4 of the transmission filter.
  • the normalized film obtained by dividing the film thickness T501 of the IDT electrode 3 in the reception filter by the wavelength ⁇ 501 of the elastic wave is set to be approximately the same.
  • the acoustic wave device 1 includes a dielectric layer 5 made of, for example, silicon oxide (SiO 2 ), which is provided on the piezoelectric body 2 so as to cover the IDT electrodes 3 and 4.
  • the dielectric layer 5 has a temperature characteristic opposite to that of the piezoelectric body 2 and improves the temperature characteristic of the acoustic wave element 1.
  • the upper surface of the dielectric layer 5 is flat from above the IDT electrode 3 to above the IDT electrode 4.
  • the transmission filter having the IDT electrode 4 has inferior temperature characteristics
  • the reception filter having the IDT electrode 3 has inferior electromechanical coupling coefficient.
  • the acoustic wave element includes a piezoelectric body, first and second interdigital transducer (IDT) electrodes provided on the top surface of the piezoelectric body, a first IDT electrode and a first IDT electrode provided on the top surface of the piezoelectric body.
  • the second IDT electrode has a thickness greater than that of the first IDT electrode. From the height of the upper surface of the first portion of the first dielectric layer just above the first IDT electrode from the top surface of the piezoelectric body, the second of the first dielectric layer just above the second IDT electrode The height of the upper surface of this part from the upper surface of the piezoelectric body is high.
  • This elastic wave element has good temperature characteristics and electromechanical coupling coefficient.
  • FIG. 1 is a top view of an acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the acoustic wave device according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of another acoustic wave element according to the first embodiment.
  • 4 is an enlarged cross-sectional view of the acoustic wave device shown in FIG.
  • FIG. 5A is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG.
  • FIG. 5B is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG. 3.
  • FIG. 5A is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG.
  • FIG. 5B is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG. 3.
  • FIG. 5C is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG. 3.
  • FIG. 5D is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG. 3.
  • FIG. 5E is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG. 3.
  • FIG. 5F is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG. 3.
  • FIG. 5G is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG.
  • FIG. 5H is a cross-sectional view showing a manufacturing process of the acoustic wave device shown in FIG. FIG.
  • FIG. 6 is a schematic cross-sectional view of still another acoustic wave device according to the first exemplary embodiment.
  • FIG. 7A is a schematic cross-sectional view of still another acoustic wave device according to Embodiment 1.
  • FIG. 7B is a block diagram of the electronic device in Embodiment 1.
  • FIG. 8 is a top view of the acoustic wave device according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the acoustic wave device according to the second embodiment.
  • FIG. 10 is a schematic sectional view of a conventional acoustic wave device.
  • FIGS. 1 and 2 are a top view and a schematic cross-sectional view, respectively, of the acoustic wave device 6 according to Embodiment 1 of the present invention.
  • the acoustic wave element 6 is, for example, an antenna duplexer for Band 1 of the CDMA standard, and includes filters 7 and 8.
  • the filter 7 is a reception filter that passes signals in the reception frequency band of 2110 MHz to 2170 MHz.
  • the filter 8 is a transmission filter that passes signals in the transmission frequency band of 1920 MHz to 1980 MHz, which are lower than the reception frequency band.
  • the acoustic wave element 6 includes a piezoelectric body 9, interdigital transducer (IDT) electrodes 10 and 11 provided on the upper surface 9A of the piezoelectric body 9, and IDT electrodes 10 and 11 provided on the upper surface 9A of the piezoelectric body 9. And a dielectric layer 12 covering the same.
  • the IDT electrode 10 includes comb electrodes 110 and 210 facing each other.
  • the comb electrode 110 includes a bus bar 110A and a plurality of electrode fingers 110B extending from the bus bar 110A in parallel with each other.
  • the comb-tooth electrode 210 includes a bus bar 210A and a plurality of electrode fingers 110B extending in parallel with each other from the bus bar 210A and intersecting the plurality of electrode fingers 110B.
  • the comb-tooth electrode 111 includes a bus bar 111A and a plurality of electrode fingers 111B extending from the bus bar 111A in parallel to each other.
  • the comb-tooth electrode 211 includes a bus bar 211A and a plurality of electrode fingers 211B that extend parallel to each other from the bus bar 211A and intersect the plurality of electrode fingers 111B.
  • the filter 7 which is a reception filter includes a series resonator 10A connected to the antenna terminal 13, a series resonator 10B connected in series to the series resonator 10A at a connection point 710, and an output terminal connected to the series resonator 10B. 14 and a parallel resonator 10C connected between the connection point 710 and the ground terminal 712.
  • the IDT electrode 10 functions as an IDT electrode constituting the resonators 10A to 10C.
  • the filter 8 serving as a transmission filter includes a series resonator 11A connected to the antenna terminal 13, a series resonator 11B connected in series to the series resonator 11A at a connection point 711, and an input terminal connected to the series resonator 11B. 15 and a parallel resonator 11 ⁇ / b> C connected between the connection point 711 and the ground terminal 713.
  • the IDT electrode 11 functions as an IDT electrode constituting the resonators 11A to 11C.
  • the filter 7 formed by the IDT electrode 10 is a reception filter that passes a signal in the reception frequency band.
  • the filter 8 formed by the IDT electrode 11 is a transmission filter that passes signals in a transmission frequency band lower than the reception frequency band. Accordingly, the wavelength ⁇ 1 of the elastic wave propagating through the IDT electrode 10 is shorter than the wavelength ⁇ 2 of the elastic wave propagating through the IDT electrode 11.
  • the piezoelectric body 9 is made of a lithium niobate-based piezoelectric material, but may be formed of other piezoelectric materials such as quartz, lithium tantalate, or potassium niobate.
  • the IDT electrodes 10 and 11 are made of a metal containing copper as a main component.
  • the IDT electrodes 10 and 11 are made of a single metal made of at least one of aluminum, silver, gold, titanium, tungsten, platinum, chromium and molybdenum, or the main component thereof. You may form from other metals, such as an alloy.
  • the film thickness TA of the IDT electrode 10 is 1550 mm or more and less than 1650 mm
  • the film thickness TB of the IDT electrode 11 is 1650 mm or more and less than 1750 mm. . That is, the film thickness TB of the IDT electrode 11 is made larger than the film thickness TA of the IDT electrode 10.
  • the film thickness can be substantially equal to the film thickness, and the electromechanical coupling coefficient of the acoustic wave element 6 can be improved.
  • the dielectric layer 12 is made of a dielectric material such as silicon oxide having a frequency temperature characteristic opposite to that of the piezoelectric body 9. Thereby, the frequency temperature characteristic of the acoustic wave element 6 can be improved. Silicon oxide is a medium through which a transverse wave having a velocity slower than the velocity of the transverse wave propagating through the piezoelectric body 9 propagates.
  • the upper surface of the dielectric layer 5 is formed flat from above the IDT electrode 3 to above the IDT electrode 4. Therefore, since the film thickness T502 of the IDT electrode 4 of the transmission filter is thick, the film thickness T504 of the dielectric layer 5 is smaller than the film thickness T503 of the dielectric layer 5 of the reception filter.
  • the electromechanical coupling coefficient is inferior.
  • the height TC of the upper surface 12A of the dielectric layer 12 directly above the IDT electrode 10 from the upper surface 9A of the piezoelectric body 9 is 3950 mm or more and less than 4050 mm.
  • the height TD of the upper surface 12A of the dielectric layer 12 directly above the IDT electrode 11 from the upper surface 9A of the piezoelectric body 9 is 4050 mm or more and less than 4150 mm. That is, the height TD of the upper surface 12A of the portion 212 of the dielectric layer 12 directly above the IDT electrode 11 from the upper surface 9A of the piezoelectric body 9 is the upper surface 12A of the portion 112 of the dielectric layer 12 directly above the IDT electrode 10.
  • the height TC of the portion 212 from the upper surface 9A of the piezoelectric body 9 is higher. Accordingly, the film thickness TF of the portion 212 of the dielectric layer 12 can be substantially equal to the film thickness TE of the portion 112 of the dielectric layer 12, for example, 2400 mm. Both mechanical coupling coefficients can be improved.
  • the film thickness TF of the portion 212 of the dielectric layer 12 is equal to or greater than the film thickness TE (for example, 2400 mm) of the portion 112.
  • the normalized film thickness obtained by dividing the film thickness TF of the portion 212 of the dielectric layer 12 by the wavelength ⁇ 2 is standardized by dividing the film thickness TE of the portion 112 by the wavelength ⁇ 1.
  • the thickness is desirably equal to or less than the thickness, that is, the film thickness TF is desirably equal to or less than 2550 mm.
  • the thickness TF of the portion 212 of the dielectric layer 12 is larger than the thickness TE (eg, 2400 mm) of the portion 112, and the thickness TF of the portion 212 of the dielectric layer 12 is divided by the wavelength ⁇ 2 and normalized.
  • the normalized film thickness is more preferably less than the normalized film thickness (for example, 2550 mm) obtained by normalizing the film thickness TE of the portion 112 by dividing by the wavelength ⁇ 1.
  • FIG. 3 is a schematic cross-sectional view of another acoustic wave device 1001 in the first embodiment.
  • the same reference numerals are assigned to the same portions as those of the acoustic wave element 6 shown in FIGS.
  • the upper surface 12 ⁇ / b> A of the dielectric layer 12 has a convex portion 16 positioned directly above the IDT electrode 10 and a convex portion 17 positioned directly above the IDT electrode 11.
  • the convex portions 16 and 17 extend along the IDT electrodes 10 and 11 shown in FIG.
  • the height TG from the root of the convex portion 16 to the upper surface is 1500 to 1600 mm, and the height TH from the root to the upper surface of the convex portion 17 is 1600 to 1700 mm.
  • the temperature characteristics and the electromechanical coupling coefficient of the acoustic wave element 6 can be further improved. Since the transmission signal amplified by the power amplifier is input to the IDT electrode 11 of the filter 8 that is a transmission filter, the IDT electrode 11 may be heated and deteriorated.
  • the IDT electrode 11 can efficiently dissipate heat.
  • FIG. 4 is an enlarged cross-sectional view of the acoustic wave element 1001 showing the convex portions 16 and 17 of the dielectric layer 12.
  • the convex portion 16 has a top portion 29, a root portion 30, and a side surface 16 ⁇ / b> C connected to the top portion 29 and the root portion 30.
  • the cross section of the side surface 16C desirably has a concave curved shape.
  • the width TL1 of the top 29, which is the distance between the side 16C or the extended line of the side 16C and the point where the straight line parallel to the top surface 9A of the piezoelectric body 9 including the top 29 intersects, is the electrode finger 110B of the IDT electrode 10; It is smaller than the width TW1 of 210B.
  • the mass of the part around the electrode 10 in the dielectric layer 12 changes continuously and gently.
  • the convex portion 17 has a top portion 129, a root portion 130, and a side surface 17 ⁇ / b> C connected to the top portion 129 and the root portion 130. It is desirable that the cross section of the side surface 17C has a concave curved shape.
  • the width TL2 of the top portion 129 which is the distance between the side surface 17C or the extended line of the side surface 17C, and the point where the straight line parallel to the upper surface 9A of the piezoelectric body 9 including the top portion 129 intersects, It is smaller than the width TW2 of 211B.
  • the mass of the dielectric layer 12 changes continuously and gently at the protrusion 17. As a result, it is possible to improve the electrical characteristics of the acoustic wave device 6 while suppressing the occurrence of unnecessary reflection due to the shape of the dielectric layer 12.
  • the width TL1 of the top 29 of the convex portion 16 is preferably less than or equal to 1 ⁇ 2 of the width TW1 of the electrode fingers 110B and 210B of the IDT electrode 10. Further, it is desirable that the center 316 of the top portion 29 is located directly above the center 310 of the electrode fingers 110B and 210B. Thereby, the reflectance at the electrode fingers 110B and 210B is further increased by the mass addition effect, and the electrical characteristics of the acoustic wave device 6 are improved.
  • the width TL2 of the top portion 129 of the convex portion 17 is desirably 1/2 or less of the width TW2 of the electrode fingers 111B and 211B of the IDT electrode 11. Further, it is desirable that the center 317 of the top portion 129 is located directly above the center 311 of the electrode fingers 111B and 211B. Thereby, the reflectance at the electrode fingers 111B and 211B is further increased by the mass addition effect, and the electrical characteristics of the acoustic wave device 6 are improved.
  • the heights TG and TH of the protrusions 16 and 17 and the film thickness TA of the IDT electrode 10 and the film thickness TB and the wavelengths ⁇ 1 and ⁇ 2 of the IDT electrode 11 are 0.03 ⁇ ⁇ 1 ⁇ TG ⁇ TA and 0.03 ⁇ ⁇ 2 ⁇ It is desirable to satisfy TH ⁇ TB.
  • the height TG of the convex portion 16 is larger than 0.03 ⁇ ⁇ 1 or the height TH of the convex portion 17 is larger than 0.03 ⁇ ⁇ 2
  • the reflectance becomes higher than that of the conventional acoustic wave device 1 shown in FIG. Better performance can be obtained.
  • the dielectric layer 12 is formed. It is necessary to add a new process, and the manufacturing method becomes complicated.
  • 5A to 5H are cross-sectional views showing the manufacturing process of the acoustic wave device 1001.
  • an electrode film 32 to be an electrode or a reflector is formed on the upper surface of the piezoelectric body 31 by vapor deposition or sputtering of Al or an Al alloy.
  • a resist film 33 is formed on the upper surface of the electrode film 32.
  • the resist film 33 is processed by exposing and developing the resist film 33 so as to have a desired shape.
  • the resist film 33 is removed after the electrode film 32 is processed into a desired shape such as the IDT electrodes 10 and 11 and a reflector by using a dry etching technique or the like.
  • a dielectric layer 34 is formed by depositing or sputtering silicon oxide so as to cover the electrode film 32.
  • a bias sputtering method in which silicon oxide was sputtered while applying a bias voltage to the piezoelectric body 31 was used.
  • a dielectric layer 34 is deposited on the piezoelectric body 31 by sputtering a silicon oxide target, and at the same time, a part of the dielectric layer 34 on the piezoelectric body 31 is sputtered by a bias. That is, the shape of the dielectric layer 34 is controlled by shaving a part of the dielectric layer 34 while depositing it.
  • the shape of the dielectric layer 34 may be controlled by changing the ratio of the bias applied to the piezoelectric body 31 and the sputtering power during the deposition of the dielectric layer 34.
  • the shape of the dielectric layer 34 can be controlled by forming a film without applying a bias to the piezoelectric body 31 at the initial stage of film formation, and applying a bias at the same time as the film formation. At this time, the temperature of the piezoelectric body 31 is also managed.
  • a resist film 35 is formed on the surface of the dielectric layer 34.
  • the resist film 35 is exposed and developed to process the resist film 35 into a desired shape.
  • the piezoelectric body 31 is divided by dicing to obtain the acoustic wave element 1001.
  • FIG. 6 is a schematic cross-sectional view of still another acoustic wave device 1002 according to the first embodiment.
  • the acoustic wave device 1002 further includes a dielectric layer 18 provided on the upper surface 12A of the dielectric layer 12.
  • a transverse wave faster than the velocity of the transverse wave propagating through the first dielectric layer 12 propagates.
  • the dielectric layer 18 is made of a dielectric material such as diamond, silicon, silicon nitride, aluminum nitride, or aluminum oxide.
  • the film thickness of the dielectric layer 18 is larger than the film thickness TC or the film thickness TD of the dielectric layer 12, and is 0.8 times or more the wavelength of the shear horizontal (SH) wave that is the main wave. As a result, the main wave can be confined in the acoustic wave device 1002.
  • the film thickness of the dielectric layer 18 is equal to or greater than the wavelength of the SH wave that is the main wave, the main wave can be almost completely confined in the acoustic wave element 1002.
  • the acoustic wave element 1002 is provided on the upper surface 18A of the dielectric layer 18 and electrically connected to the IDT electrode 10, and is provided on the upper surface 18A of the dielectric layer 18 and electrically connected to the IDT electrode 11. And an external terminal 52 connected thereto.
  • the difference TJ between the height of the upper surface 18A of the portion 118 of the dielectric layer 18 just above the IDT electrode 10 and the height of the upper surface 18A of the portion 218 of the dielectric layer 18 just above the IDT electrode 11 is the true value of the IDT electrode 10. It is desirable that the difference TK be smaller than the height TC of the portion 112 of the dielectric layer 12 above and the height TD of the portion 212 of the dielectric layer 12 directly above the IDT electrode 11. Thereby, since the difference in height between the external terminals 51 and 52 can be reduced, the elastic wave element 1002 can be bump-connected to the mother board via the external terminals 51 and 52 with high reliability.
  • FIG. 7A is a schematic cross-sectional view of still another acoustic wave device 1003 according to Embodiment 1. 7A, the same reference numerals are assigned to the same portions as those of acoustic wave element 1001 shown in FIG.
  • the acoustic wave device 1003 further includes a dielectric layer 18 provided on the upper surface 12A of the dielectric layer 12, and external terminals 51 and 52.
  • the elastic wave element 1003 has the same effect as the elastic wave element 1002 shown in FIG.
  • the filter 7 is a reception filter and the filter 8 is a transmission filter.
  • the filter 7 may be a transmission filter and the filter 8 may be a reception filter. Further, both the filters 7 and 8 may be reception filters, or both may be transmission filters.
  • FIG. 7B is a block diagram of electronic device 2001 according to Embodiment 1.
  • the electronic device 2001 includes the acoustic wave element 6 (1001, 1002, 1003) in the first embodiment and an electronic component 2001A such as a semiconductor integrated circuit element or a speaker connected to the acoustic wave element.
  • the semiconductor integrated circuit element is connected to the acoustic wave element 6 (1001, 1002, 1003), and the speaker is connected to the semiconductor integrated circuit element.
  • (Embodiment 2) 8 and 9 are a top view and a cross-sectional schematic view of acoustic wave device 1004 in the second embodiment, respectively. 8 and 9, the same reference numerals are assigned to the same portions as those of the acoustic wave element 6 shown in FIGS. 1 and 2.
  • the acoustic wave element 1004 is a ladder type filter included in a transmission filter in an antenna duplexer for Band 1 of the CDMA standard, and includes series resonators 19A and 19B and a parallel resonator 20.
  • the series resonators 19A and 19B are connected in series at a connection point 910.
  • the acoustic wave element 1004 includes an input terminal 21 connected to the series resonator 19A, an output terminal 22 connected to the series resonator 19B, and a ground terminal 23 connected to the parallel resonator 20.
  • the parallel resonator 20 is connected between the connection point 910 and the ground terminal 23.
  • the series resonators 19A and 19B have a resonance frequency of 2050 MHz.
  • the parallel resonator 20 has a resonance frequency of 1960 MHz lower than the resonance frequency of the series resonators 19A and 19B.
  • the parallel resonator 20 includes the IDT electrode 11 shown in FIG.
  • the series resonators 19A and 19B are configured by the IDT electrode 10 shown in FIG. Similar to the acoustic wave element 6 shown in FIG. 2, the film thickness TB of the IDT electrode 11 is larger than the film thickness TA of the IDT electrode 10.
  • the film thickness TA of the IDT electrode 10 is 1650 mm or more and less than 1680 mm
  • the film thickness TB of the IDT electrode 11 is 1730 mm or more and less than 1760 mm.
  • the elastic wave having the resonance frequency of the series resonators 19A and 19B propagating through the piezoelectric body 9 has the wavelength ⁇ 1
  • the elastic wave having the resonance frequency of the parallel resonator 20 has the wavelength ⁇ 2.
  • the wavelength ⁇ 1 is shorter than the wavelength ⁇ 2.
  • the normalized thickness obtained by dividing the thickness TA of the IDT electrode 10 of the series resonators 19A and 19B by the wavelength ⁇ 1 is standardized by dividing the thickness of the IDT electrode 11 of the parallel resonator 20 by the wavelength ⁇ 2. Therefore, the electromechanical coupling coefficient of the acoustic wave element 1004 can be improved.
  • the height TD from the piezoelectric body 9 of the upper surface 12A of the portion 212 of the dielectric layer 12 directly above the IDT electrode 11 is the piezoelectric body of the upper surface 12A of the portion 112 of the dielectric layer 12 directly above the IDT electrode 10. It is higher than the height TC from 9.
  • the film thickness TF of the portion 212 of the dielectric layer 12 can be made substantially the same as the film thickness TE (2400 mm) of the portion 112 of the dielectric layer 12, and the temperature characteristics and electrical characteristics of the acoustic wave device 1004 can be reduced. Both the mechanical coupling coefficient can be improved.
  • terms indicating directions such as “upper surface”, “lower surface”, and “directly above” indicate relative directions that depend only on the relative positional relationship of the constituent members of the acoustic wave element, and are vertical. It does not indicate an absolute direction such as a direction.
  • the acoustic wave device according to the present invention has good temperature characteristics and an electromechanical coupling coefficient, and can be applied to electronic devices such as mobile phones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 弾性波素子は、圧電体と、圧電体の上面上に設けられた第1と第2のインターディジタルトランスデューサ(IDT)電極と、圧電体の上面上に設けられてかつ第1のIDT電極と第2のIDT電極とを覆う第1の誘電体層とを備える。第2のIDT電極は第1のIDT電極の膜厚よりも厚い膜厚を有する。第1のIDT電極の真上方における第1の誘電体層の第1の部分の上面の圧電体の上面からの高さより、第2のIDT電極の真上方における第1の誘電体層の第2の部分の上面の圧電体の上面からの高さが高い。この弾性波素子は良好な温度特性と電気機械結合係数とを有する。

Description

弾性波素子と、これを用いた電子機器
 本発明は、弾性波素子と、これを用いた電子機器に関する。
 図10は特許文献1に記載されている従来の弾性波素子1の断面模式図である。弾性波素子1は、例えば、CDMA標準規格のBand1用のアンテナ共用器であり、2110MHz~2170MHzの受信周波数帯域の信号を通過させる受信フィルタと、受信周波数帯域より低い1920MHz~1980MHzの送信周波数帯域の信号を通過させる送信フィルタとを備える。
 弾性波素子1は、例えばニオブ酸リチウム系やタンタル酸リチウム系の圧電材料よりなる圧電体2と、圧電体2の上に受信フィルタの共振器の電極として設けられたインターディジタルトランスデューサ(IDT)電極3と、圧電体2の上に送信フィルタの共振器の電極として設けられたIDT電極4とを備える。受信フィルタのIDT電極3に伝播させる弾性波の波長λ501は送信フィルタのIDT電極4で伝播させる波長λ502より短い。
 IDT電極4の膜厚T502をIDT電極3の膜厚T501よりも厚くすることにより、受信フィルタにおけるIDT電極3の膜厚T501を弾性波の波長λ501で割って規格化して得られた規格化膜厚N501と、送信フィルタにおけるIDT電極4の膜厚T502を弾性波の波長λ502で割って規格化した規格化膜厚とを同程度にしている。この構成により、弾性波素子1の電気機械結合係数を向上させることができる。
 弾性波素子1は、圧電体2の上にIDT電極3、4を覆うように設けられて例えば酸化ケイ素(SiO)からなる誘電体層5を備える。誘電体層5は、圧電体2と逆の温度特性を有し、弾性波素子1の温度特性を向上させる。誘電体層5の上面は、IDT電極3の上方からIDT電極4の上方に渡って平坦である。弾性波素子1において、IDT電極4を有する送信フィルタは温度特性が劣り、IDT電極3を有する受信フィルタは電気機械結合係数が劣る。
特表2008-508821号公報
 弾性波素子は、圧電体と、圧電体の上面上に設けられた第1と第2のインターディジタルトランスデューサ(IDT)電極と、圧電体の上面上に設けられてかつ第1のIDT電極と第2のIDT電極とを覆う第1の誘電体層とを備える。第2のIDT電極は第1のIDT電極の膜厚よりも厚い膜厚を有する。第1のIDT電極の真上方における第1の誘電体層の第1の部分の上面の圧電体の上面からの高さより、第2のIDT電極の真上方における第1の誘電体層の第2の部分の上面の圧電体の上面からの高さが高い。
 この弾性波素子は良好な温度特性と電気機械結合係数とを有する。
図1は本発明の実施の形態1における弾性波素子の上面図である。 図2は実施の形態1における弾性波素子の断面模式図である。 図3は実施の形態1における他の弾性波素子の断面模式図である。 図4は図3に示す弾性波素子の拡大断面図である。 図5Aは図3に示す弾性波素子の製造工程を示す断面図である。 図5Bは図3に示す弾性波素子の製造工程を示す断面図である。 図5Cは図3に示す弾性波素子の製造工程を示す断面図である。 図5Dは図3に示す弾性波素子の製造工程を示す断面図である。 図5Eは図3に示す弾性波素子の製造工程を示す断面図である。 図5Fは図3に示す弾性波素子の製造工程を示す断面図である。 図5Gは図3に示す弾性波素子の製造工程を示す断面図である。 図5Hは図3に示す弾性波素子の製造工程を示す断面図である。 図6は実施の形態1におけるさらに他の弾性波素子の断面模式図である。 図7Aは実施の形態1におけるさらに他の弾性波素子の断面模式図である。 図7Bは実施の形態1における電子機器のブロック図である。 図8は本発明の実施の形態2における弾性波素子の上面図である。 図9は実施の形態2における弾性波素子の断面図である。 図10は従来の弾性波素子の断面模式図である。
 (実施の形態1)
 図1と図2はそれぞれ本発明の実施の形態1における弾性波素子6の上面図と断面模式図である。弾性波素子6は、例えば、CDMA標準規格のBand1用のアンテナ共用器であり、フィルタ7、8を備える。フィルタ7は、2110MHz~2170MHzの受信の周波数帯域の信号を通過させる受信フィルタである。フィルタ8は、受信の周波数帯域より低い1920MHz~1980MHzの送信の周波数帯域の信号を通過させる送信フィルタである。
 弾性波素子6は、圧電体9と、圧電体9の上面9A上に設けられたインターディジタルトランスデューサ(IDT)電極10、11と、圧電体9の上面9A上に設けられてIDT電極10、11を覆う誘電体層12とを備える。IDT電極10は互いに対向する櫛歯電極110、210を備える。櫛歯電極110は、バスバー110Aと、互いに平行にバスバー110Aから延びる複数の電極指110Bとを有する。櫛歯電極210は、バスバー210Aと、バスバー210Aから互いに平行に延びかつ複数の電極指110Bと交差する複数の電極指110Bとを有する。櫛歯電極111は、バスバー111Aと、バスバー111Aから互いに平行に延びる複数の電極指111Bとを有する。櫛歯電極211は、バスバー211Aと、バスバー211Aから互いに平行に延びかつ複数の電極指111Bと交差する複数の電極指211Bとを有する。
 受信フィルタであるフィルタ7は、アンテナ端子13に接続された直列共振器10Aと、直列共振器10Aに接続点710で直列接続された直列共振器10Bと、直列共振器10Bに接続された出力端子14と、接続点710と接地端子712との間に接続された並列共振器10Cとを備える。IDT電極10は共振器10A~10Cを構成するIDT電極として機能する。
 送信フィルタであるフィルタ8は、アンテナ端子13に接続された直列共振器11Aと、直列共振器11Aに接続点711で直列接続された直列共振器11Bと、直列共振器11Bに接続された入力端子15と、接続点711と接地端子713との間に接続された並列共振器11Cとを備える。IDT電極11は共振器11A~11Cを構成するIDT電極として機能する。
 IDT電極10が構成するフィルタ7は、受信の周波数帯域の信号を通過させる受信フィルタである。IDT電極11が構成するフィルタ8は、受信の周波数帯域より低い送信の周波数帯域の信号を通過させる送信フィルタである。したがって、IDT電極10を伝播する弾性波の波長λ1は、IDT電極11を伝播する弾性波の波長λ2より短い。
 圧電体9は、ニオブ酸リチウム系の圧電材料よりなるが、例えば、水晶、タンタル酸リチウム系、又はニオブ酸カリウム系等の他の圧電材料より形成されていてもよい。
 IDT電極10、11は、銅を主成分とする金属からなるが、例えば、アルミニウム、銀、金、チタン、タングステン、白金、クロム、モリブデンの少なくとも一種からなる単体金属、又はこれらを主成分とする合金等の他の金属より形成されていてもよい。
 IDT電極10、11が銅を主成分とする金属よりなる場合には、例えば、IDT電極10の膜厚TAは1550Å以上1650Å未満であり、IDT電極11の膜厚TBは1650Å以上1750Å未満である。すなわち、IDT電極11の膜厚TBをIDT電極10の膜厚TAよりも厚くする。これにより、IDT電極10の膜厚TAを弾性波の波長λ1で割って規格化して得られる規格化膜厚を、IDT電極11の膜厚TBを波長λ2で割って規格化して得られる規格化膜厚と実質的に等しくすることができ、弾性波素子6の電気機械結合係数を向上させることができる。
 誘電体層12は、圧電体9とは逆の周波数温度特性を有する酸化ケイ素等の誘電材料よりなる。これにより、弾性波素子6の周波数温度特性を向上することができる。酸化ケイ素は、圧電体9を伝搬する横波の速度よりも遅い速度の横波が伝搬する媒質である。
 図10に示す従来の弾性波素子1では、誘電体層5の上面は、IDT電極3の上方からIDT電極4の上方に渡って平坦に形成されている。したがって、送信フィルタのIDT電極4の膜厚T502が厚いので誘電体層5の膜厚T504が受信フィルタの誘電体層5の膜厚T503より薄いので、送信フィルタは温度特性が劣り、受信フィルタは電気機械結合係数が劣る。
 誘電体層12が酸化ケイ素よりなる場合、例えば、IDT電極10の真上方における誘電体層12の上面12Aの圧電体9の上面9Aからの高さTCは3950Å以上4050Å未満である。IDT電極11の真上方における誘電体層12の上面12Aの圧電体9の上面9Aからの高さTDは4050Å以上4150Å未満である。すなわち、IDT電極11の真上方における誘電体層12の部分212の上面12Aの圧電体9の上面9Aからの高さTDは、IDT電極10の真上方における誘電体層12の部分112の上面12Aの部分212の圧電体9の上面9Aからの高さTCより高い。これにより、誘電体層12の部分212の膜厚TFを、誘電体層12の部分112の膜厚TEと実質的に等しく、例えば2400Åとすることができ、弾性波素子6の温度特性と電気機械結合係数を共に良好にすることができる。
 誘電体層12の部分212の膜厚TFは部分112の膜厚TE(例えば2400Å)以上である。かつ、誘電体層12の部分212の膜厚TFを波長λ2で割って規格化して得られる規格化膜厚は、部分112の膜厚TEを波長λ1で割って規格化して得られる規格化膜厚以下であることが望ましく、すなわち膜厚TFを例えば2550Å以下とすることが望ましい。これにより、弾性波素子6の温度特性と電気機械結合係数とをさらに向上することができる。
 特に、誘電体層12の部分212の膜厚TFは部分112の膜厚TE(例えば2400Å)より大きく、かつ、誘電体層12の部分212の膜厚TFを波長λ2で割って規格化して得られる規格化膜厚は、部分112の膜厚TEを波長λ1で割って規格化して得られる規格化膜厚(例えば2550Å)未満であることがより望ましい。これにより、弾性波素子6の温度特性と電気機械結合係数とをさらに向上することができる。
 図3は実施の形態1における他の弾性波素子1001の断面模式図である。図3において、図1と図2に示す弾性波素子6と同じ部分には同じ参照番号を付す。弾性波素子1001では、誘電体層12の上面12AはIDT電極10の真上方に位置する凸部16と、IDT電極11の真上方に位置する凸部17を有する。凸部16、17はそれぞれ図1に示すIDT電極10、11に沿って延びる。凸部16の根元から上面までの高さTGは1500Å以上1600Å未満であり、凸部17の根元から上面までの高さTHは1600Å以上1700Å未満である。このように、凸部17の高さTHを凸部16の高さTGより高くすることにより、弾性波素子6の温度特性と電気機械結合係数とをさらに向上させることができる。送信フィルタであるフィルタ8のIDT電極11にはパワーアンプで増幅された送信信号が入力されるので、IDT電極11が発熱して劣化する場合がある。IDT電極11の真上方に位置する凸部17の高さTHをIDT電極の真上方に位置する凸部16の高さTGより高くすることにより、IDT電極11を効率よく放熱させることができる。
 図4は誘電体層12の凸部16、17を示す弾性波素子1001の拡大断面図である。凸部16は、頂部29と、根元部30と、頂部29と根元部30に繋がる側面16Cを有する。側面16Cの断面は窪んだ曲線形状を有することが望ましい。側面16C若しくは側面16Cの延長線と、頂部29を含む圧電体9の上面9Aに平行な直線とが交わる点同士の間の距離である頂部29の幅TL1は、IDT電極10の電極指110B、210Bの幅TW1よりも小さい。これにより、凸部16において誘電体層12のうちの電極10の周囲の部分の質量が連続的かつ緩やかに変化する。その結果、誘電体層12の形状に起因する不要な反射を発生させることを抑制しつつ、弾性波素子6の電気的特性を向上することができる。
 凸部17は、頂部129と、根元部130と、頂部129と根元部130に繋がる側面17Cを有する。側面17Cの断面は窪んだ曲線形状を有することが望ましい。側面17C若しくは側面17Cの延長線と、頂部129を含む圧電体9の上面9Aに平行な直線とが交わる点同士の間の距離である頂部129の幅TL2は、IDT電極11の電極指111B、211Bの幅TW2よりも小さい。これにより、凸部17において誘電体層12の質量が連続的かつ緩やかに変化する。その結果、誘電体層12の形状に起因する不要な反射を発生させることを抑制しつつ、弾性波素子6の電気的特性を向上することができる。
 凸部16の頂部29の幅TL1は、IDT電極10の電極指110B、210Bの幅TW1の1/2以下であることが望ましい。また、頂部29の中心316は、電極指110B、210Bの中心310の真上方に位置していることが望ましい。これにより、質量付加効果により電極指110B、210Bでの反射率が更に高まり、弾性波素子6の電気的特性が向上する。
 凸部17の頂部129の幅TL2は、IDT電極11の電極指111B、211Bの幅TW2の1/2以下であることが望ましい。また、頂部129の中心317は、電極指111B、211Bの中心311の真上方に位置していることが望ましい。これにより、質量付加効果により電極指111B、211Bでの反射率が更に高まり、弾性波素子6の電気的特性が向上する。
 凸部16、17の高さTG、THとIDT電極10の膜厚TA、IDT電極11の膜厚TBと波長λ1、λ2は、0.03×λ1<TG≦TA、0.03×λ2<TH≦TBを満たすことが望ましい。凸部16の高さTGが0.03×λ1より大きいもしくは凸部17の高さTHが0.03×λ2より大きいと、図10に示す従来の弾性波素子1より反射率が大きくなり、より優れた性能が得られる。一方、凸部16の高さTGがIDT電極10の膜厚TAより大きくなる、もしくは凸部17の高さTHがIDT電極11の膜厚TBより大きくなると、誘電体層12を作成する為の新たな工程を追加することが必要となり、製造方法が煩雑となる。
 図5A~図5Hは弾性波素子1001の製造工程を示す断面図である。
 まず、図5Aに示すように、圧電体31の上面にAlまたはAl合金を蒸着またはスパッタさせることで電極または反射器となる電極膜32を成膜する。
 そして、図5Bに示すように、電極膜32の上面にレジスト膜33を形成する。
 さらに、図5Cに示すように、所望の形状となるようにレジスト膜33を露光・現像してレジスト膜33を加工する。
 さらに、図5Dに示すように、ドライエッチング技術等を用いて電極膜32をIDT電極10、11や反射器等、所望の形状に加工した後、レジスト膜33を除去する。
 次に、図5Eに示すように、電極膜32を覆うように酸化ケイ素を蒸着またはスパッタすることにより誘電体層34を形成する。凸部16、17を得るために、圧電体31にバイアス電圧を印加しながら酸化ケイ素をスパッタリングさせるバイアススパッタリング法を用いた。
 例えば酸化ケイ素のターゲットをスパッタリングすることにより圧電体31上に誘電体層34を堆積させると同時に、バイアスにより圧電体31上の誘電体層34の一部をスパッタリングして削る。つまり誘電体層34を堆積させながらその一部を削ることにより、誘電体層34の形状をコントロールする。誘電体層34を堆積させる途中で圧電体31に印加するバイアスとスパッタリング電力の比を変化させることで、誘電体層34の形状をコントロールしてもよい。また、成膜の初期は圧電体31にバイアスをかけずに成膜し、途中から成膜と同時にバイアスを印加することで、誘電体層34の形状をコントロールすることができる。この際、圧電体31の温度も管理する。
 さらに、図5Fに示すように誘電体層34の表面にレジスト膜35を形成する。
 さらに、図5Gに示すように、レジスト膜35を露光・現像してレジスト膜35を所望の形状に加工する。
 次に、図5Hに示すように、ドライエッチング技術等を用いて、電気信号取出しのためのパッド36等、誘電体層34の不要な部分を取り除き、その後レジスト膜35を除去する。
 最後にダイシングにより圧電体31を分割して弾性波素子1001を得る。
 図6は実施の形態1によるさらに他の弾性波素子1002の断面模式図である。図6において、図1と図2に示す弾性波素子6と同じ部分には同じ参照番号を付す。弾性波素子1002は、誘電体層12の上面12A上に設けられた誘電体層18をさらに備える。誘電体層18では第1誘電体層12を伝搬する横波の速度よりも速い横波が伝搬する。誘電体層18は、例えば、ダイアモンド、シリコン、窒化シリコン、窒化アルミニウム、または酸化アルミニウム等の誘電材料よりなる。誘電体層18の膜厚は誘電体層12の膜厚TCまたは膜厚TDより大きく、主要波であるShear Horizontal(SH)波の波長の0.8倍以上である。これにより、主要波を、弾性波素子1002の中に閉じ込めることができる。誘電体層18の膜厚が主要波であるSH波の波長以上である場合には、主要波を弾性波素子1002の中にほぼ完全に閉じ込めることができる。弾性波素子1002は、誘電体層18の上面18Aに設けられてIDT電極10に電気的に接続された外部端子51と、誘電体層18の上面18Aに設けられてIDT電極11に電気的に接続された外部端子52とをさらに備えている。IDT電極10の真上方における誘電体層18の部分118の上面18Aの高さとIDT電極11の真上方における誘電体層18の部分218の上面18Aの高さの差TJは、IDT電極10の真上方における誘電体層12の部分112の高さTCとIDT電極11の真上方における誘電体層12の部分212の高さTDの差TKより小さいことが望ましい。これにより、外部端子51、52の高さの差を小さくすることができるので、外部端子51、52を介して弾性波素子1002をマザーボードに高信頼性でバンプ接続することができる。
 図7Aは実施の形態1によるさらに他の弾性波素子1003の断面模式図である。図7Aにおいて、図3に示す弾性波素子1001と同じ部分には同じ参照番号を付す。弾性波素子1003は誘電体層12の上面12A上に設けられた誘電体層18と、外部端子51、52をさらに備える。弾性波素子1003は凸部16、17による図6に示す弾性波素子1002と同様の効果を有する。
 尚、実施の形態1において、フィルタ7は受信フィルタであり、フィルタ8は送信フィルタである。フィルタ7が送信フィルタであり、フィルタ8が受信フィルタであってもよい。また、フィルタ7、8は共に受信フィルタであってもよく、又は共に送信フィルタであってもよい。
 図7Bは実施の形態1における電子機器2001のブロック図である。電子機器2001は、実施の形態1における弾性波素子6(1001、1002、1003)と、弾性波素子に接続された半導体集積回路素子やスピーカ等の電子部品2001Aとを備える。半導体集積回路素子は弾性波素子6(1001、1002、1003)に接続され、スピーカは半導体集積回路素子に接続されている。
 (実施の形態2)
 図8と図9はそれぞれ実施の形態2における弾性波素子1004の上面図と断面模式図である。図8と図9において、図1と図2に示す弾性波素子6と同じ部分には同じ参照番号を付す。
 弾性波素子1004は、CDMA標準規格のBand1用のアンテナ共用器における送信フィルタに含まれるラダー型フィルタであり、直列共振器19A、19Bと並列共振器20とを備える。直列共振器19A、19Bは接続点910で直列に接続されている。弾性波素子1004は、直列共振器19Aに接続された入力端子21と、直列共振器19Bに接続された出力端子22と、並列共振器20に接続された接地端子23とを備える。並列共振器20は接続点910と接地端子23との間に接続されている。直列共振器19A、19Bは2050MHzの共振周波数を有する。並列共振器20は、直列共振器19A、19Bの共振周波数より低い1960MHzの共振周波数を有する。
 並列共振器20は図1に示すIDT電極11で構成されている。直列共振器19A、19Bは図1に示すIDT電極10で構成されている。図2に示す弾性波素子6と同様に、IDT電極11の膜厚TBはIDT電極10の膜厚TAより厚い。例えば、IDT電極10、11が銅を主成分とする金属よりなる場合、IDT電極10の膜厚TAは1650Å以上1680Å未満であり、IDT電極11の膜厚TBは1730Å以上1760Å未満である。圧電体9を伝播する直列共振器19A、19Bの共振周波数の弾性波は波長λ1を有し、並列共振器20の共振周波数の弾性波は波長λ2を有する。波長λ1は波長λ2より短い。直列共振器19A、19BのIDT電極10の膜厚TAを波長λ1で割って規格化して得られた規格化膜厚は、並列共振器20のIDT電極11の膜厚を波長λ2で割って規格化してえられた規格化膜厚と実質的に同じにすることができ、弾性波素子1004の電気機械結合係数を向上させることができる。
 また、IDT電極11の真上方における誘電体層12の部分212の上面12Aの圧電体9からの高さTDは、IDT電極10の真上方における誘電体層12の部分112の上面12Aの圧電体9からの高さTCより高い。これにより、誘電体層12の部分212の膜厚TFを、誘電体層12の部分112の膜厚TE(2400Å)と実質的に同じにすることができ、弾性波素子1004の温度特性と電気機械結合係数とを共に向上させることができる。
 実施の形態1、2において、「上面」「下面」「真上方」等の方向を示す用語は、弾性波素子の構成部材の相対的な位置関係にのみ依存する相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。
 本発明による弾性波素子は良好な温度特性と電気機械結合係数とを有し、携帯電話等の電子機器に適用可能である。
7  フィルタ(第1のフィルタ)
8  フィルタ(第2のフィルタ)
9  圧電体
10  IDT電極(第1のIDT電極)
11  IDT電極(第2のIDT電極)
12  誘電体層(第1の誘電体層)
16  凸部(第1の凸部)
17  凸部(第2の凸部)
18  誘電体層(第2の誘電体層)
19A  直列共振器
20  並列共振器
51  外部端子(第1の外部端子)
52  外部端子(第2の外部端子)
110B  電極指(第1の電極指)
111B  電極指(第2の電極指)

Claims (13)

  1. 上面を有する圧電体と、
    前記圧電体の前記上面上に設けられた第1のインターディジタルトランスデューサ(IDT)電極と、
    前記圧電体の前記上面上に設けられて前記第1のIDT電極の膜厚よりも厚い膜厚を有する第2のIDT電極と、
    前記圧電体の前記上面上に設けられて、かつ前記第1のIDT電極と第2のIDT電極とを覆う第1の誘電体層と、
    を備え、
    前記第1のIDT電極の真上方における前記第1の誘電体層の第1の部分の上面の前記圧電体の前記上面からの高さより、前記第2のIDT電極の真上方における前記第1の誘電体層の第2の部分の上面の前記圧電体の前記上面からの高さが高い、弾性波素子。
  2. 前記第1の誘電体層の前記第2の部分の膜厚は、前記第1の誘電体層の前記第1の部分の膜厚以上であり、
    前記第1の誘電体層の前記第2の部分の規格化膜厚は、前記第1の誘電体層の前記第1の部分の規格化膜厚以下である、請求項1に記載の弾性波素子。
  3. 前記第1の誘電体層の上面は、前記第1のIDT電極の真上方に位置して前記第1のIDT電極に沿って延びる第1の凸部と、前記第2のIDT電極の真上方に位置して前記第2のIDT電極に沿って延びる第2の凸部とを有し、
    前記第2の凸部の高さは前記第1の凸部の高さより高い、請求項1に記載の弾性波素子。
  4. 前記第1のIDT電極は第1の電極指を有し、
    前記第1の凸部の頂部の幅は前記第1の電極指の幅の1/2以下である、請求項3に記載の弾性波素子。
  5. 前記第1の凸部の頂部の中心は、実質的に前記第1の電極指の中心の真上方に位置する、請求項4に記載の弾性波素子。
  6. 前記第2のIDT電極は第2の電極指を有し、
    前記第2の凸部の頂部の幅は前記第2の電極指の幅の1/2以下である、請求項4に記載の弾性波素子。
  7. 前記第2の凸部の頂部の中心は、実質的に前記第2の電極指の中心の真上方に位置する、請求項6に記載の弾性波素子。
  8. 前記第1の凸部の高さTGと前記第1のIDT電極の膜厚TAと前記第1のIDT電極を伝播する弾性波の波長λ1とは、0.03×λ1<TG≦TAを満たす、請求項3に記載の弾性波素子。
  9. 前記第2の凸部の高さTHと前記第2のIDT電極の膜厚TBと前記第2のIDT電極を伝播する弾性波の波長λ2とは、0.03×λ2<TH≦TBを満たす、請求項8に記載の弾性波素子。
  10. 前記第1の誘電体層の上面上に設けられて、前記第1の誘電体層を伝搬する横波の速度よりも速い横波が伝搬する第2の誘電体層と、
    前記第2の誘電体層の上面に設けられて、前記第1のIDT電極と電気的に接続された第1の外部端子と、
    前記第2の誘電体層の上面に設けられて、前記第2のIDT電極と電気的に接続された第2の外部端子と、
    をさらに備え、
    前記第1のIDT電極の上方における前記第2の誘電体層の上面の高さと前記第2のIDT電極の上方における前記第2の誘電体層の上面の高さの差は、前記第1のIDT電極の上方における前記第1の誘電体層の上面の高さと前記第2のIDT電極の上方における前記第1の誘電体層の上面の高さの差より小さい、請求項1に記載の弾性波素子。
  11. 前記第1のIDT電極は、第1の周波数帯域の信号を通過させる第1のフィルタを構成し、
    前記第2のIDT電極は、前記第1の周波数帯域より低い第2の周波数帯域の信号を通過させる第2のフィルタを構成する、請求項1に記載の弾性波素子。
  12. 前記第1のIDT電極は第1の共振周波数を有する直列共振器を構成し、
    前記第2のIDT電極は、前記第1の共振周波数より低い第2の共振周波数を有する並列共振器と構成し、
    前記直列共振器と前記並列共振器とはラダー型フィルタを構成する、請求項1に記載の弾性波素子。
  13. 請求項1に記載の弾性波素子と、
    前記弾性波素子に接続された電子部品と、
    を備えた電子機器。
PCT/JP2010/002817 2009-04-22 2010-04-19 弾性波素子と、これを用いた電子機器 WO2010122767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/260,798 US8564172B2 (en) 2009-04-22 2010-04-19 Elastic wave element and electronic apparatus using same
CN201080016666.6A CN102396154B (zh) 2009-04-22 2010-04-19 弹性波元件和使用它的电子设备
JP2011510190A JP5093403B2 (ja) 2009-04-22 2010-04-19 弾性波素子と、これを用いた電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009103572 2009-04-22
JP2009-103572 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010122767A1 true WO2010122767A1 (ja) 2010-10-28

Family

ID=43010894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002817 WO2010122767A1 (ja) 2009-04-22 2010-04-19 弾性波素子と、これを用いた電子機器

Country Status (5)

Country Link
US (1) US8564172B2 (ja)
JP (2) JP5093403B2 (ja)
CN (2) CN104734662B (ja)
HK (1) HK1207484A1 (ja)
WO (1) WO2010122767A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098816A1 (ja) * 2011-01-18 2012-07-26 株式会社村田製作所 弾性表面波フィルタ装置
US20130026881A1 (en) * 2010-06-17 2013-01-31 Shoji Okamoto Acoustic wave element
JP2013055371A (ja) * 2011-08-31 2013-03-21 Taiyo Yuden Co Ltd 弾性波デバイス
JP2017228882A (ja) * 2016-06-21 2017-12-28 株式会社村田製作所 弾性表面波フィルタ
JPWO2018116602A1 (ja) * 2016-12-20 2019-10-24 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702239B (zh) * 2011-06-23 2017-09-22 天工滤波方案日本有限公司 梯型弹性波滤波器及使用该弹性波滤波器的天线双工器
US20140142584A1 (en) * 2012-11-16 2014-05-22 Spinal Generations, Llc Multichannel cannula and methods for using same
JP5891198B2 (ja) * 2013-04-12 2016-03-22 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 アンテナ共用器およびこれを用いた電子機器
JP5797356B2 (ja) * 2013-09-26 2015-10-21 京セラ株式会社 弾性波装置および弾性波モジュール
US10305448B2 (en) 2014-07-28 2019-05-28 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave elements, antenna duplexers, modules and electronic devices using the same
US9634644B2 (en) 2014-07-28 2017-04-25 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave elements and antenna duplexers, and modules and electronic devices using same
DE102014118897B4 (de) * 2014-12-17 2019-02-21 Snaptrack, Inc. Wandler für SAW mit unterdrückter Modenkonversion
WO2016117483A1 (ja) * 2015-01-22 2016-07-28 株式会社村田製作所 弾性波装置の製造方法、および弾性波装置
JP6390819B2 (ja) * 2016-04-25 2018-09-19 株式会社村田製作所 弾性波装置及びその製造方法
WO2018003657A1 (ja) * 2016-06-28 2018-01-04 株式会社村田製作所 弾性波装置
CN110063024B (zh) * 2016-10-11 2024-01-19 京瓷株式会社 弹性波装置
JP2018182354A (ja) * 2017-04-03 2018-11-15 株式会社村田製作所 弾性波装置
WO2019049830A1 (ja) * 2017-09-05 2019-03-14 株式会社村田製作所 フィルタ装置およびフィルタ装置の製造方法
JP6950751B2 (ja) * 2018-01-12 2021-10-13 株式会社村田製作所 弾性波装置、マルチプレクサ、高周波フロントエンド回路、及び通信装置
JP2021078013A (ja) * 2019-11-09 2021-05-20 株式会社弾性波デバイスラボ 弾性波素子およびその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152299A (ja) * 1992-11-09 1994-05-31 Fujitsu Ltd 弾性表面波デバイス
JP2000341068A (ja) * 1999-05-26 2000-12-08 Murata Mfg Co Ltd 弾性表面波装置及び弾性表面波装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2038474C (en) * 1990-03-19 1994-09-20 Yoshio Satoh Surface-acoustic-waver filter having a plurality of electrodes
KR100713966B1 (ko) * 1997-07-28 2007-05-02 가부시끼가이샤 도시바 탄성표면파 장치 및 그의 제조방법
JP2000196409A (ja) * 1998-12-28 2000-07-14 Kyocera Corp 弾性表面波フィルタ
JP3419402B2 (ja) * 2001-04-16 2003-06-23 株式会社村田製作所 弾性表面波装置、通信装置
WO2005088835A1 (ja) * 2004-03-12 2005-09-22 Murata Manufacturing Co., Ltd. 分波器及び弾性表面波フィルタ
KR101161903B1 (ko) * 2004-06-30 2012-07-03 파나소닉 주식회사 전자 부품 및 그 제조 방법
DE102004037819B4 (de) 2004-08-04 2021-12-16 Snaptrack, Inc. Elektroakustisches Bauelement mit geringen Verlusten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152299A (ja) * 1992-11-09 1994-05-31 Fujitsu Ltd 弾性表面波デバイス
JP2000341068A (ja) * 1999-05-26 2000-12-08 Murata Mfg Co Ltd 弾性表面波装置及び弾性表面波装置の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119585A (zh) * 2010-06-17 2015-12-02 天工松下滤波方案日本有限公司 弹性波元件
US20130026881A1 (en) * 2010-06-17 2013-01-31 Shoji Okamoto Acoustic wave element
CN105119585B (zh) * 2010-06-17 2018-01-05 天工滤波方案日本有限公司 弹性波元件
CN103329437A (zh) * 2011-01-18 2013-09-25 株式会社村田制作所 弹性表面波滤波器装置
JPWO2012098816A1 (ja) * 2011-01-18 2014-06-09 株式会社村田製作所 弾性表面波フィルタ装置
KR101516653B1 (ko) 2011-01-18 2015-05-04 가부시키가이샤 무라타 세이사쿠쇼 탄성 표면파 필터장치
JP5713027B2 (ja) * 2011-01-18 2015-05-07 株式会社村田製作所 弾性表面波フィルタ装置
JP2015111845A (ja) * 2011-01-18 2015-06-18 株式会社村田製作所 弾性表面波フィルタ装置
US9124243B2 (en) 2011-01-18 2015-09-01 Murata Manufacturing Co., Ltd. Surface acoustic wave filter device
WO2012098816A1 (ja) * 2011-01-18 2012-07-26 株式会社村田製作所 弾性表面波フィルタ装置
JP2013055371A (ja) * 2011-08-31 2013-03-21 Taiyo Yuden Co Ltd 弾性波デバイス
JP2017228882A (ja) * 2016-06-21 2017-12-28 株式会社村田製作所 弾性表面波フィルタ
JPWO2018116602A1 (ja) * 2016-12-20 2019-10-24 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置

Also Published As

Publication number Publication date
CN104734662A (zh) 2015-06-24
JP2012209980A (ja) 2012-10-25
JP5663744B2 (ja) 2015-02-04
CN104734662B (zh) 2017-09-22
US8564172B2 (en) 2013-10-22
US20120019102A1 (en) 2012-01-26
CN102396154B (zh) 2015-02-04
CN102396154A (zh) 2012-03-28
HK1207484A1 (en) 2016-01-29
JP5093403B2 (ja) 2012-12-12
JPWO2010122767A1 (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5663744B2 (ja) 弾性波素子と、これを用いた電子機器
JP7169083B2 (ja) 弾性波デバイスおよびマルチプレクサ
TWI762832B (zh) 聲表面波器件
JP6415469B2 (ja) 弾性波共振器、フィルタおよびマルチプレクサ並びに弾性波共振器の製造方法
CN109257027B (zh) 一种混合声波谐振器及其制备方法
JP6856825B2 (ja) 弾性波装置、分波器および通信装置
JP5099151B2 (ja) 弾性境界波装置の製造方法
KR101516653B1 (ko) 탄성 표면파 필터장치
US7692515B2 (en) Low-loss electro-acoustic component
JP2008109413A5 (ja)
WO2010137279A1 (ja) 弾性波共振器と、これを用いたアンテナ共用器
JP2008109413A (ja) 弾性波デバイスおよびフィルタ
JP7278305B2 (ja) 弾性波装置、分波器および通信装置
JP6994855B2 (ja) 弾性波素子、分波器および通信装置
JP5025963B2 (ja) 電子部品とその製造方法及びこの電子部品を用いた電子機器
JP2010068503A (ja) 弾性表面波素子
JPWO2010131450A1 (ja) アンテナ共用器
US11437973B2 (en) Surface acoustic wave device on composite substrate
JP2013138333A (ja) 弾性波素子
JP2020198552A (ja) 弾性波デバイス、フィルタ、及びマルチプレクサ
JPH11191720A (ja) 弾性表面波装置及び弾性表面波フィルタ
TW202224221A (zh) 聲波裝置中之壓電層配置及相關方法
CN115567022A (zh) 一种声波器件、滤波装置及声波器件的制备方法
CN215871345U (zh) 一种声波器件以及一种滤波装置
JP3316090B2 (ja) 弾性表面波共振子、その製造方法、及び弾性表面波フィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016666.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510190

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13260798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766829

Country of ref document: EP

Kind code of ref document: A1