WO2010116699A1 - 半導体基板、半導体基板の製造方法、半導体基板の判定方法、および電子デバイス - Google Patents

半導体基板、半導体基板の製造方法、半導体基板の判定方法、および電子デバイス Download PDF

Info

Publication number
WO2010116699A1
WO2010116699A1 PCT/JP2010/002447 JP2010002447W WO2010116699A1 WO 2010116699 A1 WO2010116699 A1 WO 2010116699A1 JP 2010002447 W JP2010002447 W JP 2010002447W WO 2010116699 A1 WO2010116699 A1 WO 2010116699A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
mobility
carrier
compound semiconductor
semiconductor substrate
Prior art date
Application number
PCT/JP2010/002447
Other languages
English (en)
French (fr)
Inventor
強 中野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN2010800143734A priority Critical patent/CN102369594A/zh
Publication of WO2010116699A1 publication Critical patent/WO2010116699A1/ja
Priority to US13/253,614 priority patent/US9117892B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • H01L29/7785Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with more than one donor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • H01L29/66856Unipolar field-effect transistors with a Schottky gate, i.e. MESFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present invention relates to a semiconductor substrate, a semiconductor substrate manufacturing method, a semiconductor substrate determination method, and an electronic device.
  • Japanese Unexamined Patent Publication No. 7-14850 discloses a heterojunction field effect transistor having an undoped GaAs layer and an undoped InGaAs layer as active layers, and an active layer sandwiched between AlGaAs layers partially doped with Si.
  • Japanese Patent Laid-Open No. 10-56168 discloses that the difference in electron affinity near the interface between the lower carrier supply layer and the channel layer of the field effect transistor is larger than the difference in electron affinity near the interface between the channel layer and the upper carrier supply layer.
  • a field effect transistor is disclosed.
  • 11-354776 discloses an n-type AlGaAs carrier supply layer, an undoped AlGaAs spacer layer, an undoped GaAs channel layer, an undoped InGaAs channel layer, an undoped GaAs spacer layer, and an n-type GaAs channel layer on a semi-insulating GaAs substrate.
  • a HEMT (High Electron Mobility Transistor) element using a crystal laminate in which are sequentially stacked is disclosed.
  • JP 2000-183334 discloses a GaAs, AlGaAs buffer layer, an n-type AlGaAs lower electron supply layer, an i-type InGaAs channel layer, and an n-type AlGaAs upper electron supply layer on a GaAs semi-insulating substrate.
  • a heterojunction field effect transistor having an i-type AlGaAs Schottky layer, an n-type GaAs ohmic contact layer, a WSi gate electrode, and a source electrode and a drain electrode made of Au, Ge, or Ni are disclosed. .
  • the Nt product of the upper electron supply layer is about 1.4 times the maximum sheet carrier concentration at the heterojunction interface, and the Nt product of the lower electron supply layer is 1.0 to 2. It is in the range of 0 times.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-14850
  • Patent Document 2 Japanese Patent Laid-Open No. 10-56168
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-354776
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-183334
  • an object of the present invention is to provide a semiconductor substrate having excellent linearity of voltage-to-current characteristics, which is suitable for manufacturing a transistor having superior distortion characteristics.
  • a compound semiconductor that generates a two-dimensional carrier gas, a carrier supply semiconductor that supplies carriers to the compound semiconductor, a carrier disposed between the compound semiconductor and the carrier supply semiconductor, A mobility-reducing semiconductor having a mobility-reducing factor that makes the mobility of the compound semiconductor smaller than the mobility of carriers in the compound semiconductor is provided.
  • the existence probability of the carrier in the excited state is higher than the existence probability of the carrier in the ground state.
  • the excited state is, for example, a state where the carrier is at the first excitation level.
  • the current y flowing through the compound semiconductor corresponds to the voltage, and is ⁇ 1.5 [kV / cm] or more and +1.5 [kV / cm] or less.
  • in the approximated polynomial y ax 3 + bx 2 + cx with the electric field strength x changing within the range of Is less than 0.037 [(kV / cm) ⁇ 2 ].
  • the mobility reducing factor is, for example, any one of impurities, crystal defects, a low mobility material, and a band barrier material.
  • carriers are electrons, and impurities are donor impurities.
  • the carrier may be a hole, and the impurity may be an acceptor impurity.
  • the carrier supply semiconductor is N-type AlGaAs
  • the mobility-reducing semiconductor is GaAs that is not P-type
  • the compound semiconductor is InGaAs.
  • the mobility-reducing semiconductor is, for example, N-type GaAs containing a donor impurity of 3.6 ⁇ 10 18 [cm ⁇ 3 ] or less.
  • the donor impurity is at least one element selected from the group consisting of Si, Se, Ge, Sn, Te, and S, for example.
  • a step of forming a compound semiconductor that generates a two-dimensional carrier gas, and a mobility that makes carrier mobility smaller than the carrier mobility in the compound semiconductor on the compound semiconductor comprising: forming a mobility-reducing semiconductor having a reduction factor; and forming a carrier supply semiconductor that supplies carriers to the compound semiconductor on the mobility-reducing semiconductor.
  • a compound semiconductor having a composition for generating a two-dimensional carrier gas, a carrier supply semiconductor for supplying carriers to the compound semiconductor, and the compound semiconductor and the carrier supply semiconductor are disposed between the compound semiconductor and the carrier supply semiconductor.
  • a step of preparing a semiconductor substrate including a mobility-reducing semiconductor having a mobility-reducing factor that makes carrier mobility smaller than the mobility of carriers in the compound semiconductor; and a pair of ohmic electrodes on the compound semiconductor A step of applying a voltage to a pair of ohmic electrodes, measuring a current value corresponding to the applied voltage, and approximating a current value corresponding to the voltage to an approximate polynomial of an electric field strength corresponding to the voltage And whether or not the absolute value of the ratio of the third-order term coefficient to the first-order term coefficient in the approximate polynomial is smaller than a predetermined value It provides a determination method of a semiconductor substrate including the that step.
  • a compound semiconductor that has a channel that generates a two-dimensional carrier gas and through which the two-dimensional carrier gas flows, a carrier supply semiconductor that supplies carriers to the compound semiconductor, the compound semiconductor, and the carrier A pair of ohmic electrodes which are arranged between a supply semiconductor and have a mobility reduction factor which makes the carrier mobility smaller than the carrier mobility in the compound semiconductor, and are coupled to each other through a channel And a control electrode that controls the impedance between the pair of ohmic electrodes.
  • B on A (B on A) means both “when B touches A” and “when there is another member between B and A”. including.
  • An example of the section of semiconductor substrate 100 is shown roughly.
  • An example of the energy band diagram in a semiconductor substrate is shown.
  • 2 shows an example of a cross section of a semiconductor substrate 300.
  • An example of a cross section of a semiconductor substrate 400 is shown.
  • 5 is a flowchart illustrating an example of a semiconductor substrate determination method. It is an example of the semiconductor substrate for evaluation.
  • An electric field strength-current curve is shown.
  • the influence of the impurity concentration of the mobility-reduced semiconductor on the linearity index is shown.
  • An example of the cross section of the electronic device 900 is shown.
  • An example of a cross section in the manufacturing process of the electronic device 900 is shown.
  • An example of a cross section in the manufacturing process of the electronic device 900 is shown.
  • FIG. 1 schematically shows an example of a cross section of a semiconductor substrate 100.
  • the semiconductor substrate 100 includes a base substrate 102, a compound semiconductor 114, a mobility reduction semiconductor 116, and a carrier supply semiconductor 120.
  • the base substrate 102 is a substrate that supports other components in the semiconductor substrate 100.
  • the base substrate 102 is, for example, a Ge substrate, a GOI (germanium-on-insulator) substrate, or a Group 3-5 semiconductor substrate such as GaAs, InGaAs, AlGaAs, GaN, and AlGaN.
  • the base substrate 102 may be a Si substrate, an SOI (silicon-on-insulator) substrate, a sapphire substrate, a glass substrate, or a resin substrate such as a PET film.
  • the base substrate 102 may include a buffer layer.
  • the base substrate 102 has, for example, a wafer shape.
  • Compound semiconductor 114 generates a two-dimensional carrier gas.
  • a two-dimensional carrier gas is a collection of carriers that are either conduction electrons or holes, and the carrier can move freely in a two-dimensional direction, but has a quantum effect in a direction perpendicular to the two-dimensional direction. It is restricted to the extent that appears.
  • the quantum effect is a phenomenon in which the energy level of carriers becomes a discrete level.
  • the compound semiconductor 114 is a group 3-5 compound semiconductor such as InGaAs, GaAs, or InGaP, for example.
  • the compound semiconductor 114 may be a compound semiconductor having a piezo effect such as GaN.
  • the mobility reducing semiconductor 116 is arranged between the compound semiconductor 114 and the carrier supply semiconductor 120.
  • the mobility reduction semiconductor 116 has a mobility reduction factor that suppresses carrier movement. Since the mobility reduction semiconductor 116 has a mobility reduction factor, the carrier mobility in the mobility reduction semiconductor 116 is smaller than the carrier mobility in the compound semiconductor 114.
  • the existence probability of the carrier in the ground state is higher than the existence probability of the carrier in the excited state inside the compound semiconductor 114.
  • the existence probability of the carrier in the excited state is higher than the existence probability of the carrier in the ground state.
  • the excited state is a state where carriers are at a higher energy level than the ground state.
  • the carrier in the excited state is one of the factors that cause distortion in the voltage-current characteristics of the transistor.
  • the semiconductor substrate 100 is used for a transistor that controls a current flowing through a channel between a source and a drain by a gate voltage, if the channel includes carriers in an excited state, the source ⁇ The linearity of the drain-to-drain current is reduced.
  • the mobility-reducing semiconductor 116 that reduces the carrier mobility in a semiconductor that is in contact with the compound semiconductor 114 and has a high probability of existence of excited electrons, the linearity of the voltage-current characteristics is deteriorated.
  • the mobility of excited carriers can be reduced.
  • the semiconductor substrate 100 is used for an electronic element such as a transistor, the linearity of the voltage-current characteristics of the electronic element is improved.
  • the mobility reducing factor included in the mobility reducing semiconductor 116 is, for example, impurities, crystal defects, a low mobility material, and a band barrier material.
  • the carrier is an electron
  • the donor impurity functions as a mobility reducing factor.
  • the acceptor impurity functions as a mobility reducing factor.
  • the band barrier material is, for example, a semiconductor having a larger band gap than the compound semiconductor 114.
  • the mobility-reducing semiconductor 116 is, for example, GaAs that is not P-type.
  • the mobility-reducing semiconductor 116 is 3.6 ⁇ 10 18 [cm ⁇ 3 ] or less, preferably 3.0 ⁇ 10 18 [cm ⁇ 3 ] or less, more preferably 1.0 ⁇ 10 18 [cm ⁇ 3 ] or less. More preferably, it may be N-type GaAs containing a donor impurity of 0.5 ⁇ 10 18 [cm ⁇ 3 ] or less.
  • the donor impurity is at least one element selected from the group consisting of Si, Se, Ge, Sn, Te, and S, for example.
  • the carrier supply semiconductor 120 supplies carriers to the compound semiconductor 114.
  • the material of the carrier supply semiconductor 120 is, for example, GaAs, AlGaAs, and InGaP.
  • the carrier supply semiconductor 120 is, for example, N-type AlGaAs.
  • the carrier supply semiconductor 120 may have an electrode.
  • the semiconductor substrate 100 may have a barrier layer that forms a barrier against a two-dimensional carrier gas between the electrode and the compound semiconductor 114.
  • the voltage-current characteristic of the semiconductor substrate 100 can be obtained, for example, by measuring a current flowing between two points when a voltage is applied between two different points on the compound semiconductor 114.
  • Whether the linearity of the voltage-current characteristic of the semiconductor substrate 100 is good or not can be determined by the value of the absolute value
  • FIG. 2 shows an example of an energy band diagram in the semiconductor substrate 100.
  • the horizontal axis indicates the position in the stacking direction in the cross section of the semiconductor substrate 100.
  • the energy band diagram was obtained by simulation.
  • a 6 nm-thick GaAs layer functioning as a mobility-reducing semiconductor 116 is disposed on both sides of a 5 nm-thick InGaAs layer functioning as a compound semiconductor 114 that generates a two-dimensional carrier gas.
  • the film thicknesses of the InGaAs layer and the GaAs layer are preferably 0.5 nm to 100 nm, and more preferably 1 nm to 50 nm.
  • Curve 202 represents the energy level at the bottom of the conduction band, and the scale is represented by the left vertical axis. According to the curve 202, the energy level at the lower end of the conduction band of the InGaAs layer is lower than that of the GaAs layer and lowest in the vicinity of the interface with the GaAs layer. The InGaAs layer generates a two-dimensional carrier gas in the vicinity of the interface having the lowest energy level.
  • Curve 204 shows the wave function of electrons in the ground state, and the scale is represented by the right vertical axis.
  • the probability density of electrons is represented by the square of the wave function. Therefore, the curve 204 shows that the probability density of ground state electrons in the InGaAs layer where the two-dimensional carrier gas is formed is higher than the probability density of ground state electrons in the GaAs layer.
  • Curve 206 shows the wave function of the electrons in the excited state, the scale of which is represented by the right vertical axis. According to the curve 206, it can be seen that in the GaAs layers on both sides of the InGaAs layer, the existence probability of electrons in the excited state is higher than the existence probability of electrons in the ground state. In the InGaAs layer, the existence probability of electrons in the ground state is higher than the existence probability of electrons in the excited state. From the above, it can be seen that electrons in the ground state are mainly present in the InGaAs layer where the two-dimensional carrier gas is formed, and electrons in the excited state are mainly present in the GaAs layers on both sides thereof.
  • Planar type electronic elements such as field effect transistors (sometimes referred to as Field Effect Transistors or FETs) or high electron mobility transistors (sometimes referred to as High Electron Mobility Transistors or HEMTs) are formed of InGaAs layers or the like. Transistor characteristics are exhibited by controlling the current flowing in the channel layer with an electric field generated by the gate electrode. The transistor preferably has a higher linearity of voltage-to-current characteristics.
  • the ratio of the ground-state electrons to the voltage-current characteristics is increased by suppressing the flow of excited-state electrons and reducing the mobility, and generating the channel current of the transistor mainly by the ground-state electrons. be able to. As a result, the linearity of the voltage-current characteristics of the transistor is improved.
  • the mobility reducing factor is preferably an N-type impurity.
  • the mobility-reducing semiconductor 116 is a GaAs layer
  • the concentration of electrons accumulated in the channel can be maintained by doping the GaAs layer with an N-type impurity, and provided on the channel and the device surface. It is possible to prevent an increase in longitudinal electronic resistance between the electrodes.
  • the carrier concentration In order to reduce the mobility of excited electrons in the GaAs layer functioning as the mobility reducing semiconductor 116, it is necessary to increase the carrier concentration. However, when the carrier concentration is too high, the mobility of electrons in the ground state is also reduced, so that the average mobility of electrons in the ground state traveling through the channel layer is reduced.
  • the carrier concentration of the mobility reducing semiconductor 116 doped with an N-type impurity is 3.6 ⁇ 10 18 [cm ⁇ ]. 3 ]
  • the carrier concentration may be 3.0 ⁇ 10 18 [cm ⁇ 3 ] or less, more preferably 1.0 ⁇ 10 18 [cm ⁇ 3 ] or less, and still more preferably 0.5 ⁇ 10 18 [cm 3 ].
  • ⁇ 3 ] is as follows. When such a condition is satisfied, a compound semiconductor epitaxial substrate having excellent linearity and voltage-current characteristics can be obtained.
  • the voltage versus current characteristic is measured by the Hall measurement method.
  • the carrier concentration is less than 3 ⁇ 10 18 [cm ⁇ 3 ]
  • the voltage vs. current characteristic is measured. It is preferable in terms of accuracy to measure the current characteristics by the capacitive voltage (CV) method.
  • FIG. 3 shows an example of a cross section of the semiconductor substrate 300.
  • the semiconductor substrate 300 includes a base substrate 302, a buffer layer 304, a carrier supply semiconductor 308, a mobility reduction semiconductor 312, a compound semiconductor 314, a mobility reduction semiconductor 316, a carrier supply semiconductor 320, a barrier formation semiconductor 330, and a contact layer 340. .
  • the base substrate 302 and the buffer layer 304 correspond to the base substrate 102 in the semiconductor substrate 100.
  • the carrier supply semiconductor 308 and the carrier supply semiconductor 320 correspond to the carrier supply semiconductor 120.
  • the mobility reduction semiconductor 312 and the mobility reduction semiconductor 316 correspond to the mobility reduction semiconductor 116.
  • the compound semiconductor 314 corresponds to the compound semiconductor 114.
  • the semiconductor substrate 300 is different from the semiconductor substrate 100 in that the contact layer 340 is provided.
  • the semiconductor substrate 300 has a carrier supply semiconductor 308 and a carrier supply semiconductor 320 on both sides of the compound semiconductor 314. With this configuration, the number of carriers of the two-dimensional carrier gas generated by the compound semiconductor 314 increases, so that the performance of the electronic element is enhanced.
  • the semiconductor substrate 300 includes a mobility reduction semiconductor 312 and a mobility reduction semiconductor 316 on both sides of the compound semiconductor 314. As shown in FIG. 2, many excited electrons exist in GaAs on both sides of InGaAs, which is the compound semiconductor 314. Therefore, when the semiconductor substrate 300 includes the mobility reducing semiconductor 312 and the mobility reducing semiconductor 316 having the mobility reducing factor on both sides of the compound semiconductor 314, the linearity of the voltage-current characteristics of the semiconductor substrate 300 can be improved. .
  • the buffer layer 304 ensures crystallinity of the compound semiconductor 314 and the like formed in the upper layer, and prevents characteristic deterioration of the semiconductor substrate 300 due to impurities remaining on the surface of the base substrate 302.
  • the buffer layer 304 suppresses leakage current from the semiconductor layer formed in the upper layer.
  • the buffer layer 304 also functions as a buffer layer that matches the interstitial distance between the compound semiconductor 314 formed in the upper layer and the base substrate 302.
  • the material of the buffer layer 304 is, for example, GaAs or AlGaAs.
  • the barrier forming semiconductor 330 forms an energy barrier between a control electrode to which a voltage for controlling a current flowing through a channel of an electronic element such as an FET and the two-dimensional carrier gas is applied.
  • a control electrode to which a voltage for controlling a current flowing through a channel of an electronic element such as an FET and the two-dimensional carrier gas is applied.
  • the control electrode is made of a metal
  • an energy barrier is formed by a Schottky junction between the barrier forming semiconductor 330 and the metal.
  • the material of the barrier forming semiconductor 330 is, for example, AlGaAs.
  • the contact layer 340 ensures conductivity between the control electrode formed on the semiconductor substrate 300 and the semiconductor below the barrier forming semiconductor 330.
  • the material of the contact layer 340 is, for example, GaAs or InGaAs.
  • the mobility reduction semiconductor 312 and the mobility reduction semiconductor 316 have a mobility reduction factor, the mobility of electrons in the excited state existing in the mobility reduction semiconductor 312 and the mobility reduction semiconductor 316 is the mobility of the compound semiconductor 314. Lower than.
  • the ground-state electron flow existing in the compound semiconductor 314 becomes the main channel current of the transistor formed in the semiconductor substrate 300, so that the ratio of the ground-state electrons contributing to the voltage-current characteristics can be increased. it can. As a result, the linearity of the voltage-current characteristic in the semiconductor substrate 300 is improved.
  • FIG. 4 shows an example of a cross section of the semiconductor substrate 400.
  • the semiconductor substrate 400 includes a base substrate 402, a buffer layer 404, a buffer layer 406, a carrier supply semiconductor 408, a spacer layer 410, a mobility reduction semiconductor 412, a compound semiconductor 414, a mobility reduction semiconductor 416, a spacer layer 418, and a carrier supply semiconductor 420. And a barrier forming semiconductor 430.
  • the semiconductor substrate 400 may further include a contact layer 340 on the barrier forming semiconductor 430.
  • the base substrate 402 corresponds to the base substrate 302 in the semiconductor substrate 300.
  • the carrier supply semiconductor 408 and the carrier supply semiconductor 420 correspond to the carrier supply semiconductor 308 and the carrier supply semiconductor 320, respectively.
  • the mobility reduction semiconductor 412 and the mobility reduction semiconductor 416 correspond to the mobility reduction semiconductor 312 and the mobility reduction semiconductor 316, respectively.
  • the compound semiconductor 414 corresponds to the compound semiconductor 314.
  • the semiconductor substrate 400 has a double buffer structure including a buffer layer 404 and a buffer layer 406. Further, the semiconductor substrate 400 is different from the semiconductor substrate 300 in that it includes a spacer layer 410 and a spacer layer 418.
  • the double buffer structure constituted by the buffer layer 404 and the buffer layer 406 enhances the effect of the buffer layer that matches the difference in interstitial distance between the compound semiconductor 414 and the base substrate 402.
  • the double buffer structure further suppresses the influence of impurities of the base substrate 402 on the compound semiconductor 414.
  • the double buffer structure further reduces the leakage current.
  • the material of the buffer layer 404 or the buffer layer 406 is, for example, GaAs or AlGaAs.
  • the spacer layer 410 and the spacer layer 418 are formed between the carrier supply semiconductor 408 and the compound semiconductor 414 and between the carrier supply semiconductor 420 and the compound semiconductor 414, respectively.
  • the spacer layer 410 and the spacer layer 418 suppress diffusion of impurities in the carrier supply semiconductor 408 and the carrier supply semiconductor 420 into the compound semiconductor 414.
  • the spacer layer 410 and the spacer layer 418 prevent carrier mobility in the compound semiconductor 414 from being reduced by impurity ion scattering.
  • the material of the spacer layer 410 or the spacer layer 418 is, for example, AlGaAs.
  • the barrier forming semiconductor 430 forms an energy barrier for the electrode formed on the barrier forming semiconductor 430 to function as a control electrode.
  • the material of the barrier forming semiconductor 430 is, for example, AlGaAs.
  • the semiconductor substrate 400 includes the double buffer formed by the buffer layer 404 and the buffer layer 406, whereby the crystal quality of the compound semiconductor 414 can be increased. As a result, leakage current can be reduced.
  • the semiconductor substrate 400 includes the spacer layer 410 and the spacer layer 418, the impurity ion scattering of electrons in the compound semiconductor 414 can be prevented. Therefore, when a transistor is formed using the semiconductor substrate 400, the linearity of the voltage-current characteristic of the transistor is improved.
  • the semiconductor substrate manufacturing method of this embodiment includes a step of forming a compound semiconductor 114 that generates a two-dimensional carrier gas on the base substrate 102, and a movement having a mobility reducing factor that contacts the compound semiconductor 114 and suppresses the movement of carriers. Forming the mobility reducing semiconductor 116, and forming the carrier supply semiconductor 120 that supplies the carrier to the compound semiconductor 114 in contact with the mobility reducing semiconductor 116.
  • the base substrate 102 is placed in a reaction furnace, and the compound semiconductor 114 is epitaxially grown on the base substrate 102.
  • the base substrate 102 is, for example, a high resistance semi-insulating GaAs single crystal substrate.
  • the GaAs single crystal substrate is a GaAs substrate manufactured by, for example, an LEC (Liquid Encapsulated Czochralski) method, a VB (Vertical Bridgman) method, a VGF (Vertical Gradient Freezing) method, or the like.
  • the GaAs single crystal substrate may be a substrate having an inclination of about 0.05 ° to 10 ° from one crystallographic plane orientation.
  • Examples of the epitaxial growth method include metal organic chemical vapor deposition (Metal Organic Chemical Deposition, hereinafter sometimes referred to as MOCVD method), molecular beam epitaxy method (Molecular Beam Epitaxy, hereinafter sometimes referred to as MBE method). .
  • MOCVD method Metal Organic Chemical Deposition
  • MBE method molecular beam epitaxy method
  • the surface of the base substrate 102 of GaAs single crystal is degreased, etched, washed with water, and dried, and then the base substrate 102 is placed on a heating table of a reduced pressure barrel MOCVD furnace. After sufficiently replacing the inside of the furnace with high-purity hydrogen, heating of the base substrate 102 is started.
  • the substrate temperature during crystal growth is, for example, any temperature from 500 ° C. to 800 ° C.
  • an arsenic raw material is introduced into the furnace, and then a gallium raw material or an indium raw material is introduced to epitaxially grow the InGaAs layer.
  • trialkylated compounds such as trimethylgallium (TMG) and trimethylindium (TMI), trialkylated compounds in which an alkyl group having 1 to 3 carbon atoms or hydrogen is bonded to each metal atom, or trihydrides may be used. it can.
  • TMG trimethylgallium
  • TMI trimethylindium
  • trialkylated compounds in which an alkyl group having 1 to 3 carbon atoms or hydrogen is bonded to each metal atom, or trihydrides may be used.
  • the Group 5 element source gas arsine (AsH 3 ) or alkylarsine in which at least one hydrogen atom contained in arsine is substituted with an alkyl group having 1 to 4 carbon atoms can be used.
  • the epitaxial growth conditions are, for example, a reactor internal pressure of 0.1 atm, a growth temperature of 650 ° C., and a growth rate of 1 to 3 ⁇ m / hr.
  • the raw material carrier gas is, for example, high-purity hydrogen.
  • the mobility-reducing semiconductor 116 and the carrier supply semiconductor 120 described later can also be epitaxially grown by adjusting parameters such as source gas, furnace pressure, growth temperature, and growth time using the same MOCVD method.
  • the mobility reducing semiconductor 116 is epitaxially grown in contact with the compound semiconductor 114.
  • the mobility reducing semiconductor 116 is, for example, N-type GaAs.
  • a donor impurity becomes a mobility reduction factor.
  • Examples of the epitaxial growth method include MOCVD method and MBE method.
  • TMG trimethylgallium
  • AsH 3 arsine
  • the N-type GaAs mobility-reducing semiconductor 116 is epitaxially grown by MOCVD. be able to.
  • the donor impurity is at least one element selected from the group consisting of Si, Se, Ge, Sn, Te and S, for example.
  • a hydride of the above element or an alkylated product having an alkyl group having 1 to 3 carbon atoms can be used.
  • Si can be selected as a donor impurity
  • disilane (Si 2 H 6 ) can be used as an N-type dopant.
  • Mobility lowering semiconductor 116 to be formed 3.6 ⁇ 10 18 [cm -3 ] or less, preferably 3.0 ⁇ 10 18 [cm -3] or less, more preferably 1.0 ⁇ 10 18 [cm - 3 ] or less, more preferably, a donor impurity having a concentration of 0.5 ⁇ 10 18 [cm ⁇ 3 ] or less.
  • the impurity concentration can be changed by adjusting the disilane flow rate during epitaxial growth.
  • the impurity concentration is the concentration of donor impurities contained in the mobility-reducing semiconductor 116.
  • the carrier supply semiconductor 120 is epitaxially grown on the mobility reducing semiconductor 116.
  • the carrier supply semiconductor 120 is, for example, N-type AlGaAs.
  • the carrier supply semiconductor 120 supplies electrons as carriers to the compound semiconductor 114.
  • Examples of the epitaxial growth method include MOCVD method and MBE method.
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • AsH 3 arsine
  • N-type AlGaAs carriers are supplied by MOCVD.
  • the semiconductor 120 can be epitaxially grown.
  • the donor impurity is at least one element selected from the group consisting of Si, Se, Ge, Sn, Te and S, for example.
  • a hydride of the above element or an alkylated product having an alkyl group having 1 to 3 carbon atoms can be used.
  • Si can be selected as a donor impurity
  • disilane (Si 2 H 6 ) can be used as an N-type dopant.
  • the semiconductor substrate 100 can be manufactured through the manufacturing process including the above steps.
  • FIG. 5 is a flowchart showing an example of a method for determining the quality of a semiconductor substrate.
  • the semiconductor substrate determination method of this embodiment includes a step S510 of preparing a semiconductor substrate, a step S520 of placing an ohmic electrode, a step S530 of measuring a current value with respect to a voltage, and approximating the measured value to an approximate polynomial. Step S540 and determination step S550.
  • the semiconductor substrate is, for example, the semiconductor substrate 100, the semiconductor substrate 300, or the semiconductor substrate 400. In this example, a method for manufacturing the semiconductor substrate 100 will be described.
  • step S510 of preparing a semiconductor substrate the semiconductor substrate 100 is prepared.
  • step S520 of arranging the ohmic electrodes a pair of ohmic electrodes is arranged on the surface of the stacked body including the compound semiconductor 114, the carrier supply semiconductor 120, and the mobility reducing semiconductor 116.
  • step S530 of measuring the current value with respect to the voltage a voltage is applied to the pair of ohmic electrodes, and the current value is measured for each applied voltage.
  • step S540 of approximating the measured value to an approximate polynomial the current value for each voltage is approximated to an approximate polynomial expressed by the electric field strength corresponding to the voltage.
  • the determination step S550 it is determined whether or not the absolute value of the ratio of the third-order coefficient to the first-order coefficient in the approximated approximation polynomial is smaller than a predetermined value.
  • the quality of the semiconductor substrate is determined according to the determination result. Specifically, when the absolute value of the ratio of the third-order term coefficient to the first-order term coefficient is smaller than a predetermined value, the linearity of the voltage-current characteristic is good due to the effect that the semiconductor substrate has a mobility-reducing semiconductor. Since it is considered to be present, the measured semiconductor substrate may be determined to be a non-defective product.
  • a semiconductor substrate 600 shown in FIG. 6 is an example of an evaluation semiconductor substrate used in the determination method shown in FIG.
  • the semiconductor substrate 600 includes a base substrate 602, a buffer layer 604, a carrier supply semiconductor 608, a mobility reduction semiconductor 612, a compound semiconductor 614, a mobility reduction semiconductor 616, a carrier supply semiconductor 620, a barrier formation semiconductor 621, an ohmic electrode 622, and an ohmic electrode.
  • An electrode 624 is provided.
  • the base substrate 602 corresponds to the base substrate 302 in the semiconductor substrate 300.
  • the buffer layer 604 corresponds to the buffer layer 304.
  • the carrier supply semiconductor 608 and the carrier supply semiconductor 620 correspond to the carrier supply semiconductor 308 and the carrier supply semiconductor 320.
  • the mobility reduction semiconductor 612 and the mobility reduction semiconductor 616 correspond to the mobility reduction semiconductor 312 and the mobility reduction semiconductor 316.
  • the compound semiconductor 614 corresponds to the compound semiconductor 314.
  • the barrier forming semiconductor 621 corresponds to the barrier forming semiconductor 330.
  • the semiconductor substrate 600 is, for example, a semiconductor substrate formed by arranging an ohmic electrode 622 and an ohmic electrode 624 instead of the contact layer 340 of the semiconductor substrate 300.
  • a semiconductor substrate including 616, a carrier supply semiconductor 620, and a barrier formation semiconductor 621 is prepared.
  • the semiconductor substrate 600 is prepared using the above-described semiconductor substrate manufacturing method, in which the buffer layer 604, the carrier supply semiconductor 608, the mobility reduction semiconductor 612, the compound semiconductor 614, the mobility reduction semiconductor 616, and the carrier supply semiconductor are sequentially formed on the base substrate 602. 620 and the barrier-forming semiconductor 621 are terminated by epitaxial growth.
  • an ohmic electrode 622 and an ohmic electrode 624 are formed on the surface of the barrier forming semiconductor 621.
  • the ohmic electrode 622 and the ohmic electrode 624 are used for voltage application and current value measurement.
  • the ohmic electrode 622 and the ohmic electrode 624 are formed by, for example, forming a resist mask on the surface of the carrier supply semiconductor 620 with openings at the portions where the ohmic electrode 622 and the ohmic electrode 624 are formed, by photolithography, for example. Is formed after the resist is lifted off.
  • the material of the ohmic electrode 622 and the ohmic electrode 624 may be a conductive material, for example, a metal such as Au, Ni, Al, W, and Ti, an alloy such as AuGe, or a semiconductor doped with impurities. .
  • the ohmic electrode 622 and the ohmic electrode 624 may have a structure in which the above conductive materials are stacked.
  • step S530 for measuring voltage versus current a voltage changing in a certain voltage range is applied between the ohmic electrode 622 and the ohmic electrode 624, and a current value is measured for each applied voltage.
  • An example of the measurement result is indicated by a square symbol in FIG. 7 described later.
  • step S540 of approximating the measured value to a polynomial the current value measured for each voltage is approximated to a polynomial of the electric field strength corresponding to each voltage using the least square method.
  • x is a variable representing electric field strength
  • y is a variable representing current.
  • a is a third-order term coefficient
  • b is a second-order term coefficient
  • c is a first-order term coefficient.
  • step S550 for determining the linearity of the voltage-current characteristic the absolute value
  • the smaller the absolute value of the coefficient of the third-order term the better the linearity of the voltage-current curve and the better the voltage-current characteristics of the electronic element. Furthermore, it can be considered that as the coefficient of the first-order term increases, the rise of the current curve increases and the on-resistance decreases. Therefore, the smaller the absolute value
  • the linearity of the voltage-current characteristic is good or not using the absolute value
  • is less than 0.037 [(kV / cm) ⁇ 2 ], preferably 0.030 [(kV / cm) ⁇ 2 ] or less, more preferably 0.028.
  • the semiconductor substrate whose voltage-current characteristics are measured may be determined as a good product.
  • the semiconductor substrate determination method will be described with examples.
  • the linearity of the voltage-current characteristic was determined using the semiconductor substrate 400 shown in FIG.
  • the base substrate 402 a high-resistance semi-insulating GaAs single crystal substrate was used.
  • the buffer layer 404, the buffer layer 406, the carrier supply semiconductor 408, the spacer layer 410, the mobility reduction semiconductor 412, the compound semiconductor 414, the mobility reduction semiconductor 416, the spacer layer 418, and the carrier supply are sequentially applied to the base substrate 402.
  • the semiconductor substrate 400 and the barrier-forming semiconductor 430 were epitaxially grown to prepare the semiconductor substrate 400.
  • Table 1 shows the composition, film thickness, and impurity concentration of each of the above layers.
  • the impurity concentration of the N-type impurity in the mobility reducing semiconductor 412 and the mobility reducing semiconductor 416 is 1.0 ⁇ 10 17 , 5.0 ⁇ 10 17 , 1.0 ⁇ 10 18 , 2.6 ⁇ 10 18 without doping.
  • Seven types of semiconductor substrates 400 were manufactured by changing the thickness to 4.4 ⁇ 10 18 and 6.0 ⁇ 10 18 (cm ⁇ 3 ). The current flowing when a voltage was applied to each semiconductor substrate 400 was measured, and the linearity of the voltage-current characteristic was determined.
  • trimethylgallium TMG
  • arsine AsH 3
  • Group 5 element material gas Arsine
  • TMA trimethylaluminum
  • TMI trimethylindium
  • High purity hydrogen was used as a raw material carrier gas.
  • Epitaxial growth was carried out at a reduced pressure barrel MOCVD furnace pressure of 0.1 atm, a growth temperature of 650 ° C., and a growth rate of 1 to 3 ⁇ m / hr.
  • Disilane Si 2 H 6
  • a resist mask having an opening formed by a photolithography method at a portion where an ohmic electrode is to be formed was formed on the barrier-forming semiconductor 430.
  • AuGe, Ni, and Au were sequentially deposited on the barrier forming semiconductor 430, and the resist was lifted off to provide two electrodes having a size of 150 ⁇ m ⁇ 200 ⁇ m and a distance of 6 ⁇ m.
  • the length of the sides of the electrodes facing each other at an interval of 6 ⁇ m is 200 ⁇ m.
  • FIG. 7 shows an electric field strength-current curve of the semiconductor substrate 400 in which the impurity concentration of the mobility-reducing semiconductor 412 and the mobility-reducing semiconductor 416 is 4.4 ⁇ 10 18 (cm ⁇ 3 ).
  • the horizontal axis represents the applied electric field strength, and the vertical axis represents the measured current.
  • Square symbols in FIG. 7 indicate measured values.
  • is shown in Table 2.
  • FIG. 8 is a table summarizing the results shown in Table 2 with the impurity concentration of the mobility reducing semiconductor 412 and the mobility reducing semiconductor 416 as the horizontal axis and the linearity index
  • This figure shows the influence of the impurity concentration of the mobility-reducing semiconductor on the linearity index.
  • the triangle symbols in FIG. 8 indicate the linearity index of the electric field strength-current curve in the semiconductor substrate 400 that is not doped. When not doped, the linearity index was 0.037 [(kV / cm) ⁇ 2 ]. That is, in the semiconductor substrate 400 that does not have the mobility-reducing semiconductor 416, the linearity index is considered to be 0.037 [(kV / cm) ⁇ 2 ].
  • the square symbols in FIG. 8 indicate the linearity index of the electric field strength-current curve in the semiconductor substrate 400 in which the mobility-reducing semiconductor 412 and the mobility-reducing semiconductor 416 are doped with donor impurities.
  • the impurity concentration exceeds 0 and falls below 3.8 ⁇ 10 18 (cm ⁇ 3 )
  • the linearity better than the voltage versus current characteristics of the undoped semiconductor substrate 400 is shown.
  • the impurity concentration in the range of 2 ⁇ 10 16 (cm ⁇ 3 ) or more and 3.6 ⁇ 10 18 (cm ⁇ 3 ) or less in the semiconductor substrate 400 that does not include the conventional mobility-reducing semiconductor 416.
  • the semiconductor substrate 400 is a non-defective product when the linearity index
  • the linearity index is 0.038 [(kV / cm) ⁇ 2 ], and the semiconductor The linearity was worse than when the substrate 400 did not have the mobility-reducing semiconductor 416. This is considered to be caused by the fact that the primary term coefficient c is reduced as shown in Table 2 and the resistance of the mobility reducing semiconductor 416 is increased. Specifically, when the impurity concentration of the mobility-reducing semiconductor 416 is too high, the effect of impurity scattering also reduces the mobility of carriers in the ground state, which offsets the effect of reducing the third-order term coefficient a. by.
  • the mobility-reducing semiconductor 416 is 3.6 ⁇ 10 18 [cm ⁇ 3 ] or less, preferably 3.0 ⁇ 10 18 [cm ⁇ 3]. ], More preferably 1.0 ⁇ 10 18 [cm ⁇ 3 ] or less, and further preferably 0.5 ⁇ 10 18 [cm ⁇ 3 ] or less of the N-type GaAs layer containing donor impurities.
  • the above semiconductor substrate determination method it is possible to determine whether or not a semiconductor substrate formed by epitaxial growth is suitable for forming a transistor in a state where no transistor is formed on the semiconductor substrate.
  • FIG. 9 shows an example of a cross section of the electronic device 900.
  • the electronic device 900 includes a base substrate 302, a buffer layer 304, a carrier supply semiconductor 308, a mobility reduction semiconductor 312, a compound semiconductor 314, a mobility reduction semiconductor 316, a carrier supply semiconductor 320, a barrier formation semiconductor 330, a drain mesa 942, and an ohmic electrode 952.
  • the electronic device 900 is an example of a high electron mobility transistor manufactured using the semiconductor substrate 300. Therefore, description of portions common to the semiconductor substrate 300 is omitted.
  • “Drain mesa” or “source mesa” means a convex semiconductor region in which a drain or a source is formed.
  • the ohmic electrode 952 and the ohmic electrode 954 function as a drain electrode and a source electrode of the high electron mobility transistor, respectively.
  • the material of the ohmic electrode 952 and the ohmic electrode 954 may be a conductive material, for example, a metal such as Au, Ni, Al, W, or Ti, an alloy such as AuGe, or a semiconductor doped with impurities. it can.
  • the ohmic electrode 622 and the ohmic electrode 624 may have a stacked structure of the above conductive materials.
  • the drain mesa 942 ensures conductivity between the ohmic electrode 952 and the semiconductor below the barrier forming semiconductor 330.
  • the source mesa 944 ensures conductivity between the ohmic electrode 954 and the semiconductor below the barrier forming semiconductor 330.
  • the material of the drain mesa 942 and the source mesa 944 is, for example, GaAs or InGaAs.
  • the control electrode 956 controls the drain current flowing between the ohmic electrode 952 and the ohmic electrode 954 according to the applied voltage.
  • the material of the control electrode 956 is, for example, Ni, Au, Pt, Ti, or W.
  • the material of the control electrode 956 may be a single element of the metal or an alloy of the metal.
  • the control electrode 956 may have a laminated structure of a single element or alloy of the metal.
  • the semiconductor substrate 300 is prepared by the semiconductor substrate manufacturing method described above.
  • a drain mesa 942 and a source mesa 944 are formed by a method such as etching the contact layer 340 by a photolithography method.
  • a resist is applied to the surface of the contact layer 340, and the resist other than the portions where the drain mesa 942 and the source mesa 944 are formed is removed to form a mask.
  • the drain mesa 942 and the source mesa 944 can be formed by removing the contact layer 340 other than the portions where the drain mesa 942 and the source mesa 944 are formed by etching.
  • a resist mask in which openings are formed in portions where the ohmic electrode 952 and the ohmic electrode 954 are to be formed is formed by photolithography.
  • the ohmic electrode 952 and the ohmic electrode 954 are formed by sequentially depositing materials for forming the ohmic electrode 952 and the ohmic electrode 954, for example, AuGe, Ni, and Au, and then lifting off the resist.
  • a resist mask having an opening formed at a portion where the control electrode 956 is formed is formed by a photolithography method, a material for forming the control electrode 956 is deposited, and then the resist is lifted off. A control electrode 956 is formed. Thereby, the electronic device 900 is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 電圧対電流特性の線形性が改善された高性能の化合物半導体エピタキシャル基板、その製造方法およびその判定方法を提供する。2次元キャリアガスを生成する化合物半導体と、当該化合物半導体にキャリアを供給するキャリア供給半導体と、当該化合物半導体と当該キャリア供給半導体との間に配置され、キャリアの移動度を当該化合物半導体におけるキャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体とを備える半導体基板を提供する。

Description

半導体基板、半導体基板の製造方法、半導体基板の判定方法、および電子デバイス
 本発明は、半導体基板、半導体基板の製造方法、半導体基板の判定方法、および電子デバイスに関する。
 特開平7-14850号公報は、アンドープGaAs層とアンドープInGaAs層とを活性層とし、一部にSiを添加したAlGaAs層によって活性層を挟んだ構造のヘテロ接合電界効果トランジスタを開示する。特開平10-56168号公報は、電界効果トランジスタの下部キャリア供給層とチャネル層との界面近傍の電子親和力の差が、チャネル層と上部キャリア供給層との界面近傍の電子親和力の差よりも大きい電界効果トランジスタを開示する。特開平11-354776号公報は、半絶縁性GaAs基板上に、n型AlGaAsキャリア供給層、アンドープAlGaAsスペーサー層、アンドープGaAsチャネル層、アンドープInGaAsチャネル層、アンドープGaAsスペーサー層、およびn型GaAsチャネル層を順に積層した結晶積層体を用いたHEMT(High Electron Mobility Transistor)素子を開示する。
 特開2000-183334号公報は、GaAsの半絶縁性基板上に、GaAs、AlGaAsのバッファ層、n型AlGaAsの下側電子供給層、i型InGaAsのチャネル層、n型AlGaAsの上側電子供給層、i型AlGaAsのショットキー層、n型GaAs等によるオーミックコンタクト層、WSiからなるゲート電極、ならびに、Au、Ge、またはNiからなるソース電極およびドレイン電極を有するヘテロ接合型電界効果トランジスタを開示する。当該トランジスタにおいて、上側電子供給層のNt積はヘテロ結合界面の最大シートキャリア濃度の約1.4倍であり、下側電子供給層のNt積は最大シートキャリア濃度の1.0倍~2.0倍の範囲内である。
 (特許文献1)特開平7-14850号公報 
 (特許文献2)特開平10-56168号公報 
 (特許文献3)特開平11-354776号公報
 (特許文献4)特開2000-183334号公報
 上記の引用文献1から引用文献4に開示の発明により、ヘテロ接合電界効果トランジスタの歪特性が改善される。しかし、これらの発明においては、励起状態の電子が電圧対電流特性の線形性に悪影響を及ぼす因子の一つであることが考慮されていない。従って、当該発明を実施したヘテロ接合電界効果トランジスタの電圧対電流特性の線形性は低く、ヘテロ接合電界効果トランジスタが出力する電流波形には歪みが生じる。そこで、本発明は、より優れた歪み特性を有するトランジスタの製造に適した、優れた電圧対電流特性の線形性を有する半導体基板を提供することを目的とする。
 本発明の第1の態様においては、2次元キャリアガスを生成する化合物半導体と、当該化合物半導体にキャリアを供給するキャリア供給半導体と、当該化合物半導体と当該キャリア供給半導体との間に配置され、キャリアの移動度を当該化合物半導体におけるキャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体とを備える半導体基板を提供する。移動度低減半導体の内部では、基底状態にあるキャリアの存在確率よりも励起状態にあるキャリアの存在確率の方が高い。励起状態は、例えば、キャリアが第1励起準位にある状態である。
 当該化合物半導体上の異なる2点間に電圧が印加された場合に化合物半導体を流れる電流yを、電圧に対応し、-1.5[kV/cm]以上、+1.5[kV/cm]以下の範囲内で変化する電界強度xを変数とする近似多項式y=ax+bx+cxで表した場合に、近似多項式における3次項係数aの1次項係数cに対する比の絶対値|a/c|が、0.037[(kV/cm)-2]未満である。移動度低減因子は、例えば不純物、結晶欠陥、低移動度材、またはバンド障壁材のいずれかである。
 例えば、キャリアは電子であり、不純物はドナー不純物である。キャリアは正孔であり、不純物はアクセプタ不純物であってもよい。また、例えば、キャリア供給半導体は、N型AlGaAsであり、移動度低減半導体は、P型でないGaAsであり、化合物半導体は、InGaAsである。
 移動度低減半導体は、例えば3.6×1018[cm-3]以下のドナー不純物を含むN型GaAsである。ドナー不純物は、例えばSi、Se、Ge、Sn、Te、およびSからなる群から選択された少なくとも一つの元素である。
 本発明の第2の態様においては、2次元キャリアガスを生成する化合物半導体を形成する段階と、当該化合物半導体上に、キャリアの移動度を当該化合物半導体におけるキャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体を形成する段階と、当該移動度低減半導体上に、当該化合物半導体にキャリアを供給するキャリア供給半導体を形成する段階とを備える半導体基板の製造方法を提供する。
 本発明の第3の態様においては、2次元キャリアガスを生成する組成を有する化合物半導体と、当該化合物半導体にキャリアを供給するキャリア供給半導体と、当該化合物半導体と当該キャリア供給半導体との間に配置され、キャリアの移動度を当該化合物半導体におけるキャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体とを含む半導体基板を準備する段階と、当該化合物半導体上に一対のオーミック電極を配置する段階と、一対のオーミック電極に電圧を印加し、印加する電圧に対応する電流値を測定する段階と、電圧に対応する電流値を、電圧に対応する電界強度の近似多項式に近似する段階と、近似多項式における3次項係数の1次項係数に対する比の絶対値が、予め定められた値より小さいか否かを判断する段階とを含む半導体基板の判定方法を提供する。当該判定方法においては、電界強度が-1.5[kV/cm]以上、+1.5[kV/cm]以下の範囲内で変化する場合において、3次項係数の1次項係数に対する比の絶対値が0.037[(kV/cm)-2]未満の場合に、半導体基板を良品と判定してよい。
 本発明の第4の態様においては、2次元キャリアガスを生成し、2次元キャリアガスが流れるチャネルを有する化合物半導体と、当該化合物半導体にキャリアを供給するキャリア供給半導体と、当該化合物半導体と当該キャリア供給半導体との間に配置され、キャリアの移動度を当該化合物半導体におけるキャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体と、チャネルを介して相互に結合する一対のオーミック電極と、一対のオーミック電極間のインピーダンスを制御する制御電極と、を備える電子デバイスを提供する。
 なお、本明細書において、「A上のB(B on A)」は「BがAに接する場合」、および、「BとAとの間に他の部材が存在する場合」の両方の場合を含む。
半導体基板100の断面の一例を概略的に示す。 半導体基板におけるエネルギーバンドダイヤグラムの一例を示す。 半導体基板300の断面の一例を示す。 半導体基板400の断面の一例を示す。 半導体基板の判定方法の一例を表すフローチャートを示す。 評価用半導体基板の一例である。 電界強度-電流曲線を示す。 線形性指標に及ぼす移動度低減半導体の不純物濃度の影響を示す。 電子デバイス900の断面の一例を示す。 電子デバイス900の製造過程における断面例を示す。 電子デバイス900の製造過程における断面例を示す。
 図1は、半導体基板100の断面の一例を概略的に示す。半導体基板100は、ベース基板102、化合物半導体114、移動度低減半導体116、およびキャリア供給半導体120を備える。
 ベース基板102は、半導体基板100における他の構成要素を支持する基板である。ベース基板102は、例えば、Ge基板、GOI(germanium-on-insulator)基板、または、GaAs、InGaAs、AlGaAs、GaN、およびAlGaN等の3-5族半導体基板である。ベース基板102は、Si基板、SOI(silicon-on-insulator)基板、サファイア基板、ガラス基板、またはPETフィルム等の樹脂基板であってもよい。ベース基板102は、バッファ層を含んでもよい。ベース基板102は、例えばウェハ状の形状を有する。
 化合物半導体114は、2次元キャリアガスを生成する。2次元キャリアガスとは、伝導電子または正孔の何れかであるキャリアの集まりであって、当該キャリアが2次元方向には自由に運動できるが、当該2次元方向と垂直な方向には量子効果が表れる程度に束縛されているものをいう。量子効果は、キャリアのエネルギー準位が離散的な準位になる現象である。化合物半導体114は、例えばInGaAs、GaAs、またはInGaP等の3-5族化合物半導体である。化合物半導体114は、GaNなどのようにピエゾ効果を有する化合物半導体であってもよい。
 移動度低減半導体116は、化合物半導体114とキャリア供給半導体120との間に配置されている。移動度低減半導体116は、キャリアの移動を抑制する移動度低減因子を有する。移動度低減半導体116が移動度低減因子を有するので、移動度低減半導体116におけるキャリアの移動度は、化合物半導体114におけるキャリアの移動度よりも小さい。
 ここで、本発明者による実験から、化合物半導体114の内部では、基底状態にあるキャリアの存在確率が、励起状態にあるキャリアの存在確率よりも高いことが確認された。これに対して、化合物半導体114に接する半導体においては、基底状態にあるキャリアの存在確率よりも励起状態にあるキャリアの存在確率の方が高いことも確認された。ここで、励起状態とは、キャリアが基底状態より高いエネルギー準位にある状態である。
 励起状態にあるキャリアは、トランジスタの電圧対電流特性に歪みを発生させる要因の一つである。例えば、半導体基板100が、ゲート電圧によりソースおよびドレイン間のチャネルを流れる電流を制御するトランジスタに用いられた場合には、励起状態にあるキャリアがチャネルに含まれていると、ゲート電圧に対するソース-ドレイン間電流の線形性が低下する。
 そこで、励起状態の電子の存在確率が高い、化合物半導体114に接する半導体に、キャリアの移動度を低減させる移動度低減半導体116を設けることにより、電圧対電流特性の線形性を悪化させる要因となる励起状態のキャリアの移動度を低減させることができる。その結果、半導体基板100がトランジスタ等の電子素子に用いられた場合に、電子素子の電圧対電流特性の線形性が向上する。
 移動度低減半導体116が含む移動度低減因子は、例えば、不純物、結晶欠陥、低移動度材、およびバンド障壁材である。キャリアが電子である場合には、ドナー不純物が移動度低減因子として機能する。また、キャリアが正孔である場合には、アクセプタ不純物が移動度低減因子として機能する。バンド障壁材は、例えば、化合物半導体114に比べてバンドギャップが大きな半導体である。
 化合物半導体114がN型2次元キャリアガスを生成するInGaAsである場合には、移動度低減半導体116は、例えばP型でないGaAsである。移動度低減半導体116は、3.6×1018[cm-3]以下、好ましくは3.0×1018[cm-3]以下、より好ましくは1.0×1018[cm-3]以下、さらに好ましくは0.5×1018[cm-3]以下のドナー不純物を含むN型GaAsであってもよい。当該ドナー不純物は、例えば、Si、Se、Ge、Sn、Te、およびSからなる群から選択された少なくとも一つの元素である。
 キャリア供給半導体120は、化合物半導体114にキャリアを供給する。キャリア供給半導体120の材料は、例えばGaAs、AlGaAs、およびInGaPである。化合物半導体114がN型2次元キャリアガスを生成する化合物半導体である場合には、キャリア供給半導体120は、例えばN型AlGaAsである。キャリア供給半導体120は、電極を有してもよい。半導体基板100は、当該電極と化合物半導体114との間に、2次元キャリアガスに対するバリアを形成するバリア層を有してもよい。
 半導体基板100の電圧対電流特性は、例えば、化合物半導体114上の異なる2点間に電圧を印加した場合に当該2点間を流れる電流を測定することにより得られる。半導体基板100を流れる電流をyとすると、電流yは、印加された電圧に応じて発生する電界の強度xを変数とする近似多項式y=ax+bx+cxで表すことができる。
 半導体基板100の電圧対電流特性の線形性の良否は、当該近似多項式における3次項係数aの1次項係数cに対する比の絶対値|a/c|の値により判断することができる。例えば、電界強度xが-1.5[kV/cm]以上、+1.5[kV/cm]以下の範囲内で変化する場合には、近似多項式における3次項係数aの1次項係数cに対する比の絶対値|a/c|が、0.037[(kV/cm)-2]未満である場合に、電圧対電流特性が良好であると判断することができる。
 図2は、半導体基板100におけるエネルギーバンドダイヤグラムの一例を示す。横軸は半導体基板100の断面における積層方向の位置を示す。なお、エネルギーバンドダイヤグラムは、シミュレーションにより求めた。図2においては、一例として、2次元キャリアガスを生成する化合物半導体114として機能する膜厚5nmのInGaAs層の両側に、移動度低減半導体116として機能する膜厚6nmのGaAs層が配置されている。InGaAs層及びGaAs層の膜厚としては、0.5nm以上100nm以下が好ましく、1nm以上50nm以下がさらに好ましい。
 曲線202は、伝導帯下端のエネルギー準位を示し、そのスケールが左縦軸によって表される。曲線202によれば、InGaAs層の伝導帯下端のエネルギー準位はGaAs層に比べて低く、かつ、GaAs層との界面近傍において最も低い。InGaAs層は、エネルギー準位が最も低い界面近傍において2次元キャリアガスを生成する。
 曲線204は、基底状態にある電子の波動関数を示し、そのスケールは右縦軸によって表される。電子の確率密度は、波動関数の二乗により表される。従って、曲線204によれば、2次元キャリアガスが形成されるInGaAs層における基底状態の電子の確率密度が、GaAs層における基底状態の電子の確率密度よりも高いことがわかる。
 曲線206は、励起状態にある電子の波動関数を示し、そのスケールは右縦軸によって表される。曲線206によれば、InGaAs層の両側のGaAs層においては、励起状態にある電子の存在確率が基底状態にある電子の存在確率よりも高いことがわかる。また、InGaAs層においては、基底状態にある電子の存在確率が励起状態にある電子の存在確率よりも高いことがわかる。以上より、2次元キャリアガスが形成されるInGaAs層には主に基底状態の電子が存在し、その両側のGaAs層には主に励起状態の電子が存在することがわかる。
 電界効果トランジスタ(Field Effect Transistor、FETと称する場合がある)あるいは高電子移動度トランジスタ(High Electron Mobility Transistor、HEMTと称する場合がある)などのプレーナ型の電子素子は、InGaAs層等で形成されたチャネル層中を流れる電流を、ゲート電極による電界で制御することによりトランジスタ特性を発揮する。トランジスタは、より高い電圧対電流特性の線形性を有することが好ましい。
 電圧対電流特性に寄与する電子のうち、基底状態にある電子の移動により電流が流れる場合には電圧対電流特性の線形性がよい。これに対して、励起状態にある電子の移動により電流が流れる場合には、電子のバンド間遷移により、電界強度の変化に対する電子の移動量の変化が線形でなくなる。従って、励起状態の電子の存在確率が高い場合には、電圧対電流特性の線形性が悪い。
 そこで、励起状態の電子の流れを抑制して移動度を低減して、主として基底状態の電子によりトランジスタのチャネル電流を発生させることによって、基底状態の電子が電圧対電流特性に寄与する比率を上げることができる。その結果、トランジスタの電圧対電流特性の線形性が向上する。
 図2の例において、励起状態の電子は、InGaAs層の両側のGaAs層に多く存在する。そこで、GaAs層に移動度低減因子を加え、励起状態の電子の流れを抑制することにより、InGaAs層に存在する基底状態の電子が電圧対電流特性に寄与する比率を上げることができる。
 化合物半導体114がN型2次元キャリアガスを生成するInGaAsである場合には、移動度低減因子はN型の不純物であることが好ましい。例えば、移動度低減半導体116がGaAs層である場合には、N型の不純物をGaAs層にドーピングすることにより、チャネルに蓄積される電子濃度が保たれるとともに、チャネルとデバイス表面に設けられた電極との間の縦方向電子抵抗の増加を防ぐことができる。
 移動度低減半導体116として機能するGaAs層における励起状態の電子の移動度を低減するには、キャリア濃度を高めることが必要である。しかし、キャリア濃度が高過ぎる場合には、基底状態の電子の移動度も低減するので、チャネル層を走行する基底状態の電子の平均移動度が低減する。
 本発明者等の実験結果によれば、移動度低減半導体116がGaAs層である場合に、N型の不純物をドーピングした移動度低減半導体116のキャリア濃度は、3.6×1018[cm-3]以下であることが好ましい。当該キャリア濃度は、3.0×1018[cm-3]以下であってもよく、より好ましくは1.0×1018[cm-3]以下、さらに好ましくは0.5×1018[cm-3]以下である。このような条件に適合する場合、優れた線形性を持った電圧対電流特性を有する化合物半導体エピタキシャル基板を得られる。なお、キャリア濃度が3×1018[cm-3]以上の場合は、電圧対電流特性をホール測定法により測定し、キャリア濃度が3×1018[cm-3]未満の場合は、電圧対電流特性を容量電圧(CV)法により測定することが精度の点で好ましい。
 図3は、半導体基板300の断面の一例を示す。半導体基板300は、ベース基板302、バッファ層304、キャリア供給半導体308、移動度低減半導体312、化合物半導体314、移動度低減半導体316、キャリア供給半導体320、バリア形成半導体330、およびコンタクト層340を備える。
 ベース基板302およびバッファ層304は、半導体基板100におけるベース基板102に対応する。キャリア供給半導体308およびキャリア供給半導体320は、キャリア供給半導体120に対応する。移動度低減半導体312および移動度低減半導体316は、移動度低減半導体116に対応する。化合物半導体314は、化合物半導体114に対応する。また、半導体基板300は、コンタクト層340を有する点で半導体基板100と異なっている。
 半導体基板300は、化合物半導体314の両側に、キャリア供給半導体308およびキャリア供給半導体320を有する。当該構成により、化合物半導体314が生成する2次元キャリアガスのキャリア数が増加するので、電子素子の性能が高まる。また、半導体基板300は、化合物半導体314の両側に、移動度低減半導体312および移動度低減半導体316を有する。図2に示したように、化合物半導体314であるInGaAsの両側にあるGaAsに励起状態の電子が多く存在する。従って、半導体基板300が化合物半導体314の両側に移動度低減因子を有する移動度低減半導体312および移動度低減半導体316を有することで、半導体基板300の電圧対電流特性の線形性を高めることができる。
 バッファ層304は、上層に形成される化合物半導体314等の結晶質を確保するとともに、ベース基板302の表面に残留する不純物による半導体基板300の特性劣化を防ぐ。バッファ層304は、上層に形成される半導体層からのリーク電流を抑制する。バッファ層304は、上層に形成される化合物半導体314とベース基板302との間の格子間距離を整合させる緩衝層としても機能する。バッファ層304の材料は、例えばGaAsまたはAlGaAsである。
 バリア形成半導体330は、FET等の電子素子のチャネルを流れる電流を制御する電圧を印加する制御電極と2次元キャリアガスとの間のエネルギー障壁を形成する。例えば、制御電極が金属で構成された場合には、バリア形成半導体330と当該金属とのショットキー接合によりエネルギー障壁が形成される。バリア形成半導体330の材料は、例えばAlGaAsである。
 コンタクト層340は、半導体基板300の上に形成される制御電極とバリア形成半導体330以下の半導体との間の伝導性を確保する。コンタクト層340の材料は、例えばGaAsまたはInGaAsである。
 移動度低減半導体312および移動度低減半導体316が移動度低減因子を有することにより、移動度低減半導体312および移動度低減半導体316に存在する励起状態の電子の移動度が、化合物半導体314の移動度よりも低くなる。そして、化合物半導体314に存在する基底状態の電子の流れが、半導体基板300に形成されるトランジスタのチャネル電流の主流となるので、電圧対電流特性に寄与する基底状態の電子の比率を上げることができる。その結果、半導体基板300における電圧対電流特性の線形性が向上する。本実施態様による半導体基板300を用いることにより、高周波信号の歪み特性が良好な電子素子を製造することができる。
 図4は、半導体基板400の断面の一例を示す。半導体基板400は、ベース基板402、バッファ層404、バッファ層406、キャリア供給半導体408、スペーサー層410、移動度低減半導体412、化合物半導体414、移動度低減半導体416、スペーサー層418、キャリア供給半導体420、およびバリア形成半導体430を備える。半導体基板400は、バリア形成半導体430の上に更にコンタクト層340を備えてもよい。
 ベース基板402は、半導体基板300におけるベース基板302に対応する。キャリア供給半導体408およびキャリア供給半導体420は、それぞれキャリア供給半導体308およびキャリア供給半導体320に対応する。移動度低減半導体412および移動度低減半導体416は、それぞれ移動度低減半導体312および移動度低減半導体316に対応する。化合物半導体414は、化合物半導体314に対応する。
 半導体基板400は、バッファ層404およびバッファ層406を含む二重バッファ構造を有する。また、半導体基板400は、スペーサー層410およびスペーサー層418を有する点で半導体基板300と異なる。
 バッファ層404およびバッファ層406により構成される二重バッファ構造は、化合物半導体414とベース基板402との格子間距離の違いを整合させる緩衝層の効果を高める。二重バッファ構造は、化合物半導体414に及ぼすベース基板402の不純物の影響を更に抑制する。二重バッファ構造は、リーク電流を更に低減する。バッファ層404またはバッファ層406の材料は、例えばGaAsまたはAlGaAsである。
 スペーサー層410およびスペーサー層418は、それぞれ、キャリア供給半導体408および化合物半導体414との間、ならびにキャリア供給半導体420および化合物半導体414の間に形成される。スペーサー層410およびスペーサー層418は、キャリア供給半導体408およびキャリア供給半導体420内の不純物が化合物半導体414に拡散することを抑制する。また、スペーサー層410およびスペーサー層418は、化合物半導体414におけるキャリアの移動度が不純物イオン散乱により低減することを防ぐ。スペーサー層410またはスペーサー層418の材料は、例えばAlGaAsである。
 バリア形成半導体430は、バリア形成半導体430に形成される電極が制御電極として機能するためのエネルギー障壁を形成する。バリア形成半導体430の材料は、例えばAlGaAsである。
 上記のとおり、半導体基板400は、バッファ層404およびバッファ層406により構成する二重バッファを有することによって、化合物半導体414の結晶質を高めることができる。その結果、リーク電流を低減することができる。また、半導体基板400は、スペーサー層410とスペーサー層418とを有することにより、化合物半導体414における電子の不純物イオン散乱を防ぐことができる。従って、半導体基板400を用いてトランジスタを形成した場合には、トランジスタの電圧対電流特性の線形性が向上する。
 以下に、図1に示した半導体基板100の製造方法について説明する。本実施形態の半導体基板製造方法は、2次元キャリアガスを生成する化合物半導体114をベース基板102に形成する段階と、化合物半導体114に接して、キャリアの移動を抑制する移動度低減因子を有する移動度低減半導体116を形成する段階と、移動度低減半導体116に接して、化合物半導体114にキャリアを供給するキャリア供給半導体120を形成する段階とを備える。
 化合物半導体114を形成する段階において、ベース基板102を反応炉に載置し、ベース基板102上に化合物半導体114をエピタキシャル成長させる。ベース基板102は、例えば、高抵抗の半絶縁性GaAs単結晶基板である。GaAs単結晶基板は、例えばLEC(Liquid Encapsulated Czochralski)法、VB(Vertical Bridgman)法、VGF(Vertical Gradient Freezing)法等で製造されたGaAs基板である。また、GaAs単結晶基板は、1つの結晶学的面方位から0.05°~10°程度の傾きをもった基板であってもよい。エピタキシャル成長法として、有機金属気相成長法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法と称する場合がある)、分子線エピタキシー法(Molecular Beam Epitaxy、以下、MBE法と称する場合がある)を例示できる。
 以下、MOCVD法を用いて、化合物半導体114をエピタキシャル成長させる方法を説明する。まず、GaAs単結晶のベース基板102の表面を、脱脂洗浄、エッチング、水洗、乾燥した後、当該ベース基板102を減圧バレル型MOCVD炉の加熱台上に載置する。炉内を高純度水素で十分置換した後、ベース基板102の加熱を開始する。結晶成長時の基板温度は、例えば500℃から800℃のいずれかの温度である。ベース基板102が適切な温度に安定したところで炉内に砒素原料を導入し、続いてガリウム原料またはインジウム原料を導入して、InGaAs層をエピタキシャル成長させる。
 3族元素原料として、トリメチルガリウム(TMG)およびトリメチルインジウム(TMI)等、各金属原子に炭素数が1から3のアルキル基もしくは水素が結合したトリアルキル化物、もしくは三水素化物を使用することができる。5族元素原料ガスとして、アルシン(AsH)、またはアルシンに含まれる少なくとも一つの水素原子を炭素数が1から4のアルキル基で置換したアルキルアルシンを使用することができる。
 エピタキシャル成長条件は、一例として、反応炉内圧力0.1atm、成長温度650℃、成長速度1~3μm/hrである。原料のキャリアガスは、例えば高純度水素である。後述の移動度低減半導体116およびキャリア供給半導体120も、同じMOCVD法を用いて、原料ガス、炉内圧力、成長温度、成長時間等のパラメータを調整することによって、エピタキシャル成長させることができる。
 移動度低減半導体116を形成する段階において、化合物半導体114に接して、移動度低減半導体116をエピタキシャル成長させる。移動度低減半導体116は、例えばN型GaAsである。この場合に、例えばドナー不純物が移動度低減因子となる。エピタキシャル成長法として、MOCVD法、MBE法を例示できる。例えば、3族元素原料として、トリメチルガリウム(TMG)を使用し、5族元素原料ガスとして、アルシン(AsH)を使用して、MOCVD法によって、N型GaAsの移動度低減半導体116をエピタキシャル成長させることができる。
 ドナー不純物は、例えばSi、Se、Ge、Sn、TeおよびSからなる群から選択された少なくとも一つの元素である。N型ドーパントとして、上記元素の水素化物または炭素数が1から3のアルキル基を有するアルキル化物を用いることができる。例えば、ドナー不純物としてSiを選択し、N型ドーパントとしてジシラン(Si)を用いることができる。
 形成される移動度低減半導体116は、3.6×1018[cm-3]以下、好ましくは3.0×1018[cm-3]以下、より好ましくは1.0×1018[cm-3]以下、さらに好ましくは0.5×1018[cm-3]以下の濃度のドナー不純物を含む。ドナー不純物としてSiを選択した場合、エピタキシャル成長時のジシラン流量を調整することによって不純物濃度を変化させることができる。ここで、不純物濃度とは、移動度低減半導体116に含まれるドナー不純物の濃度である。
 キャリア供給半導体120を形成する段階において、移動度低減半導体116上に、キャリア供給半導体120をエピタキシャル成長させる。キャリア供給半導体120は、例えばN型AlGaAsである。この場合に、キャリア供給半導体120は化合物半導体114にキャリアとして電子を供給する。エピタキシャル成長法として、MOCVD法、MBE法を例示できる。
 例えば、3族元素原料として、トリメチルガリウム(TMG)とトリメチルアルミニウム(TMA)を使用し、5族元素原料ガスとして、アルシン(AsH)を使用して、MOCVD法によって、N型AlGaAsのキャリア供給半導体120をエピタキシャル成長させることができる。
 ドナー不純物は、例えばSi、Se、Ge、Sn、TeおよびSからなる群から選択された少なくとも一つの元素である。N型ドーパントとして、上記元素の水素化物または炭素数が1から3のアルキル基を有するアルキル化物を用いることができる。例えば、ドナー不純物としてSiを選択し、N型ドーパントとしてジシラン(Si)を用いることができる。以上の段階を含む製造工程を経て、半導体基板100を製造することができる。
 図5は、半導体基板の良否を判定する方法の一例を表すフローチャートを示す。図5に示すとおり、本実施態様の半導体基板の判定方法は、半導体基板を準備する段階S510、オーミック電極を配置する段階S520、電圧に対する電流値を測定する段階S530、測定値を近似多項式に近似する段階S540、および判断する段階S550を備える。当該半導体基板は、一例として、半導体基板100、半導体基板300、または半導体基板400である。本例においては、半導体基板100の製造方法を説明する。
 半導体基板を準備する段階S510においては、半導体基板100を準備する。オーミック電極を配置する段階S520においては、化合物半導体114、キャリア供給半導体120、および移動度低減半導体116を含む積層体の表面に一対のオーミック電極を配置する。
 電圧に対する電流値を測定する段階S530においては、一対のオーミック電極に電圧を印加し、印加する電圧ごとに電流値を測定する。測定値を近似多項式に近似する段階S540においては、電圧ごとの電流値を、電圧に対応する電界強度で表した近似多項式に近似する。
 判断する段階S550においては、近似した近似多項式における3次項係数の1次項係数に対する比の絶対値が予め定められた値より小さいか否かを判断する。当該判断結果に応じて、半導体基板の良否を判定する。具体的には、3次項係数の1次項係数に対する比の絶対値が予め定められた値より小さい場合には、半導体基板が移動度低減半導体を有する効果により電圧対電流特性の線形性が良好であると考えられるので、測定した半導体基板を良品であると判定してよい。
 図6に示す半導体基板600は、図5に示した判定方法において用いる評価用半導体基板の一例である。半導体基板600は、ベース基板602、バッファ層604、キャリア供給半導体608、移動度低減半導体612、化合物半導体614、移動度低減半導体616、キャリア供給半導体620、バリア形成半導体621、オーミック電極622、およびオーミック電極624を備える。
 ベース基板602は、半導体基板300におけるベース基板302に対応する。バッファ層604は、バッファ層304に対応する。キャリア供給半導体608およびキャリア供給半導体620は、キャリア供給半導体308およびキャリア供給半導体320に対応する。移動度低減半導体612および移動度低減半導体616は、移動度低減半導体312および移動度低減半導体316に対応する。化合物半導体614は、化合物半導体314に対応する。バリア形成半導体621は、バリア形成半導体330に対応する。半導体基板600は、例えば、半導体基板300のコンタクト層340に代えて、オーミック電極622およびオーミック電極624を配置して形成された半導体基板である。
 図5に示した半導体基板を準備する段階S510において、例えば、図6に示すように、ベース基板602、バッファ層604、キャリア供給半導体608、移動度低減半導体612、化合物半導体614、移動度低減半導体616、キャリア供給半導体620、およびバリア形成半導体621を備える半導体基板を準備する。
 半導体基板600の準備は、上記の半導体基板製造方法を用いて、ベース基板602に順次バッファ層604、キャリア供給半導体608、移動度低減半導体612、化合物半導体614、移動度低減半導体616、キャリア供給半導体620、およびバリア形成半導体621をエピタキシャル成長させることによって終了する。
 オーミック電極を配置する段階S520において、図6に示すように、バリア形成半導体621の表面に、オーミック電極622およびオーミック電極624を形成する。オーミック電極622およびオーミック電極624は、電圧の印加および電流値の測定に用いられる。オーミック電極622およびオーミック電極624は、例えばフォトリソグラフィ法により、キャリア供給半導体620の表面上に、オーミック電極622およびオーミック電極624を形成する部位に開口が形成されたレジストマスクを形成し、電極用金属を蒸着してからレジストをリフトオフすることによって形成される。
 オーミック電極622およびオーミック電極624の材料は、導電性の材料であればよく、例えば、Au、Ni、Al、W、およびTi等の金属、AuGe等の合金、または不純物がドープされた半導体である。オーミック電極622およびオーミック電極624は、上記の導電性材料が積層された構造を有してもよい。
 電圧対電流測定を行う段階S530においては、オーミック電極622とオーミック電極624との間に一定の電圧範囲で変化する電圧を印加して、印加する電圧ごとに電流値を測定する。後述する図7に四角記号で示されているのが、測定結果の一例である。
 測定値を多項式に近似する段階S540において、電圧ごとに測定した電流値を、最小二乗法を用いて、それぞれの電圧に対応する電界強度の多項式に近似する。当該多項式は、例えば下記の式1により表される。
 y=ax+bx+cx ・・・(式1)
 式1において、xは電界強度を表す変数であり、yは電流を表す変数である。また、aは3次項係数、bは2次項係数、cは1次項係数である。
 電圧対電流特性の線形性を判定する段階S550において、S540で得られた式1における1次項係数cに対する3次項係数aの比の絶対値|a/c|を算出する。さらに、絶対値|a/c|が予め定められた値より小さいか否かを判断することによって、電圧対電流特性の線形性が良好であるか否かを判定する。
 3次項の係数の絶対値が小さくなればなるほど、電圧対電流曲線の線形性が向上し、電子素子の電圧対電流特性が良好となると考えられる。さらに、1次項の係数が大きくなればなるほど、電流カーブの立ち上がりが大きくなり、オン抵抗が小さくなると考えられる。これらのことから、3次項係数aを1次項係数cの値で割った比の絶対値|a/c|が小さくなればなるほど、オン抵抗が小さく、電圧対電流特性が良好な化合物半導体エピタキシャル基板を得ることができる。
 従って、1次項係数cに対する3次項係数aの比の絶対値|a/c|を線形性指標として、電圧対電流特性の線形性の良否を判断することができる。線形性指標|a/c|が、0.037[(kV/cm)-2]未満の場合、好ましくは0.030[(kV/cm)-2]以下の場合、より好ましくは0.028[(kV/cm)-2]以下の場合に、電圧対電流特性を測定した半導体基板を良品と判定してよい。
(実施例)
 以下、実施例をもって、半導体基板判定方法を説明する。本実施例においては、図4に示した半導体基板400を用いて、電圧対電流特性の線形性の良否を判定した。ベース基板402としては、高抵抗の半絶縁性GaAs単結晶基板を用いた。前述のMOCVD法によって、ベース基板402に順次バッファ層404、バッファ層406、キャリア供給半導体408、スペーサー層410、移動度低減半導体412、化合物半導体414、移動度低減半導体416、スペーサー層418、キャリア供給半導体420、およびバリア形成半導体430をエピタキシャル成長させて、半導体基板400を準備した。
 上記各層の組成、膜厚、および不純物濃度を表1に示す。移動度低減半導体412および移動度低減半導体416におけるN型不純物の不純物濃度を、ドーピングなし、1.0×1017、5.0×1017、1.0×1018、2.6×1018、4.4×1018、6.0×1018(cm-3)と変化させて、7種類の半導体基板400を作製した。それぞれの半導体基板400に電圧を印加した場合に流れる電流を測定し、電圧対電流特性の線形性の良否を判定した。
Figure JPOXMLDOC01-appb-T000001
 GaAs層の形成においては、3族元素原料としてトリメチルガリウム(TMG)を使用し、5族元素原料ガスとしてアルシン(AsH)を使用した。AlGaAs層の形成においては、3族元素原料として更にトリメチルアルミニウム(TMA)を使用した。InGaAs層の形成においては、3族元素原料として更にトリメチルインジウム(TMI)を使用した。原料のキャリアガスとして、高純度水素を用いた。減圧バレル型MOCVD炉の炉内圧力を0.1atmに、成長温度を650℃に、成長速度を1~3μm/hrにしてエピタキシャル成長させた。N型ドーパントとしてジシラン(Si)を用い、成長時のジシラン流量を調整することによって、移動度低減半導体412および移動度低減半導体416の不純物濃度を変化させた。
 次に、オーミック電極を形成する部位にフォトリソグラフィ法により開口が形成されたレジストマスクを、バリア形成半導体430上に形成した。続いて、バリア形成半導体430上にAuGe、Ni、およびAuを順次に蒸着し、レジストをリフトオフすることによって、大きさが150μm×200μm、間隔が6μmの2つの電極を設けた。このとき6μmの間隔で対向している電極の辺の長さは200μmである。
 両電極の間に、-1.5kV/cmから+1.5kV/cmまでの範囲で電界強度が変化するように電圧を印加し、電流を測定した。図7は、移動度低減半導体412と移動度低減半導体416の不純物濃度が4.4×1018(cm-3)である半導体基板400の電界強度-電流曲線を示す。横軸は印加した電界強度を示し、縦軸は測定した電流を示す。図7における四角記号は測定値を示す。
 測定した結果に最小二乗法を適用して、3次の多項式に近似することにより、それぞれの半導体基板400に対応する電界強度と電流との関係を示す。3次近似多項式が得られた。具体的には、図7の測定結果に対応して、次の3次近似多項式2が得られた。また、図7に示した曲線が式2に対応する曲線である。図7は、式2が測定結果によくフィッティングしていることを示す。
 y=-0.000963x-0.000226x+0.0253x・・・(式2)
 移動度低減半導体412と移動度低減半導体416の不純物濃度を変化させた7種類の半導体基板400について得られた3次近似多項式における3次項係数a、1次項係数c、および線形性指標|a/c|を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図8は、移動度低減半導体412および移動度低減半導体416の不純物濃度を横軸に、線形性指標|a/c|を縦軸にして表2に示した結果をまとめた図面である。同図は、線形性指標に及ぼす移動度低減半導体の不純物濃度の影響を示す。図8における三角記号は、ドーピングしない半導体基板400における電界強度-電流曲線の線形性指標を示す。ドーピングしない場合には、線形性指標が0.037[(kV/cm)-2]であった。つまり、移動度低減半導体416を有しない半導体基板400においては、線形性指標が0.037[(kV/cm)-2]であると考えられる。
 図8における四角記号は、移動度低減半導体412および移動度低減半導体416にドナー不純物をドーピングした半導体基板400における電界強度-電流曲線の線形性指標を示す。不純物濃度が0を越え、3.8×1018(cm-3)を下回る範囲で、ドーピングしない半導体基板400の電圧対電流特性よりも良好な線形性を示した。測定誤差を考慮すると、不純物濃度が2×1016(cm-3)以上、3.6×1018(cm-3)以下の範囲で、従来の移動度低減半導体416を有しない半導体基板400における線形性指標|a/c|である0.037[(kV/cm)-2]を下回る良好な特性を得られた。
 以上の結果より、移動度低減半導体412および移動度低減半導体416を有する半導体基板400が、線形性が良好な電圧対電流特性を有するか否かを、化合物半導体414、キャリア供給半導体420、移動度低減半導体412、および移動度低減半導体416を含む積層体の電圧電流測定において、線形性指標|a/c|が、0.037[(kV/cm)-2]未満であるか否かによって判定できることがわかる。半導体基板400の電圧対電流特性の線形性を向上させるには、線形性指標|a/c|が0.030[(kV/cm)-2]以下である場合に半導体基板400を良品であると判定することが好ましく、0.028[(kV/cm)-2]以下であることを判定基準にすることがさらに好ましい。
 移動度低減半導体412および移動度低減半導体416の不純物濃度が4.4×1018[cm-3]の場合には、線形性指標が0.038[(kV/cm)-2]となり、半導体基板400が移動度低減半導体416を有しない場合よりも線形性が悪化した。これは、表2に示されるように1次項係数cが小さくなり、移動度低減半導体416における抵抗が大きくなったことが原因であると考えられる。具体的には、移動度低減半導体416の不純物濃度が大き過ぎる場合には、不純物散乱の影響により、基底状態のキャリアの移動度も低下し、3次項係数aが小さくなる効果が相殺されることによる。
 そこで、良好な線形性指標を有する半導体基板400を製造するには、移動度低減半導体416は、3.6×1018[cm-3]以下、好ましくは3.0×1018[cm-3]以下、より好ましくは1.0×1018[cm-3]以下、さらに好ましくは0.5×1018[cm-3]以下のドナー不純物を含むN型GaAs層であることがよい。
 以上の半導体基板判定方法によって、半導体基板にトランジスタを形成していない状態において、エピタキシャル成長により形成された半導体基板がトランジスタの形成に適しているかどうかを判定することができる。
 図9は、電子デバイス900の断面の一例を示す。電子デバイス900は、ベース基板302、バッファ層304、キャリア供給半導体308、移動度低減半導体312、化合物半導体314、移動度低減半導体316、キャリア供給半導体320、バリア形成半導体330、ドレインメサ942、オーミック電極952、ソースメサ944、オーミック電極954、および制御電極956を備える。電子デバイス900は、半導体基板300を用いて製造される高電子移動度トランジスタの一例である。従って、半導体基板300と共通する部分について、説明を省略する。なお、「ドレインメサ」あるいは「ソースメサ」は、ドレインあるいはソースが形成される凸形状の半導体領域を意味する。
 オーミック電極952およびオーミック電極954は、それぞれ高電子移動度トランジスタのドレイン電極およびソース電極として機能する。オーミック電極952およびオーミック電極954の材料は、導電性の材料であればよく、例えば、Au、Ni、Al、W、Ti等の金属、またはAuGe等の合金、または不純物がドープされた半導体を利用できる。オーミック電極622およびオーミック電極624は、上記導電性材料の積層構造を有してもよい。
 ドレインメサ942は、オーミック電極952とバリア形成半導体330以下の半導体との伝導性を確保する。また、ソースメサ944は、オーミック電極954とバリア形成半導体330以下の半導体との伝導性を確保する。ドレインメサ942とソースメサ944の材料は、例えばGaAsまたはInGaAsである。
 制御電極956は、印加される電圧によって、オーミック電極952とオーミック電極954の間を流れるドレイン電流を制御する。制御電極956の材料は、例えばNi、Au、Pt、Ti、またはWである。制御電極956の材料は、上記金属の単体元素、または上記金属の合金であってもよい。制御電極956は、上記金属の単体元素または合金の積層構造を有してもよい。
 図10および図11は、電子デバイス900の製造過程における断面の例を概略的に示す。以下、図面を用いて電子デバイス900の製造過程について説明する。
 まず、前述の半導体基板の製造方法により、半導体基板300を準備する。図10に示すように、フォトリソグラフィ法によりコンタクト層340をエッチングする等の方法により、ドレインメサ942とソースメサ944を形成する。例えば、コンタクト層340の表面にレジストを塗布して、ドレインメサ942とソースメサ944を形成する部位以外のレジストを除去してマスクを形成する。そして、エッチングによりドレインメサ942およびソースメサ944を形成する部位以外のコンタクト層340を除去することによって、ドレインメサ942およびソースメサ944を形成することができる。
 次に、図11に示すように、フォトリソグラフィ法により、オーミック電極952とオーミック電極954を形成する部位に開口が形成されたレジストマスクを形成する。続いて、オーミック電極952とオーミック電極954を形成する材料、例えば、AuGe、Ni、およびAuを順次に蒸着してから、レジストをリフトオフすることによって、オーミック電極952およびオーミック電極954を形成する。
 図9に示すように、フォトリソグラフィ法により、制御電極956を形成する部位に開口が形成されたレジストマスクを形成し、制御電極956を形成する材料を蒸着してからレジストをリフトオフすることによって、制御電極956を形成する。これにより、電子デバイス900が完成する。
100 半導体基板、102 ベース基板、114 化合物半導体、116 移動度低減半導体、120 キャリア供給半導体、202 曲線(電子エネルギー)、204 曲線(基底準位電子分布)、206 曲線(励起準位電子分布)、300 半導体基板、302 ベース基板、304 バッファ層、308 キャリア供給半導体、312 移動度低減半導体、314 化合物半導体、316 移動度低減半導体、320 キャリア供給半導体、330 バリア形成半導体、340 コンタクト層、400 半導体基板、402 ベース基板、404 バッファ層、406 バッファ層、408 キャリア供給半導体、410 スペーサー層、412 移動度低減半導体、414 化合物半導体、416 移動度低減半導体、418 スペーサー層、420 キャリア供給半導体、430 バリア形成半導体、600 半導体基板、602 ベース基板、604 バッファ層、608 キャリア供給半導体、612 移動度低減半導体、614 化合物半導体、616 移動度低減半導体、620 キャリア供給半導体、621 バリア形成半導体、622 オーミック電極、624 オーミック電極、900 電子デバイス、942 ドレインメサ、944 ソースメサ、952 オーミック電極、954 オーミック電極、956 制御電極

Claims (14)

  1.  2次元キャリアガスを生成する化合物半導体と、
     前記化合物半導体にキャリアを供給するキャリア供給半導体と、
     前記化合物半導体と前記キャリア供給半導体との間に配置され、前記キャリアの移動度を前記化合物半導体における前記キャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体と
     を備える半導体基板。
  2.  前記移動度低減半導体の内部では、基底状態にあるキャリアの存在確率よりも励起状態にあるキャリアの存在確率の方が高い
     請求項1に記載の半導体基板。
  3.  前記励起状態が、キャリアが第1励起準位にある状態である
     請求項2に記載の半導体基板。
  4.  前記化合物半導体上の異なる2点間に電圧が印加された場合に前記化合物半導体を流れる電流yを、前記電圧に対応し、-1.5[kV/cm]以上、+1.5[kV/cm]以下の範囲内で変化する電界強度xを変数とする近似多項式y=ax+bx+cxで表した場合に、前記近似多項式における3次項係数aの1次項係数cに対する比の絶対値|a/c|が、0.037[(kV/cm)-2]未満である
     請求項1に記載の半導体基板。
  5.  前記移動度低減因子は、不純物、結晶欠陥、低移動度材、またはバンド障壁材である
     請求項1に記載の半導体基板。
  6.  前記キャリアは電子であり、前記不純物はドナー不純物である
     請求項5に記載の半導体基板。
  7.  前記キャリアは正孔であり、前記不純物はアクセプタ不純物である
     請求項5に記載の半導体基板。
  8.  前記キャリア供給半導体は、N型AlGaAsであり、
     前記移動度低減半導体は、P型でないGaAsであり、
     前記化合物半導体は、InGaAsである
     請求項1に記載の半導体基板。
  9.  前記移動度低減半導体が、3.6×1018[cm-3]以下のドナー不純物を含むN型GaAsである
     請求項8に記載の半導体基板。
  10.  前記ドナー不純物が、Si、Se、Ge、Sn、Te、およびSからなる群から選択された少なくとも一つの原子である
     請求項9に記載の半導体基板。
  11.  2次元キャリアガスを生成する化合物半導体を形成する段階と、
     前記化合物半導体上に、キャリアの移動度を前記化合物半導体における前記キャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体を形成する段階と、
     前記移動度低減半導体上に、前記化合物半導体に前記キャリアを供給するキャリア供給半導体を形成する段階と
     を備える半導体基板の製造方法。
  12.  2次元キャリアガスを生成する化合物半導体と、前記化合物半導体にキャリアを供給するキャリア供給半導体と、前記化合物半導体と前記キャリア供給半導体との間に配置され、前記キャリアの移動度を前記化合物半導体における前記キャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体とを含む半導体基板を準備する段階と、
     前記化合物半導体上に一対のオーミック電極を配置する段階と、
     前記一対のオーミック電極に電圧を印加し、印加する電圧に対応する電流値を測定する段階と、
     前記電圧に対応する電流値yを、前記電圧に対応する電界強度xの近似多項式y=ax+bx+cxに近似する段階と、
     前記近似多項式における3次項係数aの1次項係数cに対する比の絶対値|a/c|が、予め定められた値より小さいか否かを判断する段階と
     を含む半導体基板の判定方法。
  13.  前記電界強度が-1.5[kV/cm]以上、+1.5[kV/cm]以下の範囲内で変化する場合において、前記3次項係数aの1次項係数cに対する比の絶対値|a/c|が0.037[(kV/cm)-2]未満の場合に、前記半導体基板を良品と判定する
     請求項12に記載の半導体基板の判定方法。
  14.  2次元キャリアガスを生成し、前記2次元キャリアガスが流れるチャネルを有する化合物半導体と、
     前記化合物半導体にキャリアを供給するキャリア供給半導体と、
     前記化合物半導体と前記キャリア供給半導体との間に配置され、前記キャリアの移動度を前記化合物半導体における前記キャリアの移動度よりも小さくする移動度低減因子を有する移動度低減半導体と、
     前記チャネルを介して相互に結合する一対のオーミック電極と、
     前記一対のオーミック電極間のインピーダンスを制御する制御電極と、
     を備える電子デバイス。
PCT/JP2010/002447 2009-04-06 2010-04-02 半導体基板、半導体基板の製造方法、半導体基板の判定方法、および電子デバイス WO2010116699A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800143734A CN102369594A (zh) 2009-04-06 2010-04-02 半导体基板、半导体基板的制造方法、半导体基板的判定方法以及电子器件
US13/253,614 US9117892B2 (en) 2009-04-06 2011-10-05 Semiconductor wafer with improved current-voltage linearity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-092422 2009-04-06
JP2009092422 2009-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/253,614 Continuation-In-Part US9117892B2 (en) 2009-04-06 2011-10-05 Semiconductor wafer with improved current-voltage linearity

Publications (1)

Publication Number Publication Date
WO2010116699A1 true WO2010116699A1 (ja) 2010-10-14

Family

ID=42935995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002447 WO2010116699A1 (ja) 2009-04-06 2010-04-02 半導体基板、半導体基板の製造方法、半導体基板の判定方法、および電子デバイス

Country Status (6)

Country Link
US (1) US9117892B2 (ja)
JP (1) JP2010263196A (ja)
KR (1) KR20120004409A (ja)
CN (1) CN102369594A (ja)
TW (1) TW201039377A (ja)
WO (1) WO2010116699A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269788B2 (en) 2012-02-23 2016-02-23 Sensor Electronic Technology, Inc. Ohmic contact to semiconductor
JP5857390B2 (ja) * 2012-03-30 2016-02-10 住友電工デバイス・イノベーション株式会社 半導体装置
US10995361B2 (en) 2017-01-23 2021-05-04 Massachusetts Institute Of Technology Multiplexed signal amplified FISH via splinted ligation amplification and sequencing
WO2018157048A1 (en) 2017-02-24 2018-08-30 Massachusetts Institute Of Technology Methods for examining podocyte foot processes in human renal samples using conventional optical microscopy
US11180804B2 (en) 2017-07-25 2021-11-23 Massachusetts Institute Of Technology In situ ATAC sequencing
US11293923B2 (en) 2017-09-01 2022-04-05 Massachusetts Institute Of Technology S-layer protein 2D lattice coupled detergent-free GPCR bioelectronic interfaces, devices, and methods for the use thereof
JP6812961B2 (ja) * 2017-12-25 2021-01-13 株式会社Sumco エピタキシャル成長装置およびそれを用いた半導体エピタキシャルウェーハの製造方法
US11873374B2 (en) 2018-02-06 2024-01-16 Massachusetts Institute Of Technology Swellable and structurally homogenous hydrogels and methods of use thereof
US11802822B2 (en) 2019-12-05 2023-10-31 Massachusetts Institute Of Technology Multiplexed expansion (MultiExM) pathology

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056905A (ja) * 1990-11-30 1993-01-14 Sanyo Electric Co Ltd 電界効果型半導体装置
JPH05251477A (ja) * 1991-12-13 1993-09-28 Toshiba Corp 速度変調トランジスタ
JPH06333956A (ja) * 1992-08-26 1994-12-02 Sanyo Electric Co Ltd 電界効果型半導体装置
JPH07153937A (ja) * 1993-11-30 1995-06-16 Nec Corp ヘテロ接合fet
JPH08316461A (ja) * 1995-05-18 1996-11-29 Sanyo Electric Co Ltd 電界効果型半導体装置
JPH09172165A (ja) * 1995-12-20 1997-06-30 Nec Corp 電界効果トランジスタおよびその製造方法
JPH09283745A (ja) * 1996-04-15 1997-10-31 Oki Electric Ind Co Ltd 高電子移動度トランジスタ
JP2001267332A (ja) * 2000-03-17 2001-09-28 Sumitomo Electric Ind Ltd パワー電界効果トランジスタおよびパワーデバイス
JP2008288365A (ja) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp 半導体装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276565A (ja) * 1985-09-28 1987-04-08 Fujitsu Ltd 電界効果型トランジスタ
JP2567730B2 (ja) * 1990-09-19 1996-12-25 三洋電機株式会社 ヘテロ接合電界効果トランジスタ
JP3286921B2 (ja) * 1992-10-09 2002-05-27 富士通株式会社 シリコン基板化合物半導体装置
JP2914049B2 (ja) * 1992-10-27 1999-06-28 株式会社デンソー ヘテロ接合を有する化合物半導体基板およびそれを用いた電界効果トランジスタ
JPH0714850A (ja) * 1993-06-15 1995-01-17 Matsushita Electric Ind Co Ltd ヘテロ接合電界効果トランジスタ
JP3326704B2 (ja) * 1993-09-28 2002-09-24 富士通株式会社 Iii/v系化合物半導体装置の製造方法
JPH1056168A (ja) 1996-08-08 1998-02-24 Mitsubishi Electric Corp 電界効果トランジスタ
JPH11354776A (ja) * 1998-06-10 1999-12-24 Hitachi Ltd 半導体結晶積層体およびそれを用いた半導体装置
JP2000183334A (ja) 1998-12-17 2000-06-30 Nec Corp 電界効果トランジスタ
AU2002357640A1 (en) * 2001-07-24 2003-04-22 Cree, Inc. Insulting gate algan/gan hemt
JP2004200433A (ja) * 2002-12-19 2004-07-15 Toshiba Corp 半導体装置
JP4672959B2 (ja) * 2002-12-25 2011-04-20 住友化学株式会社 化合物半導体エピタキシャル基板
JP4717319B2 (ja) * 2002-12-25 2011-07-06 住友化学株式会社 化合物半導体エピタキシャル基板
JP2004221363A (ja) * 2003-01-16 2004-08-05 Hitachi Cable Ltd 高速電子移動度トランジスタ用エピタキシャルウェハ
JP4610858B2 (ja) * 2003-02-12 2011-01-12 住友化学株式会社 化合物半導体エピタキシャル基板
JP4867137B2 (ja) * 2004-05-31 2012-02-01 住友化学株式会社 化合物半導体エピタキシャル基板
GB0608515D0 (en) * 2006-04-28 2006-06-07 Univ Aberdeen Semiconductor device for generating an oscillating voltage
GB2443677B (en) * 2006-11-07 2011-06-08 Filtronic Compound Semiconductors Ltd A capacitor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056905A (ja) * 1990-11-30 1993-01-14 Sanyo Electric Co Ltd 電界効果型半導体装置
JPH05251477A (ja) * 1991-12-13 1993-09-28 Toshiba Corp 速度変調トランジスタ
JPH06333956A (ja) * 1992-08-26 1994-12-02 Sanyo Electric Co Ltd 電界効果型半導体装置
JPH07153937A (ja) * 1993-11-30 1995-06-16 Nec Corp ヘテロ接合fet
JPH08316461A (ja) * 1995-05-18 1996-11-29 Sanyo Electric Co Ltd 電界効果型半導体装置
JPH09172165A (ja) * 1995-12-20 1997-06-30 Nec Corp 電界効果トランジスタおよびその製造方法
JPH09283745A (ja) * 1996-04-15 1997-10-31 Oki Electric Ind Co Ltd 高電子移動度トランジスタ
JP2001267332A (ja) * 2000-03-17 2001-09-28 Sumitomo Electric Ind Ltd パワー電界効果トランジスタおよびパワーデバイス
JP2008288365A (ja) * 2007-05-17 2008-11-27 Mitsubishi Electric Corp 半導体装置

Also Published As

Publication number Publication date
KR20120004409A (ko) 2012-01-12
CN102369594A (zh) 2012-03-07
US20120025271A1 (en) 2012-02-02
TW201039377A (en) 2010-11-01
US9117892B2 (en) 2015-08-25
JP2010263196A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
WO2010116699A1 (ja) 半導体基板、半導体基板の製造方法、半導体基板の判定方法、および電子デバイス
US8860038B2 (en) Nitride semiconductor device and manufacturing method for the same
US8872231B2 (en) Semiconductor wafer, method of producing semiconductor wafer, and electronic device
KR101657327B1 (ko) 반도체 기판, 반도체 기판의 제조 방법 및 전자 디바이스
US7902571B2 (en) III-V group compound semiconductor device including a buffer layer having III-V group compound semiconductor crystal
US9735240B2 (en) High electron mobility transistor (HEMT)
JP2006303475A (ja) 電界効果トランジスタ
JP4717319B2 (ja) 化合物半導体エピタキシャル基板
KR101032010B1 (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
KR101083612B1 (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
JP5875296B2 (ja) 半導体基板および絶縁ゲート型電界効果トランジスタ
JP4984511B2 (ja) Iii−v族化合物半導体装置
KR101037569B1 (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
JP5301507B2 (ja) 化合物半導体エピタキシャル基板
JP2006245155A (ja) 電界効果トランジスタ用エピタキシャルウエハ及び電界効果トランジスタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014373.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117021456

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761403

Country of ref document: EP

Kind code of ref document: A1