WO2014162530A1 - リチウムイオン電池用負極、及びリチウムイオン電池 - Google Patents
リチウムイオン電池用負極、及びリチウムイオン電池 Download PDFInfo
- Publication number
- WO2014162530A1 WO2014162530A1 PCT/JP2013/060146 JP2013060146W WO2014162530A1 WO 2014162530 A1 WO2014162530 A1 WO 2014162530A1 JP 2013060146 W JP2013060146 W JP 2013060146W WO 2014162530 A1 WO2014162530 A1 WO 2014162530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- mixture layer
- current collector
- binder
- electrode mixture
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium ion battery.
- Lithium-ion batteries have high energy density and high operating voltage that makes it easy to obtain high output. For this reason, hybrid vehicles and electric vehicles have been developed as lithium ion secondary battery applications, and higher power, higher energy density, and longer life are important issues.
- the expansion rate of the active material volume during charging and discharging (the volume during discharging is assumed to be 1) is large.
- the active material and the active material, and the binder connecting the active material and the current collector are broken, or the binder is peeled off from the active material interface and the current collector interface, resulting in a decrease in battery capacity.
- Patent Document 1 discloses an invention in which the amount of binder on the copper foil side is increased to improve the adhesion between the copper foil and the negative electrode mixture layer.
- an object of the present invention is to provide a negative electrode for a lithium ion battery having a high output and a high capacity, and a lithium ion secondary battery.
- a feature of the present invention that solves the above problem is a negative electrode for a lithium ion battery, and a negative electrode mixture layer including a current collector, negative electrode active material particles formed on the current collector, and a binder, And the surface area of the binder in the vicinity of the current collector or in the vicinity of the current collector is larger than the surface area of the binder on the negative electrode surface side.
- one of the problems in extending the life of a lithium ion battery using a large-capacity active material is improvement of electrode adhesion.
- One means for improving the electrode adhesion is to increase the amount of the binding material and increase the binding property.
- the copper foil as the current collector and the active material are different from each other, they are less likely to bind than the active material and the active material.
- the binder (binder) included in the mixture layer is improved.
- it is a negative electrode mixture layer in which the ratio of the active material to the binder is constant throughout, and the specific surface area of the binder is to be larger on the current collector side than on the negative electrode surface side.
- the binder, the current collector, and the active material particles are in partial contact, and the binder coating thickness of the particles that are in direct contact with the current collector (or particles in the vicinity of the current collector) is It becomes thinner than the binder coating thickness of the particles in the mixture away from the current collector.
- the lithium ion battery of the present invention is only required to include the negative electrode according to the present invention, and there are no particular limitations on other components and structures, and various components and structures that are applied to conventionally known lithium ion batteries. Can be adopted.
- the above lithium-ion battery can reduce the internal resistance of the battery, so it can be widely used as a power source for hybrid vehicles, electric control systems for automobiles, and backup power sources that require high output. Railways, power tools, forklifts It is also suitable as a power source for industrial equipment such as.
- the negative electrode includes a negative electrode mixture and a negative electrode current collector.
- the negative electrode mixture layer refers to a mixture layer formed by applying a negative electrode mixture containing a negative electrode active material and a binder to a negative electrode current collector made of copper foil or the like.
- a conductive agent may be further added to the negative electrode mixture layer in order to reduce the electronic resistance.
- ⁇ Negative electrode active material As a negative electrode active material capable of inserting and extracting lithium ions, a carbonaceous material, an oxide containing a Group IV element, a nitride containing a Group IV element, or a mixture thereof can be used.
- natural graphite a composite carbonaceous material in which a film formed by a dry CVD (Chemical Vapor Deposition) method or a wet spray method is formed on natural graphite, a resin raw material such as epoxy or phenol, or a pitch obtained from petroleum or coal Carbonaceous materials such as artificial graphite, amorphous carbon materials, etc., which are made by firing from a base material, or lithium metal that can occlude and release lithium by forming a compound with lithium, a compound with lithium and a crystal Oxides or nitrides of Group 4 elements such as silicon, germanium, and tin that can occlude and release lithium by being inserted into the gap can be used.
- a dry CVD Chemical Vapor Deposition
- carbonaceous materials such as graphite, amorphous, and activated carbon are materials that have high conductivity and are excellent in terms of low temperature characteristics and cycle stability.
- a material having a wide carbon network surface layer (d 002 ) is excellent in rapid charge / discharge and low temperature characteristics, and is suitable.
- d 002 is preferably 0.39 nm or less. May be called.
- a material having the following characteristics (1) to (3).
- the R value (I D / I G ), which is the intensity ratio, is 0.2 or more and 0.4 or less.
- FIG. 1 shows a schematic diagram of a negative electrode of a lithium ion battery.
- the negative electrode has a configuration in which the negative electrode mixture layer 1 is provided on both surfaces of the negative electrode current collector 2.
- FIG. 2 is a cross-sectional view of FIG. 1 taken along the line A-A ′ and parallel to the current collector.
- FIG. 3 is a cross-sectional view of FIG. 2 taken along the line BB ′ (interface between the current collector foil and the mixture layer), as viewed from the current collector side (in the direction of the arrow 101). It is.
- FIG. 4 is a cross-sectional view taken along the line C-C ′ of FIG. 2, and similarly viewed from the current collector side (in the direction of the arrow 101).
- Binder binds negative electrode active material and negative electrode active material or negative electrode active material and current collector.
- a metal foil is mainly used for the current collector, and it is more difficult for the negative electrode active material and the current collector to bind to each other than the negative electrode active materials. Therefore, when the same amount of the binder is used, the interface where the negative electrode active material and the current collector are bonded as compared with the inside of the mixture layer in which the negative electrode active materials are bonded together. It is easy to peel off. Therefore, as a means of increasing the adhesion between the negative electrode active material and the current collector without increasing the amount of the binder, the binding area of the binder at the interface where the negative electrode active material and the current collector are bound was decided to increase.
- the ratio of the binder in the mixture layer is determined by analyzing the electrode plane as shown in Figs. 3 and 4 with a scanning electron microscope (SEM), etc.
- SEM scanning electron microscope
- FIG. 3 is a plan view of the boundary surface between the negative electrode active material and the current collector (the negative electrode active material 3, the binder 4, and the gap 5).
- the area where the binder comes into contact with the current collector or the negative electrode active material is a region 4 in FIG.
- the contact area of the binding material in contact with the negative electrode active material and the current collector may be calculated by calculating the area ratio occupied by the binding material in the entire plan view of FIG.
- the binder occupation area ratio S Cu of the negative electrode mixture is as shown in the formula (4).
- the contact area of the binder that binds between the negative electrode active materials is also calculated as the binder occupation area ratio S Ac as shown in Expression (5).
- the negative electrode mixture layer of this example is characterized in that the binder occupation ratio in the vicinity of the current collector is larger than the binder occupation ratio on the negative electrode surface side.
- the area occupied by the binder near the interface between the negative electrode mixture layer and the current collector (FIG. 3) is S Cu
- the area occupied by the binder on the negative electrode surface side (FIG. 4) is S Ac .
- S Cu / S Ac is less than 1, the binding between the active material and the current collector is weaker than the binding between the active materials, and the possibility of interfacial peeling increases, or A large amount of the binder material is contained, and the battery capacity is reduced.
- S Cu / S Ac is preferably 1 to 3, which improves cycle life and high-temperature storage life.
- S Cu / S Ac is 6 or more, even if the binder becomes thin at the interface with the current collector, the occupied area on the current collector side becomes too large, resulting in an increase in electronic resistance, resulting in a resistance as an electrode. It will go up.
- S Ac is preferably in the range of 5 to 10%. Separation of the electrode during battery production does not occur, increase in battery resistance can be reduced, and output can be improved.
- the negative electrode of the lithium ion battery has the binder, the current collector foil, and the active material particles partially in contact, and the particles in contact with the current collector foil (or particles near the current collector foil) are bound.
- the material coating thickness becomes thinner than the binder coating thickness of the particles in the mixture separated from the current collector foil.
- the negative electrode includes a current collector 2, a first negative electrode mixture layer 6, and a second negative electrode mixture layer 7 from the current collector side.
- the negative electrode mixture layer 1 has a two-layer structure, the first mixture layer is formed, pre-dried, pressed, and then the second mixture layer Form. Also in the 2nd mixture layer, after forming similarly to the 1st mixture layer, it predrys and presses.
- the first mixture layer 6 has a problem that the negative electrode current collector 2 and a different material such as an active material are bound to each other, so that the thermal expansion coefficient is different and there is a change in volume during charge and discharge. Therefore, more binders are required to settle the active material and the active material. However, if the amount of the binder is increased, the resistance increases, so it is important to increase the binding without increasing the amount of the binder. Therefore, in order to make the negative electrode current collector 2 closely adhere, the contact area of the binder that connects the negative electrode current collector 2 and the negative electrode mixture layer 1 is increased and bonded using the following method.
- the pressing temperature is preferably 120 to 150 ° C.
- the negative electrode mixture-containing composition for forming the first negative electrode mixture layer is applied onto at least one surface of the negative electrode current collector 2, for example, at 60 to 120 ° C. for 2 to 4 hours. After drying, the thickness and density are adjusted by pressing at 1 to 10 ton / cm 2 to form the first negative electrode mixture layer 6.
- the press temperature of the second mixture layer 8 is desirably 120 ° C. or lower. Since it is only necessary to control the density of the electrodes, it is not necessary to apply heat when pressing.
- the negative electrode mixture-containing composition for forming the second negative electrode mixture layer is applied on the first negative electrode mixture layer 6 formed as described above, and dried at 60 to 120 ° C. for 2 to 4 hours, for example. Then, the thickness and density are adjusted by pressing at 1 to 10 ton / cm 2 to form the second negative electrode mixture layer 7. In this way, a negative electrode having the negative electrode mixture layer 1 composed of the first negative electrode mixture layer 6 and the second negative electrode mixture layer 7 is prepared on at least one surface of the negative electrode current collector 2. be able to.
- the thickness of the first negative electrode mixture layer 7 and the second negative electrode mixture layer 8 formed as described above is such that the second negative electrode mixture layer 8 is thicker than the first negative electrode mixture layer 7. It is preferable to increase the thickness. If the first negative electrode mixture layer 7 is thicker than the second negative electrode mixture layer 8, the adhesion is improved, but the amount of binder coating between the active materials increases, and the internal resistance of the battery increases. End up.
- the thickness of the first negative electrode mixture layer 1 is 1 ⁇ m or more, preferably 5 ⁇ m or more, and 20 ⁇ m or less, preferably 15 ⁇ m or less. If the first negative electrode mixture layer 6 is too thin, the bonding with the second negative electrode mixture layer 7 becomes insufficient, and the volume change of the second negative electrode mixture layer 7 cannot be followed. On the other hand, if the first negative electrode mixture layer 6 is too thick, it may be necessary to make the second negative electrode mixture layer 7 thinner in order to make the negative electrode mixture layer 1 have a specific thickness. Can be difficult.
- the thickness of the second negative electrode mixture layer 8 is 15 ⁇ m or more, preferably 20 ⁇ m or more, and is 100 ⁇ m or less, preferably 50 ⁇ m or less. If the second negative electrode mixture layer 8 is too thin, it is difficult to increase the capacity. On the other hand, if the second negative electrode mixture layer 8 is too thick, it may be necessary to make the second negative electrode mixture layer 2 thin in order to make the negative electrode mixture layer 1 have a specific thickness. Bonding with the first negative electrode mixture layer 7 becomes insufficient, and the first negative electrode mixture layer 7 cannot follow the volume change of the second negative electrode mixture layer 8.
- the thickness of the negative electrode mixture layer is set according to the characteristics required for the battery.
- the thickness of the negative electrode mixture layer 1 (the total thickness of the first negative electrode mixture layer 6 and the second negative electrode mixture layer 7) is 15 ⁇ m or more, preferably 30 ⁇ m or more, and 150 ⁇ m or less, preferably 120 ⁇ m or less. is there.
- the negative electrode mixture layer is too thin, application spots of the negative electrode mixture-containing composition are generated during the formation of the negative electrode mixture layer, and the yield of the negative electrode is significantly deteriorated.
- the negative electrode mixture layer is too thick, the distance to the current collector becomes long, a large current value cannot be obtained, and the load characteristics of the battery deteriorate.
- the thickness of the negative electrode mixture layer is preferably 10 ⁇ m or more and 50 ⁇ m or less.
- the thickness of the negative electrode mixture layer is preferably 50 ⁇ m to 100 ⁇ m.
- the thickness of the first negative electrode mixture layer 6, the thickness of the second negative electrode mixture layer 7, and the thickness of the negative electrode mixture layer 1 are the thicknesses per one side of the current collector.
- the first negative electrode mixture layer 6, the second negative electrode mixture layer 7, and the negative electrode mixture are formed on each side of the negative electrode current collector 2.
- the agent layer 1 should just satisfy said thickness.
- a conductive agent may be further added to the negative electrode mixture layer in order to reduce electronic resistance.
- the conductive agent is, for example, a carbon material such as carbon black, graphite, carbon fiber, and metal carbide, and each may be used alone or in combination.
- a metal foil such as stainless steel, copper, nickel, titanium, or a metal mesh can be used.
- copper is preferable, and zirconia and zinc-containing copper having high heat resistance are also preferable.
- the binder resin is not particularly limited as long as the material constituting the negative electrode and the negative electrode current collector are in close contact.
- a homopolymer or copolymer such as tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene-butadiene rubber, and the like. And so on. Water can be used as the solvent constituting the binder resin solution. These may be used alone or in combination.
- the negative electrode is formed by adjusting the thickness and density of the first negative electrode mixture layer 6 and the second negative electrode mixture layer 7 by pressing the first negative electrode mixture layer 7 and the second negative electrode mixture layer. Since the pressure can be applied to 8 well, the density of the porous layer can be increased, and the life of the negative electrode (battery) can be extended.
- the positive electrode includes a positive electrode mixture and a positive electrode current collector, and is formed by applying a positive electrode mixture containing a positive electrode active material and a binder to a positive electrode current collector such as an aluminum foil. There are many cases. Note that a conductive agent may be further added to the positive electrode mixture layer in order to reduce the electronic resistance.
- the absorbing and releasing active material capable of lithium ion in the composition formula Li ⁇ Mn x M1 y M2 z O 2 ( wherein, M1 is, Co, at least one selected from Ni, M2 is, Co, Ni, It is at least one selected from Al, B, Fe, Mg, Cr, and x + y + z 1, 0 ⁇ ⁇ 1.2, 0.2 ⁇ x ⁇ 0.6, 0.2 ⁇ y ⁇ 0.4.
- a lithium composite oxide represented by 0.05 ⁇ z ⁇ 0.4) is preferable.
- M1 is preferably Ni or Co
- M2 is preferably Co or Ni, and more preferably LiMn 1/3 Ni 1/3 Co 1/3 O 2 . If Ni is increased, the capacity can be increased, if Co is increased, the output at a low temperature can be improved, and if Mn is increased, the material cost can be suppressed.
- the additive element is effective in stabilizing the cycle characteristics.
- LiM x PO 4 Fe or Mn, 0.01 ⁇ X ⁇ 0.4
- LiMn 1-x M x PO 4 M: divalent cation other than Mn, 0.01 ⁇
- LiMn 1/3 Ni 1/3 Co 1/3 O 2 has high low-temperature characteristics and high cycle stability, and is suitable as a lithium battery material for hybrid vehicles (HEV).
- the binder may be any material as long as the material constituting the positive electrode and the current collector for the positive electrode are in close contact.
- a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene -Butadiene rubber can be mentioned.
- the conductive agent is, for example, a carbon material such as carbon black, graphite, carbon fiber, and metal carbide, and each may be used alone or in combination.
- the positive electrode can be formed using the positive electrode mixture-containing composition for forming the positive electrode mixture layer as described above, for example, in the same manner as the above-described negative electrode formation method.
- the electrolytic solution is a non-aqueous solvent containing a compound containing lithium ions as an electrolyte.
- the non-aqueous solvent used in the electrolytic solution include ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) from the viewpoint of low temperature characteristics and film formation on the negative electrode, and vinylene carbonate.
- Additives such as (VC) may be added.
- the lithium salt used in the electrolytic solution is not particularly limited.
- inorganic lithium salts LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr, etc.
- organic lithium salts LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 or the like can be used.
- LiPF 6 is a suitable material from the viewpoint of quality stability and is often used in consumer batteries.
- LiB [OCOCF 3 ] 4 is effective because it has good dissociation and solubility and exhibits high conductivity at a low concentration.
- a separator used in a known lithium ion battery can be used, and examples thereof include microporous films made of polyolefin such as polyethylene and polypropylene, and nonwoven fabrics.
- the thickness of the separator is preferably 20 ⁇ m or less, and more preferably 18 ⁇ m or less. By using a separator having such a thickness, the capacity per volume of the battery can be increased. However, if the separator is made too thin, the handleability is impaired, or the separation between the positive and negative electrodes is insufficient and short-circuiting is likely to occur, so the lower limit of the thickness is preferably 10 ⁇ m.
- Example 1 Provide of wound battery
- the wound type battery of this example was manufactured by the method described below.
- FIG. 6 shows a half sectional view of the wound battery.
- the negative electrode material slurry similar to the slurry used in the first mixture layer 6 is dried to have a thickness of 100 ⁇ m. Applied. Then, it dried at 80 degreeC and further pressed at 25 degreeC, and the 2nd mixture layer 7 was formed.
- LiMn 1/3 Ni 1/3 Co 1/3 O 2 is used as the positive electrode active material
- carbon black (CB1) and graphite (GF2) are used as the electronic conductive material
- polyvinylidene fluoride ( PVDF) polyvinylidene fluoride
- a positive electrode material paste was prepared using NMP (N-methylpyrrolidone) as
- the positive electrode material paste was applied to an aluminum foil serving as a positive electrode current collector and dried at 80 ° C. to form a positive electrode mixture layer on the positive electrode current collector.
- the separator 17 was sandwiched between the produced negative electrode 13 and positive electrode 16 to form a wound group, and inserted into the negative electrode battery can 23. Then, one end of a nickel negative electrode lead 19 was welded to the negative electrode current collector 11 and the other end was welded to the negative electrode battery can 23 in order to collect the negative electrode current. Further, in order to collect the positive electrode, one end of the positive electrode lead 18 made of aluminum is welded to the positive electrode current collector 14, the other end is subjected to current interruption welding, and the positive electrode battery lid 22 is electrically connected via the current interruption valve. Connected. Further, a wound battery was manufactured by pouring and caulking the electrolyte.
- FIG. 6 20 is a positive electrode insulating material and 21 is a negative electrode insulating material. Battery characteristics were evaluated for the battery produced as described above.
- S Ac is preferably in the range of 5 to 10%.
- S Ac is less than 5%, the binder area amount sufficient to bond the active materials to each other is not reached, so that the bonding between the active materials is weak. For this reason, an electrode is easy to peel.
- S Ac is more than 10%, the amount of the binder area relative to the active material is large, so that the electrode resistance is high although the amount of the binder area is sufficient to bond the active materials together.
- the battery was charged at a constant current of 0.6 A to 4.1 V, charged at a constant voltage of 4.1 V until the current value reached 20 mA, and after 30 minutes of operation stop, discharged to 2.6 V at 0.6 A. This operation was repeated twice. Next, the battery was charged at a constant current of 0.6 A up to 4.1 V, left for 30 minutes, and the voltage was measured. The volume ratio was calculated with Comparative Example 1 as 100%. The measurement results are shown in Table 1.
- Example 2 A wound battery of Example 2 was prepared and evaluated in the same manner as Example 1 except that the first mixture layer 7 of the negative electrode mixture layer was pressed at 150 ° C.
- FIG. 7 shows a schematic diagram of a negative electrode of a comparative example.
- the wound batteries of Comparative Examples 1 to 3 were produced and evaluated in the same manner as in Examples 1 and 2 except that the negative electrode mixture layer was produced in a single layer.
- the slurry of the negative electrode mixture layer was prepared using water as a solvent so that the ratio of This negative electrode material slurry was applied to a copper foil to be the negative electrode current collector 2 so that the thickness after drying was 120 ⁇ m.
- SBR styrene-butadiene rubber
- CMC carboxymethyl cellulose
- Comparative Example 2 the binder on the current collector side was thinned. In the single press, the adhesive area of the binder increased as the current was closer to the current collector. When the hot pressing was performed, the adhesion area of the binder to the active material gradually increased from the mixture surface side to the current collector side. For this reason, in Comparative Example 2, in the mixture layer close to the current collector, the contact area of the binder is increased, the conduction path is reduced, and the resistance is increased. In addition, A Ac became large and the specific surface area ratio became small.
- Comparative Example 3 where the mixing ratio of the negative electrode and the press temperature were different, the binder was not thinned. Comparative Example 3 is an example in which the entire binder amount is large. When S Ac is 10 or more and S Cu is 30 or more, the resistance of the electrode increases. In Comparative Example 3, although S Ac was 10 or less, S Cu was 30 or more, and the resistance of the electrode increased. Although the binder was not thinned, the contact area of the binder was large, and the ACu and specific surface area ratio was small.
- the distribution of the binder in the negative electrode mixture layer was changed, and as a result of thinning and dispersing the binder, it was found that the resistance was lower than in Comparative Examples 1 to 3 and contributed to the improvement of the output. It was.
- the result was that the binder contact area of the active material portion in contact with the current collector was large, but there was no change in the battery capacity, and no significant difference was observed in the electrode density. Therefore, in the battery of the example, it was possible to achieve both improvement in output and capacity maintenance. Apply a mixture (first layer) that contacts the current collector, press at high temperature to increase the binder contact area, then re-apply the mixture from above and press at low temperature to produce the electrode Is desirable.
- Example 2 the resistance value was reduced, and the cycle life was significantly improved as compared with other batteries.
- S Cu is increased without increasing the total binder amount.
- SCu was 30 or less, the resistance of the electrode did not increase. That is, the resistance of the electrode did not increase, and the binding property between the current collector and the active material could be improved. For this reason, since the binding force increased and peeling from the current collector due to expansion and contraction of the active material during cycle charge / discharge was suppressed, the cycle life was improved.
- the adhesion is improved by adding a binder
- the resistance increases and the initial capacity decreases, so that it is difficult to obtain the result of 80% as in Example 2.
- Negative electrode current collector positive electrode insulating material
- Negative electrode insulating material negative electrode insulating material 22
- Positive electrode battery lid 23 Negative electrode battery can
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
リチウムイオン電池用負極であって、集電体と、集電体上に形成された負極活物質粒子と結着材とを含む負極合剤層とを備え、集電体と負極合剤層とが接触する界面の比表面積が、負極表面の結着材の比表面積よりも大きいことを特徴とする。密着性と電極の抵抗増加抑制を両立する負極を提供することが可能となる。
Description
本発明は、リチウムイオン電池に関する。
リチウムイオン電池は、動作電圧が高く、高い出力を得やすい高エネルギー密度の特徴を有する。そのため、リチウムイオン二次電池の用途として、ハイブリッド自動車、電気自動車が開発され、ますます高出力、高エネルギー密度および長寿命化が重要な課題である。
高出力、高エネルギー密度化のため、大容量の活物質を採用すると、充電時と放電時の活物質の体積の膨張率(放電時の体積を1とする)が大きいため、充放電の繰り返しにより活物質と活物質、および活物質と集電体をつないでいる結着材が破断したり、活物質界面、集電体界面から結着材が剥離したりして、電池容量が低下する。
特開平10-284059号公報(特許文献1)には、銅箔側の結着材量を多くし、銅箔と負極合剤層の密着性を向上させる発明が開示されている。
しかしながら、銅箔側の結着材量を多くすると、集電体と活物質との抵抗が増大し、電極の抵抗が増加し、結果、電池の内部抵抗が増加してしまう。このため、高出力・高容量の両立が困難となる。
そこで本発明の目的は、高出力・高容量のリチウムイオン電池用負極、及びリチウムイオン二次電池を提供することを目的とする。
上記課題を解決する本発明の特徴は、リチウムイオン電池用負極であって、集電体と、集電体上に形成された負極活物質粒子と結着材とを含む負極合剤層と、を備え、集電体と接触する部分、もしくは集電体近傍の結着材の表面積を、負極表面側の結着材の表面積よりも大きくしたことを特徴とする。
上記構成により、集電体と合剤層との密着性が向上するとともに、抵抗の上昇を抑制することが可能である。
上述の通り、大容量な活物質を用いたリチウムイオン電池の長寿命化の課題の1つに電極の密着性の改善が挙げられる。電極密着性の改善の1つの手段は結着材量を増加させ、結着性をあげることである。特に、集電体である銅箔と活物質とは異種同士であるため、活物質と活物質よりも結着しにくい。
そこで、本発明では、電極の密着性向上と、電極の抵抗増加抑制を両立させるため、合剤層に含まれる結着材(結着材)を改善することとした。具体的には、活物質と結着材の比率を全体で一定とした負極合剤層であって、結着材の比表面積を負極表面側よりも集電体側で大きくすることにある。言い換えると、結着材と集電体、活物質粒子が部分的に接触していて、集電体に直接、接している粒子(或いは集電体近傍の粒子)の結着材被覆厚さが集電体から離れた合剤中の粒子の結着材被覆厚さより薄くなる。
<リチウムイオン二次電池>
本発明のリチウムイオン電池は、本発明に係る負極をを備えていればよく、その他の構成要素や構造については特に制限は無く、従来公知のリチウムイオン電池で適用されている各種構成要素、構造を採用することができる。
<リチウムイオン二次電池>
本発明のリチウムイオン電池は、本発明に係る負極をを備えていればよく、その他の構成要素や構造については特に制限は無く、従来公知のリチウムイオン電池で適用されている各種構成要素、構造を採用することができる。
上記のリチウムイオン電池は、電池の内部抵抗を低減できるため、高出力が要求されるハイブリッド自動車の電源,自動車の電動制御系の電源やバックアップ電源として広く利用可能であり、鉄道、電動工具,フォークリフトなどの産業用機器の電源としても好適である。
<負極>
負極は、負極合剤と、負極集電体とを備える。負極合剤層とは、負極活物質、結着材を含む負極合剤が、銅箔などよりなる負極集電体に塗布されることにより形成される合剤層をいう。尚、電子抵抗の低減のため、負極合剤層に更に導電剤を加えても良い。
<負極活物質>
リチウムイオンを吸蔵・放出可能な負極活物質として、炭素質材料,IV属元素を含む酸化物,IV属元素を含む窒化物等、もしくはこれらの混合物を使用できる。例えば、天然黒鉛,天然黒鉛に乾式のCVD(Chemical Vapor Dposition)法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料,エポキシやフェノール等の樹脂原料若しくは石油や石炭から得られるピッチ系材料を原料として焼成して造られる人造黒鉛,非晶質炭素材料などの炭素質材料、又は、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属,リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素,ゲルマニウム,錫など第四族元素の酸化物若しくは窒化物を用いることができる。
<負極>
負極は、負極合剤と、負極集電体とを備える。負極合剤層とは、負極活物質、結着材を含む負極合剤が、銅箔などよりなる負極集電体に塗布されることにより形成される合剤層をいう。尚、電子抵抗の低減のため、負極合剤層に更に導電剤を加えても良い。
<負極活物質>
リチウムイオンを吸蔵・放出可能な負極活物質として、炭素質材料,IV属元素を含む酸化物,IV属元素を含む窒化物等、もしくはこれらの混合物を使用できる。例えば、天然黒鉛,天然黒鉛に乾式のCVD(Chemical Vapor Dposition)法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料,エポキシやフェノール等の樹脂原料若しくは石油や石炭から得られるピッチ系材料を原料として焼成して造られる人造黒鉛,非晶質炭素材料などの炭素質材料、又は、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属,リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素,ゲルマニウム,錫など第四族元素の酸化物若しくは窒化物を用いることができる。
特に、黒鉛質,非晶質,活性炭などの炭素質材料は、導電性が高く、低温特性,サイクル安定性の面から優れた材料である。炭素質材料の中では、炭素網面層間(d002)の広い材料が急速充放電や低温特性に優れ、好適である。しかし、d002が広い材料は、充電の初期での容量低下や充放電効率が低いことがあるので、d002は0.39nm以下が好ましく、このような炭素質材料を、擬似異方性炭素と称する場合がある。
または、以下(1)~(3)に示す特徴を有する材料(黒鉛質材料)を用いることも好ましい。
(1)ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)とラマン分光スペクトルで測定される1580~1620cm-1の範囲にあるピーク強度(IG)との強度比であるR値(ID/IG)が、0.2以上0.4以下
(2)ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピークの半値幅Δ値が、40cm-1以上100cm-1以下
(3)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/I(004))が0.1以上0.45以下
<負極電極構造>
図1にリチウムイオン電池の負極の模式図を示す。負極は、負極集電体2の両面に、負極合剤層1が設けられた構成となっている。
(1)ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)とラマン分光スペクトルで測定される1580~1620cm-1の範囲にあるピーク強度(IG)との強度比であるR値(ID/IG)が、0.2以上0.4以下
(2)ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピークの半値幅Δ値が、40cm-1以上100cm-1以下
(3)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/I(004))が0.1以上0.45以下
<負極電極構造>
図1にリチウムイオン電池の負極の模式図を示す。負極は、負極集電体2の両面に、負極合剤層1が設けられた構成となっている。
図2は、図1をA-A’線に沿って集電体と平行に切断した場合の断面図である。図3は、図2をB-B’線(集電箔と合剤層との界面)に沿って切断した場合の断面図であって、集電体側(101の矢印方向)から見た図である。図4は、図2をC-C’線に沿って切断した場合の断面図であって、同様に集電体側(101の矢印方向)から見た図である。
結着材は負極活物質と負極活物質または負極活物質と集電体を結着する。集電体には、主に金属箔を用いており、負極活物質同士より、異種物質同士の負極活物質と集電体の結着がしにくい。従って、同量の結着材を用いて結着させた場合、負極活物質同士が結着している合剤層内部に比して、負極活物質と集電体が結着している界面部ではがれやすい。このため、結着材量を増やさずに負極活物質と集電体の密着性を上げる手段として、負極活物質と集電体が結着している界面部での結着材の結着面積を大きくすることとした。
合剤層に占める結着材の割合(結着材占有率)は、図3、4に示すような電極平面を走査型電子顕微鏡(Scanning Electron Microscope、SEM)などで分析し、画像の1視野に占める結着材面積比率とする。
図3は負極活物質と集電体の境界面の平面図(負極活物質3、結着材4、空隙5)である。結着材が集電体もしくは負極活物質に接触する面が図3の符号4の領域である。負極活物質と集電体に接触する結着材の接触面積は図3の平面図全体に占める結着材の占有する面積割合を計算すればよい。負極合剤の結着材占有面積率SCuは式(4)に示すとおりである。
同様に、負極合剤層内で、負極活物質間を結着する結着材の接触面積についても、結着材占有面積率SAcとして、式(5)に示すとおり算出する。
同様に、負極合剤層内で、負極活物質間を結着する結着材の接触面積についても、結着材占有面積率SAcとして、式(5)に示すとおり算出する。
上述の通り、本実施例の負極合剤層は、集電体近傍の結着材占有率が、負極表面側の結着材占有率よりも大きいことを特徴とする。特に、負極合剤層と集電体との界面近傍(図3)の結着材の占有面積率をSCu、負極表面側(図4)の結着材の占有面積率をSAcとするとき、1≦SCu/SAc<6の範囲であることが好ましい。この範囲であると、電池の抵抗を上げず、電極の密着性を向上させることが可能である。SCu/SAcが1未満の場合には、活物質間の結着性に比して、活物質と集電体との結着性が弱く、界面剥離の可能性が上昇する、もしくは、結着材料を多く含むこととなり、電池容量が低下してしまう。特に、SCu/SAcが1~3であることが好ましく、サイクル寿命、高温保存寿命を向上させる。SCu/SAcが6以上の場合、バインダが集電体との界面で薄くなったとしても、集電体側の占有面積が多くなりすぎ、電子抵抗が増大し、結果として電極としての抵抗が上がってしまう。
また、SAcが5~10%の範囲であることが好ましい。電池作製途中での電極の剥離が生じず、かつ電池の抵抗上昇が軽減でき、出力の向上を図ることができる。
上記構成により、リチウムイオン電池の負極は結着材と集電箔、活物質粒子が部分的に接触していて、集電箔に接している粒子(或いは集電箔近傍の粒子)の結着材被覆厚さが、集電箔から離れた合剤中の粒子の結着材被覆厚さより薄くなる。その結果、電極の密着性と電極の抵抗増加抑制を両立できる。
<負極の製造方法>
図5を用い、電極の密着性と電極の抵抗増加抑制を両立するための負極作成方法について説明する。図5は、リチウムイオン電池の負極の例を示す電極断面の模式図である。負極は、集電体2と、集電体側より第1の負極合剤層6、第2の負極合剤層7とより構成されている。高密着かつ電極抵抗増加抑制の両立を実現するために、負極合剤層1を2層構造とし、第1の合剤層を形成し、予備乾燥し、プレスしたのち、第2の合剤層を形成する。第2の合剤層においても第1の合剤層と同様に形成したのち、予備乾燥し、プレスを実施する。
<負極の製造方法>
図5を用い、電極の密着性と電極の抵抗増加抑制を両立するための負極作成方法について説明する。図5は、リチウムイオン電池の負極の例を示す電極断面の模式図である。負極は、集電体2と、集電体側より第1の負極合剤層6、第2の負極合剤層7とより構成されている。高密着かつ電極抵抗増加抑制の両立を実現するために、負極合剤層1を2層構造とし、第1の合剤層を形成し、予備乾燥し、プレスしたのち、第2の合剤層を形成する。第2の合剤層においても第1の合剤層と同様に形成したのち、予備乾燥し、プレスを実施する。
第1の合剤層6は負極集電体2と活物質という異種の物質の結着のため、熱膨張係数が異なる、充放電での体積変化があるなどの問題がある。従って、活物質と活物質と決着させるより多くの結着材が必要となる。しかしながら、結着材量を多くすると、抵抗が上昇するため、結着材量を増やさず、結着を上げることが重要である。そこで負極集電体2と高密着させるため、以下の手法を用いて負極集電体2と負極合剤層1とを接続する結着材の接触面積を大きくし、結着させる。
第1の合剤層7をプレスする際、負極集電体2と負極合剤層1とを接続する結着材の接触面積を大きくするため、熱をかけながらプレスをする。用いる結着材の軟化点は120~150℃であるため、プレス時の温度は120~150℃が望ましい。熱をかけてプレスを実施することにより、結着材はつぶれやすくなり、少ない量で負極集電体2と負極合剤層1とを接続する結着材の接触面積を大きくすることが可能である。
具体的には、まず、負極集電体2の少なくとも一方の面上に、第1の負極合剤層形成用の負極合剤含有組成物を塗布し、例えば60~120℃ で2~4 時間乾燥し、その後1~10ton/cm2でプレスすることで厚みと密度を調整して、第1の負極合剤層6を形成する。
一方、第2の合剤層7は活物質と活物質とを結着させるため、第1の合剤層6よりも、合剤の密着性は重要ではない。このため、第1の合剤層6よりも活物質に対する結着材の接触面積は大きくなくてよい。そこで、第2の合剤層8のプレス温度は120℃以下が望ましい。電極の密度が制御できればいいため、プレスする際、熱をかけなくてもよい。
従って、上記のように形成した第1の負極合剤層6上に、第2の負極合剤層形成用の負極合剤含有組成物を塗布し、例えば60~120℃ で2~4 時間乾燥し、その後1~10ton/cm2でプレスすることで厚みと密度を調整して、第2の負極合剤層7を形成する。このような方法で、負極集電体2の少なくとも一方の面に、第1の負極合剤層6と第2の負極合剤層7で構成される負極合剤層1を有する負極を作製することができる。
上記のようにして形成される第1の負極合剤層7と第2の負極合剤層8の厚みは、第1の負極合剤層7よりも第2の負極合剤層8の方を厚くすることが好ましい。第1の負極合剤層7を第2の負極合剤層8よりも厚くすると、密着性は向上するが、活物質間の結着材被覆量が多くなり、電池の内部抵抗が上昇してしまう。
特に、第1の負極合剤層1の厚みは、1μm以上、好ましくは5μm以上であって,20μm以下、好ましくは15μm以下である。第1の負極合剤層6が薄すぎると、第2の負極合剤層7との接合が不十分になって、第2の負極合剤層7の体積変化に追従できない。他方、第1の負極合剤層6が厚すぎると、負極合剤層1を特定の厚みとするには、第2の負極合剤層7を薄くする必要が生じる場合があり、高容量化が難しくなることがある。
また、第2の負極合剤層8の厚みは、15μm以上、好ましくは20μm以上であって、100μm以下、好ましくは50μm以下である。第2の負極合剤層8が薄すぎると、高容量化が難しくなる。他方第2の負極合剤層8が厚すぎると、負極合剤層1を特定の厚みとするには、第2の負極合剤層2を薄くする必要が生じることがあり、その場合に、第1の負極合剤層7との接合が不十分になって、第1の負極合剤層7が第2の負極合剤層8の体積変化に追従できない。
そして、負極合剤層の厚みは、電池に要求される特性に応じて設定する。負極合剤層1の厚み(第1の負極合剤層6と第2の負極合剤層7の総厚み)は、15μm以上、好ましくは30μm以上であって、150μm以下、好ましくは120μm以下である。負極合剤層が薄すぎると、負極合剤層形成時に、負極合剤含有組成物の塗布斑が発生し、負極の歩留まりが著しく悪化する。他方、負極合剤層が厚すぎると、集電体までの距離が長くなり、大きな電流値が取れなくなって、電池の負荷特性が低下する。特に、高出力が要求される用途に適用される電池の場合には、負極合剤層の厚みを、10μm以上50μm以下とすることが好ましい。他方、高容量が要求される用途に適用される電池の場合には、負極合剤層の厚みを、50μm 以上100μm以下とすることが好ましい。
なお、上記の第1の負極合剤層6の厚み、第2の負極合剤層7の厚み、および負極合剤層1の厚みは、集電体の片面当たりの厚みである。例えば、集電体の両面に負極合剤層が形成された負極においては、負極集電体2の片面ごとに、第1の負極合剤層6、第2の負極合剤層7および負極合剤層1が、上記の厚みを満足していればよい。
負極合剤層には、電子抵抗の低減のため更に導電剤を加えても良い。導電剤は、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。
負極集電体2としては、ステンレス鋼、銅、ニッケル、チタン等の金属箔あるいは金属メッシュ等を用いることが出来る。特に、銅が好ましく、耐熱性の高いジルコニアや亜鉛含有銅も好ましい。
結着材樹脂としては、負極を構成する材料と負極集電体を密着させるものであればよく、例えば、四フッ化エチレン、アクリロニトリル、エチレンオキシドなどの単独重合体又は共重合体、スチレン-ブタジエンゴムなどを挙げることができる。結着材樹脂溶液を構成する溶媒としては、水を用いることが出来る。また、これらは単独でも混合して用いても良い。
上記の負極は、第1の負極合剤層6および第2の負極合剤層7のプレスによる厚みと密度の調整の際に、第1の負極合剤層7および第2の負極合剤層8に良好に圧力をかけることができるため、多孔質の層としながらも、その密度を高めることが可能であり、負極( 電池)の長寿命化を達成できる。
<正極>
正極は、正極は、正極合剤と、正極集電体とを備え、正極活物質及び結着材を含む正極合剤が、アルミニウム箔などの正極集電体に塗布されることにより形成されることが多い。なお、電子抵抗の低減のため更に正極合剤層に導電剤を加えても良い。
<正極>
正極は、正極は、正極合剤と、正極集電体とを備え、正極活物質及び結着材を含む正極合剤が、アルミニウム箔などの正極集電体に塗布されることにより形成されることが多い。なお、電子抵抗の低減のため更に正極合剤層に導電剤を加えても良い。
リチウムイオンを吸蔵・放出可能な正極活物質としては、組成式LiαMnxM1yM2zO2(式中、M1は、Co,Niから選ばれる少なくとも1種、M2は、Co,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種であり、x+y+z=1,0<α<1.2,0.2≦x≦0.6,0.2≦y≦0.4,0.05≦z≦0.4)で表されるリチウム複合酸化物が好ましい。その中でも、M1がNi又はCoであって、M2がCo又はNiであることが好ましく、LiMn1/3Ni1/3Co1/3O2であればさらに好ましい。Niを多くすると容量が大きく取れ、Coを多くすると低温での出力が向上でき、Mnを多くすると材料コストを抑制できる。また、添加元素は、サイクル特性を安定させるのに効果がある。
他に、一般式LiMxPO4(M:Fe又はMn、0.01≦X≦0.4)やLiMn1-xMxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物でも良い。特に、LiMn1/3Ni1/3Co1/3O2は、低温特性とサイクル安定性とが高く、ハイブリット自動車(HEV)用リチウム電池材料として好適である。
結着材は、正極を構成する材料と正極用集電体を密着させるものであればよく、例えば、フッ化ビニリデン,四フッ化エチレン,アクリロニトリル,エチレンオキシドなどの単独重合体又は共重合体,スチレン-ブタジエンゴムなどを挙げることができる。導電剤は、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。
正極は、上述の、正極合剤層形成用の正極合剤含有組成物を用いて、例えば、上述の負極形成の方法と同じように形成できる。
<電解液>
電解液は、リチウムイオンを含む化合物を電解質として含む非水溶媒である。電解液に使用される非水溶媒としては、低温特性、負極電極上の被膜形成の観点から、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)等が例示され、ビニレンカーボネート(VC)等の添加物を加えてもよい。
<電解液>
電解液は、リチウムイオンを含む化合物を電解質として含む非水溶媒である。電解液に使用される非水溶媒としては、低温特性、負極電極上の被膜形成の観点から、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)等が例示され、ビニレンカーボネート(VC)等の添加物を加えてもよい。
電解液に用いるリチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF6,LiBF4,LiClO4,LiI,LiCl,LiBr等、また、有機リチウム塩では、LiB[OCOCF3]4,LiB[OCOCF2CF3]4,LiPF4(CF3)2,LiN(SO2CF3)2,LiN(SO2CF2CF3)2等を用いることができる。特に、LiPF6は、品質の安定性から好適な材料であり、民生用電池で多く用いられている。また、LiB[OCOCF3]4は、解離性,溶解性が良好で、低い濃度で高い導電率を示すので有効である。
<セパレータ>
正負極の短絡を防止するセパレータとして、公知のリチウムイオン電池に使用されているセパレータを用いることができ、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。電池の高容量化の観点からは、セパレータの厚みは、20μm以下とすることが好ましく、18μm以下とすることがより好ましい。このような厚みのセパレータを用いることで、電池の体積あたりの容量を大きくすることができる。しかし、セパレータを薄くしすぎると、取り扱い性が損なわれたり、正負極間の隔離が不十分となって短絡が生じ易くなったりするため、厚みの下限は10μmであることが好ましい。
<セパレータ>
正負極の短絡を防止するセパレータとして、公知のリチウムイオン電池に使用されているセパレータを用いることができ、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。電池の高容量化の観点からは、セパレータの厚みは、20μm以下とすることが好ましく、18μm以下とすることがより好ましい。このような厚みのセパレータを用いることで、電池の体積あたりの容量を大きくすることができる。しかし、セパレータを薄くしすぎると、取り扱い性が損なわれたり、正負極間の隔離が不十分となって短絡が生じ易くなったりするため、厚みの下限は10μmであることが好ましい。
以下、本発明を実施するための最良の形態を具体的な実施例によって説明する。
<実施例1>
(捲回型電池の作製)
以下に示す方法で、本実施例の捲回型電池を作製した。図6に捲回型電池の片側断面図を示す。
<実施例1>
(捲回型電池の作製)
以下に示す方法で、本実施例の捲回型電池を作製した。図6に捲回型電池の片側断面図を示す。
まず、負極活物質として天然黒鉛、結着材としてスチレンーブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)を用いて、乾燥時の固形分重量を、天然黒鉛:SBR:CMC=98:1:1の比の比となるように、溶剤として水を用いて、負極合剤層のスラリーを調製した。
この負極材スラリーを、まず負極集電体2となる銅箔に第1の合剤層6を乾燥後の厚みが20μmになるように塗布した。その後、80℃にて乾燥し、さらに第1の合剤層6を120℃でプレスして第1の合剤層6を負極集電体5に形成した。次に第1の合剤層の上に第2の合剤層を形成するため、第1の合剤層6で用いたスラリーと同様の負極材スラリーを乾燥後の厚みが100μmになるように塗布した。その後、80℃にて乾燥し、さらに25℃でプレスして第2の合剤層7を形成した。
この負極材スラリーを、まず負極集電体2となる銅箔に第1の合剤層6を乾燥後の厚みが20μmになるように塗布した。その後、80℃にて乾燥し、さらに第1の合剤層6を120℃でプレスして第1の合剤層6を負極集電体5に形成した。次に第1の合剤層の上に第2の合剤層を形成するため、第1の合剤層6で用いたスラリーと同様の負極材スラリーを乾燥後の厚みが100μmになるように塗布した。その後、80℃にて乾燥し、さらに25℃でプレスして第2の合剤層7を形成した。
次に、正極活物質としてLiMn1/3Ni1/3Co1/3O2を用い、電子導電性材料としてカーボンブラック(CB1)と黒鉛(GF2)を用い、結着材としてポリフッ化ビニリデン(PVDF)を用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/3O2:CB1:GF2:PVDF=86:9:2:3の比となるように、溶剤としてNMP(N-メチルピロリドン)を用いて正極材ペーストを調製した。
この正極材ペーストを、正極集電体となるアルミ箔に塗布し、80℃で乾燥して正極合剤層を正極集電体に形成した。
電解液として、溶媒を容積組成比EC:VC:DMC:EMC=19.8:0.2:40:40で混合したものを用い、リチウム塩としてLiPF6を1M溶解して電解液を作製した。
作製した負極13、正極16間にセパレータ17を挟み込み、捲回群を形成し、負極電池缶23に挿入した。そして、負極の集電をとるためにニッケル製の負極リード19の一端を負極集電体11に溶接し、他端を負極電池缶23に溶接した。また、正極の集電をとるためにアルミニウム製の正極リード18の一端を正極集電体14に溶接し、他端を電流遮断溶接し、さらにこの電流遮断弁を介して正極電池蓋22と電気的に接続した。さらに電解液を注液し、かしめることで捲回型電池を作製した。
なお、図6において、20は正極絶縁材、21は負極絶縁材である。上記のように作製した電池について、電池特性評価を行った。
(結着材占有率評価方法)
負極活物質と集電体界面の結着材の占有面積率SCuは図2のB-B‘面を合剤層側より観察する。その後、観察写真より結着材の面積比率を算出した。さらに負極活物質界面の占有面積率SAcは図2のC-C‘面を合剤層側より観察する。その後、観察写真より結着材の面積比率を算出した。測定結果を表1に示す。
負極活物質と集電体界面の結着材の占有面積率SCuは図2のB-B‘面を合剤層側より観察する。その後、観察写真より結着材の面積比率を算出した。さらに負極活物質界面の占有面積率SAcは図2のC-C‘面を合剤層側より観察する。その後、観察写真より結着材の面積比率を算出した。測定結果を表1に示す。
なお、SAcは、5~10%の範囲であることが好ましい。SAcが5%未満の場合、活物質同士を接着するのに十分なバインダ面積量には至らないため、活物質同士の接着が弱い。このため、電極が剥離しやすい。また、SAcが10%より多いと、活物質に対するバインダ面積量が多いため、活物質同士を接着するのに十分なバインダ面積量ではあるものの、電極抵抗が高くなる。
(比表面積評価方法)
負極活物質と集電体界面の合剤および負極活物質界面の合剤を採取し、それぞれの比表面積をガス吸着法で測定した。吸着ガスには窒素を用いて,液体窒素温度で測定した。比表面積は,ガス吸着測定における相対圧(P/P0)0.1,0.2,0.3の3点の値を用いて,BET法で算出した。負極活物質と集電体界面の合剤の比表面積をACu、負極活物質界面の合剤の比表面積をAAcとした。その後、比表面積比率を算出した。測定結果を表1に示す。
負極活物質と集電体界面の合剤および負極活物質界面の合剤を採取し、それぞれの比表面積をガス吸着法で測定した。吸着ガスには窒素を用いて,液体窒素温度で測定した。比表面積は,ガス吸着測定における相対圧(P/P0)0.1,0.2,0.3の3点の値を用いて,BET法で算出した。負極活物質と集電体界面の合剤の比表面積をACu、負極活物質界面の合剤の比表面積をAAcとした。その後、比表面積比率を算出した。測定結果を表1に示す。
(電池容量評価方法)
電池を定電流0.6Aで4.1Vまで充電し、定電圧4.1Vで電流値が20mAになるまで充電し、30分の運転休止の後、0.6Aで2.7Vまで放電した。この操作を2回繰返した。次に、電池を4.1Vまで定電流0.6Aで充電し、30分放置し、電圧を測定した。比較例1を100%とし、容量比を算出した。測定結果を表1に示す。
電池を定電流0.6Aで4.1Vまで充電し、定電圧4.1Vで電流値が20mAになるまで充電し、30分の運転休止の後、0.6Aで2.7Vまで放電した。この操作を2回繰返した。次に、電池を4.1Vまで定電流0.6Aで充電し、30分放置し、電圧を測定した。比較例1を100%とし、容量比を算出した。測定結果を表1に示す。
(直流抵抗(DCR:Direct Current Resistance)評価方法)
放電DCR評価は、電池を3.7 Vまで定電流0.6Aで充電し、0.6Aで10s放電し、再度3.8Vまで定電流で充電し、1.8Aで10s放電し、再度3.7Vまで充電し、06Aで10s放電した。この際のI-V特性から、電池のDCRを評価した。比較例1を100%とし、直流抵抗比を算出した。測定結果を表1に示す。
放電DCR評価は、電池を3.7 Vまで定電流0.6Aで充電し、0.6Aで10s放電し、再度3.8Vまで定電流で充電し、1.8Aで10s放電し、再度3.7Vまで充電し、06Aで10s放電した。この際のI-V特性から、電池のDCRを評価した。比較例1を100%とし、直流抵抗比を算出した。測定結果を表1に示す。
(サイクル寿命測定方法)
電池を定電流0.6Aで4.1Vまで充電し、定電圧4.1Vで電流値が20mAになるまで充電し、30分の運転休止の後、1.8Aで2.7Vまで放電した。この操作を100回繰返した。放電容量は放電時の時間、電流値を用い算出した。初期の放電容量を100%とし、100サイクル後の放電容量の比率をサイクル寿命とした。測定結果を表1に示す。
電池を定電流0.6Aで4.1Vまで充電し、定電圧4.1Vで電流値が20mAになるまで充電し、30分の運転休止の後、1.8Aで2.7Vまで放電した。この操作を100回繰返した。放電容量は放電時の時間、電流値を用い算出した。初期の放電容量を100%とし、100サイクル後の放電容量の比率をサイクル寿命とした。測定結果を表1に示す。
<実施例2>
負極合剤層の第1の合剤層7を150℃でプレスした以外は、実施例1と同様に実施例2の捲回型電池を作製し、評価した。
負極合剤層の第1の合剤層7を150℃でプレスした以外は、実施例1と同様に実施例2の捲回型電池を作製し、評価した。
<比較例>
図7に比較例の負極の模式図を示す。負極合剤層を一層で作製した以外は、実施例1および2と同様に比較例1~比較例3の捲回型電池を作製し、評価した。
図7に比較例の負極の模式図を示す。負極合剤層を一層で作製した以外は、実施例1および2と同様に比較例1~比較例3の捲回型電池を作製し、評価した。
負極活物質として天然黒鉛、結着材としてスチレンーブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)を用いて、乾燥時の固形分重量を、天然黒鉛:SBR:CMC=98:1:1の比の比となるように、溶剤として水を用いて、負極合剤層のスラリーを調製した。この負極材スラリーを、負極集電体2となる銅箔に乾燥後の厚みが120μmになるように塗布した。その後、80℃にて乾燥し、さらに合剤層を、比較例1の負極合剤層では25℃、比較例2の負極合剤層では120℃でプレスして、負極合剤層1を負極集電体2に形成した。
比較例3は、負極活物質として天然黒鉛、結着材としてスチレンーブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)を用いて、乾燥時の固形分重量を、天然黒鉛:SBR:CMC=93:6:1の比の比で混合した。負極集電体2となる銅箔に乾燥後の厚みが120μmになるように塗布した。その後、80℃にて乾燥し、さらに合剤層を、負極合剤層では25℃でプレスして、負極合剤層1を負極集電体2に形成した。
<評価結果>
結着材占有率(SCu/SAc)は、比較例1では集電体側、負極表面側とも同じであったが、二段階プレスした実施例1、2、高温プレスした比較例2では、比較例1より大きい値となった。つまり、これらの例では、結着材が負極活物質を集電体側で広く覆っていると考えられる。
結着材占有率(SCu/SAc)は、比較例1では集電体側、負極表面側とも同じであったが、二段階プレスした実施例1、2、高温プレスした比較例2では、比較例1より大きい値となった。つまり、これらの例では、結着材が負極活物質を集電体側で広く覆っていると考えられる。
比較例2は、集電体側のバインダの薄膜化が生じた。1回プレスでは、集電体側に近づくほど、バインダの接着面積が大になった。高温プレスすると、合剤表面側から集電体側にかけて、徐々に活物質に対するバインダの接着面積が増加した。このため、比較例2では集電体に近い合剤層では、バインダの接触面積が増加し、伝導パスが少なくなくなり、抵抗が増大したと考える。なお、AAcが大となり、比表面積比は小さくなった。
一方、負極の混合比、プレス温度の異なる比較例3では、バインダの薄膜化が生じなかった。比較例3は、全体のバインダ量が多い例である。SAcが10以上、SCuが30以上になると電極の抵抗が増加する。比較例3は、SAcが10以下であるもののSCuが30以上であり、電極の抵抗が増加した。バインダは薄膜化しないものの、バインダの接触面積が大きく、ACu及び比表面積比が小さくなった。
実施例では、負極合剤層の結着材の分布が変化し、結着材が薄膜化、分散化した結果、比較例1~3よりも抵抗が低く、出力の向上に寄与することが分かった。なお、実施例では、集電体と接する活物質部分のバインダの接触面積が大きい結果となったが、電池容量に変化はなく、電極密度にも有意な差異は見られなかった。従って、実施例の電池では、出力向上と容量維持の両立が可能であった。集電体と接触する合剤(第1層)を塗布し、高温プレスして、バインダ接触面積を大にし、その後、上から合剤を再塗布し、低温プレスして、電極を作製することが望ましい。
さらに、実施例2では、抵抗値が低減したほか、他の電池に比してサイクル寿命の顕著な改善が見られた。実施例2では、全体のバインダ量を増やさずにSCuを増加させている。なお、SCuは30以下であるため、電極の抵抗は上昇しなかった。つまり、電極の抵抗は増加せず、集電体と活物質の結着性を向上させることができた。このため、結着力が増加し、サイクル充放電中の活物質の膨張収縮による集電体からの剥離が抑制されるため、サイクル寿命が向上した。例えば、結着材を追加して密着性を向上させた電池では、抵抗が高くなり、初期容量が下がるので、実施例2のような80%の結果を得ることは困難である。
上記の通り、電極の密着性と電極の抵抗増加抑制とを両立し、出力が向上、電池のサイクル寿命を長くするリチウムイオン電池用負極、及びリチウムイオン二次電池を提供できる。
1:負極合剤層
2:負極集電体
3:負極活物質
4:結着材
5:空隙
6:第1の負極合剤層
7:第2の負極合剤層
11負極集電体
12負極合剤層
13負極
14正極集電体
15正極合剤層
16正極
17セパレータ
18正極リード
19負極リード
20正極絶縁材
21負極絶縁材
22正極電池蓋
23負極電池缶
2:負極集電体
3:負極活物質
4:結着材
5:空隙
6:第1の負極合剤層
7:第2の負極合剤層
11負極集電体
12負極合剤層
13負極
14正極集電体
15正極合剤層
16正極
17セパレータ
18正極リード
19負極リード
20正極絶縁材
21負極絶縁材
22正極電池蓋
23負極電池缶
Claims (7)
- リチウムイオン電池用負極であって、集電体と、集電体上に形成された負極活物質粒子と結着材とを含む負極合剤層と、を備え、
集電体と負極合剤層とが接触する界面の比表面積が、負極表面の結着材の比表面積よりも大きく、
集電体と負極合剤層とが接触する界面の画像に占める結着材の面積比率(SCu)と、負極正面近傍の合剤層内で集電体と平行な面の画像に占める結着材の面積比率(SAc)の比(SCu/SAc)が1≦SCu/SAc<6の範囲である、ことを特徴とするリチウムイオン電池用負極。 - 請求項1に記載されたリチウムイオン電池用負極であって、
前記結着材の面積比率(SCu/SAc)が1≦SCu/SAc<3の範囲であることを特徴とするリチウムイオン電池用負極。 - 請求項1に記載されたリチウムイオン電池用負極であって、
前記負極合剤層は、前記集電体上に形成された第一の負極合剤層と、前記第一の負極合剤層上に形成された第二の負極合剤層よりなり、
前記第一の負極合剤層の比表面積は、前記第二の負極合剤層の比表面積よりも小さく、 前記第一の負極合剤層の厚さは、前記第二の負極合剤層の厚さよりも薄いことを特徴とするリチウムイオン二次電池用負極。 - 請求項1に記載されたリチウムイオン電池用負極であって、
前記SAcが5~10%の範囲であることを特徴とするリチウムイオン二次電池用負極。 - 請求項1に記載されたリチウムイオン電池用負極であって、
前記集電体と前記負極合剤層とが接触する界面近傍で、前記負極表面近傍よりも、前記活物質粒子に付着した前記結着材の厚さが厚いことを特徴とするリチウムイオン二次電池。 - 集電体と、集電体上に形成された負極活物質粒子と結着材とを含む負極合剤層と、を備えるリチウムイオン電池用負極の製造方法であって、
前記負極合剤層を形成する工程は、第一の合剤層を形成する工程と、第二の合剤層を形成する工程よりなり、
前記第一の合剤層を形成する工程では、前記第二の合剤層を形成する工程よりも高温でプレスする工程を含むことを特徴とするリチウムイオン電池用負極の製造方法。 - 請求項6に記載されたリチウムイオン電池用負極の製造方法であって、
前記第一の合剤層を形成する工程では、120~150℃でプレスする工程を含むことを特徴とするリチウムイオン電池用負極の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/060146 WO2014162530A1 (ja) | 2013-04-03 | 2013-04-03 | リチウムイオン電池用負極、及びリチウムイオン電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/060146 WO2014162530A1 (ja) | 2013-04-03 | 2013-04-03 | リチウムイオン電池用負極、及びリチウムイオン電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014162530A1 true WO2014162530A1 (ja) | 2014-10-09 |
Family
ID=51657863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/060146 WO2014162530A1 (ja) | 2013-04-03 | 2013-04-03 | リチウムイオン電池用負極、及びリチウムイオン電池 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014162530A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017152175A (ja) * | 2016-02-24 | 2017-08-31 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270013A (ja) * | 1997-03-27 | 1998-10-09 | Japan Storage Battery Co Ltd | 非水電解質二次電池用電極及びその製造方法 |
JPH10284059A (ja) * | 1997-04-03 | 1998-10-23 | Shin Kobe Electric Mach Co Ltd | リチウムイオン電池用負極板及びその製造方法 |
JP2007227666A (ja) * | 2006-02-23 | 2007-09-06 | Nippon Zeon Co Ltd | 電気化学素子の製造方法 |
JP2009230976A (ja) * | 2008-03-21 | 2009-10-08 | Sanyo Electric Co Ltd | 非水電解質二次電池及びその製造方法 |
WO2010122601A1 (ja) * | 2009-04-22 | 2010-10-28 | トヨタ自動車株式会社 | 電池用電極の製造方法及びそれに用いる塗工ダイ |
JP2013020777A (ja) * | 2011-07-11 | 2013-01-31 | Hitachi Ltd | 二次電池用負極,二次電池用負極を用いた非水電解質二次電池およびそれらの製造方法 |
-
2013
- 2013-04-03 WO PCT/JP2013/060146 patent/WO2014162530A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270013A (ja) * | 1997-03-27 | 1998-10-09 | Japan Storage Battery Co Ltd | 非水電解質二次電池用電極及びその製造方法 |
JPH10284059A (ja) * | 1997-04-03 | 1998-10-23 | Shin Kobe Electric Mach Co Ltd | リチウムイオン電池用負極板及びその製造方法 |
JP2007227666A (ja) * | 2006-02-23 | 2007-09-06 | Nippon Zeon Co Ltd | 電気化学素子の製造方法 |
JP2009230976A (ja) * | 2008-03-21 | 2009-10-08 | Sanyo Electric Co Ltd | 非水電解質二次電池及びその製造方法 |
WO2010122601A1 (ja) * | 2009-04-22 | 2010-10-28 | トヨタ自動車株式会社 | 電池用電極の製造方法及びそれに用いる塗工ダイ |
JP2013020777A (ja) * | 2011-07-11 | 2013-01-31 | Hitachi Ltd | 二次電池用負極,二次電池用負極を用いた非水電解質二次電池およびそれらの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017152175A (ja) * | 2016-02-24 | 2017-08-31 | オートモーティブエナジーサプライ株式会社 | リチウムイオン二次電池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9831495B2 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery | |
US11063248B2 (en) | Protective coating for lithium-containing electrode and methods of making the same | |
KR101514586B1 (ko) | 리튬 이온 2차 전지용 부극 활물질 | |
US20180040881A1 (en) | Non-aqueous electrolyte secondary battery | |
WO2018179817A1 (ja) | 非水電解質二次電池用負極及び非水電解質二次電池 | |
US9012081B2 (en) | Anode active material and secondary battery comprising the same | |
JP7279757B2 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 | |
EP2654108B1 (en) | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module | |
JP6188158B2 (ja) | リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池 | |
US9083021B2 (en) | Method for preparing anode active material | |
KR20130142877A (ko) | 리튬 이차 전지용 전극재 및 리튬 이차 전지 | |
JP2013149403A (ja) | リチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法 | |
JP5505480B2 (ja) | リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池 | |
JP5505479B2 (ja) | リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池 | |
US8974961B2 (en) | Anode active material and secondary battery comprising the same | |
US9077001B2 (en) | Method for preparing anode active material | |
JP7161680B2 (ja) | 非水電解質二次電池 | |
US20190103609A1 (en) | Nonaqueous electrolyte secondary battery and manufacturing method therefor | |
JP2011192610A (ja) | リチウムイオン電池 | |
CN105934847A (zh) | 电器件 | |
US8962184B2 (en) | Anode active material and secondary battery comprising the same | |
US20130288131A1 (en) | Method for preparing anode active material | |
WO2012147647A1 (ja) | リチウムイオン二次電池 | |
JP2016134218A (ja) | リチウムイオン二次電池 | |
JP5432746B2 (ja) | リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13880996 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13880996 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |