WO2010122601A1 - 電池用電極の製造方法及びそれに用いる塗工ダイ - Google Patents

電池用電極の製造方法及びそれに用いる塗工ダイ Download PDF

Info

Publication number
WO2010122601A1
WO2010122601A1 PCT/JP2009/001835 JP2009001835W WO2010122601A1 WO 2010122601 A1 WO2010122601 A1 WO 2010122601A1 JP 2009001835 W JP2009001835 W JP 2009001835W WO 2010122601 A1 WO2010122601 A1 WO 2010122601A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
current collector
collector foil
drying
electrode
Prior art date
Application number
PCT/JP2009/001835
Other languages
English (en)
French (fr)
Inventor
内田陽三
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09843602.5A priority Critical patent/EP2424010B1/en
Priority to JP2011510090A priority patent/JP5348244B2/ja
Priority to US13/132,707 priority patent/US8962098B2/en
Priority to KR1020117018437A priority patent/KR101220605B1/ko
Priority to PCT/JP2009/001835 priority patent/WO2010122601A1/ja
Priority to CN200980154153.9A priority patent/CN102405544B/zh
Publication of WO2010122601A1 publication Critical patent/WO2010122601A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery electrode manufacturing method and a coating die used therefor, and more particularly to a technique for applying a paste-like mixture to a current collector foil constituting a battery electrode.
  • An object of the present invention is to provide a battery electrode manufacturing method capable of improving the peel strength between a current collector foil and a mixture, and a coating die used therefor while realizing high-speed drying. .
  • a mixture containing an electrode active material and a binder is applied to the surface of a sheet-like current collector foil, and the mixture is dried.
  • a method of manufacturing a battery electrode by bonding the current collector foil and the mixture, the step of coating the mixture on one side of the current collector foil, And drying the processed mixture. In the coating step, the mixture is irradiated with laser light.
  • the laser beam is applied to the interface between the mixture and the current collector foil.
  • the laser light preferably has a wavelength that resonates with the water.
  • a coating die according to a second aspect of the present invention is used for a coating step in the method for manufacturing a battery electrode, and has a manifold for temporarily storing the mixture, and the laser beam is emitted from the coating die.
  • the laser oscillator to be irradiated is disposed in the vicinity of the manifold.
  • the peel strength between the current collector foil and the mixture can be improved while realizing high-speed drying.
  • the electrode 1 is a positive electrode or a negative electrode used for a battery such as a lithium ion secondary battery, a nickel metal hydride battery, or a nickel cadmium battery.
  • the electrode 1 is formed by applying the mixture 3 on one side (or both sides) of the current collector foil 2, drying the mixture 3, and collecting the current collector foil 2 and the mixture 3. After bonding, it is manufactured through a process such as a roll press.
  • the current collector foil 2 is a current collecting element made of a sheet-like metal foil.
  • an aluminum foil is used for a positive electrode of a lithium ion secondary battery, and a copper foil is used for a negative electrode.
  • the mixture 3 is a paste-like electrode material including an electrode active material (positive electrode active material or negative electrode active material) 4, a binder 5, a thickener 6, a conductive agent, and the like. More precisely, the mixture 3 is an electrode material configured by uniformly kneading the above constituent materials and forming a paste with water or an organic solvent.
  • the electrode active material 4 is an electrochemical reaction material that constitutes the positive electrode and the negative electrode of the battery, and is charged and discharged by a chemical reaction in the electrode active material 4.
  • the positive electrode active material include LiMPO 4 and LiMO 2 that are composite oxides of lithium and a transition metal
  • examples of the negative electrode active material include graphite and amorphous carbon.
  • the binder 5 is a substance for imparting shape stability of the electrode active material 4, and is a substance responsible for bonding between the electrode active material 4 and the current collector foil 2.
  • Examples of the binder 5 include chemically and electrochemically stable organic polymer compounds such as SBR (styrene butadiene rubber) as an aqueous solvent and PVDF (polyvinylidene fluoride) as an organic solvent.
  • the thickener 6 is a substance that improves the dispersion stability of the electrode active material 4 during kneading.
  • Examples of the thickener 6 include CMC (carboxymethyl cellulose).
  • the conductive agent is a substance that is added to the electrode active material 4 to enhance conductivity.
  • the conductive agent has a structural viscosity.
  • Examples of the conductive agent include carbon or metal powders having good conductivity such as AB (acetylene black) and CB (carbon black).
  • the constituent materials of the mixture 3 are not limited to those described above, and other materials may be used depending on the application of the electrode 1 or the like.
  • electrode manufacturing process S1 which manufactures the electrode 1 is demonstrated.
  • the mixture 3 is applied to the surface (coating surface) of the current collector foil 2 by the coating die 20.
  • the mixture 3 is dried in the drying furnace 30. After the mixture 3 is dried and bonded to the current collector foil 2, it is manufactured as a product (electrode 1) through an appropriate treatment such as a roll press.
  • the conveyance roller 10 is a roller that can be rotationally driven at a predetermined rotational speed, and conveys the current collector foil 2 while supporting the back surface (side surface opposite to the coating surface).
  • the rotation speed of the conveyance roller 10 is controlled by an appropriate control device, and thereby the conveyance speed of the current collector foil 2 by the conveyance roller 10 is controlled.
  • the conveyance speed of the current collector foil 2 by the conveyance roller 10 is set to a high speed (for example, 60 (m / min)).
  • the coating die 20 discharges a predetermined amount of the mixture 3 toward the surface of the current collector foil 2 and coats the surface of the current collector foil 2 with the mixture 3.
  • the coating die 20 is disposed to face one surface of the current collector foil 2 conveyed by the conveying roller 10.
  • the discharge amount of the mixture 3 by the coating die 20 is controlled by an appropriate control device, and is set according to the rotation speed of the transport roller 10.
  • the drying furnace 30 is a furnace provided along the conveyance path of the current collector foil 2 and has a predetermined furnace length.
  • the drying furnace 30 coats the surface of the current collector foil 2 by blowing hot air of a predetermined temperature and air volume (predetermined heat amount) toward one surface (or both surfaces) of the current collector foil 2 toward the current collector foil 2.
  • the prepared mixture 3 is heated and dried.
  • the amount of heat applied to the mixture 3 by the drying furnace 30 is controlled by an appropriate control device, and is set so that the water content or the solvent content of the mixture 3 becomes a predetermined value or less after passing through the drying furnace 30. Is done.
  • the drying speed of the mixture 3 by the drying furnace 30 depends on the amount of heat applied to the mixture 3 in the drying furnace 30. Further, since the time for passing through the drying furnace 30 varies depending on the conveying speed of the current collector foil 2 by the conveying roller 10, the conveying speed of the current collector foil 2 in the drying furnace 30 by the conveying roller 10 is also the drying of the mixture 3. Related to speed. That is, the drying speed of the solvent contained in the mixture 3 in the drying furnace 30 is controlled by the transport speed of the current collector foil 2 by the transport roller 10 and the amount of heat per unit time applied by the drying furnace 30. ing. In the present embodiment, the drying speed of the mixture 3 by the drying furnace 30 is set to a high speed in consideration of the productivity and cost of the electrode 1.
  • “setting the drying speed to be high” means that the drying speed of the mixture 3 in the drying furnace 30 is set to a speed greater than the lowest speed at which migration occurs in the mixture 3.
  • “setting the drying speed high” migration occurs in the mixture 3 when the mixture 3 is dried.
  • migration refers to a phenomenon in which convection occurs in the moisture in the mixture 3 when the mixture 3 is dried, and components such as the binder 5 contained in the mixture 3 move in the mixture 3.
  • the coating die 20 is a coating machine used in the coating process in the electrode manufacturing process S ⁇ b> 1, and applies the mixture 3 by discharging the mixture 3 onto the current collector foil 2.
  • the coating die 20 is made of a metal material such as stainless steel or aluminum having high thermal conductivity, and includes a main body 21, a discharge port 22, a manifold 23, laser oscillators 24, 24,. ⁇ ⁇ Etc.
  • the main body 21 is a main structure constituting the coating die 20.
  • the discharge port 22 and the manifold 23 are formed in the main body 21, and the laser oscillators 24, 24... Are detachably attached to the main body 21.
  • the discharge port 22 is a slit-like opening provided at the tip of the main body 21 and is formed to have a predetermined coating width.
  • the mixture 3 is discharged through the discharge port 22.
  • the discharge port 22 is provided so as to protrude from the main body portion 21 in the discharge direction.
  • the manifold 23 is a space communicating with the discharge port 22 and temporarily stores the mixture 3.
  • the manifold 23 is provided in the middle of the main body 21 and is formed as an internal space having the same width as the coating width of the discharge port 22.
  • the mixture 3 supplied to the coating die 20 is expanded toward a coating width corresponding to the discharge port 22 in the manifold 23 and then supplied toward the discharge port 22.
  • the mixture 3 is supplied to the manifold 23 at a normal temperature (about 25 to 30 ° C.).
  • Each laser oscillator 24 is a device for generating laser light having a predetermined wavelength and irradiating the generated laser light.
  • the current collector foil 2 in the mixture 3. A laser beam is irradiated toward the interface with the surface of the substrate.
  • each laser oscillator 24 lasers to the interface between the mixture 3 and the current collector foil 2 in the coating portion of the mixture 3 with respect to the current collector foil 2 from the upstream side in the transport direction of the current collector foil 2 from the discharge port 22. Irradiate light.
  • Each laser oscillator 24 is detachably attached to the main body 21 while being arranged along the width direction of the discharge port 22 and is attached so as to be adjustable in angle, between the coating die 20 and the current collector foil 2.
  • the laser beam is irradiated toward the interface between the mixture 3 and the current collector foil 2.
  • the spot of the mixture 3 that has been irradiated with the laser light is locally heated, and drying of the mixture 3 or crystallization of the binder 5 is promoted at the spot.
  • the number of the laser oscillators 24 is not limited, but is appropriately set according to the output of the laser oscillator 24, the performance such as the irradiation range, the coating form of the coating die 20, and the like.
  • the mixture applied to the current collector foil 2 from each laser oscillator 24. 3 is irradiated with a laser beam toward the interface between the mixture 3 and the current collector foil 2, which is a contact surface with the current collector foil 2, to locally heat the mixture 3.
  • drying on the interface side of the mixture 3 is promoted. That is, the fixation of the binder 5 on the interface side with the current collector foil 2 can be promoted, and the binder 5 is likely to be present in the vicinity of the interface between the mixture 3 and the current collector foil 2.
  • Adhesive strength to the current collector foil 2 by the binder 5 is improved.
  • the peel strength between the mixture 3 and the current collector foil 2 can be improved while realizing high-speed drying. Further, drying of the mixture 3 is promoted by laser irradiation from each laser oscillator 24 and the drying efficiency is improved, so that the drying time in the drying furnace 30 can be shortened. Further, the furnace length of the drying furnace 30 can be shortened.
  • the laser light is irradiated from each laser oscillator 24 before being dried in the drying furnace 30 and immediately after being applied from the coating die 20.
  • the interface side of the mixture 3 with the current collector foil 2 is dried.
  • the mixture 3 coated on the current collector foil 2 is dried at high speed in the drying furnace 30, migration occurs in the mixture 3 as described above, and in particular, the coated mixture 3 is the current collector foil 2.
  • the binder 5 in the mixture 3 is migrated so that the surface layer side of the mixture 3 (the side away from the interface between the mixture 3 and the current collector foil 2).
  • the binder 5 can be used for high-speed drying in the drying furnace 30. Is suppressed from being separated from the interface side with the current collector foil 2 due to the influence of the migration occurring in the mixture 3, so that the influence on the binder 5 caused by the migration accompanying the high-speed drying is reduced. it can. Therefore, even when the mixture 3 is dried at a drying speed that is higher than the rate at which migration occurs, the peel strength between the dried mixture 3 and the current collector foil 2 can be improved, so that the drying speed can be increased. it can. As a result, since the drying efficiency of the mixture 3 in the drying furnace 30 can be improved, the drying time can be shortened or the furnace length of the drying furnace 30 can be shortened, so that the running cost of the drying furnace 30 can be reduced.
  • the laser light emitted from each laser oscillator 24 is preferably set so as to be incident at an obtuse angle with respect to the interface between the current collector foil 2 and the mixture 3, and in particular, the current collector foil 2 and the mixture 3 is preferably set so as to be incident at an angle close to a right angle with respect to the interface. That is, it is preferable that the angle formed by the laser light emitted from each laser oscillator 24 with the surface of the current collector foil 2 is large. According to this, the laser beam absorption efficiency of the mixture 3 can be improved, and the drying efficiency of the mixture 3 can be improved. Furthermore, since the reflection of the laser beam on the current collector foil 2 made of a highly reflective metal foil can be suppressed, the output of the laser oscillator 24 can be suppressed low.
  • a semiconductor laser, a gas laser, or the like can be employed as the laser oscillator 24 according to the present embodiment.
  • a gas laser is preferably used from the viewpoint of laser output, and a semiconductor laser is preferably used from a cost viewpoint.
  • the semiconductor laser for example, any one of an infrared laser, an ultraviolet laser, and an infrared laser having a short wavelength and capable of irradiating a high-power laser beam, or a combination thereof can be employed. . That is, it is possible to select an optimal one from the above semiconductor lasers according to the kind of the mixture 3 used in the electrode manufacturing process S1, the constituent material, and the like.
  • the C—C bond contained in the binder 5 of the mixture 3 is favorably broken, and the crystallization (polymerization) of the binder 5 is promoted.
  • an ultraviolet laser having a wavelength of 405 nm, an optical output of 300 mW, a continuous output of 200 mW, and a pulse output of 450 mW is used as the laser oscillator 24.
  • an aqueous paste in other words, a paste obtained by using a solvent as water
  • a semiconductor laser having a wavelength that resonates with water as the laser oscillator 24.
  • the water contained in the mixture 3 resonates due to the irradiation of the laser beam, and the mixture 3 can be efficiently heated, and the output energy of the laser oscillator 24 can be suppressed low.
  • An example of such a semiconductor laser is an InGaAsSb quantum well laser having a wavelength of 2.85 ⁇ m.
  • an infrared laser or an ultraviolet laser is used as the laser oscillator 24, the effect of promoting the drying of the mixture 3 by laser light irradiation is ensured.
  • each laser oscillator 24 is a portion protruding to the outer peripheral side of the main body portion 21 of the coating die 20 (a portion extending to the outer periphery of the main body portion 21 of the coating die 20. , A portion projecting toward the current collector foil 2 side), and is disposed in the vicinity of the manifold 23. Since the mixture 3 in the normal temperature state is continuously supplied to the manifold 23 as described above, the mixture 3 in the manifold 23 functions as a chiller for each laser oscillator 24. That is, the heat generated by the laser oscillator 24, which is a heating element, is transmitted to the main body 21 of the coating die 20, and the heat is absorbed by the mixture 3 supplied to the manifold 23.
  • the laser oscillator 24 can be efficiently cooled without using a separate cooling means, so that a decrease in output due to a temperature increase of the laser oscillator 24 can be suppressed. Accordingly, the output of the laser oscillator 24 can be increased.
  • the present invention can be used in a process of manufacturing an electrode for a battery, and is particularly suitable when the electrode manufacturing process includes a process of drying at a high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、高速乾燥を実現しつつ、集電箔と合剤との間の剥離強度を向上することが可能な電池用電極の製造方法及びそれに用いる塗工ダイを提供することを課題とする。電極製造工程S1は、シート状の集電箔2の表面に、電極活物質4と結着剤5とを含む合剤3を塗工し、合剤3を乾燥させて集電箔2と合剤3とを接着してなる電池用の電極1を製造する方法であって、集電箔2の一側面に、合剤3を塗工する工程と、集電箔2に塗工された合剤3を乾燥する工程とを含み、塗工工程では、集電箔2と合剤3と界面にレーザ光を照射する。これにより、低速乾燥又は高速乾燥に関わらず、合剤3内に含まれる結着剤5を集電箔2との界面で結晶化させることができる。従って、高速乾燥を実現しつつ、集電箔2と合剤3との剥離強度を向上できる。

Description

電池用電極の製造方法及びそれに用いる塗工ダイ
 本発明は、電池用電極の製造方法及びそれに用いる塗工ダイに関し、特に電池用電極を構成する集電箔にペースト状の合剤を塗工する技術に関する。
 リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等の電池に用いられる電極は、活物質、結着剤、導電剤等を含むペースト状の合剤を集電箔上に塗工し、乾燥することによって製造されている(例えば、特許文献1参照)。
 また、電極の製造工程のサイクルタイムを短縮し、電池の生産性を向上するため、並びに、乾燥設備のランニングコストを低減するため、合剤の乾燥速度を速くする要請がある。
 しかし、上記のような乾燥速度に対する要請に応えるために、従来の電極の製造工程において高速で乾燥を行った場合、合剤内で対流(マイグレーション)が起こり、電極活物質と比較して比重の軽い結着剤が合剤内で上部側(集電箔から離れる側)に偏析する。その結果、集電箔と合剤と間の剥離強度が低くなるという問題が生じる。
特開2000-353514号公報
 本発明は、高速乾燥を実現しつつ、集電箔と合剤との間の剥離強度を向上することが可能な電池用電極の製造方法及びそれに用いる塗工ダイを提供することを課題とする。
 本発明の第一の態様である電池用電極の製造方法は、シート状の集電箔の表面に、電極活物質と結着剤とを含む合剤を塗工し、前記合剤を乾燥させて前記集電箔と合剤とを接着してなる電池用電極を製造する方法であって、前記集電箔の一側面に、前記合剤を塗工する工程と、前記集電箔に塗工された合剤を乾燥する工程とを含み、前記塗工工程では、前記合剤に対してレーザ光を照射する。
 前記レーザ光は、前記合剤と集電箔との界面に照射されることが好ましい。
 前記合剤は、水を溶媒とするものとした場合、前記レーザ光は、前記水と共鳴する波長を有することが好ましい。
 本発明の第二の態様である塗工ダイは、前記電池用電極の製造方法における塗工工程に用いるものであって、前記合剤を一時的に貯溜するマニホールドを有し、前記レーザ光を照射するレーザ発振器は、前記マニホールドの近傍に配置される。
 本発明によれば、高速乾燥を実現しつつ、集電箔と合剤との間の剥離強度を向上できる。
電池用電極の製造工程を示す図である。 塗工ダイによる塗工形態を示す拡大図である。
 1   電極(電池用電極)
 2   集電箔
 3   合剤
 10  搬送ローラ
 20  塗工ダイ
 24  レーザ発振器
 以下では、図面を参照して、本発明に係る電池用電極の実施の一形態である電極1について説明する。電極1は、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等の電池に用いられる正極電極又は負極電極である。
 図1に示すように、電極1は、集電箔2の一側面(又は両側面)に、合剤3を塗工し、合剤3を乾燥させて集電箔2と合剤3とを接着した後、ロールプレス等の処理を経て製造される。
 集電箔2は、シート状の金属箔からなる集電要素であり、例えばリチウムイオン二次電池の正極電極にはアルミニウム箔、負極電極には銅箔がそれぞれ用いられている。
 合剤3は、電極活物質(正極活物質又は負極活物質)4、結着剤5、増粘剤6、導電剤等を含むペースト状の電極材料である。より厳密には、合剤3は、上記構成材料を均一に混練し、水又は有機溶媒でペースト化して構成される電極材料である。
 電極活物質4は、電池の正極および負極を構成する電気化学反応物質であり、電極活物質4における化学反応により充放電が行われる。正極活物質としては、リチウムと遷移金属との複合酸化物であるLiMPO、LiMO等が挙げられ、負極活物質としては、黒鉛、非晶質炭素等が挙げられる。
 結着剤5は、電極活物質4の形状安定性を持たせるための物質であり、電極活物質4と集電箔2との結合を担う物質である。結着剤5としては、水系溶媒にはSBR(スチレンブタジエンゴム)、有機溶媒にはPVDF(ポリフッ化ビニリデン)等、化学的および電気化学的に安定な有機高分子化合物が挙げられる。
 増粘剤6は、混練時の電極活物質4の分散安定性を高める物質である。増粘剤6としては、CMC(カルボキシメチルセルロース)等が挙げられる。
 導電剤は、電極活物質4に添加して導電性を高める物質である。導電剤は、構造粘性を有する。導電剤としては、AB(アセチレンブラック)、CB(カーボンブラック)等、導電性の良い炭素或いは金属の粉末が挙げられる。
 なお、合剤3の各構成材料は、上記のものに限定されるものではなく、電極1の用途等に応じて他の材料を用いても良い。
 以下に、電極1を製造する電極製造工程S1について説明する。
 図1に示すように、電極製造工程S1では、搬送ローラ10によって集電箔2を搬送しつつ、塗工ダイ20によって合剤3を集電箔2の表面(塗工面)に塗工し、乾燥炉30内で合剤3を乾燥させる。合剤3を乾燥させて集電箔2と接着した後は、ロールプレス等の適宜の処理を経て製品(電極1)として製造される。
 搬送ローラ10は、所定の回転速度で回転駆動可能なローラであり、集電箔2の裏面(塗工面と反対側面)を支持しつつ搬送する。搬送ローラ10の回転速度は、適宜の制御装置により制御されており、これにより搬送ローラ10による集電箔2の搬送速度が制御されている。
 本実施形態では、搬送ローラ10による集電箔2の搬送速度は、高速(例えば60(m/min))に設定される。
 塗工ダイ20は、所定量の合剤3を集電箔2の表面一側に向けて吐出し、集電箔2の表面に合剤3を塗工する。塗工ダイ20は、搬送ローラ10により搬送される集電箔2の表面一側と対向して配置されている。
 塗工ダイ20による合剤3の吐出量は、適宜の制御装置によって制御されており、搬送ローラ10の回転速度に応じて設定されている。
 乾燥炉30は、集電箔2の搬送経路に沿って設けられる炉であり、所定の炉長を有する。乾燥炉30は、集電箔2に向けて所定温度・風量(所定熱量)の熱風を集電箔2の一面(又は両面)に向けて送風することにより、集電箔2の表面に塗工された合剤3を加熱し、乾燥する。乾燥炉30により合剤3に付与される熱量は、適宜の制御装置により制御されており、乾燥炉30を通過した後に合剤3の含水量又は含溶媒量が所定値以下となるように設定される。
 ここで、乾燥炉30による合剤3の乾燥速度(合剤3に含まれる水分が単位時間当たりに蒸発する割合)は、乾燥炉30内で合剤3に付与される熱量に左右される。また、搬送ローラ10による集電箔2の搬送速度により、乾燥炉30内を通過する時間が変化するため、搬送ローラ10による乾燥炉30内の集電箔2の搬送速度も合剤3の乾燥速度に関連している。つまり、乾燥炉30内での合剤3に含まれる溶媒の乾燥速度は、搬送ローラ10による集電箔2の搬送速度と、乾燥炉30により付与される単位時間あたりの熱量と、により制御されている。
 本実施形態では、電極1の生産性、コスト等を考慮し、乾燥炉30による合剤3の乾燥速度を高速に設定している。
 本実施形態において、「乾燥速度を高速に設定する」とは、乾燥炉30内での合剤3の乾燥速度を、合剤3内でマイグレーションが発生する最低の速度より大きい速度に設定することを意味し、「乾燥速度を高速に設定する」ことにより、合剤3の乾燥時に合剤3内でマイグレーションが発生することとなる。ここで、マイグレーションとは、合剤3の乾燥時に合剤3内の水分に対流が生じて、合剤3が含有する結着剤5などの成分が合剤3内で移動する現象をいう。
 以下では、図2を参照して、塗工ダイ20について詳細に説明する。塗工ダイ20は、電極製造工程S1における塗工工程に用いる塗工機であり、合剤3を集電箔2に対して吐出することにより合剤3を塗工する。
 図2に示すように、塗工ダイ20は、熱伝導性の高いステンレス、アルミ等の金属製の材料からなり、本体部21、吐出口22、マニホールド23、レーザ発振器24・24・・・・・・等を有する。
 本体部21は、塗工ダイ20を構成する主たる構造体である。
 塗工ダイ20において、吐出口22、マニホールド23は、本体部21に形成されており、レーザ発振器24・24・・・は、本体部21に着脱可能に取り付けられている。
 吐出口22は、本体部21の先端部に設けられるスリット状の開口であり、所定の塗工幅を有するように形成される。この吐出口22を通じて合剤3が吐出される。吐出口22は、本体部21から吐出方向に向けて突出して設けられている。
 マニホールド23は、吐出口22に連通する空間であり、合剤3を一時的に貯溜する。マニホールド23は、本体部21の中途部に設けられており、吐出口22の塗工幅と同じ幅を有する内部空間として形成されている。塗工ダイ20に供給される合剤3は、マニホールド23内で吐出口22に応じた塗工幅に広げられた後、吐出口22に向けて供給される。
 なお、合剤3は常温(25~30℃程度)の状態でマニホールド23に供給されている。
 各レーザ発振器24は、所定波長のレーザ光を生成し、生成したレーザ光を照射するための装置であり、塗工ダイ20による合剤3の塗工中に、合剤3における集電箔2の表面との界面に向けてレーザ光を照射する。また、各レーザ発振器24は、吐出口22よりも集電箔2の搬送方向上流側から、合剤3の集電箔2に対する塗工部における合剤3と集電箔2との界面にレーザ光を照射する。
 各レーザ発振器24は、吐出口22の幅方向に沿って配列された状態で本体部21に着脱可能、かつ、角度調整可能に取り付けられており、塗工ダイ20と集電箔2との間から、合剤3と集電箔2の界面に向けてレーザ光を照射する。レーザ光の照射を受けた合剤3の受光箇所は局所的に加熱され、係る箇所において、合剤3の乾燥又は結着剤5の結晶化が促進される。
 なお、レーザ発振器24の配置個数は限定するものではないが、レーザ発振器24の出力、照射範囲等の性能、並びに塗工ダイ20の塗工形態等に応じて適宜設定されている。
 以上のように、電極製造工程S1では、塗工ダイ20を用いて合剤3を集電箔2に塗工する際に、各レーザ発振器24から、集電箔2に塗工された合剤3における集電箔2との接触面である、合剤3と集電箔2との界面に向けてレーザ光を照射して、合剤3を局所的に加熱している。
 これにより、合剤3の界面側の乾燥が促進される。つまり、集電箔2との界面側での結着剤5の固着を促進でき、結着剤5が合剤3と集電箔2との界面付近に存在し易くなるため、合剤3の結着剤5による集電箔2に対する接着強度が向上される。
 従って、高速乾燥を実現しつつ、合剤3と集電箔2との剥離強度を向上できる。
 また、各レーザ発振器24からのレーザ照射により合剤3の乾燥が促進され、乾燥効率が向上するので、乾燥炉30での乾燥時間を短縮できる。また、乾燥炉30の炉長を短くすることもできる。
 さらに、塗工ダイ20による合剤3の塗工時に、各レーザ発振器24からレーザ光を照射することにより、乾燥炉30内で乾燥される前、かつ、塗工ダイ20から塗工された直後に合剤3における集電箔2との界面側が乾燥されることとなる。
 集電箔2に塗工された合剤3を乾燥炉30内で高速乾燥する場合、前述のように合剤3内でマイグレーションが発生し、特に塗工された合剤3が集電箔2の上面に配置される姿勢で集電箔2を搬送すると、マイグレーションにより合剤3内の結着剤5が合剤3の表層側(合剤3と集電箔2との界面から離れる側)に移動し易くなるが、塗工された直後の合剤3における集電箔2との界面側をレーザ光の照射により乾燥することで、乾燥炉30内での高速乾燥に際して、結着剤5が合剤3内で発生するマイグレーションの影響を受けて集電箔2との界面側から離間することが抑制されるので、高速乾燥に付随して発生するマイグレーションの結着剤5に対する影響を小さくできる。
 従って、合剤3にマイグレーションが発生する速度以上の乾燥速度で乾燥した場合にも、乾燥後の合剤3と集電箔2との剥離強度を向上できるため、乾燥速度を高速にすることができる。ひいては、乾燥炉30内での合剤3の乾燥効率を向上できるため、乾燥時間を短縮できる、若しくは、乾燥炉30の炉長を短くできるため、乾燥炉30のランニングコストを低減できる。
 また、各レーザ発振器24から照射されるレーザ光は、集電箔2と合剤3との界面に対して鈍角に入射するように設定されることが好ましく、特に、集電箔2と合剤3との界面に対して直角に近い角度で入射するように設定されることが好ましい。つまり、各レーザ発振器24から照射されるレーザ光が集電箔2の表面と成す角度が大きい方が好ましい。
 これによれば、合剤3のレーザ光の吸収効率を向上でき、合剤3の乾燥効率を向上できる。さらに、反射率の高い金属箔からなる集電箔2上でのレーザ光の反射を抑制できるため、レーザ発振器24の出力を低く抑えることができる。
 また、本実施形態に係るレーザ発振器24としては、半導体レーザ、ガスレーザ等を採用することができる。レーザ出力的な観点からはガスレーザを用いることが好ましく、コスト的な観点からは半導体レーザを用いることが好ましい。
 半導体レーザとしては、例えば、波長が短く、高出力のレーザ光を照射可能な青外線レーザ、紫外線レーザ、又は波長の長い赤外線レーザのうち何れか一つ、若しくはこれらの組み合わせを採用することができる。つまり、電極製造工程S1に用いる合剤3の種類、構成材料等に応じて上記の半導体レーザから最適なものを選択することが可能である。
 例えば、レーザ発振器24として青外線レーザ又は紫外線レーザを用いる場合は、合剤3の結着剤5に含まれるC-C結合を良好に破壊し、結着剤5の結晶化(重合)を促進できるという利点がある。
 本実施形態では、以上のような特性を考慮し、波長405nm、光出力300mW、連続出力200mW、パルス出力450mWの紫外線レーザをレーザ発振器24として用いている。
 また、合剤3として水系ペースト(言い換えれば、溶媒を水としてペースト化したもの)を用いた場合は、水と共鳴する波長を有する半導体レーザをレーザ発振器24として用いることが特に好ましい。
 係る場合、レーザ光の照射により合剤3に含まれる水が共鳴し、効率的に合剤3を加熱することができ、レーザ発振器24の出力エネルギーを低く抑えることができる。そのような半導体レーザとしては、例えば2.85μmの波長を有するInGaAsSb量子井戸レーザが挙げられる。
 但し、合剤3として水系ペーストを用い、かつ、レーザ発振器24として青外線レーザ又は紫外線レーザを用いた場合にも、レーザ光の照射により合剤3の乾燥を促進するという作用は担保される。
 また、図2に示すように、各レーザ発振器24は、塗工ダイ20の本体部21の外周側に突出する部位(塗工ダイ20の本体部21の外周に延設される部位であって、集電箔2側に向けて突出する部位)に取り付けられており、マニホールド23の近傍に配置されている。
 マニホールド23には、上記のように常温状態の合剤3が供給され続けるため、マニホールド23内の合剤3が各レーザ発振器24に対するチラーとして機能する。つまり、発熱体であるレーザ発振器24の発熱が、塗工ダイ20の本体部21に伝達され、さらにマニホールド23に供給される合剤3によって熱が吸収される構成である。
 これにより、別途の冷却手段を用いることなく、レーザ発振器24を効率良く冷却することができるため、レーザ発振器24の温度上昇に起因する出力低下を抑制できる。
 従って、レーザ発振器24の高出力化を図れる。
 本発明は、電池用の電極を製造する工程に利用可能であり、特に、電極製造工程が高速で乾燥する工程を含む場合に適している。

Claims (4)

  1.  シート状の集電箔の表面に、電極活物質と結着剤とを含む合剤を塗工し、前記合剤を乾燥させて前記集電箔と合剤とを接着してなる電池用電極を製造する方法であって、
     前記集電箔の一側面に、前記合剤を塗工する工程と、
     前記集電箔に塗工された合剤を乾燥する工程とを含み、
     前記塗工工程では、前記合剤に対してレーザ光を照射する電池用電極の製造方法。
  2.  前記レーザ光は、前記合剤と集電箔との界面に照射される請求項1に記載の電池用電極の製造方法。
  3.  前記合剤は、水を溶媒とするものであり、
     前記レーザ光は、前記水と共鳴する波長を有する請求項1又は請求項2に記載の電池用電極の製造方法。
  4.  請求項1~請求項3の何れか一項に記載の電池用電極の製造方法における塗工工程に用いる塗工ダイであって、
     前記合剤を一時的に貯溜するマニホールドを有し、
     前記レーザ光を照射するレーザ発振器は、前記マニホールドの近傍に配置される塗工ダイ。
PCT/JP2009/001835 2009-04-22 2009-04-22 電池用電極の製造方法及びそれに用いる塗工ダイ WO2010122601A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09843602.5A EP2424010B1 (en) 2009-04-22 2009-04-22 Method for producing electrode for battery and coating die used in the method
JP2011510090A JP5348244B2 (ja) 2009-04-22 2009-04-22 電池用電極の製造方法及びそれに用いる塗工ダイ
US13/132,707 US8962098B2 (en) 2009-04-22 2009-04-22 Method of manufacturing battery electrode and coating die for use therein
KR1020117018437A KR101220605B1 (ko) 2009-04-22 2009-04-22 전지용 전극의 제조 방법 및 그것에 사용하는 도포 시공 다이
PCT/JP2009/001835 WO2010122601A1 (ja) 2009-04-22 2009-04-22 電池用電極の製造方法及びそれに用いる塗工ダイ
CN200980154153.9A CN102405544B (zh) 2009-04-22 2009-04-22 电池用电极的制造方法以及用于其中的涂布模具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001835 WO2010122601A1 (ja) 2009-04-22 2009-04-22 電池用電極の製造方法及びそれに用いる塗工ダイ

Publications (1)

Publication Number Publication Date
WO2010122601A1 true WO2010122601A1 (ja) 2010-10-28

Family

ID=43010742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001835 WO2010122601A1 (ja) 2009-04-22 2009-04-22 電池用電極の製造方法及びそれに用いる塗工ダイ

Country Status (6)

Country Link
US (1) US8962098B2 (ja)
EP (1) EP2424010B1 (ja)
JP (1) JP5348244B2 (ja)
KR (1) KR101220605B1 (ja)
CN (1) CN102405544B (ja)
WO (1) WO2010122601A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210370B1 (ko) 2011-06-16 2012-12-10 지에스나노텍 주식회사 운모 기판을 이용한 박막전지용 양극 형성 방법 및 그 방법으로 제조된 박막전지
JP2013187135A (ja) * 2012-03-09 2013-09-19 Toyota Motor Corp 電池用電極の製造方法及び製造装置
WO2014162530A1 (ja) * 2013-04-03 2014-10-09 株式会社 日立製作所 リチウムイオン電池用負極、及びリチウムイオン電池
JP7403887B1 (ja) 2023-01-31 2023-12-25 オー・エム・シー株式会社 二次電池の塗工膜の乾燥方法とその塗工装置
JP7436713B2 (ja) 2020-11-25 2024-02-22 エルジー エナジー ソリューション リミテッド リチウム-硫黄電池用正極の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400090B1 (ko) 2011-12-14 2014-05-28 주식회사 엘지화학 버스 바 어셈블리가 전면에 장착된 전지모듈 어셈블리 및 이를 포함하는 중대형 전지팩
JP2013243088A (ja) * 2012-05-22 2013-12-05 Jtekt Corp 電極製造システム
CN103846189A (zh) * 2012-12-04 2014-06-11 明冠能源(江西)有限公司 一种环保精密涂布方法
KR101750326B1 (ko) 2012-12-07 2017-06-23 주식회사 엘지화학 챔버의 구조가 개선된 슬롯 다이 및 이를 구비한 코팅장치
JP6052083B2 (ja) 2013-07-12 2016-12-27 トヨタ自動車株式会社 乾燥装置、乾燥方法、及び電池の製造方法
KR102040511B1 (ko) * 2016-09-09 2019-11-05 주식회사 엘지화학 전극 코팅 장치
TWI617073B (zh) 2016-11-25 2018-03-01 財團法人工業技術研究院 電池電極結構及其製作方法
TWI725585B (zh) * 2019-10-23 2021-04-21 財團法人工業技術研究院 狹縫式塗佈器
CN115224238B (zh) * 2022-09-20 2022-11-29 河南锂动电源有限公司 一种锂离子电池负极极片及其制作方法和激光碳化装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323129A (ja) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd 電池電極の製造方法
JP2007052934A (ja) * 2005-08-15 2007-03-01 Sony Corp 電池用電極の製造方法及び製造装置
JP2009037893A (ja) * 2007-08-02 2009-02-19 Panasonic Corp 非水系二次電池用負極板の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900593A (en) * 1972-06-16 1975-08-19 Corning Glass Works Method of producing magnetic metal oxide films bonded to a substrate
US3974016A (en) * 1974-11-04 1976-08-10 Bell Telephone Laboratories, Incorporated Bonding of thermoplastic coated cylinders
US4185185A (en) * 1975-10-24 1980-01-22 Union Carbide Corporation Laser welding
IT1179061B (it) * 1984-08-20 1987-09-16 Fiat Auto Spa Procedimento per l'effettuazione di un trattamento su pezzi metallici con l'aggiunta di un materiale d'apporto e con l'impiego di un laser di potenza
JPH068493B2 (ja) * 1986-04-22 1994-02-02 三菱電機株式会社 貴金属被覆方法
JPH10188961A (ja) * 1996-12-27 1998-07-21 Fuji Film Selltec Kk シート状極板の製造方法と化学電池
DE69813164T2 (de) 1997-12-22 2003-10-23 Japan Storage Battery Co Ltd Verfahren zur Herstellung einer porösen, mit aktiver Masse gefüllten Elektrode
JP3680984B2 (ja) 1999-06-11 2005-08-10 トヨタ自動車株式会社 電池用シート電極の製造方法
DE10012257A1 (de) 2000-03-14 2001-09-20 Voith Paper Patent Gmbh Auftragsvorrichtung
JP2002050347A (ja) 2000-08-03 2002-02-15 Nippei Toyama Corp 電極体製造装置及び製造方法
JP2003100318A (ja) * 2001-09-26 2003-04-04 Asahi Glass Co Ltd 塗工膜の製造方法、該方法による塗工膜及び固体高分子型燃料電池の製造方法
US7591903B2 (en) 2002-08-13 2009-09-22 3M Innovative Properties Company Die having multiple orifice slot
JP4244382B2 (ja) 2003-02-26 2009-03-25 セイコーエプソン株式会社 機能性材料定着方法及びデバイス製造方法
JP2006136762A (ja) 2004-11-10 2006-06-01 Fuji Photo Film Co Ltd 塗布膜の乾燥方法及び装置
US7147674B1 (en) 2005-03-23 2006-12-12 Maxwell Technologies, Inc. Pretreated porous electrode and method for manufacturing same
JP4363435B2 (ja) * 2005-10-28 2009-11-11 セイコーエプソン株式会社 パターン形成方法及び液滴吐出装置
KR20110011695A (ko) * 2008-05-19 2011-02-08 이 아이 듀폰 디 네모아 앤드 캄파니 박층을 용액 코팅하는 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323129A (ja) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd 電池電極の製造方法
JP2007052934A (ja) * 2005-08-15 2007-03-01 Sony Corp 電池用電極の製造方法及び製造装置
JP2009037893A (ja) * 2007-08-02 2009-02-19 Panasonic Corp 非水系二次電池用負極板の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101210370B1 (ko) 2011-06-16 2012-12-10 지에스나노텍 주식회사 운모 기판을 이용한 박막전지용 양극 형성 방법 및 그 방법으로 제조된 박막전지
JP2013187135A (ja) * 2012-03-09 2013-09-19 Toyota Motor Corp 電池用電極の製造方法及び製造装置
WO2014162530A1 (ja) * 2013-04-03 2014-10-09 株式会社 日立製作所 リチウムイオン電池用負極、及びリチウムイオン電池
JP7436713B2 (ja) 2020-11-25 2024-02-22 エルジー エナジー ソリューション リミテッド リチウム-硫黄電池用正極の製造方法
JP7403887B1 (ja) 2023-01-31 2023-12-25 オー・エム・シー株式会社 二次電池の塗工膜の乾燥方法とその塗工装置

Also Published As

Publication number Publication date
JPWO2010122601A1 (ja) 2012-10-22
CN102405544B (zh) 2015-06-10
US20110244144A1 (en) 2011-10-06
KR20110118784A (ko) 2011-11-01
EP2424010A1 (en) 2012-02-29
EP2424010B1 (en) 2017-03-22
KR101220605B1 (ko) 2013-01-21
JP5348244B2 (ja) 2013-11-20
US8962098B2 (en) 2015-02-24
CN102405544A (zh) 2012-04-04
EP2424010A4 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5348244B2 (ja) 電池用電極の製造方法及びそれに用いる塗工ダイ
JP5842407B2 (ja) リチウムイオン二次電池の製造方法
KR101863518B1 (ko) 리튬 이온 이차 전지용 전극 시트의 제조 방법
JP5780226B2 (ja) 二次電池用電極の製造方法および電極製造装置
JP6256742B2 (ja) 非水電解質二次電池の製造方法
JP5834898B2 (ja) 電極製造方法及び電極製造装置
JP2012097917A (ja) 乾燥装置と該装置を用いる二次電池用電極の製造方法
JP2012155988A (ja) 全固体電池の製造方法および全固体電池の製造装置
US11024834B2 (en) Electrode coating apparatus
TW201414057A (zh) 鋰離子電池之製造方法及鋰離子電池之製造裝置
JP2012033426A (ja) 電極の製造方法
TWI506682B (zh) 電極製造裝置、電極製造方法及電腦記憶媒體
WO2016006197A1 (en) Method of manufacturing a lithium-ion secondary battery electrode sheet based on an active material dry powder
JPH11149918A (ja) 電池電極の製造方法
JP2013089573A (ja) 電極、電極製造装置及び電極製造方法
JP6904164B2 (ja) 全固体電池の製造方法
CN109390560B (zh) 负极的制造方法
JP2015032466A (ja) 電極製造方法および電極製造装置
JP2014192029A (ja) リチウムイオン電池の製造装置およびリチウムイオン電池の製造方法
JP2019003725A (ja) 電極の製造方法
JP4975909B2 (ja) リチウムイオン二次電池用負極の製造方法
WO2010119550A1 (ja) 電池用電極の製造方法
JP2019029256A (ja) 電極の製造方法
JP2024504154A (ja) リチウム二次電池用正極の製造装置、及びこれの製造方法
JP2006107779A (ja) 電極板の製造方法および電極板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154153.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13132707

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011510090

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009843602

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009843602

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117018437

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE