WO2010117036A1 - モザイク荷電膜 - Google Patents

モザイク荷電膜 Download PDF

Info

Publication number
WO2010117036A1
WO2010117036A1 PCT/JP2010/056364 JP2010056364W WO2010117036A1 WO 2010117036 A1 WO2010117036 A1 WO 2010117036A1 JP 2010056364 W JP2010056364 W JP 2010056364W WO 2010117036 A1 WO2010117036 A1 WO 2010117036A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
group
block copolymer
mol
cationic
Prior art date
Application number
PCT/JP2010/056364
Other languages
English (en)
French (fr)
Inventor
充 比嘉
直原 敦
小林 謙一
藤原 直樹
Original Assignee
国立大学法人山口大学
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学, 株式会社クラレ filed Critical 国立大学法人山口大学
Priority to EP10761735.9A priority Critical patent/EP2418013A4/en
Priority to JP2011508388A priority patent/JP5413689B2/ja
Priority to US13/263,260 priority patent/US20120034481A1/en
Priority to CN201080025729.4A priority patent/CN102548646B/zh
Publication of WO2010117036A1 publication Critical patent/WO2010117036A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/18Membrane materials having mixed charged functional groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a mosaic charged membrane comprising a polyvinyl alcohol-based cation block copolymer and a polyvinyl alcohol-based anion block copolymer as an ion exchange layer. More specifically, the present invention relates to a mosaic charged membrane suitable for pressure dialysis applications having a large salt permeation flux.
  • the mosaic charged membrane is a membrane in which cation exchange layers and anion exchange layers are arranged alternately and in parallel, and each layer penetrates to both sides of the membrane.
  • This unique charge structure can facilitate the permeation of low molecular weight ions in a salt solution in which the electrolyte is dissolved without requiring an external current. Since the positively charged regions and the negatively charged regions in which the directions of the respective potentials are opposite to each other are arranged in a mosaic pattern, a circuit is formed in which the salt solution portions on both sides of the membrane become resistances. In this circuit, cations and anions are transported through the negatively charged region and the positively charged region, respectively, thereby generating a circulating current and promoting the transport of the salt.
  • the mosaic charged membrane has a mechanism that causes ion transport inherent in the membrane itself. means.
  • Patent Document 1 describes a mosaic charged membrane produced by utilizing a microphase separation phenomenon of a block copolymer composed of a block having a cationic group and a block having an anionic group.
  • this method requires the modification of specific parts of the block copolymer and the need for homogeneous microphase separation of blocks having different charges, which is not only costly and complicated in the manufacturing process, but also on an industrial scale. The production of is technically difficult.
  • Patent Document 2 a cation exchange resin and an anion exchange resin are mixed and dispersed in a solution of a film-forming polymer to prepare a uniform polymer dispersion, which is applied, stretched, and dried to produce a mosaic charged film.
  • a method is described.
  • the amount of ion permeation increases as the pressure increases in the pressure dialysis experiment.
  • the membrane matrix and the ion exchange resin are not chemically bonded, leakage of water and neutral solute occurs at the interface, and it is difficult to achieve high selective permeability.
  • Patent Document 3 discloses a mosaic charge in which a polymer having opposite ionicity is dispersed as crosslinked particles having an average particle diameter of 0.01 to 10 ⁇ m in a crosslinked continuous phase formed by a cationic or anionic ionic polymer.
  • a membrane is formed using a dispersion in which spherical fine particles of a polymer having opposite ionicity are dispersed in a solution of an ionic polymer that forms the continuous phase of the membrane, and at least in the membrane
  • a method for producing a mosaic charged membrane is described in which the continuous phase is crosslinked and then immersed in water or an aqueous solution.
  • a film manufactured by this method can be easily adjusted in domain size and film thickness, and a film with a large area can be produced relatively easily.
  • polymer fine particles having a small average particle size must be prepared, and there is a problem that a high level of technology and a long time are required.
  • the resulting mosaic charged membrane is composed of a highly hydrous microgel, the pressure resistance is very low, and it is difficult to improve the adhesion at the interface between the membrane matrix and the microgel, especially because of its structure. As a result, the ion permeability is lowered and the mechanical strength is not sufficient. Therefore, although it can be used as a membrane for diffusion dialysis, it has a drawback that it cannot be used as a membrane for pressure dialysis or is extremely inferior in durability.
  • Non-Patent Document 1 describes a mosaic charged film manufactured by a lamination method.
  • a lamination method a cation exchange membrane is produced from polyvinyl alcohol having sulfonic acid groups introduced by copolymerization, and an anion exchange membrane is produced from a mixed resin of polyvinyl alcohol and polycation, and these are alternately used with polyvinyl alcohol as an adhesive.
  • a laminated charged mass is produced by pasting together, and the resulting mass is cut with a lab cutter perpendicular to the laminating surface, and then subjected to a crosslinking treatment to produce a laminated mosaic charged membrane having a thickness of about 150 ⁇ m. Yes.
  • the salt flux J (KCl) of KCl obtained by diffusion dialysis of the laminated mosaic charged membrane thus obtained was 3.0 ⁇ 10 ⁇ 9 mol ⁇ cm ⁇ 2 s ⁇ 1 , and the electrolyte permselectivity ⁇ was 2300. However, it is necessary to increase the charge density of the membrane to be used for pressure dialysis.
  • Non-Patent Document 2 describes a mosaic charged membrane produced by a polymer blend method using polyvinyl alcohol as a membrane matrix.
  • an aqueous solution of a modified PVA polyanion containing 2 mol% of a vinyl compound containing polyvinyl alcohol and an itaconic acid group as a copolymer composition is used to suppress dissociation of hydrogen ions from the carboxyl group of the itaconic acid group.
  • a polymer blend aqueous solution was prepared by mixing a solution acidified with hydrochloric acid and a polyvinyl alcohol and a polyallylamine hydrochloride aqueous solution.
  • This solution is cast on a glass plate or the like to obtain a membrane, and then chemically crosslinked to obtain a mosaic charged membrane.
  • the salt flux J (KCl) of KCl obtained by diffusion dialysis of the mosaic charged membrane thus obtained is 1.7 ⁇ 10 ⁇ 8 molcm ⁇ 2 s ⁇ 1 and the electrolyte permselectivity ⁇ is 48. Although described to show relatively high values, it is necessary to increase the charge density of the membrane for use for pressure dialysis.
  • JP 59-203613 A JP 2006-297338 A JP-A-8-155281 JP 59-187003 A JP 59-189113 A
  • the present invention has been made to solve the above problems, and provides a mosaic charged membrane for pressure dialysis having high membrane strength, high permselectivity, high charge density, and high salt flux. It is the purpose.
  • a mosaic charged membrane comprising a polyvinyl alcohol-based cation block copolymer and a polyvinyl alcohol-based anion block copolymer as an ion exchange layer has a pressure that exhibits excellent salt permeation flux. It was found useful as a dialysis membrane, and the present invention was completed.
  • a mosaic charged membrane comprising a polyvinyl alcohol-based cation block copolymer and a polyvinyl alcohol-based anion block copolymer as an ion exchange layer.
  • the mosaic charged membrane of the present invention comprises a vinyl alcohol polymer block (A) and a cationic block copolymer (P) comprising a polymer block (B) having a cationic group as constituent components, and a vinyl alcohol system. It contains an anionic block copolymer (Q) containing a polymer block (C) and a polymer block (D) having an anionic group as constituent components.
  • the content of the monomer having a cationic group in the cationic block copolymer (P) is preferably 0.1 mol% or more.
  • content of the monomer which has an anionic group in the anionic block copolymer (Q) is 0.1 mol% or more.
  • the permeation flux of the electrolyte is significantly larger than that of the non-electrolyte.
  • separation of electrolyte and non-electrolyte, removal of electrolyte (desalting), etc. can be performed efficiently.
  • the structures of the cation block copolymer and the anion block copolymer are similar and have high affinity and high adhesiveness, leakage at the interface hardly occurs.
  • organic contamination resistance is high and membrane resistance is small.
  • the mosaic charged film of the present invention has a high charge density.
  • the mosaic charged membrane of the present invention comprises a vinyl alcohol polymer block (A) and a cationic block copolymer (P) comprising a polymer block (B) having a cationic group as constituents, and a vinyl alcohol polymer. It contains an anionic block copolymer (Q) comprising a block (C) and a polymer block (D) having an anionic group as constituent components.
  • the mosaic charged membrane of the present invention has a polyvinyl alcohol-based cation block copolymer and a polyvinyl alcohol-based anion block copolymer as an ion exchange layer.
  • the cation block copolymer functions as an anion exchange resin
  • the anion block copolymer functions as a cation exchange resin.
  • the polyvinyl alcohol-based cation block copolymer used in the present invention is a cationic block copolymer (P) comprising a vinyl alcohol-based polymer block (A) and a polymer block (B) having a cationic group as constituent components. ).
  • repeating unit constituting the polymer block (B) in the cationic block copolymer (P) is not particularly limited, but examples thereof include repeating units represented by the following general formulas (2) to (7).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent
  • Z represents —O— or NH—
  • Y 2 represents a complex.
  • X ⁇ represents an anion.
  • R 5 represents a hydrogen atom or a methyl group.
  • R 2 , R 3 , R 4 and X ⁇ have the same meanings as in the general formula (2).
  • n 0 or 1
  • R 2 , R 3 , R 4 and X ⁇ have the same meanings as in general formula (2).
  • Examples of the monomer having a cationic group used for the synthesis of the cationic block copolymer (P) represented by the general formula (1) include trimethyl-p-vinylbenzylammonium chloride and trimethyl-m. -Vinylbenzylammonium chloride, triethyl-p-vinylbenzylammonium chloride, triethyl-m-vinylbenzylammonium chloride, N, N-dimethyl-N-ethyl-Np-vinylbenzylammonium chloride, N, N-diethyl-N -Methyl-Np-vinylbenzylammonium chloride, N, N-dimethyl-Nn-propyl-Np-vinylbenzylammonium chloride, N, N-dimethyl-Nn-octyl-Np-vinyl Benzyl ammonium chloride, N, N-dimethyl Ru-N-benzyl-
  • N, N-dialkylaminoalkyl (meth) acrylate for example, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate), N, N-diethylaminopropyl (meth) acrylate, etc.
  • N-dialkylaminoalkyl (meth) acrylamide eg, N, N-dimethylaminoethyl (meth) acrylamide, N, N-diethylaminoethyl (meth) acrylamide
  • methyl chloride ethyl chloride, methyl bromide, ethyl bro
  • monomethyl diallylammonium chloride trimethyl-2- (methacryloyloxy) ethylammonium chloride, triethyl-2- (methacryloyloxy) ethylammonium chloride, trimethyl-2- (acryloyloxy) ethylammonium chloride, triethyl-2- ( Acryloyloxy) ethylammonium chloride, trimethyl-3- (methacryloyloxy) propylammonium chloride, triethyl-3- (methacryloyloxy) propylammonium chloride, trimethyl-2- (methacryloylamino) ethylammonium chloride, triethyl-2- (methacryloylamino) ) Ethylammonium chloride, trimethyl-2- (acryloylamino) ethylan Nium chloride, triethyl-2- (acryloylamino) e
  • the content of the cationic group in the cationic block copolymer (P) is not particularly limited, but the content of the cationic monomer, that is, the total number of monomer units in the cationic block copolymer (P).
  • the ratio of the number (mole number) of monomer units (cationic monomer units) having a cationic group to (mole number) is preferably 0.1 mol% or more.
  • the content is more preferably 0.5 mol% or more, and further preferably 1 mol% or more.
  • cationic monomer content is 50 mol% or less. If the content exceeds 50 mol%, the degree of swelling of the mosaic charged membrane increases, and the permeation flux of the electrolyte may decrease.
  • the content is more preferably 30 mol% or less, and further preferably 20 mol% or less.
  • the polyvinyl alcohol-based cationic block copolymer (P) is a mixture of a polymer containing a cationic group and a polymer not containing a cationic group, or a plurality of polymers containing a cationic group
  • the cationic monomer content in the case of a mixture of seeds refers to the ratio of the number of cationic monomer units to the total number of monomer units in the mixture.
  • the polyvinyl alcohol-based anion block copolymer used in the present invention is an anionic block copolymer comprising a vinyl alcohol-based polymer block (C) and a polymer block (D) having an anionic group as constituent components. (Q).
  • repeating unit constituting the polymer block (D) in the anionic block copolymer (Q) is not particularly limited, but examples thereof include repeating units represented by the following general formulas (9) to (10).
  • R 1 represents a hydrogen atom or a methyl group
  • X represents a phenylene group or a naphthylene group optionally substituted with a methyl group
  • Y represents a sulfonyloxy group (—SO 2 3 ⁇ ), a phosphonyloxy group (—PO 3 H—) or a carbonyloxy group (—CO 2 —)
  • M represents a hydrogen atom, an ammonium ion or an alkali metal ion.
  • Y in the above general formulas (9) and (10) is preferably a sulfonyloxy group or a phosphonyloxy group that gives a higher charge density.
  • alkali metal ion in the definition of M include sodium ion, potassium ion, lithium ion and the like.
  • examples of the monomer constituting the repeating unit represented by the general formula (9) include p- Styrenesulfonic acid or its alkali metal salt or ammonium salt, p-styrenephosphonic acid or its alkali metal salt or ammonium salt, p-styrenecarboxylic acid or its alkali metal salt or ammonium salt, ⁇ -methyl-p-styrenesulfonic acid or Alkali metal salt or ammonium salt thereof, ⁇ -methyl-p-styrene phosphonic acid or alkali metal salt or ammonium salt thereof, ⁇ -methyl-p-styrene carboxylic acid or alkali metal salt or ammonium salt thereof, 2-vinylnaphthalenesulfonic acid Or its alkali metal salt or a Moniumu salt, 2-vinyl naphthalene acid or an alkali metal or ammonium salt thereof, 2-vinylnaphthalenesulfonic acid Or its alkali metal salt
  • examples of the monomer constituting the repeating unit represented by the general formula (10) include 2- (Meth) acrylamide-2-methylpropanesulfonic acid or its alkali metal salt or ammonium salt, 2- (meth) acrylamide-2-methylpropanephosphone or its alkali metal salt or ammonium salt, 2- (meth) acrylamide-2- Examples thereof include methyl propane carboxylic acid or an alkali metal salt or ammonium salt thereof.
  • the anionic group content of the anionic block copolymer (Q) is not particularly limited, but the anionic monomer content, that is, the total number of monomer units in the anionic block copolymer (Q) ( The ratio of the number of monomer units having an anionic group to the number of moles (number of moles) is preferably 0.1 mol% or more. When the anionic monomer content is less than 0.1 mol%, the effective charge density in the mosaic charged membrane is lowered, and the electrolyte permselectivity may be lowered. The content is more preferably 0.5 mol% or more, and further preferably 1 mol% or more. Moreover, it is preferable that anionic monomer content is 50 mol% or less.
  • the content exceeds 50 mol%, the degree of swelling of the mosaic charged membrane increases, and the permeation flux of the electrolyte may be reduced.
  • the content is more preferably 30 mol% or less, and further preferably 20 mol% or less.
  • the polyvinyl alcohol-based anion block copolymer is a mixture of a polymer containing an anionic group and a polymer containing no anionic group, or a mixture of a plurality of polymers containing an anionic group
  • the anionic monomer content in a certain case refers to the ratio of the number of monomer units having an anionic property to the total number of monomer units in the mixture.
  • the feature of the mosaic charged membrane of the present invention is that it contains a polyvinyl alcohol-based cation block copolymer and a polyvinyl alcohol-based anion block copolymer as domains.
  • An important property of mosaic charged membranes is the negative anomalous penetration phenomenon. Negative abnormal osmosis is a phenomenon that occurs when a solution is separated by a membrane that is permeable to cation and anion solutes and very little permeable to neutral substances such as water. is there. Specifically, when a KCl aqueous solution and water are separated by a membrane, a phenomenon occurs in which KCl moves to the water side together with hydrated water.
  • the permeation flux of the salt through the membrane is larger than the permeation flux of water, but it can function as a desalination membrane by applying the necessary pressure using the membrane where this phenomenon occurs.
  • the separation between the solute and the solvent is represented by a coefficient of restitution, and in the case of a positive infiltration phenomenon, the coefficient of restitution is a positive value.
  • the coefficient of restitution becomes a negative value. This coefficient of restitution is affected by the charge density and domain size in the film.
  • positive and negative permeation can be determined by simply performing a permeation test and measuring the water permeation flux.
  • the cationic block copolymer (P) which is one of the main components of the mosaic charged membrane of the present invention is composed of a vinyl alcohol polymer block (A) and a polymer block (B) having a cationic group. Is done.
  • the anionic block copolymer (Q), which is also one of the main components, is composed of a vinyl alcohol polymer block (C) and a polymer block (D) having an anionic group.
  • an anionic block (D) capable of transmitting a cation, and succeeded in achieving both the degree of swelling and dimensional stability of the mosaic charged membrane.
  • the production methods of the cationic block polymer (P) and the anionic block polymer (Q) which are the main components of the mosaic charged membrane of the present invention are roughly classified into the following two methods. That is, (1) a method for producing a block copolymer using at least one monomer having an ion-exchange group and another monomer, and (2) an ion after producing the block copolymer In this method, an exchangeable group is introduced.
  • a block copolymer is produced by radical polymerization of at least one monomer containing an ion-exchange group with a vinyl alcohol polymer containing a mercapto group at the terminal. The method is preferable because of industrial ease.
  • one or more monomers are block copolymerized with a vinyl alcohol polymer containing a mercapto group at the terminal to obtain a block copolymer, and then this block copolymer
  • examples thereof include a method for obtaining a block copolymer having an ion-exchange group by introducing an ion-exchange group therein.
  • an ion exchange group is added to the vinyl alcohol polymer containing a mercapto group at the terminal.
  • a method of producing a block copolymer by radical polymerization of at least one monomer contained is preferred.
  • a vinyl alcohol polymer containing a mercapto group at the terminal can be obtained, for example, by the method described in Patent Document 4 and the like. That is, there is a method of saponifying a vinyl ester polymer obtained by radical polymerization of a vinyl ester monomer, for example, a vinyl monomer mainly composed of vinyl acetate in the presence of thiolic acid.
  • the saponification degree of the vinyl alcohol polymer containing a mercapto group at the terminal is not particularly limited, but is preferably 40 to 99.9 mol%. When the degree of saponification is less than 40 mol%, the crystallinity of the vinyl alcohol polymer block is lowered, and the strength of the ion exchange membrane may be insufficient.
  • the saponification degree is more preferably 60 mol% or more, and further preferably 80 mol% or more.
  • the saponification degree of the vinyl alcohol polymer containing a mercapto group at the terminal is usually 99.9 mol% or less.
  • the saponification degree of polyvinyl alcohol is a value measured according to JIS K6726.
  • the degree of polymerization of the vinyl alcohol polymer containing a mercapto group at the terminal is preferably 100 or more and 3500 or less, more preferably 200 or more and 3000 or less, and further preferably 250 or more and 2500 or less.
  • the degree of polymerization is less than 100, there is a possibility that the film strength of the mosaic charged film mainly composed of the finally obtained block copolymer may be insufficient, and when the degree of polymerization exceeds 3500, There may be a shortage of mercapto groups introduced into the vinyl alcohol polymer, making it impossible to obtain a block polymer efficiently.
  • the viscosity average polymerization degree of polyvinyl alcohol is a value measured according to JIS K6726.
  • Examples of a method for obtaining a block copolymer using a vinyl alcohol polymer containing a mercapto group at the terminal thus obtained and a monomer containing an ion exchange group include, for example, Patent Document 5 and the like. Can be mentioned.
  • a block copolymer is obtained by radical polymerization of a monomer having an ion-exchange group in the presence of a vinyl alcohol polymer having a mercapto group at the terminal.
  • This radical polymerization can be carried out by a known method such as bulk polymerization, solution polymerization, pearl polymerization, emulsion polymerization, etc., but a solvent capable of dissolving a vinyl alcohol polymer containing a mercapto group at the terminal, such as water or dimethyl It is preferably carried out in a medium mainly composed of sulfoxide.
  • any of a batch method, a semi-batch method, and a continuous method can be employed.
  • the radical polymerization may be performed by using a polymerization system selected from ordinary radical polymerization initiators such as 2,2′-azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, diisopropyl peroxycarbonate, potassium persulfate, and ammonium persulfate.
  • a polymerization system selected from ordinary radical polymerization initiators such as 2,2′-azobisisobutyronitrile, benzoyl peroxide, lauroyl peroxide, diisopropyl peroxycarbonate, potassium persulfate, and ammonium persulfate.
  • an oxidizing agent such as potassium bromate, potassium persulfate, ammonium persulfate, hydrogen peroxide, etc. It is also possible to initiate the polymerization by a redox reaction.
  • the polymerization system is desirably acidic. This is because the mercapto group has a high rate of ionic addition and disappearance to the double bond of the monomer under basic conditions, and the polymerization efficiency is remarkably reduced. In the case of aqueous polymerization, it is preferable to carry out all the polymerization operations at pH 4 or less.
  • the polymer blocks ((B) and (D)) having ion-exchange groups are present in the present invention.
  • Examples of the monomer that gives a monomer unit having no ion exchange group include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene; acrylic acid or a salt thereof, or acrylic acid Acrylic esters such as methyl, ethyl acrylate, n-propyl acrylate and isopropyl acrylate; methacrylic acid or salts thereof, or methacrylic acid such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate Esters; acrylamide derivatives such as acrylamide, N-methyl acrylamide, N-ethyl acrylamide; methacrylamide derivatives such as methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide; methyl vinyl ether, ethyl vinyl ether Vinyl ethers such as n-propyl vinyl ether, isopropy
  • the reaction temperature of the radical polymerization is not particularly limited, but usually 0 to 200 ° C. is appropriate.
  • the progress of the polymerization is monitored by quantifying the residual monomer by various chromatography, NMR spectrum, etc., and the termination of the polymerization reaction is judged, so that the ratio of the polymer block (A) to the polymer block (B) or the polymer block ( The ratio of C) to the polymer block (D) can be adjusted to a desired value.
  • the polymerization reaction is stopped by a known method, for example, by cooling the polymerization system.
  • a membrane made of a cationic block copolymer (P) used for each ion exchange layer and an anionic block copolymer charge density of a film made of polymer (Q) is preferably at 0.3 mol ⁇ dm -3 or more, more preferably 0.5 mol ⁇ dm -3 or more, is 0.7 mol ⁇ dm -3 or higher More preferably. If the charge density is less than 0.3 mol ⁇ dm ⁇ 3 , the ion permeability of the membrane may be insufficient.
  • the upper limit of the charge density of the film made of the block copolymer is preferably 3 mol ⁇ dm ⁇ 3 or less in consideration of mechanical strength and the like, and more preferably 2.7 mol ⁇ dm ⁇ 3 or less. Preferably, it is 2.5 mol ⁇ dm ⁇ 3 or less.
  • the charge density is 3 mol ⁇ dm ⁇ 3 or more, the hydrophilicity increases and it becomes difficult to suppress the degree of swelling, and the permeability of the salt may be inferior.
  • the ratio (a) / (b) between the charge density (a) of the polyvinyl alcohol-based cationic block copolymer (P) and the charge density (b) of the polyvinyl alcohol-based anionic block copolymer (Q) is Although not particularly limited, it is preferably 0.3 to 2.5, more preferably 0.5 to 2.0, and still more preferably 0.8 to 1.5. If the ratio (a) / (b) is less than 0.3 or 2.5 or more, the balance of charge density of the mosaic charged membrane is biased, so the balance between the cation permeability and the anion permeability of the membrane The water permeation flux and salt permeation flux may be small.
  • a block copolymer having the vinyl alcohol polymer block and a block into which an ion exchange group can be introduced is produced, and then an ion exchange group is added to the block.
  • the method of introducing is also preferable.
  • a block copolymer into which a cationic group can be introduced is a cationic block copolymer (P) produced using the above-described vinyl alcohol polymer containing a mercapto group and a monomer having an ion-exchange group.
  • P cationic block copolymer
  • Examples of the monomer having a site into which a cationic group can be introduced include vinylpyridines such as 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, vinylpyrimidines, vinylquinolines, Examples thereof include vinyl carbazoles, vinyl imidazoles, o, m, p-vinylphenylalkylenealkylamines, dialkylaminoalkyl acrylates and dialkylaminoalkyl acrylates.
  • the block copolymer is treated with a vapor or a solution of an alkyl halogen compound to quaternize the nitrogen atom. That's fine.
  • the alkyl halogen compound used is represented by C p H 2p + 1 X or X (CH 2 ) q X (p is an integer of 1 to 12, q is an integer of 2 to 12, and X is a bromine or iodine atom). Any compound may be used.
  • a trialkylamine may be allowed to act on it.
  • the mosaic charged membrane of the present invention preferably has a thickness of about 1 to 1000 ⁇ m from the viewpoint of ensuring performance, membrane strength, handling properties, etc. required as a membrane for pressure dialysis.
  • a thickness of about 1 to 1000 ⁇ m from the viewpoint of ensuring performance, membrane strength, handling properties, etc. required as a membrane for pressure dialysis.
  • the film thickness is more preferably 5 to 500 ⁇ m, still more preferably 7 to 300 ⁇ m.
  • the method of heat treatment is not particularly limited, and a hot air dryer or the like is generally used.
  • the temperature of the heat treatment is not particularly limited, but is preferably 100 to 250 ° C. When the temperature of the heat treatment is less than 100 ° C., it is difficult to form the phase separation structure of the obtained mosaic charged membrane, and the mechanical strength may be insufficient.
  • the temperature is more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher. When the temperature of the heat treatment exceeds 250 ° C., the crystalline polymer may be melted.
  • the temperature is more preferably 230 ° C. or less, and further preferably 200 ° C. or less.
  • the method for the crosslinking treatment is not particularly limited as long as it is a method capable of bonding the molecular chains of the polymer by chemical bonding.
  • a method of immersing in a solution containing a crosslinking agent is used.
  • the crosslinking agent include glutaraldehyde, formaldehyde, glyoxal and the like.
  • the concentration of the crosslinking agent is usually 0.001 to 1% by volume of the volume of the crosslinking agent with respect to the solution.
  • both heat treatment and crosslinking treatment may be performed, or only one of them may be performed.
  • the crosslinking treatment may be performed after the heat treatment, the heat treatment may be performed after the crosslinking treatment, or both may be performed simultaneously. It is preferable to perform a crosslinking treatment after the heat treatment from the viewpoint of the mechanical strength of the resulting mosaic charged film.
  • the mosaic charged film of the present invention may contain various additives such as a water-soluble resin such as polyvinyl alcohol and polyacrylamide, and an inorganic filler as long as the object of the present invention is not impaired.
  • a water-soluble resin such as polyvinyl alcohol and polyacrylamide
  • an inorganic filler as long as the object of the present invention is not impaired.
  • the mosaic charged membrane used in the present invention may be combined with a support to form a composite membrane.
  • a support Any conventionally known porous sheet can be used as the support.
  • the porous support include non-woven fabric, membrane, woven fabric, and synthetic paper.
  • TMS theory Teorell-Meyer and Sievers theoretical formula
  • the osmotic water test was carried out using an apparatus comprising a permeated water measuring cell and a graduated capillary shown in FIG. Set the measurement membrane sample between self-made cells, about 20 ml of 5.0 ⁇ 10 ⁇ 2 to 5.0 ⁇ 10 ⁇ 1 (mol / L) KCl solution in the left cell, and about 20 ml of deionized water in the right cell.
  • the capillary was set and measurement was started. The measurement was performed at 25 ° C.
  • the change in the position of the meniscus of the capillary at a predetermined time t was measured, and the movement distance L of the water in the capillary was measured from this, thereby calculating the number of moles n of the moved water.
  • the volumetric flow rate [m ⁇ s ⁇ 1 ] of water was obtained by dividing the value of the initial gradient between the obtained time t and the number of moles n of the transferred water by the cross-sectional area of the capillary. From this result, the water permeation flux J W [mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ] was calculated from the following formula (II).
  • J W J V / 18 ⁇ 10 6 (II) J V : Volume flow rate [m ⁇ s ⁇ 1 ]
  • a composite membrane sandwiched between folders is sandwiched between two cells, 50 mL of a 35,000 ppm NaCl aqueous solution is placed in the right cell (pressure side), and 50 mL of a 35000 ppm NaCl aqueous solution is placed in the left cell (open side).
  • the conductivity of the cell on the open side was measured for 100 minutes every minute at a right cell pressure of 3 Mpa and a constant temperature of 25 ° C.
  • the NaCl concentration on the open side was determined from the conductivity obtained using a NaCl-conductivity calibration curve prepared in advance. From this result, the salt permeation flux (mol / (m 2 ⁇ s)) per unit time and unit area was calculated.
  • a cationic block copolymer (P) functioning as an anion exchange resin: P-1 to P-5, P-7, P-9, P-10, a random copolymer having a cationic group: P— 11 and anionic block copolymers (Q) that function as cation exchange resins (Q): P-12 to P-16, and random copolymers having an anionic group: P-17 and P-18 were synthesized.
  • amidopropyltrimethylammonium chloride methacrylate was dissolved in 220 g of water, added to the previously prepared aqueous solution with stirring, and then heated to 70 ° C., and for 30 minutes while bubbling nitrogen into the aqueous solution. The system was replaced with nitrogen. After nitrogen substitution, 176 mL of a 2.5% aqueous solution of potassium persulfate was sequentially added to the above aqueous solution over 1.5 hours to start and proceed with block copolymerization, and then the system temperature was maintained at 75 ° C. for 1 hour.
  • the polymerization was further continued to proceed, followed by cooling to obtain a PVA- (b) -p-methacrylamidopropyltrimethylammonium chloride block copolymer aqueous solution having a solid content concentration of 15%.
  • a part of the obtained aqueous solution was dried, dissolved in heavy water, and subjected to 1 H-NMR measurement at 400 MHz.
  • the amount of modification of the -methacrylamidopropyltrimethylammonium chloride unit was 10 mol%.
  • the amount of modification of the quaternized vinylpyridine unit was 10 mol%).
  • concentration of 4% was measured with the B-type viscosity meter, the viscosity was 16 milliPa * s (20 degreeC).
  • the gelled product is taken out from the reaction system and pulverized. Then, when 1 hour has passed since the gelated product was formed, methyl acetate is added to the pulverized product.
  • a cationic polymer of poly (vinyl alcohol-amidopropyltrimethylammonium methacrylate) in a swollen state was obtained.
  • methanol was added in an amount 6 times (bath ratio 6 times) by mass, washed for 1 hour under reflux, and the polymer was collected by filtration. The polymer was dried at 65 ° C. for 16 hours.
  • the obtained polymer was dissolved in heavy water and subjected to 1 H-NMR measurement at 400 MHz. As a result, the amount of modification of the amidopropyltrimethylammonium methacrylate unit was 5 mol%. The degree of polymerization was 1500, and the degree of saponification was 98.5 mol%.
  • Example 1 (Mosaic charged membrane production) Anion exchange resin layer: A necessary amount of deionized water was added to P-1 to adjust the concentration to 10%. This solution was poured into an acrylic cast plate having a length of 270 mm and a width of 210 mm to remove excess liquid and bubbles, and then dried on a hot plate at 50 ° C. for 24 hours to prepare a film having a thickness of 100 ⁇ m.
  • Cation exchange resin layer A necessary amount of deionized water was added to P-12 to adjust the concentration to 10%. This solution was poured into an acrylic cast plate having a length of 270 mm and a width of 210 mm to remove excess liquid and bubbles, and then dried on a hot plate at 50 ° C. for 24 hours to prepare a film having a thickness of 100 ⁇ m.
  • the laminated cation exchange resin layer and the anion exchange resin layer were alternately bonded using an aqueous solution of polyvinyl alcohol PVA124 (manufactured by Kuraray Co., Ltd.) as an adhesive to produce a laminated charged block.
  • the obtained block was cut with a lab cutter (manufactured by MARUTO INSTRUMENT CO., LTD) perpendicularly to the laminated surface to obtain a thin film.
  • the film thus obtained was heat treated at 170 ° C. for 30 minutes to cause physical crosslinking. Subsequently, the film was immersed in an aqueous electrolyte solution of 2 mol / L sodium sulfate for 24 hours.
  • Concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and the film was immersed in a 0.05% by volume glutaraldehyde aqueous solution, followed by stirring with a stirrer at 25 ° C. for 24 hours for crosslinking treatment.
  • glutaraldehyde aqueous solution a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used.
  • the film was immersed in deionized water, and the film was immersed until the film reached the swelling equilibrium while exchanging the deionized water several times in the middle, thereby producing a mosaic charged film having a thickness of 150 ⁇ m.
  • the mosaic charged film thus produced was cut into a desired size to produce a measurement sample.
  • the charge density and water permeation flux were measured according to the above method.
  • the salt permeation flux was measured by a pressure dialysis test when the obtained mosaic charged membrane was made into a composite membrane as described above. The results obtained are shown in Table 5.
  • Examples 2-14 Kind of anion exchange resin and cation exchange resin, ratio of charge density of anion exchange resin (cationic block copolymer (P)) and cation exchange resin (anionic block copolymer (Q)) (a) / (b ) And except that the heat treatment temperature was changed to the contents shown in Table 5, a mosaic charged film was prepared in the same manner as in Example 1, and the film characteristics were measured. The obtained measurement results are shown in Table 5.
  • Comparative Example 1 Anion exchange resin layer: Into a 200 mL Erlenmeyer flask, 90 mL of deionized water was added, 15 g of polyvinyl alcohol PVA117 (polymerization degree 1700, saponification degree 98.5 mol%: manufactured by Kuraray Co., Ltd.) was added, and then a 95 ° C. water bath. The mixture was heated and stirred to dissolve. Thereafter, 19 g of polydiallyldimethylammonium chloride (manufactured by Aldrich: concentration 20%, molecular weight 400,000 to 500,000) was mixed, and then desired deionized water was added to prepare an aqueous solution having a solid content concentration of 10% (PVA117 / polydiallyl).
  • PVA117 polymerization degree 1700, saponification degree 98.5 mol%: manufactured by Kuraray Co., Ltd.
  • Dimethylammonium chloride 80/20 solids by weight ratio).
  • the dispersion thus prepared was poured into an acrylic cast plate having a length of 270 mm and a width of 210 mm, and after removing excess liquid and air bubbles, it was dried on a hot plate at 50 ° C. for 24 hours to obtain a thickness of 100 ⁇ m. A film was prepared.
  • Cation exchange resin layer P-15 was dissolved by heating in hot water at 95 ° C. for 2 hours to prepare an aqueous solution having a solid content concentration of 10%.
  • the dispersion thus prepared was poured into an acrylic cast plate having a length of 270 mm and a width of 210 mm, and after removing excess liquid and air bubbles, it was dried on a hot plate at 50 ° C. for 24 hours to obtain a thickness of 100 ⁇ m.
  • a film was prepared.
  • a laminated charged block was prepared by alternately bonding these with an aqueous solution of polyvinyl alcohol PVA124 (manufactured by Kuraray Co., Ltd.) using an adhesive.
  • the resulting block was cut with a lab cutter (manufactured by MARUTO INSTRUMENT CO., LTD) perpendicular to the laminated surface to obtain a thin film.
  • the film thus obtained was heat treated at 170 ° C. for 30 minutes to cause physical crosslinking.
  • the film was immersed in an aqueous electrolyte solution of 2 mol / L sodium sulfate for 24 hours.
  • Concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and the film was immersed in a 0.05% by volume glutaraldehyde aqueous solution, followed by stirring with a stirrer at 25 ° C. for 24 hours for crosslinking treatment.
  • the glutaraldehyde aqueous solution a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used. After the crosslinking treatment, the film was immersed in deionized water, and the film was immersed until the film reached the swelling equilibrium while exchanging the deionized water several times in the middle, thereby producing a mosaic charged film having a thickness of 150 ⁇ m. About the obtained mosaic charge film
  • Comparative Example 2 A mosaic charged membrane was produced in the same manner as in Example 1 except that the types of anion exchange resin and cation exchange resin were changed to those shown in Table 5, and the membrane characteristics were measured. The obtained measurement results are shown in Table 5.
  • Comparative Example 3 A membrane was prepared in the same manner as in Example 1 except that unmodified polyvinyl alcohol PVA117 (manufactured by Kuraray Co., Ltd.) was used instead of the anion exchange resin and the cation exchange resin, and the membrane characteristics were measured. The obtained measurement results are shown in Table 5.
  • a mosaic charged membrane comprising a polyvinyl alcohol cation block copolymer as the anion exchange resin layer and a polyvinyl alcohol anion block copolymer as the cation exchange resin layer
  • the permeation flux of water shows a negative value, negative abnormal permeation, and that the permeation flux of salt by pressure dialysis is large (Examples 1 to 14).
  • the permeation flux of the salt is better when the ion modification amount of the anion exchange resin layer and the cation exchange resin layer is 0.5 mol% or more.
  • the content of the cationic monomer unit in the cation block copolymer and the content of the anionic monomer unit in the anion block copolymer are each 0.5 mol% or more. It can be seen that the permeation flux of the salt is better (Examples 1 to 9, 11 to 14). Furthermore, in this case, the ratio (a) / (b) between the charge density (a) of the cationic block copolymer (P) and the charge density (b) of the anionic block copolymer (Q) is set to 0.3. It can be seen that the range of ⁇ 2.5 is also preferable for obtaining a mosaic charged membrane having a good salt permeation flux (Examples 1 to 9, 11 to 14).
  • the cation exchange resin layer and the anion exchange resin layer are made of PVA resin into which an anionic group and a cationic group are introduced by random copolymerization, it is understood that the salt permeation flux is small and the desalting performance is inferior ( Comparative Example 2). Further, when the unmodified PVA membrane was changed to a mosaic charged membrane and tested, the permeation flux of water was a positive value, and the salt could not be permeated (Comparative Example 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 ビニルアルコール系重合体ブロック(A)及びカチオン性基を有する重合体ブロック(B)を構成成分とするカチオン性ブロック共重合体(P)と、ビニルアルコール系重合体ブロック(C)及びアニオン性基を有する重合体ブロック(D)を構成成分とするアニオン性ブロック共重合体(Q)とを含有することを特徴とするモザイク荷電膜である。このようなモザイク荷電膜は、膜強度が高く、選択透過性、荷電密度が高く、塩の透過流束が大きいため、圧透析用のモザイク荷電膜として有用である。

Description

モザイク荷電膜
 本発明は、ポリビニルアルコール系のカチオンブロック共重合体及び、ポリビニルアルコール系のアニオンブロック共重合体をイオン交換層として含有することを特徴とするモザイク荷電膜に関する。より詳細には、塩の透過流束が大きい、圧透析の用途に好適なモザイク荷電膜に関するものである。
 モザイク荷電膜は、カチオン交換層とアニオン交換層が交互にかつ並列に配列し、各層が膜の両面まで貫通した膜である。この独特な荷電構造は、外部からの電流を必要とすることなく電解質が溶解した塩溶液中において低分子量イオンの透過を促進することができる。それぞれの電位の方向が互いに逆である正荷電領域と負荷電領域がモザイク状に並んでいるので、膜の両側の塩溶液部分が抵抗となる回路ができる。この回路にカチオンとアニオンがそれぞれ負荷電領域、正荷電領域を通って輸送されることで循環電流が生じ、塩の輸送が促進される。このことはモザイク荷電膜が、外部からの電流が必要な、正荷電領域又は負荷電領域のみの固定電荷を有するイオン交換膜と異なり、イオン輸送を引き起こす機構を膜自体に内在させていることを意味する。
 モザイク荷電膜として種々の手法により作製したものが報告されている。特許文献1には、カチオン性基を有するブロックとアニオン性基を有するブロックとからなるブロック共重合体のミクロ相分離現象を利用して作製したモザイク荷電膜が記載されている。しかしながらこの方法は、ブロック共重合体の特定部位を変性させる必要や、異なる電荷を有するブロックを均質にミクロ相分離する必要などがあり、高コストで製造工程が煩雑なだけでなく、工業規模での製造は技術的に困難である。
 特許文献2には、膜形成ポリマーの溶液に、陽イオン交換樹脂及び陰イオン交換樹脂を混合、分散させて均一なポリマー分散液を調製し、これを塗布、延伸、乾燥するモザイク荷電膜の製造方法が記載されている。この方法により得られたモザイク荷電膜は、圧透析実験において圧力上昇とともにイオンの透過量も増加する。しかし、このモザイク荷電膜では膜マトリックスとイオン交換樹脂が化学的に結合されていないため、その界面において水や中性溶質の漏れが生じ、高い選択透過性を達成することは困難である。
 特許文献3には、カチオン性又はアニオン性のイオン性ポリマーが形成する架橋連続相中に、反対のイオン性を有するポリマーが平均粒子径0.01~10μmの架橋粒子として分散してなるモザイク荷電膜を製造する方法において、前記膜の連続相を形成するイオン性ポリマーの溶液に反対のイオン性を有するポリマーの球状微粒子を分散させた分散液を用いて膜を形成し、該膜中の少なくとも連続相を架橋させ、次いで水又は水溶液浸漬処理することを特徴とするモザイク荷電膜の製造方法が記載されている。この方法で製造される膜は、ドメインサイズや膜厚の調整が容易であり、また比較的容易に大面積の膜の作製が可能である。しかし、この製造方法では、平均粒子径が小さい重合体微粒子を調製しなければならず、高度な技術及び長時間を要するといった問題がある。しかも得られるモザイク荷電膜は、含水性の高いミクロゲルで構成されているため、耐圧性が非常に低く、特に構造上、膜マトリックスとミクロゲルとの界面の接着性を高めることが困難なため、漏れが生じ、イオン透過性が低くなる上、機械的強度も十分とは言えない。そのため、拡散透析用の膜としては使用可能であるものの、圧透析用の膜としては使用に耐えないか、もしくは耐久性に極めて劣るといった欠点を有する。
 非特許文献1には、積層法によって作製されたモザイク荷電膜が記載されている。当該積層法では、共重合によりスルホン酸基を導入したポリビニルアルコールから陽イオン交換膜を、ポリビニルアルコールとポリカチオンの混合樹脂から陰イオン交換膜を作製し、これらをポリビニルアルコールを接着剤として交互に貼り合わせることにより積層荷電塊を作製し、得られた塊を積層面と垂直にラボカッターで切断した後、架橋処理を行うことによって、約150μmの膜厚を有する積層モザイク荷電膜を作製している。このようにして得られた積層モザイク荷電膜の拡散透析によるKClの塩流束J(KCl)は3.0×10-9mol・cm-2-1、電解質選択透過性αは2300と非常に高い塩選択透過性を示すことが記載されているが、圧透析用に使用するには、より膜の荷電密度を高める必要がある。
 非特許文献2には、ポリビニルアルコールを膜マトリックスとするポリマーブレンド法によって作製されたモザイク荷電膜が記載されている。当該ポリマーブレンド法では、ポリビニルアルコールとイタコン酸基を含有するビニル化合物を2mol%共重合組成として含有する変性PVAポリアニオンの水溶液に、イタコン酸基のカルボキシル基からの水素イオンの解離を抑制するために塩酸を加えて酸性にした溶液と、ポリビニルアルコールとポリアリルアミン塩酸塩水溶液とを混合することでポリマーブレンド水溶液を調製した。この溶液をガラス板などにキャストして膜を得た後、化学的架橋を行うことによってモザイク荷電膜を得ている。このようにして得られたモザイク荷電膜の拡散透析によるKClの塩流束J(KCl)は1.7×10-8molcm-2-1であり、電解質選択透過性αは48であり、比較的高い値を示すことが記載されているけれども、圧透析用に使用するには、より膜の荷電密度を高める必要がある。
特開昭59-203613号公報 特開2006-297338号公報 特開平8-155281号公報 特開昭59-187003号公報 特開昭59-189113号公報
J.Membr.Sci.,Vol.310,p.466(2008) 繊維学会予稿集 Vol.56,No.1,p.33(2001)
 本発明は、上記課題を解決するためになされたものであり、膜強度が高く、選択透過性、荷電密度が高く、塩の透過流束が大きい圧透析用のモザイク荷電膜を提供することを目的とするものである。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた。その結果、ポリビニルアルコール系のカチオンブロック共重合体及び、ポリビニルアルコール系のアニオンブロック共重合体をイオン交換層として含有することを特徴とするモザイク荷電膜は、優れた塩透過流束を発揮する圧透析膜として有用であることを見出し、本発明を完成するに至った。
 本発明によれば、ポリビニルアルコール系のカチオンブロック共重合体及び、ポリビニルアルコール系のアニオンブロック共重合体をイオン交換層として含有することを特徴とするモザイク荷電膜が提供される。
 即ち、本発明のモザイク荷電膜は、ビニルアルコール系重合体ブロック(A)及びカチオン性基を有する重合体ブロック(B)を構成成分とするカチオン性ブロック共重合体(P)と、ビニルアルコール系重合体ブロック(C)及びアニオン性基を有する重合体ブロック(D)を構成成分とするアニオン性ブロック共重合体(Q)とを含有することを特徴とする。
 上記本発明のモザイク荷電膜において、前記カチオン性ブロック共重合体(P)中のカチオン性基を有する単量体の含有量が0.1モル%以上であることが好ましい。また、前記アニオン性ブロック共重合体(Q)中のアニオン性基を有する単量体の含有量が0.1モル%以上であることが好ましい。
 本発明のモザイク荷電膜は、電解質の透過流束が非電解質の透過流束より著しく大きい。これにより、電解質と非電解質の分離や、電解質の除去(脱塩)などを効率よく行うことができる。また、カチオンブロック共重合体及び、アニオンブロック共重合体の構造が似ており親和性が高く接着性が高いので、界面での洩れも起こりにくい。また、高い親水性を有することで耐有機汚染性が高く、膜抵抗が小さい。更にブロック共重合体であることで湿度による膜の膨潤を抑制できるため、膜強度も高く、長期間にわたって効率よく、安定に圧透析を行うことができる。また、本発明のモザイク荷電膜は高い荷電密度を有する。
膜電位測定装置の模式図である。 浸透水試験装置の模式図である。 圧透析試験装置の模式図である。
 本発明のモザイク荷電膜は、ビニルアルコール系重合体ブロック(A)及びカチオン性基を有する重合体ブロック(B)を構成成分とするカチオン性ブロック共重合体(P)と、ビニルアルコール系重合体ブロック(C)及びアニオン性基を有する重合体ブロック(D)を構成成分とするアニオン性ブロック共重合体(Q)とを含有することを特徴とする。
 即ち、本発明のモザイク荷電膜は、ポリビニルアルコール系のカチオンブロック共重合体及び、ポリビニルアルコール系のアニオンブロック共重合体をイオン交換層として有するものである。該カチオンブロック共重合体がアニオン交換樹脂として機能し、該アニオンブロック共重合体がカチオン交換樹脂として機能する。
 本発明で用いられるポリビニルアルコール系のカチオンブロック共重合体は、ビニルアルコール系重合体ブロック(A)及びカチオン性基を有する重合体ブロック(B)を構成成分とするカチオン性ブロック共重合体(P)である。
 ここで、カチオン性ブロック共重合体(P)における重合体ブロック(B)を構成する繰り返し単位は特に限定されないが、下記一般式(2)~(7)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R1は水素原子又は炭素数1~4のアルキル基を表し、R2、R3、R4はそれぞれ独立に、水素原子、又は、置換基を有していてもよく、また、連結して飽和若しくは不飽和環状構造を形成していてもよい、炭素数1~18のアルキル基、アリール基若しくはアラルキル基を表わす。Zは-O-又はNH-を表し、Yは複素原子を介していてもよい総炭素数1~8の二価の連結基を表す。Xは陰イオンを表す。)
Figure JPOXMLDOC01-appb-C000002
(式中、R5は水素原子又はメチル基を表わす。R2、R3、R4、Xは一般式(2)と同義である。)
Figure JPOXMLDOC01-appb-C000003
(一般式(4)、(5)中のR2、R3、Xは、一般式(2)と同義である。)
Figure JPOXMLDOC01-appb-C000004
(一般式(6)、(7)中のnは0又は1を表わし、R2、R3、R4、Xは一般式(2)と同義である。)
 上述の一般式(1)で表されるカチオン性ブロック共重合体(P)の合成に用いる、カチオン性基を有する単量体としては、例えば、トリメチル-p-ビニルベンジルアンモニウムクロライド、トリメチル-m-ビニルベンジルアンモニウムクロライド、トリエチル-p-ビニルベンジルアンモニウムクロライド、トリエチル-m-ビニルベンジルアンモニウムクロライド、N,N-ジメチル-N-エチル-N-p-ビニルベンジルアンモニウムクロライド、N,N-ジエチル-N-メチル-N-p-ビニルベンジルアンモニウムクロライド、N,N-ジメチル-N-n-プロピル-N-p-ビニルベンジルアンモニウムクロライド、N,N-ジメチル-N-n-オクチル-N-p-ビニルベンジルアンモニウムクロライド、N,N-ジメチル-N-ベンジル-N-p-ビニルベンジルアンモニウムクロライド、N,N-ジエチル-N-ベンジル-N-p-ビニルベンジルアンモニウムクロライド、N,N-ジメチル-N-(4-メチル)ベンジル-N-p-ビニルベンジルアンモニウムクロライド、N,N-ジメチル-N-フェニル-N-p-ビニルベンジルアンモニウムクロライド、トリメチル-p-ビニルベンジルアンモニウムブロマイド、トリメチル-m-ビニルベンジルアンモニウムブロマイド、トリメチル-p-ビニルベンジルアンモニウムスルホネート、トリメチル-m-ビニルベンジルアンモニウムスルホネート、トリメチル-p-ビニルベンジルアンモニウムアセテート、トリメチル-m-ビニルベンジルアンモニウムアセテート、N,N,N-トリエチル-N-2-(4-ビニルフェニル)エチルアンモニウムクロライド、N,N,N-トリエチル-N-2-(3-ビニルフェニル)エチルアンモニウムクロライド、N,N-ジエチル-N-メチル-N-2-(4-ビニルフェニル)エチルアンモニウムクロライド、N,N-ジエチル-N-メチル-N-2-(4-ビニルフェニル)エチルアンモニウムアセテートが、挙げられる。
 また、N,N-ジアルキルアミノアルキル(メタ)アクリレート(例えばN,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、など)や、N,N-ジアルキルアミノアルキル(メタ)アクリルアミド(例えばN,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジエチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチルアミノプロピル(メタ)アクリルアミドなど)のアルキルハライド(例えばメチルクロライド、エチルクロライド、メチルブロマイド、エチルブロマイド、メチルアイオダイド若しくはエチルアイオダイド)による4級化物、又は該4級化物のアニオンを置換したスルホン酸塩、アルキルスルホン酸塩、酢酸塩若しくはアルキルカルボン酸塩等が挙げられる。
 更に、例えば、モノメチルジアリルアンモニウムクロライド、トリメチル-2-(メタクリロイルオキシ)エチルアンモニウムクロライド、トリエチル-2-(メタクリロイルオキシ)エチルアンモニウムクロライド、トリメチル-2-(アクリロイルオキシ)エチルアンモニウムクロライド、トリエチル-2-(アクリロイルオキシ)エチルアンモニウムクロライド、トリメチル-3-(メタクリロイルオキシ)プロピルアンモニウムクロライド、トリエチル-3-(メタクリロイルオキシ)プロピルアンモニウムクロライド、トリメチル-2-(メタクリロイルアミノ)エチルアンモニウムクロライド、トリエチル-2-(メタクリロイルアミノ)エチルアンモニウムクロライド、トリメチル-2-(アクリロイルアミノ)エチルアンモニウムクロライド、トリエチル-2-(アクリロイルアミノ)エチルアンモニウムクロライド、トリメチル-3-(メタクリロイルアミノ)プロピルアンモニウムクロライド、トリエチル-3-(メタクリロイルアミノ)プロピルアンモニウムクロライド、トリメチル-3-(アクリロイルアミノ)プロピルアンモニウムクロライド、トリエチル-3-(アクリロイルアミノ)プロピルアンモニウムクロライド、N,N-ジメチル-N-エチル-2-(メタクリロイルオキシ)エチルアンモニウムクロライド、N,N-ジエチル-N-メチル-2-(メタクリロイルオキシ)エチルアンモニウムクロライド、N,N-ジメチル-N-エチル-3-(アクリロイルアミノ)プロピルアンモニウムクロライド、トリメチル-2-(メタクリロイルオキシ)エチルアンモニウムブロマイド、トリメチル-3-(アクリロイルアミノ)プロピルアンモニウムブロマイド、トリメチル-2-(メタクリロイルオキシ)エチルアンモニウムスルホネート、トリメチル-3-(アクリロイルアミノ)プロピルアンモニウムアセテート等を挙げることができる。その他、共重合可能なモノマーとして、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール等も挙げられる。
 カチオン性ブロック共重合体(P)のカチオン性基の含有量は特に限定されないが、カチオン性単量体の含有量、すなわち、カチオン性ブロック共重合体(P)中の単量体単位の総数(モル数)に対するカチオン性基を有する単量体単位(カチオン性単量体単位)の数(モル数)の割合が、0.1モル%以上であることが好ましい。カチオン性単量体単位の含有量が0.1モル%未満だと、モザイク荷電膜中の有効荷電密度が低下し、電解質選択透過性が低下するおそれがある。含有量が0.5モル%以上であることがより好ましく、1モル%以上であることがさらに好ましい。また、カチオン性単量体含有量は50モル%以下であることが好ましい。含有量が50モル%を超えると、モザイク荷電膜の膨潤度が高くなり、電解質の透過流束が低くなるおそれがある。含有量が30モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。ポリビニルアルコール系のカチオン性ブロック共重合体(P)が、カチオン性基を含有する重合体とカチオン性基を含有しない重合体との混合物である場合や、カチオン性基を含有する重合体の複数種の混合物である場合のカチオン性単量体含有量は、混合物中の単量体単位の総数に対するカチオン性単量体単位の数の割合をいう。
 また、本発明で用いられるポリビニルアルコール系のアニオンブロック共重合体は、ビニルアルコール系重合体ブロック(C)及びアニオン性基を有する重合体ブロック(D)を構成成分とするアニオン性ブロック共重合体(Q)である。
 ここで、アニオン性ブロック共重合体(Q)における重合体ブロック(D)を構成する繰り返し単位は特に限定されないが、下記一般式(9)~(10)で表わされる繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
(一般式(9)及び(10)中、Rは水素原子又はメチル基を表し、Xはメチル基で置換されていてもよいフェニレン基又はナフチレン基を表し、Yはスルホニルオキシ基(-SO-)、ホスホニルオキシ基(-POH-)又はカルボニルオキシ基(-CO-)を表し、Mは水素原子、アンモニウムイオン又はアルカリ金属イオンを表す。)
 上記一般式(9)及び(10)におけるYは、より高い荷電密度を与えるスルホニルオキシ基又はホスホニルオキシ基であることが好ましい。また、Mの定義におけるアルカリ金属イオンとしてはナトリウムイオン、カリウムイオン、リチウムイオン等が挙げられる。
 アニオン性ブロック共重合体(Q)の合成に用いられるアニオン性基を有する単量体のうち、上述の一般式(9)で表わされる繰り返し単位を構成する単量体としては、例えば、p-スチレンスルホン酸又はそのアルカリ金属塩もしくはアンモニウム塩、p-スチレンホスホン酸又はそのアルカリ金属塩もしくはアンモニウム塩、p-スチレンカルボン酸又はそのアルカリ金属塩もしくはアンモニウム塩、α-メチル-p-スチレンスルホン酸又はそのアルカリ金属塩もしくはアンモニウム塩、α-メチル-p-スチレンホスホン酸又はそのアルカリ金属塩もしくはアンモニウム塩、α-メチル-p-スチレンカルボン酸又はそのアルカリ金属塩もしくはアンモニウム塩、2-ビニルナフタレンスルホン酸又はそのアルカリ金属塩もしくはアンモニウム塩、2-ビニルナフタレンホスホン酸又はそのアルカリ金属塩もしくはアンモニウム塩、2-ビニルナフタレンカルボン酸又はそのアルカリ金属塩もしくはアンモニウム塩などが挙げられる。
 アニオン性ブロック共重合体(Q)の合成に用いられるアニオン性基を有する単量体のうち、上述の一般式(10)で表わされる繰り返し単位を構成する単量体としては、例えば、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸又はそのアルカリ金属塩もしくはアンモニウム塩、2-(メタ)アクリルアミド-2-メチルプロパンホスホン又はそのアルカリ金属塩もしくはアンモニウム塩、2-(メタ)アクリルアミド-2-メチルプロパンカルボン酸又はそのアルカリ金属塩もしくはアンモニウム塩などが挙げられる。
 アニオン性ブロック共重合体(Q)のアニオン性基の含有量は特に限定されないが、アニオン性単量体含有量、すなわち、アニオン性ブロック共重合体(Q)中の単量体単位の総数(モル数)に対するアニオン性基を有する単量体単位の数(モル数)の割合が、0.1モル%以上であることが好ましい。アニオン性単量体含有量が0.1モル%未満だと、モザイク荷電膜中の有効荷電密度が低下し、電解質選択透過性が低下するおそれがある。含有量が0.5モル%以上であることがより好ましく、1モル%以上であることがさらに好ましい。また、アニオン性単量体含有量は50モル%以下であることが好ましい。含有量が50モル%を超えると、モザイク荷電膜の膨潤度が高くなり、電解質の透過流束が小さくなるおそれがある。含有量が30モル%以下であることがより好ましく、20モル%以下であることがさらに好ましい。ポリビニルアルコール系のアニオンブロック共重合体が、アニオン性基を含有する重合体とアニオン性基を含有しない重合体との混合物である場合や、アニオン性基を含有する重合体の複数種の混合物である場合のアニオン性単量体含有量は、混合物中の単量体単位の総数に対するアニオン性を有する単量体単位の数の割合をいう。
 本発明のモザイク荷電膜の特徴は、ポリビニルアルコール系のカチオンブロック共重合体及び、ポリビニルアルコール系のアニオンブロック共重合体をドメインとして含有することにある。モザイク荷電膜の重要な特性は、負の異常浸透現象である。負の異常浸透現象とは、カチオン及びアニオン溶質に対して透過性を示し、水のような中性物質に対しては非常に小さな透過性しか示さない膜で溶液を隔てた場合に起こる現象である。具体的には、KCl水溶液と水を膜で隔てた場合に、KClが水和水と共に水側に移動する現象が起こる。これは、膜を介した塩の透過流束が水の透過流束よりも大きい為に起こるが、この現象が起こる膜を用いて必要な圧力を加えることで脱塩膜として機能することができる。通常、溶質と溶媒の分離性は反発係数で表され、正の浸透現象の場合は、反発係数は正の値となる。一方、負の浸透現象の場合は、反発係数は負の値となる。この反発係数は、膜中の荷電密度やドメインサイズに影響される。また、反発係数の算出は煩雑なので、簡易的に浸透水試験を行って水の透過流束を測定することで正負の浸透は判断できる。ここで、荷電密度を高くするためには、膜中の荷電量を高めた状態で膨潤度を如何に抑制するかが重要である。
 本発明のモザイク荷電膜の主成分の一つであるカチオン性ブロック共重合体(P)は、ビニルアルコール系重合体ブロック(A)と、カチオン性基を有する重合体ブロック(B)とから構成される。また、同じく主成分の一つである、アニオン性ブロック共重合体(Q)は、ビニルアルコール系重合体ブロック(C)と、アニオン性基を有する重合体ブロック(D)とから構成される。結晶性高分子であるポリビニルアルコールブロック((A)及び(C))が全体の膜強度、膜の膨潤度の抑制、形状保持を担う機能を発現し、陰イオンを透過できるカチオン性ブロック(B)と陽イオンを透過できるアニオン性ブロック(D)とを役割分担させることで、モザイク荷電膜の膨潤度や寸法安定性とを両立することに成功した。
 本発明のモザイク荷電膜の主成分になるカチオン性ブロック重合体(P)及びアニオン性ブロック重合体(Q)の製造方法は主に次の2つの方法に大別される。すなわち、(1)イオン交換性基を有する少なくとも1種の単量体と他の単量体を用いてブロック共重合体を製造する方法、及び(2)ブロック共重合体を製造した後、イオン交換性基を導入させる方法である。このうち、(1)については、末端にメルカプト基を含有するビニルアルコール系重合体に、イオン交換性基を含有する少なくとも1種の単量体をラジカル重合させることによりブロック共重合体を製造する方法が、工業的な容易さから好ましい。また、(2)については、末端にメルカプト基を含有するビニルアルコール系重合体に、1種又は複数種の単量体をブロック共重合してブロック共重合体を得、次いでこのブロック共重合体中にイオン交換性基を導入してイオン交換性基を有するブロック共重合体を得る方法が挙げられる。特に、ビニルアルコール系重合体ブロックとイオン交換性基を有する重合体ブロックの各成分の種類や量を容易に制御できることから、末端にメルカプト基を含有するビニルアルコール系重合体にイオン交換性基を含有する少なくとも1種の単量体をラジカル重合させてブロック共重合体を製造する方法が好ましい。
 以下、本発明に好ましく用いられる、イオン交換性基を有する少なくとも1種の単量体と他の単量体を用いて所望のブロック共重合体を製造する方法について説明する。
 末端にメルカプト基を含有するビニルアルコール系重合体は、例えば、特許文献4などに記載されている方法により得ることができる。すなわち、チオール酸の存在下にビニルエステル単量体、例えば酢酸ビニルを主体とするビニル系単量体をラジカル重合して得られるビニルエステル系重合体をけん化する方法が挙げられる。
 末端にメルカプト基を含有するビニルアルコール重合体のけん化度は特に限定されないが、40~99.9モル%であることが好ましい。けん化度が40モル%未満であると、ビニルアルコール系重合体ブロックの結晶性が低下し、イオン交換膜の強度が不足するおそれがある。けん化度が60モル%以上であることがより好ましく、80モル%以上であることがさらに好ましい。また、末端にメルカプト基を含有するビニルアルコール重合体のけん化度は、通常99.9モル%以下である。ポリビニルアルコールのけん化度は、JIS K6726に準じて測定した値である。
 末端にメルカプト基を含有するビニルアルコール重合体の重合度は、100以上3500以下が好ましく、200以上3000以下がより好ましく、250以上2500以下がさらに好ましい。重合度が100に満たない場合には、最終的に得られるブロック共重合体を主成分とするモザイク荷電膜の膜強度が不足する可能性があり、重合度が3500を超える場合には、該ビニルアルコール系重合体に導入されるメルカプト基が不足し、効率的にブロック重合体を得ることができなくなる可能性がある。なお、ポリビニルアルコールの粘度平均重合度は、JIS K6726に準じて測定した値である。
 このようにして得られる末端にメルカプト基を含有するビニルアルコール系重合体と、イオン交換性基を含有する単量体とを用いてブロック共重合体を得る方法としては、例えば、特許文献5などに記載された方法が挙げられる。
 すなわち、例えば特許文献5に記載されているように、末端にメルカプト基を有するビニルアルコール系重合体の存在下にイオン交換性基を有する単量体をラジカル重合させることによりブロック共重合体を得ることができる。このラジカル重合は公知の方法、例えばバルク重合、溶液重合、パール重合、乳化重合などによって行うことができるが、末端にメルカプト基を含有するビニルアルコール系重合体を溶解し得る溶剤、例えば水やジメチルスルホキシドを主体とする媒体中で行うのが好ましい。また、重合プロセスとしては、回分法、半回分法、連続法のいずれをも採用することができる。
 上記ラジカル重合は、通常のラジカル重合開始剤、例えば2,2’-アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジイソプロピルパーオキシカーボネート、過硫酸カリウム、過硫酸アンモニウム等の中から重合系に適したものを使用して行うことができるが、水系での重合の場合、ビニルアルコール系重合体末端のメルカプト基と臭素酸カリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等の酸化剤によるレドックス反応によって重合を開始することも可能である。
 末端にメルカプト基を有するビニルアルコール系重合体の存在下にイオン交換性基を有する単量体をラジカル重合させるに際し、重合系が酸性であることが望ましい。これはメルカプト基が、塩基性下においては、単量体の二重結合へイオン的に付加し消失する速度が大きく、重合効率が著しく低下するためである。また、水系の重合であれば、すべての重合操作をpH4以下で実施することが好ましい。
 また、上述のカチオン性ブロック共重合体(P)及びアニオン性ブロック共重合体(Q)を合成するに際し、イオン交換性基を有する重合体ブロック((B)及び(D))は、本発明のモザイク荷電膜に高い塩透過性を付与するために、イオン交換性基を有する単量体単位のみから構成することが望ましいが、イオン交換性基を有さない単量体単位を含んでいてもよい。かかるイオン交換性基を有さない単量体単位を与える単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン類;アクリル酸もしくはその塩、又はアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル類;メタクリル酸もしくはその塩、又はメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシル基含有ビニルエーテル類;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;オキシアルキレン基を有する単量体;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシル基含有α-オレフィン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン等のシリル基を有する単量体などが挙げられる。重合体ブロックにおけるイオン交換性基を有する単量体単位の割合は80モル%以上、特に90モル%以上であることが好ましい。
 上記ラジカル重合の反応温度については特に制限はないが、通常0~200℃が適当である。重合の経過は各種クロマトグラフィー、NMRスペクトル等による残存モノマーの定量で追跡して重合反応の停止を判断することで、重合体ブロック(A)と重合体ブロック(B)の比又は重合体ブロック(C)と重合体ブロック(D)の比を所望の値に調整することができる。重合反応の停止は、公知の手法、例えば重合系の冷却により重合を停止する。
 圧透析用のモザイク荷電膜として使用するのに十分なイオン透過性を発現するためには、各イオン交換層に用いられるカチオン性ブロック共重合体(P)からなる膜及び、アニオン性ブロック共重合体(Q)からなる膜の荷電密度は0.3mol・dm-3以上であることが好ましく、0.5mol・dm-3以上であることがより好ましく、0.7mol・dm-3以上であることが更に好ましい。荷電密度が0.3mol・dm-3未満であると膜のイオン透過性が不足することがある。また、ブロック共重合体からなる膜の荷電密度の上限については、機械的強度等を考慮して3mol・dm-3以下であるのが好ましく、2.7mol・dm-3以下であることがより好ましく、2.5mol・dm-3以下であることが更に好ましい。荷電密度が3mol・dm-3以上となると、親水性が高まり膨潤度の抑制が困難となり、塩の透過性が劣ることがある。
 ポリビニルアルコール系のカチオン性ブロック共重合体(P)の荷電密度(a)とポリビニルアルコール系のアニオン性ブロック共重合体(Q)の荷電密度(b)との比率(a)/(b)は、特に限定されないが、0.3~2.5であることが好ましく、0.5~2.0であることがより好ましく、0.8~1.5であることがさらに好ましい。比率(a)/(b)が0.3未満であったり、2.5以上であったりするとモザイク荷電膜の荷電密度のバランスが偏るため、膜の陽イオン透過性と陰イオン透過性のバランスが悪く、水の透過流束、塩透過流束が小さくなるおそれがある。
 ブロック共重合体を製造する方法としては、まず、上記ビニルアルコール系重合体ブロックとイオン交換性基が導入可能なブロックとを有するブロック共重合体を製造し、ついで該ブロックにイオン交換性基を導入する方法も好ましい。
 カチオン性基が導入可能なブロック共重合体は、上述のメルカプト基を含有するビニルアルコール系重合体とイオン交換性基を有する単量体とを用いてカチオン性ブロック共重合体(P)を製造する方法において、イオン交換性基(即ち、カチオン性基)を有する単量体の代わりに、カチオン性基が導入可能な部位を有する単量体を用いる以外は同様の方法により製造することができる。カチオン性基が導入可能な部位を有する単量体としては、例えば、2-ビニルピリジン、4-ビニルピリジン、2-メチル-5-ビニルピリジン等のビニルピリジン類、ビニルピリミジン類、ビニルキノリン類、ビニルカルバゾール類、ビニルイミダゾール類、o,m,p-ビニルフェニルアルキレンアルキルアミン類、ジアルキルアミノアルキルアクリレート類、ジアルキルアミノアルキルアクリレート類が挙げられる。
 カチオン性基が導入可能な部位を有するブロック共重合体にカチオン性基を導入するには、該ブロック共重合体をアルキルハロゲン化合物の蒸気又は溶液で処理して、その窒素原子を四級化すればよい。ここで、用いるアルキルハロゲン化合物は、C2p+1XあるいはX(CHX(pは1~12の整数、qは2から12の整数、Xは臭素又は沃素原子)で表される化合物であればよい。ハロメチル基をもつブロック部分にカチオン性基を導入するには、それにトリアルキルアミンを作用させればよい。
 本発明のモザイク荷電膜は、圧透析用の膜として必要な性能、膜強度、ハンドリング性等を確保する観点から、その膜厚が1~1000μm程度であることが好ましい。膜厚が1μm未満である場合には、膜の機械的強度が不充分となる傾向がある。逆に、膜厚が1000μmを超える場合には、膜抵抗が大きくなり、充分な塩透過性が発現しないため、脱塩効率が低くなる傾向となる。膜厚はより好ましくは5~500μmであり、更に好ましくは7~300μmである。
 本発明のモザイク荷電膜においては、熱処理を施すことが好ましい。熱処理を施すことによって、ブロック成分のミクロ相分離が進み易く、イオン透過チャネルを形成しやすい。また、物理的な架橋が生じ、得られるモザイク荷電膜の機械的強度が増大する。熱処理の方法は特に限定されず、熱風乾燥機などが一般に用いられる。熱処理の温度は、特に限定されないが、100~250℃であることが好ましい。熱処理の温度が100℃未満だと、得られるモザイク荷電膜の相分離構造が形成しにくく、機械的強度が不足するおそれがある。該温度が110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。熱処理の温度が250℃を超えると、結晶性重合体が融解するおそれがある。該温度が230℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
 本発明のモザイク荷電膜においては、架橋処理を施すことが好ましい。架橋処理を施すことによって、得られる膜の機械的強度が増大する。架橋処理の方法は、重合体の分子鎖同士を化学結合によって結合できる方法であればよく、特に限定されない。通常、架橋処理剤を含む溶液に浸漬する方法などが用いられる。該架橋処理剤としては、グルタルアルデヒド、ホルムアルデヒド、グリオキザールなどが例示される。該架橋処理剤の濃度は、通常、溶液に対する架橋処理剤の体積濃度が0.001~1体積%である。
 本発明のモザイク荷電膜を製造する際には、熱処理と架橋処理の両方を行ってもよいし、そのいずれかのみを行ってもよい。熱処理と架橋処理を両方行う場合、熱処理の後に架橋処理を行ってもよいし、架橋処理の後に熱処理を行ってもよいし、両者を同時に行ってもよい。熱処理の後に架橋処理を行うことが、得られるモザイク荷電膜の機械的強度の面から好ましい。
 本発明のモザイク荷電膜は、本発明の目的を損なわない範囲で、ポリビニルアルコール、ポリアクリルアミドなどの水溶性の樹脂、無機フィラーなど種々の添加剤を含んでいてもよい。
 本発明に用いられるモザイク荷電膜は支持体と複合して複合膜としても良い。用いる支持体としては、従来公知の多孔性のシートがいずれも使用できる。多孔性の支持体としては、不織布、膜、織布、合成紙などが挙げられる。これらの支持体の中でも、特に不織布、膜、合成紙を支持体とすることが好ましい。
 以下、本発明を更に詳細に説明するため実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。なお、実施例中、特に断りのない限り「%」及び「部」は重量基準である。
参考例
(分子末端にメルカプト基を有するポリビニルアルコール系重合体の合成)
 特開昭59-187003号広報に記載された方法によって、表1に示す分子末端にメルカプト基を有するポリビニルアルコール(PVA-1)を合成した。
Figure JPOXMLDOC01-appb-T000007
 実施例、比較例に示すモザイク荷電膜の特性は、以下の方法により測定した。
1)膜電位試験からの荷電密度の測定
 膜電位試験は図1に示す測定セルを用いて、両セルの濃度比r=5に保持した状態で両セルのKCl(ナカライテスク(株))濃度を変化させて膜電位を測定した。このとき電位は高濃度側を基準とした。低濃度側のKCl水溶液と測定膜電位との関係は下記の式(I)に示すTeorell-Meyer and Sievers 理論式(TMS理論)を用いて解析することで膜荷電密度を算出した。25℃で測定を行った。
Figure JPOXMLDOC01-appb-M000008
 ここで、W=(ω-ω)/(ω+ω
 ΔΦ:膜電位[V]
 Cx:膜荷電密度(荷電基の符号を含む)[mol・m-3
 C:低濃度側セルの塩濃度[mol・m-3
 ω:カチオンの移動度[mol・m・J-1・s-1
 ω:アニオンの移動度[mol・m・J-1・s-1
 F:ファラデー定数[C・mol-1
 R:ガス定数[J・K-1・mol-1
 T:絶対温度[K]
2)浸透水試験からの水の透過流束の測定
 浸透水試験は図2に示す浸透水測定セル及び目盛り付キャピラリからなる装置を用いて行った。測定膜サンプルを自作セル間にセットし、左側セルに5.0×10-2ないしは
5.0×10-1(mol/L)のKCl溶液を約20ml、右側セルに脱イオン水を約20mlを入れ、キャピラリをセットし測定を開始した。測定は25℃で行った。所定時間tにおけるキャピラリのメニスカスの位置の変化を計測し、これよりキャピラリ内の水の移動距離Lを計測することで、移動した水のモル数nを計算した。得られた時間tと移動した水のモル数nとの初期勾配の値をキャピラリの断面積で除することで、水の体積流量[m・s-1]を得た。この結果より、水の透過流束J[mol・m-2・s-1]を以下に示す下記の式(II)より算出した。
 J=J/18×10           (II)
 J:体積流量[m・s-1
3)圧透析試験による塩透過流束の測定
 圧透析試験による塩透過流束を測定するため、実施例及び比較例で得られたモザイク荷電膜を複合膜にして評価した。ビニロン合成紙(坪量:50±5g/m、厚さ:160±25μm)とモザイク荷電膜を重ね合わせ、熱プレス機で温度150℃、圧力10Kg/cmの条件で10分間熱プレスを行うことで、複合膜を得た。続いて、圧透析試験は図3に示す圧透析測定セルを用いて行った。フォルダに挟んだ複合膜を2つのセルの間に挟み、右側セル(加圧側)に濃度35000ppmのNaCl水溶液50mLを、左側セル(開放側)に濃度35000ppmのNaCl水溶液50mLを入れ、両セルをスターラーで撹拌させながら、右側セルの圧力3Mpa、25℃の一定温度下で開放側のセルの伝導度を1分毎に100分間測定した。次に、予め作成したNaCl-伝導度検量線を用いて得られた伝導度から開放側のNaCl濃度を決定した。この結果から、単位時間、単位面積あたりの塩透過流束(mol/(m・s))を算出した。
 まず、アニオン交換樹脂として機能するカチオン性ブロック共重合体(P):P-1~P-5、P-7、P-9、P-10、カチオン性基を有するランダム共重合体:P-11と、カチオン交換樹脂として機能するアニオン性ブロック共重合体(Q):P-12~P-16、アニオン性基を有するランダム共重合体:P-17、P-18を合成した。
(P-1の合成)
 還流冷却管、攪拌翼を備え付けた5L四つ口セパラブルフラスコに、水1140g、末端にメルカプト基を有するビニルアルコール系重合体として表1に示すPVA-1を344g仕込み、攪拌下95℃まで加熱して該ビニルアルコール系重合体を溶解した後、室温まで冷却した。該水溶液に1/2規定の硫酸を添加してpHを3.0に調整した。別に、メタクリル酸アミドプロピルトリメチルアンモニウムクロライド183gを水220gに溶解し、これを先に調製した水溶液に攪拌下添加した後、70℃まで加温し、また、水溶液中に窒素をバブリングしながら30分間系内を窒素置換した。窒素置換後、上記水溶液に過硫酸カリウムの2.5%水溶液176mLを1.5時間かけて逐次的に添加してブロック共重合を開始、進行させた後、系内温度を75℃に1時間維持して重合をさらに進行させ、ついで冷却して、固形分濃度15%のPVA-(b)-p-メタクリル酸アミドプロピルトリメチルアンモニウムクロライドブロック共重合体水溶液を得た。得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH-NMR測定に付した結果、-メタクリル酸アミドプロピルトリメチルアンモニウムクロライド単位の変性量は10モル%であった。
(P-2~P-6、P-8、P-10、P-12~16の合成)
 末端にメルカプト基を有するビニルアルコール系重合体の種類と量、カチオン性基含有単量体の種類と仕込み量、重合開始剤の使用量などの重合条件を表2,3に示すように変化させた以外はP-1と同様の方法によりP-2~P-6、P―8、P-10、P―12~P-16を得た。得られたポリマーの物性を、表2、3に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(P-7の合成:P-6の加水分解)
 P-6の濃度15%水溶液に水酸化ナトリウムを0.08mol%添加して、110度、1時間加熱することで加水分解させて、固形分濃度14%のPVA-(b)-ビニルアミンブロック共重合体水溶液を得た(得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH-NMR測定に付した結果、ビニルアミン単位の変性量は10モル%であった)。また、B型粘度計で測定した4%水溶液粘度は16ミリPa・s(20℃)であった。
(P-9の合成:P-8の四級化)
 P-8の水溶液を、縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、皮膜を作製した。こうして得られた皮膜を、ヨウ化メチルの蒸気中、室温下で10時間処理を行いビニルピリジン部分を四級化することで、PVA-(b)-四級化ビニルピリジンブロック共重合体したフィルムを得た(得られたフィルムを重水に溶解し、400MHzでのH-NMR測定に付した結果、四級化ビニルピリジン単位の変性量は10モル%であった)。また、濃度4%に調整した水溶液をB型粘度計で測定したところ、粘度は16ミリPa・s(20℃)であった。
(P-11の合成)
 攪拌機、温度センサー、滴下漏斗及び還流冷却管を備え付けた6Lセパラブルフラスコに、酢酸ビニル1960g、メタノール820g、及びメタクリル酸アミドプロピルトリメチルアンモニウムクロライドを30質量%含有するメタノール溶液23gを仕込み、攪拌下に系内を窒素置換した後、内温を60℃まで上げた。この系に2,2’-アゾビスイソブチロニトリルを0.4g含有するメタノール20gを添加し、重合反応を開始した。重合開始時点よりメタクリル酸アミドプロピルトリメチルアンモニウムクロライドを30質量%含有するメタノール溶液300gを系内に添加しながら、4時間重合反応を行った後、重合反応を停止した。重合反応を停止した時点における系内の固形分濃度、すなわち、重合反応スラリー全体に対する固形分の含有率は22.3質量%であった。ついで、系内にメタノール蒸気を導入することにより、未反応の酢酸ビニル単量体を追い出し、ビニルエステル共重合体を55質量%含有するメタノール溶液を得た。
 このビニルエステル共重合体を55質量%含有するメタノール溶液に、該共重合体中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が0.025、ビニルエステル共重合体の固形分濃度が30質量%となるように、メタノール、及び水酸化ナトリウムを10質量%含有するメタノール溶液をこの順序で撹拌下に加え、40℃でけん化反応を開始した。
 けん化反応の進行に伴ってゲル化物が生成した直後にこれを反応系から取り出して粉砕し、ついで、ゲル化物が生成してから1時間が経過した時点で、この粉砕物に酢酸メチルを添加することにより中和を行い、膨潤状態のポリ(ビニルアルコール-メタクリル酸アミドプロピルトリメチルアンモニウムクロライド)のカチオン性重合体を得た。この膨潤したカチオン性重合体に対して質量基準で6倍量(浴比6倍)のメタノールを加え、還流下に1時間洗浄し、該重合体をろ取した。該重合体を65℃で16時間乾燥した。得られたポリマーを重水に溶解し、400MHzでのH-NMR測定に付した結果、メタクリル酸アミドプロピルトリメチルアンモニウムクロライド単位の変性量は5モル%であった。また、重合度は1500、けん化度は98.5モル%であった。
(P-17~P-18の合成)
 酢酸ビニル(VAc)、メタノール(MeOH)、イオン基含有単量体の種類と仕込み量、重合開始剤の使用量、イオン基を有する単量体の逐次添加条件などの重合条件、けん化反応の条件を表4に示すように変化させた以外はP-11と同様の方法により、P-17~P-18を得た。得られたポリマーの物性を表4に示す。
Figure JPOXMLDOC01-appb-T000011
実施例1
(モザイク荷電膜の作製)
 アニオン交換樹脂層:P-1に脱イオン水を必要量加えて濃度10%に調整した。この溶液を、縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、厚み100μmの皮膜を作製した。
 カチオン交換樹脂層:P-12に脱イオン水を必要量加えて濃度10%に調整した。この溶液を、縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、厚み100μmの皮膜を作製した。
 得られたカチオン交換樹脂層とアニオン交換樹脂層とを、ポリビニルアルコールPVA124((株)クラレ製)水溶液を接着剤に用いて交互に貼り合わせることにより積層荷電ブロックを作製した。得られたブロックを積層面に対して垂直にラボカッター(MARUTO INSTRUMENT CO.,LTD製)で切断し薄膜を得た。こうして得られた皮膜を、170℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、皮膜を2mol/Lの硫酸ナトリウムの電解質水溶液に24時間浸漬させた。該水溶液にそのpHが1になるように濃硫酸を加えた後、0.05体積%グルタルアルデヒド水溶液に皮膜を浸漬し、25℃で24時間スターラーを用いて撹拌し、架橋処理を行った。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。架橋処理の後、皮膜を脱イオン水に浸漬し、途中数回脱イオン水を交換しながら、皮膜が膨潤平衡に達するまで浸漬させ、厚さ150μmの膜厚を有するモザイク荷電膜を作製した。
(モザイク荷電膜の評価)
 このようにして作製したモザイク荷電膜を、所望の大きさに裁断し、測定試料を作製した。得られた測定試料を用い、上記方法に従って、荷電密度及び水の透過流束の測定を行った。また、得られたモザイク荷電膜を上述したように複合膜とした際の、圧透析試験による塩透過流束の測定を行った。得られた結果を表5に示す。
実施例2~14
 アニオン交換樹脂とカチオン交換樹脂の種類、アニオン交換樹脂(カチオン性ブロック共重合体(P))とカチオン交換樹脂(アニオン性ブロック共重合体(Q))の荷電密度の比(a)/(b)、及び熱処理温度を表5に示す内容に変更した以外は、実施例1と同様にしてモザイク荷電膜を作製し、その膜特性を測定した。得られた測定結果を表5に示す。
比較例1
 アニオン交換樹脂層:200mL三角フラスコに、90mLの脱イオン水を入れ、ポリビニルアルコールPVA117(重合度1700、けん化度98.5mol%:(株)クラレ製)を15g加えてから、95℃のウオーターバスの中で加熱撹拌し溶解させた。その後、ポリジアリルジメチルアンモニウムクロライド(アルドリッチ製:濃度20%、分子量40-50万)を19g混合した後、所望の脱イオン水を加えて固形分濃度10%の水溶液を調製した(PVA117/ポリジアリルジメチルアンモニウムクロライド=80/20固形分重量部比率)。このようにして調製した分散液を、縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、厚み100μmの皮膜を作製した。
 カチオン交換樹脂層:P-15を95℃の熱水中で2時間加熱溶解し、固形分濃度10%の水溶液を調製した。このようにして調製した分散液を、縦270mm×横210mmのアクリル製のキャスト板に流し込み、余分な液、気泡を除去した後、50℃のホットプレート上で24時間乾燥させることにより、厚み100μmの皮膜を作製した。これらをポリビニルアルコールPVA124((株)クラレ製)水溶液を接着剤にもちいて交互に貼り合わせることにより積層荷電ブロックを作製した。
 得られたブロックを積層面と垂直にラボカッター(MARUTO INSTRUMENT CO.,LTD製)で切断し薄膜を得た。こうして得られた皮膜を、170℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、皮膜を2mol/Lの硫酸ナトリウムの電解質水溶液に24時間浸漬させた。該水溶液にそのpHが1になるように濃硫酸を加えた後、0.05体積%グルタルアルデヒド水溶液に皮膜を浸漬し、25℃で24時間スターラーを用いて撹拌し、架橋処理を行った。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。架橋処理の後、皮膜を脱イオン水に浸漬し、途中数回脱イオン水を交換しながら、皮膜が膨潤平衡に達するまで浸漬させ、厚さ150μmの膜厚を有するモザイク荷電膜を作製した。得られたモザイク荷電膜について、実施例1と同様に膜特性を測定した。得られた測定結果を表5に示す。
比較例2
 アニオン交換樹脂とカチオン交換樹脂の種類を表5に示す内容に変更した以外は、実施例1と同様にしてモザイク荷電膜を作製し、その膜特性を測定した。得られた測定結果を表5に示す。
比較例3
 アニオン交換樹脂とカチオン交換樹脂の代わりに無変性のポリビニルアルコールPVA117((株)クラレ製)を用いた以外は、実施例1と同様にして膜を作製し、その膜特性を測定した。得られた測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000012
 表5の結果から、アニオン交換樹脂層としてポリビニルアルコール系のカチオンブロック共重合体を含有し、且つカチオン交換樹脂層としてポリビニルアルコール系のアニオンブロック共重合体を含有することを特徴とするモザイク荷電膜は、水の透過流束が負の値を示し、負の異常浸透を示すこと、及び圧透析による塩の透過流束が大きいことが判る(実施例1~14)。特に、アニオン交換樹脂層及びカチオン交換樹脂層のイオン変性量が0.5mol%以上であると、塩の透過流束がより良好であることがわかる。これより、モザイク荷電膜において、カチオンブロック共重合体中のカチオン性単量体単位の含有量、及びアニオンブロック共重合体中のアニオン性単量体単位の含有量がそれぞれ0.5mol%以上であると、塩の透過流束がより良好であることが分かる(実施例1~9、11~14)。更に、この場合においてカチオン性ブロック共重合体(P)の荷電密度(a)とアニオン性ブロック共重合体(Q)の荷電密度(b)との比率(a)/(b)を0.3~2.5の範囲とすることも、塩の透過流束が良好なモザイク荷電膜を得る上で好ましいことが分かる(実施例1~9、11~14)。また、熱処理温度が100℃以上であると、より塩の透過流束が良好であることがわかる(実施例1~3、5~14)。一方、アニオン交換樹脂層がカチオンポリマーとPVAとのブレンド樹脂からなり、カチオン交換樹脂層がランダム共重合によりアニオン性基を導入したPVA樹脂からなる場合は、塩の透過流束が小さく脱塩性能に劣ることが判る(比較例1)。さらに、カチオン交換樹脂層及びアニオン交換樹脂層が、ランダム共重合によりアニオン性基及びカチオン性基を導入したPVA樹脂からなる場合も、塩の透過流束が小さく脱塩性能に劣ることが判る(比較例2)。また、無変性PVA膜をモザイク荷電膜に変えて試験した場合は、水の透過流束は正の値となり、塩を透過することができなかった(比較例3)。
 1: 塩橋(3M KCl)
 2:Ag-AgCl電極
 3:試料膜(膜面積:7cm
 4:電位計
 5:試料膜(膜面積:3cm
 6:キャピラリ
 7:KCl水溶液
 8:脱イオン水
 9:セル
10:Nボンベ
11:圧力計
12:スターラー
13:試料膜(膜面積:5cm
14:伝導度計

Claims (3)

  1.  ビニルアルコール系重合体ブロック(A)及びカチオン性基を有する重合体ブロック(B)を構成成分とするカチオン性ブロック共重合体(P)と、ビニルアルコール系重合体ブロック(C)及びアニオン性基を有する重合体ブロック(D)を構成成分とするアニオン性ブロック共重合体(Q)とを含有することを特徴とするモザイク荷電膜。
  2.  前記カチオン性ブロック共重合体(P)中のカチオン性基を有する単量体の含有量が0.1モル%以上である請求項1記載のモザイク荷電膜。
  3.  前記アニオン性ブロック共重合体(Q)中のアニオン性基を有する単量体の含有量が0.1モル%以上である請求項1記載のモザイク荷電膜。
PCT/JP2010/056364 2009-04-09 2010-04-08 モザイク荷電膜 WO2010117036A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10761735.9A EP2418013A4 (en) 2009-04-09 2010-04-08 CHARGE MOSAIC MEMBRANE
JP2011508388A JP5413689B2 (ja) 2009-04-09 2010-04-08 モザイク荷電膜
US13/263,260 US20120034481A1 (en) 2009-04-09 2010-04-08 Charge-mosaic membrane
CN201080025729.4A CN102548646B (zh) 2009-04-09 2010-04-08 荷电镶嵌膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-095209 2009-04-09
JP2009095209 2009-04-09

Publications (1)

Publication Number Publication Date
WO2010117036A1 true WO2010117036A1 (ja) 2010-10-14

Family

ID=42936317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056364 WO2010117036A1 (ja) 2009-04-09 2010-04-08 モザイク荷電膜

Country Status (6)

Country Link
US (1) US20120034481A1 (ja)
EP (1) EP2418013A4 (ja)
JP (1) JP5413689B2 (ja)
CN (1) CN102548646B (ja)
TW (1) TW201041915A (ja)
WO (1) WO2010117036A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071285A (ja) * 2010-09-29 2012-04-12 Kuraray Co Ltd ミネラル水の製造方法、ミネラル水製造装置、およびモザイク荷電膜
JP2012071287A (ja) * 2010-09-29 2012-04-12 Kuraray Co Ltd 軟水の製造方法、軟水製造装置およびモザイク荷電膜
EP2590250A1 (en) * 2011-11-03 2013-05-08 Samsung Electronics Co., Ltd. Ion exchange membrane filling composition, method of preparing ion exchange membrane, ion exchange membrane, and redox flow battery
JP2013126658A (ja) * 2011-12-13 2013-06-27 Pall Corp 局所的な非対称性を有する膜
CN106582304A (zh) * 2016-12-30 2017-04-26 浙江工业大学 一种荷电镶嵌膜的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716358B2 (en) * 2009-03-25 2014-05-06 Kuraray Co., Ltd. Anion exchange membrane and method for producing same
CN102458618B (zh) * 2009-04-13 2016-07-13 国立大学法人山口大学 离子交换膜及其制造方法
EP2520357A4 (en) 2009-12-28 2015-07-15 Kuraray Co MULTILAYER MOSAIC LOADING MEMBRANE AND METHOD FOR MANUFACTURING THE SAME
US9315113B2 (en) 2012-12-21 2016-04-19 Ample Inc. Electric vehicle battery systems with exchangeable parallel electric vehicle battery modules
JP7349492B2 (ja) * 2019-03-20 2023-09-22 東ソー・ファインケム株式会社 上限臨界溶液温度を有する新規なポリスチレンベースのポリアンホライト及びその用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187003A (ja) 1983-04-07 1984-10-24 Kuraray Co Ltd 末端にメルカプト基を有するポリビニルアルコ−ル系重合体およびその製法
JPS59189113A (ja) 1983-04-08 1984-10-26 Kuraray Co Ltd ポリビニルアルコ−ル系重合体を一成分とするブロツク共重合体の製法
JPS59203613A (ja) 1983-04-30 1984-11-17 Toyo Soda Mfg Co Ltd 両性イオン交換膜を用いた有機化合物の脱塩方法
JPH08155281A (ja) 1994-11-30 1996-06-18 Dainichiseika Color & Chem Mfg Co Ltd モザイク荷電膜の製造方法及びモザイク荷電膜
JPH11239720A (ja) * 1998-02-25 1999-09-07 Dainichiseika Color & Chem Mfg Co Ltd 荷電モザイク膜、荷電モザイク膜の製造方法、荷電モザイク膜の使用方法及び荷電モザイク膜を備えた装置
JP2006297338A (ja) 2005-04-25 2006-11-02 Takuma Co Ltd モザイク荷電膜及びその製造方法
JP2008188518A (ja) * 2007-02-02 2008-08-21 Yamaguchi Univ イオンバリヤー膜および該イオンバリヤー膜を使用した分離装置
JP2008264704A (ja) * 2007-04-20 2008-11-06 Takuma Co Ltd 両性荷電膜及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL63638A0 (en) * 1980-09-16 1981-11-30 Aligena Ag Semipermeable composite membranes,their manufacture and their use
JP3453067B2 (ja) * 1998-02-25 2003-10-06 大日精化工業株式会社 荷電モザイク膜、荷電モザイク膜の使用方法及び荷電モザイク膜を備えた装置
US7094490B2 (en) * 2002-05-13 2006-08-22 Polyfuel, Inc. Ion conductive block copolymers
CN1326598C (zh) * 2004-12-17 2007-07-18 清华大学 一种利用自组装技术制备双极性膜的方法
CN1305553C (zh) * 2005-06-22 2007-03-21 南京工业大学 自组装技术制备有机无机复合膜的方法
JP4776683B2 (ja) * 2007-01-23 2011-09-21 株式会社クラレ 高分子電解質膜及びその製法、並びに膜−電極接合体及び固体高分子型燃料電池
CN101590377B (zh) * 2009-07-09 2011-09-07 济南大学 用于渗透汽化的聚乙烯醇两性聚电解质膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187003A (ja) 1983-04-07 1984-10-24 Kuraray Co Ltd 末端にメルカプト基を有するポリビニルアルコ−ル系重合体およびその製法
JPS59189113A (ja) 1983-04-08 1984-10-26 Kuraray Co Ltd ポリビニルアルコ−ル系重合体を一成分とするブロツク共重合体の製法
JPS59203613A (ja) 1983-04-30 1984-11-17 Toyo Soda Mfg Co Ltd 両性イオン交換膜を用いた有機化合物の脱塩方法
JPH08155281A (ja) 1994-11-30 1996-06-18 Dainichiseika Color & Chem Mfg Co Ltd モザイク荷電膜の製造方法及びモザイク荷電膜
JPH11239720A (ja) * 1998-02-25 1999-09-07 Dainichiseika Color & Chem Mfg Co Ltd 荷電モザイク膜、荷電モザイク膜の製造方法、荷電モザイク膜の使用方法及び荷電モザイク膜を備えた装置
JP2006297338A (ja) 2005-04-25 2006-11-02 Takuma Co Ltd モザイク荷電膜及びその製造方法
JP2008188518A (ja) * 2007-02-02 2008-08-21 Yamaguchi Univ イオンバリヤー膜および該イオンバリヤー膜を使用した分離装置
JP2008264704A (ja) * 2007-04-20 2008-11-06 Takuma Co Ltd 両性荷電膜及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. MEMBR. SCI., vol. 310, 2008, pages 466
THE PROCEEDINGS OF THE ANNUAL MEETING OF THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 56, no. 1, 2001, pages 33

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071285A (ja) * 2010-09-29 2012-04-12 Kuraray Co Ltd ミネラル水の製造方法、ミネラル水製造装置、およびモザイク荷電膜
JP2012071287A (ja) * 2010-09-29 2012-04-12 Kuraray Co Ltd 軟水の製造方法、軟水製造装置およびモザイク荷電膜
EP2590250A1 (en) * 2011-11-03 2013-05-08 Samsung Electronics Co., Ltd. Ion exchange membrane filling composition, method of preparing ion exchange membrane, ion exchange membrane, and redox flow battery
JP2013095918A (ja) * 2011-11-03 2013-05-20 Samsung Electronics Co Ltd イオン交換膜充電用組成物、イオン交換膜の製造方法、イオン交換膜及びレドックスフロー電池
US9728792B2 (en) 2011-11-03 2017-08-08 Samsung Electronics Co., Ltd. Ion exchange membrane filling composition, method of preparing ion exchange membrane, ion exchange membrane, and redox flow battery
JP2013126658A (ja) * 2011-12-13 2013-06-27 Pall Corp 局所的な非対称性を有する膜
CN106582304A (zh) * 2016-12-30 2017-04-26 浙江工业大学 一种荷电镶嵌膜的制备方法
CN106582304B (zh) * 2016-12-30 2019-09-03 浙江工业大学 一种荷电镶嵌膜的制备方法

Also Published As

Publication number Publication date
EP2418013A1 (en) 2012-02-15
TW201041915A (en) 2010-12-01
US20120034481A1 (en) 2012-02-09
EP2418013A4 (en) 2013-10-23
JP5413689B2 (ja) 2014-02-12
JPWO2010117036A1 (ja) 2012-10-18
CN102548646B (zh) 2015-12-02
CN102548646A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5413689B2 (ja) モザイク荷電膜
JP5531267B2 (ja) イオン交換膜およびその製造方法
JP5715558B2 (ja) 陰イオン交換膜及びその製造方法
CA2814699C (en) Anion exchange membranes and process for making
KR20150054970A (ko) 전극 및 이의 제조 방법, 및 이를 갖는 통액형 콘덴서
JP5413684B2 (ja) 軟水の製造方法、軟水製造装置およびモザイク荷電膜
JP6300374B2 (ja) 陽イオン交換膜及びその製造方法
JP5413682B2 (ja) ミネラル水の製造方法、ミネラル水製造装置、およびモザイク荷電膜
JP5413683B2 (ja) モザイク荷電膜の製造方法
JP2014124560A (ja) イオン交換膜、その製造方法および電気透析装置
JP5458265B2 (ja) 有機化合物水溶液の脱塩方法、有機化合物水溶液の脱塩装置およびモザイク荷電膜
JP2014124561A (ja) イオン交換膜、その製造方法および逆電気透析発電装置
JP2014088514A (ja) 陰イオン交換膜及びその製造方法
JP6018006B2 (ja) 果汁含有アルコール溶液中の電解質の除去方法
JP5633847B2 (ja) モザイク荷電膜およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025729.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761735

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011508388

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13263260

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010761735

Country of ref document: EP