WO2010116848A1 - 熱可塑性樹脂組成物 - Google Patents

熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2010116848A1
WO2010116848A1 PCT/JP2010/054145 JP2010054145W WO2010116848A1 WO 2010116848 A1 WO2010116848 A1 WO 2010116848A1 JP 2010054145 W JP2010054145 W JP 2010054145W WO 2010116848 A1 WO2010116848 A1 WO 2010116848A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
thermoplastic elastomer
copolymer
ethylene
elastomer composition
Prior art date
Application number
PCT/JP2010/054145
Other languages
English (en)
French (fr)
Inventor
裕 保谷
用二 早川
幸治 松永
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US13/255,079 priority Critical patent/US20110319548A1/en
Priority to BRPI1014829A priority patent/BRPI1014829B8/pt
Priority to KR1020117025514A priority patent/KR101354323B1/ko
Priority to EP10761549.4A priority patent/EP2415832B1/en
Priority to CN201080010693.2A priority patent/CN102341453B/zh
Priority to JP2011508296A priority patent/JPWO2010116848A1/ja
Publication of WO2010116848A1 publication Critical patent/WO2010116848A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0838Copolymers of ethene with aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to a thermoplastic resin composition excellent in flexibility and heat resistance. More specifically, the present invention relates to a thermoplastic resin composition containing a propylene copolymer and a styrene block copolymer.
  • TPE Thermoplastic elastomers
  • PET polyolefin
  • PP polyolefin
  • PVC vinyl chloride
  • styrene elastomers are one of the most used TPEs.
  • Styrene-based TPE is generally abbreviated as SBC (styrene block copolymer) and is a general term for block copolymers in which the hard segment as a constrained phase is made of polystyrene.
  • the soft segment is a conjugated diene polymer such as butadiene or its hydrogenated (hydrogenated) product. Since this soft segment and the hard segment have a microphase separation structure at room temperature, the hard segment becomes a physical crosslinking point, Performance as an elastomer (flexibility, rubber elasticity) is exhibited without specific crosslinking.
  • Hydrogenated SBC (HSBC) has better heat resistance and weather resistance than non-hydrogenated SBC because it has no double bond in the molecule.
  • HSBC is widely used as a compound raw material, and a compound material using such HSBC is generally expressed as TPS.
  • TPS various materials are blended (polymer alloy) to make up for the performance that HSBC lacks.
  • crystalline polyolefin usually PP with a high melting point
  • paraffin oil to improve heat resistance
  • the softener plays an important role in controlling the flexibility of TPS, and is usually an essential component for designing a low hardness TPS.
  • elution (bleeding) of such an amorphous and low molecular weight softener becomes a problem.
  • electronic parts there is a concern about contamination of equipment due to softener bleed.
  • Patent Document 1 Patent Document 1
  • Patent Document 5 discloses a composition containing isotactic polypropylene and an ethylene / propylene / ⁇ -olefin copolymer.
  • Patent Document 6 describes a composition containing isotactic polypropylene, an ethylene / propylene / ⁇ -olefin copolymer and a styrene elastomer.
  • JP 2002-348432 A JP 2002-187998 A Patent 3700515 Patent 3757162 International pamphlet 2004-106430 International Publication Pamphlet No. 2006-057361
  • an object of the present invention is to provide a thermoplastic elastomer composition that has an excellent balance between flexibility and heat resistance (creep resistance), has less tack (stickiness), and does not deteriorate in design even when used at high temperatures. Is to provide.
  • the present invention relates to the following (1) to (6).
  • A propylene copolymer satisfying all the following requirements (A1) to (A3), 0 to 70% by weight of a crystalline polyolefin polymer (B), a styrene block copolymer (C ) 5 to 95% by weight of a thermoplastic elastomer composition (X) (where the total content of propylene copolymer (A), crystalline poly
  • Mw / Mn measured by gel permeation chromatography (GPC) (where Mw represents a weight average molecular weight, Mn represents a number average molecular weight, both are values in terms of polystyrene). It is in the range of 2 to 3.0.
  • thermoplastic elastomer composition (X) according to (1), wherein the propylene copolymer (A) further satisfies all the following requirements (A4) to (A6).
  • A4 propylene containing 51 to 90 mol% of propylene-derived structural units, 7 to 24 mol% of ethylene-derived structural units, and 3 to 25 mol% of structural units derived from ⁇ -olefins having 4 to 20 carbon atoms;
  • a copolymer of ethylene and an ⁇ -olefin having 4 to 20 carbon atoms here, the total of the structural unit derived from propylene, the structural unit derived from ethylene and the structural unit derived from an ⁇ olefin having 4 to 20 carbon atoms is 100 Mol%).
  • M OE represents the molar fraction of the total of the chain of propylene and ethylene and the chain of ⁇ -olefin and ethylene having 4 to 20 carbon atoms to the total dyad
  • M 2 O represents propylene and carbon atoms of 4 to Represents the sum of the mole fractions of the 20 ⁇ -olefins
  • M E represents the mole fraction of ethylene.
  • thermoplastic elastomer composition it has good flexibility, rubber elasticity and heat resistance, has little tack at room temperature, and does not deteriorate gloss even after heat treatment at high temperature, that is, has good design properties.
  • An excellent thermoplastic elastomer composition is obtained.
  • thermoplastic elastomer composition (X) is also greatly improved.
  • 1-butene is preferably used.
  • the isotactic triad fraction (mm) calculated from 13 C-NMR measurement is 85 to 99.9%, preferably 85 to 99.8%, more preferably 87 to 99.8%.
  • the B value is smaller than the above range, it means that the monomers are densely packed in the copolymer, that is, the copolymer has a molecular primary structure close to that of the block copolymer.
  • Such a copolymer may also be inferior in compatibility with the crystalline polyolefin polymer (B).
  • the crystalline polyolefin polymer (B) may be used alone or in combination of two or more.
  • the organometallic compound catalyst component is preferably an organoaluminum compound, and more specifically, examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, alkylaluminum dihalide, and the like.
  • the organoaluminum compound can be appropriately selected according to the type of titanium catalyst component used.
  • styrene block copolymer (C) Although there is no restriction
  • the styrene component include styrene, ⁇ -methyl styrene, p-methyl styrene, vinyl xylene, vinyl naphthalene, and a mixture thereof.
  • the diene component include butadiene, isoprene, pentadiene, and a mixture thereof. Is mentioned.
  • the styrene block copolymer (C) may be used alone or in combination of two or more.
  • styrene block copolymer (C) a hydrogenated diene polymer comprising a polybutadiene block segment and a styrene compound (including styrene; the same applies hereinafter) / butadiene copolymer block segment; a polyisoprene block segment and styrene Hydrogenated diene polymer consisting of block compound / isoprene copolymer block segment; block copolymer consisting of polymer block mainly composed of styrene compound and polymer block mainly composed of conjugated diene compound; Hydrogenated product of random copolymer of compound and conjugated diene compound; Hydrogenated product of block copolymer consisting of polymer block mainly composed of styrene compound and polymer block mainly composed of conjugated diene compound Is mentioned.
  • the softener (D) is preferably used. Such a softener (D) is useful for finely adjusting the hardness and fluidity of the thermoplastic elastomer composition (X).
  • the softening agent (D) include oils such as paraffinic process oil and silicone oil, and paraffinic process oil is preferable.
  • a softener (D) may be used independently or may be used in combination of 2 or more types.
  • the oil has a kinematic viscosity at 40 ° C. of 20 to 800 cst (centistokes), preferably 40 to 600 cst, a fluidity of 0 to ⁇ 40 ° C., preferably 0 to ⁇ 30 ° C., and a flash point (COC).
  • Method is 200 to 400 ° C., preferably 250 to 350 ° C.
  • thermoplastic elastomer composition (X) is a weather resistance stabilizer, heat resistance stabilizer, antistatic agent, anti-slip agent, anti-blocking agent, anti-fogging agent, nucleating agent, as long as the object of the present invention is not impaired.
  • Additives such as lubricants, pigments, dyes, plasticizers, anti-aging agents, hydrochloric acid absorbents, antioxidants and copper damage inhibitors may be included.
  • the crystalline polyolefin polymer (B) exhibits heat resistance
  • the propylene copolymer (A) exhibits flexibility, so that the thermoplastic elastomer composition ( The flexibility / heat resistance balance of x2) becomes good.
  • thermoplastic elastomer composition (x2) better performance can be obtained by considering the compatibility of the propylene copolymer (A) and the styrene block copolymer (C). Specifically, when a hydride of a block copolymer of polystyrene and polyisoprene is used as the styrene block copolymer (C), the balance between flexibility and heat resistance (creep resistance) is improved and tack (stickiness) is achieved. ) Is further reduced, and even when used at high temperatures, the design properties are further unlikely to deteriorate.
  • the thermoplastic elastomer composition (X) preferably has a Shore A hardness (room temperature, ASTM D2240) of 40 to 85, preferably 40 to 80, more preferably 40 to 70.
  • Shore A hardness room temperature, ASTM D2240
  • the thermoplastic elastomer composition (X) can be applied to various uses requiring flexibility.
  • the Shore A hardness of the thermoplastic elastomer composition (X) is determined by the Shore A hardness measurement method described in (1-1) Evaluation of basic physical properties of the thermoplastic elastomer composition (X) in Examples described later. This is the value obtained.
  • thermoplastic elastomer composition (X) the value of Shore A hardness measured for the injection-molded product is (1-1) Thermoplastic elastomer composition ( It is almost the same as the value obtained by the Shore A hardness measurement method described in X).
  • the method for obtaining the thermoplastic elastomer composition (X) used in the present invention is not particularly limited.
  • the above components are blended in an arbitrary order, and a known kneader (uniaxial or biaxial extruder, Banbury kneader, roll , Calendar, etc.).
  • a known kneader uniaxial or biaxial extruder, Banbury kneader, roll , Calendar, etc.
  • the crystalline polyolefin polymer (B) is used, the propylene copolymer (A) and the crystalline polyolefin polymer (B) are polymerized simultaneously or sequentially to obtain a composition, and then the composition and the styrene block copolymer are used.
  • compositions may be mixed and manufactured, and the propylene copolymer (A) and crystalline polyolefin polymer (B) obtained independently are mixed with the styrene block copolymer (C). Further, after one of the propylene copolymer (A) and the crystalline polyolefin polymer (B) is produced first, and the one produced earlier in the other production process is added to obtain a composition. The composition may be mixed with the styrene block copolymer (C).
  • diphenylmethylene (3-tert-butyl-5-ethylcyclopentadienyl) (2,7-di-tert-butylful) prepared by the method described in JP-A-2007-186664 was used.
  • Olenyl) zirconium dichloride / methylaluminoxane (Tosoh Finechem, 0.3 mmol in terms of aluminum) was used.
  • PEBR-1 propylene / ethylene / 1-butene copolymer
  • Mw / Mn Molecular weight distribution (Mw / Mn)] Using GPC (gel permeation chromatography), measurement was performed at a column temperature of 140 ° C. with an orthodichlorobenzene solvent (mobile phase) (polystyrene conversion, Mw: weight average molecular weight, Mn: number average molecular weight). Specifically, the molecular weight distribution (Mw / Mn) was measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters. The separation columns were two TSKgel GNH6-HT and two TSKgel GNH6-HTL, and the column size was 7.5 mm in diameter and 300 mm in length.
  • Tm (2) An exothermic / endothermic curve was obtained with a differential scanning calorimeter (DSC), and the temperature at the maximum melting peak position at the time of temperature rise was defined as Tm.
  • DSC differential scanning calorimeter
  • Tm the temperature at the maximum melting peak position at the time of temperature rise was defined as Tm.
  • the sample is packed in an aluminum pan, (i) heated to 200 ° C. at 100 ° C./min, held at 200 ° C. for 5 minutes, (ii) lowered to ⁇ 50 ° C. at 20 ° C./min, Next, (iii) the temperature was raised to 200 ° C. at 20 ° C./min, and the obtained endothermic curve was analyzed and determined. The melting point obtained at this time was defined as Tm (2).
  • a measuring device manufactured by PerkinElmer was used.
  • MFR Melt flow rate
  • the physical property values of the styrene block copolymer were measured by the following methods.
  • the Shore A hardness was the same as that for the propylene copolymer (A).
  • MFR melt flow rate
  • the melt flow rates (MFR) of G-1657 and G-1730 were measured at 230 ° C. under a 5.0 kg load.
  • Softener (D) A softener made of paraffinic process oil (trade name PW-100, manufactured by Idemitsu Kosan Co., Ltd.) was used.
  • thermoplastic elastomer composition (X) prepared by the method described in the examples or comparative examples, using a hydraulic hot press molding machine set to 200 ° C., after preheating for 5 minutes, pressurize for 2 minutes and immediately 20 It was cooled for 4 minutes in a cooling bath set at 0 ° C. to produce a 2 mm thick press sheet.
  • Residual strain (%) 100 ⁇ (thickness before test ⁇ thickness after test) / (thickness before test ⁇ thickness at compression) It means that it has rubber elasticity, so that this residual strain value is low.
  • the CS value at 70 ° C. is an index of heat resistance of the thermoplastic elastomer composition (X).
  • thermoplastic elastomer composition (X) prepared by the method described in the examples or comparative examples, using a hydraulic hot press molding machine set to 200 ° C., after preheating for 5 minutes, pressurize for 2 minutes and immediately 20 It was cooled for 4 minutes in a cooling bath set at 0 ° C. to produce a 2 mm thick press sheet.
  • thermoplastic elastomer composition (X) prepared by the method described in the examples or comparative examples, using a hydraulic hot press molding machine set at 200 ° C., after preheating for 5 minutes, pressurize for 2 minutes and immediately 20
  • a press sheet having a thickness of 0.5 mm was prepared by cooling for 4 minutes in a cooling bath set to ° C.
  • a 100 ⁇ m-thick release PET film manufactured by Toray, Lumirror was used as a release film during press molding.
  • the press sheet from which the release PET film was peeled was cut into 12.5 mm width and 120 mm length, and this was cut into a 100 ⁇ m thick PET film (Toray, Lumirror, 12.5 mm width ⁇ 120 mm length)) to obtain a laminate.
  • This laminate was subjected to a load of 2.5 kgf per sample (laminate) and treated at 23 ° C. for 24 hours.
  • the peel strength (T peel method, tensile speed 200 mm / min, N / m) of the laminate after the load treatment was measured, and the tackiness (stickiness) at room temperature of the thermoplastic elastomer composition (X) was evaluated.
  • thermoplastic elastomer composition (X) kneaded by the method described in Examples or Comparative Examples was kneaded and then evaluated for peelability from the roll when taken out from the mixing roll (stainless steel).
  • Good peelability
  • Somewhat difficult peelability
  • Difficult to peel It means that the higher the melt tension, the easier it is to peel from a metal roll, etc. .
  • Example 5 to 8 A propylene composition (M1) and a hydrogenated styrene / ethylene / propylene block copolymer (SEPS-1) are kneaded (200 ° C., 3 min, 40 rpm) with a lab plast mill (manufactured by Toyo Seiki), and a thermoplastic elastomer composition is obtained.
  • Product (X) was obtained.
  • the above components were used in the amounts shown in Table 2.
  • Table 2 shows the results of the evaluation performed by this method.
  • Example 9 and 10 A propylene composition (M1) and a hydrogenated styrene / ethylene / propylene block copolymer (SEBS-2) are kneaded (200 ° C., 3 min, 40 rpm) with a lab plast mill (manufactured by Toyo Seiki), and a thermoplastic elastomer composition is obtained.
  • Product (X) was obtained.
  • the above components were used in the amounts shown in Table 2.
  • Table 2 shows the results of the evaluation performed by this method.
  • Example 11 Isotactic polypropylene (PP-1) was further added to the propylene composition (M1) and hydrogenated styrene / ethylene / propylene block copolymer (SEBS-1), and this was added to Labo Plast Mill (Toyo Seiki). And kneading (200 ° C., 3 min, 40 rpm) to obtain a thermoplastic elastomer composition (X).
  • the above components were used in the amounts shown in Table 2.
  • Table 2 shows the results of the evaluation performed by this method.
  • Example 12 Isotactic polypropylene (PP-1) was further added to the propylene composition (M1) and hydrogenated styrene / ethylene / propylene block copolymer (SEPS-1), and this was added to Labo Plast Mill (manufactured by Toyo Seiki). And kneading (200 ° C., 3 min, 40 rpm) to obtain a thermoplastic elastomer composition (X). The above components were used in the amounts shown in Table 2. Table 2 shows the results of the evaluation performed by this method.
  • a propylene composition (M1) consisting of propylene / ethylene / 1-butene copolymer (PEBR-1) and isotactic polypropylene (PP-1) is kneaded in a Laboplast mill (manufactured by Toyo Seiki) (200 ° C., 3 min, 40 rpm) to obtain a composition.
  • the above components were used in the amounts shown in Table 3.
  • Table 3 shows the evaluation results obtained by the above method.
  • thermoplastic elastomer composition (X) of this example is composed of the propylene / ethylene / 1-butene copolymer (PEBR-1 or PEBR-2) and isotactic polypropylene (PP-1) shown in Comparative Examples 1 and 2. It was confirmed that it exhibited excellent heat resistance (CS at 70 ° C.) equivalent to that of the propylene composition (M). On the other hand, it was confirmed that the metal peelability at the time of melting was significantly improved as compared with Comparative Examples 1 and 2.
  • thermoplastic elastomer composition (X) of this example had a lower tack at room temperature than that using the propylene composition (M2) shown in Comparative Examples 3 and 4.
  • thermoplastic elastomer composition (X) of this example is clearly superior to the various hydrogenated styrene / ethylene / propylene block copolymers shown in Comparative Examples 5 to 9 (CS at 70 ° C.). ) was confirmed.
  • thermoplastic elastomer composition (X) of this example has a very good balance between flexibility and heat resistance.
  • thermoplastic elastomer composition (X) (Gloss retention performance after temperature cycle test)
  • thermoplastic elastomer composition (X) designed by adding styrene block copolymer (C) to propylene composition (M) comprising propylene copolymer (A) and crystalline polyolefin polymer (B)
  • the gloss retention performance after the temperature cycle test was compared with a propylene composition consisting only of the propylene copolymer (A) and the crystalline polyolefin polymer (B).
  • the evaluation items are described below.
  • thermoplastic elastomer composition (X) prepared by the method described in Examples or Comparative Examples, a square plate (10 cm square) having a thickness of 2 mmt was formed by injection molding.
  • thermoplastic elastomer composition (X) prepared by the method described in Examples or Comparative Examples, a square plate (10 cm square) having a thickness of 2 mmt was formed by injection molding. The injection molding conditions were the same as those described for Shore A hardness.
  • the obtained square plate was annealed in a gear oven (80 ° C.) for 3 days, then removed from the oven and cooled to room temperature. The gross retention of this specimen was evaluated.
  • Example 21 to 27 Hydrogenated styrene / ethylene / butylene block copolymer (SEBS-1), (SEBS-2), (SEBS-3), (SEBS-4), hydrogenated styrene based on 80% by weight of propylene composition (M1) -20% by weight of any of ethylene / propylene block copolymers (SEPS-1), (SEPS-2) and (SEPS-3) was blended to obtain a thermoplastic elastomer composition (X). In addition, it knead
  • thermoplastic elastomer composition (X) of this example had excellent heat resistance stability.
  • thermoplastic elastomer composition (X) 1 A propylene composition (M) comprising a propylene copolymer (A) and a crystalline polyolefin polymer (B), and further an isotactic polypropylene (PP-2) for injection molding corresponding to the crystalline polyolefin polymer (B) And the physical properties of an injection-molded article composed of a thermoplastic elastomer composition (X) designed using a styrene block copolymer (C) and a composition composed only of a propylene copolymer (A) and a crystalline polyolefin polymer (B) Product, a composition comprising a styrene block copolymer (C) and a crystalline polyolefin polymer (B).
  • the evaluation items are described below.
  • thermoplastic elastomer composition (X) prepared by the method described in Examples or Comparative Examples, a square plate (10 cm square) having a thickness of 2 mmt was formed by injection molding.
  • thermoplastic elastomer composition (X) prepared by the method described in Examples or Comparative Examples, a square plate (10 cm square) having a thickness of 2 mmt was formed by injection molding. The injection molding conditions were the same as those described for Shore D hardness.
  • thermoplastic elastomer composition (X) prepared by the method described in Examples or Comparative Examples, ASTM-D638 (No. 4) dumbbell-type specimen was molded by injection molding.
  • thermoplastic elastomer composition (X) prepared by the method described in Examples or Comparative Examples.
  • the injection molding conditions were the same as those described for the mechanical properties.
  • thermomechanical analyzer TMA
  • a pressure of 2 kgf / cm 2 is applied to a flat indenter of 1.8 mm ⁇ at a heating rate of 5 ° C./min, and the needle entry temperature is determined from the TMA curve. (° C.) was determined.
  • thermoplastic elastomer composition (X) was obtained by blending either of the copolymers (SEPS-1) and (SEPS-2). In addition, it knead
  • Comparative Example 31 A composition was prepared by blending propylene composition (M1) and isotactic polypropylene (PP-2). In addition, it knead
  • Comparative Example 32 A composition was prepared by blending propylene composition (M2) and isotactic polypropylene (PP-2). In addition, it knead
  • composition was prepared by blending a hydrogenated styrene / ethylene / butylene block copolymer (SEBS-1) and isotactic polypropylene (PP-2). In addition, it knead
  • thermoplastic elastomer composition (X) The molded bodies of Examples 31 to 35 using the thermoplastic elastomer composition (X) have a good flexibility / heat resistance balance without being deteriorated in gloss even when subjected to heat treatment at a high temperature. Also, no bending whitening occurs.
  • Comparative Examples 33 to 36 show the physical properties of molded articles composed of two components of hydrogenated styrene / ethylene / butylene block copolymer and isotactic polypropylene (PP-2). Although these have good heat stability, when the amount of hydrogenated styrene / ethylene / butylene block copolymer is large (60% by weight or more), the softening temperature is low, and the fluidity is poor and injection molding is performed. The initial gloss value decreased because the body surface was rough. It was confirmed that when the amount of PP-2 added was increased, the flexibility was greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

[課題]柔軟性と耐熱性(耐クリープ性)とのバランスに優れるとともに、タック(べたつき)が少なく、かつ高温で使用しても意匠性の低下しない熱可塑性エラストマー組成物を提供すること。 [解決手段]本発明の熱可塑性エラストマー組成物(X)は、下記の要件(A1)~(A3)を全て満たすプロピレン共重合体(A)と、必要に応じて結晶性ポリオレフィン重合体(B)と、スチレンブロックコポリマー(C)とを含む。(A1)ショアーA硬度が50~90の範囲にある。(A2)融解ピークTmが30~95℃の範囲に観測され、この融解ピークに対応する吸熱エンタルピーΔHが1.0~20J/gの範囲にある。(A3)分子量分布Mw/Mnが1.2~3.0の範囲にある。

Description

熱可塑性樹脂組成物
 本発明は、柔軟性および耐熱性に優れた熱可塑性樹脂組成物に関する。より詳しくは、本発明は、プロピレン共重合体とスチレンブロックコポリマーとを含む熱可塑性樹脂組成物に関する。
 ポリオレフィン(PEやPP)などのプラスチックと同様の溶融成形加工性と、架橋ゴムに近い柔軟性・ゴム弾性とを兼ね備えた熱可塑性エラストマー(TPE)は、自動車、家電、食品、医療、さらには日用品等の幅広い分野に適用されている。TPEにはオレフィン系エラストマー、スチレン系エラストマー、ポリエステル系、ポリウレタン系、ポリアミド系、塩ビ(PVC)系など様々な種類があるが、中でもスチレン系エラストマーは最も使用量の多いTPEの一つである。
 スチレン系TPEは一般にSBC(スチレンブロックコポリマー)の略称で呼ばれ、拘束相としてのハードセグメントがポリスチレンからなるブロック共重合体の総称である。ソフトセグメントはブタジエン等の共役ジエンポリマーまたはその水素添加(水添)物であり、このソフトセグメントとハードセグメントとが常温でミクロ相分離構造をとっているためハードセグメントが物理的架橋点となり、化学的な架橋無しにエラストマーとしての性能(柔軟性、ゴム弾性)が発現する。水添されたSBC(HSBC)は分子内に二重結合を持たないため非水添SBCよりも優れた耐熱性、耐候性を示す。HSBCはコンパウンド原料として幅広く使用され、このようなHSBCを用いたコンパウンド材料は総称として一般にTPSと表される。
 TPSでは、HSBCに不足した性能を補うために各種材料が配合(ポリマーアロイ化)され、例えば耐熱性を向上させるための結晶性ポリオレフィン(通常は融点の高いPP)やパラフィンオイルなどの軟化剤が挙げられる。中でも軟化剤は、TPSの柔軟性を制御する役割を担うために重要な役割を果たし、低硬度のTPSを設計するためには通常必須の成分となっている。ところが、一部用途、例えば食品や医療・育児分野においては、このような非晶かつ低分子量である軟化剤の溶出(ブリード)が問題となるケースがある。また電子部品においても、軟化剤のブリードによる機器の汚染が懸念されている。これらの分野でも、柔軟性やゴム弾性が必要とされる用途は多数在り、軟化剤の溶出(ブリード)の懸念のない柔軟TPSの設計技術が求められている(特許文献1など)。
 このような課題に対しては、TPSに配合する際の結晶性ポリオレフィン(主にはPP)の柔軟化が鍵となる。これに関連する技術も複数提案されており、例えば結晶化度の低いPPを用いる技術(特許文献2など)、一般にR-TPOとよばれる高ゴム含有PPを用いる技術(特許文献3など)、アモルファスポリアルファオレフィン(APAO)を用いる技術などが上げられる(特許文献4など)。しかし、これらの技術では耐熱性(特に高温での応力に耐える耐クリープ性能)を十分に維持することは困難であった。
 一方、柔軟性、耐熱性、透明性に優れると共に、環境適性、衛生性を有したポリオレフィンからなる軟質材料として、プロピレンを主成分としたプロピレン系エラストマーに関する技術が知られている(特許文献5など)。特許文献5には、具体的には、アイソタクティックポリプロピレンおよびエチレン・プロピレン・αオレフィン共重合体を含む組成物が記載されている。
 また、特許文献6には、アイソタクティックポリプロピレン、エチレン・プロピレン・αオレフィン共重合体およびスチレン系エラストマーを含む組成物が記載されている。
特開2002-348432号公報 特開2002-187998号公報 特許3700515 特許3757162 国際公開パンフレット第2004-106430号 国際公開パンフレット第2006-057361号
 これらの技術により、上記HSBCを用いたTPSよりも優れた耐熱性(耐クリープ性能)が発現するエラストマーが得られる。しかしながら、一方で、柔軟性を高くすると材料のタック(べたつき)が強く、また高温で長期間熱処理するとタック(べたつき)がより昂進するという課題がある。いいかえると、特許文献5、6に記載された組成物では、耐熱性はある程度改善されたものの、べたつきが問題となっている。
 そこで、本発明は、上記のような従来技術に伴う問題を解決することにある。すなわち、本発明の目的は、柔軟性と耐熱性(耐クリープ性)とのバランスに優れるとともに、タック(べたつき)が少なく、かつ高温で使用しても意匠性の低下しない熱可塑性エラストマー組成物を提供することである。
 本発明は、下記(1)~(6)に関する。
 (1)下記の要件(A1)~(A3)を全て満たすプロピレン共重合体(A)95~5重量%と、結晶性ポリオレフィン重合体(B)0~70重量%と、スチレンブロックコポリマー(C)5~95重量%とを含む熱可塑性エラストマー組成物(X)(ここでプロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)の含有量の合計を100重量%とする。)。
 (A1)ショアーA硬度(室温、ASTMD2240)が50~90の範囲にある。
 (A2)示差走査熱量計(DSC)で測定される融解ピークTmが30~95℃の範囲に観測され、この融解ピークに対応する吸熱エンタルピーΔHが1.0~20J/gの範囲にある。
 (A3)ゲルパーミエーションクロマトグラフィー(GPC)によって測定された分子量分布Mw/Mn(ここでMwは重量平均分子量を、Mnは数平均分子量を表し、いずれもポリスチレン換算の値である。)が1.2~3.0の範囲にある。
 (2)上記プロピレン共重合体(A)がさらに下記(A4)~(A6)の要件を全て満たすことを特徴とする上記(1)に記載の熱可塑性エラストマー組成物(X)。
 (A4)プロピレン由来の構成単位を51~90モル%、エチレン由来の構成単位を7~24モル%、および炭素数4~20のα-オレフィン由来の構成単位を3~25モル%含むプロピレンとエチレンと炭素数4~20のα-オレフィンとの共重合体である(ここでプロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のαオレフィン由来の構成単位との合計を100モル%とする)。
 (A5)13C-NMR測定より算出したアイソタクティックトライアッド分率(mm)が85~99.9%である。
 (A6)下記式(1)で定義されるB値が0.8~1.3である。
Figure JPOXMLDOC01-appb-M000002
 (式中、MOEは、プロピレンおよびエチレンの連鎖と炭素数4~20のα-オレフィンおよびエチレンの連鎖との合計の、全ダイアッドに対するモル分率を表し、MOはプロピレンおよび炭素数4~20のα-オレフィンのモル分率の合計を表し、MEはエチレンのモル分率を表す。)
 (3)上記結晶性ポリオレフィン重合体(B)が下記(B1)~(B2)の要件を全て満たす結晶性プロピレン重合体であることを特徴とする上記(1)または(2)に記載の熱可塑性エラストマー組成物(X)。
 (B1)示差走査熱量計(DSC)によって観測される融点Tm(B)が100~175℃である。
 (B2)アイソタクティックペンタッド分率(mmmm)が80~99.8%である。
 (4)ショアーA硬度(室温、ASTMD2240)が40~85の範囲にある上記(1)~(3)のいずれかに記載の熱可塑性エラストマー組成物(X)。
 (5)上記プロピレン共重合体(A)および上記結晶性ポリオレフィン重合体(B)の含有量の総和が50重量%以上であることを特徴とする上記(1)~(4)のいずれかに記載の熱可塑性エラストマー組成物(X)。
 (6)軟化剤(D)をさらに含むことを特徴とする上記(1)~(5)のいずれかに記載の熱可塑性エラストマー組成物(X)。
 本発明によれば、良好な柔軟性、ゴム弾性および耐熱性を有するとともに、室温でのタック(べたつき)が少なく、かつ高温で熱処理された後でも光沢(グロス)が低下しない、すなわち意匠性に優れた熱可塑性エラストマー組成物が得られる。
 また特定のスチレンブロックコポリマーを選択することで、柔軟性が向上しても室温でのタック(べたつき)が少なく、さらに良好な成形加工性を有する熱可塑性エラストマーが得られることも見出された。
 本発明の熱可塑性エラストマー組成物はコンパウンド原料としても有用である。例えば、本発明の熱可塑性エラストマー組成物を用いれば、オイルなどの軟化剤配合量を抑制しても、優れた柔軟性および耐熱性を有するエラストマー製品が得られる。
 このようなエラストマー製品は、食品容器用材料、医療用材料、乳児・幼児用品、シール材、電気電子部品、粘接着剤、日用品、表皮材、自動車内装材など幅広い用途へ適用できる。
 以下、本発明を詳細に説明する。
 本発明に係る熱可塑性エラストマー組成物(X)は、プロピレン共重合体(A)と、必要に応じて結晶性ポリオレフィン重合体(B)と、スチレンブロックコポリマー(C)とを含む。なお、プロピレン共重合体(A)のように、(A1)ショアーA硬度(室温、ASTMD2240)が50~90の範囲にある共重合体は、軟質プロピレン共重合体ともいわれる。また、このような軟質プロピレン共重合体と、必要に応じて結晶性ポリオレフィン重合体(B)と、スチレンブロックコポリマー(C)とを含む組成物は、軟質熱可塑性エラストマー組成物ともいわれる。
 <プロピレン共重合体(A)>
 本発明に用いられるプロピレン共重合体(A)は、下記の要件(A1)~(A3)を全て満たす。上記プロピレン共重合体(A)は単独で用いても二種以上組み合わせて用いてもよい。
 (A1)ショアーA硬度(室温、ASTMD2240)が50~90、好ましくは55~85、より好ましくは60~80の範囲にある。
 (A2)DSCで測定される融解ピークTmが30~95℃、好ましくは35~80℃、より好ましくは40~70℃の範囲に観測され、この融解ピークに対応する吸熱エンタルピーΔHが1.0~20J/g、好ましくは1.5~15J/g、より好ましくは3~15J/gの範囲にある。
 (A3)ゲルパーミエーションクロマトグラフィー(GPC)によって測定された分子量分布Mw/Mn(ここでMwは重量平均分子量を、Mnは数平均分子量を表し、いずれもポリスチレン換算の値である。)が1.2~3.0、好ましくは1.2~3.5、より好ましくは1.6~2.6の範囲にある。
 要件(A1)~(A3)を全て満たすプロピレン共重合体(A)を用いると、柔軟性と耐熱性(耐クリープ性)とのバランスに優れるとともに、タック(べたつき)が少なく、かつ高温で使用しても意匠性の低下しない熱可塑性エラストマー組成物(X)が得られる。
 プロピレン共重合体(A)は、さらに下記の要件(A4)~(A6)のいずれかを満たすこと、あるいは下記の要件(A4)~(A6)を全て満たすことが好ましい。
 (A4)プロピレン由来の構成単位を51~90モル%、エチレン由来の構成単位を7~24モル%、および炭素数4~20のα-オレフィン由来の構成単位を3~25モル%含むプロピレンとエチレンと炭素数4~20のα-オレフィンとの共重合体である(ここでプロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のαオレフィン由来の構成単位との合計を100モル%とする)。
 また、プロピレン共重合体(A)は、プロピレン由来の構成単位を好ましくは60~89モル%、より好ましくは62~88モル%、エチレン由来の構成単位を好ましくは8~20モル%、より好ましくは8~18モル%、炭素数4~20のα-オレフィン由来の構成単位を好ましくは3~20モル%、より好ましくは4~20モル%含むことが望ましい(ここでプロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のαオレフィン由来の構成単位との合計を100モル%とする)。要件(A4)を満たすプロピレン共重合体(A)を用いると、後述の結晶性ポリオレフィン重合体(B)とプロピレン共重合体(A)とを分子レベルで相容させることができ、結晶性ポリオレフィン重合体(B)とプロピレン共重合体(A)とからなる、耐熱性・機械強度に優れたプロピレン組成物を得ることができる。
 炭素数4~20のα-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられる。炭素数4~20のα-オレフィンは単独で用いても二種以上組み合わせて用いてもよい。これらのうちで、プロピレン共重合体(A)と後述する結晶性ポリオレフィン重合体(B)との相容性が飛躍的に向上できるため、また、熱可塑性エラストマー組成物(X)の物性も飛躍的できるため、1-ブテンが好適に用いられる。
 (A5)13C-NMR測定より算出したアイソタクティックトライアッド分率(mm)が85~99.9%、好ましくは85~99.8%、より好ましくは87~99.8%である。
 アイソタクティックトライアッド分率(mm)が上記範囲にあるプロピレン共重合体(A)は、エチレンや1-ブテンなどのコモノマーが多く共重合されても完全に結晶性が失われない。このため、優れた機械強度、高い破断点伸び、良好なゴム弾性が発現する。また、プロピレン共重合体(A)の一部が結晶性ポリオレフィン重合体(B)の結晶部に取り込まれることによって、熱可塑性エラストマー組成物(X)の物性、特に耐熱性が飛躍的に向上する。
 (A6)下記式(1)で定義されるB値が0.8~1.3、好ましくは0.9~1.2、より好ましくは0.9~1.1である。
Figure JPOXMLDOC01-appb-M000003
 (式中、MOEは、プロピレンおよびエチレンの連鎖と炭素数4~20のα-オレフィンおよびエチレンの連鎖との合計の、全ダイアッドに対するモル分率を表し、MOはプロピレンおよび炭素数4~20のα-オレフィンのモル分率の合計を表し、MEはエチレンのモル分率を表す。)
 B値が上記範囲にあるプロピレン共重合体(A)は、結晶性ポリオレフィン重合体(B)との相容性に優れる。B値が上記範囲より大きい場合は、共重合体において各モノマー(プロピレン、エチレン、炭素数4~20のα-オレフィン)が交互に結合していること、すなわち該共重合体が交互共重合体に近い分子一次構造を有することを意味する。このような共重合体は結晶性ポリオレフィン重合体(B)との相容性に劣る場合がある。またB値が上記範囲より小さい場合は、共重合体において各モノマーが密集していること、すなわち該共重合体がブロック共重合体に近い分子一次構造を有することを意味する。このような共重合体も結晶性ポリオレフィン重合体(B)との相容性に劣る場合がある。
 プロピレン共重合体(A)は、さらに下記の要件(A7)~(A9)のいずれかを満たすことが好ましい。
 (A7)全プロピレン挿入中のプロピレンモノマーの2,1-結合量が1%未満、好ましくは0~0.5%、より好ましくは0~0.1%である。ここで2,1-結合量は13C-NMR測定において解析される。
 2,1-結合量(インバージョン)がこのような範囲にある場合は、プロピレン共重合体(A)が位置規則性に優れていることを意味する。このような結晶性を阻害する2,1-結合が少ないプロピレン共重合体(A)は本発明に好適に用いられる。なお、全プロピレン挿入中のプロピレンモノマーの2,1-結合量は特開平7-145212号公報に記載された方法に従って算出されるが、15.0~17.5ppmの範囲にピークが観察されないものが特に好ましい。
 (A8)DSC曲線の転移点として観察されるガラス転移温度(Tg)が-10℃~-50℃、好ましくは-15℃~-40℃の範囲にある。要件(A8)を満たすプロピレン共重合体(A)を用いると、本発明の熱可塑性エラストマー組成物(X)に実用上十分な低温特性が発現する。
 (A9)メルトフローレート(MFR)(ASTMD1238、230℃、2.16kg荷重下)については特に制限はないが、例えば0.1~500g/10min、好ましくは0.5~50g/10min、より好ましくは1~40g/10minであることが望ましい。要件(A8)を満たすプロピレン共重合体(A)を用いると、本発明の熱可塑性エラストマー組成物(X)の流動性(射出成形性)と機械強度とのバランスを両立させることが可能になる。
 要件(A1)~(A3)を全て満たすプロピレン共重合体(A)としては、より具体的には、後述する実施例で用いるようなプロピレン・エチレン・1-ブテン共重合体が好適に用いられるが、共重合体中のプロピレンモノマーの立体規則性を落としたアタクチックホモポリプロピレン(またはアタクチックプロピレン・α-オレフィン共重合体)、ブロックプロピレン・α-オレフィン共重合体、シンジオタクチックプロピレン・α-オレフィン共重合体などを用いてもよい。
 プロピレン共重合体(A)は通常、メタロセン触媒の存在下、プロピレン、エチレンおよび炭素数4~20のα-オレフィンを共重合させることにより得られる。メタロセン触媒としては、例えば国際公開2004-087775号パンフレットの触媒、特に実施例e1~e5の触媒を制限なく用いることができる。
 なお、プロピレン共重合体(A)の要件(A1)、(A2)については、例えば、重合の際に採用するメタロセン触媒の種類やモノマー(C3、C2、C4)のフィード比によって調整できる。要件(A3)、(A5)~(A7)については、例えば、重合の際に用いるメタロセン触媒の種類によって調整できる。要件(A4)については、例えば、重合の際に採用するモノマー(C3、C2、C4)のフィード比によって調整できる。また、要件(A8)については、例えば、重合の際に採用するモノマー(C3、C2、C4)のフィード比や、要件(A5)~(A7)に記載された特性を変化させることにより調整できる。
 <結晶性ポリオレフィン重合体(B)>
 本発明に用いられる結晶性ポリオレフィン重合体(B)としては、具体的には、ホモポリプロピレン、プロピレン・炭素数2~20のα-オレフィン(ただしプロピレンを除く)ランダム共重合体、プロピレンブロック共重合体などの結晶性アイソタクティックポリプロピレン(b)が挙げられる。上記結晶性ポリオレフィン重合体(B)は単独で用いても二種以上組み合わせて用いてもよい。
 結晶性ポリオレフィン重合体(B)は、下記(B1)~(B2)の要件を全て満たすことが好ましい。
 (B1)示差走査熱量計(DSC)によって観測される融点Tm(B)が100~175℃、好ましくは110~170℃、より好ましくは125~170℃である。
 (B2)アイソタクティックペンタッド分率(mmmm)が80~99.8%、好ましくは93%~99.7%、より好ましくは95%~99.6%である。
 アイソタクティックペンタッド分率(mmmm)は、13C-NMRを使用して測定される。このアイソタクティックペンタッド分率(mmmm)は、分子鎖中のペンタッド単位でのアイソタクチック連鎖の存在割合を示しており、プロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。具体的には、13C-NMRスペクトルで観測されるメチル炭素領域の全吸収ピーク中に占めるmmmmピークの分率として算出される値である。なお、このアイソタクティックペンタッド分率(mmmm分率)は、例えば特開2007-186664公報に記載の方法で求めることができる。
 結晶性ポリオレフィン重合体(B)が要件(B1)~(B2)を全て満たしていると、プロピレン共重合体(A)と良好に相容し、また熱可塑性エラストマー組成物(X)の機械物性、耐熱性の向上に寄与する。
 要件(B1)~(B2)を満たす結晶性ポリオレフィン重合体(B)としては、要件(B1)~(B2)を満たす結晶性アイソタクティックポリプロピレン(b)が好適に用いられる。結晶性アイソタクティックポリプロピレン(b)としては、より具体的には、要件(B1)~(B2)を満たす、ホモポリプロピレン、プロピレン・炭素数2~20のα-オレフィン(ただしプロピレンを除く)ランダム共重合体、およびプロピレンブロック共重合体が挙げられ、該ホモポリプロピレンあるいは該プロピレン-炭素数2~20のα-オレフィンランダム共重合体がより好適に用いられる。得られる組成物の耐熱性および剛性の点からはホモポリプロピレンが特に好ましく、得られる組成物の柔軟性および透明性の点からは、プロピレン-炭素数2~20のα-オレフィンランダム共重合体が特に好ましい。ここで、プロピレン以外の炭素数が2~20のα-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられる。上記炭素数2~20のα-オレフィンは単独で用いても二種以上組み合わせて用いてもよい。プロピレン-炭素数2~20のα-オレフィンランダム共重合体としては、エチレンとの共重合体、炭素数が4~10のα-オレフィンとの共重合体またはエチレンと炭素数が4~10のα-オレフィンとの共重合体がより好ましい。
 なお通常、プロピレン由来の構成単位は、プロピレン由来の構成単位と、プロピレン以外の炭素数2~20のα-オレフィン由来の構成単位との合計100モル%に対して、90モル%以上である。
 結晶性ポリオレフィン重合体(B)は、さらに下記の要件(B3)~(B5)のいずれかを満たすこと、あるいは下記の要件(B3)~(B5)を全て満たすことが好ましい。
 (B3)メルトフローレート(MFR)(ASTMD1238、230℃、2.16kg荷重下)については特に制限はないが、例えば0.1~500g/10min、好ましくは0.5~100g/10min、より好ましくは1~70g/10minであることが望ましい。要件(B3)を満たす結晶性ポリオレフィン重合体(B)を用いると、前記プロピレン共重合体(A)との相容性が良好となり、本発明の熱可塑性エラストマー組成物(X)の耐熱性、機械強度が良好となる。
 (B4)要件(B1)で規定した融点Tm(B)に対応する融解熱量ΔH(B)が50~130J/g、好ましくは55~120J/gである。結晶性ポリオレフィン重合体(B)の融解熱量ΔH(B)がこの範囲にあると、成形性、耐熱性および透明性に優れるとともに、べた付きが少ない熱可塑性エラストマー組成物(X)が得られる。
 (B5)引張り弾性率は500~3000MPa、好ましくは600~2500MPa、より好ましくは650~2200MPaである。引張り弾性率は、JIS K7113-2に準拠し、2mm厚みのプレスシートを23℃で測定した値である。
 本発明で用いられる結晶性ポリオレフィン重合体(B)は種々の方法により製造することができるが、例えば立体規則性触媒を用いて製造することができる。
 具体的には、固体状チタン触媒成分と有機金属化合物触媒成分とさらに必要に応じて電子供与体とから形成される触媒を用いて製造することができる。
 固体状チタン触媒成分としては、より具体的には、三塩化チタンまたは三塩化チタン組成物が、比表面積が100m2/g以上である担体に担持された固体状チタン触媒成分、あるいはマグネシウム、ハロゲン、電子供与体(好ましくは芳香族カルボン酸エステルまたはアルキル基含有エーテル)およびチタンより構成される必須成分が、比表面積100m2/g以上である担体に担持された固体状チタン触媒成分が挙げられる。
 有機金属化合物触媒成分としては、有機アルミニウム化合物が好ましく、有機アルミニウム化合物としては、より具体的には、トリアルキルアルミニウム、ジアルキルアルミニウムハライド、アルキルアルミニウムセスキハライド、アルキルアルミニウムジハライドなどが挙げられる。なお有機アルミニウム化合物は、使用するチタン触媒成分の種類に合わせて適宜選択することができる。
 電子供与体としては、窒素原子、リン原子、硫黄原子、ケイ素原子あるいはホウ素原子などを有する有機化合物を使用することができ、好ましくは上記原子を有するエステル化合物およびエーテル化合物などが挙げられる。
 このような触媒は、さらに共粉砕等の手法により活性化されてもよく、また上記オレフィンが前重合されていてもよい。
 また、結晶性ポリオレフィン重合体(B)は公知のメタロセン触媒で製造することもできる。
 <スチレンブロックコポリマー(C)>
 本発明に用いられるスチレンブロックコポリマー(C)としては、特に制限はないが、スチレン・ジエン系熱可塑性エラストマーが好適に用いられる。その中でもブロック共重合体エラストマー、ランダム共重合体エラストマーが好ましい。ここでスチレン系成分としては、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルキシレン、ビニルナフタレンおよびこれらの混合物などが挙げられ、ジエン系成分としては、ブタジエン、イソプレン、ペンタジエンおよびこれらの混合物などが挙げられる。スチレンブロックコポリマー(C)は、単独で用いても二種以上組み合わせて用いてもよい。
 スチレンブロックコポリマー(C)としては、ポリブタジエンブロックセグメントと、スチレン系化合物(スチレンを含む。以下において同じ)・ブタジエン共重合体ブロックセグメントとからなる水添ジエン系重合体;ポリイソプレンブロックセグメントと、スチレン系化合物・イソプレン共重合体ブロックセグメントとからなる水添ジエン系重合体;スチレン系化合物を主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックとからなるブロック共重合体;スチレン系化合物と共役ジエン化合物とのランダム共重合体の水素添加物;およびスチレン系化合物を主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックとからなるブロック共重合体の水素添加物などが挙げられる。
 これらのうちで、ポリスチレンとポリブタジエンとのブロック共重合体やポリスチレンとポリイソプレンとのブロック共重合体およびそれらの水素化物がより好ましく、具体的には、SEBSやSEPSとして製造および市販されている水素化物が好適に使用される。また、後述する軟化剤(D)を用いる場合に、該軟化剤(D)との親和性に優れるため、高分子量のSEBSも好適に使用される。
 なお、スチレンブロックコポリマー(C)中の上記スチレン系成分の含有量は、特に制限されないが、柔軟性およびゴム弾性の点から5~40重量%の範囲であることが好ましい。
 <その他の成分>
 熱可塑性エラストマー組成物(X)は、プロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)とともに、必要に応じてその他の成分を含んでいてもよい。
 その他の成分としては、軟化剤(D)が好適に用いられる。このような軟化剤(D)は、熱可塑性エラストマー組成物(X)の硬度や流動性を微調整するのに有用である。
 軟化剤(D)としては、パラフィン系プロセスオイル、シリコンオイルなどのオイルが挙げられるが、パラフィン系プロセスオイルが好ましい。軟化剤(D)は、単独で用いても二種以上組み合わせて用いてもよい。
 上記オイルは、40℃での動粘度が20~800cst(センチストークス)、好ましくは40~600cst、また、流動度が0~-40℃、好ましくは0~-30℃、さらに、引火点(COC法)が200~400℃、好ましくは250~350℃であることが望ましい。
 また、熱可塑性エラストマー組成物(X)は、本発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、核剤、滑剤、顔料、染料、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤、銅害防止剤などの添加剤を含んでいてもよい。
 <熱可塑性エラストマー組成物(X)>
 本発明に係る熱可塑性エラストマー組成物(X)は、プロピレン共重合体(A)95~5重量%と、結晶性ポリオレフィン重合体(B)0~70重量%と、スチレンブロックコポリマー(C)5~95重量%とを含む(ここでプロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)の含有量の合計を100重量%とする。)。いいかえると、熱可塑性エラストマー組成物(X)は、プロピレン共重合体(A)95~5重量%と、スチレンブロックコポリマー(C)5~95重量%とを含む組成物(x1)(ここでプロピレン共重合体(A)およびスチレンブロックコポリマー(C)の含有量の合計を100重量%とする。)であっても、プロピレン共重合体(A)95重量%未満5重量%以上と、結晶性ポリオレフィン重合体(B)0重量%を超え70重量%以下と、スチレンブロックコポリマー(C)5重量%以上95重量%未満とを含む組成物(x2)であってもよい。上記成分の含有量が上記範囲にあると、柔軟性と耐熱性(耐クリープ性)とのバランスが向上するとともに、タック(べたつき)が少なく、かつ高温で使用しても意匠性が低下し難い。
 上記熱可塑性エラストマー組成物(x2)は、好ましくはプロピレン共重合体(A)4~94重量%と、結晶性ポリオレフィン重合体(B)1~50重量%と、スチレンブロックコポリマー(C)5~95重量%とを含むことが望ましい。より好ましい範囲としては、プロピレン共重合体(A)4~90重量%と、結晶性ポリオレフィン重合体(B)5~50重量%と、スチレンブロックコポリマー(C)5~91重量%とを含む形態が望ましい。上記成分の含有量が上記範囲にあると、結晶性ポリオレフィン重合体(B)が耐熱性を発現し、またプロピレン共重合体(A)が柔軟性を発現することで、熱可塑性エラストマー組成物(x2)の柔軟性/耐熱性バランスが良好となる。
 また、上記熱可塑性エラストマー組成物(x2)においては、プロピレン共重合体(A)とスチレンブロックコポリマー(C)との相容性を考慮することでより良好な性能を得ることが可能になる。具体的には、スチレンブロックコポリマー(C)としてポリスチレンとポリイソプレンとのブロック共重合体の水素化物を用いると、柔軟性と耐熱性(耐クリープ性)とのバランスが向上するとともに、タック(べたつき)がさらに少なく、かつ高温で使用しても意匠性がさらに低下し難くなる。
 また、上記熱可塑性エラストマー組成物(x2)において、プロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)の含有量の合計を100重量%としたときに、プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)の含有量の総和が50重量%以上、好ましくは50~85重量%であることが望ましい。プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)の含有量の総和が上記範囲にあると、柔軟性と耐熱性(耐クリープ性)とのバランスが向上するとともに、タック(べたつき)がさらに少なく、かつ高温で使用しても意匠性がさらに低下し難くなる。この場合、スチレンブロックコポリマー(C)としてポリスチレンとポリイソプレンとのブロック共重合体の水素化物の他、ポリスチレンとポリブタジエンとのブロック共重合体の水素化物(特に好ましくは、該水素化物であってビニル結合(1,2結合)が10~60%のもの)を用いると、上記効果がより顕著となる。ビニル結合(1,2結合)がこのような範囲にあることで、プロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)の相容性が最適となり、熱可塑性エラストマー組成物(X)の柔軟性、耐熱性を高いレベルでバランスできる。
 さらに、熱可塑性エラストマー組成物(X)が軟化剤(D)を含むときは、プロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)の含有量の合計100重量部に対して、軟化剤(D)を1~100重量部、好ましくは1~50重量部の含有量で用いることが望ましい。軟化剤(D)の含有量が上記範囲にあると、軟化剤(D)のブリードアウト(溶出)が起こりにくくなる。この場合、スチレンブロックコポリマー(C)として高分子量のポリスチレンとポリブタジエンとのブロック共重合体の水素化物を用いると、軟化剤(D)のブリードアウト(溶出)をより抑制できる。
 なお、熱可塑性エラストマー組成物(X)が上述した添加剤(耐候性安定剤など)を含むときは、プロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)の含有量の合計100重量部に対して、上述した添加剤を合計で0.01~20重量部の含有量で用いることが好ましい。
 熱可塑性エラストマー組成物(X)は、ショアーA硬度(室温、ASTMD2240)が40~85、好ましくは40~80、より好ましくは40~70であることが好ましい。ショアーA硬度が上記範囲にあると、熱可塑性エラストマー組成物(X)を柔軟性が必要な様々な用途へ適用できる。ここで、熱可塑性エラストマー組成物(X)のショアーA硬度は、後述する実施例の(1-1)熱可塑性エラストマー組成物(X)の基本物性評価にて記載したショアーA硬度の測定方法によって得られる値である。なお、(1-2)熱可塑性エラストマー組成物(X)の耐熱安定性にて記載したように、射出成形体について測定したショアーA硬度の値は、(1-1)熱可塑性エラストマー組成物(X)の基本物性評価に記載したショアーA硬度の測定方法によって得られる値とほとんど変わらない。
 本発明に用いる熱可塑性エラストマー組成物(X)を得る方法は特に制限されず、例えば、上記成分を任意の順で配合し、公知の混練機(一軸ないしは2軸押出機、バンバリー混練機、ロール、カレンダーなど)を用いて得ることができる。結晶性ポリオレフィン重合体(B)を用いる場合は、プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)を同時または逐次に重合し組成物を得た後、該組成物とスチレンブロックコポリマー(C)などとを混合して製造してもよく、独立に得たプロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)と、スチレンブロックコポリマー(C)などとを混合して製造してもよく、さらにはプロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)の一方を先に製造し、他方の製造工程で先に製造したものを投入し組成物を得た後、該組成物とスチレンブロックコポリマー(C)などとを混合して製造してもよい。
 本発明に係る熱可塑性エラストマー組成物(X)からは、公知の成形方法により、種々のエラストマー製品(成形体)が得られる。上記エラストマー製品は、食品容器用材料、医療用材料、乳児・幼児用品、シール材、電気電子部品、粘接着剤、日用品、表皮材、自動車内装材などに幅広く適用できる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 <熱可塑性エラストマー組成物(X)の原料>
 〔プロピレン共重合体(A)〕
 本実施例に用いた2種類のプロピレン共重合体(A)(PEBR-1、PEBR-2)の製造例を以下に示す。本発明で用いたプロピレン共重合体(A)(PEBR-1、PEBR-2)は以下の製造例で得られるものと同等の物である。
 重合用触媒/助触媒として、特開2007-186664号公報に記載の方法で調製したジフェニルメチレン(3-tert-ブチル-5-エチルシクロペンタジエニル)(2,7-ジ-tert-ブチルフルオレニル)ジルコニウムジクロリド/メチルアルミノキサン(東ソー・ファインケム社製、アルミニウム換算で0.3mmol)を用いた。連続重合設備を用い、上記重合用触媒/助触媒下、ヘキサン溶液中で、原料となるエチレン、プロピレンおよび1-ブテンとを重合して、プロピレン・エチレン・1-ブテン共重合体(PEBR-1、PEBR-2)を製造した。
 これらPEBR-1およびPBER-2の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 なお、表1の物性値は以下の方法で測定した。
 [ショアーA硬度]
 重合体について、190℃に設定した油圧式熱プレス成形機を用いて、5分余熱した後2分間加圧し、すぐに20℃に設定した冷却槽で4分間冷却して3mm厚みのプレスシートを作製した。これを23℃±2℃の環境下で72時間保管した後、A型測定器を用い、押針接触後直ちに目盛りを読み取った(ASTM D-2240に準拠)。
 なお、プレス成形の際には離型フィルムとして、100μm厚みのPETフィルム(東レ製、ルミラー)を使用した。
 [コモノマー含量]
 13C-NMRスペクトルの解析により求めた。
 [分子量分布(Mw/Mn)]
 GPC(ゲルパーミエーションクロマトグラフィー)を用い、オルトジクロロベンゼン溶媒(移動相)にて、カラム温度140℃で測定した(ポリスチレン換算、Mw:重量平均分子量、Mn:数平均分子量)。具体的には分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC- 2000型を用い、以下のようにして測定した。分離カラムは、TSKgel GNH6-HTを2本、およびTSKgel GNH6-HTLを2本であり、カラムサイズはいずれも直径7.5 mm、長さ300 mmであった。カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(武田薬品)0.025重量%を用いて、1.0 ml/分で移動させ、試料濃度は15 mg/10 mlとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw <1000、およびMw >4×106については東ソー社製を用いて、1000 ≦ Mw ≦4×106についてはプレッシャーケミカル社製を用いた。
 [立体規則性(mm)]
 国際公開第2004-087775号パンフレットの21頁7行目~26頁6行目に記載された方法に従って、13C-NMRスペクトルの解析により求めた。
 [B値]
 特開2007-186664号公報に記載された方法に従って、13C-NMRスペクトルの解析により求めた。
 [融点Tm(1)、融解エンタルピーΔH(1)]
 上記ショアーA硬度と同一の条件で3mm厚みのプレスシートを作成した。これを試験前に23℃±2℃で72時間保管した後、-40℃まで冷却してから昇温速度10℃/minで測定したときにDSC曲線を作成した。このときに得られた融点をTm(1)、融解エンタルピーをΔH(1)とした。
 [メルトフローレート(MFR)]
 ASTMD1238に準拠し、230℃、2.16kg荷重下で測定した。
 〔結晶性ポリオレフィン重合体(B)〕
 アイソタクティックポリプロピレン(PP-1)
Tm(2)=160℃、MFR(230℃)=3.0g/10min、mmmm=97.9%、エチレン含量=0.9重量%
 アイソタクティックポリプロピレン(PP-2)
Tm(2)=147℃、MFR(230℃)=23.0g/10min、mmmm=97.7%、エチレン含量=3.2重量%
 アイソタクティックポリプロピレン(PP-3)
Tm(2)=163℃、MFR(230℃)=16.0g/10min、mmmm=98.3%、プロピレン単独重合体
 上記アイソタクティックポリプロピレン(PP-1、PP-2、PP-3)の物性値は、以下の方法で測定した。
 [融点Tm(2)]
 示差走査熱量計(DSC)により発熱・吸熱曲線を求め、昇温時の最大融解ピーク位置の温度をTmとした。測定は、試料をアルミパンに詰め、(i)100℃/分で200℃まで昇温して、200℃で5分間保持したのち、(ii)20℃/分で-50℃まで降温し、次いで(iii)20℃/分で200℃まで昇温し、得られた吸熱曲線を解析して求めた。このときに得られた融点をTm(2)とした。
 なおパーキンエルマー社製の測定装置を用いた。
 [メルトフローレート(MFR)]
 プロピレン共重合体(A)のMFRと同一方法を採用した。
 [立体規則性(mmmm)およびコモノマー(エチレン)含量]
 13C-NMRスペクトルの解析により求めた。
 〔プロピレン組成物(M)〕
 本実施例では、事前にプロピレン共重合体(A)と結晶性ポリオレフィン重合体(B)とからなるプロピレン組成物(M)を作製し、最終的な組成物の製造に用いた。具体的には、プロピレン共重合体(A)と結晶性ポリオレフィン重合体(B)とを以下の割合で溶融混練したプロピレン組成物(M)(ペレット)を作製した。
 プロピレン組成物(M1):PBER-1/PP-1=90/10重量%
 プロピレン組成物(M2):PBER-2/PP-1=85/15重量%
 〔スチレンブロックコポリマー(C)〕
 下記の市販の飽和型スチレンブロックコポリマーを用いた。
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-1)
 旭化成社製,タフテックH-1221(スチレン含量=13重量%、MFR=4.5g/10min、ショアーA硬度=36、ビニル結合量=約78%)を使用した。
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-2)
 旭化成社製,タフテックH-1062(スチレン含量=18重量%、MFR=4.5g/10min、ショアーA硬度=68、ビニル結合量=約40%)を使用した。
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-3)
 旭化成社製,タフテックH-1041(スチレン含量=30重量%、MFR=5g/10min、ショアーA硬度=82、ビニル結合量=約40%)を使用した。
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-4)
 クレイトン社製、G-1657(スチレン含量=13重量%、MFR=22g/10min、ショアーA硬度=53、ビニル結合量=約20%)を使用した。
 水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-1)
 クラレ製,セプトン2063(スチレン含量=13重量%、MFR=7g/10min、ショアーA硬度=37)を使用した。
 水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-2)
 クラレ製,セプトン2004(スチレン含量=18重量%、MFR=5g/10min、ショアーA硬度=69)を使用した。
 水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-3)
 クレイトン社製、G-1730(スチレン含量=20重量%、MFR=5g/10min、ショアーA硬度=65)を使用した。
 高分子量スチレン・エチレン・ブチレンランダム共重合体(HMSEBS-1)
 クラレ製,セプトン8004(スチレン含量=31重量%、MFR=0.1g/10min未満、ショアーA硬度=81)を使用した。
 上記スチレンブロックコポリマーの物性値は、以下の方法で測定した。
 ショアーA硬度はプロピレン共重合体(A)と同一方法を採用した。
 メルトフローレート(MFR)については、G-1657およびG-1730以外はプロピレン共重合体(A)と同一方法を採用した。G-1657およびG-1730のメルトフローレート(MFR)は、230℃、5.0kg荷重下で測定した。
 〔軟化剤(D)〕
 パラフィン系プロセスオイルからなる軟化剤((株)出光興産製 商品名PW-100)を用いた。
 (1)熱可塑性エラストマー組成物(X)の物性
 (1-1)熱可塑性エラストマー組成物(X)の基本物性評価
 プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)からなるプロピレン組成物(M)に、スチレンブロックコポリマー(C)を加えて設計した熱可塑性エラストマー組成物(X)の基本物性について、プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)のみからなるプロピレン組成物(M)、さらには様々な硬度のスチレンブロックコポリマー(C)、スチレンブロックコポリマー(C)および結晶性ポリオレフィン重合体(B)からなる組成物と比較した。
 評価項目について以下で述べる。
 [柔軟性(ショアーA硬度)]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、200℃に設定した油圧式熱プレス成形機を用いて、5分余熱した後2分間加圧し、すぐに20℃に設定した冷却槽で4分間冷却して3mm厚みのプレスシートを作製した。これを23℃±2℃の環境下で72時間保管した後、A型測定器を用い、押針接触後直ちに目盛りを読み取った(ASTM D-2240に準拠)。
 なお、プレス成形の際には離型フィルムとして、100μm厚みの離形PETフィルム(東レ製、ルミラー)を使用した。
 [ゴム弾性(圧縮永久歪 CS)]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、200℃に設定した油圧式熱プレス成形機を用いて、5分余熱した後2分間加圧し、すぐに20℃に設定した冷却槽で4分間冷却して2mm厚みのプレスシートを作製した。
 なお、プレス成形の際には離型フィルムとして、100μm厚みの離形PETフィルム(東レ製、ルミラー)を使用した。
 これを23℃±2℃の環境下で72時間保管した。次いで、これを6枚重ねて25%圧縮し、所定の温度(23℃、または70℃)で24時間保持した後解放し、試験後厚みを測定した。この結果より、下式に従って、24時間保持後の残留歪(圧縮永久歪)を算出した。
 残留歪(%)=100×(試験前厚み-試験後厚み)/(試験前厚み-圧縮時の厚み)
 この残留歪値が低いほどゴム弾性を有することを意味する。また70℃でのCS値は、熱可塑性エラストマー組成物(X)の耐熱性の指標となる。
 [機械物性]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、200℃に設定した油圧式熱プレス成形機を用いて、5分余熱した後2分間加圧し、すぐに20℃に設定した冷却槽で4分間冷却して2mm厚みのプレスシートを作製した。
 これを23℃±2℃の環境下で72時間保管した後、JIS K7113-2に準拠して破断点強度(TS)、破断点伸び(チャック間、EL)およびヤング率(YM)を測定した(測定温度23℃、引張り速度=200mm/min、最大歪=800%)。また、歪=800%で破断しなかったものは、このときの応力をTSとした。
 なお、プレス成形の際には離型フィルムとして、100μm厚みの離形PETフィルム(東レ製、ルミラー)を使用した。
 [室温でのタック(べたつき)性]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、200℃に設定した油圧式熱プレス成形機を用いて、5分余熱した後2分間加圧し、すぐに20℃に設定した冷却槽で4分間冷却して0.5mm厚みのプレスシートを作製した。プレス成形の際には離型フィルムとして、100μm厚みの離形PETフィルム(東レ製、ルミラー)を使用した。
 23℃±2℃の環境下で72時間保管した後、離形PETフィルムを剥離させたプレスシートを12.5mm幅、120mm長さに切り出し、これを100μm厚みのPETフィルム(東レ製、ルミラー、12.5mm幅×120mm長さに切り出したもの)と重ね合わせて、積層体を得た。この積層体に、1サンプル(積層体)あたり2.5kgfの荷重をかけ、23℃で24時間処理した。
 この荷重処理後の積層体の剥離強度(Tピール法、引っ張り速度200mm/min、N/m)を測定し、熱可塑性エラストマー組成物(X)の室温でのタック性(べたつき)を評価した。
 [成形加工性(金属からの易剥離性)]
 実施例または比較に記載の方法で混練した熱可塑性エラストマー組成物(X)について、混練した後、ミキシングロール(ステンレス)から取り出す際のロールからの剥離性を評価した。
 ○:剥離性良好、 △: 剥離性やや困難、 ×:剥離困難
 溶融張力が高いほど金属ロールなどから剥離しやすく、公知のミキサー(バンバリーミキサーなど)での生産工程において好適であることを意味する。
 [実施例1~4]
 プロピレン・エチレン・1-ブテン共重合体(PEBR-1)およびアイソタクティックポリプロピレン(PP-1)からなるプロピレン組成物(M1)と、水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-1)とをラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、熱可塑性エラストマー組成物(X)を得た。なお、上記成分は表2に示す量で用いた。これについて上述の方法で行った評価結果を表2に示す。
 [実施例5~8]
 プロピレン組成物(M1)と水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-1)とをラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、熱可塑性エラストマー組成物(X)を得た。なお、上記成分は表2に示す量で用いた。これについて上述の方法で行った評価結果を表2に示す。
 [実施例9、10]
 プロピレン組成物(M1)と水添スチレン・エチレン・プロピレンブロック共重合体(SEBS-2)とをラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、熱可塑性エラストマー組成物(X)を得た。なお、上記成分は表2に示す量で用いた。これについて上述の方法で行った評価結果を表2に示す。
 [実施例11]
 プロピレン組成物(M1)および水添スチレン・エチレン・プロピレンブロック共重合体(SEBS-1)にさらにアイソタクティックポリプロピレン(PP-1)を追加添加し、これをラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、熱可塑性エラストマー組成物(X)を得た。なお、上記成分は表2に示す量で用いた。これについて上述の方法で行った評価結果を表2に示す。
 [実施例12]
 プロピレン組成物(M1)および水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-1)にさらにアイソタクティックポリプロピレン(PP-1)を追加添加し、これをラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、熱可塑性エラストマー組成物(X)を得た。なお、上記成分は表2に示す量で用いた。これについて上述の方法で行った評価結果を表2に示す。
 [比較例1]
 プロピレン・エチレン・1-ブテン共重合体(PEBR-1)およびアイソタクティックポリプロピレン(PP-1)からなるプロピレン組成物(M1)単体をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表3に示す量で用いた。これについて上述の方法で行った評価結果を表3に示す。
 [比較例2]
 プロピレン・エチレン・1-ブテン共重合体(PEBR-2)およびアイソタクティックポリプロピレン(PP-1)からなるプロピレン組成物(M2)単体をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表3に示す量で用いた。これについて上述の方法で行った評価結果を表3に示す。
 [比較例3、4]
 プロピレン組成物(M1)の代わりにプロピレン組成物(M2)を用いた以外は実施例1、5と同様の方法で組成物を得た。なお、上記成分は表3に示す量で用いた。これについて上述の方法で行った評価結果を表3に示す。
 [比較例5~9]
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-2)、水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-3)、水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-4)、水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-2)、水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-3)それぞれを単独でラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)した。これについて上述の方法で行った評価結果を表4に示す。
 [比較例10、11]
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-1)およびアイソタクティックポリプロピレン(PP-1)をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表5に示す量で用いた。これについて上述の方法で行った評価結果を表5に示す。
 [比較例12、13]
 水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-1)およびアイソタクティックポリプロピレン(PP-1)をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表5に示す量で用いた。これについて上述の方法で行った評価結果を表5に示す。
 [比較例14]
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-2)およびアイソタクティックポリプロピレン(PP-1)をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表5に示す量で用いた。これについて上述の方法で行った評価結果を表5に示す。
 [比較例15]
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-4)およびアイソタクティックポリプロピレン(PP-1)をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表5に示す量で用いた。これについて上述の方法で行った評価結果を表5に示す。
 [比較例16]
 水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-2)およびアイソタクティックポリプロピレン(PP-1)をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表5に示す量で用いた。これについて上述の方法で行った評価結果を表5に示す。
 [比較例17]
 水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-3)およびアイソタクティックポリプロピレン(PP-1)をラボプラストミル(東洋精機製)にて混練(200℃、3min、40rpm)し、組成物を得た。なお、上記成分は表5に示す量で用いた。これについて上述の方法で行った評価結果を表5に示す。
 <結果>
 本実施例の熱可塑性エラストマー組成物(X)は、比較例1、2で示したプロピレン・エチレン・1-ブテン共重合体(PEBR-1またはPEBR-2)およびアイソタクティックポリプロピレン(PP-1)からなるプロピレン組成物(M)と同等の優れた耐熱性(70℃でのCS)を示すことを確認した。一方、溶融時の金属剥離性については比較例1、2よりも大幅に向上することを確認した。
 また本実施例の熱可塑性エラストマー組成物(X)は、比較例3、4で示したプロピレン組成物(M2)を用いたものよりも室温でのタックが低減されていることを確認した。
 さらに本実施例の熱可塑性エラストマー組成物(X)は、比較例5~9で示した各種水添スチレン・エチレン・プロピレンブロック共重合体単体よりも明らかに優れた耐熱性(70℃でのCS)を示すことを確認した。
 これら水添スチレン・エチレン・プロピレンブロック共重合体にアイソタクティックポリプロピレン(PP-1)を添加しても、耐熱性(70℃でのCS)は十分に改善されず、PP-1の添加量が多くなることで急激に柔軟性が低下する傾向にある(比較例10~17)。本実施例の熱可塑性エラストマー組成物(X)は、柔軟性と耐熱性とのバランスが非常に良好であると言える。
 なお本結果から、SEPS-1を用いた熱可塑性エラストマー組成物(X)が特に良好な性能バランスを有していること、またプロピレン・エチレン・1-ブテン共重合体(PEBR-1)とアイソタクティックポリプロピレン(PP-1)の量比が50重量%を超える熱可塑性エラストマー組成物(X)において耐熱性がより良好になることが確認された。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 (1-2)熱可塑性エラストマー組成物(X)の耐熱安定性(温度サイクル試験後のグロス保持性能)
 プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)からなるプロピレン組成物(M)に、スチレンブロックコポリマー(C)を加えて設計した熱可塑性エラストマー組成物(X)の耐熱安定性(温度サイクル試験後のグロス保持性能)について、プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)のみからなるプロピレン組成物と比較した。
 評価項目について以下で述べる。
[柔軟性(ショアーA硬度)]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2mmt厚みの角板(10cm角)を成形した。
 <射出成形条件>
設定温度:H3/H2/H1/NH=180/200/230/230℃
金型温度:30℃
 これを23℃±2℃の環境下で72時間保管した後、A型測定器を用い、押針接触後直ちに目盛りを読み取った(ASTM D-2240に準拠)。
 [温度サイクル試験1]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2mmt厚みの角板(10cm角)を成形した。射出成形条件は、上記ショアーA硬度に記した条件と同一であった。
 得られた角板をギアオーブン(80℃)で3日間アニールした後、オーブンから取り出し、室温まで冷却した。このスペシメンのグロス保持率を評価した。なお、グロス値については、JISK-7105に準拠し、60°で測定して得られた値である。
 グロス保持率(%)=100×(アニール後のグロス値)/(初期グロス値)
 [実施例21~27]
 プロピレン組成物(M1)80重量%に対し、水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-1)、(SEBS-2)、(SEBS-3)、(SEBS-4)、水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-1)、(SEPS-2)、(SEPS-3)のいずれかを20重量%配合し、熱可塑性エラストマー組成物(X)を得た。なお、実施例1と同様の条件にて混練し、熱可塑性エラストマー組成物(X)を得た。熱可塑性エラストマー組成物(X)について、上述の方法で行った評価結果を表6に示す。
 [比較例21]
 プロピレン組成物(M1)単体を比較例1と同様の条件にて混練し、組成物を得た。これについて上述の方法で行った評価結果を表7に示す。
 [比較例22]
 プロピレン組成物(M2)単体を比較例2と同様の条件にて混練し、組成物を得た。これについて上述の方法で行った評価結果を表7に示す。
 [比較例23~29]
 プロピレン組成物(M2)80重量%に対し、水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-1)、(SEBS-2)、(SEBS-3)、(SEBS-4)、水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-1)、(SEPS-2)、(SEPS-3)のいずれかを20重量%配合し、組成物を得た。なお、実施例1と同様の条件にて混練し、組成物を得た。これについて上述の方法で行った評価結果を表8に示す。
 <結果>
 実施例21~27が示すように、プロピレン・エチレン・1-ブテン共重合体(PEBR-1)およびアイソタクティックポリプロピレン(PP-1)に水添スチレン・エチレン・プロピレンブロック共重合体を添加した熱可塑性エラストマー組成物(X)は、高温で熱処理を行っても表面の光沢が低下しないことが確認された。
 これに対しプロピレン・エチレン・1-ブテン共重合体(PEBR-1またはPEBR-2)およびアイソタクティックポリプロピレン(PP-1)からなるプロピレン組成物(M)単独から得られた組成物(比較例21、22)は、高温で熱処理を行うと表面の光沢が大きく低下していることが確認された。
 またプロピレン・エチレン・1-ブテン共重合体(PEBR-2)を用いたプロピレン組成物(M2)に水添スチレン・エチレン・プロピレンブロック共重合体を添加した組成物においても、同様に、高温で熱処理を行うと表面の光沢が大きく低下していることが確認された。
 本実施例の熱可塑性エラストマー組成物(X)は優れた耐熱安定性を有していることを確認した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 (2)熱可塑性エラストマー組成物(X)の応用物性1
 プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)からなるプロピレン組成物(M)と、さらに結晶性ポリオレフィン重合体(B)に対応する射出成形用アイソタクティックポリプロピレン(PP-2)およびスチレンブロックコポリマー(C)とを用いて設計した熱可塑性エラストマー組成物(X)からなる射出成形体の物性について、プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)のみからなる組成物、スチレンブロックコポリマー(C)および結晶性ポリオレフィン重合体(B)からなる組成物と比較した。
 評価項目について以下で述べる。
 [柔軟性(ショアーD硬度)]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2mmt厚みの角板(10cm角)を成形した。
 <射出成形条件>
設定温度:H3/H2/H1/NH=180/200/230/230℃
金型温度:30℃
 D型測定器を用い、押針接触後5秒後の目盛りを読み取った(ASTM D-2240に準拠)。
 [温度サイクル試験1]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2mmt厚みの角板(10cm角)を成形した。射出成形条件は、上記ショアーD硬度に記した条件と同一であった。
 得られた角板をギアオーブン(80℃)で3日間アニールした後、オーブンから取り出し、室温まで冷却した。このスペシメンのグロス保持率を評価した。
 グロス保持率(%)=100×(アニール後のグロス値)/(初期グロス値)
 [機械物性]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形によりASTM-D638(4号)ダンベル型スペシメンを成形した。
 <射出成形条件>
設定温度:H3/H2/H1/NH=180/200/230/230℃
金型温度:30℃
 得られたスペシメンにて破断点強度(TS)、破断点伸び(チャック間、EL)およびヤング率(YM)を測定した(測定温度23℃、引張り速度=200mm/min)。
 [TMA軟化温度]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2.8mm(t)、12.5mm(w)、128mm(L)のスペシメンを成形した。射出成形条件は、上記機械物性に記した条件と同一であった。
 これについてJIS K7196に準拠して、熱機械分析装置(TMA)を用いて、昇温速度5℃/minで1.8mmφの平面圧子に2kgf/cmの圧力をかけ、TMA曲線より針進入温度(℃)を求めた。
 [折り曲げ白化試験]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2.8mm(t)、12.5mm(w)、128mm(L)のスペシメンを成形した。射出成形条件は、上記機械物性に記した条件と同一であった。
 これを折り曲げた際に屈曲部に発生する白化現象を目視にて確認した。
 ○:白化無し、 ×:白化あり
 [実施例31~35]
 プロピレン組成物(M1)と、さらにアイソタクティックポリプロピレン(PP-2)および水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-1)、(SEBS-2)、水添スチレン・エチレン・プロピレンブロック共重合体(SEPS-1)、(SEPS-2)のいずれかとを配合して熱可塑性エラストマー組成物(X)を得た。なお、実施例1と同様の条件にて混練し、熱可塑性エラストマー組成物(X)を得た。また、上記成分は表9に示す量で用いた。熱可塑性エラストマー組成物(X)について上述の方法で行った評価結果を表9に示す。
 [比較例31]
 プロピレン組成物(M1)およびアイソタクティックポリプロピレン(PP-2)を配合して組成物を作製した。なお、実施例1と同様の条件にて混練し、組成物を得た。また、上記成分は表10に示す量で用いた。これについて上述の方法で行った評価結果を表10に示す。
 [比較例32]
 プロピレン組成物(M2)およびアイソタクティックポリプロピレン(PP-2)を配合して組成物を作製した。なお、実施例1と同様の条件にて混練し、組成物を得た。また、上記成分は表10に示す量で用いた。これについて上述の方法で行った評価結果を表10に示す。
 [比較例33、34]
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-1)およびアイソタクティックポリプロピレン(PP-2)を配合して組成物を作製した。なお、実施例1と同様の条件にて混練し、組成物を得た。上記成分は表10に示す量で用いた。これ上述の方法で行った評価結果を表10に示す。
 [比較例35、36]
 水添スチレン・エチレン・ブチレンブロック共重合体(SEBS-2)およびアイソタクティックポリプロピレン(PP-2)を配合して組成物を作製した。なお、実施例1と同様の条件にて混練し、組成物を得た。上記成分は表10に示す量で用いた。これ上述の方法で行った評価結果を表10に示す。
 <結果>
 熱可塑性エラストマー組成物(X)を用いた実施例31~35の成形体は、高温で熱処理を行っても光沢が低下することなく、また良好な柔軟性/耐熱性バランスを有している。また折り曲げ白化も発生しない。
 比較例33~36には水添スチレン・エチレン・ブチレンブロック共重合体およびアイソタクティックポリプロピレン(PP-2)の2成分からなる成形体の物性を示している。これらは良好な耐熱安定性を有しているものの、水添スチレン・エチレン・ブチレンブロック共重合体の量が多い場合(60重量%以上)は、軟化温度が低く、また流動性が悪く射出成形体の表面が荒れているため初期グロス値が低くなった。PP-2の添加量を多くすると柔軟性が大きく低下することが確認された。
 また剛性が高い(ヤング率が高い)ものでは折り曲げ白化も目立った。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 (3)熱可塑性エラストマー組成物(X)の応用物性2
 プロピレン共重合体(A)および結晶性ポリオレフィン重合体(B)からなるプロピレン組成物(M)と、さらに結晶性ポリオレフィン重合体(B)に対応する射出成形用アイソタクティックポリプロピレン(PP-3)、軟化剤(d)としてのパラフィン系プロセスオイルおよびパラフィン系プロセスオイルとの親和性に優れた高分子量スチレン・エチレン・ブチレンランダム共重合体(HMSEBS-1)とを用いて設計した熱可塑性エラストマー組成物(X)について評価した。
 またプロピレン組成物(M)を用いずに設計したアイソタクティックポリプロピレン(PP-3)、パラフィン系プロセスオイルおよび高分子量スチレン・エチレン・ブチレンランダム共重合体(HMSEBS-1)のみからなる組成物と比較した。
 評価項目について以下で述べる。
 [メルトフローレート(MFR)]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、MFR値(ASTMD1238に準拠し、230℃、2.16kg荷重下)を測定した。
 [柔軟性(ショアーA硬度)]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2mmt厚みの角板(10cm角)を成形した。
 <射出成形条件>
設定温度:H3/H2/H1/NH=180/200/230/230℃
金型温度:30℃
 これを23℃±2℃の環境下で72時間保管した後、A型測定器を用い、押針接触後直ちに目盛りを読み取った(ASTM D-2240に準拠)。
 [射出成形性]
 上記ショアーA硬度測定用サンプル(角板)の表面を観察し、フローマークの有無を判断した。
 [温度サイクル試験2]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形により2.8mm(t)、12.5mm(w)、128mm(L)のスペシメンを成形した。射出成形条件は、上記ショアーA硬度に記した条件と同一であった。
 得られたスペシメンをギアオーブン(80℃)で3日間アニールした後、オーブンから取り出し、室温まで冷却した。このスペシメンの表面状態(オイルのブリードの有無)を観察した。
 [機械物性]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、射出成形によりASTM-D638(4号)ダンベル型スペシメンを成形した。
 <射出成形条件>
設定温度:H3/H2/H1/NH=180/200/230/230℃
金型温度:30℃
 得られたスペシメンにて破断点強度(TS)、破断点伸び(チャック間、EL)およびヤング率(YM)を測定した(測定温度23℃、引張り速度=200mm/min)。
 [ゴム弾性(圧縮永久歪 CS)]
 実施例または比較例に記載の方法で調製した熱可塑性エラストマー組成物(X)について、200℃に設定した油圧式熱プレス成形機を用いて、5分余熱した後2分間加圧し、すぐに20℃に設定した冷却槽で4分間冷却して2mm厚みのプレスシートを作製した。
 なお、プレス成形の際には離型フィルムとして、100μm厚みの離形PETフィルム(東レ製、ルミラー)を使用した。
 これを23℃±2℃の環境下で72時間保管した。次いで、これを6枚重ねて25%圧縮し、所定の温度(23℃、70℃、または100℃)で24時間保持した後解放し、試験後厚みを測定した。この結果より、下式に従って、24時間保持後の残留歪(圧縮永久歪)を算出した。
 残留歪(%)=100×(試験前厚み-試験後厚み)/(試験前厚み-圧縮時の厚み)
 この残留歪値が低いほどゴム弾性を有することを意味する。また70℃でのCS値は、熱可塑性組成物(X)の耐熱性の指標となる。
 [評価用コンパウンドの作製]
 実施例の熱可塑性エラストマー組成物(X)および比較例の組成物は2軸押出機(TEX-30、成形温度=240℃)を用いて混練して得た。
 (3-1)アイソタクティックポリプロピレン(PP-3)の一部をプロピレン組成物(M)で置き換えたときの物性比較
 [実施例41、42]
 プロピレン組成物(M1)に対し、高分子量水添スチレン・エチレン・ブチレンブロック共重合体(HMSEBS-1)、アイソタクティックポリプロピレン(PP-3)およびパラフィン系プロセスオイルを添加して、熱可塑性エラストマー組成物(X)を作製した。上記成分は表11に示す量で用いた(「部」は「重量部」を意味する。)。熱可塑性エラストマー組成物(X)について上述の方法で行った評価結果を表11に示す。
 [比較例41]
 高分子量水添スチレン・エチレン・ブチレンブロック共重合体(HMSEBS-1)、アイソタクティックポリプロピレン(PP-3)およびパラフィン系プロセスオイルのみを配合して組成物を作製した(実施例41、42におけるプロピレン組成物(M1)をPP-3で置き換えた。)。上記成分は表11に示す量で用いた。これについて上述の方法で行った評価結果を表11に示す。
 <結果>
 比較例41におけるPP-3の一部をプロピレン組成物(M1)で置き換えると、流動性、ゴム弾性などの諸物性を変えずに柔軟性を向上させられることが確認できた。
Figure JPOXMLDOC01-appb-T000015
 (3-2)高分子量水添スチレン・エチレン・ブチレンブロック共重合体(HMSEBS-1)の一部をプロピレン組成物(M)で置き換えたときの物性比較
 [実施例43~47]
 プロピレン組成物(M1)に対し、高分子量水添スチレン・エチレン・ブチレンブロック共重合体(HMSEBS-1)、アイソタクティックポリプロピレン(PP-3)およびパラフィン系プロセスオイルを添加して、熱可塑性エラストマー組成物(X)を作製した。上記成分は表12に示す量で用いた(「部」は「重量部」を意味する。)。熱可塑性エラストマー組成物(X)について上述の方法で行った評価結果を表12に示す。
 [比較例42、43]
 高分子量水添スチレン・エチレン・ブチレンブロック共重合体(HMSEBS-1)、アイソタクティックポリプロピレン(PP-3)およびパラフィン系プロセスオイルのみを配合して組成物を作製した(実施例43~45におけるプロピレン組成物(M1)をHMSEBS-1で置き換えた。)。上記成分は表12に示す量で用いた。これについて上述の方法で行った評価結果を表12に示す。
 <結果>
 比較例42、43のHMSEBS-1をプロピレン組成物(M1)で置き換えると、柔軟性、ゴム弾性、耐熱性は損なわれずに射出成形性を大幅に向上させられることが確認できた。また、このときプロピレン組成物(M1)およびアイソタクティックポリプロピレン(PP-3)の比率が50重量%を超えると、耐熱性が飛躍的に向上することも確認された。
 またプロピレン組成物(M1)を用いた実施例43~47の成形体は、比較例42、43とほぼ同等の硬度であるが、ヤング率が低くなっていた。これは成形体が良好な可撓性(柔軟性)を有しながら耐傷付き性にも優れることを示唆している。
Figure JPOXMLDOC01-appb-T000016
 (3-3)オイル量を少なくした設計での物性比較
 [実施例48~51]
 プロピレン組成物(M1)に対し、高分子量水添スチレン・エチレン・ブチレンブロック共重合体(HMSEBS-1)、アイソタクティックポリプロピレン(PP-3)およびパラフィン系プロセスオイルを添加して、熱可塑性エラストマー組成物(X)を作製した。上記成分は表13に示す量で用いた(「部」は「重量部」を意味する。)。熱可塑性エラストマー組成物(X)について上述の方法で行った評価結果を表13に示す。ここでは実施例41~47よりもパラフィンオイル配合量を少なくした。
 [比較例44~47]
 高分子量水添スチレン・エチレン・ブチレンブロック共重合体(HMSEBS-1)、アイソタクティックポリプロピレン(PP-3)およびパラフィン系プロセスオイルを配合して組成物を作製した(オイル配合量を実施例48~51と同等として。)。上記成分は表13に示す量で用いた。これについて上述の方法で行った評価結果を表13に示す。
 <結果>
 比較例44~47では、オイルを減らしたことで柔軟性と流動性との両立が不可能であったのに対し、プロピレン組成物(M1)を用いた実施例48~51では良好な柔軟性を維持しつつ、また射出成形性も確保できていることを確認した。
Figure JPOXMLDOC01-appb-T000017

Claims (6)

  1.  下記の要件(A1)~(A3)を全て満たすプロピレン共重合体(A)95~5重量%と、結晶性ポリオレフィン重合体(B)0~70重量%と、スチレンブロックコポリマー(C)5~95重量%とを含む熱可塑性エラストマー組成物(X)(ここでプロピレン共重合体(A)、結晶性ポリオレフィン重合体(B)およびスチレンブロックコポリマー(C)の含有量の合計を100重量%とする。)。
     (A1)ショアーA硬度(室温、ASTMD2240)が50~90の範囲にある。
     (A2)示差走査熱量計(DSC)で測定される融解ピークTmが30~95℃の範囲に観測され、この融解ピークに対応する吸熱エンタルピーΔHが1.0~20J/gの範囲にある。
     (A3)ゲルパーミエーションクロマトグラフィー(GPC)によって測定された分子量分布Mw/Mn(ここでMwは重量平均分子量を、Mnは数平均分子量を表し、いずれもポリスチレン換算の値である。)が1.2~3.0の範囲にある。
  2.  前記プロピレン共重合体(A)がさらに下記(A4)~(A6)の要件を全て満たすことを特徴とする請求項1に記載の熱可塑性エラストマー組成物(X)。
     (A4)プロピレン由来の構成単位を51~90モル%、エチレン由来の構成単位を7~24モル%、および炭素数4~20のα-オレフィン由来の構成単位を3~25モル%含むプロピレンとエチレンと炭素数4~20のα-オレフィンとの共重合体である(ここでプロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のαオレフィン由来の構成単位との合計を100モル%とする)。
     (A5)13C-NMR測定より算出したアイソタクティックトライアッド分率(mm)が85~99.9%である。
     (A6)下記式(1)で定義されるB値が0.8~1.3である。
    Figure JPOXMLDOC01-appb-M000001
     (式中、MOEは、プロピレンおよびエチレンの連鎖と炭素数4~20のα-オレフィンおよびエチレンの連鎖との合計の、全ダイアッドに対するモル分率を表し、MOはプロピレンおよび炭素数4~20のα-オレフィンのモル分率の合計を表し、MEはエチレンのモル分率を表す。)
  3.  前記結晶性ポリオレフィン重合体(B)が下記(B1)~(B2)の要件を全て満たす結晶性プロピレン重合体であることを特徴とする請求項1または2に記載の熱可塑性エラストマー組成物(X)。
     (B1)示差走査熱量計(DSC)によって観測される融点Tm(B)が100~175℃である。
     (B2)アイソタクティックペンタッド分率(mmmm)が80~99.8%である。
  4.  ショアーA硬度(室温、ASTMD2240)が40~85の範囲にある請求項1~3のいずれか1項に記載の熱可塑性エラストマー組成物(X)。
  5.  前記プロピレン共重合体(A)および前記結晶性ポリオレフィン重合体(B)の含有量の総和が50重量%以上であることを特徴とする請求項1~4のいずれか1項に記載の熱可塑性エラストマー組成物(X)。
  6.  軟化剤(D)をさらに含むことを特徴とする請求項1~5のいずれか1項に記載の熱可塑性エラストマー組成物(X)。
PCT/JP2010/054145 2009-03-30 2010-03-11 熱可塑性樹脂組成物 WO2010116848A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/255,079 US20110319548A1 (en) 2009-03-30 2010-03-11 Thermoplastic resin composition
BRPI1014829A BRPI1014829B8 (pt) 2009-03-30 2010-03-11 composicão de resina termoplástica
KR1020117025514A KR101354323B1 (ko) 2009-03-30 2010-03-11 열가소성 수지 조성물
EP10761549.4A EP2415832B1 (en) 2009-03-30 2010-03-11 Thermoplastic resin composition
CN201080010693.2A CN102341453B (zh) 2009-03-30 2010-03-11 热塑性树脂组合物
JP2011508296A JPWO2010116848A1 (ja) 2009-03-30 2010-03-11 熱可塑性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-082698 2009-03-30
JP2009082698 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116848A1 true WO2010116848A1 (ja) 2010-10-14

Family

ID=42936135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054145 WO2010116848A1 (ja) 2009-03-30 2010-03-11 熱可塑性樹脂組成物

Country Status (8)

Country Link
US (1) US20110319548A1 (ja)
EP (1) EP2415832B1 (ja)
JP (1) JPWO2010116848A1 (ja)
KR (1) KR101354323B1 (ja)
CN (1) CN102341453B (ja)
BR (1) BRPI1014829B8 (ja)
TW (1) TW201041961A (ja)
WO (1) WO2010116848A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043071A1 (ja) * 2009-10-07 2011-04-14 三井化学株式会社 ペリクルおよびそのマスク接着剤
WO2012004951A1 (ja) * 2010-07-09 2012-01-12 三井化学株式会社 ペリクル及びそれに用いるマスク接着剤
WO2018181106A1 (ja) * 2017-03-27 2018-10-04 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法
JP2018162374A (ja) * 2017-03-24 2018-10-18 株式会社クラレ 樹脂組成物、液体包装容器用フィルム、液体包装容器および医療容器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779308A (zh) * 2016-03-25 2018-11-09 三井化学株式会社 伸缩性结构体、多层伸缩片、纺织纱线以及纤维结构体
US10227483B2 (en) * 2016-09-21 2019-03-12 Exxonmobil Chemical Patents Inc. Compositions of olefin block copolymers and propylene-based elastomers
CN115042433A (zh) * 2018-02-16 2022-09-13 耐克创新有限合伙公司 用于增材制造的退火的弹性热塑性粉末、其方法和包括粉末的物品
CN109721932A (zh) * 2018-12-06 2019-05-07 广东聚石化学股份有限公司 一种光亮型无卤阻燃热塑性弹性体及其制备方法和应用
KR20200142635A (ko) * 2019-06-12 2020-12-23 현대자동차주식회사 열가소성 탄성체 조성물
CN116134090A (zh) * 2020-07-30 2023-05-16 株式会社Lg化学 热塑性树脂组合物
JPWO2022064869A1 (ja) * 2020-09-23 2022-03-31
IT202100011252A1 (it) * 2021-05-03 2022-11-03 Fitt Spa Uso di un elastomero termoplastico contenente un’elevata percentuale di materiale post consumo per realizzare un tubo flessibile a basso impatto ambientale, nonche’ tubo flessibile realizzato con tale elastomero termoplastico e metodo di realizzazione dello stesso
CN113999535B (zh) * 2022-01-04 2022-06-07 浙江金仪盛世生物工程有限公司 热塑性弹性体材料及热塑性弹性体管路

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215446A (ja) * 1982-06-09 1983-12-14 Dainippon Plastics Co Ltd 改良された成形用樹脂組成物
JPH07145212A (ja) 1993-11-22 1995-06-06 Mitsui Petrochem Ind Ltd プロピレン系重合体
JPH11349748A (ja) * 1998-06-05 1999-12-21 Mitsubishi Chemical Corp プロピレン系樹脂組成物
JP2002187998A (ja) 2000-12-19 2002-07-05 Kuraray Plast Co Ltd 熱可塑性エラストマー組成物
JP2002348432A (ja) 2001-05-25 2002-12-04 Aron Kasei Co Ltd エラストマー組成物およびキャビネット
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
WO2004106430A1 (ja) 2003-05-28 2004-12-09 Mitsui Chemicals, Inc. プロピレン系重合体組成物およびその用途
JP3700515B2 (ja) 2000-02-08 2005-09-28 三菱化学株式会社 熱可塑性エラストマー組成物
JP3757162B2 (ja) 2001-12-21 2006-03-22 リケンテクノス株式会社 熱可塑性ゲル状組成物およびそれを含む熱可塑性樹脂組成物
WO2006057361A1 (ja) 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途
JP2007186664A (ja) 2005-03-18 2007-07-26 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
WO2008059746A1 (fr) * 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Composition de résine de propylène, procédé de fabrication d'une composition de résine de propylène, composition de polymère de propylène, corps moulé fait à partir de la composition de résine de propylène et fil électrique
JP2008169257A (ja) * 2007-01-10 2008-07-24 Mitsui Chemicals Inc プロピレン系樹脂組成物、並びに該組成物からなる成形体および電線

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632541B2 (en) * 1998-02-10 2003-10-14 Sumitomo Chemical Company, Limited Olefin-based copolymer composition
CN100460461C (zh) * 2003-05-28 2009-02-11 三井化学株式会社 丙烯类聚合物组合物及其用途
WO2006098452A1 (ja) * 2005-03-18 2006-09-21 Mitsui Chemicals, Inc. プロピレン系重合体組成物、その用途、および熱可塑性重合体組成物の製造方法
WO2009084517A1 (ja) * 2007-12-27 2009-07-09 Mitsui Chemicals, Inc. プロピレン系重合体組成物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215446A (ja) * 1982-06-09 1983-12-14 Dainippon Plastics Co Ltd 改良された成形用樹脂組成物
JPH07145212A (ja) 1993-11-22 1995-06-06 Mitsui Petrochem Ind Ltd プロピレン系重合体
JPH11349748A (ja) * 1998-06-05 1999-12-21 Mitsubishi Chemical Corp プロピレン系樹脂組成物
JP3700515B2 (ja) 2000-02-08 2005-09-28 三菱化学株式会社 熱可塑性エラストマー組成物
JP2002187998A (ja) 2000-12-19 2002-07-05 Kuraray Plast Co Ltd 熱可塑性エラストマー組成物
JP2002348432A (ja) 2001-05-25 2002-12-04 Aron Kasei Co Ltd エラストマー組成物およびキャビネット
JP3757162B2 (ja) 2001-12-21 2006-03-22 リケンテクノス株式会社 熱可塑性ゲル状組成物およびそれを含む熱可塑性樹脂組成物
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
WO2004106430A1 (ja) 2003-05-28 2004-12-09 Mitsui Chemicals, Inc. プロピレン系重合体組成物およびその用途
WO2006057361A1 (ja) 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途
JP2007186664A (ja) 2005-03-18 2007-07-26 Mitsui Chemicals Inc プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
WO2008059746A1 (fr) * 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Composition de résine de propylène, procédé de fabrication d'une composition de résine de propylène, composition de polymère de propylène, corps moulé fait à partir de la composition de résine de propylène et fil électrique
JP2008169257A (ja) * 2007-01-10 2008-07-24 Mitsui Chemicals Inc プロピレン系樹脂組成物、並びに該組成物からなる成形体および電線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2415832A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043071A1 (ja) * 2009-10-07 2011-04-14 三井化学株式会社 ペリクルおよびそのマスク接着剤
US8685598B2 (en) 2009-10-07 2014-04-01 Mitsui Chemicals, Inc. Pellicle and mask adhesive therefor
WO2012004951A1 (ja) * 2010-07-09 2012-01-12 三井化学株式会社 ペリクル及びそれに用いるマスク接着剤
JPWO2012004951A1 (ja) * 2010-07-09 2013-09-02 三井化学株式会社 ペリクル及びそれに用いるマスク接着剤
US8945799B2 (en) 2010-07-09 2015-02-03 Mitsui Chemicals, Inc. Pellicle and mask adhesive agent for use in same
JP2018162374A (ja) * 2017-03-24 2018-10-18 株式会社クラレ 樹脂組成物、液体包装容器用フィルム、液体包装容器および医療容器
WO2018181106A1 (ja) * 2017-03-27 2018-10-04 三井化学株式会社 熱可塑性エラストマー組成物、並びにその成形体及びその製造方法

Also Published As

Publication number Publication date
KR20110129489A (ko) 2011-12-01
JPWO2010116848A1 (ja) 2012-10-18
EP2415832A4 (en) 2012-09-12
BRPI1014829A2 (pt) 2016-04-12
EP2415832B1 (en) 2017-02-15
US20110319548A1 (en) 2011-12-29
EP2415832A1 (en) 2012-02-08
KR101354323B1 (ko) 2014-01-22
BRPI1014829B8 (pt) 2019-10-01
BRPI1014829B1 (pt) 2019-07-16
TW201041961A (en) 2010-12-01
CN102341453B (zh) 2015-04-01
CN102341453A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
KR101354323B1 (ko) 열가소성 수지 조성물
JP5438682B2 (ja) 接着剤組成物及びこれからなる接着剤
EP2248848B1 (en) Propylene resin composition and use thereof
KR100878869B1 (ko) 프로필렌계 중합체 조성물, 그 용도, 및 열가소성 중합체조성물의 제조 방법
JP5020524B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP6467153B2 (ja) 重合体組成物ならびに該重合体組成物からなるパッキン、シール材、キャップライナー
US7851540B2 (en) Resin composition and molded body made from same
JP5330637B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
WO2018155179A1 (ja) 成形体およびその製造方法
JP2010150499A (ja) パッキン材用熱可塑性エラストマー組成物およびパッキン材
JP5590907B2 (ja) ポリプロピレン樹脂組成物とこれからなる成形体
JP7228383B2 (ja) 成形体およびその製造方法
JP5506985B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
JP5550615B2 (ja) プロピレン系重合体組成物の製造方法
US20240166854A1 (en) Thermoplastic elastomer composition
JP5837156B2 (ja) ポリプロピレン樹脂組成物とこれからなる成形体
JP5455713B2 (ja) プロピレン系変性樹脂組成物
JP4558378B2 (ja) 熱可塑性樹脂組成物
CN117098803A (zh) 热塑性弹性体组合物及其用途
JP2024038766A (ja) 家具用積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010693.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13255079

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011508296

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010761549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010761549

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117025514

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014829

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014829

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110928