WO2010119512A1 - 光起電力装置とその製造方法 - Google Patents
光起電力装置とその製造方法 Download PDFInfo
- Publication number
- WO2010119512A1 WO2010119512A1 PCT/JP2009/057517 JP2009057517W WO2010119512A1 WO 2010119512 A1 WO2010119512 A1 WO 2010119512A1 JP 2009057517 W JP2009057517 W JP 2009057517W WO 2010119512 A1 WO2010119512 A1 WO 2010119512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- back surface
- silicon substrate
- film
- diffusion layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 76
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 69
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 67
- 239000010703 silicon Substances 0.000 claims abstract description 67
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 238000009792 diffusion process Methods 0.000 claims abstract description 31
- 238000002161 passivation Methods 0.000 claims abstract description 30
- 229910052709 silver Inorganic materials 0.000 claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 23
- 239000004332 silver Substances 0.000 claims abstract description 19
- 238000010304 firing Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 14
- 230000001678 irradiating effect Effects 0.000 claims abstract 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 25
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910002796 Si–Al Inorganic materials 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 34
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 18
- 230000003667 anti-reflective effect Effects 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 229910018125 Al-Si Inorganic materials 0.000 description 6
- 229910018520 Al—Si Inorganic materials 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000010944 silver (metal) Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/028—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0368—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
- H01L31/03682—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/056—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the present invention relates to a photovoltaic device and a manufacturing method thereof.
- Patent Document 1 a method of forming an electrode by applying a metal paste by a screen printing method and then baking it is known.
- a paste mainly composed of silver is printed in a comb shape on an antireflection film formed on the light-receiving surface side of a silicon substrate on which a pn junction is formed, dried, and the back surface of the silicon substrate After the aluminum-containing paste is printed on the most area of the substrate and dried, the silver-containing paste is further printed at a position where the aluminum-containing paste was not printed and dried.
- a surface electrode is formed on the surface of the silicon substrate by a fire-through method in which the printed silver passes through the insulating antireflection film and is electrically connected to the underlying silicon. Further, on the back surface of the silicon substrate, as the back surface electrode, a back surface collecting electrode is formed at the position where the paste containing aluminum is formed, and a back surface extraction electrode is formed at the position where the paste containing silver is formed, and also contains aluminum. In the region where the paste has been formed, a back surface field field (BSF) layer that can prevent recombination of minority carriers generated by light irradiation is formed in the silicon substrate.
- BSF back surface field field
- Non-Patent Document 1 a technique for forming a back electrode of a solar cell by a method called an LFC (Laser Fired Contact) method is known (see, for example, Non-Patent Document 1).
- an insulating film is formed on the entire back surface of the silicon substrate by a CVD (Chemical Vapor Deposition) method, an aluminum film is deposited on the entire surface of the insulating film, and only necessary portions are melted by laser light irradiation.
- An aluminum electrode formed on the entire back surface is connected to the silicon substrate at a number of points, or an aluminum electrode formed in a comb shape on the back surface is connected to the silicon substrate to form a back electrode.
- Patent Document 1 has a problem that there is no firing condition for obtaining an optimum resistance value for both the front and back electrodes, and either electrode has a resistance value inferior to the optimum resistance value. It was.
- the present invention has been made in view of the above.
- a desired resistance value can be obtained with the front and back electrodes, and even if the substrate thickness is reduced as compared with the conventional case, the conversion efficiency can be improved as compared with the conventional case.
- An object of the present invention is to obtain a photovoltaic device and a method for manufacturing the same.
- a method of manufacturing a photovoltaic device includes an impurity diffusion in which an impurity of a second conductivity type is diffused on the first main surface side of a silicon substrate of a first conductivity type.
- Location is irradiated with laser light to the molten metal of the paste material, characterized in that it comprises a back electrode forming step of forming a back electrode solidifying, the.
- the firing of the front surface electrode and the formation of the back surface electrode are performed in separate steps and the respective conditions are optimized, so that both the front surface electrode and the back surface electrode have low resistance.
- the back electrode is melted by laser light to form an alloy with silicon, the back electrode is less likely to be peeled than in the prior art, and has the effect of contributing to a longer lifetime of the photovoltaic device. .
- the thickness of the silicon substrate is reduced, since the SiONH film is formed on the front surface and the back surface, the recombination rate can be suppressed low.
- a metal film having a higher reflectance than aluminum is formed on the back surface of the silicon substrate on which the back electrode is formed, the back surface BSR effect can be obtained and power generation efficiency can be increased.
- FIG. 1-1 is a top view schematically showing an example of the overall configuration of a solar cell according to Embodiment 1 of the present invention.
- FIG. 1-2 is a bottom view schematically showing an example of the overall configuration of the solar cell according to the first embodiment of the present invention.
- 1-3 is a cross-sectional view taken along the line AA of FIG. 1-2.
- FIG. 2 is an enlarged cross-sectional view showing a part of the periphery of the grid electrode of the solar cell.
- FIG. 3-1 is a partial cross-sectional view schematically showing an example of a method for manufacturing a solar cell according to Embodiment 1 of the present invention (No. 1).
- FIG. 1 is a top view schematically showing an example of the overall configuration of a solar cell according to Embodiment 1 of the present invention.
- FIG. 1-2 is a bottom view schematically showing an example of the overall configuration of the solar cell according to the first embodiment of the present invention.
- 1-3 is a cross-sectional view
- FIG. 3-2 is a partial cross-sectional view schematically showing one example of a method for manufacturing the solar cell according to the first embodiment of the present invention (part 2).
- FIG. 3-3 is a partial cross-sectional view schematically showing one example of a method for manufacturing a solar cell according to Embodiment 1 of the present invention (part 3).
- FIG. 3-4 is a partial cross-sectional view schematically showing one example of the method for manufacturing the solar cell according to the first embodiment of the present invention (part 4).
- FIG. 3-5 is a partial cross-sectional view schematically showing one example of a method for manufacturing a solar cell according to Embodiment 1 of the present invention (No. 5).
- FIG. 5 is a partial cross-sectional view schematically showing one example of a method for manufacturing a solar cell according to Embodiment 1 of the present invention (No. 5).
- FIG. 3-6 is a partial cross-sectional view schematically showing one example of the method for manufacturing the solar cell according to Embodiment 1 of the present invention (No. 6).
- 3-7 is a partial cross-sectional view schematically showing one example of a method for manufacturing a solar cell according to Embodiment 1 of the present invention (No. 7).
- FIG. 3-8 is a partial cross-sectional view schematically showing one example of the method for manufacturing the solar cell according to Embodiment 1 of the present invention (No. 8).
- FIG. 4 is a partial cross-sectional view schematically showing an example of the solar cell according to the second embodiment.
- FIG. FIGS. 1-1 to 1-3 are diagrams schematically showing an example of the overall configuration of the solar cell according to Embodiment 1 of the present invention, and FIG. 1-1 is a top view of the solar cell. 2 is a rear view of the solar cell, and FIG. 1-3 is a cross-sectional view taken along the line AA of FIG. 1-2. FIG. 2 is an enlarged cross-sectional view showing a part around the grid electrode of the solar cell shown in FIGS. 1-1 to 1-3.
- a solar cell 10 includes a p-type silicon substrate (hereinafter also simply referred to as a silicon substrate) 12 as a semiconductor substrate, and one main surface of the p-type silicon substrate 12 ( And a photoelectric conversion layer 11 including an n-type diffusion layer 13 formed by diffusing an n-type impurity such as P formed on the surface on the light receiving surface side.
- a p-type silicon substrate hereinafter also simply referred to as a silicon substrate
- a photoelectric conversion layer 11 including an n-type diffusion layer 13 formed by diffusing an n-type impurity such as P formed on the surface on the light receiving surface side.
- an antireflection film 14 made of a SiONH film that prevents reflection of incident light to the light receiving surface of the photoelectric conversion layer 11 and compensates for defects on the light receiving surface side of the silicon substrate 12;
- a comb-like grid electrode 21 made of silver or the like provided in parallel at a predetermined pitch on the light receiving surface, and the grid electrode 21.
- a bus electrode 22 made of silver or the like provided substantially orthogonally to the grid electrode 21 for taking out electricity to the outside is provided.
- the grid electrode 21 and the bus electrode 22 penetrate the antireflection film 14 and are in contact with the n-type diffusion layer 13.
- a texture structure that confines light incident on the photoelectric conversion layer 11 in the photoelectric conversion layer 11 may be formed on the light receiving surface side of the photoelectric conversion layer 11.
- the grid electrode 21 and the bus electrode 22 are collectively referred to as a surface electrode 20.
- a back surface extraction electrode 32 provided.
- the back surface collecting electrode 31 and the back surface extracting electrode 32 pass through the back surface passivation film 15 and are in contact with the silicon substrate 12.
- the back surface collecting electrode 31 and the back surface extracting electrode 32 are constituted by an Al—Si melt-solidified layer made of an alloy in which Al and Si are melted and solidified, but in the vicinity of the interface with the silicon substrate 12, a silicon substrate is formed. 12 has a BSF layer into which Al which is a p-type impurity is introduced. Further, on the entire surface of the photoelectric conversion layer 11 on which the back surface passivation film 15, the back surface collecting electrode 31 and the back surface extraction electrode 32 are formed, about 800 to 1,200 nm of the sunlight transmitted through the photoelectric conversion layer 11 Back reflection including at least one of metals having higher reflectivity with respect to light in the above wavelength range than Al such as Ag, Au, Pt, Pd, Ti, Cu, Sn, etc. A metal film 16 is formed.
- the back surface collecting electrode 31 and the back surface extracting electrode 32 are collectively referred to as a back surface electrode 30.
- the solar cell 10 configured in this way, when sunlight is applied to the pn junction surface (the junction surface between the p-type silicon substrate 12 and the n-type diffusion layer 13) from the light receiving surface side of the solar cell 10, holes and Electrons are generated. Due to the electric field in the vicinity of the pn junction surface, the generated electrons move toward the n-type diffusion layer 13 and the holes move toward the back side of the silicon substrate 12. As a result, excess electrons are generated in the n-type diffusion layer 13 and holes are excessively formed on the back surface side of the silicon substrate 12. As a result, photovoltaic power is generated.
- This photovoltaic power is generated in a direction in which the pn junction is forward-biased, the front electrode 20 connected to the n-type diffusion layer 13 becomes a negative electrode, and the rear electrode 30 connected to the back surface of the silicon substrate 12 becomes a positive electrode. Current flows in the external circuit that does not.
- light that has entered the solar cell 10 and has transmitted to the back surface side of the silicon substrate 12 without contributing to photoelectric conversion mainly infrared light having a wavelength of 800 nm or more
- infrared light having a wavelength of 800 nm or more is reflected by the photoelectric conversion layer 11 by the back electrode 30 and the back surface reflective metal film 16. Reflected efficiently to the side. Thereby, the ratio of the reflected light photoelectrically converted by the photoelectric conversion layer 11 can be increased.
- FIGS. 3-1 to 3-8 are partial cross-sectional views schematically showing an example of the method for manufacturing the solar cell according to the first embodiment of the present invention.
- a method for manufacturing solar cell 10 will be described with reference to a cross-sectional view corresponding to FIG.
- a single-crystal or polycrystalline p-type silicon substrate 12 thinner than 160 to 200 ⁇ m is prepared (FIG. 3-1).
- a substrate that is sliced from an ingot manufactured by a pulling method or a casting method is often used.
- an alkaline aqueous solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution or a mixed solution of hydrofluoric acid and nitric acid is used to remove damage on the substrate surface due to a wire saw used for slicing or contamination in the wafer slicing process.
- Etch the surface of the substrate to about 10 to 20 ⁇ m.
- a step of washing with a mixed solution of hydrochloric acid and hydrogen peroxide may be added.
- a texture structure fine concavo-convex structure that is an antireflection structure may be formed using an alkaline aqueous solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution.
- an n-type diffusion layer 13 is formed only on the light-receiving surface side of the silicon substrate 12 in order to form a pn junction in the p-type silicon substrate 12 (FIG. 3-2).
- phosphorus oxychloride (POCl 3 ) is used as a diffusion source of P (phosphorus) as an n-type impurity, and P is diffused on the surface of the p-type silicon substrate 12 by performing a heat treatment at 800 ° C. for 10 minutes.
- the n-type diffusion layer 13 whose conductivity type is inverted is formed.
- the n-type diffusion layer 13 formed on the surface other than the light receiving surface side of the silicon substrate 12 is removed by a technique such as etching.
- an antireflection film 14 made of a SiONH film is formed on the n-type diffusion layer 13 by CVD using silane or ammonia as a main source gas.
- This SiONH film reduces the surface reflectance of the solar cell 10 with respect to the incident light, so that the current generated by photoelectric conversion can be greatly increased.
- the antireflection film 14 to be formed has, for example, a refractive index of 2.1 and a thickness of 75 nm.
- a back surface passivation film 15 made of a SiONH film is formed on the back surface of the silicon substrate 12 by a CVD method using silane or ammonium as a main material (FIG. 3-3).
- a surface silver paste mainly composed of Ag (silver) to be the surface electrode 20 is applied on the antireflection film 14 by screen printing so as to have the shape of the grid electrode 21 and the bus electrode 22 and dried. Then, the surface electrode 20 is formed by firing under the optimum firing conditions for the surface electrode 20 (FIG. 3-4). At this time, the silver paste for the surface composed of the glass component and the silver frit melts and penetrates (fires through) the SiONH film as the antireflection film 14 during firing, and makes electrical contact with the n-type diffusion layer 13. The surface electrode 20 can be taken.
- H hydrogen in the SiONH film constituting the antireflection film 14 on the front surface of the photoelectric conversion layer 11 and the back surface passivation film 15 on the back surface is diffused into the silicon substrate 12, so that Compensate for defects. Thereby, recombination in the vicinity of the front surface and the back surface of the silicon substrate 12 during operation of the solar cell 10 is suppressed.
- a predetermined position of the back surface passivation film 15 is irradiated with a laser beam L1, and the back surface passivation film 15 is evaporated to form an opening 35 (FIG. 3-5).
- the opening 35 is patterned into the shape of the back surface collecting electrode 31 and the back surface extracting electrode 32 as shown in FIG. 1-2, for example.
- the wavelength of the laser beam L1 is 355 nm and the energy is 3 mJ / cm 2
- only the back surface passivation film 15 (SiONH film) can be evaporated while the silicon substrate 12 is in a low damage state.
- a back surface aluminum paste containing Al (aluminum) is printed on a required portion on the back surface passivation film 15 in which the opening 35 is formed, for example, by screen printing, and dried.
- the laser beam L2 is irradiated corresponding to the position where the opening 35 is formed (FIG. 3-6).
- Al in the opening 35 is melted and solidified to form a back electrode 30 made of an Al—Si melt-solidified layer with the underlying silicon substrate 12.
- the Al—Si partly becomes a BFS layer at the solidified portion near the silicon substrate 12. Unnecessary backside aluminum paste is removed by washing with organic solvents such as acetone or water (Fig. 3-7).
- the silicon substrate 12 is thin, a part of the sunlight incident from the front surface is not absorbed but is transmitted to the back surface side.
- the light transmitted to the back surface side is mainly infrared light having a wavelength of 800 nm or more, but as shown in FIG. 3-7, an Al—Si melt-solidified layer (back surface electrode 30) locally covering the back surface of the silicon substrate 12
- BSR back surface reflection effect
- Ag, Au (gold), Pt (platinum), Pd (palladium), Ti (titanium), Cu on the back surface passivation film 15 on which the back surface electrode 30 is formed.
- the back reflective metal film 16 is formed by vapor deposition or sputtering using one or more metals having a higher reflectance than Al, such as copper and Sn (tin) (FIGS. 3-8) .
- metals having a higher reflectance than Al such as copper and Sn (tin) (FIGS. 3-8) .
- the solar cell 10 having the structure shown in FIGS. 1-1 and 2 is manufactured.
- the back surface passivation film 15 is irradiated with the laser light L1 to provide the opening 35, and then the back surface aluminum paste is printed at a predetermined position on the back surface, and then again.
- the opening 35 was irradiated with the laser beam L2, but the back surface aluminum paste was printed in a predetermined shape on the back surface passivation film 15, and then the laser beam was irradiated to a predetermined position.
- the back electrode 30 made of an alloy of Al and Si may be formed at the position.
- the back surface passivation film 15 is provided with the opening 35 and then the back surface aluminum paste is applied to the opening 35 and the laser light L2 is irradiated is applied.
- the reaction between the Al melted in step 1 and the back surface passivation film 15 (SiONH film) can be controlled, and the size of the back surface electrode 30 is substantially defined by the size of the opening 35 formed in the back surface passivation film 15.
- the back electrode 30 having a stable size can be formed.
- the surface silver paste is printed on the surface of the photoelectric conversion layer 11
- the back surface aluminum paste is printed on almost the entire back surface, and the other surfaces of the back surface are formed.
- Cell conversion efficiency is improved by 2% as compared with a solar cell formed by simultaneously firing the front electrode 20 and the back electrode 30 after printing the back surface silver paste on the place.
- the antireflection film 14 on the front surface and the back surface passivation film 15 on the back surface are formed of the SiONH film, the Al—Si melt-solidified layer is formed as the back surface electrode 30, and the entire back surface is 800 Since it is coated with at least one metal selected from the group consisting of Ag, Au, Pt, Pd, Ti, Cu, and Sn, which has a high reflectivity with respect to infrared light having a wavelength of up to 1,200 nm. Recombination in the vicinity of the back surface of the silicon substrate 12 is suppressed, and light that has been transmitted through the photoelectric conversion layer 11 can be efficiently reflected again toward the photoelectric conversion layer 11.
- the photoelectric conversion layer 11 has an effect that power can be generated efficiently.
- the firing process of the front electrode 20 and the formation process of the back electrode 30 are separate processes, the electrode formation conditions are optimized in each process, and an electrode having a low resistance suitable for the solar cell 10 can be obtained. It has the effect of being able to. Furthermore, since an electrode having a resistance suitable for the solar cell 10 to be manufactured is obtained, loss due to an increase in the resistance value can be suppressed, and the generated electricity can be efficiently acquired.
- the back electrode 30 is baked not only on the entire silicon substrate 12 but only in the region irradiated with the laser light L2, so that the back electrode is formed on the semiconductor substrate as in the conventional example.
- the electrode formed during cooling is more easily peeled off. Can be prevented.
- it also has an effect that it has a longer life than a solar cell formed by a conventional manufacturing method.
- FIG. FIG. 4 is a partial cross-sectional view schematically showing an example of the solar cell according to the second embodiment.
- the back electrode 30 is formed in a grid shape between the back collector electrode 31 and the back collector electrode 31 as in the first embodiment.
- the back surface extraction electrode 32 is formed so as to be connected.
- the back surface reflection metal film 16 is not provided.
- the formation position of the back surface collecting electrode 31 is not between the formation position of the grid electrode 21 formed on the front surface, and between the adjacent grid electrodes 21 and the grid electrodes 21. It is formed to be located in region R.
- the grid electrode 21 usually formed on the light receiving surface side has a width of 100 ⁇ m and a pitch of 1.5 to 3 ⁇ m. Therefore, in the back surface collecting electrode 31 of the second embodiment, when the grid electrode 21 is projected onto the back surface side of the silicon substrate 12, the grid electrode has a width of 0.5 to 1.5 mm so as to fill the gap. It is desirable to design at the same pitch as 21.
- the formation position of the back surface collecting electrode 31 to be shifted from the formation position of the grid electrode 21 on the light receiving surface, the light transmitted to the back surface of the photoelectric conversion layer 11 without being subjected to photoelectric conversion is received by the light receiving surface. Reflected to the photoelectric conversion layer 11 side by the back surface collecting electrode 31 existing between the formation positions of the grid electrode 21 on the side.
- the back-side reflective metal film 16 is formed because the back-side comb-like back surface collecting electrode 31 is arranged shifted from the formation position of the comb-like grid electrode 21 on the light receiving surface side. Even if it does not, it is reflected to the photoelectric conversion layer 11 side by the back surface collecting electrode 31 existing between the formation positions of the grid electrodes 21 on the light receiving surface side, so that the photoelectric conversion layer 11 can efficiently generate power. It has the effect.
- the back reflective metal film 16 made of at least one metal selected from the group consisting of Ag, Au, Pt, Pd, Ti, Cu, and Sn is not formed, the manufacturing process is simplified as compared with the first embodiment. In addition, since the above metal is not used, the manufacturing cost can be reduced.
- the photovoltaic device according to the present invention is useful for a solar cell formed by making a silicon substrate thinner than the conventional one.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
11 光電変換層
12 p型シリコン基板
13 n型拡散層
14 反射防止膜
15 裏面パッシベーション膜
16 裏面反射金属膜
20 表面電極
21 グリッド電極
22 バス電極
30 裏面電極
31 裏面集電電極
32 裏面取出電極
35 開口部
53 表面用銀ペースト
図1-1~図1-3は、この発明の実施の形態1による太陽電池の全体構成の一例を模式的に示す図であり、図1-1は太陽電池の上面図であり、図1-2は太陽電池の裏面図であり、図1-3は図1-2のA-A断面図である。また、図2は、図1-1~図1-3に示される太陽電池のグリッド電極周辺の一部を拡大して示す断面図である。
図4は、実施の形態2による太陽電池の一例を模式的に示す一部断面図である。この図に示されるように、この実施の形態2の太陽電池10では、実施の形態1と同様に裏面電極30がグリッド状に形成される裏面集電電極31と、裏面集電電極31間を接続するように形成される裏面取出電極32と、からなるが、実施の形態1とは異なり、裏面反射金属膜16を設けていない構成を有している。また、この図に示されるように、裏面集電電極31の形成位置は、表面に形成されるグリッド電極21の形成位置と重ならないように、隣接するグリッド電極21とグリッド電極21との間の領域Rに位置するように形成される。
Claims (9)
- 第1の導電型のシリコン基板の第1の主面側に、第2の導電型の不純物を拡散させた不純物拡散層を形成する不純物拡散層形成工程と、
前記不純物拡散層上に反射防止膜を形成する反射防止膜形成工程と、
前記シリコン基板の第2の主面上にSiONH膜からなる裏面パッシベーション膜を形成する裏面パッシベーション膜形成工程と、
前記反射防止膜上に銀を含むペースト材料を表面電極形状に形成する表面電極形状形成工程と、
前記シリコン基板を焼成して、前記不純物拡散層に接する表面電極を形成する表面電極形成工程と、
前記裏面パッシベーション膜上に裏面電極形状に、金属を含むペースト材料を形成する裏面電極形状形成工程と、
前記裏面電極の形成位置にレーザ光を照射して、前記ペースト材料中の金属を溶融、凝固させて裏面電極を形成する裏面電極形成工程と、
を含むことを特徴とする光起電力装置の製造方法。 - 前記裏面電極形成工程の後に、前記裏面電極を形成した前記裏面パッシベーション膜上に、800~1,200nmの波長範囲の赤外線に対する反射率がアルミニウムよりも高い金属からなる裏面反射金属膜を形成する裏面反射金属膜形成工程をさらに含むことを特徴とする請求項1に記載の光起電力装置の製造方法。
- 前記裏面反射金属膜は、Ag,Au,Pt,Pd,Ti,Cu,Snからなる群から選択される少なくとも1種の金属によって形成されることを特徴とする請求項2に記載の光起電力装置の製造方法。
- 前記裏面電極形状形成工程は、
前記裏面パッシベーション膜に裏面電極形状の開口部を設ける工程と、
前記開口部に前記金属を含むペースト材料を形成する工程と、
前記開口部の形成位置にレーザ光を照射して、前記ペースト材料中の金属を溶融、凝固させて前記開口部に前記裏面電極を形成する工程と、
を含むことを特徴とする請求項1に記載の光起電力装置の製造方法。 - 前記表面電極形状形成工程では、第1の方向に延在して複数平行に配置されるグリッド電極パターンと、第2の方向に延在して前記グリッド電極パターン間を接続するバス電極パターンと、を有する前記表面電極パターンを前記不純物拡散層上に形成し、
前記裏面電極形状形成工程では、前記第1の方向に延在して複数平行に配置される裏面集電電極パターンと、前記第2の方向に延在して前記裏面集電電極パターン間を接続する裏面取出電極パターンと、を有する裏面電極パターンを、前記シリコン基板の第2の主面上に形成するとともに、前記裏面集電電極パターンは、前記グリッド電極パターンの形成位置を前記第2の主面上に投影したときに、前記グリッド電極パターンの形成位置の間に形成されることを特徴とする請求項1に記載の光起電力装置の製造方法。 - 前記裏面電極形状形成工程で用いられる前記ペースト材料は、アルミニウムを主成分とするペースト材料であることを特徴とする請求項1に記載の光起電力装置の製造方法。
- 第1の導電型のシリコン基板と、
前記シリコン基板の第1の主面側に第2の導電型の不純物が拡散された不純物拡散層と、
前記不純物拡散層上に形成される表面電極と、
前記不純物拡散層上の前記表面電極が形成されていない領域に形成される反射防止膜と、
前記シリコン基板の第2の主面上に、Si-Al合金によって形成される裏面電極と、
前記シリコン基板の第2の主面上の前記裏面電極が形成されていない領域に形成されるSiONH膜からなる裏面パッシベーション膜と、
前記裏面電極と前記裏面パッシベーション膜上に、800~1,200nmの波長範囲の赤外線に対する反射率がアルミニウムよりも高い金属からなる裏面反射金属膜と、
を備えることを特徴とする光起電力装置。 - 前記裏面反射金属膜は、Ag,Au,Pt,Pd,Ti,Cu,Snからなる群から選択される少なくとも1種の金属によって形成されることを特徴とする請求項7に記載の光起電力装置。
- 第1の導電型のシリコン基板と、
前記シリコン基板の第1の主面側に第2の導電型の不純物が拡散された不純物拡散層と、
前記不純物拡散層上に形成され、第1の方向に延在して複数平行に配置されるグリッド電極と、第2の方向に延在して前記グリッド電極間を接続するバス電極と、を有する表面電極と、
前記不純物拡散層上の前記表面電極が形成されていない領域に形成される反射防止膜と、
前記シリコン基板の第2の主面上に、Si-Al合金によって形成され、前記第1の方向に延在して複数平行に配置される裏面集電電極と、前記第2の方向に延在して前記裏面集電電極間を接続する裏面取出電極と、を有する裏面電極と、
前記シリコン基板の前記第2の主面上の前記裏面電極が形成されていない領域に形成されるSiONH膜からなる裏面パッシベーション膜と、
を備え、
前記裏面集電電極は、前記グリッド電極の形成位置を前記第2の主面上に投影したときに、前記グリッド電極の形成位置の間に形成されることを特徴とする光起電力装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/057517 WO2010119512A1 (ja) | 2009-04-14 | 2009-04-14 | 光起電力装置とその製造方法 |
CN200980158689.8A CN102396073B (zh) | 2009-04-14 | 2009-04-14 | 光电动势装置及其制造方法 |
JP2011509112A JPWO2010119512A1 (ja) | 2009-04-14 | 2009-04-14 | 光起電力装置とその製造方法 |
US13/259,079 US8722453B2 (en) | 2009-04-14 | 2009-04-14 | Photovoltaic device and method for manufacturing the same |
EP09843293.3A EP2432024A4 (en) | 2009-04-14 | 2009-04-14 | PHOTOVOLTAIC ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/057517 WO2010119512A1 (ja) | 2009-04-14 | 2009-04-14 | 光起電力装置とその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010119512A1 true WO2010119512A1 (ja) | 2010-10-21 |
Family
ID=42982196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057517 WO2010119512A1 (ja) | 2009-04-14 | 2009-04-14 | 光起電力装置とその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8722453B2 (ja) |
EP (1) | EP2432024A4 (ja) |
JP (1) | JPWO2010119512A1 (ja) |
CN (1) | CN102396073B (ja) |
WO (1) | WO2010119512A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012216646A (ja) * | 2011-03-31 | 2012-11-08 | Mitsubishi Electric Corp | 太陽電池の製造方法 |
KR20130027301A (ko) * | 2011-09-07 | 2013-03-15 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
CN103329280A (zh) * | 2010-12-06 | 2013-09-25 | 信越化学工业株式会社 | 太阳能电池和太阳能电池模件 |
WO2014054605A1 (ja) * | 2012-10-05 | 2014-04-10 | シャープ株式会社 | 光電変換装置、光電変換装置の製造方法および光電変換モジュール |
WO2014112053A1 (ja) * | 2013-01-16 | 2014-07-24 | 三菱電機株式会社 | 太陽電池セルおよびその製造方法 |
US20140373909A1 (en) * | 2011-08-26 | 2014-12-25 | Heraeus Precious Metals North America Conshohocken Llc | Fire Through Aluminum Paste for SiNx And Better BSF Formation |
US9224888B2 (en) | 2010-12-06 | 2015-12-29 | Shin-Etsu Chemical Co., Ltd. | Solar cell and solar-cell module |
KR20170091079A (ko) * | 2017-07-28 | 2017-08-08 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
CN108365026A (zh) * | 2018-03-28 | 2018-08-03 | 通威太阳能(成都)有限公司 | 一种基于perc的双面太阳电池背面导电结构及制作方法 |
KR20180098214A (ko) * | 2018-08-28 | 2018-09-03 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
CN114464686A (zh) * | 2021-12-28 | 2022-05-10 | 浙江爱旭太阳能科技有限公司 | 一种新型隧穿钝化接触结构电池及其制备方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013106272B4 (de) * | 2013-06-17 | 2018-09-20 | Hanwha Q Cells Gmbh | Wafersolarzelle und Solarzellenherstellungsverfahren |
TWI677105B (zh) | 2014-05-23 | 2019-11-11 | 瑞士商弗里松股份有限公司 | 製造薄膜光電子裝置之方法及可藉由該方法獲得的薄膜光電子裝置 |
TWI661991B (zh) * | 2014-09-18 | 2019-06-11 | 瑞士商弗里松股份有限公司 | 用於製造薄膜裝置之自組裝圖案化 |
US10651324B2 (en) | 2016-02-11 | 2020-05-12 | Flisom Ag | Self-assembly patterning for fabricating thin-film devices |
HUE053005T2 (hu) | 2016-02-11 | 2021-06-28 | Flisom Ag | Vékonyréteg optoelektronikai eszközök gyártása hozzáadott rubídiummal és/vagy céziummal |
MY190562A (en) * | 2016-12-20 | 2022-04-27 | Zhejiang Kaiying New Mat Co Ltd | Interdigitated back contact metal-insulator-semiconductor solar cell with printed oxide tunnel junctions |
US10622502B1 (en) | 2019-05-23 | 2020-04-14 | Zhejiang Kaiying New Materials Co., Ltd. | Solar cell edge interconnects |
US10749045B1 (en) | 2019-05-23 | 2020-08-18 | Zhejiang Kaiying New Materials Co., Ltd. | Solar cell side surface interconnects |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0595127A (ja) * | 1991-10-02 | 1993-04-16 | Sharp Corp | 光電変換素子の製造方法 |
JPH05110122A (ja) * | 1991-10-17 | 1993-04-30 | Sharp Corp | 光電変換装置及びその製造方法 |
JPH11284212A (ja) * | 1998-03-26 | 1999-10-15 | Shin Etsu Chem Co Ltd | 太陽電池及び太陽電池の製造方法 |
JP2000138386A (ja) * | 1998-11-04 | 2000-05-16 | Shin Etsu Chem Co Ltd | 太陽電池の製造方法およびこの方法で製造された太陽電池 |
JP2003168809A (ja) * | 2001-11-30 | 2003-06-13 | Sharp Corp | 太陽電池の製造方法および太陽電池 |
JP2004064028A (ja) * | 2002-07-31 | 2004-02-26 | Shin Etsu Handotai Co Ltd | 太陽電池及びその製造方法 |
JP2004509474A (ja) * | 2000-09-19 | 2004-03-25 | フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | 誘電層を介した半導体/金属の接触を作成する方法 |
JP2004207493A (ja) | 2002-12-25 | 2004-07-22 | Mitsubishi Electric Corp | 半導体装置、その製造方法および太陽電池 |
JP2005123447A (ja) * | 2003-10-17 | 2005-05-12 | Shin Etsu Handotai Co Ltd | 太陽電池及びその製造方法 |
WO2006129444A1 (ja) * | 2005-05-31 | 2006-12-07 | Naoetsu Electronics Co., Ltd. | 太陽電池素子及びその製造方法 |
JP2008034543A (ja) * | 2006-07-27 | 2008-02-14 | Kyocera Corp | 光電変換素子およびその製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0555612A (ja) | 1991-08-28 | 1993-03-05 | Sanyo Electric Co Ltd | 集積型アモルフアス太陽電池の製造方法 |
JPH05315632A (ja) | 1992-05-11 | 1993-11-26 | Kanegafuchi Chem Ind Co Ltd | 半導体装置の製造法 |
JP3722326B2 (ja) * | 1996-12-20 | 2005-11-30 | 三菱電機株式会社 | 太陽電池の製造方法 |
DE50001095D1 (de) * | 1999-02-08 | 2003-02-20 | Kurth Glas & Spiegel Ag Zuchwi | Photovoltaische zelle und verfahren zu deren herstellung |
US20060130891A1 (en) | 2004-10-29 | 2006-06-22 | Carlson David E | Back-contact photovoltaic cells |
JP4502845B2 (ja) | 2005-02-25 | 2010-07-14 | 三洋電機株式会社 | 光起電力素子 |
EP2439780B1 (en) | 2005-02-25 | 2019-10-02 | Panasonic Intellectual Property Management Co., Ltd. | Photovoltaic cell |
DE102006040352B3 (de) * | 2006-08-29 | 2007-10-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Aufbringen von elektrischen Kontakten auf halbleitende Substrate, halbleitendes Substrat und Verwendung des Verfahrens |
EP2654089A3 (en) * | 2007-02-16 | 2015-08-12 | Nanogram Corporation | Solar cell structures, photovoltaic modules and corresponding processes |
JP4974722B2 (ja) | 2007-03-16 | 2012-07-11 | 三洋電機株式会社 | 太陽電池モジュールの製造方法及び太陽電池モジュール |
US20090050202A1 (en) * | 2007-08-24 | 2009-02-26 | Industrial Technology Research Institute | Solar cell and method for forming the same |
US8309844B2 (en) * | 2007-08-29 | 2012-11-13 | Ferro Corporation | Thick film pastes for fire through applications in solar cells |
US7763535B2 (en) | 2007-08-30 | 2010-07-27 | Applied Materials, Inc. | Method for producing a metal backside contact of a semiconductor component, in particular, a solar cell |
KR100976454B1 (ko) * | 2008-03-04 | 2010-08-17 | 삼성에스디아이 주식회사 | 태양 전지 및 이의 제조 방법 |
US7833808B2 (en) * | 2008-03-24 | 2010-11-16 | Palo Alto Research Center Incorporated | Methods for forming multiple-layer electrode structures for silicon photovoltaic cells |
DE102009008371A1 (de) * | 2009-02-11 | 2010-08-12 | Schott Solar Ag | Integraler Prozeß von Waferherstellung bis Modulfertigung zur Herstellung von Wafern, Solarzellen und Solarmodulen |
-
2009
- 2009-04-14 CN CN200980158689.8A patent/CN102396073B/zh not_active Expired - Fee Related
- 2009-04-14 EP EP09843293.3A patent/EP2432024A4/en not_active Withdrawn
- 2009-04-14 WO PCT/JP2009/057517 patent/WO2010119512A1/ja active Application Filing
- 2009-04-14 US US13/259,079 patent/US8722453B2/en not_active Expired - Fee Related
- 2009-04-14 JP JP2011509112A patent/JPWO2010119512A1/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0595127A (ja) * | 1991-10-02 | 1993-04-16 | Sharp Corp | 光電変換素子の製造方法 |
JPH05110122A (ja) * | 1991-10-17 | 1993-04-30 | Sharp Corp | 光電変換装置及びその製造方法 |
JPH11284212A (ja) * | 1998-03-26 | 1999-10-15 | Shin Etsu Chem Co Ltd | 太陽電池及び太陽電池の製造方法 |
JP2000138386A (ja) * | 1998-11-04 | 2000-05-16 | Shin Etsu Chem Co Ltd | 太陽電池の製造方法およびこの方法で製造された太陽電池 |
JP2004509474A (ja) * | 2000-09-19 | 2004-03-25 | フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | 誘電層を介した半導体/金属の接触を作成する方法 |
JP2003168809A (ja) * | 2001-11-30 | 2003-06-13 | Sharp Corp | 太陽電池の製造方法および太陽電池 |
JP2004064028A (ja) * | 2002-07-31 | 2004-02-26 | Shin Etsu Handotai Co Ltd | 太陽電池及びその製造方法 |
JP2004207493A (ja) | 2002-12-25 | 2004-07-22 | Mitsubishi Electric Corp | 半導体装置、その製造方法および太陽電池 |
JP2005123447A (ja) * | 2003-10-17 | 2005-05-12 | Shin Etsu Handotai Co Ltd | 太陽電池及びその製造方法 |
WO2006129444A1 (ja) * | 2005-05-31 | 2006-12-07 | Naoetsu Electronics Co., Ltd. | 太陽電池素子及びその製造方法 |
JP2008034543A (ja) * | 2006-07-27 | 2008-02-14 | Kyocera Corp | 光電変換素子およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
E. SCHNEIDERLOCHNER ET AL.: "Laser Fired Rear Contacts for Crystalline Silicon Solar Cells", PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, vol. 10, 2002, pages 29 - 34 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103329280A (zh) * | 2010-12-06 | 2013-09-25 | 信越化学工业株式会社 | 太阳能电池和太阳能电池模件 |
KR20130138285A (ko) * | 2010-12-06 | 2013-12-18 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 태양전지 및 태양전지 모듈 |
US9224888B2 (en) | 2010-12-06 | 2015-12-29 | Shin-Etsu Chemical Co., Ltd. | Solar cell and solar-cell module |
CN103329280B (zh) * | 2010-12-06 | 2017-02-08 | 信越化学工业株式会社 | 太阳能电池和太阳能电池模件 |
TWI587534B (zh) * | 2010-12-06 | 2017-06-11 | 信越化學工業股份有限公司 | Solar cells and solar modules |
US9887312B2 (en) | 2010-12-06 | 2018-02-06 | Shin-Etsu Chemical Co., Ltd. | Solar cell and solar-cell module |
JP2012216646A (ja) * | 2011-03-31 | 2012-11-08 | Mitsubishi Electric Corp | 太陽電池の製造方法 |
US9824790B2 (en) * | 2011-08-26 | 2017-11-21 | Heraeus Precious Metals North America Conshohocken Llc | Fire through aluminum paste for SiNx and better BSF formation |
US20140373909A1 (en) * | 2011-08-26 | 2014-12-25 | Heraeus Precious Metals North America Conshohocken Llc | Fire Through Aluminum Paste for SiNx And Better BSF Formation |
KR20130027301A (ko) * | 2011-09-07 | 2013-03-15 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
KR101969032B1 (ko) * | 2011-09-07 | 2019-04-15 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
WO2014054605A1 (ja) * | 2012-10-05 | 2014-04-10 | シャープ株式会社 | 光電変換装置、光電変換装置の製造方法および光電変換モジュール |
WO2014112053A1 (ja) * | 2013-01-16 | 2014-07-24 | 三菱電機株式会社 | 太陽電池セルおよびその製造方法 |
JPWO2014112053A1 (ja) * | 2013-01-16 | 2017-01-19 | 三菱電機株式会社 | 太陽電池セルおよびその製造方法 |
KR20170091079A (ko) * | 2017-07-28 | 2017-08-08 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
KR102053141B1 (ko) * | 2017-07-28 | 2019-12-06 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
CN108365026A (zh) * | 2018-03-28 | 2018-08-03 | 通威太阳能(成都)有限公司 | 一种基于perc的双面太阳电池背面导电结构及制作方法 |
KR20180098214A (ko) * | 2018-08-28 | 2018-09-03 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
KR101994692B1 (ko) | 2018-08-28 | 2019-07-01 | 엘지전자 주식회사 | 태양전지 및 이의 제조방법 |
CN114464686A (zh) * | 2021-12-28 | 2022-05-10 | 浙江爱旭太阳能科技有限公司 | 一种新型隧穿钝化接触结构电池及其制备方法 |
CN114464686B (zh) * | 2021-12-28 | 2024-05-10 | 浙江爱旭太阳能科技有限公司 | 一种新型隧穿钝化接触结构电池及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US8722453B2 (en) | 2014-05-13 |
EP2432024A4 (en) | 2013-11-27 |
JPWO2010119512A1 (ja) | 2012-10-22 |
CN102396073A (zh) | 2012-03-28 |
CN102396073B (zh) | 2015-09-09 |
EP2432024A1 (en) | 2012-03-21 |
US20120017986A1 (en) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010119512A1 (ja) | 光起電力装置とその製造方法 | |
US10424685B2 (en) | Method for manufacturing solar cell having electrodes including metal seed layer and conductive layer | |
EP3349253B1 (en) | Semiconductor devices and methods for manufacturing the same | |
KR101719949B1 (ko) | 태양전지 셀 및 그 제조 방법, 태양전지 모듈 | |
JP5172480B2 (ja) | 光電変換装置およびその製造方法 | |
US7910823B2 (en) | Solar cell and manufacturing method thereof | |
JP4963866B2 (ja) | 光電変換素子の製造方法 | |
JP2004266023A (ja) | 太陽電池およびその製造方法 | |
WO2011074280A1 (ja) | 光起電力装置およびその製造方法 | |
JP5777798B2 (ja) | 太陽電池セルの製造方法 | |
KR20110018651A (ko) | 태양 전지 및 그 제조 방법 | |
JPWO2009157053A1 (ja) | 光起電力装置およびその製造方法 | |
WO2010150606A1 (ja) | 光起電力装置およびその製造方法 | |
JP5349523B2 (ja) | 太陽電池の製造方法 | |
JP5501549B2 (ja) | 光電変換素子、およびそれから構成される光電変換モジュール | |
JP5452755B2 (ja) | 光起電力装置の製造方法 | |
JP6125042B2 (ja) | 太陽電池セルの製造方法 | |
WO2009150741A1 (ja) | 光起電力装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980158689.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09843293 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011509112 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13259079 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009843293 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |