JP6856825B2 - 弾性波装置、分波器および通信装置 - Google Patents

弾性波装置、分波器および通信装置 Download PDF

Info

Publication number
JP6856825B2
JP6856825B2 JP2020550191A JP2020550191A JP6856825B2 JP 6856825 B2 JP6856825 B2 JP 6856825B2 JP 2020550191 A JP2020550191 A JP 2020550191A JP 2020550191 A JP2020550191 A JP 2020550191A JP 6856825 B2 JP6856825 B2 JP 6856825B2
Authority
JP
Japan
Prior art keywords
layer
resonator
elastic wave
wave device
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020550191A
Other languages
English (en)
Other versions
JPWO2020130128A1 (ja
Inventor
惣一朗 野添
惣一朗 野添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2020130128A1 publication Critical patent/JPWO2020130128A1/ja
Application granted granted Critical
Publication of JP6856825B2 publication Critical patent/JP6856825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14594Plan-rotated or plan-tilted transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本開示は、弾性波を利用する弾性波装置、当該弾性波装置を含む分波器および通信装置に関する。
圧電体上のIDT(InterDigital Transducer)電極に電圧を印加して、圧電体を伝搬する弾性波を生じさせる弾性波装置が知られている。IDT電極は、1対の櫛歯電極を有している。1対の櫛歯電極は、それぞれ複数の電極指(櫛の歯に相当する)を有しており、互いに噛み合うように配置される。弾性波装置においては、電極指のピッチの2倍を波長とする弾性波の定在波が形成され、この定在波の周波数が共振周波数となる。従って、弾性波装置の共振点は、電極指のピッチによって規定される。
近年、弾性波装置として、基板と、基板上に位置している音響反射層と、音響反射層上に位置している圧電体層と、圧電体層上に位置しているIDT電極とを有するものが提案されている。音響反射層は、低音響インピーダンス層と高音響インピーダンス層とを交互に積層して構成されている。このような構成により、弾性波として板波を利用でき、5GHzに共振を有する3μm程度の電極指の周期で実現できる。
電極指のピッチに対して相対的に周波数が高い共振を実現できる弾性波装置、分波器および通信装置が提供されることが望まれる。
本開示の一態様に係る弾性波装置は、LiNbO3の単結晶により構成されているLN層と、前記LN層上に位置しているIDT電極と、を有している。前記LN層の厚さが、前記IDT電極の電極指のピッチの2倍をλとしたときに、0.3λ以下であり、前記LT層のオイラー角(φ,θ,ψ)が、(0°±10°,−25°以上15°以下,0°以上360°以下)である。
本開示の一態様に係る分波器は、アンテナ端子と、前記アンテナ端子へ出力される信号をフィルタリングする送信フィルタと、前記アンテナ端子から入力される信号をフィルタリングする受信フィルタと、を有しており、前記送信フィルタおよび前記受信フィルタの少なくとも一方が上記の弾性波装置を含んでいる。
本開示の一態様に係る通信装置は、アンテナと、前記アンテナに前記アンテナ端子が接続されている上記の分波器と、前記送信フィルタおよび前記受信フィルタに対して信号経路に関して前記アンテナ端子とは反対側に接続されているICと、を有している。
上記の構成によれば、電極指のピッチに対して相対的に周波数が高い共振を実現できる。
実施形態に係る弾性波装置を示す平面図である。 図1の弾性波装置のII−II線における断面図である。 図3(a)、図3(b)および図3(c)はそれぞれ実施形態に係る共振子のインピーダンス特性、位相特性、共振周波数と反共振周波数との差分を示す図である。 図4(a)、図4(b)、図4(c)および図4(d)はそれぞれ実施形態に係る共振子のインピーダンス特性、位相特性、共振周波数、共振周波数と反共振周波数との差分および最大位相値を示す図である。 図5(a)、図5(b)および図5(c)は、複数の共振子の配置例を示す平面図である。 比較例に係る共振子の特性を示す線図である。 図7(a)、図7(b)および図7(c)は、LN層の厚みを異ならせたときの図3に相当する図である。 図8(a)および図8(b)は実施形態に係る共振子のインピーダンス特性および位相特性を示す線図である。 図9(a)および図9(b)は実施形態に係る共振子のインピーダンス特性および位相特性を示す線図である。 図10(a)および図10(b)は実施形態に係る共振子のインピーダンス特性および位相特性を示す線図である。 図1の弾性波装置の利用例としての分波器の構成を模式的に示す回路図である。 図1の弾性波装置の利用例としての通信装置の構成を模式的に示す回路図である。 図2に示す弾性波装置の変形例を示す断面図である。 図14(a),図14(b)はそれぞれ、図13に示す弾性波装置のインピーダンス特性、位相特性を示す図である。 図15(a),図15(b),図15(c)はそれぞれ、図13に示す弾性波装置の共振周波数、共振周波数と反共振周波数との差分および最大位相値を示す図である。
以下、本開示に係る実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。
本開示に係る弾性波装置は、いずれの方向が上方または下方とされてもよいものであるが、以下では、便宜的に、D1軸、D2軸およびD3軸からなる直交座標系を定義するとともに、D3軸の正側を上方として、上面または下面等の用語を用いることがある。また、平面視または平面透視という場合、特に断りがない限りは、D3軸方向に見ることをいう。なお、D1軸は、後述するLN層の上面に沿って伝搬する弾性波の伝搬方向に平行になるように定義され、D2軸は、LN層の上面に平行かつD1軸に直交するように定義され、D3軸は、LN層の上面に直交するように定義されている。
(弾性波装置の全体構成)
図1は、弾性波装置1の要部の構成を示す平面図である。図2は、図1のII−II線における断面図である。
弾性波装置1は、例えば、基板3(図2)と、基板3上に位置する多層膜5(図2)と、多層膜5上に位置するLN層7と、LN層7上に位置する導電層9とを有している。各層は、例えば、概ね一定の厚さとされている。なお、基板3、多層膜5およびLN層7の組み合わせを固着基板2(図2)ということがある。
弾性波装置1では、導電層9に電圧が印加されることによって、LN層7を伝搬する弾性波が励振される。弾性波装置1は、例えば、この弾性波を利用する共振子および/またはフィルタを構成している。多層膜5は、例えば、弾性波を反射して弾性波のエネルギーをLN層7に閉じ込めることに寄与している。基板3は、例えば、多層膜5およびLN層7の強度を補強することに寄与している。
(固着基板の概略構成)
基板3は、後述する説明から理解されるように、直接的には、弾性波装置1の電気的特性に影響しない。従って、基板3の材料および寸法は適宜に設定されてよい。基板3の材料は、例えば、絶縁材料であり、絶縁材料は、例えば、樹脂またはセラミックである。なお、基板3は、LN層7等に比較して熱膨張係数が低い材料によって構成されていてもよい。この場合、例えば、温度変化によって弾性波装置1の周波数特性が変化してしまうおそれを低減することができる。このような材料としては、例えば、シリコン等の半導体、サファイア等の単結晶および酸化アルミニウム質焼結体等のセラミックを挙げることができる。なお、基板3は、互いに異なる材料からなる複数の層が積層されて構成されていてもよい。基板3の厚さは、例えば、LN層7よりも厚い。
多層膜5は、例えば二酸化ケイ素(SiO2)等のLN層7に比べ低音速の材料からなる低音速層11と、例えば五酸化タンタル(Ta25),酸化ハフニウム(HfO3)等のLN層7に比べ高音速の材料からなる高音速層13とを交互に積層することにより構成されている。高音速層13は、低音速層11に比較して音響インピーダンスが高い。これにより、両者の界面においては弾性波の反射率が比較的高くなっている。その結果、例えば、LN層7を伝搬する弾性波の漏れが低減される。
多層膜5の積層数は適宜に設定されてよい。例えば、多層膜5は、低音速層11および高音速層13の合計の積層数が3層以上12層以下とされてよい。ただし、多層膜5は、1層の低音速層11と1層の高音速層13との合計2層から構成されてもよい。また、多層膜5の合計の積層数は、偶数でもよいし、奇数でもよいが、LN層7に接する層は、低音速層11である。基板3に接する層については低音速層11であってもよいし、高音速層13であってもよい。また、各層の間に、密着や拡散防止を目的に付加的な層を挿入することがある。その場合、その層が特性に影響を与えない程度に薄ければ(後述する波長λを基準にすると、おおむね0.01λ以下とすれば)問題ない。
LN層7は、ニオブ酸リチウム(LiNbO3、LN)の単結晶によって構成されている。LN層7のカット角は、例えば、オイラー角(φ,θ,ψ)で(0°±10°,−25°以上15°以下,0°以上360°以下)である。またLN層7の厚さは、比較的薄くされており、例えば、λを基準として、0.3λ以下である。LN層7のカット角および厚さをこのように設定することにより、弾性波として、スラブモードに近い振動モードのものを利用することが可能になる。言い換えると、弾性波としてA1モードの板波を用いることができるので、後述のIDT電極19の電極指27の間隔が比較的広くても、高い周波数での共振を得ることができる。
(導電層の概略構成)
導電層9は、例えば、金属により形成されている。金属は、適宜な種類のものとされてよく、例えば、アルミニウム(Al)またはAlを主成分とする合金(Al合金)である。Al合金は、例えば、アルミニウム−銅(Cu)合金である。なお、導電層9は、複数の金属層から構成されていてもよい。例えば、AlまたはAl合金と、LN層7との間に、これらの接合性を強化するためのチタン(Ti)からなる比較的薄い層が設けられていてもよい。
導電層9は、図1の例では、共振子15を構成するように形成されている。共振子15は、いわゆる1ポート弾性波共振子として構成されており、概念的かつ模式的に示す端子17Aおよび17Bの一方から所定の周波数の電気信号が入力されると共振を生じ、その共振を生じた信号を端子17Aおよび17Bの他方から出力可能である。
導電層9(共振子15)は、例えば、IDT電極19と、IDT電極19の両側に位置する1対の反射器21とを含んでいる。
IDT電極19は、1対の櫛歯電極23を含んでいる。なお、視認性を良くするために、一方の櫛歯電極23にはハッチングを付している。各櫛歯電極23は、例えば、バスバー25と、バスバー25から互いに並列に延びる複数の電極指27と、複数の電極指27間においてバスバー25から突出するダミー電極29とを含んでいる。1対の櫛歯電極23は、複数の電極指27が互いに噛み合うように(交差するように)配置されている。
バスバー25は、例えば、概ね一定の幅で弾性波の伝搬方向(電極指27の繰り返し配列方向、この例ではD1軸方向)に直線状に延びる長尺状に形成されている。そして、一対のバスバー25は、弾性波の伝搬方向に直交する方向(D2軸方向)において互いに対向している。なお、バスバー25は、幅が変化したり、弾性波の伝搬方向に対して傾斜したりしていてもよい。
各電極指27は、例えば、概ね一定の幅で弾性波の伝搬方向に直交する方向(D2軸方向)に直線状に延びる長尺状に形成されている。各櫛歯電極23において、複数の電極指27は、弾性波の伝搬方向に配列されている。また、一方の櫛歯電極23の複数の電極指27と他方の櫛歯電極23の複数の電極指27とは、基本的には交互に配列されている。
複数の電極指27のピッチp(例えば互いに隣り合う2本の電極指27の中心間距離)は、IDT電極19内において基本的に一定である。なお、IDT電極19の一部に、他の大部分よりもピッチpが狭くなる狭ピッチ部、または他の大部分よりもピッチpが広くなる広ピッチ部が設けられてもよい。
なお、以下において、ピッチpという場合、特に断りがない限りは、上記のような狭ピッチ部または広ピッチ部のような特異な部分を除いた部分(複数の電極指27の大部分)のピッチをいうものとする。また、特異な部分を除いた大部分の複数の電極指27においても、ピッチが変化しているような場合においては、大部分の複数の電極指27のピッチの平均値をピッチpの値として用いてよい。そいて、このピッチpの2倍の値を波長λとする。
電極指27の本数は、共振子15に要求される電気特性等に応じて適宜に設定されてよい。なお、図2は模式図であることから、電極指27の本数は少なく示されている。後述する反射器21のストリップ電極33についても同様である。
複数の電極指27の長さおよび幅は、要求される電気特性等に応じて適宜に設定されてよい。
ダミー電極29は、例えば、概ね一定の幅で弾性波の伝搬方向に直交する方向に突出している。複数のダミー電極29は、複数の電極指27と同等のピッチで配列されており、一方の櫛歯電極23のダミー電極29の先端は、他方の櫛歯電極23の電極指27の先端とギャップを介して対向している。なお、IDT電極19は、ダミー電極29を含まないものであってもよい。
1対の反射器21は、弾性波の伝搬方向において複数のIDT電極19の両側に位置している。反射器21は、互いに対向する1対のバスバー31と、1対のバスバー31間において延びる複数のストリップ電極33とを含んでいる。
なお、特に図示しないが、LN層7の上面は、導電層9の上から、SiO2やSi34等からなる保護膜によって覆われていてもよい。保護膜はこれらの材料からなる複数層の積層体としてもよい。保護膜は、単に導電層9の腐食を抑制するためのものであってもよいし、温度補償に寄与するものであってもよい。保護膜が設けられる場合等において、IDT電極19および反射器21の上面または下面には、弾性波の反射係数を向上させるために、絶縁体または金属からなる付加膜が設けられてもよい。
図1および図2に示した構成は、適宜にパッケージされてよい。パッケージは、例えば、不図示の基板上に隙間を介してLN層7の上面を対向させるように図示の構成を実装し、その上から樹脂封止するものであってもよいし、LN層7上に箱型のカバーを設けるウェハレベルパッケージ型のものであってもよい。
(スラブモードの利用)
LN層7は、比較的薄くされ、かつそのオイラー角(φ,θ,ψ)が(0°±10°,−25°〜15°,0°〜360°)とされていることから、スラブモードの弾性波を利用可能になっている。スラブモードの弾性波の伝搬速度(音速)は、一般的なSAW(Surface Acoustic Wave)の伝搬速度よりも速い。例えば、一般的なSAWの伝搬速度が3000〜4000m/sであるのに対して、スラブモードの弾性波の伝搬速度は10000m/s以上である。従って、従来と同等のピッチpで、従来よりも高周波領域での共振を実現することができる。例えば、1μm以上のピッチpで5GHz以上の共振周波数(fr)を実現することができる。
(各層の材料および厚さの設定)
本願発明者は、多層膜5の材料および厚さ、圧電体層(本実施形態ではLN層7)のオイラー角、材料および厚さ、ならびに導電層9の厚さを種々変更して、弾性波装置1の周波数特性についてシミュレーション計算を行った。そして、スラブモードの弾性波を利用して比較的高い周波数領域(例えば5GHz以上)の共振を実現できる条件を見出した。具体的には、以下のとおりである。
(LN層7の伝搬角について)
まず、圧電体層(LN層7)のカット角および伝搬角を種々変更してシミュレーションを行なった。その結果、オイラー角(φ,θ,ψ)において、カット角に関するφ,θをそれぞれ0°±10°、−25°〜15°とすることで、スラブモードの弾性波を利用して比較的高い周波数領域の共振を実現できることを見出した。さらに、LN層7が0.3λ以下であり、かつ、φ,θがこの範囲内にある場合には、伝搬角に関するψに制限はないことを見出した。
まず、LN層7のオイラー角を振ってシミュレーションを行ない、比較的高い高周波領域での共振を実現でき、かつ、frおよび反共振周波数(fa)近傍にスプリアスが存在しないLN層7のオイラー角として(0,0,0)を見出した。なお、LN層7の厚みは0.1875λ、低音速層11の厚みを0.09λ,高音速層13の厚みを0.07λ,導電層9の厚みを0.06λ、ピッチpを1μm、Duty0.5としている。
次に、オイラー角(0,0,0)からφ,θを変化させた場合について検討する。その結果、φを±10°を超えて変化させると共振波形が崩れることが分かった。また、θを変化させたときの周波数特性の測定結果を、図3(a)〜図3(c)に示す。図3(a)はインピーダンス特性、図3(b)は位相特性を示し、図3(c)はθを変化させたときのfrとfaとの差分(Δf)の変化の様子を示す図である。図3(a),図3(b)において横軸は周波数であり、縦軸は図3(a)がインピーダンスの絶対値であり、図3(b)は位相である。また、図3(c)において、横軸はθであり、縦軸はΔfを示している。
図からも明らかなように、θを−25°より小さくするとLN結晶を使っているにも拘わらず、Δfがタンタル酸リチウム(LT)結晶を用いた場合と同等以下となる。また、15°より大きくすると、frとfaとの近傍にスプリアスが生じることが分かった。以上より、θを、−25°〜15°とすればΔfが大きく、かつスプリアスの影響を低減した弾性波素子を得ることができる。
次に、ψを変化させてシミュレーションを行なった。その結果を、図4に示す。図4(a)はインピーダンス特性を、図4(b)は位相特性を、図4(c)はfrを、図4(d)はΔfおよびfrとfaとの間の最大位相値(MaxPhase)を示している。
この図からも明らかなように、ψを変更してもスプリアスは発生せず、MaxPhaseも変化することがなかった。すなわち、ψによるロスの悪化は確認されなかった。なお、Δfは周期的な変動があるものの、変動の中心値は変化せず、その変動幅は5MHz未満の極めて小さい値であり、かつ、Δfの絶対値はLTに比べて十分に大きい値を維持していることが分かった。さらに、frに注目すると、60°周期で変動しており、30°+60°×n1(ただし、n1は0〜5までの自然数)のときに最大値をとり、0°+60°×n2(ただし、n2は0〜5までの自然数)のときに最小値をとり、その差は15MHz程度であった。
このことから、図1に示す共振子15を複数設け、互いに伝搬角(電極指の繰り返し配列方向)を異ならせてもよい。例えば、複数の共振子15をラダー型に接続してフィルタを形成するときに、直列共振子の伝搬角を並列共振子の伝搬角とを異ならせてもよい。具体的には、直列共振子の伝搬角を15°〜45°,75°〜105°,135°〜165°,195°〜225°、255°〜285°、315°〜345°のいずれかとし、並列共振子の伝搬角を―15°(345°)〜15°,45°〜75°,105°〜135°,165°〜195°,225°〜255°,285°〜315°としてもよい。ただし、直列共振子の角度範囲では上限値下限値を含み、並列共振子の角度範囲では上限値下限値を含まないものとする。
より好ましくは、直列共振子の伝搬角は、20°+60°×n1以上40°+60°×n1以下とし、並列共振子の伝搬角は、−10°+60°×n2以上10°+60°×n2以下としてもよい。以下、伝搬角としてψで表示することがある。
このような構成とすることで、電極指のピッチpによるfr制御に加え、伝搬角の違いによってもfrを変化させることができるので、設計が容易となる。例えば、ピッチpを小さくしなくても、さらにfrを高周波数側に移動させることができる。また、LN層7の厚みや多層膜5の各層の厚みは電極指27のピッチpにより最適化されるが、frの異なる共振子15が複数存在する場合にも各共振子15のピッチpを近付けることができるので、高性能な弾性波装置を提供することができる。
具体的には、図5(a)に示すように、直列共振子15S(第1共振子)はψが90°となるように配置し、並列共振子15P(第2共振子)はψが0°となるように配置してもよい。すなわち、直列共振子15Sと並列共振子15Pとは90°向きが異なる。この場合には、フィルタを構成する複数の共振子15のレイアウトの自由度を高めることができる。
さらに、図5(b)に示すように、直列共振子15Sはψが30°,90°となるように配置し、並列共振子15Pはψが0°,60°となるように配置してもよい。この場合にはさらにレイアウトの自由度が高まる。
また、上述の例では、直列共振子15Sと並列共振子15Pとで伝搬角を異ならせたが、直列共振子間,並列共振子間で伝搬角を異ならせてもよい。ラダー型フィルタにおいて、フィルタの肩特性を向上させるためや、帯域外減衰特性を調整するために、直列共振子間、並列共振子間でfrを異ならせることがある。この調整に伝搬角を利用してもよい。
図5(c)に直列共振子間で伝搬角(ψ)を異ならせた場合を示す。直列共振子15Sの中に第1直列共振子15S1(第1共振子)、第2直列共振子15S2(第2共振子)が存在するようにしてもよい。このような構成とすることで同一のピッチで異なるfrを有する共振子を実現できるので、例えば、特定の共振子でピッチが小さくなり電力が集中することで耐電力性が低下することを抑制することができる。
また、図5(a)〜図5(c)に示すように、隣り合う共振子間で伝搬角が異なるように配置する場合には、共振子から漏洩する弾性波が分散され、その結果、一方が他方の共振子のスプリアス特性を悪化させることを低減することができる。ここで、隣り合う共振子とは、互いの共振子の間に他の共振子が位置しないことをいい、隣り合う方向は限定されない。ただし、伝搬方向の延長線上に位置する共振子同士で伝搬角を異ならせる場合には、上述の効果が強まる。
なお、図5において、共振子15を矩形状で示しており、長辺側が伝搬方向を示すものとする。参考までに、図5中において、各共振子における伝搬方向、すなわち、電極指の繰り返し配列方向を、共振子を表す矩形中に矢印で示すことがある。
なお、上述のような伝搬角を変化させてもMaxphase、Δf、スプリアス等の特性変化がないという特性は、LN層7を用い、かつその厚みが0.3λ以下であるときに初めて発現するものである。以下、上述の条件を満たさない場合の伝搬角の影響について検証した結果を示す。
比較例1として、LN層7として厚いLN基板を用い、かつ多層膜5を備えない構成以外は上記実施形態と同等の構成の共振子を作り、伝搬角を異ならせてその特性を測定した。
また、比較例2として、比較例1からLN基板のオイラー角を(0,38,ψ)に変更した構成の共振子を作り、伝搬角を異ならせてその特性を測定した。なお、このオイラー角はLN基板で一般的に用いられるカット角に相当する。
さらに、比較例1−2として、比較例1のLN基板の厚みを0.5λとし、その下面にSi基板を配置した構成の共振子を作り、伝搬角を異ならせてその特性を測定した。
同様に、比較例2−2として、比較例2のLN基板の厚みを0.5λとし、その下面にSi基板を配置した構成の共振子を作り、伝搬角を異ならせてその特性を測定した。
図6に、比較例1,1−2,2,2−1の位相特性と伝搬角との相関,Δfと伝搬角との相関を線図で示す。いずれの場合も、スラブモードの弾性波が確認できず、共振周波数は2MHz台を取ることが確認された。すなわち、上述の実施形態とは取り扱う弾性波の種類が異なることを確認した。
さらに、いずれの場合であっても伝搬角を変化させることでスプリアスが発生したり、Δfが小さくなったり、MaxPhaseが悪化したりして、伝搬角度0°以外を用いることはできないことが確認できる。なお、圧電層としてLTを用いた場合についても同様に確認したが、伝搬角による特性変化は顕著であった。
(LN層の厚み)
次に、LN層7の厚みを種々変化させたときの弾性波素子の特性を測定した。具体的には、LN層7の厚みを0.115λから0.2225λまで変化させたときの、インピーダンス特性を図7(a)に、位相特性を図7(b)に、Δfの値を図7(c)にそれぞれ示した。図7はLN層の厚みを異ならせた場合の図3に相当する図である。
図7からも明らかなように、0.1175λ未満の場合にはΔfが小さくなりLNを用いる必要がなくなる。また、0.22λを超える場合にはスプリアスが発生する。以上より、LN層7の厚みは0.1175λ以上0.22λ以下としてもよい。なお、図3に示す特性はLN層7の厚みを0.1875λとしたものである。
(多層膜の材料)
次に、多層膜5の材料を種々変更してシミュレーションを行った結果、多層膜5の材料としてSiO2およびTa25を用いることによって、スラブモードの弾性波を利用して比較的高い周波数領域の共振を実現できることを見出した。
そして、高音速層13の厚みを0.07λとして低音速層11の厚みを変化させたときのシミュレーション結果を図8(a),図8(b)に示す。図8(a)はインピーダンス特性を、図8(b)は位相特性と示している。これらの図において、横軸は周波数を示しており、縦軸は図8(a)はインピーダンスの絶対値を、図8(b)は位相をそれぞれ示している。
図8からも明らかなように、低音速層11の厚みが波長λの6.5%未満となるとスプリアスが近接してfr近傍の位相特性が劣化する。波長λの13.75%を超えるとfr−fa間にスプリアスが発生してしまう。以上より、低音速層11の厚みは0.065λ以上0.1375λ以下としてもよい。
同様に、低音速層11の厚みを0.09λとして高音速層13の厚みを変化させたときのシミユレーション結果を図9(a),図9(b)に示す。図9(a),図9(b)は図8(a),図8(b)に相当する図である。
図9からも明らかなように、高音速層13の厚みが波長λの5.5%未満となるとスプリアスが近接してfr近傍の位相特性が劣化する。一方で、波長λの11.75%を超えるとΔfが小さくなる。以上より、高音速層13の厚みは0.055λ以上0.1175λ以下としてもよい。
また、多層膜5を構成する各層の表面粗さは、LN層7から基板3に近付くにつれ大きくなるようにしてもよい。より具体的には、低音速層11のうちLN層7に接する層の表面粗さは、最も基板3側に位置する層に比べ小さくなっている。このような構成とすることで、LN層3から伝達されるバルク波を散乱することができる。
(導電層9の厚み)
次に、導電層9の厚みを変化させたときの弾性波素子のインピーダンス特性,位相特性をシミレーションした。その結果を図10に示す。図10(a),図10(b)はそれぞれ、図9(a),図9(b)に相当する図である。図10からも明らかなように、導電層9の厚みが0.875λを超えるとスプリアスが発生することが分かった。また、導電層の厚みが0.01λ未満となるとシミュレーション上では確認できないが、実際には電極抵抗が大きくなり特性が悪化する虞がある。そこで、導電層9の厚みは0.01λ以上0.0875λ以下としてもよい。
(弾性波装置の製造方法)
弾性波装置1は、公知の種々の工程を組み合わせて製造されてよい。例えば、基板3となるウェハ上に、CVD(chemical vapor deposition)等の薄膜形成法によって、低音速層11および高音速層13を順次形成していく。一方で、一般的なLN基板のウェハと同様の作製工程によってLN層7となるウェハを準備しておく。そして、LN層7となるウェハを、基板3および多層膜5となるウェハに対して貼り合わせる。貼り合わせでは、多層膜5の最上層(例えばSiO2層)に対してLN層7を直接に当接させる。その当接の前または後に熱処理等がなされてもよい。その後、LN層7となるウェハの上面に対して導電層9となる金属層の形成およびパターニングが行われ、ウェハがダイシングされる。これにより、弾性波装置1が作製される。パッケージの態様等に応じて適宜な工程が追加されてよいことはもちろんである。
(弾性波装置の変形例)
上述の例では、多層膜5でスラブモードの弾性波(板波)をLN層7に閉じ込める構成を用いて説明したが、この限りではない。
例えば、図13に示すように、多層膜を備えない弾性波装置1Aとしてもよい。弾性波装置1Aは、LN層7が基板3に支持されている点は弾性波装置1と同様だが、多層膜5はなく、LN層7のうちIDT電極19が位置する領域と基板3との間に空隙が位置するメンブレン形状となっている。この空隙により弾性波をLN層7に閉じ込めることができる。
以下、弾性波装置1と異なる点のみ説明する。
図13において、基板3の上面には凹部3aが形成されている。上面視でこの凹部3aと、IDT電極19とが重なるように、基板3上に直接または間接的にLN層7が接合されている。
図14,図15に弾性波装置1Aの図4に相当する図を示す。弾性波装置1Aの基本構成は、LN層7のオイラー角は(0,0,ψ)、LN層7の厚みは0.185λ、導電層9の厚みを0.065λ、ピッチpを1μm、Duty0.5としている。
図14(a),図14(b)には、ψを変化させたときのインピーダンス特性および位相特性を示す。図15(a),図15(b),図15(c)には、ψを変化させたときのfr、Δf、最大位相値を示している。図14,図15からも明らかなように、ダイン背波装置1Aは、弾性波装置1と同様に、ψ(伝搬角)を変化させた場合であっても、fr、Δf、最大位相値の変動が少ないことが確認できた。
なお、図13に示す例は、基板3に凹部を設けた構成としたが、これに限定されない。例えば、上面が平坦な基板3の上面にスペーサーとして機能する凸部を設け、凸部上にLN層を配置してもよい。凸部は、基板3と別材料で形成してもよい。
また、図13において、凹部3aは、1つの共振子に対して1つの凹部3aを設けてもよいし、複数の共振子に耐宇する凹部3aを設けてもよい。基板3の材料は特に限定されないが、加工容易性を鑑みてSi基板を用いてもよい。
(弾性波装置の利用例:分波器)
図11は、弾性波装置1の利用例としての分波器101の構成を模式的に示す回路図である。この図の紙面左上に示された符号から理解されるように、この図では、櫛歯電極23が二叉のフォーク形状によって模式的に示され、反射器21は両端が屈曲した1本の線で表わされている。
分波器101は、例えば、送信端子105からの送信信号をフィルタリングしてアンテナ端子103へ出力する送信フィルタ109と、アンテナ端子103からの受信信号をフィルタリングして1対の受信端子107に出力する受信フィルタ111とを有している。
送信フィルタ109は、例えば、複数の共振子15がラダー型に接続されて構成された、ラダー型フィルタによって構成されている。すなわち、送信フィルタ109は、送信端子105とアンテナ端子103との間に直列に接続された複数(1つでも可)の共振子15と、その直列のライン(直列腕)と基準電位とを接続する複数(1つでも可)の共振子15(並列腕)とを有している。なお、送信フィルタ109を構成する複数の共振子15は、例えば、同一の固着基板2(3、5および7)に設けられている。
受信フィルタ111は、例えば、共振子15と、多重モード型フィルタ(ダブルモード型フィルタを含むものとする。)113とを含んで構成されている。多重モード型フィルタ113は、弾性波の伝搬方向に配列された複数(図示の例では3つ)のIDT電極19と、その両側に配置された1対の反射器21とを有している。なお、受信フィルタ111を構成する共振子15および多重モード型フィルタ113は、例えば、同一の固着基板2に設けられている。
なお、送信フィルタ109および受信フィルタ111は、同一の固着基板2に設けられていてもよいし、互いに異なる固着基板2に設けられていてもよい。図11は、あくまで分波器101の構成の一例であり、例えば、受信フィルタ111が送信フィルタ109と同様にラダー型フィルタによって構成されるなどしてもよい。
なお、分波器101として、送信フィルタ109と受信フィルタ111とを備える場合について説明したが、これに限定されない。例えば、ダイプレクサでもよいし、3以上のフィルタを含んだマルチプレクサであってもよい。
(弾性波装置の利用例:通信装置)
図12は、弾性波装置1(分波器101)の利用例としての通信装置151の要部を示すブロック図である。通信装置151は、電波を利用した無線通信を行うものであり、分波器101を含んでいる。
通信装置151において、送信すべき情報を含む送信情報信号TISは、RF−IC(Radio Frequency Integrated Circuit)153によって変調および周波数の引き上げ(搬送波周波数の高周波信号への変換)がなされて送信信号TSとされる。送信信号TSは、バンドパスフィルタ155によって送信用の通過帯以外の不要成分が除去され、増幅器157によって増幅されて分波器101(送信端子105)に入力される。そして、分波器101(送信フィルタ109)は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去し、その除去後の送信信号TSをアンテナ端子103からアンテナ159に出力する。アンテナ159は、入力された電気信号(送信信号TS)を無線信号(電波)に変換して送信する。
また、通信装置151において、アンテナ159によって受信された無線信号(電波)は、アンテナ159によって電気信号(受信信号RS)に変換されて分波器101(アンテナ端子103)に入力される。分波器101(受信フィルタ111)は、入力された受信信号RSから受信用の通過帯以外の不要成分を除去して受信端子107から増幅器161へ出力する。出力された受信信号RSは、増幅器161によって増幅され、バンドパスフィルタ163によって受信用の通過帯以外の不要成分が除去される。そして、受信信号RSは、RF−IC153によって周波数の引き下げおよび復調がなされて受信情報信号RISとされる。
なお、送信情報信号TISおよび受信情報信号RISは、適宜な情報を含む低周波信号(ベースバンド信号)でよく、例えば、アナログの音声信号もしくはデジタル化された音声信号である。無線信号の通過帯は、適宜に設定されてよく、本実施形態では、比較的高周波の通過帯(例えば5GHz以上)も可能である。変調方式は、位相変調、振幅変調、周波数変調もしくはこれらのいずれか2つ以上の組み合わせのいずれであってもよい。回路方式は、図12では、ダイレクトコンバージョン方式を例示したが、それ以外の適宜なものとされてよく、例えば、ダブルスーパーヘテロダイン方式であってもよい。また、図12は、要部のみを模式的に示すものであり、適宜な位置にローパスフィルタやアイソレータ等が追加されてもよいし、また、増幅器等の位置が変更されてもよい。
本発明は、以上の実施形態に限定されず、種々の態様で実施されてよい。例えば、各層の厚さおよびLN層のオイラー角は、実施形態で例示した範囲外の値とされてもよい。
1…弾性波装置、3…基板、5…多層膜、7…LN層、19…IDT電極、11…SiO2層、13…Ta25層。

Claims (10)

  1. LiNbO3の単結晶により構成されているLN層と、
    前記LN層上に位置しているIDT電極を備える、複数の共振子と、
    を有しており、
    前記LN層の厚さが、前記IDT電極の電極指のピッチの2倍をλとしたときに、0.3λ以下であり、
    前記LN層のオイラー角(φ,θ,ψ)が、(0°±10°,−25°以上15°以下,0°以上360°)であり、
    前記複数の共振子は第1共振子と第2共振子とを含み、
    前記第1共振子の伝搬角と前記第2共振子の伝搬角とが10°以上の差で異なる、
    弾性波装置。
  2. 前記複数の共振子は、ラダー型フィルタを構成しており、
    直列共振子に前記第1共振子を用い、並列共振子に前記第2共振子を用い、
    n1,n2を0〜5までの自然数としたときに、前記第1共振子は、伝搬角が20°+60°×n1以上40°+60°×n1以下であり、前記第2共振子は、伝搬角が−10°+60°×n2以上10°+60°×n2以下である、請求項1に記載の弾性波装置。
  3. 前記第1共振子と前記第2共振子との間に他の共振子がない、請求項1または2に記載の弾性波装置。
  4. 基板と、
    前記基板上に位置している多層膜と、を備え、
    前記IDT電極は、前記多層膜上に位置している、請求項1〜3のいずれかに記載の弾性波装置。
  5. 前記多層膜は、低音速層と高音速層とを備え、前記低音速層はSiO2からなり、前記高音速層はTa25からなる、請求項4に記載の弾性波装置。
  6. 前記LN層の厚さが、0.1175λ以上0.22λ以下であり、
    前記低音速層の厚さが、0.065λ以上0.1375λ以下であり、
    前記高音速層の厚さが、0.055λ以上0.1175λ以下である
    請求項5に記載の弾性波装置。
  7. 前記多層膜は、第1層と前記第1層よりも前記基板側に位置する第2層とを備え、前記第1層は前記第2層に比べ表面粗さが小さい、請求項4〜6のいずれかに記載の弾性波装置。
  8. 前記LN層を支持する基板を備え、
    前記LN層のうち前記複数の共振子が位置する領域と、前記基板との間には空隙がある、請求項1〜3のいずれかに記載の弾性波装置。
  9. アンテナ端子と、
    前記アンテナ端子へ出力される信号をフィルタリングする送信フィルタと、
    前記アンテナ端子から入力される信号をフィルタリングする受信フィルタと、
    を有しており、
    前記送信フィルタおよび前記受信フィルタの少なくとも一方が請求項1〜8のいずれか1項に記載の弾性波装置を含んでいる
    分波器。
  10. アンテナと、
    前記アンテナに前記アンテナ端子が接続されている請求項9に記載の分波器と、
    前記送信フィルタおよび前記受信フィルタに対して信号経路に関して前記アンテナ端子とは反対側に接続されているICと、
    を有している通信装置。
JP2020550191A 2018-12-21 2019-12-20 弾性波装置、分波器および通信装置 Active JP6856825B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018239125 2018-12-21
JP2018239125 2018-12-21
PCT/JP2019/050045 WO2020130128A1 (ja) 2018-12-21 2019-12-20 弾性波装置、分波器および通信装置

Publications (2)

Publication Number Publication Date
JPWO2020130128A1 JPWO2020130128A1 (ja) 2021-02-15
JP6856825B2 true JP6856825B2 (ja) 2021-04-14

Family

ID=71101295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020550191A Active JP6856825B2 (ja) 2018-12-21 2019-12-20 弾性波装置、分波器および通信装置

Country Status (4)

Country Link
US (1) US20220069803A1 (ja)
JP (1) JP6856825B2 (ja)
CN (1) CN113302840A (ja)
WO (1) WO2020130128A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169724A (zh) * 2018-12-06 2021-07-23 株式会社村田制作所 弹性波装置
WO2021187537A1 (ja) * 2020-03-18 2021-09-23 株式会社村田製作所 弾性波装置
CN116057835A (zh) * 2020-09-09 2023-05-02 株式会社村田制作所 弹性波装置
WO2022054372A1 (ja) * 2020-09-10 2022-03-17 日本碍子株式会社 弾性波デバイス用複合基板
WO2022059759A1 (ja) * 2020-09-16 2022-03-24 株式会社村田製作所 弾性波装置
WO2022075415A1 (ja) * 2020-10-08 2022-04-14 株式会社村田製作所 弾性波装置
CN116671009A (zh) * 2020-12-23 2023-08-29 株式会社村田制作所 弹性波装置
JP6935573B1 (ja) * 2020-12-23 2021-09-15 日本碍子株式会社 複合基板および弾性表面波素子
JPWO2023033032A1 (ja) * 2021-08-31 2023-03-09
CN118140415A (zh) * 2021-10-07 2024-06-04 株式会社村田制作所 弹性波元件的制造方法及弹性波元件
WO2023145878A1 (ja) * 2022-01-27 2023-08-03 株式会社村田製作所 弾性波装置
WO2024014204A1 (ja) * 2022-07-13 2024-01-18 株式会社村田製作所 弾性波装置
WO2024043343A1 (ja) * 2022-08-26 2024-02-29 株式会社村田製作所 弾性波装置
WO2024128164A1 (ja) * 2022-12-12 2024-06-20 京セラ株式会社 弾性波装置、フィルタ、および通信装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4419961B2 (ja) * 2003-12-16 2010-02-24 株式会社村田製作所 弾性境界波装置
JP4483785B2 (ja) * 2004-01-13 2010-06-16 株式会社村田製作所 弾性境界波装置
JP4553047B2 (ja) * 2008-03-12 2010-09-29 セイコーエプソン株式会社 ラム波型共振子及び発振器
EP2299595A4 (en) * 2008-06-30 2013-01-23 Murata Manufacturing Co NOTCH FILTER
JP5392258B2 (ja) * 2008-07-11 2014-01-22 パナソニック株式会社 板波素子と、これを用いた電子機器
JP5176863B2 (ja) * 2008-10-21 2013-04-03 株式会社村田製作所 弾性波装置
JP5367612B2 (ja) * 2009-02-17 2013-12-11 日本碍子株式会社 ラム波装置
JP2010278830A (ja) * 2009-05-29 2010-12-09 Murata Mfg Co Ltd ラダー型フィルタ及びその製造方法並びにデュプレクサ
WO2012073871A1 (ja) * 2010-11-30 2012-06-07 株式会社村田製作所 弾性波装置及びその製造方法
WO2012086441A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
WO2013080461A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ラダー型弾性波フィルタと、これを用いたアンテナ共用器
CN105684308B (zh) * 2013-10-31 2019-04-19 京瓷株式会社 弹性波元件、滤波器元件以及通信装置
WO2016052129A1 (ja) * 2014-09-30 2016-04-07 株式会社村田製作所 弾性波装置及びその製造方法
WO2016129662A1 (ja) * 2015-02-13 2016-08-18 京セラ株式会社 弾性波装置、分波器および通信装置
CN107852144B (zh) * 2015-10-30 2021-12-10 京瓷株式会社 弹性波谐振器、弹性波滤波器、分波器、通信装置以及弹性波谐振器的设计方法
JP2018056630A (ja) * 2016-09-26 2018-04-05 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
JP6809595B2 (ja) * 2017-02-21 2021-01-06 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
JP2018182615A (ja) * 2017-04-18 2018-11-15 株式会社村田製作所 弾性波装置
JP6662490B2 (ja) * 2017-04-26 2020-03-11 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
WO2020130128A1 (ja) 2020-06-25
CN113302840A (zh) 2021-08-24
JPWO2020130128A1 (ja) 2021-02-15
US20220069803A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP6856825B2 (ja) 弾性波装置、分波器および通信装置
JP7433268B2 (ja) 弾性波装置、分波器および通信装置
JP6806907B2 (ja) 弾性波装置、分波器および通信装置
JP7278305B2 (ja) 弾性波装置、分波器および通信装置
JP6854891B2 (ja) 弾性波装置、分波器および通信装置
CN107204750B (zh) 声波器件
JP6994855B2 (ja) 弾性波素子、分波器および通信装置
WO2022045307A1 (ja) 弾性波素子及び通信装置
JP2019201345A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
US11863155B2 (en) Surface acoustic wave element
JP2023134855A (ja) 弾性波フィルタ及び通信装置
JP2019180064A (ja) 弾性波フィルタ、分波器および通信装置
WO2021020102A1 (ja) 弾性波装置及び通信装置
JP2019192994A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
JP7037439B2 (ja) 弾性波素子、分波器および通信装置
WO2024034528A1 (ja) 弾性波装置、複合フィルタ及び通信装置
WO2023286704A1 (ja) 弾性波装置、フィルタ、分波器及び通信装置
WO2023210524A1 (ja) 弾性波素子及び通信装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200916

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210318

R150 Certificate of patent or registration of utility model

Ref document number: 6856825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150