WO2010137279A1 - 弾性波共振器と、これを用いたアンテナ共用器 - Google Patents

弾性波共振器と、これを用いたアンテナ共用器 Download PDF

Info

Publication number
WO2010137279A1
WO2010137279A1 PCT/JP2010/003459 JP2010003459W WO2010137279A1 WO 2010137279 A1 WO2010137279 A1 WO 2010137279A1 JP 2010003459 W JP2010003459 W JP 2010003459W WO 2010137279 A1 WO2010137279 A1 WO 2010137279A1
Authority
WO
WIPO (PCT)
Prior art keywords
idt
electrode
wave resonator
region
thin film
Prior art date
Application number
PCT/JP2010/003459
Other languages
English (en)
French (fr)
Inventor
中西秀和
中村弘幸
鶴成哲也
後藤令
藤原城二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/319,140 priority Critical patent/US8698578B2/en
Publication of WO2010137279A1 publication Critical patent/WO2010137279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • H03H9/6496Reducing ripple in transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02858Means for compensation or elimination of undesirable effects of wave front distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02984Protection measures against damaging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/1452Means for weighting by finger overlap length, apodisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/14526Finger withdrawal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/1457Transducers having different finger widths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to an acoustic wave resonator and an antenna duplexer using the elastic wave resonator.
  • a piezoelectric material having a large electromechanical coupling coefficient such as a lithium niobate (LiNbO 3 ) substrate has been used.
  • an elastic wave filter using this type of piezoelectric body generally has a drawback of poor temperature characteristics.
  • means for improving temperature characteristics means for forming a dielectric thin film made of SiO 2 on a piezoelectric body made of lithium niobate has been proposed.
  • FIGS. 31A and 31B The configuration of a conventional acoustic wave resonator is shown in FIGS. 31A and 31B.
  • FIG. 31A is a top view of a conventional acoustic wave resonator
  • FIG. 31B is a cross-sectional view of the acoustic wave resonator at 31B-31B in FIG. 31A.
  • a conventional elastic wave resonator 101 includes a piezoelectric body 102 and an IDT (InterDigital Transducer) electrode 103 that is provided on the piezoelectric body 102 and excites an elastic wave having a wavelength ⁇ .
  • the dielectric thin film 105 is provided on the piezoelectric body 102 so as to cover the IDT electrode 103.
  • the IDT electrode 103 includes a bus bar electrode region 106, a dummy electrode region 107, and an IDT intersection region 108 in order from the outside. Including.
  • the acoustic wave resonator 101 further has an opening 109 in the dielectric thin film 105 above the bus bar electrode region 106 and the dummy electrode region 107 to expose the IDT electrodes 103 in the bus bar electrode region 106 and the dummy electrode region 107. .
  • the sound velocity of the elastic wave bus bar electrode region 106 and the dummy electrode region 107 in the acoustic wave resonator 101 can be made faster than the sound velocity of the IDT intersection region 108. Accordingly, leakage of elastic waves from the IDT intersection region 108 to the dummy electrode region 107 is suppressed, and insertion loss of elastic waves is reduced.
  • Patent Document 1 is known as a prior art document related to this application.
  • the acoustic wave resonator includes a piezoelectric body, an IDT electrode provided on the piezoelectric body to excite an acoustic wave having a wavelength ⁇ , and a dielectric thin film provided on the piezoelectric body so as to cover the IDT electrode.
  • the IDT electrode includes a bus bar electrode region, a dummy electrode region, and an IDT intersection region in order from the outside, and the film thickness of the dielectric thin film above at least one of the bus bar electrode region and the dummy electrode region is the dielectric thickness above the IDT intersection region. It is thinner than the thickness of the body thin film in the range of 0.1 ⁇ to 0.25 ⁇ .
  • FIG. 1A is a top view of an acoustic wave resonator according to Embodiment 1 of the present invention.
  • 1B is a cross-sectional view of the acoustic wave resonator taken along 1B-1B in FIG. 1A.
  • FIG. 2 is an explanatory diagram of frequency characteristics of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of frequency characteristics of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of frequency characteristics of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of frequency characteristics of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of frequency characteristics of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of frequency characteristics of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of the spurious level of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 9 is a top view of another elastic wave resonator according to the first embodiment of the present invention.
  • FIG. 10 is a top view of still another acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of frequency characteristics of the acoustic wave resonator according to the first embodiment of the present invention.
  • FIG. 12A is a top view of the acoustic wave resonator according to the second embodiment of the present invention.
  • 12B is a cross-sectional view of the acoustic wave resonator taken along 12B-12B in FIG. 12A.
  • FIG. 13 is a cross-sectional view of the acoustic wave resonator according to the third embodiment of the present invention at 13-13 in FIG. 12A.
  • FIG. 14 is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 16A is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 16B is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 16C is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 16A is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 16B is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 16C
  • FIG. 17A is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 17B is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 17C is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18A is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18B is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18A is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18B is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18C is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18D is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18E is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18F is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 18G is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19A is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19B is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19C is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19D is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19E is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19B is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19C is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19F is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 19G is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 20A is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 20B is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 21 is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 22 is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 23 is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 24 is a diagram illustrating the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 25 is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 26 is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 27 is a diagram for explaining the characteristics of the acoustic wave resonator according to the third embodiment of the present invention.
  • FIG. 28 is a sectional view of the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 29A is a diagram illustrating the characteristics of the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 29B is a diagram for explaining the characteristics of the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30A is an explanatory diagram of the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30B is an explanatory diagram of the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30C is an explanatory diagram of the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30D is an explanatory diagram for the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30E is an explanatory diagram of the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30F is an explanatory diagram for the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30C is an explanatory diagram of the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30D is an explanatory diagram for the method of manufacturing the acoustic wave resonator
  • FIG. 30G is an explanatory diagram for the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 30H is an explanatory diagram of the method of manufacturing the acoustic wave resonator according to the fourth embodiment of the present invention.
  • FIG. 31A is a top view of a conventional acoustic wave resonator.
  • FIG. 31B is a cross-sectional view of the elastic wave resonator taken along 31B-31B in FIG. 31A.
  • FIG. 32 is an explanatory diagram of frequency characteristics of a conventional acoustic wave resonator.
  • FIG. 1A is a top view of the acoustic wave resonator according to Embodiment 1
  • FIG. 1B is a cross-sectional view of the acoustic wave resonator 1B-1B in FIG. 1A (cross-section in the extending direction of the electrode finger of the IDT electrode 3). It is.
  • an acoustic wave resonator 1 includes a piezoelectric body 2, an IDT electrode 3 provided on the piezoelectric body 2 to excite an elastic wave having a wavelength ⁇ , and an IDT electrode 3 on the piezoelectric body 2. And a dielectric thin film 5 provided on the piezoelectric body 2 so as to cover the IDT electrode 3 and the grating reflector 4.
  • the piezoelectric body 2 is a lithium niobate (LiNbO 3 ) -based substrate, but other piezoelectric single crystals such as quartz, lithium tantalate (LiTaO 3 ) -based, or potassium niobate (KNbO 3 ) -based substrates or thin films, for example. It may be a medium.
  • the IDT electrode 3 is made of a metal whose main component is aluminum.
  • the IDT electrode 3 is a single metal made of at least one of copper, silver, gold, titanium, tungsten, platinum, chromium, and molybdenum, or an alloy containing these as a main component. A structure in which those metals are laminated may be used.
  • the normalized film thickness of the IDT electrode 3 may be 0.045 ⁇ or more and 0.12 ⁇ or less. At this time, ⁇ is twice the electrode pitch in FIG. 1A.
  • the IDT electrode 3 is a regular comb-shaped electrode having a substantially constant intersection width.
  • the acoustic wave resonator 1 includes a bus bar electrode region 6, a dummy electrode region 7, an IDT intersection region 8 in order from the outside. Including.
  • the IDT crossing region 8 is a region where the electrode fingers of the IDT electrodes 3 on the input side and the output side cross each other, and is a region where, for example, a main elastic wave such as a SH (Shear-Horizontal) wave is excited.
  • the bus bar electrode region 6 is a region where bus bar electrodes for inputting electric signals to the electrode fingers of the IDT electrode 3 are arranged.
  • the dummy electrode region 7 is a region where a dummy electrode provided in a portion where the electrode fingers of the IDT electrode 3 on the input side and the output side do not intersect is arranged.
  • the sound speed in the dummy electrode region 7 can be made different from the sound speed in the IDT intersection region.
  • the transverse mode can be dispersed in the dummy electrode region 7, thereby suppressing transverse mode spurious.
  • the dielectric thin film 5 is made of, for example, silicon oxide, and may be a medium having a propagation velocity of a transverse wave slower than the velocity of the slowest transverse wave (eg, a shear-vertical wave) propagating through the piezoelectric body 2. Since silicon oxide is a medium having a frequency temperature characteristic opposite to that of the piezoelectric body 2, the frequency temperature characteristic of the acoustic wave resonator 1 can be improved.
  • the film thickness of the dielectric thin film 5 above the IDT intersection region 8 is set so that the sound velocity of the elastic wave excited by the IDT electrode 3 is lower than the sound velocity of the slowest transverse wave propagating through the piezoelectric body 2. To do. Thereby, reduction of leakage of the main elastic wave in the direction of the piezoelectric body 2 can be expected.
  • the thickness of the dielectric thin film 5 above the IDT intersection region 8 is such that the frequency temperature characteristic of the main elastic wave excited by the IDT electrode 3 is 10 ppm / ° C. or less.
  • the normalized film thickness 9 of the dielectric thin film 5 above the IDT intersection region 8 that satisfies the above is 0.2 ⁇ or more and 0.5 ⁇ or less. Desirably, it is greater than 0.25 ⁇ and not greater than 0.5 ⁇ , and more desirably not less than 0.3 ⁇ and not more than 0.45 ⁇ , so that both the effect of preventing leakage of elastic waves and the improvement of frequency temperature characteristics are particularly aimed at. be able to.
  • the film thickness of the dielectric thin film 5 refers to the dielectric thin film from the boundary surface between the piezoelectric thin film 2 and the dielectric thin film 5 where the piezoelectric film 2 and the dielectric thin film 5 are in contact with each other and the IDT electrode 3 is not formed. 5 is the distance to the top surface.
  • the bus bar electrode region 6 and the IDT electrode 3 in the dummy electrode region 7 are completely exposed as described above.
  • the influence of the transverse mode is increased. This is because in the acoustic wave resonator 1, not only the main acoustic wave but also the transverse mode is confined in the IDT intersection region 8.
  • the normalized film thickness 10 of the dielectric thin film 5 above at least one of the bus bar electrode region 6 and the dummy electrode region 7 is changed to the normalized film thickness of the dielectric thin film 5 above the IDT intersection region 8.
  • 9 is a thin structure in the range of 0.1 ⁇ to 0.25 ⁇ .
  • the transverse mode in the IDT intersection region 8 is suppressed, and the occurrence of transverse mode spurious can be suppressed.
  • the acoustic wave resonator 1 uses a rotating Y-plate lithium niobate substrate having a cut angle of 5 degrees as the piezoelectric body 2 and a regular comb made of aluminum having a normalized film thickness of 0.08 ⁇ as the IDT electrode 3. A mold electrode was used. Further, silicon oxide having a normalized film thickness of 0.37 ⁇ on the dielectric thin film 5 above the IDT intersection region 8 was used as the dielectric thin film. Further, a normalized film thickness difference 11 between the normalized film thickness 9 of the dielectric thin film 5 above the IDT intersection region 8 and the normalized film thickness 10 of the dielectric thin film 5 above the bus bar electrode region 6 and the dummy electrode region 7. 2 is 0 ⁇ , FIG. 3 is 0.11 ⁇ , FIG. 4 is 0.15 ⁇ , FIG. 5 is 0.20 ⁇ , FIG. 6 is 0.24 ⁇ , and FIG. 7 is 0.28 ⁇ .
  • FIG. 8 shows the normalized film thickness difference 11 (horizontal axis: ⁇ ) of the dielectric thin film 5 above the IDT intersection region 8 and the dummy electrode region 7 in the acoustic wave resonator 1 and spurious (vertical) Axis: Relation with dB).
  • the transverse mode can be reduced to within about 1 dB.
  • the spurious level of the transverse mode is set to approximately 0 dB. be able to.
  • etching may be performed after the dielectric thin film 5 is formed. Further, the dielectric thin film 5 may be masked above the dummy electrode region 7 and the bus bar electrode region 6 in the IDT electrode 3 during the film formation so that the dielectric thin film 5 is not formed during the film formation. .
  • the IDT electrode 3 may be subjected to an apodization weighting so that the crossing width decreases as it approaches the grating reflector 4 from the center of the IDT electrode in order to further suppress the spurious in the transverse mode.
  • the dummy electrode region 7 is a region of the minimum length of the dummy electrode in the IDT electrode 3
  • the IDT intersection region 8 is a region of the maximum length where the IDT electrode 3 intersects.
  • it is advantageous if the transverse mode spurious can be suppressed with the regular comb-shaped electrode configuration without applying the apodization weighting to the IDT electrode 3. That is, it is possible to prevent a decrease in the resonator characteristics such as the Q value due to the apodization weighting with respect to the IDT electrode 3, which is a characteristically advantageous configuration for realizing the acoustic wave resonator 1.
  • the normalized film thickness 10 of the dielectric thin film 5 above all the regions in the bus bar electrode region 6 and the dummy electrode region 7 is compared with the normalized film thickness 9 of the dielectric thin film 5 above the IDT intersection region 8.
  • the normalized film thickness 10 of the dielectric thin film 5 above a part of the bus bar electrode region 6 and the dummy electrode region 7 is compared with the normalized film thickness 9 of the dielectric thin film 5 above the IDT intersection region 8.
  • a thin structure may be used in the range of 0.1 ⁇ to 0.25 ⁇ .
  • the film thickness of the dielectric thin film 5 above only the dummy electrode region 7 is in the range of 0.1 ⁇ to 0.25 ⁇ compared to the normalized film thickness 9 of the dielectric thin film 5 above the IDT intersection region 8.
  • a thin structure may be used.
  • the configuration shown in FIGS. 1A and 1B is more advantageous than this configuration from the viewpoint of suppressing transverse mode spurious.
  • the step between the dielectric thin film 5 above the IDT intersection region 8 and the dielectric thin film 5 above the dummy electrode region 7 is preferably formed substantially perpendicular to the upper surface of the dielectric thin film 5, but is tapered. It may be formed.
  • the end of the dielectric thin film 5 at this step is preferably equal to the position of the end of the dummy electrode region 7, but is formed in the gap region 12 between the dummy electrode region 7 and the IDT intersection region 8. May be. As a result, it is possible to prevent this step from adversely affecting the frequency characteristics of the acoustic wave resonator 1 and to suppress the occurrence of unnecessary spurious.
  • the dummy electrode region 7 may include a metallized dummy electrode weighting unit 13. Also in this case, the spurious level of the transverse mode is reduced by setting the normalized film thickness difference 11 between the dielectric thin film 5 above the IDT intersection region 8 and the dummy electrode region 7 to 0.10 ⁇ or more and 0.25 ⁇ or less. can do.
  • the IDT electrode 3 and the dielectric thin film on the dummy electrode are formed as one layer, but may be configured as two or more layers.
  • the acoustic wave resonator 1 having the grating reflector 4 is described.
  • the present invention is applied to the IDT electrode 3 and the grating reflector 4 is not provided.
  • the same effect can be obtained.
  • the IDT electrode 3 has a configuration in which the intersection width is reduced in a stepwise manner from the center to the end of the IDT intersection region 8 in the elastic wave propagation direction. Also good.
  • the dummy electrode region 7, the IDT crossing region 8, and the gap region 12 are defined in a shape that connects the tips of the electrode fingers as shown in FIG. Area.
  • an angle ⁇ E formed by the straight line C connecting the tip of the electrode finger from the central portion to the end of the IDT intersection region 8 and the propagation direction D of the elastic wave is larger than 4 degrees and smaller than 10 degrees.
  • transverse mode spurious can be suppressed.
  • the characteristic diagram shown in FIG. 11 shows frequency attenuation in the acoustic wave resonator 1 under the same conditions as described above when the angle ⁇ E is 6 ° (solid line) and when the angle ⁇ E is 30 ° (dashed line). Characteristics (dB).
  • FIG. 12A is a top view of elastic wave resonator 1 according to Embodiment 2
  • FIG. 12B is a cross section of the elastic wave resonator taken along 12B-12B in FIG. 12A (cross section in the extending direction of the electrode finger of IDT electrode 3).
  • the acoustic wave resonator 1 of the second embodiment does not have a dummy electrode, and the region sandwiched between the bus bar electrode region 6 and the IDT intersection region 8 is the gap region 12.
  • the normalized film thickness 10 of the dielectric thin film 5 above part of at least one of the bus bar electrode region 6 and the gap region 12 on the bus bar electrode region 6 side (both in FIG. 12) is set above the IDT intersection region 8.
  • the dielectric thin film 5 is thinner than the normalized film thickness 9 in the range of 0.1 ⁇ to 0.25 ⁇ .
  • the transverse mode in the IDT intersection region 8 is suppressed, and the occurrence of transverse mode spurious can be suppressed.
  • the acoustic velocity difference between the IDT intersection region 8 and the gap region 12 is reduced, and acoustic coupling occurs between the transverse mode excited in the IDT intersection region 8 and the transverse mode excited in the gap region 12. That is, it is considered that the transverse mode energy resonating in the IDT intersection region 8 is dispersed in the gap region 12.
  • the step on the upper surface of the dielectric thin film 5 is desirably formed above the gap region 12. As a result, it is possible to prevent this step from adversely affecting the frequency characteristics of the acoustic wave resonator 1 and to suppress the occurrence of unnecessary spurious.
  • Embodiment 3 Next, the elastic wave resonator 1 of Embodiment 3 is demonstrated using drawing. Unless otherwise described, the configuration is the same as that of the first embodiment. 13 is a cross section (cross section of IDT intersection region 8) taken along line 13-13 in FIG. 1A in the first embodiment or 13-13 in FIG. 12A in the second embodiment.
  • the piezoelectric body 2 is a lithium niobate (LiNbO 3 ) system, and the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body 2 are ⁇ 100 ° ⁇ ⁇ ⁇ 60. °, 1.193 ⁇ -2 ° ⁇ ⁇ ⁇ 1.193 ⁇ + 2 °, ⁇ ⁇ -2 ⁇ -3 °, ⁇ 2 ⁇ + 3 ° ⁇ ⁇ . ⁇ and ⁇ are cut cut angles of the piezoelectric body 2, and ⁇ is a propagation angle of the main elastic wave in the IDT electrode 3 on the piezoelectric body 2.
  • LiNbO 3 lithium niobate
  • the Euler angle has the following relationship.
  • the dielectric thin film 5 is made of a silicon oxide (SiO 2 ) film.
  • the dielectric thin film 5 has a temperature characteristic opposite to that of the piezoelectric body 2, and the frequency temperature characteristic of the acoustic wave resonator 1 can be improved by making the film thickness thicker than a predetermined film thickness.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body 2 made of lithium niobate are made.
  • the piezoelectric body 2 is lithium niobate
  • the effect of suppressing unnecessary spurious when the Euler angle of the piezoelectric body 2 is set to a specific range will be described in detail below.
  • the film thickness of the dielectric thin film 5 made of silicon oxide above the IDT intersection region 8 is set to 0.35 ⁇ , for example. Then, as shown in FIGS. 14 and 15, unnecessary spurious 26 and 27 are generated in the vicinity of about 1.2 times the resonance frequency.
  • the piezoelectric body 2 is a lithium niobate type having Euler angles (0 °, ⁇ 87.5 °, 0 °), and the IDT electrode 3 is copper having a film thickness of 0.03 ⁇ .
  • the thin film 5 is a characteristic diagram in the case where the thin film 5 is made of silicon oxide having a flat upper surface and a film thickness of 0.35 ⁇ above the IDT intersection region 8.
  • FIG. 15 shows that the piezoelectric body 2 is lithium niobate having Euler angles (0 °, ⁇ 90 °, 0 °), the IDT electrode 3 is aluminum having a thickness of 0.08 ⁇ , and the dielectric thin film 5 is A characteristic diagram in the case where the IDT electrode 3 is made of silicon oxide having a convex portion on the upper surface of the IDT electrode 3 above the electrode finger and having a film thickness of 0.35 ⁇ is shown.
  • the height of the convex portion is greater than 0.03 ⁇ and less than or equal to the height of the IDT electrode 3, and the width of the top portion of the convex portion is smaller than the width of the electrode finger of the IDT electrode 3.
  • FIGS. 14 and 15 are normalized admittances with respect to the matching value, and the horizontal axes in FIGS. 14 and 15 are for half the frequency of the slow transverse wave (sonic velocity 4024 m / s) generated in the acoustic wave resonator 1. Indicates the normalized frequency. This is the same in other characteristic diagrams. This unnecessary spurious is considered to be caused by a fast transverse wave generated in the elastic wave resonator 1. Of the transverse waves generated in the elastic wave resonator 1, the one with the highest sound speed is referred to as a fast transverse wave, and among the transverse waves generated in the elastic wave resonator 1, the one with the slowest sound speed is referred to as a slow transverse wave.
  • the piezoelectric body 2 is lithium niobate having Euler angles (0 °, ⁇ 87.5 °, 0 °), and the IDT electrode 3 has a thickness of 0.03 ⁇ . Of copper.
  • the dielectric thin film 5 is made of silicon oxide having a flat upper surface above the IDT crossing region 8
  • the electromechanical coupling coefficient of fast transverse waves when the thickness of the dielectric thin film 5 above the IDT crossing region 8 is changed FIG. 16A
  • the resonance Q value (Qs) FIG. 16B
  • the anti-resonance Q value (Qa) FIG. 16C
  • FIG. 17A to FIG. 17C show that in the acoustic wave resonator, the piezoelectric body 2 is lithium niobate having Euler angles (0 °, ⁇ 90 °, 0 °), and the IDT electrode 3 is aluminum having a thickness of 0.08 ⁇ . It is.
  • the dielectric thin film 5 is made of silicon oxide having the convex portions on the upper surface thereof above the electrode fingers of the IDT electrode 3, a fast transverse wave when the film thickness of the dielectric thin film 5 above the IDT intersection region 8 is changed.
  • the electromechanical coupling coefficient (FIG. 17A), the resonance Q value (Qs) (FIG. 17B), and the antiresonance Q value (Qa) (FIG. 17C) are shown.
  • the piezoelectric body 2 is lithium niobate having an Euler angle
  • the IDT electrode 3 is aluminum having a film thickness of 0.08 ⁇
  • the dielectric thin film 5 is formed in the IDT intersection region 8.
  • FIG. 5 is a characteristic diagram in the case where the upper surface of the IDT electrode 3 above the electrode finger is made of silicon oxide having the above-described protrusions and a film thickness of 0.35 ⁇ .
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body 2 are shown in the upper part of the characteristic diagrams. As shown in FIGS. 18A to 18G and FIGS.
  • FIGS. 18 to 18G and FIGS. 19A to 19G the admittance characteristics of the acoustic wave elements of 1e +02 or more and 1e- 02 or less are not shown.
  • the acoustic wave resonator 1 is provided with a lithium niobate-based piezoelectric body 2 having Euler angles ( ⁇ , ⁇ , ⁇ ) and a main acoustic wave having a wavelength ⁇ provided on the piezoelectric body 2.
  • An IDT electrode 3 and a dielectric thin film 5 which is provided on the piezoelectric body 2 so as to cover the IDT electrode 3 and is thicker than 0.27 ⁇ above the IDT intersection region 8 are provided. Further, the Euler angles of the piezoelectric body 2 satisfy ⁇ 100 ° ⁇ ⁇ ⁇ 60 °, 1.193 ⁇ 2 ° ⁇ ⁇ ⁇ 1.193 ⁇ + 2 °, ⁇ ⁇ ⁇ 2 ⁇ 3 °, ⁇ 2 ⁇ + 3 ° ⁇ ⁇ . Constitute.
  • the upper limit of the thickness of the dielectric thin film 5 is 0.5 ⁇ so that the electromechanical coupling coefficient of the Rayleigh wave is a predetermined level or less.
  • the piezoelectric body 2 has the Euler angles (7, ⁇ 87.5, 8.4) and (9 °, ⁇ 87.5 °, 10.7 °), respectively.
  • the IDT electrode 3 is copper having a thickness of 0.03 ⁇
  • the dielectric thin film 5 is elastic when the dielectric thin film 5 is made of silicon oxide having a thickness of 0.35 ⁇ having a flat upper surface above the IDT intersection region 8.
  • the characteristic diagram of the wave resonator 1 is shown. As shown in FIGS. 20A and 20B, the acoustic wave resonator 1 can suppress unnecessary spurious in the vicinity of a frequency band in which a fast transverse wave is generated while suppressing generation of unnecessary spurious due to a Rayleigh wave.
  • the Q value of 1 Rayleigh wave is shown.
  • the vertical axis in FIG. 22 indicates the Q value of the Rayleigh wave, and the horizontal axis in FIG.
  • FIG. 24 shows the electromechanical coupling coefficient k2 of the Rayleigh wave of the elastic wave resonator 1 when ⁇ of the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body 2 is changed under the same conditions as described above.
  • ⁇ among the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body 2 is ⁇ 100 ° ⁇ ⁇ It is necessary to satisfy ⁇ ⁇ 60 °.
  • FIG. 25 shows the normalized coupling of the SH wave of the elastic wave resonator 1 when ⁇ of the Euler angles ( ⁇ , ⁇ , ⁇ ) of the piezoelectric body 2 in the elastic wave resonator 1 under the same conditions as described above is changed. Indicates the coefficient.
  • the electromechanical coupling coefficient k2 of the SH wave takes a value equal to or greater than a predetermined value.
  • the electromechanical coupling coefficient k2 of the Rayleigh wave of the resonator 1 is shown.
  • the Rayleigh wave electromechanical coupling coefficient can be suppressed to 0.002 or lower, which is lower than 0.01 described above. The same applies when the Euler angle of the piezoelectric body 2 is rotated in the negative direction with respect to ⁇ .
  • the normalized coupling coefficient of the SH wave of the resonator 1 is shown.
  • FIG. 27 shows the case where the Euler angle of the piezoelectric body 2 is rotated in the positive direction with respect to ⁇ , but the same applies when the Euler angle of the piezoelectric body 2 is rotated in the negative direction with respect to ⁇ . As shown in FIG.
  • the main elastic wave can be applied to both the surface acoustic wave propagating on the surface of the piezoelectric body 23 and the boundary acoustic wave.
  • the main elastic wave becomes an elastic boundary wave.
  • FIG. 4 is a cross-sectional view (cross-section of IDT intersection region 8) taken along line 28-28 in FIG. 1A in the fourth embodiment or 28-28 in FIG. 12A in the second embodiment.
  • the elastic wave resonator 1 includes a lithium niobate-based piezoelectric body 2 having an Euler angle ( ⁇ , ⁇ , ⁇ ) and a main elastic wave having a wavelength ⁇ provided on the piezoelectric body 2.
  • An IDT electrode 3 to be excited is provided.
  • the dielectric thin film 5 is provided on the piezoelectric body 2 so as to cover the IDT electrode 3 and has a thickness of more than 0.2 ⁇ above the IDT intersection region 8, and the dielectric thin film 5 includes the IDT electrode.
  • 3 has a convex portion 50 above the electrode finger of the IDT electrode 3 in a cross section in a direction orthogonal to the extending direction of the three electrode fingers. The width of the top portion 29 of the convex portion 50 is smaller than the width of the electrode finger of the IDT electrode 3.
  • the Euler angles of the piezoelectric body 2 are ⁇ 100 ° ⁇ ⁇ ⁇ ⁇ 60 °, 1.193 ⁇ 2 ° ⁇ ⁇ ⁇ 1.193 ⁇ + 2 °, ⁇ ⁇ ⁇ 2 ⁇ 3 °, ⁇ 2 ⁇ + 3 ° ⁇ ⁇ .
  • the piezoelectric body 2 has Euler angles (7, ⁇ 87.5, 8.4) and (9 °, ⁇ 87.5 °, 10.7 °), respectively.
  • the IDT electrode 3 is aluminum having a thickness of 0.08 ⁇
  • Each characteristic diagram of the acoustic wave resonator 1 in the case where the thickness is made of silicon oxide having a thickness of 0.35 ⁇ is shown.
  • the elastic wave resonator 1 according to the first embodiment suppresses unnecessary spurious in the vicinity of a frequency band in which a fast transverse wave is generated while suppressing generation of unnecessary spurious due to Rayleigh waves. it can.
  • the convex portion 50 of the dielectric thin film 5 above the IDT intersection region 8 has a concave-convex shape that forms a downwardly convex curve from the top portion 29 to the lowest portion 30 of the convex portion 50.
  • the width L of the top 29 defined by the distance between the points where the downwardly convex curve or its extension and the straight line parallel to the top surface of the piezoelectric body 2 including the top 29 intersect is the IDT electrode 3. It is smaller than the width of the electrode finger. Thereby, the mass addition of the dielectric thin film 5 in the convex part 50 changes continuously and gently. As a result, it is possible to improve the electrical characteristics of the acoustic wave resonator 1 while suppressing the occurrence of unnecessary reflection due to the shape of the dielectric thin film 5.
  • the width of the top portion 29 of the convex portion 50 is preferably not more than 1 ⁇ 2 of the electrode finger width of the IDT electrode 3. Further, it is desirable that the center position of the top portion 29 is substantially coincident with the center position of the electrode finger. Thereby, the reflectance at the electrode finger is further increased by the mass addition effect, and the electrical characteristics of the acoustic wave resonator 1 are improved.
  • T is the height of the protrusion 50 and h is the thickness of the IDT electrode 3.
  • T is 0.03 ⁇ or more, and the surface of the dielectric thin film 5 is This is because the improvement in reflectivity can be seen greatly with respect to the flat structure.
  • the thickness is larger than the film thickness h of the IDT electrode 3, it is necessary to add a new step for producing the dielectric thin film 5 to the manufacturing method described below, and the manufacturing method becomes complicated.
  • FIGS. 30A to 30H are diagrams illustrating an example of a method for manufacturing the acoustic wave resonator 1 having, for example, the convex portion 50 according to Embodiment 4 of the present invention.
  • an electrode film 32 to be an IDT electrode and / or a reflector is formed on the upper surface of the piezoelectric body 31 by a method such as vapor deposition or sputtering of Al or an Al alloy.
  • a resist film 33 is formed on the upper surface of the electrode film 32.
  • the resist film 33 is processed using an exposure / development technique or the like so as to have a desired shape.
  • the resist film 33 is removed.
  • a dielectric thin film 34 is formed by a method such as vapor deposition or sputtering of SiO 2 so as to cover the electrode film 32.
  • a so-called bias sputtering method in which a film was formed by sputtering while applying a bias to the piezoelectric body 31 side was used.
  • a dielectric thin film 34 is deposited on the piezoelectric body 31 by sputtering a silicon oxide target, and at the same time, a part of the dielectric thin film 34 on the piezoelectric body 31 is sputtered by a bias. That is, the shape of the dielectric thin film 34 is controlled by shaving a part while depositing the dielectric thin film 34.
  • the ratio of the bias applied to the piezoelectric body 31 and the sputtering power is changed during the deposition of the dielectric thin film 34, or the piezoelectric body 31 is initially formed.
  • the film may be formed without applying a bias, and a bias may be applied at the same time as the film formation. At this time, the temperature of the piezoelectric body 31 is also managed.
  • a resist film 35 is formed on the surface of the dielectric thin film 34.
  • the resist film 35 is processed into a desired shape using an exposure / development technique or the like.
  • the inventors confirmed that a desired shape can be obtained by forming the dielectric thin film 34 under an appropriate film forming condition using the bias sputtering method.
  • the elastic wave resonator 1 of the first embodiment may be applied to a filter (not shown) such as a ladder type filter or a DMS filter.
  • the present invention may be applied to an antenna duplexer (not shown) having a transmission filter and a reception filter.
  • the acoustic wave resonator 1 includes the filter, a semiconductor integrated circuit element (not shown) connected to the filter, and a reproducing unit such as a speaker connected to the semiconductor integrated circuit element (not shown).
  • the present invention may be applied to electronic devices.
  • the elastic wave resonator and the antenna duplexer according to the present invention have an effect of suppressing transverse mode spurious and can be applied to electronic devices such as mobile phones.

Abstract

 弾性波共振器は、圧電体と、波長λの弾性波を励振させるIDT電極と、IDT電極を覆うように設けられた誘電体薄膜とを備え、IDT電極は外側から順にバスバー電極領域とダミー電極領域とIDT交差領域とを含み、バスバー電極領域およびダミー電極領域の少なくとも一方の上方における誘電体薄膜の膜厚は、IDT交差領域の上方における誘電体薄膜の膜厚より0.1λ以上0.25λ以下の範囲で薄い。この構成によって、横モードスプリアスの発生を抑制した弾性波共振器を提供する。

Description

弾性波共振器と、これを用いたアンテナ共用器
 本発明は、弾性波共振器と、これを用いたアンテナ共用器に関する。
 従来、広帯域な特性を有する弾性波フィルタを実現するため、例えば、ニオブ酸リチウム(LiNbO3)基板などの電気機械結合係数の大きな圧電体を用いていた。
 しかし、この種の圧電体を用いた弾性波フィルタは、一般に温度特性が悪いという欠点を有している。温度特性の改善手段としては、ニオブ酸リチウムからなる圧電体上にSiO2からなる誘電体薄膜を形成する手段が提案されている。
 従来の弾性波共振器の構成を図31A、図31Bに示す。図31Aは、従来の弾性波共振器の上面図であり、図31Bは、図31Aの31B-31Bにおける弾性波共振器の断面図である。
 図31A,図31Bにおいて、従来の弾性波共振器101は、圧電体102と、圧電体102の上に設けられて波長λの弾性波を励振させるIDT(InterDigital Transducer)電極103とを備える。そして、圧電体102の上にIDT電極103を覆うように設けられた誘電体薄膜105とを備え、IDT電極103は、外側から順にバスバー電極領域106とダミー電極領域107とIDT交差領域108とを含む。
 弾性波共振器101は、さらに、バスバー電極領域106およびダミー電極領域107の上方における誘電体薄膜105に開口部109を設け、バスバー電極領域106およびダミー電極領域107のIDT電極103を露出させている。
 これにより、弾性波共振器101における弾性波のバスバー電極領域106およびダミー電極領域107の音速を、IDT交差領域108の音速よりも速くすることができる。それによって、弾性波のIDT交差領域108からダミー電極領域107への漏れを抑制し、弾性波の挿入劣化損失の低減を図っている。
 しかしながら、図32に示す様に、従来の弾性波共振器101において、共振周波数と反共振周波数との間に発生する横モードスプリアスが大きくなるという課題がある。これは、従来の弾性波共振器101において、主要弾性波だけでなく横モードまでもがIDT交差領域108に閉じ込められるからである。
 なお、この出願に関連する先行技術文献として特許文献1が知られている。
国際公開第2008/059780号
 弾性波共振器は、圧電体と、圧電体の上に設けられて波長λの弾性波を励振させるIDT電極と、圧電体の上にIDT電極を覆うように設けられた誘電体薄膜とを備え、IDT電極は、外側から順にバスバー電極領域とダミー電極領域とIDT交差領域とを含み、バスバー電極領域およびダミー電極領域の少なくとも一方の上方における誘電体薄膜の膜厚は、IDT交差領域上方における誘電体薄膜の膜厚より0.1λ以上0.25λ以下の範囲で薄い。
 かかる構成により、弾性波共振器において、IDT交差領域における横モードが抑圧され、横モードスプリアスの発生を抑制することができる。
図1Aは、本発明の実施の形態1における弾性波共振器の上面図である。 図1Bは、図1Aの1B-1Bにおける弾性波共振器の断面図である。 図2は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。 図3は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。 図4は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。 図5は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。 図6は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。 図7は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。 図8は、本発明の実施の形態1における弾性波共振器のスプリアスレベルの説明図である。 図9は、本発明の実施の形態1における他の弾性波共振器の上面図である。 図10は、本発明の実施の形態1におけるさらに他の弾性波共振器の上面図である。 図11は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。 図12Aは、本発明の実施の形態2における弾性波共振器の上面図である。 図12Bは、図12Aの12B-12Bにおける弾性波共振器の断面図である。 図13は、図12Aの13-13における本発明の実施の形態3の弾性波共振器の断面図である。 図14は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図15は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図16Aは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図16Bは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図16Cは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図17Aは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図17Bは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図17Cは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図18Aは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図18Bは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図18Cは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図18Dは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図18Eは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図18Fは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図18Gは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図19Aは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図19Bは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図19Cは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図19Dは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図19Eは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図19Fは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図19Gは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図20Aは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図20Bは、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図21は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図22は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図23は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図24は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図25は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図26は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図27は、本発明の実施の形態3における弾性波共振器の特性を説明する図である。 図28は、本発明の実施の形態4における弾性波共振器の断面図である。 図29Aは、本発明の実施の形態4における弾性波共振器の特性を説明する図である。 図29Bは、本発明の実施の形態4における弾性波共振器の特性を説明する図である。 図30Aは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図30Bは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図30Cは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図30Dは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図30Eは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図30Fは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図30Gは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図30Hは、本発明の実施の形態4における弾性波共振器の製造方法の説明図である。 図31Aは、従来の弾性波共振器の上面図である。 図31Bは、図31Aの31B-31Bにおける同弾性波共振器の断面図である。 図32は、従来の弾性波共振器の周波数特性の説明図である。
 (実施の形態1)
 以下、本発明の実施の形態1について、図面を用いて説明する。図1Aは、実施の形態1における弾性波共振器の上面図であり、図1Bは、図1Aの1B-1Bにおける弾性波共振器の断面(IDT電極3の電極指の延伸方向の断面)図である。
 図1A,図1Bにおいて、弾性波共振器1は、圧電体2と、圧電体2の上に設けられて波長λの弾性波を励振させるIDT電極3と、圧電体2の上にIDT電極3を挟むように設けられたグレーティング反射器4と、圧電体2の上にIDT電極3及びグレーティング反射器4を覆うように設けられた誘電体薄膜5とを備える。
 圧電体2は、ニオブ酸リチウム(LiNbO3)系基板であるが、例えば、水晶、タンタル酸リチウム(LiTaO3)系、又はニオブ酸カリウム(KNbO3)系の基板又は薄膜など他の圧電単結晶媒質であっても構わない。
 IDT電極3は、アルミニウムを主成分とする金属からなるが、例えば、銅、銀、金、チタン、タングステン、白金、クロム、モリブデンの少なくとも一種からなる単体金属、又はこれらを主成分とする合金又はそれらの金属が積層された構成であっても構わない。尚、IDT電極3が例えばアルミニウムを主成分とする金属の場合、IDT電極3の規格化膜厚は、0.045λ以上0.12λ以下であれば良い。なお、このときλは図1Aにおける電極ピッチの2倍とする。
 また、IDT電極3は、交差幅がほぼ一定である正規型の櫛形電極であり、図1Bにおいて、弾性波共振器1は、外側から順にバスバー電極領域6とダミー電極領域7とIDT交差領域8とを含む。
 IDT交差領域8は、入力側と出力側のIDT電極3の電極指同士が交差する領域であり、例えば、SH(Shear-Horizontal)波などの主要弾性波が励振する領域である。また、バスバー電極領域6は、IDT電極3の電極指に電気信号を入力するバスバー電極が配置された領域である。また、ダミー電極領域7は、入力側と出力側のIDT電極3の電極指が交差していない部分に設けられたダミー電極が配置された領域である。このダミー電極とダミー電極上のSiO2の膜厚を調整することにより、ダミー電極領域7における音速をIDT交差領域の音速と異ならせることが出来る。音速差を調整することによって、横モードをダミー電極領域7に分散させることができ、横モードスプリアスの抑制を図っている。
 誘電体薄膜5は、例えば、酸化ケイ素からなるが、圧電体2を伝搬する最も遅い横波(たとえばShear-Vertical波)の速度より遅い横波の伝搬速度を有する媒質であれば良い。なお、酸化ケイ素は、圧電体2とは逆の周波数温度特性を有する媒質であるので、弾性波共振器1の周波数温度特性を向上することができる。
 また、IDT交差領域8の上方における誘電体薄膜5の膜厚は、IDT電極3によって励振された弾性波の音速が、圧電体2を伝搬する最も遅い横波の音速よりも低速になるように設定する。これにより主要弾性波の圧電体2方向への漏れの低減が期待できる。
 さらに、誘電体薄膜5が酸化ケイ素からなる場合は、IDT交差領域8の上方における誘電体薄膜5の膜厚は、IDT電極3によって励振された主要弾性波の周波数温度特性が10ppm/℃以下になるように設定する。
 上記を満たすIDT交差領域8の上方における誘電体薄膜5の規格化膜厚9は、0.2λ以上0.5λ以下である。望ましくは、0.25λより大きく0.5λ以下で、更に望ましくは、0.3λ以上0.45λ以下であり、そうすることで、弾性波の漏れ防止効果と周波数温度特性向上の両立を特に図ることができる。
 尚、誘電体薄膜5の膜厚とは、IDT電極3が非形成で圧電体2と誘電体薄膜5とが接している部分における圧電体2と、誘電体薄膜5の境界面から誘電体薄膜5の上面までの距離をいう。
 ここで、主要弾性波のIDT交差領域8からダミー電極領域7への漏れを抑制するために、バスバー電極領域6およびダミー電極領域7のIDT電極3が完全に露出する構成にすると、上述したように、横モードの影響が大きくなる。これは、弾性波共振器1において、主要弾性波だけでなく横モードまでもがIDT交差領域8に閉じ込められるからである。
 そこで、実施の形態1では、バスバー電極領域6およびダミー電極領域7の少なくとも一方の上方における誘電体薄膜5の規格化膜厚10を、IDT交差領域8上方における誘電体薄膜5の規格化膜厚9より0.1λ以上0.25λ以下の範囲で薄い構成とした。
 これにより、IDT交差領域8における横モードが抑圧され、横モードスプリアスの発生を抑制することができる。これは、IDT交差領域8とダミー電極領域7での音速差が縮まり、IDT交差領域8で励振された横モードとダミー電極領域7で励振された横モードとの間に音響結合が起こるからである。それによって、IDT交差領域8で共振する横モードのエネルギーがダミー電極領域7に分散するからだと考えられる。尚、両者の音速差が縮まったといえども、本構成においてはダミー電極領域7における音速がIDT交差領域8における音速よりも速い。
 以下、本実施の形態1における弾性波共振器1の周波数特性について図面を用いて説明する。図2から図7は、本発明の実施の形態1における弾性波共振器の周波数特性の説明図である。弾性波共振器1のアドミタンスの周波数特性を示している。
 弾性波共振器1は、圧電体2として、カット角が5度の回転Y板ニオブ酸リチウム系基板を用い、IDT電極3として、規格化膜厚が0.08λのアルミニウムからなる正規型の櫛型電極を用いた。さらに、誘電体薄膜として、IDT交差領域8上方における誘電体薄膜5の規格化膜厚が0.37λの酸化ケイ素を用いた。また、IDT交差領域8の上方における誘電体薄膜5の規格化膜厚9とバスバー電極領域6およびダミー電極領域7の上方における誘電体薄膜5の規格化膜厚10との規格化膜厚差11について、図2は0λ、図3は0.11λ、図4は0.15λ、図5は、0.20λ、図6は、0.24λ、図7は0.28λとした。
 図8に、この弾性波共振器1における、IDT交差領域8の上方とダミー電極領域7の上方の誘電体薄膜5の規格化膜厚差11(横軸:λ)と横モードのスプリアス(縦軸:dB)との関係を示す。
 図2から図8に示す様に、IDT交差領域8の上方とダミー電極領域7の上方の誘電体薄膜5の規格化膜厚差11が0.10λ以上0.25λ以下の場合に、横モードのスプリアスレベルを約1dB以内に低減できる。また、IDT交差領域8の上方とダミー電極領域7の上方の誘電体薄膜5の規格化膜厚差11が0.15λ以上0.20λ以下の場合に、横モードのスプリアスレベルをほぼ0dBにすることができる。
 IDT交差領域8の上方とダミー電極領域7の上方の誘電体薄膜5に規格化膜厚差11を設ける方法としては、誘電体薄膜5の成膜後にエッチングしてもよい。また、誘電体薄膜5の成膜途中でIDT電極3におけるダミー電極領域7及びバスバー電極領域6の上方にマスキングして誘電体薄膜5が成膜途中から非形成状態となるようにしても構わない。
 尚、IDT電極3は、更なる横モードのスプリアス抑圧のために、IDT電極の中央からグレーティング反射器4に近づくに従って交差幅が小さくなるようなアポタイズ重み付けが施されていても良い。このとき、ダミー電極領域7は、IDT電極3におけるダミー電極の最小長さの領域となり、IDT交差領域8とは、IDT電極3の交差する最大長さの領域となる。ただ、上記説明のようにIDT電極3にアポタイズ重み付けを施すことなく、正規型の櫛型電極構成のまま横モードスプリアスを抑圧できれば有利である。すなわち、IDT電極3に対するアポタイズ重み付けによるQ値などの共振器特性の低下を防ぐことができ、弾性波共振器1を実現する上で特性的に有利な構成となる。
 ここまで、バスバー電極領域6及びダミー電極領域7における全ての領域の上方の誘電体薄膜5の規格化膜厚10がIDT交差領域8の上方の誘電体薄膜5の規格化膜厚9と比較して薄い構成を説明した。しかしながら、バスバー電極領域6とダミー電極領域7における一部の領域の上方の誘電体薄膜5の規格化膜厚10がIDT交差領域8の上方の誘電体薄膜5の規格化膜厚9と比較して0.1λ以上0.25λ以下の範囲で薄い構成であっても良い。例えば、ダミー電極領域7のみの上方の誘電体薄膜5の膜厚がIDT交差領域8の上方の誘電体薄膜5の規格化膜厚9と比較して0.1λ以上0.25λ以下の範囲で薄い構成であっても良い。ただ、この構成よりも、図1A、図1Bに示す構成の方が横モードスプリアスの抑制という観点から有利である。
 IDT交差領域8の上方の誘電体薄膜5とダミー電極領域7の上方の誘電体薄膜5の段差は誘電体薄膜5の上面に対してほぼ垂直に形成されていることが望ましいが、テーパー状に形成されていても良い。また、この段差における誘電体薄膜5の端部はダミー電極領域7の端部の位置と同等であることが望ましいが、ダミー電極領域7とIDT交差領域8との間のギャップ領域12において形成されていても良い。これにより、この段差が弾性波共振器1の周波数特性に悪影響を及ぼすことを防止し、不要なスプリアスが発生することを抑制することができる。
 また、図9に示す様に、ダミー電極領域7は、メタライズされたダミー電極重み付け部13を備えていても構わない。この場合も、IDT交差領域8の上方とダミー電極領域7の上方の誘電体薄膜5の規格化膜厚差11が0.10λ以上0.25λ以下にすることにより、横モードのスプリアスレベルを低減することができる。
 なお、本実施の形態1においてはIDT電極3ならびにダミー電極上の誘電体薄膜は1層としているが、2層以上の構成としても構わない。
 尚、本実施の形態1においては、グレーティング反射器4を備えた弾性波共振器1として説明をしているが、本発明はIDT電極3に適用するものであり、グレーティング反射器4がない場合であっても同様の効果は得られる。
 また、図10に示す様に、IDT電極3は、弾性波の伝搬方向においてIDT交差領域8の中央部から端に向けて交差幅が段階的に小さくなるようにアポタイズ重み付けされた構成であっても良い。このようにIDT電極3がアポタイズ重み付けされた構成の場合も同様に、ダミー電極領域7、IDT交差領域8、ギャップ領域12は、図10に示すように電極指の先端同士を結ぶ形状で定義される領域とする。
 このとき、IDT交差領域8の中央部から端に向けて電極指の先端を結ぶ直線Cと弾性波の伝搬方向Dのなす角度∠Eが、4度より大きく10度より小さいことが望ましい。これにより、図11に示す様に、横モードスプリアスを抑制することができる。尚、図11に示す特性図は、上記と同様の条件の弾性波共振器1において、角度∠Eが6°の場合(実線)と、角度∠Eが30°の場合(破線)の周波数減衰特性(dB)である。
 (実施の形態2)
 次に、実施の形態2の弾性波共振器1について、図面を用いて説明する。特に説明しない限り、その構成は実施の形態1と同様である。図12Aは、実施の形態2における弾性波共振器1の上面図であり、図12Bは、図12Aの12B-12Bにおける弾性波共振器の断面(IDT電極3の電極指の延伸方向の断面)図である。
 図12A、図12Bに示す様に、実施の形態2の弾性波共振器1は、ダミー電極を有しておらず、バスバー電極領域6とIDT交差領域8に挟まれる領域は全てギャップ領域12となる。ここでも、バスバー電極領域6とギャップ領域12のバスバー電極領域6側の少なくとも一方(図12では両方)の一部の上方における誘電体薄膜5の規格化膜厚10を、IDT交差領域8上方における誘電体薄膜5の規格化膜厚9より0.1λ以上0.25λ以下の範囲で薄い構成とする。
 これにより、IDT交差領域8における横モードが抑圧され、横モードスプリアスの発生を抑制することができる。これは、IDT交差領域8とギャップ領域12での音速差が縮まり、IDT交差領域8で励振された横モードとギャップ領域12で励振された横モードとの間に音響結合が起こるからである。すなわち、IDT交差領域8で共振する横モードのエネルギーがギャップ領域12に分散するからだと考えられる。
 この場合、誘電体薄膜5の上面の段差は、ギャップ領域12の上方において形成されていることが望ましい。これにより、この段差が弾性波共振器1の周波数特性に悪影響を及ぼすことを防止し、不要なスプリアスが発生することを抑制することができる。
 (実施の形態3)
 次に、実施の形態3の弾性波共振器1について、図面を用いて説明する。特に説明しない限り、その構成は実施の形態1と同様である。図13は、実施の形態1における図1Aの13-13または実施の形態2における図12Aの13-13の断面(IDT交差領域8の断面)図である。
 図13の弾性波共振器1において、圧電体2は、ニオブ酸リチウム(LiNbO3)系であり、この圧電体2のオイラー角(φ,θ,ψ)は、-100°≦θ≦-60°、1.193φ-2°≦ψ≦1.193φ+2°、ψ≦-2φ-3°,-2φ+3°≦ψを満たす。尚、φ、θは、圧電体2の切出しカット角、ψは圧電体2上のIDT電極3における主要弾性波の伝搬角である。
 ここで、ニオブ酸リチウム系の圧電体2は3方晶系の結晶であるため、オイラー角には次の関係がある。
 (φ,θ,ψ)=(60+φ,-θ,ψ)
        =(60-φ,-θ,180-ψ)
        =(φ,180+θ,180-ψ)
        =(φ,θ,180+ψ)
 誘電体薄膜5は、酸化ケイ素(SiO2)膜からなる。誘電体薄膜5は、圧電体2と逆の温度特性を有し、その膜厚を所定膜厚より厚くすることで、弾性波共振器1の周波数温度特性を向上できる。
 このように、弾性波共振器1の周波数温度特性を向上すべく誘電体薄膜5の膜厚を所定膜厚より厚くした場合、ニオブ酸リチウムからなる圧電体2のオイラー角(φ,θ,ψ)のうち、φとψを所定角度以上、かつψ=1.193φにある程度従うように0度から変化させると、レイリー波による不要スプリアスの発生を抑制しながら、速い横波が発生する周波数帯付近における不要スプリアスを抑制することができる。
 次に、圧電体2がニオブ酸リチウムである場合に、圧電体2のオイラー角を特定範囲にしたときに不要スプリアスが抑制される作用効果について、以下詳述する。
 図14、図15は、圧電体2がオイラー角(φ,ψ=0°)のニオブ酸リチウム系である場合の弾性波共振器1の周波数特性図である。弾性波共振器1の温度特性を向上すべく酸化ケイ素からなる誘電体薄膜5のIDT交差領域8上方における膜厚を例えば0.35λとする。すると、図14、図15に示す様に、共振周波数の約1.2倍付近において、不要スプリアス26、27が発生する。
 尚、図14は、圧電体2がオイラー角(0°、-87.5°、0°)を有するニオブ酸リチウム系であり、IDT電極3は膜厚0.03λの銅であり、誘電体薄膜5はIDT交差領域8上方においてその上面が平坦で膜厚が0.35λの酸化ケイ素からなる場合の特性図を示す。
 また、図15は、圧電体2がオイラー角(0°,-90°,0°)を有するニオブ酸リチウムであり、IDT電極3は膜厚0.08λのアルミニウムであり、誘電体薄膜5はIDT交差領域8上方においてIDT電極3の電極指上方におけるその上面に凸部を有し、膜厚が0.35λの酸化ケイ素からなる場合の特性図を示す。尚、この凸部の高さは0.03λより大きくIDT電極3の高さ以下であり、凸部の頂部の幅は、IDT電極3の電極指の幅よりも小さいものとした。
 尚、図14、図15の縦軸は、整合値に対する規格化アドミタンス、図14、図15の横軸は、弾性波共振器1に発生する遅い横波(音速4024m/s)の半分の周波数に対する規格化周波数を示す。これは、他の特性図においても同じである。この不要スプリアスは、弾性波共振器1に発生する速い横波が原因であると考えられる。尚、弾性波共振器1に発生する横波のうち最も音速が速いものを速い横波といい、弾性波共振器1に発生する横波のうち最も音速が遅いものを遅い横波という。
 図16Aから図16Cは、上記弾性波共振器において、圧電体2がオイラー角(0°,-87.5°,0°)を有するニオブ酸リチウムであり、IDT電極3は膜厚0.03λの銅である。誘電体薄膜5がIDT交差領域8上方においてその上面が平坦な酸化ケイ素からなる場合に、IDT交差領域8上方における誘電体薄膜5の膜厚を変化させたときの速い横波の電気機械結合係数(図16A)、共振のQ値(Qs)(図16B)、反共振のQ値(Qa)(図16C)を示す。図16Bに示す様に、IDT交差領域8上方における誘電体薄膜5の膜厚を0.27λより厚くすると、速い横波の共振のQ値が大きくなる。さらに、図16Cに示す様に、IDT交差領域8上方における誘電体薄膜5の膜厚を0.34λより厚くすると、速い横波の反共振のQ値も大きくなる。
 図17Aから図17Cは、上記弾性波共振器において、圧電体2がオイラー角(0°,-90°,0°)を有するニオブ酸リチウムであり、IDT電極3は膜厚0.08λのアルミニウムである。誘電体薄膜5がIDT電極3の電極指上方におけるその上面に上記凸部を有した酸化ケイ素からなる場合に、IDT交差領域8上方における誘電体薄膜5の膜厚を変化させたときの速い横波の電気機械結合係数(図17A)、共振のQ値(Qs)(図17B)、反共振のQ値(Qa)(図17C)を示す。図17Bに示す様に、IDT交差領域8上方における誘電体薄膜5の膜厚を0.2λより厚くすると、速い横波の共振のQ値が大きくなる。さらに、図17Cに示す様に、IDT交差領域8上方における誘電体薄膜5の膜厚を0.27λより厚くすると、速い横波の反共振のQ値も大きくなる。
 上記速い横波により、この弾性波共振器を適用したフィルタ、若しくはアンテナ共用器の特性品質が劣化するという問題がある。この不要スプリアスを抑制すべく、圧電体2のオイラー角(φ,θ,ψ)のうちφとψを変化させた。φを変化させた場合を図18A~図18Gに示し、ψを変化させた場合を図19A~図19Gに示す。
 図18A~図18G、図19A~図19Gは、圧電体2がオイラー角を有するニオブ酸リチウムであり、IDT電極3は膜厚0.08λのアルミニウムであり、誘電体薄膜5がIDT交差領域8上方においてIDT電極3の電極指上方におけるその上面に上記凸部を有し膜厚が0.35λの酸化ケイ素からなる場合の特性図である。尚、図18A~図18G、図19A~図19Gにおける各特性図の上部には圧電体2のオイラー角(φ,θ,ψ)を示している。図18A~図18G、図19A~図19Gに示す様に、φを変化させた場合もψを変化させた場合も不要スプリアスを抑制することができるが、逆に、共振周波数から少し低い周波数帯に上記とは異なる不要スプリアスが発生した。この不要スプリアスはレイリー波によるスプリアスと考えられる。
 尚、図18~図18G、図19A~図19Gにおいて、1e+02以上、及び1e-02以下の弾性波素子のアドミタンス特性は図示していない。
 そこで、弾性波共振器1の誘電体薄膜5のIDT交差領域8上方における膜厚が0.27λよりも大きい場合に、レイリー波による不要スプリアスの発生を抑制すると共に速い横波による不要スプリアスを抑制する。そのために、弾性波共振器1は、オイラー角(φ,θ,ψ)を有するニオブ酸リチウム系の圧電体2と、この圧電体2の上に設けられて波長λの主要弾性波を励振させるIDT電極3と、このIDT電極3を覆うように圧電体2の上に設けられてIDT交差領域8上方において0.27λより厚い誘電体薄膜5とを備える。さらに、圧電体2のオイラー角は、-100°≦θ≦-60°、1.193φ-2°≦ψ≦1.193φ+2°、ψ≦-2φ-3°,-2φ+3°≦ψを満たすよう構成する。
 上記構成の様に、圧電体2のオイラー角(φ,θ,ψ)のうち、φとψを所定角度以上、かつψ=1.193φにある程度従うように0度から変化させると、レイリー波による不要スプリアスの発生を抑制しながら速い横波が発生する周波数帯付近における不要スプリアスを抑制することができる。
 ここで、図16Aに示す様に、レイリー波の電気機械結合係数が所定レベル以下となるように、誘電体薄膜5の膜厚の上限は0.5λであることが望ましい。
 図20A、図20Bに、弾性波共振器1において、圧電体2がそれぞれオイラー角(7,-87.5,8.4)、(9°,-87.5°,10.7°)を有するニオブ酸リチウムであり、IDT電極3は膜厚0.03λの銅であり、誘電体薄膜5はIDT交差領域8上方においてその上面が平坦な膜厚0.35λの酸化ケイ素からなる場合の弾性波共振器1の特性図を示す。図20A、図20Bに示す様に、弾性波共振器1は、レイリー波による不要スプリアスの発生を抑制しながら速い横波が発生する周波数帯付近における不要スプリアスを抑制することができる。
 図21に、ニオブ酸リチウム系からなる圧電体2のオイラー角(φ,θ,ψ)のうち、φとψの取りうる範囲を斜線で示す。尚、-100°≦θ≦-60°とし、IDT交差領域8上方における誘電体薄膜5の膜厚を0.27λより厚く設定すると共にIDT電極3を規格化膜厚0.03λの銅とする。図21に示すψ=1.193φは、レイリー波によるスプリアスが特に抑制される場合のφとψの関係を示す線である。この線を中心とし、ψの範囲が±2度以内の範囲、即ち1.193φ-2°≦ψ≦1.193φ+2°の範囲において、レイリー波によるスプリアスが抑制される。これについて、図22を用いて説明する。図22は、上記弾性波共振器1と同条件で、圧電体2のオイラー角(φ,θ,ψ)のうちのψをψ=1.193φから上下に変化させた場合における弾性波共振器1のレイリー波のQ値を示す。尚、図22の縦軸は、レイリー波のQ値を示し、図22の横軸は、ψのψ=1.193φからの変化分Δψを示す。図22に示すように、圧電体2のオイラー角(φ,θ,ψ)のうちのψがψ=1.193φから±2度の範囲で弾性波共振器1のレイリー波のQ値が所定レベル以下に抑制されるのである。
 また、図21に示すψ=-2φは、速い横波によるスプリアスが特に大きく発生する場合のφとψの関係を示す線である。この線を中心とし、ψの範囲が±3度以上の範囲、即ち、ψ≦-2φ-3°,-2φ+3°≦ψの範囲において、速い横波によるスプリアスが抑制される。これについて、図23を用いて説明する。図23は、上記弾性波共振器1と同条件で、圧電体2のオイラー角(φ,θ,ψ)のうちのψをψ=-2φから上下に変化させた場合における弾性波共振器1のレイリー波のQ値を、φ=0°、0.5°、1°、1.5°、2°、2.5°としたときを示す。図23に示すように、圧電体2のオイラー角(φ,θ,ψ)のうちのψがψ=-2φから±3度以上の範囲で弾性波共振器1の速い横波のQ値が所定レベル以下に抑制される。
 図24は、上記と同条件で圧電体2のオイラー角(φ,θ,ψ)のうちのθを変化させた場合における弾性波共振器1のレイリー波の電気機械結合係数k2を示す。図24に示す様に、レイリー波の電気機械結合係数k2を0.01以下に抑制するためには、圧電体2のオイラー角(φ,θ,ψ)のうちのθが-100°≦θ≦-60°を満たす必要がある。
 図25は、上記と同条件の弾性波共振器1における圧電体2のオイラー角(φ,θ,ψ)のうちのθを変化させた場合における弾性波共振器1のSH波の規格化結合係数を示す。図25における電気機械結合係数はθ=-90°の場合の電気機械結合係数で規格化した値である。図25に示す様に、圧電体2のオイラー角(φ,θ,ψ)のうちのθが上記-100°≦θ≦-60°を含む、-110°≦θ≦-60°の範囲において、SH波の電気機械結合係数k2が所定値以上の値をとる。
 図26は、上記と同条件の弾性波共振器1における圧電体2のオイラー角(φ,θ,ψ)のうちのφとψをψ=1.193φに沿って変化させた場合における弾性波共振器1のレイリー波の電気機械結合係数k2を示す。図26に示す様に、φ≦20°の範囲で、レイリー波の電気機械結合係数を上記記載の0.01よりも更に低い0.002以下に抑制することができる。φに関して圧電体2のオイラー角を負方向に回転させた場合も同様となる。即ち、上記条件において、弾性波共振器1の圧電体2のオイラー角(φ,θ,ψ)のうちのφが|φ|≦20°を満たすことが望ましく、これにより、レイリー波の電気機械結合係数を更に抑制することができる。
 図27は、上記と同条件の弾性波共振器1における圧電体2のオイラー角(φ,θ,ψ)のうちのφとψをψ=1.193φに沿って変化させた場合における弾性波共振器1のSH波の規格化結合係数を示す。図27は、φに関して圧電体2のオイラー角を正方向に回転させた場合であるが、φに関して圧電体2のオイラー角を負方向に回転させた場合も同様となる。図27に示す様に、主要弾性波であるSH波の観点からも、圧電体2のオイラー角(φ,θ,ψ)のうちのφが|φ|≦20°を満たすことにより、所定値以上のSH波の電気機械結合係数を得ることができる。
 また、上記主要弾性波は、圧電体23の表面を伝搬する弾性表面波、及び弾性境界波の両者に適用可能である。例えば、保護膜24の膜厚をλ以上としたときは、上記主要弾性波は弾性境界波となる。
 (実施の形態4)
 以下、実施の形態4の弾性波共振器1について、図面を用いて説明する。なお、特に説明しない限り、その構成は他の実施の形態と同様である。図28は、実施の形態4における図1Aの28-28若しくは実施の形態2における図12Aの28-28における断面(IDT交差領域8の断面)図である。
 本実施の形態4における弾性波共振器1は、オイラー角(φ,θ,ψ)を有するニオブ酸リチウム系の圧電体2と、圧電体2の上に設けられて波長λの主要弾性波を励振させるIDT電極3を備える。さらに、このIDT電極3を覆うように圧電体2の上に設けられてIDT交差領域8上方における膜厚が0.2λより厚い誘電体薄膜5とを備え、この誘電体薄膜5は、IDT電極3の電極指の延伸方向と直交する方向の断面においてIDT電極3の電極指の上方で凸部50を有する。そして、この凸部50の頂部29の幅は、IDT電極3の電極指の幅よりも小さい。
 上記圧電体2のオイラー角は、-100°≦θ≦-60°、1.193φ-2°≦ψ≦1.193φ+2°、ψ≦-2φ-3°,-2φ+3°≦ψである。
 上記構成のように、誘電体薄膜5が凸部50を有する場合に、速い横波による不要スプリアスが特に問題となる。そこで、弾性波共振器1の周波数温度特性を向上すべく例えば酸化ケイ素からなる誘電体薄膜5の膜厚をIDT交差領域8上方において0.2λより厚くした場合に、圧電体2のオイラー角(φ,θ,ψ)のうち、φとψを所定角度以上、かつψ=1.193φにある程度従うように0度から変化させると、レイリー波による不要スプリアスの発生を抑制しながら速い横波が発生する周波数帯付近における不要スプリアスを抑制することができる。
 図29Aと図29Bに、弾性波共振器1において、圧電体2がそれぞれオイラー角(7,-87.5,8.4)、(9°,-87.5°,10.7°)を有するニオブ酸リチウムであり、IDT電極3は膜厚0.08λのアルミニウムであり、誘電体薄膜5はその上面に高さT=0.08λの凸部50を有しIDT交差領域8上方における膜厚が0.35λの酸化ケイ素からなる場合の弾性波共振器1の各特性図を示す。図29A、図29Bに示す様に、本実施の形態1の弾性波共振器1は、レイリー波による不要スプリアスの発生を抑制しながら速い横波が発生する周波数帯付近における不要スプリアスを抑制することができる。
 IDT交差領域8上方における誘電体薄膜5の凸部50は、その凸部50の頂部29から最下部30にかけて下に凸な曲線となる凹凸形状を有することが望ましい。この場合、この下に凸な曲線若しくはその延長線と頂部29を含む圧電体2の上面に平行な直線とが交わる点同士の間の距離で定義される頂部29の幅Lは、IDT電極3の電極指の幅よりも小さい。これにより、凸部50における誘電体薄膜5の質量付加が連続的かつ緩やかに変化する。その結果、誘電体薄膜5の形状に起因する不要な反射を発生させることを抑制しつつ、弾性波共振器1の電気的特性を向上することができる。
 尚、凸部50の頂部29の幅は、さらにIDT電極3の電極指幅の1/2以下であることが望ましい。また、頂部29の中心位置は、電極指の中心位置の上方に略一致していることが望ましい。これにより、質量付加効果により電極指での反射率が更に高まり、弾性波共振器1の電気的特性が向上する。
 さらに、凸部50の高さをT、IDT電極3の膜厚をhとしたときに、0.03λ<T≦hを満たすことが望ましい。これは、誘電体薄膜5の凸部50の最下部30から頂部29までの高さTと電気的特性との関係を調べると、Tが、0.03λ以上で、誘電体薄膜5の表面をフラットにしたものに対して反射率の向上が大きく見られるからである。一方、IDT電極3の膜厚hより高くすると、下記に示す製造方法にさらに、この誘電体薄膜5を作成する為の新たなステップを追加することが必要となり、製造方法が煩雑となる。
 図30A~図30Hは本発明の実施の形態4における例えば凸部50を有する弾性波共振器1の製造方法の一例を説明する図である。
 まず、図30Aに示すように、圧電体31の上面にAlまたはAl合金を蒸着またはスパッタ等の方法によりIDT電極または/および反射器となる電極膜32を成膜する。
 そして、図30Bに示すように、電極膜32の上面にレジスト膜33を形成する。
 さらに、図30Cに示すように、所望の形状となるように露光・現像技術等を用いてレジスト膜33を加工する。
 さらにまた、図30Dに示すように、ドライエッチング技術等を用いて電極膜32をIDT電極や反射器等、所望の形状に加工した後、レジスト膜33を除去する。
 次に、図30Eに示すように、電極膜32を覆うようにSiO2を蒸着またはスパッタ等の方法により、誘電体薄膜34を形成する。このとき、誘電体薄膜34の上記凸部を得る方法として、圧電体31側にバイアスを印加しながらスパッタリングで成膜を行う、いわゆるバイアススパッタリング法を用いた。
 酸化ケイ素のターゲットをスパッタリングすることにより圧電体31上に誘電体薄膜34を堆積させると同時に、バイアスにより圧電体31上の誘電体薄膜34の一部をスパッタリングする。つまり誘電体薄膜34を堆積させながら一部を削ることにより、誘電体薄膜34の形状をコントロールしたものである。その際、誘電体薄膜34の形状をコントロールする手段としては、誘電体薄膜34を堆積させる途中で圧電体31に印加するバイアスとスパッタリング電力の比を変化させたり、成膜の初期は圧電体31にバイアスをかけずに成膜し、途中から成膜と同時にバイアスを印加したりすればよい。この際、圧電体31の温度についても管理を行う。
 さらに、図30Fに示すように、誘電体薄膜34の表面にレジスト膜35を形成する。
 さらにまた、図30Gに示すように、露光・現像技術等を用いてレジスト膜35を所望の形状に加工する。
 次に、図30Hに示すように、ドライエッチング技術等を用いて、電気信号取出しのためのパッド36等、誘電体薄膜34が不要な部分の誘電体薄膜を取り除き、その後、レジスト膜35を除去する。
 最後にダイシングにより個々に分割し、弾性波共振器1を得る。
 以上のように、バイアススパッタリング法を用い、適当な成膜条件下で誘電体薄膜34を成膜することで、所望の形状を得ることができることを発明者らは確認した。
 上記本実施の形態4における弾性波共振器1の特性は、図21から図27に示す実施の形態1における弾性波共振器1の特性と同様である。即ち、弾性波共振器1の周波数温度特性を向上すべく例えば酸化ケイ素からなる誘電体薄膜5の膜厚を0.2λより厚くした場合に、圧電体2のオイラー角(φ,θ,ψ)のうち、φとψを所定角度以上、かつψ=1.193φにある程度従うように0度から変化させると、レイリー波による不要スプリアスの発生を抑制しながら速い横波が発生する周波数帯付近における不要スプリアスを抑制することができる。
 さらに、本実施の形態1の弾性波共振器1をラダー型フィルタもしくはDMSフィルタ等のフィルタ(図示せず)に適用しても構わない。さらにまた、送信フィルタと受信フィルタとを有するアンテナ共用器(図示せず)に適用しても良い。また、弾性波共振器1を、このフィルタと、フィルタに接続された半導体集積回路素子(図示せず)と、半導体集積回路素子(図示せず)に接続されたスピーカ等の再生部とを備えた電子機器に適用しても良い。
 本発明にかかる弾性波共振器とアンテナ共用器は、横モードスプリアスを抑制するという効果を有し、携帯電話等の電子機器に適用可能である。
1  弾性波共振器
2,31  圧電体
3  IDT電極
4  グレーティング反射器
5,34  誘電体薄膜
6  バスバー電極領域
7  ダミー電極領域
8  IDT交差領域
9,10  規格化膜厚
11  規格化膜厚差
12  ギャップ領域
13  メタライズされたダミー電極重み付け部
29  頂部
30  最下部
32  電極膜
33,35  レジスト膜
36  パッド
50  凸部

Claims (17)

  1. 圧電体と、
    前記圧電体の上に設けられ波長λの弾性波を励振させるIDT電極と、
    前記IDT電極を覆うように設けられ前記圧電体を伝搬する最も遅い横波の速度よりも遅い速度の横波が伝搬する誘電体薄膜とを備え、
    前記IDT電極は、電極指の延伸方向において、外側から順にバスバー電極領域とダミー電極領域とIDT交差領域とを含み、
    前記バスバー電極領域および前記ダミー電極領域の少なくとも一方の上方における前記誘電体薄膜の膜厚は、前記IDT交差領域上方における前記誘電体薄膜の膜厚より0.1λ以上0.25λ以下の範囲で薄い弾性波共振器。
  2. 圧電体と、
    前記圧電体の上に設けられ波長λの弾性波を励振させるIDT電極と、
    前記IDT電極を覆うように設けられ前記圧電体を伝搬する最も遅い横波の速度よりも遅い速度の横波が伝搬する誘電体薄膜とを備え、
    前記IDT電極は、電極指の延伸方向において、外側から順にバスバー電極領域とギャップ領域とIDT交差領域とを含み、
    前記バスバー電極領域および前記ギャップ領域の少なくとも一方の上方における前記誘電体薄膜の膜厚は、前記IDT交差領域上方における前記誘電体薄膜の膜厚より0.1λ以上0.25λ以下の範囲で薄い弾性波共振器。
  3. 前記IDT交差領域の上方における前記誘電体薄膜の膜厚は、前記IDT電極によって励振された弾性波の音速が前記圧電体を伝搬する横波の音速よりも低速になるように設定された請求項1または請求項2に記載の弾性波共振器。
  4. 前記IDT電極は、前記弾性波の伝搬方向において交差幅が一定である正規型の櫛型電極構成である請求項1または請求項2に記載の弾性波共振器。
  5. 前記誘電体薄膜は、酸化ケイ素からなる請求項1または請求項2に記載の弾性波共振器。
  6. 前記IDT交差領域の上方における前記誘電体薄膜の膜厚は、前記IDT電極によって励振された弾性波の温度特性が10ppm/℃以下になるように設定された請求項5に記載の弾性波共振器。
  7. 前記IDT交差領域の上方における前記誘電体薄膜の膜厚は、0.27λより大きく0.5λ以下である請求項1または請求項2に記載の弾性波共振器。
  8. 前記ダミー電極領域は、メタライズされたダミー電極重み付け部を備えた請求項1または請求項2に記載の弾性波共振器。
  9. 前記IDT電極は、前記弾性波の伝搬方向において前記IDT交差領域の中央部から端に向けて交差幅が段階的に小さくなるようにアポタイズ重み付けされ、
    前記IDT交差領域の中央部から端に向けて電極指の先端を結ぶ直線と、弾性波の伝搬方向のなす角度が4度より大きく10度より小さい請求項1または請求項2に記載の弾性波共振器。
  10. 前記圧電体は、オイラー角(φ,θ,ψ)を有するニオブ酸リチウム系であり、
    前記誘電体薄膜は、前記IDT交差領域上方における膜厚が0.27λより厚く、
    前記オイラー角は、
    -100°≦θ≦-60°、
    1.193φ-2°≦ψ≦1.193φ+2°、
    ψ≦-2φ-3°,-2φ+3°≦ψ
    を満たす請求項1または請求項2に記載の弾性波共振器。
  11. 前記圧電体は、オイラー角(φ,θ,ψ)を有するニオブ酸リチウム系であり、
    前記誘電体薄膜は、前記IDT交差領域上方における膜厚が0.2λより厚く、前記IDT電極の電極指の延伸方向と直交する方向の断面において前記IDT電極の電極指の上方で凸部を有し、
    前記凸部の頂部の幅は、前記IDT電極の電極指の幅よりも小さく、
    前記オイラー角は、
    -100°≦θ≦-60°、
    1.193φ-2°≦ψ≦1.193φ+2°、
    ψ≦-2φ-3°,-2φ+3°≦ψ
    を満たす請求項1または請求項2に記載の弾性波共振器。
  12. 前記オイラー角は、
    -20°≦φ≦20°を満たす請求項10又は請求項11に記載の弾性波共振器。
  13. 前記誘電体薄膜は、前記断面において前記凸部の頂部から最下部にかけて下に凸の曲線形状を有する請求項11に記載の弾性波共振器。
  14. 前記凸部の頂部の幅は、前記IDT電極の電極指幅の1/2以下である請求項11に記載の弾性波共振器。
  15. 前記凸部の頂部の中心位置は、前記電極指の中心位置の上方に略一致している請求項11に記載の弾性波共振器。
  16. 前記凸部の高さをT、前記IDT電極の膜厚をhとしたときに、0.03λ<T≦hである請求項11に記載の弾性波共振器。
  17. 送信フィルタと受信フィルタとを有するアンテナ共用器であって、
    前記送信フィルタまたは前記受信フィルタは、請求項1に記載の弾性波共振器を含むアンテナ共用器。
PCT/JP2010/003459 2009-05-27 2010-05-24 弾性波共振器と、これを用いたアンテナ共用器 WO2010137279A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/319,140 US8698578B2 (en) 2009-05-27 2010-05-24 Acoustic wave resonator and duplexer using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-127346 2009-05-27
JP2009127346 2009-05-27
JP2010-047432 2010-03-04
JP2010047432 2010-03-04

Publications (1)

Publication Number Publication Date
WO2010137279A1 true WO2010137279A1 (ja) 2010-12-02

Family

ID=43222407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003459 WO2010137279A1 (ja) 2009-05-27 2010-05-24 弾性波共振器と、これを用いたアンテナ共用器

Country Status (2)

Country Link
US (1) US8698578B2 (ja)
WO (1) WO2010137279A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076517A1 (de) * 2010-12-07 2012-06-14 Epcos Ag Elektroakustischer wandler mit verringerten verlusten durch transversale emission und verbesserter performance durch unterdrückung transversaler moden
WO2012108255A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 ラダー型フィルタ装置及び弾性波共振子
WO2012132238A1 (en) * 2011-03-25 2012-10-04 Panasonic Corporation Acoustic wave device with reduced higher order transverse modes
WO2012157101A1 (ja) * 2011-05-19 2012-11-22 太陽誘電株式会社 弾性波デバイスおよびモジュール
US20140001919A1 (en) * 2011-03-22 2014-01-02 Panasonic Corporation Elastic wave element
JP2020061742A (ja) * 2015-03-12 2020-04-16 スカイワークスフィルターソリューションズジャパン株式会社 弾性波素子、アンテナデュプレクサ、ダイプレクサ及び通信機器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338914B2 (ja) * 2009-11-02 2013-11-13 パナソニック株式会社 弾性波素子と、これを用いたデュプレクサおよび電子機器
WO2011102128A1 (ja) * 2010-02-22 2011-08-25 パナソニック株式会社 アンテナ共用器
US9496846B2 (en) 2013-02-15 2016-11-15 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave device and electronic apparatus including same
JP2014187568A (ja) * 2013-03-25 2014-10-02 Panasonic Corp 弾性波装置
JP6777221B2 (ja) * 2017-03-23 2020-10-28 株式会社村田製作所 弾性波装置
JP6913619B2 (ja) * 2017-12-12 2021-08-04 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
KR20190138096A (ko) * 2018-06-04 2019-12-12 (주)와이솔 표면 탄성파 소자
CN113508496B (zh) * 2019-03-06 2023-01-06 株式会社村田制作所 滤波器、多工器、高频前端电路以及通信装置
US11811392B2 (en) * 2019-10-23 2023-11-07 Skyworks Solutions, Inc. Surface acoustic wave resonator with suppressed transverse modes using selective dielectric removal
US11405020B2 (en) * 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316781A (ja) * 1995-05-17 1996-11-29 Yasutaka Shimizu 弾性表面波素子
WO2003088483A1 (fr) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Dispositif a ondes acoustiques de surface, appareil de communication mobile et capteur mettant tous deux en oeuvre ledit dispositif
WO2006003933A1 (ja) * 2004-06-30 2006-01-12 Matsushita Electric Industrial Co., Ltd. 電子部品およびその製造方法
WO2008078573A1 (ja) * 2006-12-27 2008-07-03 Panasonic Corporation 弾性表面波共振器並びにそれを用いた弾性表面波フィルタ及びアンテナ共用器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101405938B (zh) * 2006-03-17 2011-07-27 株式会社村田制作所 弹性波谐振器
JP2008131128A (ja) 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd 弾性表面波フィルタ、アンテナ共用器、およびそれらの製造方法
JP2009027689A (ja) * 2007-06-19 2009-02-05 Panasonic Corp 弾性表面波フィルタと、それを用いたアンテナ共用器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316781A (ja) * 1995-05-17 1996-11-29 Yasutaka Shimizu 弾性表面波素子
WO2003088483A1 (fr) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Dispositif a ondes acoustiques de surface, appareil de communication mobile et capteur mettant tous deux en oeuvre ledit dispositif
WO2006003933A1 (ja) * 2004-06-30 2006-01-12 Matsushita Electric Industrial Co., Ltd. 電子部品およびその製造方法
WO2008078573A1 (ja) * 2006-12-27 2008-07-03 Panasonic Corporation 弾性表面波共振器並びにそれを用いた弾性表面波フィルタ及びアンテナ共用器

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130320805A1 (en) * 2010-12-07 2013-12-05 Epcos Ag Electroacoustic transducer with reduced losses due to transverse emission and improved performance due to suppression of transverse modes
US9391256B2 (en) 2010-12-07 2016-07-12 Epcos Ag Electroacoustic transducer with reduced losses due to transverse emission and improved performance due to suppression of transverse modes
WO2012076517A1 (de) * 2010-12-07 2012-06-14 Epcos Ag Elektroakustischer wandler mit verringerten verlusten durch transversale emission und verbesserter performance durch unterdrückung transversaler moden
JP2014500681A (ja) * 2010-12-07 2014-01-09 エプコス アクチエンゲゼルシャフト 横方向放出による損失を減じ、横方向モードの抑制により動作を改善した電子音響変換器
CN103348591B (zh) * 2011-02-08 2016-04-20 株式会社村田制作所 梯型滤波器装置及弹性波谐振器
CN103348591A (zh) * 2011-02-08 2013-10-09 株式会社村田制作所 梯型滤波器装置及弹性波谐振器
DE112012000719B4 (de) 2011-02-08 2017-03-30 Murata Manufacturing Co., Ltd. Abzweig-Filterbauelement für elastische Wellen
WO2012108255A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 ラダー型フィルタ装置及び弾性波共振子
US9148123B2 (en) 2011-02-08 2015-09-29 Murata Manufacturing Co., Ltd. Ladder filter device and elastic wave resonator
JP5614461B2 (ja) * 2011-02-08 2014-10-29 株式会社村田製作所 ラダー型フィルタ装置及び弾性波共振子
US9136458B2 (en) * 2011-03-22 2015-09-15 Skyworks Panasonic Filter Solutions Japan Co., Ltd. Elastic wave element
US20140001919A1 (en) * 2011-03-22 2014-01-02 Panasonic Corporation Elastic wave element
US9748924B2 (en) 2011-03-22 2017-08-29 Skyworks Filter Solutions Japan Co., Ltd. Elastic wave element with interdigital transducer electrode
US9065424B2 (en) 2011-03-25 2015-06-23 Skyworks Panasonic Filter Solutions Japan Co., Ltd Acoustic wave device with reduced higher order transverse modes
WO2012132238A1 (en) * 2011-03-25 2012-10-04 Panasonic Corporation Acoustic wave device with reduced higher order transverse modes
JP2016184951A (ja) * 2011-03-25 2016-10-20 スカイワークスフィルターソリューションズジャパン株式会社 高次横モード波を抑制した弾性波デバイス
US9640750B2 (en) 2011-03-25 2017-05-02 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave device with suppressed higher order transverse modes
JP5695191B2 (ja) * 2011-05-19 2015-04-01 太陽誘電株式会社 弾性波デバイスおよびモジュール
US8896399B2 (en) 2011-05-19 2014-11-25 Taiyo Yuden Co., Ltd. Acoustic wave device and module including a dielectric film with an inclined upper surface
JPWO2012157101A1 (ja) * 2011-05-19 2014-07-31 太陽誘電株式会社 弾性波デバイスおよびモジュール
WO2012157101A1 (ja) * 2011-05-19 2012-11-22 太陽誘電株式会社 弾性波デバイスおよびモジュール
JP2020061742A (ja) * 2015-03-12 2020-04-16 スカイワークスフィルターソリューションズジャパン株式会社 弾性波素子、アンテナデュプレクサ、ダイプレクサ及び通信機器
JP7005579B2 (ja) 2015-03-12 2022-02-04 スカイワークスフィルターソリューションズジャパン株式会社 弾性波素子、アンテナデュプレクサ、ダイプレクサ及び通信機器

Also Published As

Publication number Publication date
US8698578B2 (en) 2014-04-15
US20120044027A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2010137279A1 (ja) 弾性波共振器と、これを用いたアンテナ共用器
WO2011158445A1 (ja) 弾性波素子
JP6415469B2 (ja) 弾性波共振器、フィルタおよびマルチプレクサ並びに弾性波共振器の製造方法
JP6882929B2 (ja) 弾性波共振器、フィルタおよびマルチプレクサ
US11616191B2 (en) Elastic wave device
JP7377920B2 (ja) 弾性表面波素子
JP5338914B2 (ja) 弾性波素子と、これを用いたデュプレクサおよび電子機器
JP5828032B2 (ja) 弾性波素子とこれを用いたアンテナ共用器
US8598968B2 (en) Elastic wave element and electronic device using the same
US9419584B2 (en) Antenna sharing device
WO2010122767A1 (ja) 弾性波素子と、これを用いた電子機器
JP2014187568A (ja) 弾性波装置
JP2013138333A (ja) 弾性波素子
JP5083469B2 (ja) 弾性表面波装置
JPWO2007125733A1 (ja) 弾性表面波装置
US8198781B2 (en) Boundary acoustic wave device
JP5810113B2 (ja) 弾性波共振器とこれを用いた弾性波フィルタおよびアンテナ共用器
JP2000188521A (ja) 弾性表面波装置及び2ポ―ト弾性表面波共振子
JP2008078981A (ja) 弾性表面波共振器およびこれを用いた弾性表面波フィルタ、アンテナ共用器
JP2002076835A (ja) 弾性表面波素子
JP7027079B2 (ja) 弾性波デバイスおよびその製造方法
JP4507819B2 (ja) 弾性表面波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13319140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP