WO2010116427A1 - 投写型表示装置 - Google Patents

投写型表示装置 Download PDF

Info

Publication number
WO2010116427A1
WO2010116427A1 PCT/JP2009/005514 JP2009005514W WO2010116427A1 WO 2010116427 A1 WO2010116427 A1 WO 2010116427A1 JP 2009005514 W JP2009005514 W JP 2009005514W WO 2010116427 A1 WO2010116427 A1 WO 2010116427A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source lamp
projection display
optical axis
Prior art date
Application number
PCT/JP2009/005514
Other languages
English (en)
French (fr)
Inventor
小島邦子
山田旭洋
木田博
松尾裕文
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20100761429 priority Critical patent/EP2418541A4/en
Priority to US13/263,627 priority patent/US20120033421A1/en
Priority to PCT/JP2010/002515 priority patent/WO2010116725A1/ja
Priority to KR1020117026493A priority patent/KR101267098B1/ko
Priority to JP2010531366A priority patent/JPWO2010116725A1/ja
Priority to CN201080024955.0A priority patent/CN102804056B/zh
Publication of WO2010116427A1 publication Critical patent/WO2010116427A1/ja
Priority to JP2011006068A priority patent/JP4837130B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2046Positional adjustment of light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources

Definitions

  • the present invention relates to a projection display device using a plurality of light source lamps.
  • Patent Document 1 paragraphs 0013 to 0018 of FIG. 1 in Japanese Patent Laid-Open No. 2001-359025, FIG. 1 discloses a prism in which light beams from two light source lamps arranged opposite to each other are arranged near the condensing point of the light source lamp.
  • a light source device for a projection-type display device that is synthesized using the above.
  • an object of the present invention is to provide a projection display device that has high light utilization efficiency and can realize a long life of the light source device. is there.
  • the projection display device has an entrance end and an exit end, and converts the light beam incident on the entrance end into a light beam having a uniform intensity distribution and makes the light intensity uniform emitted from the exit end.
  • Means a first light source means for emitting a first light flux, and a relay optical system for guiding the first light flux emitted from the first light source means to the incident end of the light intensity equalizing means, Second light source means for emitting a second light flux toward the incident end of the light intensity uniformizing means, and modulating the light flux emitted from the emission end of the light intensity uniformizing means to convert it into image light.
  • An image display element and a projection optical system that projects the image light onto a screen, and is emitted from the optical axis of the first light beam and the second light source means when emitted from the first light source means.
  • the optical axis of the second light flux at the time of The first light source means and the second light source means are arranged so as to be in a line direction, and the light intensity equalizing means of the light intensity uniforming means passes through the relay optical system from the first light source means.
  • the optical axis of the first light flux reaching the incident end and the optical axis of the second light flux reaching the incident end of the light intensity uniformizing means from the second light source means do not have a portion that coincides.
  • the first light source means, the second light source means, and the relay optical system are arranged.
  • the present invention there is no loss light from the first light source means to the second light source means and no loss light from the second light source means to the first light source means, and the light utilization efficiency can be increased.
  • the first light source means and the second light source means are not affected by the loss light, so that there is an effect that the life can be extended.
  • FIG. 1 is a diagram schematically showing a configuration of a projection display apparatus according to Embodiment 1 of the present invention.
  • (A) is a figure which shows roughly distribution of the light beam in the incident end of the light intensity equalization element in a comparative example
  • (b) is a figure of the light beam in the incident end of the light intensity equalization element in Embodiment 1.
  • FIG. It is a figure which shows distribution roughly
  • (c) is a figure which shows schematically the other example of distribution of the light beam in the incident end of the light intensity equalization element in Embodiment 1.
  • FIG. It is a figure which shows roughly arrangement
  • 1 is a diagram illustrating a configuration of a main part of a projection display device according to Embodiment 1.
  • FIG. A configuration for calculating the relationship between the amount of eccentricity of the central beam of the first light beam from the first light source lamp and the amount of eccentricity of the central beam of the second light beam from the second light source lamp and the light utilization efficiency is shown. It is explanatory drawing. It is a figure which shows the result of having calculated the amount of eccentricity of the central ray of the 1st light beam from a 1st light source lamp, the amount of eccentricity of the central ray of the 2nd light beam from a 2nd light source lamp, and the light utilization efficiency. is there. It is a figure which shows the result of having calculated the relationship between the eccentricity d3 shown in FIG. 4, and light utilization efficiency. It is a figure which shows an example of the shape of a bending mirror.
  • FIG. 1 is a diagram schematically showing a configuration of a projection display apparatus according to Embodiment 1 of the present invention.
  • the projection display device according to the first embodiment uses a light source device 10 that emits a light beam with uniform intensity and a light beam L3 emitted from the light source device 10 according to an input video signal.
  • an image display element (light valve) 61 that modulates and converts the image light L4 to image light L4, and a projection optical system 62 that enlarges and projects the image light L4 onto a screen 63.
  • FIG. 1 shows a reflective image display element 61, the image display element 61 may be a transmissive image display element.
  • the image display element 61 is, for example, a liquid crystal light valve, a digital micromirror device (DMD), or the like.
  • the screen 63 is a part of the projection display apparatus. Further, the arrangement of the light source device 10, the image display element 61, the projection optical system 62, and the screen 63 is not limited to the illustrated example.
  • the light source device 10 is arranged to be parallel to the first light source lamp 11 as the first light source means for emitting the first light beam L1 and the first light source lamp 11, and emits the second light beam L2.
  • the second light source lamp 12 as the second light source means and the light intensity uniformizing means for converting the light beam incident on the incident end 15a into a light beam having a uniform intensity distribution and emitting from the light emitting end 15b.
  • the light intensity uniformizing element 15 and the relay optical system 13 for guiding the first light beam L1 emitted from the first light source lamp 11 to the incident end 15a are provided.
  • “arranged so as to be parallel” means the optical axis 11c1 of the first light source lamp 11 (that is, the center of the first light beam at the time when the first light beam is emitted from the first light source lamp 11).
  • Light beam) and the optical axis 12c of the second light source lamp 12 that is, the central light beam of the second light beam at the time when the second light beam is emitted from the second light source lamp 12 or parallel to each other. It is to arrange
  • the first light beam L1 emitted from the first light source lamp 11 and the second light beam L2 emitted from the second light source lamp 12 are condensed light beams.
  • the first optical axis 11c3 of the first light source lamp 11 and the optical axis 15c of the light intensity equalizing element 15 are parallel, and the second optical axis 12c of the second light source lamp 12 is shown.
  • the relay optical system 13 includes a first bending mirror 13a, two lens elements 13b and 13c, and a second bending mirror 13d.
  • the first light source lamp 11 includes, for example, a light emitter 11a that emits white light and an ellipsoidal mirror 11b provided around the light emitter 11a.
  • the ellipsoidal mirror 11b reflects the light beam emitted from the first focal point corresponding to the first center of the ellipse and converges it to the second focal point corresponding to the second center of the ellipse.
  • the light emitter 11a is disposed in the vicinity of the first focal point of the ellipsoidal mirror 11b, and the light beam emitted from the light emitter 11a is converged in the vicinity of the second focal point of the ellipsoidal mirror 11b.
  • the second light source lamp 12 includes, for example, a light emitter 12a that emits white light and an ellipsoidal mirror 12b provided around the light emitter 12a.
  • the ellipsoidal mirror 12b reflects the light beam emitted from the first focal point corresponding to the first center of the ellipse and converges it to the second focal point corresponding to the second center of the ellipse.
  • the light emitter 12a is disposed in the vicinity of the first focal point of the ellipsoidal mirror 12b, and the light beam emitted from the light emitter 12a is converged in the vicinity of the second focal point of the ellipsoidal mirror 12b.
  • a parabolic mirror may be used instead of the ellipsoidal mirrors 11b and 12b.
  • the light beams emitted from the light emitters 11a and 12a may be substantially collimated by a parabolic mirror and then converged by a condenser lens (not shown). Further, a concave mirror other than a parabolic mirror can be used in place of the ellipsoidal mirrors 11b and 12b. Further, the number of light source lamps may be three or more.
  • the first condensing point F1 of the first light flux L1 is positioned closer to the light intensity equalizing element 15 than the first bending mirror 13a.
  • One light source lamp 11 and a first folding mirror 13a are arranged.
  • the first light beam L1 condensed at the first light condensing point F1 has the second light condensing point F2 at the incident end 15a of the intensity equalizing element 15 by the lens 13b, the lens 13c, and the second bending mirror 13d.
  • the lens element 13b, the lens element 13c, the second bending mirror 13d, and the light intensity equalizing element 15 are arranged so as to be close to each other.
  • the second light beam L2 collected by the ellipsoidal mirror 12b is directly focused on the focusing point F3 in the vicinity of the incident end 15a of the light intensity uniformizing element 15 without passing through an optical element.
  • the central ray that is, the optical axis 11c3 of the first light beam L1 (in the first embodiment, parallel to the optical axis 15c of the light intensity equalizing element 15).
  • the first condensing point F1 is arranged closer to the light intensity equalizing element 15 than the first folding mirror 13a, but the present invention is not limited to this.
  • the light intensity uniformizing element 15 causes the first light flux L1 and the second light flux L2 incident from the incident end 15a to fall within the cross section of the light flux (that is, in a plane orthogonal to the optical axis 15c of the light intensity uniformizing element 15).
  • Has a function of making the light intensity uniform that is, reducing unevenness in illuminance.
  • a polygonal columnar rod made of a transparent material such as glass or resin and configured so that the inner side of the side wall is a total reflection surface (that is, a columnar column having a polygonal cross section) Member) or a pipe (tubular member) having a polygonal cross-sectional shape that is combined in a cylindrical shape with the light reflecting surface inside.
  • the light intensity uniformizing element 15 When the light intensity uniformizing element 15 is a polygonal columnar rod, the light intensity uniformizing element 15 reflects light incident from the incident end a plurality of times using the total reflection action between the transparent material and the air interface. And then exit from the exit end. When the light intensity uniformizing element 15 is a polygonal pipe, the light intensity uniformizing element 15 emits the light incident from the incident end after being reflected a plurality of times using the reflection action of the mirror facing inward. The light is emitted from the end (exit port).
  • the light intensity uniformizing element 15 secures an appropriate length in the traveling direction of the light beam, the light reflected a plurality of times inside is superimposed and irradiated in the vicinity of the exit end 15 b of the light intensity uniformizing element 15, so that the light intensity is uniform. A substantially uniform intensity distribution is obtained in the vicinity of the emitting end 15 b of the activating element 15.
  • FIGS. 2 (a) to 2 (c) are explanatory diagrams schematically showing the distribution of light fluxes at the incident end 15a of the light intensity uniformizing element 15.
  • FIG. 1A shows an example of the light flux distribution at the incident end of the light intensity equalizing element in the case of the comparative example using one light source lamp.
  • FIG. 2A shows a distribution in which there is a peak of light intensity near the center of the incident end 15a, and it gradually becomes darker toward the periphery.
  • FIG. 2B and 2C show examples of the light flux distribution at the incident end 15a of the light intensity equalizing element 15 in the case of the present invention using two light source lamps.
  • FIG. 2B shows that the light irradiation area of the first light source lamp 11 and the light irradiation area of the second light source lamp 12 almost overlap at the incident end 15a at the incident end 15a of the light intensity uniformizing element 15. An example that does not.
  • FIG. 2C shows that the light irradiation area of the first light source lamp 11 and the light irradiation area of the second light source lamp 12 substantially overlap at the incident end 15a at the incident end 15a of the light intensity equalizing element 15.
  • the direction of the central light beam of the first light beam L1 is inclined with respect to the optical axis 15c
  • the direction of the central light beam of the second light beam L2 is the direction of the central light beam and the optical axis of the first light beam L1. The case where it inclines with respect to both of 15c is shown.
  • FIG. 3 is a diagram schematically showing the arrangement of the folding mirrors in the comparative example.
  • one light source lamp (not shown) is arranged, and the central ray (optical axis 111c) of the light beam from the light source lamp until it enters the bending mirror 113 and the optical axis 115c of the light intensity equalizing element 115 are shown.
  • a case is shown in which the central ray of the light beam L1 that is orthogonal and reflected by the bending mirror 113 is configured to coincide with the optical axis 115c of the light intensity uniformizing element.
  • the size of the reflecting surface of the folding mirror 113 can be made sufficiently large, so that the light beam L1 from the light source lamp can be bent with reduced loss.
  • FIG. 4 is a diagram illustrating a configuration of a main part of the projection display device according to the first embodiment.
  • FIG. 4 shows the second bending mirror 13d and the light intensity equalizing element 15.
  • Each component is arranged so that (the condensing point F3) is in the vicinity of the incident end 15a of the light intensity uniformizing element 15.
  • first optical axis 11c3 on the light intensity equalizing element 15 side of the optical axis of the first light beam L1 from the first light source lamp 11 and the second light source lamp 12 The second light beam is configured not to have a portion that coincides with the second optical axis 12c.
  • the first light beam L1 from the first light source lamp 11 is made incident on the incident end 15a of the light intensity equalizing element 15 using the relay optical system 13, and at the same time, the second light beam L2 from the second light source lamp 12 is used.
  • the second bending mirror 13d is sufficient to prevent the second light beam L2 from the second light source lamp 12 from being blocked. The size cannot be secured. Therefore, in the configuration shown in FIG. 4, it is inevitable that the first light beam L1 and the second light beam L2 are lost to some extent.
  • the central light beam L10 (optical axis 13c1) of the first light beam L1 and the central light beam L20 (optical axis 12c) of the second light beam L2 that are bent by the second bending mirror 13d If it is attempted to coincide with the optical axis 15c, the loss of light further increases. For this reason, in the projection display apparatus according to Embodiment 1, the amount of eccentricity d1 of the central light beam L10 of the first light beam L1 bent by the first bending mirror 13 with respect to the optical axis 15c of the light intensity uniformizing element 15 is determined. And the amount of eccentricity d2 of the central ray L20 of the second light beam L2 with respect to the optical axis 15c of the light intensity equalizing element 15 is set to a value larger than zero.
  • FIG. 5 is an explanatory diagram showing a configuration for calculating the relationship between the eccentric amounts d1 and d2 and the light utilization efficiency.
  • FIG. 5 for example, when the central light beam L10 of the first light flux from the first light source lamp 11 is incident on the position of the eccentricity d1, the first light source from the first light source lamp 11 Since the light beam L1 is condensed on the incident end 15a of the light intensity uniformizing element 15 at a position shifted by the amount of eccentricity d1, the light utilization efficiency at the incident end 15a of the light intensity uniformizing element 15 is reduced.
  • FIG. 5 is an explanatory diagram showing a configuration for calculating the relationship between the eccentric amounts d1 and d2 and the light utilization efficiency.
  • the second light source lamp 12 emits light. Since the second light beam L2 is condensed on the incident end 15a of the light intensity uniformizing element 15 at a position shifted by the amount of eccentricity d2, the light use efficiency at the incident end 15a of the light intensity uniformizing element 15 is reduced.
  • FIG. 6 is a diagram showing the result of the simulation calculation of the relationship between the eccentricity d1, d2 and the light utilization efficiency B.
  • the light utilization efficiency B is such that when the eccentric amounts d1 and d2 are 0, that is, as shown in FIG. 4, the central ray of the light beam incident on the light intensity uniformizing element 15 is It is shown as a ratio to the light use efficiency when it coincides with the optical axis 15c. From FIG. 6, when the eccentricity d1 is 0, the light utilization efficiency B is 1. When the eccentricity d1 is 0.5 mm, the light utilization efficiency B is 0.99, and when the eccentricity d1 is increased to 1 mm, 1.5 mm, and 2 mm, the light utilization efficiency B is 0.97, 0.92, 0.
  • the light utilization efficiency B is as high as 0.9 or more, and the second light flux L2 from the second light source lamp 12 is not easily blocked by the first bending mirror 14.
  • the eccentric amounts d1 and d2 are both set to 1.5 mm (that is, to reduce interference).
  • the eccentric amounts d1 and d2 can be determined according to various factors such as the shape, size, arrangement, light beam traveling direction, optical characteristics of each component, and required performance.
  • FIG. 7 is a diagram showing the result of the simulation calculation of the relationship between the eccentricity d3 and the light utilization efficiency C.
  • the end 13 e on the optical axis 15 c side of the light intensity equalizing element 15 of the first bending mirror 13 d is the second end from the second light source lamp 12.
  • it is on the optical axis 15c of the light intensity uniformizing element 15 or on the first light source lamp 11 side (upper side in FIG. 4) than the optical axis 15c of the light intensity uniformizing element 15.
  • FIG. 7 shows the result of simulation calculation of the light utilization efficiency C when the eccentricity d1 in FIG.
  • the light utilization efficiency C in FIG. 7 is equalized when the eccentricity d1 in FIG. It is shown as a ratio to the light utilization efficiency when the optical axis 15c of the element 15 coincides.
  • FIG. 7 shows a change in light utilization efficiency C when the eccentricity d3 is changed from 1 mm to 5 mm. From FIG. 7, when the amount of eccentricity d3 is small, the light beam from the relay optical system 13 is blocked by the side surface of the light intensity uniformizing element 15 (upper side of the light intensity uniformizing element 15 in FIG. 4), and the light use efficiency C decreases. To do. It can be seen that as the eccentricity d3 is increased from 1 mm, the light utilization efficiency C gradually increases, and when the eccentricity d3 is 3 mm and 3.5 mm, the light utilization efficiency C is the highest.
  • FIG. 8 is a diagram showing an example of the shape of the second folding mirror (final folding means).
  • the bending mirror 13d shown in FIG. 8 is arranged so that the end face 13e on the light intensity uniformizing element 15 side is on the optical axis 15c of the light intensity uniformizing element 15.
  • the reflecting surface 13f of the second bending mirror 13d In order to guide as much of the first light flux L1 from the first light source lamp 11 as possible to the incident end 15a of the light intensity uniformizing element 15, it is desirable to arrange the reflecting surface 13f of the second bending mirror 13d as large as possible.
  • the second folding mirror 13d in order to avoid interference between the second folding mirror 13d and the second light beam L2 from the second light source lamp 12, it is desirable to make the second folding mirror 13d as small as possible. Therefore, as shown in FIG.
  • the end portion 13e on the optical axis 15c side of the light intensity equalizing element 15 of the second bending mirror 13d is closer to the reflecting surface 13f than the back surface 13g of the second bending mirror 13d. Is configured to be large. Thereby, the light use efficiency of the first light beam L1 from the first light source lamp 11 is increased, and the interference between the second light beam L2 from the second light source lamp 12 and the second bending mirror 13d is also reduced. Thus, the light utilization efficiency of the second light source lamp 12 can be improved.
  • FIG. 9 is a diagram showing another example of the shape of the second folding mirror (final folding means).
  • the bending mirror 13d2 shown in FIG. 9 is arranged so that the end surface 13e2 on the light intensity uniformizing element 15 side is on the optical axis 15c of the light intensity uniformizing element 15.
  • the reflecting surface 13f2 of the second bending mirror 13d2 In order to guide as much of the first light beam L1 from the first light source lamp 11 as possible to the incident end 15a of the light intensity uniformizing element 15, it is desirable to arrange the reflecting surface 13f2 of the second bending mirror 13d2 as large as possible.
  • the end portion 13e2 on the optical axis 15c side of the light intensity equalizing element 15 of the second bending mirror 13d2 is arranged on the reflecting surface 13f2 rather than the back surface 13g2 of the second bending mirror 13d2.
  • the corner 13h of the end surface 13e of the second folding mirror 13d in FIG. 8 is rounded as shown by the corner 13h2 of the end surface 13e2 of the second folding mirror 13d2 in FIG. It is difficult to block the second light beam L2 from the light source lamp toward the incident end 15a of the light intensity uniformizing element 15.
  • the light utilization efficiency of the first light beam L1 from the first light source lamp 11 is increased, and the second light source lamp 12 from the second light source lamp 12 is used. Interference between the second light beam L2 and the second bending mirror 13d2 is reduced, and the light utilization efficiency of the second light source lamp 12 can be improved.
  • the first light source lamp 11 and the second light source lamp 12 are arranged substantially in parallel, and the first light source lamp 11 has the first light source lamp 11. Since the first optical axis 11c1, 11c2, 11c3 and the second optical axis 12c of the second light source lamp 12 are arranged so as not to have a portion that coincides with each other, the light use efficiency is high, and the light source lamp 11 and the light source A configuration in which the lamps 12 are not affected by the loss light of each other is possible.
  • the condensing points of the first light source lamp 11 and the second light source lamp 12 are arranged in the vicinity of the incident end 15a of the light intensity uniformizing element 15, light utilization is performed.
  • An optical system with high efficiency can be provided.
  • the relay optical system 13 is arranged between the first light source lamp 11 and the second light condensing point F2, and the first light flux L1 is uniform in light intensity. Since the light is condensed near the incident end 15a of the conversion element 15 and the second light beam L2 of the second light source lamp 12 is directly condensed near the incident end 15a of the light intensity equalizing element 15, the light utilization efficiency Can provide a high optical system.
  • the second folding mirror 13d is formed so that the shape of the reflecting surface 13 is different from the shape of the back surface 13g and is larger than the back surface 13g. Therefore, an optical system with high light utilization efficiency can be provided.
  • the bending mirror 13a or the bending mirror 13d or both of them can also be provided with a mirror adjusting means (not shown) that can adjust the position and / or the angle thereof. .
  • a mirror adjusting means (not shown) that can adjust the position and / or the angle thereof.
  • the position of the bending mirror 13d is moved to the light source side that is not lit when only one of the light source lamp 11 and the light source lamp 12 is lit.
  • the folding mirror 13d When only the light source lamp 11 is lit, the folding mirror 13d is moved to the optical axis 12c side of the light source lamp 12, and when only the light source lamp 12 is lit, the folding mirror 13d is moved to the optical axis 11c side of the light source lamp 11.
  • the light source lamp 11 or the light source lamp 12 or both of them may include light source lamp adjusting means (not shown) that can adjust the position and / or angle. it can.
  • light source lamp adjusting means (not shown) that can adjust the position and / or angle. it can.
  • the amount of light incident on the light intensity uniformizing element 15 is adjusted by adjusting the light source lamp adjusting means. Therefore, it is possible to provide an optical system with high light utilization efficiency.
  • the light intensity uniformizing element 15 is formed of a tubular member having an inner surface as a light reflecting surface, it is easy to design a holding structure for the light intensity uniformizing element 15. In addition, the heat dissipation performance is improved.
  • the light intensity uniformizing element 15 is a columnar optical element having a polygonal cross-section made of a transparent material
  • the light intensity uniformizing element 15 is designed. Becomes easier.
  • each component is arranged so that the light condensing point is located closer to the light intensity uniformizing element 15 than the second folding mirror 13d. Heat generation can be suppressed. For this reason, in the projection display apparatus according to the first embodiment, there is no need to add a cooling device or the like, and the configuration can be simplified and the cost of the apparatus can be reduced.
  • FIG. FIG. 10 is a diagram schematically showing a configuration of the light source device 20 of the projection display apparatus according to Embodiment 2 of the present invention.
  • the light source device 20 shown in FIG. 10 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
  • the first light source lamp 21, the second light source lamp 22, and the relay optical system 23 in FIG. 10 are respectively the first light source lamp 11, the second light source lamp 12, and the relay optical system in FIG. 1 (Embodiment 1).
  • the configuration is the same as FIG.
  • the configuration is the same as 11c3 and 12c.
  • the configuration of the light intensity uniformizing element 25 is different from that of the projection display device according to the first embodiment.
  • the light intensity equalizing element 25 is configured by arranging lens arrays 25a and 25b in which a plurality of lens elements are two-dimensionally arranged side by side in the direction of the optical axis 25c. ing.
  • the first light beam L1 of the first light source lamp 11 and the second light beam L2 of the second light source lamp 12 are guided to the light intensity uniformizing element 25 by the lens elements 26a and 26b.
  • the light intensity uniformizing element 25 having such a configuration, it is possible to make the intensity distribution in the cross section of the illumination light beam uniform and to suppress unevenness in illuminance. Further, according to the projection display device according to the second embodiment, it is possible to reduce the size in the direction of the optical axis 25c as compared with the case where the light intensity uniformizing element is configured by the rod of the optical member.
  • FIG. FIG. 11 is a diagram schematically showing the configuration of the light source device 30 of the projection display apparatus according to Embodiment 3 of the present invention.
  • the light source device 30 shown in FIG. 11 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
  • the first light source lamp 31, the second light source lamp 32, the relay optical system 33, and the light intensity equalizing element 35 in FIG. 11 are respectively the first light source lamp 11, the second light source lamp 12, and the relay in FIG.
  • the configuration is the same as that of the optical system 13 and the light intensity equalizing element 15.
  • the optical axes 31c1, 31c2, and 31c3 of the first light beam L1 and the optical axis 35c of the light intensity equalizing element 35 are not parallel, and the optical axis of the second light beam L2 is used.
  • the first light source lamp 31, the second light source lamp 32, the relay optical system 33, and the light intensity equalizing element 35 are arranged so that the optical axis 35c of the light intensity equalizing element 35 and 32c are not parallel to each other.
  • the optical axis 31c1 of the first light beam L1 when it is emitted from the first light source lamp 31 and the optical axis 32c of the second light beam L2 when it is emitted from the second light source lamp 32 are such that the light beam is
  • the 1st light source lamp 31 and the 2nd light source lamp 32 are arranged so that it may become a direction which makes a mutual interval increase as it advances.
  • the vertical size of the light source device 30 in FIG. 11 can be shortened.
  • the first light source lamp 31 is arranged on the upper side in FIG. 11 and the second light source lamp 32 is arranged on the lower side in FIG. 11, but it can also be arranged in the opposite direction. It is. It is also possible to arrange the optical axis (31c1 or 32c) of either the first light source lamp 31 or the second light source lamp 32 in parallel with the optical axis 35c of the light intensity uniformizing element 35.
  • the respective tilt angles of the optical axis of one light beam when it is emitted from the first light source lamp 31 and the optical axis of the second light beam when it is emitted from the second light source lamp 32 are the horizontal directions in FIG. However, in order to obtain sufficient performance of the first light source lamp 31 and the second light source lamp 32, it is within the range up to ⁇ 5 °. It is desirable to comprise. In consideration of the ease of configuration of the relay optical system 33, the inclination angles of the optical axis of the first light source lamp 31 and the optical axis of the second light source lamp 32 are relative to the horizontal direction in FIG. (In other words, the angle between the optical axis of the first light source lamp 31 and the optical axis of the second light source lamp 32 is within 6 °). More desirable.
  • first light source lamp 31 or the second light source lamp 32 of the third embodiment can be applied to the light source device of the second embodiment.
  • FIG. FIG. 12 is a diagram schematically showing the configuration of the light source device 40 of the projection display apparatus according to Embodiment 4 of the present invention.
  • the light source device 40 shown in FIG. 12 can be used as the light source device of the projection display device shown in FIG. 1 (Embodiment 1).
  • the first light source lamp 41, the second light source lamp 42, the relay optical system 43, and the light intensity equalizing element 45 in FIG. 12 are respectively the first light source lamp 11, the second light source lamp 12, and the relay in FIG.
  • the configuration is the same as that of the optical system 13 and the light intensity equalizing element 15.
  • the light emitters 41a and 42a, the ellipsoidal mirrors 41b and 42b, the optical axes 41c1, 41c2, 41c3 and 42c, the incident end 45a, the exit end 45b, and the optical axis 45c in FIG. 12 are the light emitters 11a and 12a in FIG. Ellipsoidal mirrors 11b and 12b, optical axes 11c1, 11c2, 11c3 and 12c, incident end 15a, outgoing end 15b, and optical axis 15c.
  • the projection display apparatus is a loss light that does not reach the second bending mirror 43d in the light flux from the first light source lamp 41 adjacent to the incident end 45a of the light intensity uniformizing element 45.
  • the point provided with the light shielding plate 46 that shields (reflects or absorbs) L5 is different from the projection display device according to the first embodiment. Further, the light shielding plate 46 shields (reflects or absorbs) a light beam emitted from the first light source lamp 41 and traveling toward the side surface of the light intensity uniformizing element 45 (the upper surface of the light intensity uniformizing element 45 in FIG. 12). It also has a function.
  • the light shielding plate 46 may be made of a material that does not transmit light.
  • the light shielding plate 46 be disposed at a position where the light beam L1 from the first light source lamp 41 toward the second bending mirror 43d is not blocked.
  • the light shielding plate 46 has a position, size (length and width), and shape that shields as much of the loss light L5 that does not reach the second bending mirror 43d in the light flux from the first light source lamp 41 as much as possible. It is desirable to do.
  • the points other than the above are the same as those in the first embodiment. Further, the light shielding plate 46 can also be applied to the second or third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

光利用効率が高く光源装置の長寿命化を実現できる投写型表示装置であって、この投写型表示装置の光源装置(10)において、第1の光源ランプ(11)から出射された時点における第1の光束(L1)の光軸(11c1)と第2の光源ランプ(12)から出射された時点における第2の光束(L2)の光軸(12c)とが互いに略平行な方向となるように、第1の光源ランプ(11)及び第2の光源ランプ(12)が配置され、且つ、第1の光源ランプ(11)からリレー光学系(13)を経由して光強度均一化素子(15)の入射端(15a)に至る第1の光束(L1)の光軸(13c1,13c2,13c3)と第2の光源ランプ(12)から光強度均一化素子(15)の入射端(15a)に至る第2の光束(L2)の光軸(12c)とが一致する部分を持たないように、第1の光源ランプ(11)、第2の光源ランプ(12)、及びリレー光学系(13)を配置した。

Description

投写型表示装置
 本発明は、複数の光源ランプを用いた投写型表示装置に関するものである。
 投写型表示装置によって表示される映像の大画面化及び高輝度化を実現するために、複数の光源ランプを備えた多灯式の光源装置を備えた投写型表示装置が提案されている。例えば、特許文献1(特開2001-359025号公報の段落0013~0018、図1)には、互いに対向配置された2つの光源ランプからの光束を、光源ランプの集光点付近に配置したプリズムを用いて合成する投写型表示装置用の光源装置が提案されている。
特開2001-359025号公報
 しかしながら、特許文献1に記載の装置においては、2つの光源ランプをプリズムを挟んで対向配置しているので、光源ランプのロス光の内の対向する光源ランプの発光部に到達する光の割合が高くなり、光利用効率が低下する問題、及び、ロス光の入射に伴う光源ランプの温度上昇による光源ランプの寿命の短縮の問題がある。
 そこで、本発明は、上記従来技術の課題を解決するためになされたものであり、その目的は、光利用効率が高く、光源装置の長寿命化を実現できる投写型表示装置を提供することである。
 本発明に係る投写型表示装置は、入射端及び出射端を有し、前記入射端に入射された光束を強度分布が均一化された光束に変換して前記出射端から出射する光強度均一化手段と、第1の光束を出射する第1の光源手段と、前記第1の光源手段から出射された前記第1の光束を前記光強度均一化手段の前記入射端に導くリレー光学系と、前記光強度均一化手段の前記入射端に向かう第2の光束を出射する第2の光源手段と、前記光強度均一化手段の前記出射端から出射された光束を変調して画像光に変換する画像表示素子と、前記画像光をスクリーンに投写する投写光学系とを備え、前記第1の光源手段から出射された時点における前記第1の光束の光軸と前記第2の光源手段から出射された時点における前記第2の光束の光軸とが互いに略平行な方向となるように、前記第1の光源手段及び前記第2の光源手段が配置され、且つ、前記第1の光源手段から前記リレー光学系を経由して前記光強度均一化手段の前記入射端に至る前記第1の光束の光軸と前記第2の光源手段から前記光強度均一化手段の前記入射端に至る前記第2の光束の光軸とが一致する部分を持たないように、前記第1の光源手段、前記第2の光源手段、及び前記リレー光学系を配置したことを特徴としている。
 本発明によれば、第1の光源手段から第2の光源手段に向かうロス光及び第2の光源手段から第1の光源手段に向かうロス光が無く、光利用効率を高くすることができる。また、本発明によれば、第1の光源手段及び第2の光源手段は、ロス光の影響を受けないので、寿命を長くできるという効果がある。
本発明の実施の形態1に係る投写型表示装置の構成を概略的に示す図である。 (a)は、比較例における光強度均一化素子の入射端における光束の分布を概略的に示す図であり、(b)は、実施の形態1における光強度均一化素子の入射端における光束の分布を概略的に示す図であり、(c)は、実施の形態1における光強度均一化素子の入射端における光束の分布の他の例を概略的に示す図である。 比較例における折り曲げミラーの配置を概略的に示す図である。 実施の形態1に係る投写型表示装置の要部の構成を示す図である。 第1の光源ランプからの第1の光束の中心光線の偏心量及び第2の光源ランプからの第2の光束の中心光線の偏心量と、光利用効率の関係を計算する際の構成を示す説明図である。 第1の光源ランプからの第1の光束の中心光線の偏心量及び第2の光源ランプからの第2の光束の中心光線の偏心量と、光利用効率の関係を計算した結果を示す図である。 図4に示す偏心量d3と光利用効率の関係を計算した結果を示す図である。 折り曲げミラーの形状の一例を示す図である。 折り曲げミラーの形状の他の例を示す図である。 本発明の実施の形態2に係る投写型表示装置の構成を概略的に示す図である。 本発明の実施の形態3に係る投写型表示装置の構成を概略的に示す図である。 本発明の実施の形態4に係る投写型表示装置の構成を概略的に示す図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る投写型表示装置の構成を概略的に示す図である。図1に示されるように、実施の形態1に係る投写型表示装置は、強度が均一化された光束を出射する光源装置10と、光源装置10から出射された光束L3を入力映像信号に応じて変調して画像光L4に変換する画像表示素子(ライトバルブ)61と、画像光L4をスクリーン63に拡大投写する投写光学系62とを有している。図1には反射型の画像表示素子61を示しているが、画像表示素子61は、透過型の画像表示素子であってもよい。画像表示素子61は、例えば、液晶ライトバルブ、デジタルマイクロミラーデバイス(DMD)などである。背面投写型の投写型表示装置の場合には、スクリーン63は投写型表示装置の一部である。また、光源装置10、画像表示素子61、投写光学系62、及びスクリーン63の配置は、図示の例に限定されない。
 光源装置10は、第1の光束L1を出射する第1の光源手段としての第1の光源ランプ11と、第1の光源ランプ11に平行になるように配置され、第2の光束L2を出射する第2の光源手段としての第2の光源ランプ12と、入射端15aに入射された光束を強度分布が均一化された光束に変換して出射端15bから出射する光強度均一化手段としての光強度均一化素子15と、第1の光源ランプ11から出射された第1の光束L1を入射端15aに導くリレー光学系13とを有している。ここで、「平行になるように配置」とは、第1の光源ランプ11の光軸11c1(すなわち、第1の光源ランプ11から第1の光束が出射された時点における第1の光束の中心光線)と第2の光源ランプ12の光軸12c(すなわち、第2の光源ランプ12から第2の光束が出射された時点における第2の光束の中心光線)とが平行になるように又は平行とみなすことができるように、第1の光源ランプ11と第2の光源ランプ12とを配置することである。
 実施の形態1において、第1の光源ランプ11から出射される第1の光束L1及び第2の光源ランプ12から出射される第2の光束L2は、集光光束である。第1の光源ランプ11からリレー光学系13を経由して光強度均一化素子15の入射端15aに至る第1の光束L1の光軸11c1,11c2,11c3(すなわち、第1の光束L1の中心光線)と第2の光源ランプ12から光強度均一化素子15の入射端15aに至る第2の光束L2の光軸12c(すなわち、第2の光束L2の中心光線)とが一致する部分を持たないように、第1の光源ランプ11、第2の光源ランプ12、及びリレー光学系13のそれぞれの構成、並びに、光強度均一化素子15に対する第1の光源ランプ11、第2の光源ランプ12、及びリレー光学系13の配置を決定している。図1には、第1の光源ランプ11の第1の光軸11c3と光強度均一化素子15の光軸15cとが平行であり、且つ、第2の光源ランプ12の第2の光軸12cと光強度均一化手段15の光軸15cとも平行になるように、第1の光源ランプ11、第2の光源ランプ12、リレー光学系13、及び光強度均一化素子15を配置した場合を示している。また、リレー光学系13は、第1の折り曲げミラー13аと、2枚のレンズ素子13b及び13cと、第2の折り曲げミラー13dとを有している。
 第1の光源ランプ11は、例えば、白色光を出射する発光体11aと、この発光体11aの周囲に設けられた楕円面鏡11bとから構成される。楕円面鏡11bは、楕円の第1中心に対応する第1焦点から出射された光束を反射して、楕円の第2中心に対応する第2焦点に収束させる。発光体11aは、楕円面鏡11bの第1焦点近傍に配置されており、この発光体11aから出射された光束は、楕円面鏡11bの第2焦点近傍に収束される。また、第2の光源ランプ12は、例えば、白色光を出射する発光体12aと、この発光体12aの周囲に設けられた楕円面鏡12bとから構成される。楕円面鏡12bは、楕円の第1中心に対応する第1焦点から出射された光束を反射して、楕円の第2中心に対応する第2焦点に収束させる。発光体12aは、楕円面鏡12bの第1焦点近傍に配置されており、この発光体12aから出射された光束は、楕円面鏡12bの第2焦点近傍に収束される。なお、楕円面鏡11b及び12bに代えて放物面鏡を用いてもよい。この場合には、発光体11a及び12aから出射された光束を放物面鏡により略平行化した後、コンデンサレンズ(図示せず)により収束させればよい。また、楕円面鏡11b及び12bに代えて放物面鏡以外の凹面鏡を用いることもできる。また、光源ランプの数は3台以上とすることもできる。
 また、実施の形態1に係る投写型表示装置においては、第1の光束L1の第1の集光点F1が第1の折り曲げミラー13аより光強度均一化素子15側に位置するように、第1の光源ランプ11と第1の折り曲げミラー13аを配置している。さらに、第1の集光点F1で集光した第1の光束L1は、レンズ13bとレンズ13c及び第2の折り曲げミラー13dによって第2の集光点F2が強度均一化素子15の入射端15а近傍となるように、レンズ素子13b、レンズ素子13c、第2の折り曲げミラー13d、及び光強度均一化素子15を配置している。楕円面鏡12bによって集光される第2の光束L2は、特に光学素子を介すことなく直接光強度均一化素子15の入射端15a近傍の集光点F3に集光する。また、実施の形態1に係る投写型表示装置においては、第1の光束L1の中心光線(すなわち、光軸11c3)(実施の形態1においては、光強度均一化素子15の光軸15cに平行)が入射端15aに入射する第1の入射位置と第2の光束L2の中心光線(すなわち、光軸12c)(実施の形態1においては、光強度均一化素子15の光軸15cに平行)が入射端15aに入射する第2の入射位置とは、互いに異なる位置であり、且つ、光強度均一化素子15の光軸15cからずれた位置(後述する、偏心量d1,d2だけずれた位置)である。なお、図1においては、第1の集光点F1を第1の折り曲げミラー13аより光強度均一化素子15側に配置したが、これに限定されるものではない。
 光強度均一化素子15は、入射端15aから入射する第1の光束L1及び第2の光束L2を、当該光束断面内(すなわち、光強度均一化素子15の光軸15cに直交する平面内)における光強度を均一化する(すなわち、照度ムラを低減する)機能を有する。光強度均一化素子15としては、例えば、ガラス又は樹脂等の透明材料で作られ、側壁内側が全反射面となるように構成された多角形柱状のロッド(すなわち、断面形状が多角形の柱状部材)、又は、光反射面を内側にして筒状に組み合わされ、断面形状が多角形のパイプ(管状部材)がある。光強度均一化素子15が多角柱状のロッドである場合には、光強度均一化素子15は、入射端から入射した光を透明材料と空気界面との全反射作用を利用して複数回反射させた後に出射端から出射させる。光強度均一化素子15が多角形のパイプである場合には、光強度均一化素子15は、入射端から入射した光を内側を向く鏡の反射作用を利用して複数回反射させた後に出射端(出射口)から出射させる。光強度均一化素子15は、光束の進行方向に適当な長さを確保すれば、内部で複数回反射した光が光強度均一化素子15の出射端15bの近傍に重畳照射され、光強度均一化素子15の出射端15b近傍においては、略均一な強度分布が得られる。
 図2(a)~(c)は、光強度均一化素子15の入射端15aにおける光束の分布を概略的に示す説明図である。図2(a)~(c)において、濃度の濃く描かれている(黒色に近い)範囲は光束が強い(明るい)領域であり、濃度が薄くなるほど(白色に近づくほど)光束が弱い(暗い)領域である。図2(a)は、光源ランプを1灯使用した比較例の場合における光強度均一化素子の入射端の光束の分布の一例を示している。図2(a)は、入射端15aの中央付近に光強度のピークがあり、周辺に向かって徐々に暗くなる分布を示している。また、図2(b)及び(c)は、光源ランプを2灯使用した本発明の場合における光強度均一化素子15の入射端15aの光束の分布の例を示している。また、図2(b)は、光強度均一化素子15の入射端15aにおいて、第1の光源ランプ11の光照射領域と第2の光源ランプ12による光照射領域とが入射端15aにおいてほとんど重複しない例を示している。また、図2(c)は、光強度均一化素子15の入射端15aにおいて、第1の光源ランプ11の光照射領域と第2の光源ランプ12による光照射領域とが入射端15aにおいて概ね重複しており、第1の光束L1の中心光線の方向が光軸15cに対して傾斜しており、第2の光束L2の中心光線の方向が第1の光束L1の中心光線の方向及び光軸15cの両方に対して傾斜している場合を示している。
 図3は、比較例における折り曲げミラーの配置を概略的に示す図である。図3は、光源ランプ(図示せず)を1灯配置し、光源ランプから折り曲げミラー113に入射するまでの光束の中心光線(光軸111c)と光強度均一化素子115の光軸115cとが直交し、折り曲げミラー113で反射した光束L1の中心光線が光強度均一化素子の光軸115cと一致するように構成された場合を示している。図3の比較例の場合には、折り曲げミラー113の反射面の大きさを十分に大きくすることができるので、光源ランプからの光束L1を、ロスを低減して、折り曲げることが可能である。
 図4は、実施の形態1に係る投写型表示装置の要部の構成を示す図である。図4には、第2の折り曲げミラー13d、及び光強度均一化素子15が示されている。実施の形態1においては、リレー光学系13(図1に示す)から第1の光束L1の集光点F2及び第2の光源ランプ12(図1に示す)の楕円面鏡12bの第2焦点(集光点F3)が光強度均一化素子15の入射端15a付近となるよう、各構成を配置している。また、第1の光源ランプ11からの第1の光束L1の光軸の内の折り曲げミラー13dよりも光強度均一化素子15側の第1の光軸11c3と、第2の光源ランプ12からの第2の光束の第2の光軸12cとは一致する部分を持たないように構成されている。
 第1の光源ランプ11からの第1の光束L1をリレー光学系13を用いて光強度均一化素子15の入射端15aに入射させ、同時に、第2の光源ランプ12からの第2の光束L2を光強度均一化素子15の入射端15aに入射させる場合には、第2の折り曲げミラー13dは、第2の光源ランプ12からの第2の光束L2を遮らないようにするために、十分な大きさを確保することができなくなる。そのために、図4に示す構成においては、第1の光束L1及び第2の光束L2がある程度ロスすることは免れない。
 仮に、第2の折り曲げミラー13dで折り曲げられた第1の光束L1の中心光線L10(光軸13c1)及び第2の光束L2の中心光線L20(光軸12c)を、光強度均一化素子15の光軸15cに一致させようとすると、光のロスはさらに大きくなる。このため、実施の形態1に係る投写型表示装置においては、光強度均一化素子15の光軸15cに対する第1の折り曲げミラー13で折り曲げられた第1の光束L1の中心光線L10の偏心量d1及び光強度均一化素子15の光軸15cに対する第2の光束L2の中心光線L20の偏心量d2を、0より大きい値にする。
 図5は、偏心量d1,d2と光利用効率の関係を計算する際の構成を示す説明図である。図5に示すように、例えば、第1の光源ランプ11からの第1の光束の中心光線L10が偏心量d1の位置に入射するように構成すると、第1の光源ランプ11からの第1の光束L1が光強度均一化素子15の入射端15a上で偏心量d1だけずれた位置に集光するため、光強度均一化素子15の入射端15aにおける光利用効率が低下する。同様に、図5に示すように、例えば、第2の光源ランプ12からの第2の光束の中心光線L20が偏心量d2の位置に入射するように構成すると、第2の光源ランプ12からの第2の光束L2が光強度均一化素子15の入射端15a上で偏心量d2だけずれた位置に集光するため、光強度均一化素子15の入射端15aにおける光利用効率が低下する。
 図6は、偏心量d1,d2と光利用効率Bの関係のシミュレーション計算の結果を示す図である。図6において、光利用効率Bは、偏心量d1,d2が0のとき、すなわち、図4に示されるように、光強度均一化素子15に入射する光束の中心光線が光強度均一化素子15の光軸15cに一致した場合の光利用効率に対する比で示されている。図6より、偏心量d1が0のとき、光利用効率Bは1となる。偏心量d1が0.5mmのとき、光利用効率Bは0.99、偏心量d1を1mm、1.5mm、2mmと増やしていくと、光利用効率Bは0.97、0.92、0.84と低下していく。実施の形態1においては、例えば、光利用効率Bが0.9以上と高く、且つ、第2の光源ランプ12からの第2の光束L2が第1の折り曲げミラー14によって遮られ難くなるように(すなわち、干渉を緩和するように)、偏心量d1及びd2をともに1.5mmとする。ただし、偏心量d1及びd2は、各構成の形状、サイズ、配置、光束の進行方向、各構成の光学的特性、求められる性能などの各種要因に応じて決定することができる。
 図7は、偏心量d3と光利用効率Cの関係のシミュレーション計算の結果を示す図である。図4に示されるように、実施の形態1においては、第1の折り曲げミラー13dの光強度均一化素子15の光軸15c側の端部13eは、第2の光源ランプ12からの第2の光束L2との干渉を極力避けるために、光強度均一化素子15の光軸15c上又は光強度均一化素子15の光軸15cよりも第1の光源ランプ11側(図4における上側)になるように配置している。図7には、図4における偏心量d1を1.5mmに固定し、偏心量d3を変化させた場合の光利用効率Cをシミュレーション計算した結果が示されている。図7における光利用効率Cは、図6の光利用効率Bの場合と同様に、図5における、偏心量d1が0のとき、すなわち、第1の光束L1の中心光線L10と光強度均一化素子15の光軸15cが一致した場合の光利用効率に対する比で示されている。図7には、偏心量d3を1mmから5mmまで変化させた場合の光利用効率Cの変化が示されている。図7から、偏心量d3が小さいと、リレー光学系13からの光束が光強度均一化素子15の側面(図4における光強度均一化素子15の上側)で遮られ、光利用効率Cは低下する。偏心量d3を1mmから大きくしていくと徐々に光利用効率Cは高くなり、偏心量d3が3mm及び3.5mmのとき、光利用効率Cが最も高くなることがわかる。
 図8は、第2の折り曲げミラー(最終折り曲げ手段)の形状の一例を示す図である。図8に示す折り曲げミラー13dは光強度均一化素子15側の端面13eが光強度均一化素子15の光軸15c上になるように配置している。第1の光源ランプ11からの第1の光束L1をできるだけ多く光強度均一化素子15の入射端15аに導くためには、第2の折り曲げミラー13dの反射面13fをできるだけ大きく配置したい。一方、第2の折り曲げミラー13dと第2の光源ランプ12からの第2の光束L2との干渉を極力避けるためには、第2の折り曲げミラー13dをできるだけ小さく構成したい。そこで、図8に示したように、第2の折り曲げミラー13dの光強度均一化素子15の光軸15c側の端部13eを、第2の折り曲げミラー13dの裏面13gよりも反射面13fの方が大きくなるように構成している。これにより、第1の光源ランプ11からの第1の光束L1の光利用効率が高くなるとともに、第2の光源ランプ12からの第2の光束L2と第2の折り曲げミラー13dとの干渉も小さくなり、第2の光源ランプ12の光利用効率も向上することができる。
 図9は、第2の折り曲げミラー(最終折り曲げ手段)の形状の他の例を示す図である。図9に示す折り曲げミラー13d2は光強度均一化素子15側の端面13e2が光強度均一化素子15の光軸15c上になるように配置している。第1の光源ランプ11からの第1の光束L1をできるだけ多く光強度均一化素子15の入射端15аに導くためには、第2の折り曲げミラー13d2の反射面13f2をできるだけ大きく配置したい。一方、第2の折り曲げミラー13d2と第2の光源ランプ12からの第2の光束L2との干渉を極力避けるためには、第2の折り曲げミラー13d2をできるだけ小さく構成したい。そこで、図9に示したように、第2の折り曲げミラー13d2の光強度均一化素子15の光軸15c側の端部13e2を、第2の折り曲げミラー13d2の裏面13g2よりも反射面13f2の方が大きくなるように凸状の曲面で構成している。これにより、図8の第2の折り曲げミラー13dの端面13eの角部13hが、図9の第2の折り曲げミラー13d2の端面13e2の角部13h2に示されるように丸くなっているので、第2の光源ランプから光強度均一化素子15の入射端15aに向かう第2の光束L2を遮りにくい。図9の構成の第2の折曲げミラーを採用した場合にも、第1の光源ランプ11からの第1の光束L1の光利用効率が高くなるとともに、第2の光源ランプ12からの第2の光束L2と第2の折り曲げミラー13d2との干渉も小さくなり、第2の光源ランプ12の光利用効率も向上させることができる。
 以上に説明したように、実施の形態1に係る投写型表示装置においては、第1の光源ランプ11と第2の光源ランプ12を概ね平行に配置し、且つ、第1の光源ランプ11の第1の光軸11c1,11c2,11c3と第2の光源ランプ12の第2の光軸12cが互いに一致する部分を持たないように配置しているので、光利用効率が高く、光源ランプ11及び光源ランプ12がお互いのロス光の影響を受けない構成が可能となる。
 また、実施の形態1に係る投写型表示装置においては、第1の光源ランプ11と第2の光源ランプ12の集光点を光強度均一化素子15の入射端15a近傍に配置したため、光利用効率が高い光学系を提供することができる。
 さらに、実施の形態1に係る投写型表示装置においては、第1の光源ランプ11と第2の集光点F2までの間にリレー光学系13を配置し、第1の光束L1を光強度均一化素子15の入射端15а近傍に集光し、第2の光源ランプ12の第2の光束L2は直接光強度均一化素子15の入射端15а近傍に集光する構成としているため、光利用効率が高い光学系を提供することができる。
 また、実施の形態1に係る投写型表示装置において、第2の折り曲げミラー13dは、その反射面13の形状が裏面13gの形状が異なるように、且つ、裏面13gよりも大きくなるように形成しているため、光利用効率が高い光学系を提供することができる。
 また、実施の形態1に係る投写型表示装置において、折り曲げミラー13а若しくは折り曲げミラー13d又はそれらの両方に、位置若しくは角度又はそれらの両方を調整できるミラー調整手段(図示せず)を備えることもできる。この場合には、光源ランプ11及び光源ランプ12の大きさの違いや位置ずれが生じた場合であっても、ミラー調整手段の調整によって、光強度均一化素子15に入射する光量を調整することが可能となるため、光利用効率が高い光学系を提供することができる。さらに、このようなミラー調整手段を備える場合には、光源ランプ11又は光源ランプ12のいずれか一方のみを点灯する1灯点灯時に、折り曲げミラー13dの位置を、点灯していない光源側に移動する(光源ランプ11のみ点灯した場合には、折り曲げミラー13dを光源ランプ12の光軸12c側に移動し、光源ランプ12のみ点灯する場合には、折り曲げミラー13dを光源ランプ11の光軸11c側に移動する。)ことにより、1灯点灯時の光利用効率が高い光学系を提供することができる。
 また、実施の形態1に係る投写型表示装置において、光源ランプ11若しくは光源ランプ12又はそれらの両方に、位置若しくは角度又はそれらの両方を調整できる光源ランプ調整手段(図示せず)を備えることもできる。この場合には、光源ランプ11及び光源ランプ12の位置にずれが生じたり、大きさに違いがある場合であっても、光源ランプ調整手段の調整によって、光強度均一化素子15に入射する光量を調整することが可能となるので、光利用効率が高い光学系を提供することができる。
 また、実施の形態1に係る投写型表示装置において、光強度均一化素子15を内面を光反射面とした管状部材で構成する場合には、光強度均一化素子15の保持構造の設計が容易になり、また、放熱性能が向上する。
 また、実施の形態1に係る投写型表示装置において、光強度均一化素子15を透明材料で構成された断面形状が多角形の柱状光学素子とする場合には、光強度均一化素子15の設計が容易になる。
 さらに、実施の形態1に係る投写型表示装置においては、第2の折り曲げミラー13dよりも光強度均一化素子15側に集光点が位置するように、各構成を配置したので、折り曲げミラーの発熱を抑制できる。このため、実施の形態1に係る投写型表示装置においては、冷却装置等の追加の必要がなく、構成の簡素化、装置の低コスト化を実現できる。
実施の形態2.
 図10は、本発明の実施の形態2に係る投写型表示装置の光源装置20の構成を概略的に示す図である。図10に示される光源装置20は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図10における第1の光源ランプ21、第2の光源ランプ22、リレー光学系23はそれぞれ、図1(実施の形態1)における第1の光源ランプ11、第2の光源ランプ12、リレー光学系13と同様の構成である。図10における発光体21a及び22a、楕円面鏡21b及び22b、光軸21c1,21c2,21c3及び22cはそれぞれ、図1における発光体11a及び12a、楕円面鏡11b及び12b、光軸11c1,11c2,11c3及び12cと同様の構成である。実施の形態2に係る投写型表示装置は、光強度均一化素子25の構成が、上記実施の形態1に係る投写型表示装置のものと相違する。図10に示されるように、実施の形態2においては、光強度均一化素子25は、複数のレンズ素子を2次元配列したレンズアレイ25a及び25bを光軸25c方向に並べて配置することによって構成されている。第1の光源ランプ11の第1の光束L1と第2の光源ランプ12の第2の光束L2は、レンズ素子26аと26bによって光強度均一化素子25に導かれる。このような構成の光強度均一化素子25によって、照明光束の断面内の強度分布を均一にし、照度ムラを抑えることが可能になる。また、実施の形態2に係る投写型表示装置によれば、光強度均一化素子を光学部材のロッドで構成した場合に比べて、光軸25c方向のサイズを小さくすることが可能になる。
 なお、実施の形態2において、上記以外の点は、上記実施の形態1の場合と同じである。
実施の形態3.
 図11は、本発明の実施の形態3に係る投写型表示装置の光源装置30の構成を概略的に示す図である。図11に示される光源装置30は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図11における第1の光源ランプ31、第2の光源ランプ32、リレー光学系33、及び光強度均一化素子35はそれぞれ、図1における第1の光源ランプ11、第2の光源ランプ12、リレー光学系13及び光強度均一化素子15と同様の構成である。図11における発光体31a及び32a、楕円面鏡31b及び32b、光軸31c1,31c2,31c3及び32c、入射端35a、出射端35b、並びに、光軸35cはそれぞれ、図1における発光体11a及び12a、楕円面鏡11b及び12b、光軸11c1,11c2,11c3及び12c、入射端15a、出射端15b、並びに、光軸15cと同様の構成である。実施の形態3に係る投写型表示装置は、第1の光束L1の光軸31c1,31c2,31c3と光強度均一化素子35の光軸35cとが平行ではなく、第2の光束L2の光軸32cと光強度均一化素子35の光軸35cとが平行にならないように、第1の光源ランプ31、第2の光源ランプ32、リレー光学系33、及び光強度均一化素子35を配置した点が、上記実施の形態1に係る投写型表示装置の場合と相違する。したがって、第1の光源ランプ31から出射された時点における第1の光束L1の光軸31c1と第2の光源ランプ32から出射された時点における第2の光束L2の光軸32cとは、光束が進むに従い互いの間隔を増加させる方向となるように、第1の光源ランプ31及び第2の光源ランプ32が配置されている。実施の形態3の構成によれば、光源装置30の図11における縦方向のサイズを短縮できる。
 また、図11においては、第1の光源ランプ31を図11における上側に、第2の光源ランプ32を図11における下側になるように配置したが、その逆の方向に配置することも可能である。また、第1の光源ランプ31又は第2の光源ランプ32のいずれか一方の光軸(31c1又は32c)を光強度均一化素子35の光軸35cと平行に配置することも可能である。
 第1の光源ランプ31から出射された時点における1の光束の光軸と第2の光源ランプ32から出射された時点における第2の光束の光軸のそれぞれの傾き角度は、図11の水平方向に対して約±15°程度までの範囲内とすることが可能であるが、第1の光源ランプ31及び第2の光源ランプ32の十分な性能を得るためには±5°までの範囲内で構成することが望ましい。また、リレー光学系33の構成のし易さなどを考慮に入れると、第1の光源ランプ31の光軸及び第2の光源ランプ32の光軸の傾き角度は、図11の水平方向に対して±3°までの範囲内で構成すること(又は、第1の光源ランプ31の光軸及び第2の光源ランプ32の光軸の成す角度が6°以内となるように構成すること)がより望ましい。
 なお、実施の形態3において、上記以外の点は、上記実施の形態1又は2の場合と同じである。また、実施の形態3の第1の光源ランプ31又は第2の光源ランプ32を実施の形態2の光源装置に適用することも可能である。
実施の形態4.
 図12は、本発明の実施の形態4に係る投写型表示装置の光源装置40の構成を概略的に示す図である。図12に示される光源装置40は、図1(実施の形態1)に示される投写型表示装置の光源装置として使用することができる。図12における第1の光源ランプ41、第2の光源ランプ42、リレー光学系43、及び光強度均一化素子45はそれぞれ、図1における第1の光源ランプ11、第2の光源ランプ12、リレー光学系13、及び光強度均一化素子15と同様の構成である。図12における発光体41a及び42a、楕円面鏡41b及び42b、光軸41c1,41c2,41c3及び42c、入射端45a、出射端45b、並びに、光軸45cはそれぞれ、図1における発光体11a及び12a、楕円面鏡11b及び12b、光軸11c1,11c2,11c3及び12c、入射端15a、出射端15b、並びに、光軸15cと同様の構成である。
 実施の形態4に係る投写型表示装置は、光強度均一化素子45の入射端45аに隣接して、第1の光源ランプ41からの光束の内の第2の折り曲げミラー43dに到達しないロス光L5を遮光(反射又は吸収)する遮光板46を備えた点が、上記実施の形態1に係る投写型表示装置と相違する。また、遮光板46は、第1の光源ランプ41から出射され光強度均一化素子45の側面(図12における光強度均一化素子45の上側の面)に向かう光束を遮光(反射又は吸収)する機能も持つ。遮光板46の材料は、光を透過させない材料であればよい。
 遮光板46は、第1の光源ランプ41から第2の折り曲げミラー43dに向かう光束L1を遮らない位置に配置することが望ましい。また、遮光板46は、第1の光源ランプ41からの光束の内の第2の折り曲げミラー43dに到達しないロス光L5をできるだけ多く遮光する位置、大きさ(長さ及び幅)、及び形状にすることが望ましい。
 図12に示されるように、実施の形態4においては、第1の光源ランプ41からの光束の内の第1の折り曲げミラー73に到達しないロス光L5、及び、第2の光源ランプ72からの光束の内のロス光を、遮光板46によって遮光することができる。このため、第1の光源ランプ41から光強度均一化素子45の側面に向かうロス光は減少するため、光強度均一化素子45が受ける熱的な影響を小さくすることができるという効果がある。
 なお、実施の形態4において、上記以外の点は、上記実施の形態1の場合と同じである。また、遮光板46を、上記実施の形態2又は3に適用することも可能である。
 10,20,30,40 光源装置、 11,21,31,41 第1の光源ランプ、 11a,21a,31a,41a 発光体、 11b,21b,31b,41b 楕円面鏡、 11c1,11c2,11c3,21c1,21c2,21c3,31c1,31c2,31c3,41c1,41c2,41c3 第1の光源ランプの光軸、 12,22,32,42 第2の光源ランプ、 12a,22a,32a,42a 発光体、 12b,22b,32b,42b 楕円面鏡、 12c,22c,32c,42c 第2の光源ランプの光軸、 13,23,33,43 リレー光学系、 15,25,35,45 光強度均一化素子、 15a,25a,35a,45a 光強度均一化素子の入射端、 15b,25b,35b,45b 光強度均一化素子の出射端、 15c,25c,35c,45c 光強度均一化素子の光軸、 61 画像表示素子、 62 投写光学系、 63 スクリーン、 46 遮光板、 L1 第1の光束、 L2 第2の光束、 L3 光強度均一化素子からの出射光、 L4 画像光、 L5 第1のロス光、 L10 第1の光束の中心光線、 L20 第2の光束の中心光線、 F1 第1の集光点、 F2 第2の集光点、 F3 第3の集光点。

Claims (11)

  1.  入射端及び出射端を有し、前記入射端に入射された光束を強度分布が均一化された光束に変換して前記出射端から出射する光強度均一化手段と、
     第1の光束を出射する第1の光源手段と、
     前記第1の光源手段から出射された前記第1の光束を前記光強度均一化手段の前記入射端に導くリレー光学系と、
     前記光強度均一化手段の前記入射端に向かう第2の光束を出射する第2の光源手段と、
     前記光強度均一化手段の前記出射端から出射された光束を変調して画像光に変換する画像表示素子と、
     前記画像光をスクリーンに投写する投写光学系と
     を備え、
     前記第1の光源手段から出射された時点における前記第1の光束の光軸と前記第2の光源手段から出射された時点における前記第2の光束の光軸とが互いに略平行な方向となるように、前記第1の光源手段及び前記第2の光源手段が配置され、且つ、前記第1の光源手段から前記リレー光学系を経由して前記光強度均一化手段の前記入射端に至る前記第1の光束の光軸と前記第2の光源手段から前記光強度均一化手段の前記入射端に至る前記第2の光束の光軸とが一致する部分を持たないように、前記第1の光源手段、前記第2の光源手段、及び前記リレー光学系を配置した
     ことを特徴とする投写型表示装置。
  2.  前記第1の光源手段から出射される前記第1の光束及び前記第2の光源手段から出射される前記第2の光束は、集光光束であり、
     前記リレー光学系は、前記第1の光束を折り曲げる少なくとも2つの折り曲げ手段を有し、
     前記第1の光束の最終集光点が前記リレー光学系の最も前記光強度均一化手段の近くに配置された前記折り曲げ手段である最終折り曲げ手段より前記光強度均一化手段側に位置し、前記第2の光束の第2の集光点が前記最終折り曲げ手段より前記光強度均一化手段側に位置するように、前記第1の光源手段、前記第2の光源手段、前記リレー光学系、及び前記光強度均一化手段を配置した
     ことを特徴とする請求項1記載の投写型表示装置。
  3.  前記折り曲げ手段の少なくとも一方の位置若しくは角度又はそれらの両方を調整可能とする第1の調整手段を有することを特徴とする請求項2に記載の投写型表示装置。
  4.  前記第1及び/又は第2の光源手段の位置若しくは角度又はそれらの両方を調整可能とする第2の調整手段を有することを特徴とする請求項1乃至3のいずれか1項に記載の投写型表示装置。
  5.  前記第1の光束の中心光線が前記入射端に入射する第1の入射位置と前記第2の光束の中心光線が前記入射端に入射する第2の入射位置とが、互いに異なる位置であり、且つ、前記光強度均一化手段の光軸からずれた位置であることを特徴とする請求項1乃至4のいずれか1項に記載の投写型表示装置。
  6.  前記最終折り曲げ手段が、前記第1の光束を反射する反射面が、その裏面と形状が異なり、前記裏面より大きいことを特徴とする請求項1乃至5のいずれか1項に記載の投写型表示装置。
  7.  前記入射端に隣接して設けられ、前記第1の光源手段から出射され前記入射面に入射しない光を遮光する遮光手段を備えたことを特徴とする請求項1乃至6のいずれか1項に記載の投写型表示装置。
  8.  前記光強度均一化手段は、内面を光反射面とした管状部材を含むことを特徴とする請求項1乃至7のいずれか1項に記載の投写型表示装置。
  9.  前記光強度均一化手段は、透明材料による多角柱状の部材を含むことを特徴とする請求項1乃至7のいずれか1項に記載の投写型表示装置。
  10.  前記光強度均一化手段は、複数のレンズ素子を2次元配列したレンズアレイを含むことを特徴とする請求項1乃至7のいずれか1項に記載の投写型表示装置。
  11.  前記第1の光源手段から出射された時点における前記第1の光束の光軸と前記第2の光源手段から出射された時点における前記第2の光束の光軸との成す角度が6°以内となるように、前記第1の光源手段及び前記第2の光源手段が配置されたことを特徴とする請求項1乃至10のいずれか1項に記載の投写型表示装置。
PCT/JP2009/005514 2009-04-08 2009-10-21 投写型表示装置 WO2010116427A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20100761429 EP2418541A4 (en) 2009-04-08 2010-04-06 LIGHT SOURCE DEVICE AND PROJECTION APPARATUS
US13/263,627 US20120033421A1 (en) 2009-04-08 2010-04-06 Light source device and projection type display apparatus
PCT/JP2010/002515 WO2010116725A1 (ja) 2009-04-08 2010-04-06 光源装置及び投写型表示装置
KR1020117026493A KR101267098B1 (ko) 2009-04-08 2010-04-06 광원 장치
JP2010531366A JPWO2010116725A1 (ja) 2009-04-08 2010-04-06 光源装置及び投写型表示装置
CN201080024955.0A CN102804056B (zh) 2009-04-08 2010-04-06 光源装置以及投影型显示装置
JP2011006068A JP4837130B2 (ja) 2009-04-08 2011-01-14 光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-093989 2009-04-08
JP2009093989 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010116427A1 true WO2010116427A1 (ja) 2010-10-14

Family

ID=42935740

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/005514 WO2010116427A1 (ja) 2009-04-08 2009-10-21 投写型表示装置
PCT/JP2010/002515 WO2010116725A1 (ja) 2009-04-08 2010-04-06 光源装置及び投写型表示装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002515 WO2010116725A1 (ja) 2009-04-08 2010-04-06 光源装置及び投写型表示装置

Country Status (6)

Country Link
US (1) US20120033421A1 (ja)
EP (1) EP2418541A4 (ja)
JP (2) JPWO2010116725A1 (ja)
KR (1) KR101267098B1 (ja)
CN (1) CN102804056B (ja)
WO (2) WO2010116427A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447512B (zh) 2011-07-19 2014-08-01 Delta Electronics Inc 投影裝置及其光源裝置
CN102890396B (zh) * 2011-07-19 2014-11-05 台达电子工业股份有限公司 投影装置及其光源装置
JP6421930B2 (ja) 2014-01-09 2018-11-14 パナソニックIpマネジメント株式会社 照明装置及び投写型映像表示装置
CN105824126B (zh) * 2015-01-06 2018-06-29 台达电子工业股份有限公司 光源模块及显示装置
CN211043909U (zh) * 2017-02-03 2020-07-17 Nec显示器解决方案株式会社 光源装置和投射式显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281918A (ja) * 1998-03-26 1999-10-15 Nippon Avionics Co Ltd 光インテグレータ
JP2000330224A (ja) * 1999-05-24 2000-11-30 Sanyo Electric Co Ltd 液晶投射型表示装置
JP2003330113A (ja) * 2002-05-03 2003-11-19 Projectiondesign As 光学装置用複数ランプ装置
JP2006162689A (ja) * 2004-12-02 2006-06-22 Casio Comput Co Ltd 光源装置及びそれを備えたプロジェクタ
JP2006308778A (ja) * 2005-04-27 2006-11-09 Konica Minolta Opto Inc 2灯合成光学系およびそれを備えた画像投影装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827951B2 (ja) * 1994-05-16 1998-11-25 松下電器産業株式会社 投写型表示装置
JP3581568B2 (ja) * 1998-06-15 2004-10-27 松下電器産業株式会社 照明装置及び、それを用いた投写型表示装置
JP3472249B2 (ja) * 2000-08-25 2003-12-02 キヤノン株式会社 複数の光源を使用する照明装置、照明制御装置及び方法、並びに、露光装置
DE10123785A1 (de) * 2001-05-16 2002-11-21 Leica Microsystems Vorrichtung zur Beleuchtung eines Betrachtungsfeldes, beispielsweise eines Objektfeldes unter einem Mikroskop durch zwei Lichtquellen
US7033056B2 (en) * 2002-05-03 2006-04-25 Projectiondesign As Multi-lamp arrangement for optical systems
JP3645890B2 (ja) * 2002-06-07 2005-05-11 Necビューテクノロジー株式会社 プロジェクタ装置
JP2005266580A (ja) * 2004-03-19 2005-09-29 Seiko Epson Corp プロジェクタ
US7182468B1 (en) * 2004-06-07 2007-02-27 Delta Electronics, Inc. Dual lamp illumination system using multiple integrator rods
JP2006030330A (ja) * 2004-07-13 2006-02-02 Konica Minolta Opto Inc 2灯合成光学系およびそれを備えた投影装置
WO2006090857A1 (ja) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. 2次元画像形成装置
JP4696666B2 (ja) * 2005-04-27 2011-06-08 コニカミノルタオプト株式会社 照明光学系およびそれを備えた画像投影装置
JP5213360B2 (ja) 2006-06-08 2013-06-19 キヤノン株式会社 照明光学系及び画像投射装置
JP4271219B2 (ja) * 2006-08-25 2009-06-03 三菱電機株式会社 投写型表示装置及び光強度均一化素子の形成方法
JP4879056B2 (ja) * 2007-03-26 2012-02-15 三菱電機株式会社 投射型表示装置
TWM324170U (en) * 2007-04-04 2007-12-21 Young Optics Inc Illumination system
US20080259284A1 (en) * 2007-04-19 2008-10-23 Sanyo Electric Co., Ltd. Illumination device and projection video display device
JP5134924B2 (ja) * 2007-11-29 2013-01-30 株式会社日立製作所 投射型映像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281918A (ja) * 1998-03-26 1999-10-15 Nippon Avionics Co Ltd 光インテグレータ
JP2000330224A (ja) * 1999-05-24 2000-11-30 Sanyo Electric Co Ltd 液晶投射型表示装置
JP2003330113A (ja) * 2002-05-03 2003-11-19 Projectiondesign As 光学装置用複数ランプ装置
JP2006162689A (ja) * 2004-12-02 2006-06-22 Casio Comput Co Ltd 光源装置及びそれを備えたプロジェクタ
JP2006308778A (ja) * 2005-04-27 2006-11-09 Konica Minolta Opto Inc 2灯合成光学系およびそれを備えた画像投影装置

Also Published As

Publication number Publication date
JPWO2010116725A1 (ja) 2012-10-18
CN102804056A (zh) 2012-11-28
JP2011138140A (ja) 2011-07-14
US20120033421A1 (en) 2012-02-09
EP2418541A4 (en) 2012-10-03
JP4837130B2 (ja) 2011-12-14
WO2010116725A1 (ja) 2010-10-14
KR20120006537A (ko) 2012-01-18
KR101267098B1 (ko) 2013-05-24
EP2418541A1 (en) 2012-02-15
CN102804056B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5561087B2 (ja) 画像投射装置
JP3904597B2 (ja) 投写型表示装置
JP2005316446A (ja) 画像生成装置
KR20120040250A (ko) 집광 광학계 및 투사형 화상 표시 장치
KR20070019388A (ko) Dlp 광학 엔진
WO2010116427A1 (ja) 投写型表示装置
JPWO2008132831A1 (ja) 投写型表示装置
JP4516622B2 (ja) 投写型表示装置
JP3098126U (ja) 照明システムの導光装置
JP2010091846A (ja) 投写型表示装置
JP2010014816A (ja) 背面投射型表示装置
JP5793711B2 (ja) 投写型映像表示装置
JP4891112B2 (ja) ランプユニット、投写型表示装置及び投写型表示装置の製造方法
JP3301321B2 (ja) 照明光学系装置及び投写型表示装置
JPH11311762A (ja) 液晶プロジェクタの照明装置
JP2006292792A (ja) 光投射装置及びプロジェクタ
JP4893780B2 (ja) 照明装置及びこれを備えたプロジェクタ
TWI421539B (zh) 光源裝置及投影型顯示裝置
JP6422015B2 (ja) 画像表示装置
JP4487484B2 (ja) 照明装置及びこれを備えたプロジェクタ
WO2012114423A1 (ja) 投射型表示装置
JP5035878B2 (ja) 照明光学系およびその投写型表示装置
JP2004212529A (ja) 照明光学系およびこれを用いた投写型表示装置
JP2014119655A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842937

Country of ref document: EP

Kind code of ref document: A1