WO2010110173A1 - センサ付車輪用軸受 - Google Patents

センサ付車輪用軸受 Download PDF

Info

Publication number
WO2010110173A1
WO2010110173A1 PCT/JP2010/054685 JP2010054685W WO2010110173A1 WO 2010110173 A1 WO2010110173 A1 WO 2010110173A1 JP 2010054685 W JP2010054685 W JP 2010054685W WO 2010110173 A1 WO2010110173 A1 WO 2010110173A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
sensor
unit
estimated
value
Prior art date
Application number
PCT/JP2010/054685
Other languages
English (en)
French (fr)
Inventor
西川健太郎
高橋亨
乗松孝幸
壹岐健太郎
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009076762A external-priority patent/JP2010230406A/ja
Priority claimed from JP2009089042A external-priority patent/JP2010243190A/ja
Priority claimed from JP2009093582A external-priority patent/JP5268756B2/ja
Priority claimed from JP2009093581A external-priority patent/JP5268755B2/ja
Priority claimed from JP2009164474A external-priority patent/JP2011021896A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP10755971.8A priority Critical patent/EP2413121B1/en
Priority to CN2010800139315A priority patent/CN102365538B/zh
Priority to US13/138,712 priority patent/US8540431B2/en
Publication of WO2010110173A1 publication Critical patent/WO2010110173A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • This invention relates to a wheel bearing with a sensor incorporating a load sensor for detecting a load applied to a bearing portion of the wheel.
  • a wheel bearing As a technique for detecting a load applied to each wheel of an automobile, a wheel bearing has been proposed in which a strain gauge is attached to an outer ring flange of a wheel bearing to detect the strain (for example, Patent Document 1).
  • a calculation method for estimating a load applied to a wheel from output signals of a plurality of strain sensors provided on the wheel has been proposed (for example, Patent Document 2).
  • FIG. 46 is a block diagram showing a schematic configuration of a proposed example of load estimation means in a case where a load is estimated by correcting an output signal of a strain sensor provided on an outer ring of a wheel bearing with a detection signal of a temperature sensor.
  • the amplitude value calculation unit 72 calculates the amplitude value of the output signal of the strain sensor 70
  • the average value calculation unit 73 calculates the average value of the output signal of the strain sensor 70. Since the output signal of the strain sensor 70 has a waveform close to a sine wave due to the influence of the rolling elements passing near the strain sensor installation portion in the bearing outer ring, the amplitude value calculation unit 72 outputs the amplitude value of the sine wave (AC Component), and the average value calculation unit 73 calculates the average value (DC component) of the sine wave.
  • the temperature drift included in the obtained average value is corrected by the correcting means 74 using, for example, an output signal of the temperature sensor 71 that detects the temperature in the vicinity of the strain sensor 70.
  • the load applied to the wheel is estimated by the load estimating unit 75.
  • the load estimation unit 75 uses the amplitude value and the corrected average value as variables, and estimates the load by a linear expression obtained by multiplying each variable by a predetermined correction coefficient.
  • An object of the present invention is to provide a sensor-equipped wheel that can correct a drift component that cannot be corrected only by temperature correction, and can accurately estimate a load applied to the wheel without deteriorating detection accuracy due to environmental changes or long-term use. It is to provide a bearing for an automobile.
  • the sensor-equipped wheel bearing according to the present invention will be described with reference numerals used in the embodiment for easy understanding.
  • the outer member 1 in which the double-row rolling surfaces 3 are formed on the inner periphery
  • An inner member 2 in which a rolling surface 4 facing the rolling surface 3 is formed on the outer periphery
  • a double row rolling element 5 interposed between the facing rolling surfaces 3 and 4 of both members 1 and 2.
  • a wheel bearing for rotatably supporting a wheel with respect to a vehicle body wherein a sensor unit 20 for load detection is provided on a fixed side member of the outer member 1 and the inner member 2, and the sensor unit Reference numeral 20 denotes a strain generating member 21 having two or more contact fixing portions 21a fixed in contact with the fixed side member, and one or more for detecting the strain of the strain generating member 21 attached to the strain generating member 21.
  • a load estimation processing unit 30 for estimating a load applied from the force signal to the wheel provided to the load estimation processing unit 30 and the following configuration.
  • This load estimation processing means 30 has an average value calculation means 32 for calculating the average value of the output signals of the sensor 22 of the sensor unit 20 and corrects the calculated average value by the correction means 33 so that the load applied to the wheel is corrected.
  • the drift amount for estimating the drift amount of the output signal of the sensor 22 that appears in the estimated load output s1 by comparing the estimated load output s1 that is the estimated value of the main load estimating means 31 and the amplitude processing load estimated value s2.
  • Estimating means 37 is provided.
  • the correction unit 33 of the main load estimation unit 31 corrects the load estimation output based on the drift amount estimated by the drift amount estimation unit 37.
  • the load When a load acts between the tire of the wheel and the road surface, the load is also applied to the fixed side member (for example, the outer member 1) of the wheel bearing, causing deformation.
  • the fixed side member for example, the outer member 1
  • the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner. The distortion is easily detected by the sensor 22 with high sensitivity.
  • the main load estimating means 31 calculates the average value of the distortion of the distortion generating member 21 detected by the sensor 22 in this way, corrects this average value by the correcting means 33, and estimates the load applied to the wheel. Since the strain detected by the sensor 22 and the load applied to the wheel have a certain relationship, the load applied to the wheel can be estimated by obtaining the relationship in advance.
  • the distortion detected by the sensor 22 has a vibration waveform that increases every time the rolling element 5 passes in the vicinity of the sensor 22, but is not affected by the passage of the rolling element 5 by obtaining an average value that is a direct current component. A distortion value is obtained.
  • the vehicle load estimated from the average value is not only the temperature characteristics of the sensor 22 itself, but also the temperature distortion of the strain generating member 21 and the like, the contact state of the sensor 22 during long-term use, and the like. A drifting phenomenon occurs due to changes in installation conditions.
  • the amplitude processing load estimation means 36 calculates the amplitude processing load estimation value s2 corresponding to the load applied to the wheel from the amplitude value of the signal waveform resulting from the passage of the output signal of the sensor 22 by the rolling element, and the drift amount estimation means. 37, the estimated load output s1 of the main load estimating means 31 and the amplitude processing load estimated value s2 are compared to estimate the drift amount of the output signal of the sensor 22 that appears in the estimated load output s1. The estimated drift amount is fed back to the main load estimating means 31 and the correction means 33 corrects the average value.
  • the load applied to the wheel can be estimated from the amplitude value.
  • the drift amount that is the drift component of the estimated load output s1 using the average value is estimated by using the amplitude processing load estimated value s2. can do. Since the drift amount is estimated and corrected in this way, the error in the estimated load output s1 is reduced, and a load with high accuracy can be detected.
  • the main load estimating unit 31 uses both the corrected average value of the output signal of the sensor 22 corrected by the correcting unit 33 and the amplitude value of the output signal of the sensor 22. It is good also as what has the combined estimation means 34 which calculates load output s1. For example, the corrected average value and the amplitude value are multiplied by appropriate coefficients as weights, respectively, and the sum of both values is used as the estimated load output s1.
  • the drift amount estimating means 37 estimates the drift amount with respect to the estimated load output s1 thus calculated using both the average value and the amplitude value, and feeds back the drift amount to the correcting means 33. Correction is performed.
  • the load estimation processing means 30 is configured so that the front-rear load Fx of the loads applied to the wheels from the output signals of the sensors 22 of the three or more sensor units 20,
  • the vertical direction load Fz and the axial direction load Fy may be estimated.
  • Each sensor 22 of each sensor unit 20 has a load component acting in the front-rear direction, the vertical direction, and the axial direction, which are the radial directions of the wheel bearing, according to the installation position of the sensor unit 20 and the like.
  • the longitudinal load, the vertical load, And the axial load can be estimated.
  • an appropriate value is obtained by, for example, a test.
  • the sensor unit 20 is arranged in the circumferential direction 90 on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that is in the vertical position and the horizontal position with respect to the tire ground contact surface.
  • Four of them may be equally arranged with a phase difference of degrees.
  • a temperature sensor 28 is provided in at least one of the sensor units 20, and the main load estimating means 31 calculates the average value calculated by the average value calculating means 32 and inputted to the correcting means 33 to the temperature.
  • a temperature correction unit 33 that corrects the temperature based on the temperature detected by the sensor 28 may be provided. Correction by the temperature correction means 33 can be performed by determining a coefficient or an arithmetic expression corresponding to the temperature.
  • the temperature of the average value is corrected, and the correction unit 33 corrects the estimated value using the drift amount estimation value by the drift amount estimation unit 37. Therefore, a more accurate estimated load output s1 can be obtained. Further, since the drift amount is estimated by comparing the estimated load output s1 obtained by performing this temperature correction and the amplitude processing load estimated value s2, the drift amount estimating means 37 estimates the most reliable drift amount. Can be done. Furthermore, the temperature drift of the output signal of the strain sensor 22 can be corrected without providing the temperature sensor 28 for all the strain detection sensors 22.
  • the sensor unit 20 includes three or more contact fixing portions 21a and two sensors 22 for detecting distortion of the distortion generating member 21, and between the adjacent first and second contact fixing portions 21a. Further, each sensor 22 is attached between the adjacent second and third contact fixing portions 21a, and the interval in the circumferential direction of the fixed side member of the adjacent contact fixing portion 21a or the adjacent sensor 22 is determined as a rolling element.
  • the main load estimating means 31 and the average value calculating means 32 may use the sum of the output signals of the two sensors 22 as an average value, which is ⁇ 1/2 + n (n: integer) ⁇ times the arrangement pitch of 5. good.
  • the output signals of the two sensors 22 have a phase difference of about 180 degrees, and the average value is a value obtained by canceling the fluctuation component due to the passage of the rolling element 5.
  • the amplitude value is an accurate value that more reliably eliminates the effects of temperature and the effects of slippage between the knuckle and flange surfaces.
  • the drift amount estimating means 37 estimates the relationship between the amplitude processing load estimated value s2 output from the amplitude processing load estimating means 36 and the estimated load output s1 output from the main load estimating means 31 from the least square estimation.
  • the drift amount of the estimated load output s1 may be estimated from this relationship.
  • the drift amount of the estimated load output s1 based on the average value can be obtained with high accuracy. Can do.
  • the load acting on the bearing during traveling of the vehicle is determined based on the output signal of one or more sensors provided on the vehicle body, that is, the in-vehicle sensor 29. It is determined whether or not the state satisfies the set load condition. If the set load condition is not satisfied, the drift amount estimation unit 37 determines from the amplitude processing load estimated value s2 output from the amplitude processing load estimation unit 36. It is preferable to provide a load condition limiting means 37a for extracting the amplitude processing load estimated value s2 used for the drift amount estimating process in accordance with the set extraction condition.
  • the in-vehicle sensor 29 include a G sensor (acceleration sensor), a yaw rate sensor, a throttle sensor, an ABS sensor (rotational speed detection sensor for an antilock brake system), and the like.
  • the determination of the load state during traveling by the load condition limiting means 37a is comprehensively determined by using various sensor signals as described above.
  • a setting allowable range may be set for each output of each on-vehicle sensor 29, and it may be determined whether or not all are within the range.
  • a value obtained by combining signals from the vehicle-mounted sensor 29 by a predetermined process may be obtained, and the value may be compared with a setting allowable range.
  • the setting extraction condition of the load condition limiting unit 37a is appropriately determined, for example, by extracting only the amplitude processing load estimated value s2 output while satisfying the setting load condition.
  • the drift amount is estimated by comparing the output s1 of the main load estimating means and the amplitude processing load estimated value s2, but in order to perform this estimation with good accuracy, the correspondence between s1 and s2 is almost linear. Thus, it is necessary to limit the input load condition for estimation. By the function of the limiting function, the estimation accuracy of the drift amount becomes high, and it becomes possible to correct the signal drift accurately and suppress the detection error. Since the detected drift amount is fed back to the load calculation estimation process, an error in the detected load can be suppressed.
  • the load estimation processing means 30 is connected to the in-vehicle communication bus, and the drift amount estimated by the drift component estimating means 37 and the estimated load output s1 by the main load estimating means 31 are transmitted via the in-vehicle communication bus. It is good to be able to output to an external monitor. As described above, by enabling output to the external monitor 38 via the in-vehicle communication bus, the drift amount or the like can be monitored.
  • the load estimation processing means 30 is connected to a vehicle-mounted input device 39 through an in-vehicle communication bus, and the load estimation processing means 30 receives the drift from the drift amount estimation means 37 in response to an input from the input device 39. It is preferable to be able to set parameters used for calculation of the load applied to the wheel including the estimation of the amount. Thereby, when there is a change in the sensor signal due to repair or parts replacement, it is possible to reset the drift amount appropriately through the in-vehicle communication bus.
  • FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. It is sectional drawing which shows the other example of installation of a sensor unit. It is a figure which shows the relationship between the average value and amplitude value of a distortion sensor output signal in the sensor unit. It is a block diagram which shows the structural example of the estimation means in the wheel bearing with a sensor. It is a block diagram which shows the other structural example of the estimation means. It is a figure showing combining the sectional view of the bearing for wheels with a sensor concerning a 2nd embodiment of this invention, and the block diagram of the conceptual composition of the detection system. It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side.
  • FIG. 12 is a cross-sectional view taken along the line XII-XII in FIG. It is sectional drawing which shows the other example of installation of a sensor unit. It is explanatory drawing of the influence of a rolling-element position with respect to the output signal of a sensor unit. It is a figure which combines and shows the sectional view of the bearing for wheels with a sensor concerning the 1st application form of this invention, and the block diagram of the conceptual structure of the detection system. It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. It is an enlarged plan view of a sensor unit in the wheel bearing with sensor.
  • FIG. It is XVIII-XVIII arrow sectional drawing in FIG. It is sectional drawing which shows the other example of installation of a sensor unit. It is explanatory drawing of the influence of a rolling-element position with respect to the output signal of a sensor unit. It is another explanatory view of the influence of the rolling element position on the output signal of the sensor unit.
  • FIG. 1 It is a block diagram which shows the structural example of the load estimation means in the wheel bearing with a sensor. It is explanatory drawing which shows the flow of the arithmetic processing of the load estimation means. It is a figure showing combining the sectional view of the bearing for wheels with a sensor concerning the 7th application form of this invention, and the block diagram of the conceptual composition of the detection system. It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. (A) is a top view of the load detection sensor in the wheel bearing with the sensor, (B) is the side view. It is a block diagram which shows the structural example of the load estimation means in the wheel bearing with a sensor.
  • This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
  • the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3.
  • the inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2.
  • This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row.
  • the rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.
  • the outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle 16 in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part.
  • the flange 1a is provided with screw holes 14 for attaching a knuckle at a plurality of locations in the circumferential direction, and knuckle bolts (not shown) inserted into the bolt insertion holes 17 of the knuckle 16 from the inboard side are screwed into the screw holes 14.
  • the vehicle body mounting flange 1a is attached to the knuckle 16.
  • the inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become.
  • the hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows.
  • An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12.
  • a through hole 11 is provided at the center of the hub wheel 9.
  • the hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.
  • FIG. 2 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 2, the vehicle body mounting flange 1 a is a projecting piece 1 aa in which a circumferential portion provided with each screw hole 14 protrudes to the outer diameter side from the other portion.
  • sensor units 20 are provided on the outer diameter surface of the outer member 1 that is a fixed member.
  • these sensor units 20 are provided on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1 that is in the vertical position and the front-rear position with respect to the tire ground contact surface.
  • the strain generating member 21 is made of an elastically deformable metal such as a steel material and is made of a thin plate material having a thickness of 2 mm or less.
  • the strain generating member 21 is a strip having a uniform plane over the entire length and has notches 21b on both sides of the center. The corner of the notch 21b has an arcuate cross section.
  • the strain generating member 21 has two contact fixing portions 21 a that are fixed to the outer diameter surface of the outer member 1 through spacers 23 at both ends. Note that, depending on the shape of the strain generating member 21, two or more contact fixing portions 21a may be provided. Further, the notch 21b of the strain generating member 21 may be omitted.
  • the strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21.
  • a central portion sandwiched between the notch portions 21b on both sides is selected on the outer surface side of the strain generating member 21, and the strain sensor 22 measures the circumferential strain around the notch portion 21b.
  • the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when the plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain.
  • the assumed maximum force is, for example, the maximum force within a range in which the normal functioning of the wheel bearing is restored when the force is removed and the wheel bearing is not damaged. is there.
  • the two contact fixing portions 21a of the strain generating member 21 are located at the same dimension in the axial direction of the outer member 1, and the two contact fixing portions 21a are separated from each other in the circumferential direction.
  • These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 24 via spacers 23, respectively.
  • Each bolt 24 is inserted into a bolt insertion hole 26 of the spacer 23 from a bolt insertion hole 25 penetrating in the radial direction provided in the contact fixing portion 21 a, and a screw hole 27 provided in the outer peripheral portion of the outer member 1. Screwed on.
  • the central portion having the notch portion 21b in the strain generating member 21 having a thin plate shape is the outer member 1. It becomes a state away from the outer diameter surface of this, and distortion deformation around the notch 21b becomes easy.
  • an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here.
  • the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is.
  • a flat portion 1 b is formed at a location where the spacer 23 is contacted and fixed on the outer diameter surface of the outer member 1.
  • grooves 1 c are provided at two intermediate portions where the two contact fixing portions 21 a of the strain generating member 21 are fixed on the outer diameter surface of the outer member 1.
  • the spacer 23 may be omitted, and the intermediate portion of the two contact fixing portions 21b where the notches 21b of the strain generating member 21 are located may be separated from the outer diameter surface of the outer member 1.
  • strain sensors 22 can be used.
  • the strain sensor 22 can be composed of a metal foil strain gauge.
  • the distortion generating member 21 is usually fixed by adhesion.
  • the strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.
  • the strain sensor 22 of the sensor unit 20 is connected to load estimation processing means 30 that estimates the load applied to the wheel from the output signal.
  • the load estimation processing means 30 estimates a radial load serving as a longitudinal load Fz and a longitudinal load estimating unit 30x for estimating a radial load serving as a longitudinal load Fx, and a radial load serving as a vertical (vertical direction) load Fz among the loads in each direction applied to the wheels.
  • a vertical load estimation unit 30z that estimates the axial load Fy.
  • the front-rear direction load estimation unit 30x, the vertical direction load estimation unit 30z, and the axial direction load estimation unit 30y may be provided independently of each other. It is good also as what functions as an estimation part which estimates the load Fx, Fz, Fy of a direction.
  • Each sensor 22 of each sensor unit 20 has a load component that acts in the front-rear direction, the vertical direction, and the axial direction, which are the radial directions of the wheel bearing, according to the installation position of the sensor unit 20 and the like.
  • the longitudinal load estimation unit 30x, the vertical load estimation unit 30z, and the axial load estimation unit 30y use which sensor 22 input, and the coefficient applied to the input signal for each sensor 22 to be used appropriately. Accordingly, the longitudinal load Fx, the vertical load Fz, and the axial load Fy are estimated.
  • an appropriate value is obtained by, for example, a test.
  • the output signal of the strain sensor 22 passes in the vicinity of the installation portion of the sensor unit 20. It is affected by the rolling element 5. That is, when the rolling element 5 passes the position closest to the strain sensor 22 in the sensor unit 20, the amplitude of the output signal becomes the maximum value, and decreases as the rolling element 5 moves away from the position. Thereby, during rotation of the bearing, the output signal of the strain sensor 22 has a waveform close to a sine wave whose amplitude changes with the arrangement pitch of the rolling elements 5 as a period.
  • Both the average value, which is a direct current component included in the output signal of the strain sensor 22, and the amplitude value of the alternating current component are signals that allow estimation of the load acting on the wheel. There is. Although the average value can estimate the load over a wide range, the above-described drift occurs. Therefore, the load estimation processing means 30 is equipped with a function for estimating and correcting the drift amount of the output mainly including the average value by analyzing the average value and the amplitude value as follows.
  • FIG. 7 is a block diagram illustrating a configuration example of the load estimation processing unit 30.
  • This figure represents one of the front-rear direction load estimation unit 30x, the vertical direction load estimation unit 30z, and the axial load estimation unit 30y shown in FIG.
  • the strain sensor 22 shown in the figure represents a plurality of strain sensors 22 as a representative.
  • the load estimation processing means 30 includes a main load estimation means 31 for calculating a load applied to the wheel, an amplitude value calculation means 35, and an amplitude processing load estimated value s2 corresponding to the load applied to the wheel from the amplitude value. It comprises an amplitude processing load estimating means 36 for calculating, a drift amount estimating means 37 and 37.
  • the main load estimation unit 31 includes an average value calculation unit 32, a temperature correction unit 33A, a correction unit 33, and a combined use estimation unit 34, and outputs an estimated load output s1 that is an estimated value of a load applied to the wheels.
  • the average value calculation means 32 is a means for calculating the average value of the output signal of the strain sensor 22.
  • the average value may be calculated by extracting a DC component by passing through a low-pass filter, or by calculating the sum of two strain sensors 22 in which an antiphase relationship appears. For example, a moving average of the 22 output signals may be calculated.
  • the temperature correction means 33A is a means for correcting the average value calculated by the average value calculation means 32 based on the temperature detected by the temperature sensor 28.
  • the temperature sensor 28 is provided on the strain generating member 21 of at least one sensor unit 20 as shown in FIG. Since the strain and the temperature have a substantially proportional relationship, the temperature correction unit 33A corrects the average value based on the relationship between the strain and the temperature.
  • the correction unit 33 is a unit that performs correction corresponding to the drift amount estimated by the drift amount estimation unit 37. For example, the estimated drift amount or a value obtained by multiplying the drift amount by an appropriate coefficient is added to the average value.
  • the combined use estimation unit 34 is a unit that calculates the estimated load output s ⁇ b> 1 using both of the corrected average value corrected by the correction unit 33 and the amplitude value of the output signal of the sensor 22. The combined use estimation unit 34, for example, multiplies the corrected average value and the amplitude value by appropriate coefficients that are weights, respectively, and sets the sum of both values as the estimated load output s1.
  • the amplitude value calculating means 35 is a means for calculating the amplitude value of the AC component of the signal waveform caused by the output signal of the strain sensor 22 passing through the rolling elements. This calculation is, for example, extraction processing of the AC component of the signal waveform.
  • the amplitude value calculated by the amplitude value calculating means 35 is input to the combined estimation means 34.
  • the amplitude processing load estimation unit 36 is a unit that calculates an amplitude processing load estimation value s2 corresponding to a load applied to the wheel from the amplitude value obtained by the amplitude value calculation unit 35. Since the amplitude value changes according to the load acting on the bearing, the load applied to the wheel can be estimated from the amplitude value.
  • the drift amount estimating means 37 compares the estimated load output s1 that is an estimated value of the main load estimating means 31 with the amplitude processing load estimated value s2 estimated by the amplitude processing load estimating means 36, thereby calculating the estimated load output s1.
  • the drift amount of the output signal of the sensor 22 appearing at is estimated.
  • the drift amount estimation means 37 estimates the drift amount by obtaining the difference between the estimated load output s1 and the amplitude processing load estimated value s2 by statistical processing. For example, the relationship between the amplitude processing load estimated value s2 and the estimated load output s1 is obtained by applying the least square estimation, and the drift amount of the estimated load output s1 is estimated from this relationship.
  • the average value vector becomes A + ⁇
  • M 1 ⁇ can be obtained by statistically processing the relationship between s1 ′ and s2 for a certain period and calculating the movement of the intercept by least square estimation. Therefore, the effect of drift can be eliminated by subtracting from the calculation result to be s1′ ⁇ M 1 ⁇ .
  • the drift amount estimating means 37 is provided with a load condition limiting means 37a.
  • the load condition limiting means 37a determines whether or not the state of the load acting on the bearing while the vehicle travels satisfies the set load condition from the output signal of one or more sensors provided on the vehicle body, that is, the in-vehicle sensor 29. If the set load condition is not satisfied, the amplitude processing load estimation value used for the drift amount estimation processing from the drift amount estimation means 37 out of the amplitude processing load estimation value s2 output from the amplitude processing load estimation means 36. s2 is extracted according to the set extraction condition.
  • the in-vehicle sensor 29 include a G sensor (acceleration sensor), a yaw rate sensor, a throttle sensor, an ABS sensor (rotational speed detection sensor for an antilock brake system), and the like.
  • the longitudinal load Fx and the vertical load are obtained by using the outputs of the strain sensors 22 of the plurality of sensor units 20 by the longitudinal load estimation unit 30x, the vertical load estimation unit 30z, and the axial load estimation unit 30y of FIG. Fz and axial load Fy are estimated.
  • the signal drift amount is estimated and corrected by analyzing the sensor signal average value and the amplitude by each means shown in FIG.
  • the amplitude processing load estimation means 36 calculates the amplitude processing load estimated value s2 corresponding to the load applied to the wheel from the amplitude value obtained by the amplitude value calculation means 35 of the strain sensor 22.
  • the main load estimating means 31 calculates the average value of the output signal of the strain sensor 22 by the average value calculating means 32, performs each correction, etc., and outputs the estimated load output s1.
  • the drift amount estimating means 37 compares the estimated load output s1 that is the estimated value of the main load estimating means 31 with the amplitude processing load estimated value s2 estimated by the amplitude processing load estimating means 36, and the difference is accurately obtained by statistical processing.
  • the drift amount of the output signal of the sensor 22 that appears in the estimated load output s1 is estimated.
  • the drift amount estimated in this way is fed back to the main load estimating unit 31, and the main load estimating unit 31 calculates the average value calculated by the average value calculating unit 32 (more specifically, the average value corrected by the temperature correcting unit 33A). Is further corrected by the drift amount.
  • An estimated load output s1 that is a value obtained by combining the average value and the amplitude value at a predetermined ratio is calculated and output from the further corrected average value by the combined estimation means 34. This estimated load output s1 becomes the output of the load estimation processing means 30.
  • the load estimation processing means 30 is connected to the in-vehicle communication bus 145, and the drift amount estimated by the drift component estimating means 37 and the estimated load output s1 by the main load estimating means 31 are obtained. It may be possible to output to the external monitor 38 via the bus 145. Further, the load estimation processing means 30 is connected to the vehicle-mounted input device 39 through the in-vehicle communication bus, and the load estimation processing means 30 includes the estimation of the drift amount by the drift amount estimation means 37 based on the input from the input device 39. It is preferable to be able to set various parameters used for calculation of estimation of the load applied to the wheel.
  • the drift amount of the estimated load output s1 mainly including the average value is corrected by estimating the amplitude value, but the amplitude signal in which the local distortion is detected is not easily affected by temperature or the like.
  • the drift amount of the average value of the sensor signal can be estimated using the load information obtained by performing the calculation process. By correcting the estimated drift component, the error of the average value information is reduced, and the load calculation accuracy of the estimated load output s1 can be improved using the corrected average value information and amplitude information.
  • the signals from the temperature sensor 28 and the other vehicle-mounted sensors 29 during traveling are analyzed, and corrections for known parameters such as temperature effects are performed. Then, the amplitude processing load estimated value s2 that is an input load estimated from the signal amplitude state is compared with the value of the estimated load output s1 mainly including the signal average value for the estimated load condition, and the deviation amount is calculated. calculate. For this reason, the most reliable drift amount can be estimated.
  • the amplitude processing load estimated value s2 which is a load estimated value based only on the amplitude, but if the load condition is limited, there is a correspondence between the amplitude value and the signal average value (specifically, the estimated load output s1). As shown in FIG. 6, it becomes linear with good accuracy.
  • the figure shows the relationship between the average value and the amplitude value (provided that Fy> 0mm). Since the linear relationship is obtained in this way, the average value data is obtained by obtaining the relationship by applying the least square estimation to the data of the estimated load output s1 mainly including the amplitude processing load estimated value s2 and the signal average value.
  • the drift amount of (estimated load output s1) can be obtained with high accuracy.
  • load condition limiting means 37a for estimating the load state during traveling is provided to limit the execution conditions of the drift amount estimation process.
  • the load estimation processing unit 30 may be configured to be connected to an in-vehicle communication bus such as a CAN bus (control area network bus) and to use necessary information.
  • the signal of the strain sensor 22 may change abruptly. If there is no correction function by the load condition limiting means 37a, the detection error will continue to occur after that. However, the correction works to correct the signal drift in a short time and suppress the detection error. It becomes possible.
  • the detected drift amount is fed back to the main load estimating means 31, the error of the detected load is reduced.
  • the feedback drift amount is stored in a storage means (not shown) inside the load estimation processing means 30 and can be monitored from the external monitor 38 through the in-vehicle communication bus. Further, when the sensor signal is changed due to repair or replacement of parts, an appropriate drift amount can be reset by the input device 39 through the communication bus.
  • each sensor unit 20 is provided with an upper surface portion, a lower surface portion, and a right portion of the outer diameter surface of the outer member 1 that are in a vertical position and a horizontal position with respect to the tire ground contact surface. Since the surface portion and the left surface portion are equally arranged with a phase difference of 90 degrees in the circumferential direction, a vertical load Fz acting on the wheel bearing, a load Fx serving as a driving force and a braking force, and an axial load Fy are estimated. be able to.
  • a rolling element detection sensor 40 for detecting the position of the rolling element 5 is provided on the inner periphery of the outer member 1, and the detection signal of this rolling element detection sensor 40 is shown in FIG. 8 may be input to the correction means 33.
  • the rolling element is calculated from the average value calculated by the average value calculation means 32. Since the influence of passage can be eliminated, the load detection error can be further suppressed.
  • each sensor unit 20A is configured as follows.
  • the sensor unit 20 ⁇ / b> A is attached to the strain generating member 21 and detects the strain of the strain generating member 21. It consists of two strain sensors 22.
  • the strain generating member 21 has three contact fixing portions 21 a that are contact-fixed to the outer diameter surface of the outer member 1 via spacers 23. The three contact fixing portions 21 a are arranged in a line in the longitudinal direction of the strain generating member 21.
  • one strain sensor 22A of the two strain sensors 22 is disposed between the contact fixing portion 21a at the left end and the contact fixing portion 21a at the center, and the contact fixing portion 21a at the center and the contact fixing portion at the right end.
  • Another strain sensor 22B is arranged between 21a.
  • cutout portions 21 b are formed at two positions corresponding to the placement portions of the strain sensors 22 ⁇ / b> A and 22 ⁇ / b> B on both side portions of the strain generating member 21.
  • the three contact fixing portions 21a of the strain generating member 21 are located at positions having the same dimensions in the axial direction of the outer member 1, and the contact fixing portions 21a are separated from each other in the circumferential direction. These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 24 through spaces 23, respectively.
  • grooves 1 c are provided in each of the three intermediate portions to which the three contact fixing portions 21 a of the strain generating material 21 are fixed on the outer diameter surface of the outer member 1.
  • the spacer 23 may be omitted, and the portions where the notches 21b of the strain generating member 21 are located may be separated from the outer diameter surface of the outer member 1.
  • Other configurations in the sensor unit 20A, the arrangement of the sensor unit 20A, and the like are the same as those in the first embodiment shown in FIGS.
  • the average value calculation means 32 of the load estimation processing means 30 in the first embodiment shown in FIGS. 1 to 8 the sum of the output signals of the two strain sensors 22A and 22B of each sensor unit 20A. And the sum is taken out as an average value.
  • the amplitude value calculating means 35 of the load estimation processing means 30 calculates the difference between the output signals of the two strain sensors 22A and 22B, and takes out the difference value as an amplitude value.
  • the output signals a and b of the strain sensors 22A and 22B are sensors as shown in FIG. It is affected by the rolling elements 5 passing near the installation part of the unit 20A. Even when the bearing is stopped, the output signals a and b of the strain sensors 22A and 22B are affected by the position of the rolling element 5. That is, when the rolling element 5 passes the position closest to the strain sensors 22A and 22B in the sensor unit 20A (or when the rolling element 5 is at that position), the amplitude of the output signals a and b of the strain sensors 22A and 22B.
  • the amplitudes of the output signals a and b of the strain sensors 22A and 22B are affected by temperature and hysteresis due to slippage between the knuckle 16 and the mounting flange 1a (FIG. 9).
  • the sum of the amplitudes of the output signals a and b of the two strain sensors 22A and 22B is the above average value, and the difference in amplitude is the above amplitude value.
  • the average value is a value obtained by canceling the fluctuation component due to the passage of the rolling elements 5.
  • the amplitude value is a value that offsets the influence of temperature appearing in the output signals a and b of the two strain sensors 22A and 22B and the influence of slippage between the knuckle and flange surfaces. Therefore, the load acting on the wheel bearing and the tire ground contact surface can be estimated more accurately by using the average value and the amplitude value.
  • the interval between the two contact fixing portions 21 a located at both ends of the array is changed. It is set to be the same as the arrangement pitch P of the moving bodies 5.
  • the circumferential interval between the two strain sensors 22A and 22B respectively disposed at the intermediate positions of the adjacent contact fixing portions 21a is approximately 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5.
  • the output signals a and b of the two strain sensors 22A and 22B have a phase difference of approximately 180 degrees, and the average value obtained as the sum is obtained by canceling the fluctuation component due to the passage of the rolling element 5.
  • the amplitude value obtained as the difference is a value that offsets the effects of temperature and the effects of slippage between the knuckle and flange surfaces.
  • the interval between the contact fixing portions 21 a is set to be the same as the arrangement pitch P of the rolling elements 5, and one strain sensor 22 ⁇ / b> A, 22 ⁇ / b> B is disposed at an intermediate position between the adjacent contact fixing portions 21 a.
  • the circumferential interval between the two strain sensors 22A and 22B is set to be approximately 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5.
  • the circumferential interval between the two strain sensors 22A and 22B may be directly set to 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5.
  • the circumferential interval between the two strain sensors 22A and 22B may be ⁇ 1/2 + n (n: integer) ⁇ times the arrangement pitch P of the rolling elements 5, or a value approximated to these values.
  • the average value obtained as the sum of the output signals a and b of the two strain sensors 22A and 22B is a value obtained by canceling the fluctuation component due to the passage of the rolling element 5, and the amplitude value obtained as the difference is the influence of temperature or It is a value that offsets the effects of slipping between the knuckle and flange surfaces.
  • the sensor units 20 and 20A are attached to the outer diameter surface of the outer member 1, and the sensor units 20 and 20A are connected to the strain generating member 21 and one attached thereto.
  • the load acting on the wheel bearing is estimated from the sum (average value) of the output signals of the two strain sensors 22A and 22B, the output of each strain sensor 22A and 22B.
  • One influence of the rolling elements 5 appearing in the signal can be canceled out, and the load can be detected with high accuracy even when the bearing is not rotating.
  • FIG. 48 shows an example of an arithmetic processing circuit for obtaining the sum and difference of the output signals of the two strain sensors 22A and 22B.
  • the calculation for obtaining the amplitude value requires an output signal of at least one cycle, and the deterioration of the response is inevitable.
  • an object of the following first to third application forms is to provide a wheel bearing with a sensor that can accurately estimate a load applied to the wheel with good response even when the wheel bearing is stationary or at a low speed.
  • FIG. 16 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side
  • FIG. 15 shows a cross-sectional view taken along arrow XV-XV in FIG. 17, 18, and 19 correspond to FIGS. 3, 4, and 5 of the first embodiment, respectively.
  • a load estimation means 30A is used instead of the load estimation processing means 30 of FIG.
  • four sensor units 20B are used instead of the four sensor units 20 of FIG.
  • each sensor unit 20B has three strain sensors 22A, 22B, and 22C instead of the strain sensor 22 in FIG. 3, and the shape of the strain generating member 21A is also the strain generating member 21 in FIG. It is more complicated than the shape.
  • FIG. 18 since three strain sensors 22A, 22B, and 22C are provided, the number of bolt insertion holes 25 and 26 and bolts 24 and the number of contact fixing portions 21a are increased as compared to FIG. . Further, in FIG.
  • the sensor unit 20B includes a strain generating member 21 and a strain generating member 21 attached to the strain generating member 21, as shown in an enlarged plan view and an enlarged sectional view in FIGS. It consists of three strain sensors 22A, 22B, and 22C to be detected.
  • the strain generating member 21 is made of a thin plate material similar to that of the first embodiment, and has a flat planar shape with a uniform width over the entire length, and has notches 21b on both sides. The corners of each notch 21b are arc-shaped in cross section.
  • the strain generating member 21 has four or more (four in this case) contact fixing portions 21 a that are fixed to the outer diameter surface of the outer member 1 through spacers 23.
  • the four contact fixing portions 21 a are arranged in a line in the longitudinal direction of the strain generating member 21.
  • the three strain generating members 22 ⁇ / b> A, 22 ⁇ / b> B, and 22 ⁇ / b> C are installed at locations where the strain increases with respect to the load in each direction on the strain generating member 21. Specifically, it arrange
  • the notches 21 b are formed on both sides of the three positions corresponding to the placement portions of the strain sensors 22 ⁇ / b> A, 22 ⁇ / b> B, and 22 ⁇ / b> C on both sides of the strain generating member 21.
  • the strain sensors 22A, 22B, and 22C detect the strain in the longitudinal direction around the notch portion 21b of the strain generating member 21.
  • a groove 1 c is provided in an intermediate portion adjacent to a location where each contact fixing portion 21 a of the strain generating member 21 is fixed on the outer diameter surface of the outer member 1.
  • the spacer 23 may be omitted, and the intermediate portion of each contact fixing portion 21b where the notch portion 21b of the strain generating member 21 is located may be separated from the outer diameter surface of the outer member 1.
  • strain sensors 22A, 22B, and 22C the same sensors as the strain sensor 22 of the first embodiment can be used.
  • the strain sensors 22A, 22B, 22C of each sensor unit 20B are connected to load estimation means 30A (FIG. 15) that estimates the load applied to the wheel from the output signal.
  • load estimation means 30A FOG. 15
  • the load estimation unit 30A includes an average value calculation unit 131, an amplitude value calculation unit 132, and a load calculation unit 133, as shown in a block diagram in FIG. Although only one average value calculator 131 and amplitude value calculator 132 are shown in the figure, a plurality of average value calculators 131 and amplitude value calculators 132 are provided corresponding to each sensor unit 20B.
  • the output signals of the strain sensors 22A, 22B, and 22C are output from the installation unit of the sensor unit 20B. It is influenced by the rolling element 5 passing through the vicinity. That is, when the rolling element 5 passes through the position closest to the strain sensors 22A, 22B, and 22C in the sensor unit 20B, the output signal becomes the maximum value, and decreases as the rolling element 5 moves away from the position. Thereby, during rotation of the bearing, the output signals of the strain sensors 22A, 22B, and 22C are sine waves whose amplitude changes with the arrangement pitch P of the rolling elements 5 as a period, as shown in FIGS. The waveform is close to.
  • the circumferential interval between the strain sensors 22A, 22B, and 22C is 1 ⁇ 4 (90-degree phase difference) of the arrangement pitch P of the rolling elements 5, as shown in FIG.
  • the distance between the left end strain sensor 22A and the right end strain sensor 22C is 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5 (180 degree phase difference).
  • FIG. 20 shows the relationship between the waveforms of the output signals A and B of the two strain sensors 22A and 22B whose interval is 1/4 of the arrangement pitch P of the rolling elements 5 and the rolling element position.
  • the relationship between the waveforms of the output signals B and C of the other two strain sensors 22B and 22C and the rolling element position is the same.
  • FIG. 21 shows the relationship between the waveforms of the output signals A and C of the two strain sensors 22A and 22C whose interval is 1 ⁇ 2 of the arrangement pitch P of the rolling elements 5 and the rolling element position.
  • the average value calculation unit 131 is a calculation unit that calculates an average value of the output signals of the sensor unit 20B from the output signals A and C of the two strain sensors 22A and 22C.
  • the amplitude value calculation unit 132 is a calculation unit that obtains the amplitude value of the output signal of the sensor unit 20B from the output signals B and C of the two strain sensors 22B and 22C and the average value obtained by the average value calculation unit 131. .
  • the output signals A, B, and C are given by the following equations.
  • A ⁇ sin ⁇ + ⁇ (1)
  • B ⁇ cos ⁇ + ⁇ (2)
  • C - ⁇ sin ⁇ + ⁇ (3)
  • is an amplitude value
  • is an average value.
  • the average value calculation unit 131 includes temperature correction means 34 that corrects a drift due to the temperature of the calculated value. As shown in FIG. 17, a temperature sensor 28 is provided on the strain generating member 21 of each sensor unit 20 ⁇ / b> B, and the temperature correction means 34 corrects the average value based on the output signal of the temperature sensor 28.
  • the average value and the amplitude value corresponding to each sensor unit 20B obtained by the average value calculation unit 131 and the amplitude value calculation unit 132 are used as variables, and these variables are multiplied by a correction coefficient.
  • the load applied to the wheel is calculated and estimated from a predetermined load calculation formula.
  • a formula for calculating the vertical load Fz there are provided a formula for calculating the longitudinal load Fx serving as a driving force and a braking force, and a formula for calculating the axial load Fy.
  • the value of each correction coefficient in each of the above arithmetic expressions is set by obtaining in advance by a test or simulation.
  • the load When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 which is a stationary member of the wheel bearing, and deformation occurs.
  • the four or more contact fixing portions 21 a of the strain generating member 21 in the sensor unit 20 ⁇ / b> B shown in FIG. 18 are fixed to the outer member 1, the strain of the outer member 1 is applied to the strain generating member 21.
  • the distortion is easily transmitted and the distortion is detected by the distortion sensors 22A, 22B, and 22C with high sensitivity.
  • the average value calculation unit 131 obtains the average value of the output signals of the sensor unit 20B from the output signals A and C of the two strain sensors 22A and 22C in the sensor unit 20B, and the amplitude value.
  • the calculation unit 132 obtains the amplitude value of the output signal of the sensor unit 20B from the output signals B and C of the two strain sensors 22B and 22C in the sensor unit 20B and the average value, and the load calculation unit 133 further determines the average value.
  • each load Fz, Fx, Fy applied to the wheel is estimated by calculation processing using the amplitude value, so that the load applied to the wheel can be accurately estimated even when the wheel bearing is stationary or at a low speed. Can do. Therefore, the responsiveness and controllability of vehicle control using this estimated load value can be improved, and safety and running stability can be further improved.
  • each sensor unit 20B is provided with an upper surface portion, a lower surface portion, and a right portion of the outer diameter surface of the outer member 1 that are in a vertical position and a horizontal position with respect to the tire ground contact surface. Since the surface portion and the left surface portion are equally arranged with a phase difference of 90 degrees in the circumferential direction, a vertical load Fz acting on the wheel bearing, a load Fx serving as a driving force and a braking force, and an axial load Fy are estimated. be able to.
  • each sensor unit 20B is provided with a temperature sensor 28, and the average value calculation unit 131 of the load estimation means 30A corrects the temperature drift of the average value by the temperature correction means 134 based on the output signal of the temperature sensor 28.
  • the temperature drift of the average value can be corrected.
  • FIG. 23 shows a second applied form of the present invention.
  • the distance between the leftmost strain sensor 22A and the strain sensor 22B at the intermediate position is set to the rolling element array pitch P.
  • the interval between the strain sensor 22B at the intermediate position and the strain sensor 22C at the right end is set to 1 ⁇ 4 of the rolling element arrangement pitch P.
  • the average value calculation unit 131 in the load estimating means 30A obtains the average value of the output signal of the sensor unit 20B from the output signal A of the leftmost strain sensor 22A and the output signal B of the strain sensor 22B at the intermediate position, and the amplitude value.
  • the calculation unit 132 obtains the amplitude value of the output signal of the sensor unit 20B from the output signal B of the strain sensor 22B at the intermediate position, the output signal C of the strain sensor 22C at the right end, and the average value. Other configurations are the same as those of the first application mode.
  • FIG. 24 shows a third application mode of the present invention.
  • a second average value calculating unit is provided in the load estimating means 30A in the first applied form shown in FIGS. 15 to 22.
  • a second average value calculating unit is provided in addition to the average value calculating unit 131 and the amplitude value calculating unit 132.
  • 131A and an amplitude value calculator 132A, and a selection output means 135 are provided in addition to the average value calculating unit 131A and the amplitude value calculator 132A, and a selection output means 135 are provided.
  • the second average value calculation unit 131A and the amplitude value calculation unit 132A output the output of the sensor unit 20B from an output signal for a plurality of cycles of the rolling element amplitude of one strain sensor (here, the strain sensor 22C) in the sensor unit 20B.
  • the average value calculation unit 131A has a temperature correction unit 136, and the temperature correction unit 136 corrects the temperature drift of the average value as in the case of the first average value calculation unit 131.
  • a plurality of second average value calculators 131A and amplitude value calculators 132A are also provided corresponding to each sensor unit 20B.
  • the calculation in the second average value calculation unit 131A and the amplitude value calculation unit 132A is performed when the rotational speed of the wheel is higher than a predetermined value.
  • the predetermined value is, for example, a speed at which the second average value calculation unit 131A and the amplitude value calculation unit 132A can be detected with higher accuracy than the first average value calculation unit 131 and the amplitude value calculation unit 132.
  • the speed is about the walking speed of a person or less.
  • the load calculation unit 133 the average value and the amplitude value corresponding to each sensor unit 20B obtained by the second average value calculation unit 131A and the amplitude value calculation unit 132A are used as variables, and these variables are multiplied by a correction coefficient. Processing for calculating / estimating the load applied to the wheel from the load calculation formula is also performed. That is, in the load calculation unit 133, load estimation using the average value and the amplitude value obtained by the first average value calculation unit 131 and the amplitude value calculation unit 132, and the second average value calculation unit 131A and the amplitude value calculation are performed. The load estimation using the average value and the amplitude value obtained by the unit 132A is performed in parallel.
  • the selection output means 135 is a means for switching and selecting one of the estimated load values according to the wheel rotation speed from the two estimated load values obtained by the two calculation processes in the load calculation unit 133. For example, information on the wheel rotation speed is input to the selection output selection means 135 from the outside, and the estimated load value is selected and output based on this information.
  • the outside mentioned here is the outside with respect to the wheel bearing with sensor. In this case, as information on the wheel rotation speed from the outside, a rotation sensor signal such as an ABS sensor (wheel rotation detection sensor used in the antilock brake system) from the vehicle body side is used to estimate the wheel rotation speed.
  • ABS sensor wheel rotation detection sensor used in the antilock brake system
  • the selection output means 135 receives a switching selection instruction
  • the wheel rotation speed information may be estimated by detecting the passing frequency of the rolling element 5 from the output signals A, B, C of the strain sensors 22A, 22B, 22C.
  • the first to third application modes described above include the following application mode group I (modes 1 to 12) that do not require the load estimation processing means 30 as a requirement in the embodiment.
  • the sensor-equipped wheel bearing according to the first aspect includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and an inner surface in which the rolling surface 4 facing the rolling surface 3 is formed on the outer periphery.
  • a wheel bearing having a side member 2 and a double row rolling element 5 interposed between the opposing rolling surfaces 3 and 4 of both members 1 and 2 and rotatably supporting the wheel with respect to the vehicle body.
  • a plurality of sensor units 20B are provided on the outer diameter surface of the fixed side member of the outer member 1 and the inner member 2, and the sensor unit 20B is fixed in contact with the outer diameter surface of the fixed side member.
  • a strain generating member 21 having four or more contact fixing portions 21a, and three or more sensors 22A, 22B, 22C attached to the strain generating member 21 for detecting the strain of the strain generating member 21,
  • the load applied to the wheel from the sensor output signal of the sensor unit 20B Providing a constant for load estimation means 30A.
  • the load estimating means 30A includes an average value calculation unit 131 for obtaining an average value of output signals of the sensor unit 20B from output signals of at least two sensors in the sensor unit 20B, and output signals of at least two sensors in the sensor unit 20B.
  • an amplitude value calculation unit 132 for obtaining the amplitude value of the output signal of the sensor unit 20B from the average value
  • a load calculation unit 133 for estimating the load applied to the wheel by the calculation process using the average value and the amplitude value.
  • the average value calculation unit 131 calculates the average value of the output signals of the sensor unit 20B from the two sensor output signals in the sensor unit 20B, and the amplitude value calculation unit 132 determines the sensor unit 20B.
  • the amplitude value of the output signal of the sensor unit 20B is obtained from the output signals of the two sensors and the average value, and the load calculation unit 133 estimates the load applied to the wheel by the calculation process using the average value and the amplitude value. To do. For this reason, even when the wheel bearing is stationary or at a low speed, the load applied to the wheel can be accurately estimated with good response. Further, since the load applied to the wheel can be estimated without delay, the responsiveness and controllability of the vehicle using the estimated load can be improved, and the safety and running stability can be further improved.
  • the load estimating means 30A includes a radial load that acts in a radial direction and an axial direction of a wheel bearing from sensor output signals of the three or more sensor units 20B.
  • the axial load may be estimated.
  • the sensor unit 20B is placed at 90 degrees in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that is in the vertical position and the horizontal position with respect to the tire ground contact surface. Four of them may be equally arranged with a phase difference. By arranging the four sensor units 20B in this way, it is possible to estimate the vertical load Fz acting on the wheel bearing, the load Fx serving as a driving force or a braking force, and the axial load Fy.
  • At least two of the three or more sensors 22A, 22B, and 22C of the sensor unit 20B have ⁇ n + 1/2 () of the arrangement pitch of the rolling elements so that the phase difference between the output signals is 180 °. n: integer) ⁇ times, and the average value calculation unit 131 of the load estimating means 30A calculates the average value by canceling the fluctuation component by taking the sum of the output signals of the two sensors. It is also good.
  • At least two of the three or more sensors 22A, 22B, and 22C of the sensor unit 20B have ⁇ n / 2 + 1 / of the arrangement pitch of the rolling elements so that the phase difference of their output signals is 90 °. 4 (n: integer) ⁇ times, and the amplitude value calculation unit 132 of the load estimation means 30A calculates the amplitude value as the square root of the sum of squares obtained by subtracting the average value from the output signals of the two sensors. It may be what you want.
  • the temperature sensor 28 is provided in each sensor unit 20B, and the average value calculation unit 131 of the load estimation unit 30A corrects the temperature drift of the average value based on the output signal of the temperature sensor 28. good. In the case of this configuration, since the temperature drift of the average value can be corrected, the estimated load error due to temperature can be reduced.
  • the load estimating means 30A is provided with a sensor output signal for a plurality of periods of the rolling element amplitude of any one sensor of the sensor unit 20B, separately from the average value calculating unit 131 and the amplitude value calculating unit 132.
  • a second average value calculation unit 131A and an amplitude value calculation unit 132A for obtaining an average value and an amplitude value are provided, and the load calculation unit 133 calculates a second average value when the wheel rotation speed is higher than a predetermined value. It is good also as what estimates the load added to a wheel by the arithmetic processing using the average value and amplitude value which were calculated
  • the predetermined value is, for example, a speed at which the second average value calculation unit 131A and the amplitude value calculation unit 132A can be detected with higher accuracy than the first average value calculation unit 131 and the amplitude value calculation unit 132.
  • the speed is about the walking speed of a person or less.
  • the load calculation unit 133 of the load estimation unit 30A includes a calculation process using the average value and the amplitude value obtained by the first average value calculation unit 131 and the amplitude value calculation unit 132, and a second average value.
  • a calculation process using the calculation unit 131A and the amplitude value calculation unit 132A is performed in parallel, and one of the estimated load values obtained by the two calculation processes is switched and selected according to the wheel rotation speed.
  • a selection output means 135 for outputting may be provided.
  • the selection output means 135 may receive information on wheel rotation speed from the outside.
  • the outside mentioned here is the outside with respect to the wheel bearing with sensor.
  • the selection output unit 135 may detect the passing frequency of the rolling element from the output signal of the sensor and estimate the wheel rotation speed. In the case of this configuration, an extra sensor and wiring are unnecessary, and the configuration is simplified.
  • the selection output means 135 may estimate the wheel rotation speed from the rotation sensor signal supplied from the vehicle body side.
  • the selection output means 135 may receive a switching selection command corresponding to the wheel rotation speed from the control device on the vehicle body side.
  • a load Fx as a driving force / braking force is estimated.
  • two sensor units of a pair of sensor units are arranged on the upper surface portion and the lower surface portion of the outer diameter surface of the outer ring, and the direction of the axial load Fy is determined from the difference value of the amplitude of the sensor output signal of the sensor unit pair.
  • the parameters of the arithmetic expression used for the estimation of the axial load Fy are switched according to the determined direction.
  • FIG. 49 is a block diagram showing the flow of calculation processing of the axial load Fy.
  • the arithmetic processing unit performs processing such as averaging of sensor output signals, amplitude extraction, temperature correction, and the like.
  • FIG. 50 shows the relationship between the difference value of the amplitude of the sensor output signal of the sensor unit pair and the direction of the axial load Fy.
  • the sensor output signal of the sensor unit responds linearly in the range where the input load is relatively small, but becomes a non-linear response to a large axial load Fy such as during sharp cornering. Therefore, if a linear relationship is assumed in the calculation for estimating the input load from the sensor output signal of the sensor unit, there is a problem that the estimation error becomes large in the region of the high axial load Fy.
  • This estimation error can be reduced by modeling a non-linear relationship, but there is a problem that the parameter required for the load estimation calculation increases and the amount of calculation increases greatly.
  • the parameter required for the load estimation calculation increases and the amount of calculation increases greatly.
  • the sensor output signal of the sensor unit there is a problem that it is difficult to ensure robustness against the drift because a complicated calculation error is superimposed.
  • An object of the fourth and fifth application forms of the present invention is to provide a sensor-equipped wheel bearing capable of correcting a non-linearity included in a bearing strain response by a simple calculation and reducing a load estimation error. It is.
  • FIGS. 2 to 5 showing the first embodiment described above are also applicable to this application.
  • the strain sensor 22 of the sensor unit 20 is connected to load estimation means 30B that estimates the load applied to the wheel from the output signal.
  • the load estimating means 30B is composed of a computer such as a microcomputer (including a program executed thereon), an electronic circuit, and the like.
  • a computer such as a microcomputer (including a program executed thereon), an electronic circuit, and the like.
  • an axial load Fy acting in the axial direction of the wheel, a vertical load Fz acting in the vertical direction, and a load Fx acting in the front-rear direction as a driving force and a braking force are estimated.
  • the load estimation means 30B includes a difference value calculation unit 45 and a load calculation unit 47 as shown in a block diagram in FIG. In FIG. 27, the calculation processing of the load estimation means 30B is shown in a block diagram.
  • the difference value calculation unit 45 of the load estimation unit 30B outputs the sensor outputs of two sensor units 20 that are opposed to each other with a phase difference of 180 degrees in the circumferential direction of the outer member 1 among the plurality of sensor units 20.
  • the difference value of the amplitude value of the signal is calculated.
  • the sensor units 20 that are vertically opposed to each other are selected.
  • FIG. 29A shows the sensor output of the sensor unit 20 disposed on the upper surface portion of the outer diameter surface of the outer member 1
  • FIG. 29B is disposed on the lower surface portion of the outer diameter surface of the outer member 1.
  • the sensor output of the sensor unit 20 is shown.
  • the horizontal axis represents the axial load Fy
  • the vertical axis represents the strain amount of the outer member 1, that is, the output signal of the strain sensor 22, and the maximum value and the minimum value represent the maximum value and the minimum value of the signal. .
  • the load of the individual rolling elements 5 decreases at the upper surface portion of the outer member 1 and increases at the lower surface portion of the outer member 1. I understand that.
  • the axial load Fy is in the negative direction, the load of the individual rolling elements 5 increases at the upper surface of the outer diameter surface of the outer member 1 and the lower surface of the outer diameter surface of the outer member 1. It turns out that it becomes small in a part. Therefore, the difference value calculated by the difference value calculation unit 45 also indicates the direction of the axial load Fy.
  • the difference value calculation unit 45 includes temperature correction means 451 for correcting drift due to temperature of the sensor output signal of each sensor unit 20 that is input, and sensor output signals of each sensor unit 20.
  • An amplitude value calculating means 452 for calculating an amplitude value and an average value calculating means 453 for calculating an average value (DC component) of the sensor output signal are provided.
  • the average value calculation means 453 may be provided in the load calculation unit 47 instead of being provided in the difference value calculation unit 45.
  • the temperature generating unit 21 is provided in the strain generating member 21 of each sensor unit 20. Based on the output signal of the temperature sensor 28, the temperature correcting unit 451 determines the corresponding strain sensor 22. The output signal is corrected.
  • the amplitude value of the sensor output signal of the upper and lower sensor units 20 calculated by the amplitude value calculation means 452 is used.
  • the parameter of the calculation formula for the load estimation is set to an appropriate value according to the determined direction of the axial load Fy.
  • the load can be accurately estimated by switching to.
  • a linear response occurs in a relatively small range of the input load, but during a sharp cornering (in FIG. It becomes a non-linear response to a large input load such as (part), and the load cannot be accurately estimated.
  • the difference value calculated by the difference value calculation unit 45 is divided into a plurality of predetermined areas (here, three areas A, B, and C).
  • a plurality of load calculation formulas 473A, 473B, and 473C (FIG. 26) having different parameters corresponding to each region are set, and the region corresponding to the difference value among the plurality of load calculation formulas is set.
  • a load calculation formula is selected to estimate the loads Fx, Fy, and Fz.
  • the load calculation unit 47 includes direction determination means 471 for determining the direction of the axial load Fy from the difference value, and an area for determining which of the plurality of areas the difference value belongs to.
  • a determination unit 472 is included.
  • the load calculation formula 473A corresponding to the region A
  • three calculation formulas for estimating the axial load Fy, the vertical load Fz, and the load Fx serving as a driving force and a braking force are prepared.
  • the parameters are different from one another. For example, as described above, even in the calculation formula of the same axial load Fy, the parameters are different between calculation formulas in different regions. The same applies to the load calculation expressions 473B and 473C corresponding to the other regions B and C.
  • the region A is a region in which the direction of the axial load Fy is ⁇
  • the region B is a region in which the direction of the axial load Fy is + and the input load is small
  • the region C is an axial load.
  • the level is divided into areas where the direction of Fy is + and where the input load is small.
  • the correction coefficient a and constant b in the linear expression are the parameters
  • a linear expression may be prepared by taking the average value (DC component) of the sensor output signal as a variable, and multiplying this variable by a predetermined correction coefficient.
  • a linear expression may be prepared by using the average value and the amplitude value of the sensor output signal as variables, and multiplying each of these variables by a predetermined correction coefficient. , Set in advance to seek in advance testing and simulation.
  • the operation of the fourth application mode is basically the same as that of the first embodiment, and detailed description thereof is omitted.
  • the difference value calculation unit 45 calculates the difference value of the amplitudes of the sensor output signals of the two sensor units (here, the upper and lower sensor units) 20 that are arranged to face each other with a phase difference of 180 degrees. Select a load calculation formula for a region corresponding to the difference value from a plurality of load calculation formulas 473A, 473B, and 473C having different parameters provided corresponding to predetermined multiple regions A, B, and C divided into levels.
  • each sensor unit 20 is provided with an upper surface portion, a lower surface portion, and a right portion of the outer diameter surface of the outer member 1 that are in a vertical position and a horizontal position with respect to the tire ground contact surface. Since the surface portion and the left surface portion are equally arranged with a phase difference of 90 degrees in the circumferential direction, a vertical load Fz acting on the wheel bearing, a load Fx serving as a driving force and a braking force, and an axial load Fy are estimated. be able to.
  • each sensor unit 20 is provided with a temperature sensor 28.
  • the temperature correction unit 451 uses the output signal of the temperature sensor 28 based on the output signal of the strain sensor 22. Since the temperature drift of the output signal is corrected, the temperature drift of the output signal of the strain sensor 22 can be corrected.
  • the difference value calculation unit 45 of the load estimation unit 30B determines the amplitude values of the sensor output signals of the two sensor units 20 disposed opposite to the upper surface portion and the lower surface portion of the outer diameter surface of the outer member 1. Although the difference value has been calculated, the load calculation unit calculates the difference value of the amplitude values of the sensor output signals of the two sensor units 20 disposed opposite to the outer surface left surface portion and the right surface portion of the outer member 1. 32, the load calculation formula of the area corresponding to the difference value is selected from the plurality of load calculation formulas prepared for the predetermined plural areas obtained by leveling the difference value and having different parameters. Fz, Fx, and Fy may be estimated.
  • the input load region can be divided into levels even with respect to the moment load Mz around the axial direction z.
  • the difference value calculation unit 45 of the load estimating means 30B the difference value of the amplitude value of the sensor output signal of the sensor unit 20 arranged to face the upper and lower sides of the outer member 1 and the left and right sides of the outer member 1 are arranged to face each other.
  • the difference value of the amplitude value of the sensor output signal of the sensor unit 20 is calculated, and the load calculation unit 47 mutually corresponds to a plurality of combination areas composed of combinations of a plurality of predetermined areas obtained by leveling the difference values.
  • a plurality of load calculation formulas having different parameters are prepared, and the load Fz, Fx, and Fy are estimated by selecting the load calculation formula of the combination region corresponding to the two difference values from these combination regions. Also good.
  • each difference value is + Dividing into regions and negative regions, and preparing each load calculation formula corresponding to the four combination regions I, II, III, IV consisting of combinations of these positive and negative regions, the positive and negative of both amplitude difference values X, Z From the relationship, the load calculation formula of the corresponding combination area is selected to estimate the loads Fz, Fx, Fy. Z positive / negative X positive / negative Computational domain + + I +-II -+ III --IV
  • the load can be estimated by an optimum load calculation formula corresponding to the input load range. For this reason, the load estimation error can be further reduced, and the load applied to the wheel can be accurately estimated.
  • FIG. 32 shows a fifth application form of the present invention.
  • each sensor unit 20A is configured as follows.
  • the sensor unit 20A is the same as that shown in FIGS. 11 and 12 of the second embodiment, and a detailed description thereof will be omitted.
  • FIG. 13 and FIG. 14 of 2nd Embodiment are applied to this application form as it is.
  • the amplitude value calculation unit 452 in the difference value calculation unit 45 of the load estimation unit 30B in the fourth application mode shown in FIG. 26 uses the difference value between the output signals of the two strain sensors 22A and 22B in FIG. Is extracted as an amplitude value. 26 calculates the sum of the output signals of the two strain sensors 22A and 22B of each sensor unit 20A and takes this as an average value.
  • the difference value between the sensor output signals of the upper and lower sensor units 20A is obtained as a difference value between the amplitude values of the sensor output signals of the upper and lower sensor units 20A obtained by the amplitude value calculating means 452.
  • the output signals a and b of the two 22A and 22B are as shown in FIG.
  • the load estimation unit 47 is provided with an arithmetic expression selection unit 49 that selects one of the two types according to the number of rotations of the wheel.
  • the calculation formula selecting means 49 selects the calculation formula using only the average value from the two types of load calculation formulas in each region, thereby delaying the load. Can be estimated and output.
  • information on the rotational speed of the wheel is input to the arithmetic expression selecting means 49 from the outside, and the arithmetic expression is selected based on this information.
  • rotation sensor signals such as an ABS sensor (rotation detection sensor for an antilock brake system) from the vehicle body side are used as information on the wheel rotation speed from the outside, and the wheel rotation speed is thereby estimated.
  • ABS sensor rotation detection sensor for an antilock brake system
  • the wheel rotational speed may be estimated by detecting the passing frequency of the rolling element 5 from the output signals a and b of the strain sensors 22A and 22B.
  • the load estimation error can be reduced by correcting the nonlinearity included in the bearing strain response.
  • the area division is a difference between the amplitude values, the sensitivity to Fy moment load which has a particularly large influence is high, and the area can be accurately divided.
  • the amplitude signal is not easily affected by temperature, and the above-mentioned region division can be performed accurately, and the estimation accuracy is improved. ⁇ Also, even if the internal preload conditions of the bearing are different, stable area division is possible without being greatly affected. Furthermore, the sensor signals arranged on the left and right sides can be more accurately estimated by dividing the conditions more finely in addition to the region determination.
  • the fourth and fifth application modes described above include the following application mode group II (modes 13 to 22) that do not require the load estimation processing means 30 as a requirement in the embodiment.
  • the sensor-equipped wheel bearing according to aspect 13 includes an outer member 1 in which double-row rolling surfaces 3 are formed on the inner periphery, and an inner surface in which the rolling surface 4 facing the rolling surface 3 is formed on the outer periphery.
  • a wheel bearing having a side member 2 and a double row rolling element 5 interposed between the opposing rolling surfaces 3 and 4 of both members 1 and 2 and rotatably supporting the wheel with respect to the vehicle body.
  • a plurality of sensor units 20 are provided on the outer diameter surface of the fixed side member of the outer member 1 and the inner member 2, and the sensor unit 20 is fixed in contact with the outer diameter surface of the fixed side member.
  • a plurality of sensor units 20 having a strain generating member 21 having two or more contact fixing portions 21a and one or more sensors attached to the strain generating member 21 and detecting the strain of the strain generating member 21.
  • This load estimation means 30B is the difference value of the amplitude value of the sensor output signal of the sensor unit 20 which is opposed to each other with a phase difference of 180 degrees in the circumferential direction of the fixed side member among the plurality of sensor units 20.
  • a region corresponding to the difference value calculated by the difference value calculation unit 45 wherein a plurality of load calculation parameters are set corresponding to the difference value calculation unit 45 that calculates the difference value and a plurality of regions obtained by leveling the difference value, respectively.
  • a load calculation unit 47 that estimates the load applied to the wheel from the sensor output signals of the plurality of sensor units 20.
  • the region division may be, for example, a linear region where the difference value can be regarded as linear and a nonlinear region where the difference value is larger than this region and regarded as non-linear.
  • the difference value calculation unit 45 of the load estimation unit 30B is configured to detect the difference value of the amplitudes of the sensor output signals of the two sensor units arranged opposite to each other with a phase difference of 180 degrees in the circumferential direction of the outer member. Is calculated by the difference value calculation unit 45.
  • the sensor output signal fluctuates as the rolling element 5 passes along with the rotation of the bearing.
  • the magnitude of the fluctuation component is calculated by the difference value calculation unit 45 as the difference value.
  • the load calculation unit 47 selects a parameter of the region corresponding to the difference value calculated by the difference value calculation unit 45 from the parameters for load calculation provided for each region in which the difference value is divided into levels, and this parameter is selected. Use to estimate the load on the wheel.
  • the load estimation error can be reduced by correcting the nonlinearity included in the bearing strain response. Since the region division is performed using the difference value of the amplitude value, the sensitivity is high and the region can be appropriately divided. In addition, the amplitude signal is hardly affected by temperature, and the above-described region division can be performed accurately, and the detection accuracy is improved. Even if the internal preload conditions of the bearing are different, stable region division is possible without being greatly affected.
  • the difference value calculation unit 45 of the load estimation unit 30B may calculate the difference value of the amplitude value of the sensor output signal of the sensor unit 20 disposed so as to face the fixed side member. Assuming that the difference value between the sensor output signals of the upper and lower sensor units 20 is an evaluation value, this value changes approximately linearly with respect to the axial load Fy and is highly sensitive to the axial moment load. Thus, it is possible to appropriately classify the areas.
  • the difference value calculation unit 45 of the load estimation unit 30B may calculate the difference value of the amplitude value of the sensor output signal of the sensor unit 20 disposed opposite to the left and right of the fixed side member.
  • the difference value between the sensor output signals of the left and right sensor units 20 as an evaluation value, the input load region can be divided into levels even for the moment load Mz around the axial direction.
  • the difference value calculation unit 45 of the load estimating means 30B is provided on the left and right sides of the fixed side member and the difference value of the amplitude value of the sensor output signal of the sensor unit 20 disposed opposite to the upper and lower sides of the fixed side member.
  • the difference value of the amplitude value of the sensor output signal of the sensor unit 20 arranged oppositely is calculated, and the load calculation unit 47 of the load estimation means 30B is a plurality of combinations of a plurality of areas in which the difference values are divided into levels. It is good also as what estimates the load by selecting the load formula of the combination area
  • the load can be estimated with a more appropriate parameter according to the range of the input load. Therefore, the load estimation error can be further reduced, and the load applied to the wheel can be accurately estimated.
  • the load estimating means 30B includes a radial load acting on a radial direction and an axial direction of a wheel bearing from sensor output signals of the three or more sensor units 20.
  • the axial load may be estimated.
  • the sensor unit 20 is placed at 90 degrees in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that is in the vertical position and the horizontal position with respect to the tire ground contact surface. Four of them may be equally arranged with a phase difference. By arranging the four sensor units 20 in this way, it is possible to estimate the vertical load Fz acting on the wheel bearing, the load Fx serving as a driving force or a braking force, and the axial load Fy.
  • the load estimating means 30B estimates the load applied to the wheel by using the average value of a plurality of cycles of the rolling element amplitude in the sensor output signal, the amplitude value, or both the average value and the amplitude value. It may be.
  • the load estimation means 30B may change the combination of the average value and the amplitude value of the sensor output signal used for load estimation in accordance with the rotational speed of the wheel.
  • an average value it is possible to devise without performing time average processing even when the wheel is stopped or in a low speed state, and the load can be calculated and output in a short time by using a load formula that uses only the average value as a variable. it can.
  • the average value and the amplitude value can be calculated with high accuracy. Therefore, by using a load calculation formula using the amplitude value as a variable or a load calculation formula using the average value and the amplitude value as variables. The load can be calculated and output with high accuracy.
  • the sensor unit 20 may be provided with a temperature sensor 28, and the load estimation unit 30B may correct the sensor output signal based on the output signal of the temperature sensor 28. In the case of this configuration, the temperature drift of the output signal of the strain sensor 22 can be corrected.
  • the sensor unit 20A has three or more contact fixing portions and at least two sensors 22, and the phase difference between the sensor output signals is ⁇ n + 1/2 (n : Integer) ⁇ is set so that the interval between the contact fixing portions 21a is set, and the load estimating means 30B may use an average value of the output signals of the two sensors 22.
  • the output signals of the two sensors have a phase difference of about 180 degrees, and the average value is a value obtained by canceling the fluctuation component due to passing through the rolling elements.
  • the amplitude value is an accurate value that more reliably eliminates the effects of temperature and the effects of sliding on the knuckle / flange surface.
  • the first load estimating means 30C and the second load estimating means 30D are connected to the strain sensor 22 (FIG. 4) of the sensor unit 20, and the first load estimating means 30C is connected to the first load estimating means 30C.
  • a temperature sensor 28 is connected.
  • FIG. 35 which is a block diagram showing a configuration example of the first load estimating means 30C and the second load estimating means 30D which are load estimating means in the sensor-equipped wheel bearing of this application mode, the sensor unit 20 The strain sensor 22 is connected to the first load estimating means 30C.
  • This first load estimation means 30C has an axial load calculation unit 50 that estimates the axial load Fy applied in the axial direction of the wheel by substituting the sensor output signal of the sensor unit 20 into a predetermined load calculation formula.
  • the axial load Fy and the radial load (here, the vertical load Fz, which are applied in the axial direction and the radial direction of the wheel from the sensor output signal of each sensor unit 20).
  • a second load estimating means 30D for estimating a load Fx) serving as a driving force or a braking force is provided.
  • FIG. 36 the calculation processing of the first load estimation unit 30C and the second load estimation unit 30D is shown in a block diagram.
  • the load calculation formula used for estimating the axial load Fy (FIG. 36) by the axial load calculation unit 50 of the first load estimation means 30C is, for example, the amplitude value of the sensor output signal of each sensor unit 20. It is expressed as a linear expression obtained by multiplying this variable by a predetermined correction coefficient.
  • the correction coefficients and constants in this linear expression are calculation parameters.
  • a linear formula obtained by using an average value (DC component) of the sensor output signal of each sensor unit 20 as a variable and multiplying this variable by a predetermined correction coefficient may be used.
  • a linear formula obtained by using the average value and the amplitude value of the sensor output signal of each sensor unit 20 as variables and multiplying these variables by a predetermined correction coefficient may be used.
  • the values of the correction coefficients and constants in the linear equation are determined and set in advance through tests and simulations.
  • the axial load Fy be a value that can accurately estimate the load in the range of about 0 to 4 kN.
  • the first load calculation unit 30C includes a temperature correction unit 63 that corrects a drift due to the temperature of the sensor output signal of each sensor unit 20 that is input.
  • the amplitude value calculation unit 64 that calculates the amplitude value of the sensor output signal of each sensor unit 20, the average value calculation unit 65 that calculates the average value (DC component) of the sensor output signal, and the direction of the axial load Fy And a direction discriminating unit 51 for discriminating.
  • the strain generating member 21 of each sensor unit 20 is provided with a temperature sensor 28. Based on the output signal of the temperature sensor 28, the corresponding strain sensor 22 in the temperature correction unit 63. The output signal is corrected.
  • the direction discriminating unit 51 calculates the difference between the amplitude values of the sensor output signals of the upper and lower sensor units 20 calculated by the amplitude value calculating unit 64, and discriminates the direction of the axial load Fy from this difference value.
  • FIG. 29A to be cited shows the sensor output of the sensor unit 20 arranged on the upper surface portion of the outer diameter surface of the outer member 1, and FIG. 29B to be referred to is the lower surface of the outer diameter surface of the outer member 1.
  • positioned at the part is shown.
  • the horizontal axis represents the axial load Fy
  • the vertical axis represents the strain amount of the outer member 1, that is, the output signal of the strain sensor 22, and the maximum value and the minimum value represent the maximum value and the minimum value of the signal.
  • the load of the individual rolling elements 5 decreases at the upper surface portion of the outer member 1 and increases at the lower surface portion of the outer member 1. I understand that.
  • the axial load Fy is in the negative direction
  • the load of the individual rolling elements 5 increases at the upper surface of the outer diameter surface of the outer member 1 and the lower surface of the outer diameter surface of the outer member 1. It turns out that it becomes small in a part. Therefore, the difference value calculated by the direction determination unit 37 indicates the direction of the axial load Fy ⁇ .
  • the direction discriminating unit 51 can discriminate the direction of the axial load Fy, the load is calculated by switching the parameter of the calculation formula of the load estimation to an appropriate value according to the determined direction of the axial load Fy. There is a possibility that it can be estimated accurately.
  • FIG. 30 which shows the relationship between the axial load Fy and the sensor output of the sensor unit 20 as a graph, the linear response occurs in a relatively small range of the input load, but during sharp cornering (in FIG. It becomes a non-linear response to a large input load such as B), and the load cannot be estimated with high accuracy.
  • the second load estimation unit 30D includes a region determination unit 52 (FIG. 35) that determines to which region the magnitude of the axial load Fy calculated by the first load estimation unit 30C belongs.
  • a region determination unit 52 FOG. 35
  • region A a range in which the value is a or less
  • region B a range greater than a
  • a plurality of load calculation formulas 53A and 53B having different parameters are provided corresponding to each of the areas A and B, and the value of the axial load Fy is selected from the plurality of load calculation formulas.
  • a load calculation formula is selected to estimate the loads FxF, Fy, and Fz.
  • the load calculation formula 53A in the region A uses a parameter capable of accurately estimating the axial load Fy of 0 to 4 kN
  • the load calculation formula 53B of the region B accurately uses the axial load Fy of 4 to 7 kN.
  • the axial load Fy is in the negative direction, for example, the value is divided into a range where the value is less than or equal to b and a range where the value is greater than b.
  • a load calculation formula is set, a load calculation formula in a region corresponding to the value of the axial load Fy is selected, and each load Fx, Fy, and Fz is estimated.
  • the load calculation formula used in the second load estimation means 30D can also be expressed as a primary formula obtained by, for example, using the amplitude value of the sensor output signal of each sensor unit 20 as a variable and multiplying this variable by a predetermined correction coefficient.
  • the correction coefficient and constant in the linear expression are the calculation parameters.
  • a linear formula obtained by using an average value (DC component) of the sensor output signal of each sensor unit 20 as a variable and multiplying this variable by a predetermined correction coefficient may be used.
  • a linear formula obtained by using the average value and the amplitude value of the sensor output signal of each sensor unit 20 as variables and multiplying these variables by a predetermined correction coefficient may be used.
  • the values of the correction coefficients and constants in the linear equation are determined and set in advance through tests and simulations.
  • the load calculation formula 53A corresponding to the region A three calculation formulas for estimating an axial load Fy, a vertical load Fz, and a load Fx serving as a driving force and a braking force are used.
  • the parameters are different from one another.
  • the parameters are different between calculation formulas in different regions.
  • the sensor unit in the first load estimating means 30C, the sensor unit.
  • the axial load Fy is estimated by substituting the sensor output signal of 20 into a predetermined load calculation formula
  • the second load estimation unit 30D is a predetermined level obtained by dividing the load value estimated by the first load estimation unit 30C.
  • a load calculation formula of a region corresponding to the load value is selected from among a plurality of load calculation formulas 53A and 53B provided corresponding to the plurality of regions and having different parameters, and the plurality of sensors are selected as the load calculation formula.
  • the load estimation error can be easily reduced and the load applied to the wheel can be corrected. It can be estimated to.
  • the direction of the axial load Fy is also determined.
  • each sensor unit 20 is provided with an upper surface portion, a lower surface portion, and a right portion of the outer diameter surface of the outer member 1 that are in a vertical position and a horizontal position with respect to the tire ground contact surface. Since the surface portion and the left surface portion are equally arranged with a phase difference of 90 degrees in the circumferential direction, a vertical load Fz acting on the wheel bearing, a load Fx serving as a driving force and a braking force, and an axial load Fy are estimated. be able to.
  • each sensor unit 20 is provided with a temperature sensor 28.
  • the temperature correction unit 63 causes the temperature of the output signal of the strain sensor 22 based on the output signal of the temperature sensor 28. Since the drift is corrected, the temperature drift of the output signal of the strain sensor 22 can be corrected.
  • FIGS. 34 to 36 show a seventh applied form of the present invention.
  • An output signal of another load detection sensor 67 provided on the outer member 1 is used.
  • the load detection sensor 67 in this case is also configured by attaching the strain sensor 22 for detecting the strain of the strain generating member 41 to the strain generating member 68 as in the case of the sensor unit 20.
  • the distortion generating member 68 is provided across the peripheral surface of the outer member 1 and the flange surface facing the outboard side of the vehicle body mounting flange 1a.
  • the strain generating member 68 includes a first contact fixing portion 68a that is fixed in contact with the vicinity of the screw hole 14 of the vehicle body mounting flange 1a, and an outer member. And a second contact fixing portion 68b fixed to the outer peripheral surface of the first contact fixing portion 68b.
  • the strain generating member 68 includes a radial portion 68c along the radial direction including the first contact fixing portion 68a and an axial portion 68d along the axial direction including the second contact fixing portion 68a. It is configured in an L shape.
  • the radial portion 68c is thinned so as to be less rigid than the axial portion 68d.
  • the strain sensor 22 is attached to the radial portion 68c having low rigidity.
  • the load detection sensor 67 has the first and second contact fixing portions 68a and 68b of the strain generating member 68 in the same phase with respect to the circumferential direction of the outer member 1. It fixes to the outer peripheral part of the outward member 1 so that it may become a position.
  • the strain sensor 22 is bonded and fixed to the strain generating member 68.
  • the strain generating member 68 has a shape or material that does not cause plastic deformation by being fixed to the outer member 1.
  • the strain generating member 68 has a shape that does not cause plastic deformation even when the maximum expected load is applied to the wheel bearing, as in the case of the strain generating member 68 in the sensor unit 20. It is the same.
  • Other configurations are the same as those of the sixth applied embodiment shown in FIGS. 37 and 38, the sensor unit 20 is omitted.
  • the installation part of the load detection sensor 67 is a part having a large deformation amount with respect to the axial load Fy, and the sensor output signal is a good evaluation of the axial load Fy. Therefore, the axial load calculation unit 50 in the first load estimation unit 30C of FIG. 40 can calculate the axial load Fy from the sensor output signal of the load detection sensor 67. Further, it can also be used for the direction determination of the axial load Fy in the direction determination unit 51 in the first load estimation means 30C. Further, the temperature drift of the output signal of the strain sensor 22 is corrected by the temperature correction unit 63 of the first load estimating means 30C based on the output signal of the temperature sensor 28.
  • a sensor unit 20A comprising a flat plate-like strain generating member 21 mounted on the outer diameter surface of the outer member 1 and two strain sensors 22A and 22B is used.
  • the sensor unit 20A may be combined with the first load estimation unit 30 and the second load estimation unit 30D shown in FIG.
  • the amplitude value calculation unit 64 in the first load estimation means 30C calculates the difference between the output signals of the two strain sensors 22A and 22B (FIG. 12). This is taken out as an amplitude value.
  • the average value calculation unit 65 calculates the sum of the output signals of the two strain sensors 22A and 22B of each sensor unit 20A and takes it out as an average value.
  • the direction determination unit 51 determines the direction of the axial load Fy ⁇ from the difference between the amplitude values of the sensor output signals of the upper and lower sensor units 20A obtained by the amplitude value calculation unit 64.
  • the sixth and seventh application modes described above include application mode group III (modes 23 to 30) that do not require the load estimation processing means 30 that is a requirement in the embodiment.
  • the sensor-equipped wheel bearing according to the aspect 23 includes an outer member 1 in which the double-row rolling surfaces 3 are formed on the inner periphery, and an inner side in which the rolling surfaces 4 facing the rolling surfaces are formed on the outer periphery.
  • a wheel bearing comprising a member 2 and a double-row rolling element 5 interposed between the opposing rolling surfaces 3 and 4 of both members, the wheel bearing rotatably supporting the wheel with respect to the vehicle body,
  • a plurality of sensor units 20 are provided on the outer diameter surface of the fixed side member of the member 1 and the inner member 2, and the sensor unit 20 is fixed in contact with the outer diameter surface of the fixed side member.
  • a strain generating member 68 having a contact fixing portion 68a and one or more strain sensors 22 attached to the strain generating member 68 for detecting the strain of the strain generating member 68, and a sensor output signal of the sensor unit 20 Or another load detection sensor provided on the fixed side member.
  • the first load estimating means 30C for estimating the axial load applied in the axial direction of the wheel from the sensor output signals of 67 and the wheels using the predetermined load calculation parameters from the sensor output signals of the plurality of sensor units 20
  • a second load estimating means 30D for estimating the load applied to the.
  • the second load estimation unit 30D sets a plurality of parameters corresponding to a plurality of areas obtained by leveling the load values estimated by the first load estimation unit 30C, and estimates the first load estimation unit 30C.
  • the load is estimated by switching the parameter according to the magnitude of the axial load.
  • the plurality of regions are, for example, two regions: a linear region in which the load value estimated by the first load estimating unit 30C is regarded as linear, and a nonlinear region in which the load value is larger than this linear region and is regarded as nonlinear. .
  • the first load estimating means 30C estimates the axial load from the output signal of the sensor unit 20 or the load detection sensor 67 provided separately.
  • the second load estimation unit 30D estimates the load from the sensor output signals of the plurality of sensor units 20 by switching the parameter used for the load calculation according to the load value estimated by the first load estimation unit 30C.
  • the plurality of regions are divided into two regions, a linear region in which the load value estimated by the first load estimating unit 30C is regarded as linear and a nonlinear region in which the load value is regarded as non-linear.
  • the second load estimating means 30D when the first load estimating means 30C estimates the axial load from sensor output signals of the plurality of sensor units, the second load estimating means 30D When the load value estimated by the estimation unit 30C is in a predetermined region among the plurality of regions, the load value estimated by the first load estimation unit 30C is used as the load value estimated by the second load estimation unit 30D. May be output as The predetermined area is an area in which, for example, the load value estimated by the first load estimating means 30C is regarded as linear. In the case of this configuration, it is not necessary to duplicate the calculation performed by the first load estimation unit 30C and the second load estimation unit 30D, and the calculation is simplified.
  • Aspect 26 In Aspect 23, three or more sensor units 20 are provided, and the second load estimating means 30D is configured to apply a radial load acting in the radial direction and the axial direction of a wheel from the sensor output signals of the three or more sensor units 20. It is also possible to estimate the axial load. By providing three or more sensor units 20 as appropriate arrangements, both the radial load and the axial load can be estimated.
  • the sensor unit 20 is placed at 90 degrees in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that is in the vertical position and the horizontal position with respect to the tire ground contact surface. Four of them may be equally arranged with a phase difference. By arranging the four sensor units 20 in this way, it is possible to estimate the vertical load Fz acting on the wheel bearing, the load Fx serving as a driving force and a braking force, and the axial load Fy.
  • the first load estimating means 30C calculates the difference between the amplitude values of the sensor output signals of the two sensor units 20 arranged opposite to each other on the fixed side member, and the axial direction is calculated from the difference value.
  • a direction discriminating unit 51 that discriminates the direction of the load Fy may be provided. Depending on whether the sensor unit 20 is arranged on the upper side or the lower side of the fixed side member, a difference occurs in the output, so that the direction of the axial load Fy can be determined from the difference value.
  • the load detection sensor 67 different from the sensor unit 20 is attached to the strain generating member 68 provided across the flange surface and the peripheral surface of the fixed side member, and the strain generating member 68.
  • One or more strain sensors 22 that detect the strain of the strain generating member 68 may be provided.
  • the second load estimating means 30D obtains an average value for a plurality of periods of the amplitude of the rolling element 5 in the sensor output signal of each sensor unit 20, or an amplitude value, or both of the average value and the amplitude value. It may be used to estimate the load applied to the wheel.
  • the sensor unit 20A includes three or more contact fixing portions and at least two strain sensors 22, and the phase difference between the sensor output signals is ⁇ n + 1/2 of the arrangement pitch of the rolling elements 5.
  • the interval between the contact fixing portions 68a is set so as to be (n: integer) ⁇ , and the second load estimating means 30D may use the output signals of the two sensors 22 as an average value.
  • the output signals of the two strain sensors 22 have a phase difference of about 180 degrees, and the average value is a value obtained by canceling the fluctuation component due to passing through the rolling elements.
  • the amplitude value is an accurate value that more reliably eliminates the effects of temperature and the effects of sliding on the knuckle / flange surface.
  • the load estimation means having the above-described sensor output signal offset function for example, a configuration shown in a block diagram in FIG.
  • the sensor unit 50 in this example includes a strain generating member attached to an outer ring that is a fixed ring of a wheel bearing, and a strain sensor fixed to the strain generating member.
  • the controller communication circuit 99 controls the offset adjustment circuit 92, the storage means 93, the correction circuit 94, the signal output circuit 96, and the like, and outputs a sensor output signal subjected to preprocessing such as offset adjustment to 12
  • the signal is digitized by an AD converter 55 (FIG. 53) having a resolution of about 16 bits, and based on the digitized sensor output signal, the load applied to the wheel bearing is calculated and estimated by the load calculation function.
  • the offset adjustment circuit 92 adjusts the initial offset of the sensor unit 90 and the offset due to fixing to the wheel bearing to a normal value, and can be adjusted by the controller circuit 99 or by an instruction from the outside. ing.
  • FIG. 52 shows a specific connection configuration example of the sensor unit 90, the amplifier circuit 91, and the offset adjustment circuit 92.
  • the offset adjustment circuit 92 is configured as an adder including an operational amplifier OP, resistors R3 and R4, variable resistors VR1 and VR2.
  • the resistance values of the variable resistors VRI and VR2 are adjusted and fixed so that the sensor output becomes a specified value (zero point voltage) after the assembly of the sensor-equipped wheel bearing is completed.
  • the preprocessing circuit including the amplification circuit 91 and the offset adjustment circuit 92 is also increased in the same manner as the number of elements.
  • the size of the substrate becomes large, and it becomes difficult to mount on the bearing outer ring 60.
  • a pretreatment circuit is installed at a location away from the bearing and the sensor output signal is routed.However, in this case, the number of cables increases, and thick wiring from the suspension parts to the body side is required. It will be installed, causing workability and reliability to deteriorate.
  • a weak sensor output signal is extracted by a long wiring, there is a problem that the influence of noise is increased.
  • An object of the eighth and ninth application forms of the present invention is to provide a wheel bearing with a sensor capable of accurately detecting a load applied to a wheel bearing portion with a compact configuration.
  • FIG. 2 of the said 1st Embodiment which shows the front view which looked at the outward member 1 of the wheel bearing from the outboard side is applied also to an 8th application form.
  • four sensor units 20 are provided, and each sensor unit 20 is arranged on the upper surface portion, the lower surface portion, and the right portion of the outer diameter surface of the outer member 1 that is in the vertical position and the left and right positions with respect to the tire ground contact surface.
  • the surface portion and the left surface portion are equally arranged with a phase difference of 90 degrees in the circumferential direction.
  • the strain sensor 22 of each sensor unit 20 is connected to the estimation means 30E via an AD converter 55. That is, the output signal of the strain sensor 22 is directly AD converted by the AD converter 55, and the output signal of the strain sensor 22 subjected to the AD conversion is input to the estimation means 30E.
  • the AD converter 55 is installed on the sensor unit 20, for example, on the strain generating member 21, or is installed in the vicinity of the sensor unit 20 as shown in FIG. As the AD converter 55 in this case, an AD converter having a resolution of at least 20 bits is used.
  • the AD converter 55 is a multi-channel input small element, and forms a conversion unit 56 that collectively converts sensor output signals from a plurality of sensor units 20 into one digital data as shown in FIG. It is desirable to install this in a wheel bearing.
  • the conversion unit 56 is installed on the fixed member of the outer member 1 and the inner member 2 of the wheel bearing, that is, the outer member 1 in this application form.
  • the sensor output signals of the two sensor units 20 at the upper position and the right position are digitized by one conversion unit 56, and the sensor output signals of the two sensor units 20 at the lower position and the left position are converted to the other Digitized by one conversion unit 56.
  • the sensor output signals of the four sensor units 20, up, down, left, and right are digitized by one conversion unit 56.
  • the conversion unit 56 is arranged in the vicinity of the estimation unit 30E, for example, on the same wiring board.
  • the AD converter 55 is preferably a digital sigma type converter because it has a high accuracy and a relatively high speed.
  • the estimation means 30E calculates the force (vertical load Fz, driving force and braking force) acting on the wheel bearing and between the wheel and the road surface (tire contact surface) from the AD converted output signal of the strain sensor 22 of the sensor unit 20.
  • the load Fx and the axial load Fy) are estimated by a microcomputer, for example.
  • the estimation means 30E composed of the microcomputer may be one in which various electronic components are mounted on one substrate or one chip, and may be used for a wheel as in the examples of FIGS. 43 and 44. It is installed on the outer member 1 of the bearing or on the strain generating member 21 of the sensor unit 20.
  • the estimation means 30E includes an offset adjustment circuit 101, a temperature correction circuit 102, a filter processing circuit 103 such as a low-pass filter, a load estimation calculation circuit 104, a controller circuit 105, and the like.
  • the offset adjustment circuit 101 adjusts the initial offset of the strain sensor 22 or the offset due to fixing to the wheel bearing to a normal value. Adjustment by the controller circuit 105 or offset adjustment by an external command is performed. It is configured as possible. As described above, since the cause of the offset is a variation in the strain sensor 22 or a strain when the sensor is fixed, it is desirable to attach the sensor unit 20 to the wheel bearing and adjust the offset when the assembly is completed. .
  • the sensor-equipped wheel bearing is completed. Therefore, the sensor output signal quality can be ensured.
  • the output signal of the strain sensor 22 includes a drift amount due to temperature characteristics of the strain sensor 22 itself, temperature distortion of the outer member 1 which is a fixed member, and the like.
  • the temperature correction circuit 101 is a circuit that corrects drift caused by the temperature of the output signal of the strain sensor 22 that has been offset adjusted.
  • the strain generating member 21 of at least one sensor unit 20 is provided with a temperature sensor 28, and the output signal of the temperature sensor 28 is AD. After being digitized by the converter 55, it is input to the temperature correction circuit 101.
  • the load estimation calculation circuit 104 is based on the digitized output signal of the strain sensor 22 that has been subjected to offset adjustment processing, temperature correction processing, filter processing, etc. by the offset adjustment circuit 101, temperature correction circuit 102, and filter processing circuit 103. A load estimation calculation is performed.
  • This load estimation calculation circuit 104 is a relationship setting in which the relationship between the vertical load Fz, the load Fx serving as a driving force or a braking force, the axial load Fy, and the output signal of the strain sensor 22 is set by an arithmetic expression or a table. Means (not shown), and using the relationship setting means from the output signal of the strain sensor 22, the acting force (vertical load Fz, load Fx serving as driving force or braking force, axial load Fy) is estimated. .
  • the setting contents of the relationship setting means are obtained by a test or simulation in advance.
  • the load data obtained by the load estimation calculation circuit 104 of the estimation means 30E is transferred to the upper electric control unit (ECU) 106 installed on the vehicle body side.
  • ECU electric control unit
  • This communication path may be wireless, and may be configured such that a transmitter / receiver is installed on each of the bearing side and the vehicle body side to output load data and the like. In this case, it is possible to reduce the number of necessary cables by attaching the necessary cables such as power supply and operating the sensor and transmitting the obtained data wirelessly. Becomes easier.
  • a wiring 61a connected to the estimating means 30E is a wiring constituting the in-vehicle communication bus 61.
  • the electric control unit 106 is means for controlling the entire vehicle, for example, and is configured by a microcomputer or the like. It is good also as what outputs with an analog voltage as needed.
  • the load estimation calculation circuit 104 in the eighth applied embodiment uses distortion as data for obtaining the load.
  • the average value (DC component) of the amplitude of the output signal of the sensor 22 is calculated.
  • a rolling element detection sensor 140 for detecting the position of the rolling element 5 is provided on the inner periphery of the outer member 1 as shown in FIG.
  • a detection signal is input to the load estimation calculation circuit 104 (FIG. 42).
  • the load signal is estimated from the output signal of the strain sensor 22. Since the data is directly converted into digital data by the AD converter 55 before being input to the estimation means 30E, an offset adjustment circuit and an amplifier circuit for analog signals as shown in the proposed example become unnecessary, and circuit installation space is eliminated. Can be reduced, and the size can be reduced. In addition, since the sensor data is digitized, the estimation unit 30E can perform all preprocessing including offset adjustment and temperature correction by digital calculation. As a result, the adjustment process by auto-calibration can be greatly simplified and long-term drift can be dealt with. In addition, problems such as saturation of the amplifier circuit are eliminated.
  • the signal processing circuit can be made compact, the wiring of a minute analog signal that is the output signal of the strain sensor 22 can be shortened. As a result, it becomes less susceptible to noise and the final load detection accuracy is also improved. Can be made.
  • the temperature sensor 28 is provided in at least one of the sensor units 20, and the temperature correction circuit 102 (FIG. 42) in the estimation unit 30 E uses the output signal of the temperature sensor 28 to Since the drift of the output signal is corrected, the temperature drift of the output signal of the strain sensor 21 can be corrected.
  • FIG. 10 to FIG. 14 of the second embodiment cited as a common drawing a ninth applied form of the present invention will be described.
  • This wheel bearing with sensor is different from the eighth applied embodiment shown in FIGS. 41 to 44 in that each sensor unit 20A has the structure shown in FIGS. 10 to 14, and the other configurations are the same. Therefore, detailed explanation is omitted.
  • the eighth and ninth application modes described above include the application mode group IV (modes 32 to 42) that does not require the load estimation processing means 30 as a requirement in the embodiment.
  • the sensor-equipped wheel bearing according to the aspect 32 includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and an inner surface in which the rolling surface 4 facing the rolling surface 3 is formed on the outer periphery.
  • One or more load detecting sensor units 20 are provided on the outer diameter surface of the fixed member of the outer member 1 and the inner member 2, and the sensor unit 20 is fixed in contact with the fixed member.
  • a strain generating member 21 having two or more contact fixing portions 21a, and one or more strain sensors 22 attached to the strain generating member 21 and detecting the strain of the strain generating member 21.
  • At least 20 bits for direct AD conversion of the output signal Provided an AD converter 55 with a resolution on the wheel support bearing, provided with estimation means 30E for estimating a load applied to the wheel from the output signal of the AD-converted sensor 22.
  • directly AD conversion means that the output signal of the sensor 22 is input to the AD converter 55 without going through the signal processing means and AD conversion is performed.
  • the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner.
  • the distortion is easily detected by the sensor 22 with high sensitivity, and the hysteresis generated in the output signal is also reduced.
  • the output signal of the sensor 22 is directly AD-converted by an AD converter 55 having a resolution of at least 20 bits, and the load applied to the wheel is estimated by the estimation means 30E based on the AD-converted output signal of the sensor 22.
  • the load detection system can be configured in a compact manner, and the load applied to the bearing portion of the wheel can be accurately detected.
  • the AD converter 55 may be a multi-channel input signal AD converter that AD converts the output signals of the plurality of sensors 22 by one.
  • the sensor output signals from the plurality of sensor units 20 can be AD converted by one AD converter 55, so that the installation space can be reduced and the entire detection system can be installed on the wheel bearing.
  • the AD converter 55 may be attached to at least one of the sensor units 20. Also in this configuration, the installation space for the AD converter 55 can be reduced.
  • At least one of the conversion units having a plurality of the AD converters 55 may be provided on the wheel bearing separately from the sensor unit 20. Also in this configuration, the installation space for the AD converter 55 can be reduced.
  • the AD converter 55 is a digital sigma conversion type AD converter.
  • the sensor unit 20 may include two contact fixing portions 21a and one sensor 22.
  • the sensor unit 20 includes three or more contact fixing portions 21a and two sensors 22, and the phase difference between the sensor output signals is ⁇ n + 1/2 (n: The interval between the contact fixing portions 21a is set so as to be an integer) ⁇ , and the estimation means 30E calculates the average value by canceling the fluctuation component by taking the sum of the output signals of the two sensors 22 Also good.
  • the estimation means 30E calculates the average value by canceling the fluctuation component by taking the sum of the output signals of the two sensors 22 Also good.
  • the estimation means 30E uses a radial load and a shaft acting on the radial direction and the axial direction of the wheel bearing from the sensor output signals of the three or more sensor units 20.
  • the directional load may be estimated.
  • the sensor unit 20 is arranged at 90 degrees in the circumferential direction on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that is in the vertical position and the horizontal position with respect to the tire ground contact surface. Four of them may be equally arranged with a phase difference. By arranging the four sensor units 20 in this way, it is possible to estimate the vertical load Fz acting on the wheel bearing, the load Fx serving as a driving force or a braking force, and the axial load Fy.
  • the temperature sensor 28 may be provided in at least one of the sensor units 20, and the estimation unit 30E may correct the temperature drift of the sensor output signal based on the output signal of the temperature sensor 28. In the case of this configuration, the temperature drift of the output signal of the strain sensor 22 can be corrected.
  • the estimation means 30E may be connected to the in-vehicle communication bus on the vehicle body side, and the load signal estimated by the estimation means 30E may be output to the vehicle body side by communication.
  • the present invention is also applicable to a wheel bearing in which the inner member 2 is a fixed side member.
  • the sensor unit 20 is provided on the peripheral surface that is the inner periphery of the inner member 2.
  • the present invention relates to the first or second generation type in which the bearing portion and the hub are independent parts.
  • the present invention can also be applied to a wheel bearing of the fourth generation type and a fourth generation type wheel bearing in which a part of the inner member is constituted by an outer ring of a constant velocity joint.
  • this sensor-equipped wheel bearing can be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type.
  • load condition limiting means 38 ... external monitor 39 ... input devices 40, 40A ... average value calculating section 41, 41A ... amplitude value calculating section 42, 43 ... temperature correction means 44 ... selection output means 45 ... difference value calculation section 47 ... load calculation section 48 ... temperature correction means 4 ... arithmetic expression selecting means 50 ... axial load calculation unit 51 ... direction discriminator 52 ... region discriminator 53A, 53B ... load computing equation 54 ... load detection sensor 55 ... AD converter 56 ... transform unit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

 環境の変化や長期間の使用によっても検出精度が悪化することなく、車輪にかかる荷重を正確に推定できるセンサ付車輪用軸受を提供する。車輪用軸受の外方部材と内方部材のうちの固定側部材にセンサユニットを設ける。センサユニットは、歪み発生部材とその歪みを検出するセンサ(22)でなる。センサ(22)の出力信号の平均値を用いて車輪に加わる荷重を推定する主荷重推定手段(31)と、センサ(22)の出力信号の転動体(5)の通過による信号波形の振幅値を用いて荷重を推定する振幅処理荷重推定手段(36)を設ける。その振幅処理荷重推定値(s2)により、主荷重推定手段(31)の平均値を用いた推定荷重出力(s1)のドリフト量を推定するドリフト量推定手段(37)を設ける。そのドリフト量で補正する補正手段(33)を設ける。

Description

センサ付車輪用軸受 関連出願
 本出願は、2009年3月26日出願の特願2009-076762、2009年4月1日出願の特願2009-089042、2009年4月8日出願の特願2009-093581、2009年4月8日出願の特願2009-093582および2009年7月13日出願の特願2009-164474の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。
 自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の外輪フランジに歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受が提案されている(例えば特許文献1)。また、車輪に設けた複数の歪みセンサの出力信号から、車輪にかかる荷重を推定する演算方法も提案されている(例えば特許文献2)。
特表2003-530565号公報 特表2008-542735号公報
 特許文献1,2に開示の技術のように、歪みセンサを用いて車輪にかかる荷重を計測する場合、歪みセンサ自体の温度特性のほか、計測対象物の温度歪みなどが歪みセンサの出力信号に加わるため、その出力信号にドリフトが発生する。
 この場合、出力信号を温度補正することにより、出力信号の誤差をある程度まで低減することが可能である。図46には、車輪用軸受の外輪に設けた歪みセンサの出力信号を温度センサの検出信号で補正して荷重を推定する場合の荷重推定手段の提案例の概略構成をブロック図で示す。
 この提案例では、振幅値演算部72で歪みセンサ70の出力信号の振幅値を演算し、平均値演算部73で歪みセンサ70の出力信号の平均値を演算する。歪みセンサ70の出力信号は、軸受外輪における歪みセンサ設置部の近傍を通過する転動体の影響を受けて正弦波に近い波形となるので、振幅値演算部72はその正弦波の振幅値(交流成分)を求めることになり、平均値演算部73はその正弦波の平均値(直流成分)を求めることになる。求めた平均値に含まれる温度ドリフトは、例えば歪みセンサ70の近傍の温度を検出する温度センサ71の出力信号を用いて補正手段74で補正する。この補正された平均値と、振幅値演算部72で求めた振幅値とを用いて、荷重推定部75により車輪にかかる荷重を推定する。荷重推定部75では、前記振幅値および補正された平均値を変数とし、これら各変数に所定の補正係数を乗算してなる一次式により荷重を推定する。
 しかし、上記提案例の場合でも、複数の歪みセンサが設置される場合には、それぞれの歪みセンサの近傍に温度センサが必要となり、設置スペース、配線スペースおよびコストが増加してしまう。
 また、車輪用軸受は長期間にわたって使用され、大きな振動や衝撃荷重にさらされるため、歪みセンサの設置状況、例えば密着状態が変化することにより、出力信号にドリフトが発生する可能性もある。
 このように、歪みセンサの出力信号にドリフトが発生すると、荷重演算結果の誤差が大きくなり、正確な荷重を検出できなくなってしまう。
 この発明の目的は、温度補正だけでは補正できないドリフト成分の補正が可能で、環境の変化や長期間の使用によっても検出精度が悪化することなく、車輪にかかる荷重を正確に推定できるセンサ付車輪用軸受を提供することである。
 この発明のセンサ付車輪用軸受は、理解を容易にするために実施形態で使用した符号を付して説明すると、複列の転走面3が内周に形成された外方部材1と、前記転走面3と対向する転走面4が外周に形成された内方部材2と、両部材1,2の対向する転走面3,4間に介在した複列の転動体5とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、前記外方部材1および内方部材2のうちの固定側部材に荷重検出用のセンサユニット20を設け、前記センサユニット20は、前記固定側部材に接触して固定される2つ以上の接触固定部21aを有する歪み発生部材21およびこの歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する1つ以上のセンサ22を有し、このセンサユニット20のセンサ22の出力信号から車輪に加わる荷重を推定する荷重推定処理手段30を設け、この荷重推定処理手段30を次の構成とした。
 この荷重推定処理手段30は、前記センサユニット20のセンサ22の出力信号の平均値を演算する平均値演算手段32を有しその演算した平均値を補正手段33で補正して車輪に加わる荷重を推定する主荷重推定手段31と、前記センサ22の出力信号の転動体通過による信号波形の振幅値から車輪に加わる荷重に相当する振幅処理荷重推定値s2を演算する振幅処理荷重推定手段36と、前記主荷重推定手段31の推定値である推定荷重出力s1と前記振幅処理荷重推定値s2とを比較することにより、前記推定荷重出力s1に現れるセンサ22の出力信号のドリフト量を推定するドリフト量推定手段37とを備える。前記主荷重推定手段31の前記補正手段33は、ドリフト量推定手段37で推定したドリフト量により荷重推定出力を補正するものとする。
 車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材1)にも荷重が印加されて変形が生じる。ここではセンサユニット20における歪み発生部材21の2つ以上の接触固定部21aが、外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みがセンサ22で感度良く検出される。
 主荷重推定手段31は、このようにセンサ22で検出される歪み発生部材21の歪みの平均値を求め、この平均値を補正手段33で補正して、車輪に加わる荷重を推定する。センサ22で検出される歪みと車輪に加わる荷重とは一定の関係があるため、その関係を予め求めておくことで、車輪に加わる荷重が推定できる。センサ22で検出される歪みは、転動体5がセンサ22の付近を通過する毎に大きくなる振動波形となるが、その直流成分となる平均値を求めることで、転動体5の通過に影響されない歪みの値が得られる。このように平均値から推定される車両の荷重は、前記のようにセンサ22自体の温度特性に加えて、歪み発生部材21等の温度歪みや、長期使用の間のセンサ22の密着状態等の設置状況の変化などによってドリフトする現象が発生する。
 しかし、この発明は、センサ22の出力信号の転動体通過による信号波形の振幅値から車輪に加わる荷重に相当する振幅処理荷重推定値s2を振幅処理荷重推定手段36で演算し、ドリフト量推定手段37により、主荷重推定手段31の推定荷重出力s1と振幅処理荷重推定値s2とを比較することによって、前記推定荷重出力s1に現れるセンサ22の出力信号のドリフト量を推定する。この推定したドリフト量は、主荷重推定手段31にフィードバックされ、前記補正手段33により前記平均値の補正が行われる。
 前記振幅値は軸受に作用する荷重に応じて変わるため、振幅値からも車輪に加わる荷重が推定できる。また局部的な歪みを検知した振幅信号は、温度等の影響を受け難いため、振幅処理荷重推定値s2を用いることで、平均値を用いた推定荷重出力s1のドリフト成分であるドリフト量を推定することができる。このようにドリフト量を推定して補正するため、推定荷重出力s1の誤差が低減され、精度の良い荷重を検出することができる。
 この発明において、前記主荷重推定手段31は、前記センサ22の出力信号の前記補正手段33で補正された補正後の平均値と前記センサ22の出力信号の振幅値との両方を用いて前記推定荷重出力s1を演算する併用推定手段34を有するものとしても良い。例えば、前記補正後の平均値と前記振幅値とに、それぞれ重みとなる適宜の係数を乗じて、両方の値の和を推定荷重出力s1とする。
 このように平均値と振幅値との両方を用いることで、より精度良く、車輪に加わる荷重を演算することができる。前記ドリフト量推定手段37は、このように平均値と振幅値との両方を用いて演算された推定荷重出力s1に対して前記ドリフト量を推定し、このドリフト量をフィードバックして前記補正手段33による補正が行われる。
 この発明において、前記センサユニット20を3つ以上設け、前記荷重推定処理手段30は、前記3つ以上のセンサユニット20のセンサ22の出力信号から、車輪に加わる荷重のうちの前後方向荷重Fx、垂直方向荷重Fz、および軸方向荷重Fyを推定するものとしても良い。各センサユニット20の各センサ22は、センサユニット20の設置位置等に応じて、車輪用軸受の径方向となる前後方向,垂直方向、および軸方向に作用する荷重の成分を持つ。このため、各センサ22毎に、各方向の荷重の推定に用いるか否か、および用いる場合に各方向の荷重の推定に用いる係数を適宜定めておくことで、前後方向荷重,垂直方向荷重、および軸方向荷重の推定が行える。前記係数は、例えば試験等によって適切な値が求められる。
 この発明において、前記センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に、円周方向90度の位相差で4つ等配しても良い。
 このように4つのセンサユニット20を配置することにより、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
 この発明において、前記センサユニット20の少なくとも1つに温度センサ28を設け、前記主荷重推定手段31は、前記平均値演算手段32で演算されて前記補正手段33に入力される平均値を前記温度センサ28の検出温度により補正する温度補正手段33を有するものとしても良い。温度補正手段33による補正は、温度に応じた係数や演算式を定めておくことで行える。
 この構成の場合、平均値を温度補正した上で、補正手段33により、前記ドリフト量推定手段37によるドリフト量推定値を用いて補正するため、より精度の良い推定荷重出力s1が得られる。また、この温度補正を行って得た推定荷重出力s1と振幅処理荷重推定値s2とを比較してドリフト量を推定することになるため、ドリフト量推定手段37により、最も確実なドリフト量の推定が行える。さらに、全ての歪み検出用のセンサ22に温度センサ28を設けることなく、歪みセンサ22の出力信号の温度ドリフトを補正することができる。
 この発明において、前記センサユニット20は3つ以上の接触固定部21aと歪み発生部材21の歪みを検出する2つのセンサ22を有し、隣り合う第1および第2の接触固定部21aの間、および隣り合う第2および第3の接触固定部21aの間に各センサ22をそれぞれ取付け、隣り合う接触固定部21aもしくは隣り合うセンサ22の前記固定側部材の円周方向についての間隔を、転動体5の配列ピッチの{1/2+n(n:整数)}倍とし、前記主荷重推定手段31前記平均値演算手段32は、前記2つのセンサ22の出力信号の和を平均値として用いるものとしても良い。
 この構成の場合、2つのセンサ22の出力信号は略180度の位相差を有することになり、その平均値は転動体5の通過による変動成分をキャンセルした値となる。また、振幅値は温度の影響やナックル・フランジ面間などの滑りの影響をより確実に排除した正確なものとなる。
 この発明において、前記ドリフト量推定手段37は、前記振幅処理荷重推定手段36の出力する振幅処理荷重推定値s2と前記主荷重推定手段31の出力する推定荷重出力s1との関係を、最小自乗推定を適用して求め、この関係から推定荷重出力s1のドリフト量を推定するものとしても良い。
 振幅のみによる荷重推定値の精度には限界があるが、荷重条件を限定すれば、振幅処理荷重推定値s2と平均値を主とする推定荷重出力s1との対応関係が良い精度で線形となる。そのため、振幅処理荷重推定値s2と平均値を用いた推定荷重出力s1とについて、その関係を最小自乗推定を適用して求めることにより、平均値による推定荷重出力s1のドリフト量を精度良く求めることができる。
 このように最小自乗推定を適用するドリフト量推定手段37を設けた場合に、車体に設けられた1つ以上のセンサ、すなわち車載センサ29の出力信号から、車両走行中に軸受に作用する荷重の状態が設定荷重条件を充足するか否かを判断し、設定荷重条件を充足しない場合は、振幅処理荷重推定手段36の出力する振幅処理荷重推定値s2の中から、前記ドリフト量推定手段に37よりドリフト量の推定処理に用いる振幅処理荷重推定値s2を設定抽出条件に従って抽出する荷重条件限定手段37aを設けることが良い。前記車載センサ29としては、例えばGセンサ(加速度センサ)、ヨーレートセンサ、スロットルセンサ、ABSセンサ(アンチロックブレーキシステム用の回転速度検出センサ)等がある。
 荷重条件限定手段37aによる走行中の荷重状態の判断は、上記のような様々なセンサの信号を併用して総合的に判断するようにすることが好ましい。この総合的な判断は、例えば、個々の車載のセンサ29の出力毎に設定許容範囲を設定しておいて、全てが範囲内にあるか否かを判断するようにしても良く、また複数の車載のセンサ29の信号を所定の処理で組み合わせて得られる値を求め、その値を設定許容範囲と比較するようにしても良い。また、荷重条件限定手段37aの前記設定抽出条件は、例えば、前記設定荷重条件を充足する間に出力された振幅処理荷重推定値s2のみを抽出するなど、適宜定める。
 急激な荷重変化、例えば縁石への衝突などが発生した場合や急激な温度変化によって、センサ出力の信号がドリフトしてしまう可能性がある。ドリフト量は、主荷重推定手段の出力s1と振幅処理荷重推定値s2とを比較することによって推定するが、この推定をよい精度で行うには、s1とs2との対応関係がほぼ線形となるように、入力荷重条件を限定して推定する必要がある。限定機能が機能することにより、ドリフト量の推定精度が高くなり、信号ドリフトを正確に補正して検出誤差を抑えることが可能になる。検知したドリフト量は、荷重演算推定処理にフィードバックされるため、検出荷重の誤差を抑えることが可能となる。
 この発明において、前記荷重推定処理手段30を車内通信バスに接続し、前記ドリフト成分推定手段37の推定するドリフト量、および主荷重推定手段31による推定荷重出力s1を、前記車内通信バスを介して外部モニタに出力可能とすることが良い。このように車内通信バスを介して外部モニタ38に出力可能とすることで、ドリフト量等をモニタすることができる。
 この場合に、前記荷重推定処理手段30を車内通信バスを通じて車体搭載の入力装置39に接続し、前記荷重推定処理手段30は、前記入力装置39からの入力により、前記ドリフト量推定手段37によるドリフト量の推定を含む、前記車輪に加わる荷重の推定の演算に用いるパラメータを設定可能にすることが良い。これにより、修理・部品交換などでセンサ信号に変化があった場合などに、車内通信バスを通じて適正なドリフト量に設定し直すことができる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。 図3におけるIV-IV矢視断面図である。 センサユニットの他の設置例を示す断面図である。 同センサユニットにおける歪みセンサ出力信号の平均値と振幅値の関係を示す図である。 同センサ付車輪用軸受における推定手段の構成例を示すブロック図である。 同推定手段の他の構成例を示すブロック図である。 この発明の第2実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。 図11におけるXII -XII 矢視断面図である。 センサユニットの他の設置例を示す断面図である。 センサユニットの出力信号に対する転動体位置の影響の説明図である。 この発明の第1応用形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。 図17におけるXVIII―XVIII矢視断面図である。 センサユニットの他の設置例を示す断面図である。 センサユニットの出力信号に対する転動体位置の影響の説明図である。 センサユニットの出力信号に対する転動体位置の影響の他の説明図である。 同センサ付車輪用軸受における荷重推定手段の構成例を示すブロック図である。 第2応用形態にかかるセンサ付車輪用軸受における荷重推定手段の他の構成例を示すブロック図である。 第3応用形態にかかるセンサ付車輪用軸受における荷重推定手段の他の構成例を示すブロック図である。 この発明の第4応用形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受における荷重推定手段の構成例を示すブロック図である。 同荷重推定手段の演算処理の流れを示す説明図である。 同センサ付車輪用軸受のセンサユニットのセンサ出力信号の波形図である。 (A)は外方部材外径面上面部でのセンサ出力信号振幅と軸方向荷重の方向との関係を示すグラフ、(B)は同外径面下面部でのセンサ出力信号の振幅と軸方向荷重との関係を示すグラフである。 軸方向荷重とセンサユニットのセンサ出力との関係を示すグラフである。 軸方向荷重の大きさと上下のセンサユニットのセンサ出力の差分値との関係を示すグラフである。 この発明の第5応用形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受における荷重推定演算部の構成例を示すブロック図である。 この発明の第6応用形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受における荷重推定手段の構成例を示すブロック図である。 同荷重推定手段の演算処理の流れを示す説明図である。 この発明の第7応用形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。 (A)は同センサ付車輪用軸受における荷重検出センサの平面図、(B)は同側面図である。 同センサ付車輪用軸受における荷重推定手段の構成例を示すブロック図である。 この発明の第8応用形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受における検出系の全体構成を示すブロック図である。 同センサ付車輪用軸受におけるAD変換器の設置構成の一例を示す断面図である。 同センサ付車輪用軸受におけるAD変換器の他の設置構成例を示す断面図である。 この発明の第9応用形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 提案例における荷重推定手段の構成例を示すブロック図である。 センサユニットの出力信号に対する転動体位置の影響の説明図である。 センサ出力信号の平均値と振幅値を演算する演算回路の一例のブロック図である。 提案例における荷重演算処理の流れを示す説明図である。 軸方向荷重の大きさと上下のセンサユニットのセンサ出力の差分値との関係を示すグラフである。 提案例における検出系の構成例を示すブロック図である。 同検出系における増幅回路およびオフセット調整回路の具体例を示す回路構成図である。 提案例においてセンサ数が増加したときの検出系の構成を示すブロック図である。
 この発明の第1実施形態を図1ないし図8と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。
 外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のねじ孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト(図示せず)を前記ねじ孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
 内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
 図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI-I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。
 固定側部材である外方部材1の外径面には、4つのセンサユニット20が設けられている。ここでは、これらのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に設けられている。
 これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する1つの歪みセンサ22とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部21bを有する。切欠き部21bの隅部は断面円弧状とされている。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される2つの接触固定部21aを両端部に有する。なお、歪み発生部材21の形状によっては、接触固定部21aを2つ以上有するものとしても良い。また、歪み発生部材21の切欠き部21bは省略しても良い。
 歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21bの周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、例えば、その力が作用しても車輪用軸受は損傷をせず、その力が除去されると車輪用軸受の正常な機能が復元される範囲で最大の力である。
 前記センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向の同寸法の位置で、かつ両接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。
 接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。
 このほか、図5に断面図で示すように、外方部材1の外径面における前記歪み発生部材21の2つの接触固定部21aが固定される2箇所の中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する2つの接触固定部21bの中間部位を外方部材1の外径面から離すようにしても良い。
 歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる.その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。
 センサユニット20の歪みセンサ22は、その出力信号から車輪に加わる荷重を推定する荷重推定処理手段30に接続される。荷重推定処理手段30は、車輪に加わる各方向の荷重のうち、前後方向荷重Fxとなるラジアル荷重を推定する前後方向荷重推定部30xと、垂直方向(上下方向)荷重Fzとなるラジアル荷重を推定する垂直方向荷重推定部30zと、軸方向荷重Fyを推定する軸方向荷重推定部30yとを有する。これら前後方向荷重推定部30x、垂直方向荷重推定部30z、および軸方向荷重推定部30yは、互いに独立して設けられたものであっても良く、また一つの推定部が、時分割等で各方向の荷重Fx,Fz,Fyを推定する推定部として機能するものとしても良い。
 各センサユニット20の各センサ22は、センサユニット20の設置位置等に応じて、車輪用軸受の径方向となる前後方向,垂直方向、および軸方向に作用する荷重の成分を持つ。このため、前後方向荷重推定部30x、垂直方向荷重推定部30z、および軸方向荷重推定部30yは、どのセンサ22の入力を用いるか、また用いるセンサ22毎に入力信号に掛ける係数がそれぞれ適宜に定めてあり、これにより前後方向荷重Fx、垂直方向荷重Fz、および軸方向荷重Fyを推定する。前記係数は、例えば試験等によって適切な値が求められる。
 センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22の出力信号は、センサユニット20の設置部の近傍を通過する転動体5の影響を受ける。すなわち、転動体5がセンサユニット20における歪みセンサ22に最も近い位置を通過するとき出力信号の振幅は最大値となり、その位置から転動体5が遠ざかるにつれて低下する。これにより、軸受回転時には歪みセンサ22の出力信号は、その振幅が転動体5の配列ピッチを周期として変化する正弦波に近い波形となる。
 この歪みセンサ22の出力信号に含まれる直流成分となる平均値および、交流成分の振幅値のいずれも、車輪に作用する荷重の推定が可能な信号であるが、それぞれに利点,欠点となる特性がある。平均値は、広範囲に渡って荷重の推定が可能であるが、前述のようなドリフトが生じる。そのため、荷重推定処理手段30は、次のように、平均値および振幅値を分析することにより、平均値を主とする出力のドリフト量を推定して補正する機能を搭載したものとしてある。
 図7は、荷重推定処理手段30の一構成例を示すブロック図である。同図は、図1の示す前後方向荷重推定部30x、垂直方向荷重推定部30z、および軸方向荷重推定部30yのうちの一つを代表して示す。また、同図に示す歪みセンサ22は、複数の歪みセンサ22を代表して示す。
 この構成例では、荷重推定処理手段30は、車輪に加わる荷重を演算する主荷重推定手段31と、振幅値演算手段35と、振幅値から車輪に加わる荷重に相当する振幅処理荷重推定値s2を演算する振幅処理荷重推定手段36と、ドリフト量推定手段と37からなる。主荷重推定手段31は、平均値演算手段32、温度補正手段33A、補正手段33、および併用推定手段34からなり、車輪に加わる荷重の推定値である推定荷重出力s1を出力する。
 平均値演算手段32は、歪みセンサ22の出力信号の平均値を演算する手段である。この平均値を演算は、ローパスフィルタを通すことで直流成分を抽出するものであっても、また逆位相関係が現れる2つの歪みセンサ22の和を演算するものであっても良く、さらに歪みセンサ22の出力信号の移動平均等を演算するものであっても良い。
 温度補正手段33Aは、温度センサ28の検出温度によって、平均値演算手段32の演算した平均値を補正する手段である。温度センサ28は、図3のように少なくとも1つのセンサユニット20の歪み発生部材21に設けられる。歪みと温度とには、略比例する関係があるため、温度補正手段33Aは、このような歪みと温度の関係によって前記平均値を補正する。
 補正手段33は、ドリフト量推定手段37で推定したドリフト量に対応した補正を行う手段である。例えば、推定したドリフト量、またはこのドリフト量に適宜の係数を乗じた値を平均値に対して加算する。
 併用推定手段34は、補正手段33で補正された補正後の平均値とセンサ22の出力信号の振幅値との両方を用いて前記推定荷重出力s1を演算する手段である。併用推定手段34は、例えば、前記補正後の平均値と前記振幅値とに、それぞれ重みとなる適宜の係数を乗じて、両方の値の和を推定荷重出力s1とする。
 振幅値演算手段35は、歪みセンサ22の出力信号の転動体通過による信号波形の交流成分の振幅値を演算する手段である。この演算は、例えば前記信号波形の交流成分の抽出処理とされる。この振幅値演算手段35で演算した振幅値が、前記併用推定手段34に入力される。
 振幅処理荷重推定手段36は、振幅値演算手段35で得た振幅値から車輪に加わる荷重に相当する振幅処理荷重推定値s2を演算する手段である。前記振幅値は軸受に作用する荷重に応じて変わるため、振幅値からも車輪に加わる荷重が推定できる。
 ドリフト量推定手段37は、主荷重推定手段31の推定値である推定荷重出力s1と、振幅処理荷重推定手段36で推定した振幅処理荷重推定値s2とを比較することにより、前記推定荷重出力s1に現れるセンサ22の出力信号のドリフト量を推定する。ドリフト量推定手段37は、推定荷重出力s1と振幅処理荷重推定値s2の差を統計処理によって求めることで、ドリフト量を推定する。例えば、振幅処理荷重推定値s2と推定荷重出力s1との関係を、最小自乗推定を適用して求め、この関係から推定荷重出力s1のドリフト量を推定する。
 s1とs2との出力に差が生じた場合(平均値がオフセットした場合)、図6に示した振幅と平均値との関係が崩れる。センサ毎にこのずれ(平均値のオフセット分)を補正する。具体的には、以下のような手順となる。
 平均値をベクトルA、振幅値をベクトルBと表現すると、計算に用いる重み係数をM、Mとして、主荷重推定手段31の出力はs1=MA+MB と表現できる。振幅処理荷重推定値s2とs1は、条件を限定すればs1=s2となるので、図6のグラフと同様に直線の関係になる。
 信号にドリフトΔが発生すると、平均値ベクトルはA+Δとなり、推定値はs1’ = s1+MΔのように変化する。すなわち、s1’ =s2+MΔ の関係に変化する。
 そのため、s1’ とs2の関係は、図6に示したグラフを平行移動させた状態となる。一定期間のs1’ とs2との関係を統計処理して、最小自乗推定により切片の移動分を計算すれば、MΔを求めることができる。したがって、計算結果から引き算してs1’― MΔ とすればドリフトの影響を除去できる。また、MΔの値が求まれば、Δ=M -1・MΔ (M -1 は一般化逆行列)として、センサ信号のドリフトΔを推定することもできる。したがって、平均値信号AからΔを引くことで、併用推定手段34に入力する前に補正してもよい。
 ドリフト量推定手段37には、荷重条件限定手段37aが設けられている。荷重条件限定手段37aは、車体に設けられた1つ以上のセンサ、すなわち車載センサ29の出力信号から、車両走行中に軸受に作用する荷重の状態が設定荷重条件を充足するか否かを判断し、設定荷重条件を充足しない場合は、振幅処理荷重推定手段36の出力する振幅処理荷重推定値s2の中から、前記ドリフト量推定手段に37よりドリフト量の推定処理に用いる振幅処理荷重推定値s2を設定抽出条件に従って抽出する。前記車載センサ29としては、例えばGセンサ(加速度センサ)、ヨーレートセンサ、スロットルセンサ、ABSセンサ(アンチロックブレーキシステム用の回転速度検出センサ)等がある。
 上記構成の作用を説明する。車輪のタイヤと路面間に荷重が作用すると,車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。ここではセンサユニット20における歪み発生部材21の2つ以上の接触固定部21aが、外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪みセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなる。このように検出される歪みセンサ22の出力から荷重推定処理手段30により、車輪に加わる荷重が推定される。
 荷重推定処理手段30の作用を説明する。図1の前後方向荷重推定部30x、垂直方向荷重推定部30z、および軸方向荷重推定部30yにより、複数のセンサユニット20の各歪みセンサ22の出力を用いて、前後方向荷重Fx、垂直方向荷重Fz、および軸方向荷重Fyを推定する。これら各方向の荷重Fx,Fz,Fyの推定につき、図7に示す各手段で、センサ信号平均値および振幅を分析することにより、信号ドリフト量を推定して補正する。
 すなわち、歪みセンサ22の振幅値演算手段35が得られる振幅値から、車輪に加わる荷重に相当する振幅処理荷重推定値s2を振幅処理荷重推定手段36によって演算する。主荷重推定手段31は、平均値演算手段32によって、歪みセンサ22の出力信号の平均値を演算し、各補正等を行って推定荷重出力s1を出力する。ドリフト量推定手段37は、主荷重推定手段31の推定値である推定荷重出力s1と、振幅処理荷重推定手段36で推定した振幅処理荷重推定値s2とを比較し、その差を統計処理によって精度良く求めることにより、推定荷重出力s1に現れるセンサ22の出力信号のドリフト量を推定する。このとき、走行中の荷重状態が上記比較を行える荷重状態であるか否かを、荷重条件限定手段37aによって判断し、上記振幅処理荷重推定値s2のうち、比較できると判断される値を抽出してドリフト量推定手段37によるドリフト量の推定を行う。
 このように推定したドリフト量を主荷重推定手段31にフィードバックし、主荷重推定手段31は、平均値演算手段32で演算した平均値(より具体的には温度補正手段33Aで補正した平均値)を、前記ドリフト量でさらに補正する。このさらに補正された平均値に、併用推定手段34によって、平均値と振幅値とを所定の割合で合わせた値となる推定荷重出力s1を演算し、出力する。この推定荷重出力s1が荷重推定処理手段30の出力となる。
 また、図8に示すように、荷重推定処理手段30を車内通信バス145に接続し、前記ドリフト成分推定手段37の推定するドリフト量、および主荷重推定手段31による推定荷重出力s1を、車内通信バス145を介して外部モニタ38に出力可能とすることが良い。さらに、荷重推定処理手段30を車内通信バスを通じて車体搭載の入力装置39に接続し、荷重推定処理手段30は、前記入力装置39からの入力により、ドリフト量推定手段37によるドリフト量の推定を含む、前記車輪に加わる荷重の推定の演算に用いる各種のパラメータを設定可能にすることが良い。
 この構成によると、平均値を主とする推定荷重出力s1のドリフト分を、振幅値で推定して補正するが、局部的な歪みを検知した振幅信号は温度等の影響を受け難いため、振幅を演算処理して得られた荷重情報を用いてセンサ信号の平均値のドリフト分を推定することができる。
 推定したドリフト成分を補正することにより、平均値情報の誤差が低減され、補正された平均値情報と振幅情報を使って、推定荷重出力s1の荷重演算精度を向上させることができる。
 また、走行中の温度センサ28やその他の車載センサ29の信号を分析し、温度の影響など既知のパラメータについての補正を実施する。その上で、信号振幅の状態から推定される入力荷重である振幅処理荷重推定値s2と、その推定荷重条件に対する信号平均値を主とする推定荷重出力s1の値を比較して、ずれ量を算出する。このため、最も確実なドリフト量を推定することができる。
 振幅のみによる荷重推定値である振幅処理荷重推定値s2の精度には限界があるが、荷重条件を限定すれば振幅値と信号平均値(具体的には推定荷重出力s1)との対応関係が、図6に示すように良い精度で線形となる。同図は平均値と振幅値との関係を示す(ただし,Fy>0 の条件)。このように線形の関係が得られるため、振幅処理荷重推定値s2と信号平均値を主とする推定荷重出力s1のデータについて、その関係を最小自乗推定を適用して求めることにより、平均値データ(推定荷重出力s1)のドリフト量を精度よく求めることが可能になる。
 ただし、上記線形となるのは、限られた荷重条件の場合であるため、走行中の荷重状態を推定する荷重条件限定手段37aを設け、ドリフト量推定処理の実施条件を限定する。
 走行中の荷重状態の予測には、車体に設置された様々なセンサ、例えばGセンサ、ヨーレートセンサ、スロットルセンサ、ステアリングセンサ、ABSセンサ、などの信号を併用して総合的に判断するのが望ましい。その場合、荷重推定処理手段30は、CANバス(コントロールエリアネットワークバス)などの車内通信バスに接続されて、必要な情報を用いるように構成されていればよい。
 急激な荷重変化、例えば縁石への衝突など、が発生した場合、歪みセンサ22の信号が急激に変化する可能性がある。上記の荷重条件限定手段37aによる補正機能がないと、その後ずっと検出誤差が発生したままになってしまうが、補正が機能することにより、短時間で信号ドリフトを補正して検出誤差を抑えることが可能になる。
 検知したドリフト量は、主荷重推定手段31にフィードバックされるため、検出荷重の誤差が低減される。
 フィードバックされたドリフト量は、荷重推定処理手段30の内部の記憶手段(図示せず)に記憶されて、上記の車内通信バスを通じて外部モニタ38によってからモニタすることもできる。また、修理・部品交換などでセンサ信号に変化があった場合には、同様に通信バスを通じて適正なドリフト量を、入力装置39によって設定し直すことも可能である。
 また、この実施形態では前記センサユニット20を4つ設け、各センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
 このセンサ付車輪用軸受によると、このように、温度センサ28だけでは補正できないドリフト成分も補正が可能になる。衝撃荷重や軸受の経年変化によるセンサ信号のドリフトもキャンセル可能となり、長期間にわたって検出精度を保つことが可能になる。また、温度センサ28を全ての歪みセンサ22の近傍に配置しなくても良くなる。
 なお、この実施形態において、図1のように外方部材1の内周に転動体5の位置を検出する転動体検出センサ40を設け、この転動体検出センサ40の検出信号を図7や図8の補正手段33に入力するようにしても良い。このように、補正手段33での補正に用いるデータとして、転動体検出センサ40の検出する転動体5の位置データを加えた場合には、平均値演算手段32で演算される平均値から転動体通過の影響を解消できるので、荷重の検出誤差をさらに抑えることができる。
 図9ないし図14は、この発明の第2実施形態を示す。このセンサ付車輪用軸受では、図1~図8に示す第1実施形態において、各センサユニット20Aを以下のように構成している。この場合、センサユニット20Aは、図11および図12に拡大平面図および拡大断面図に示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する2つの歪みセンサ22とでなる。歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される3つの接触固定部21aを有する。3つの接触固定部21aは、歪み発生部材21の長手方向に向けて1列に並べて配置される。
 2つの歪みセンサ22のうち1つの歪みセンサ22Aは、図12において、左端の接触固定部21aと中央の接触固定部21aとの間に配置され、中央の接触固定部21aと右端の接触固定部21aとの間に他の1つの歪みセンサ22Bが配置される。図11のように、歪み発生部材21の両側辺部における前記各歪みセンサ22A,22Bの配置部に対応する2箇所の位置にそれぞれ切欠き部21bが形成されている。
 センサユニット20Aは、その歪み発生部材21の3つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ各接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペース23を介してボルト24により外方部材1の外径面に固定される。
 このほか、図13に断面図で示すように、外方部材1の外径面における前記歪み発生材21の3つの接触固定部21aが固定される3箇所の各中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する各部位を外方部材1の外径面から離すようにしても良い。センサユニット20Aにおけるその他の構成や、センサユニット20Aの配置などは、図1~図8に示す第1実施形態の場合と同様である。
 この第2実施形態の場合、図1~図8に示す第1実施形態における荷重推定処理手段30の平均値演算手段32において、各センサユニット20Aの2つの歪みセンサ22A,22Bの出力信号の和を演算して、その和を平均値として取り出す。また、荷重推定処理手段30の振幅値演算手段35では、2つの歪みセンサ22A,22Bの出力信号の差分を演算し、その差分値を振幅値として取り出す。
 センサユニット20Aは、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22A,22Bの出力信号a,bは、図14のようにセンサユニット20Aの設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪みセンサ22A,22Bの出力信号a,bは、転動体5の位置の影響を受ける。すなわち、転動体5がセンサユニット20Aにおける歪みセンサ22A,22Bに最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪みセンサ22A,22Bの出力信号a,bの振幅は最大値となり、図14(A),(B)のように転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記センサユニット20Aの設置部の近傍を順次通過するので、歪みセンサ22A,22Bの出力信号a,bは、その振幅が転動体5の配列ピッチPを周期として図14(C)に実線で示すように周期的に変化する正弦波に近い波形となる。
 また、歪みセンサ22A,22Bの出力信号a,bの振幅は、温度の影響やナックル16と車体取付用フランジ1a(図9)の面間などの滑りによるヒステリシスの影響を受ける。この実施形態では、前記2つの歪みセンサ22A,22Bの出力信号a,bの振幅の和を上記した平均値とし、振幅の差分を上記した振幅値とする。これにより、平均値は転動体5の通過による変動成分をキャンセルした値となる。また、振幅値は、2つの歪みセンサ22A,22Bの各出力信号a,bに現れる温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。したがって、この平均値と振幅値を用いることにより、車輪用軸受やタイヤ接地面に作用する荷重をより正確に推定することができる。
 図14では、固定側部材である外方部材1の外径面の円周方向に並ぶ3つの接触固定部21aのうち、その配列の両端に位置する2つの接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定している。この場合、隣り合う接触固定部21aの中間位置にそれぞれ配置される2つの歪みセンサ22A,22Bの間での前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪みセンサ22A,22Bの出力信号a,bは略180度の位相差を有することになり、その和として求められる平均値は転動体5の通過による変動成分をキャンセルしたものとなる。また、その差分とし求められる振幅値は温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。
 なお、図14では、接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定し、隣り合う接触固定部21aの中間位置に各1つの歪みセンサ22A,22Bをそれぞれ配置することで、2つの歪みセンサ22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの略1/2となるようにした。これとは別に、直接、2つの歪みセンサ22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの1/2に設定しても良い。
 この場合に、2つの歪みセンサ22A,22Bの前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。この場合にも、両歪みセンサ22A,22Bの出力信号a,bの和として求められる平均値は転動体5の通過による変動成分をキャンセルした値となり、差分として求められる振幅値は温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。
 つぎに、この発明の荷重推定処理手段30を要件としない第1~第3応用形態について説明する。前述した特許文献1のように外輪フランジに歪みゲージを貼り付けるのでは、組立性に問題がある。また、検出感度も低く、荷重を精度良く検出できない。
 そこで、前記第1および第2実施形態では、外方部材1の外径面にセンサユニット20,20Aを取り付け、このセンサユニット20,20Aを、歪み発生部材21と、これに取り付けられた1つ以上の歪みセンサ22,22A,22Bとで形成することにより、軸受への組立性、荷重の検出感度および荷重精度を向上させた。
 ここで、歪みセンサの出力信号から平均値と振幅値を算出し、両方の値を用いて荷重を推定する場合、平均値と振幅値を求めるためには、軸受が回転して転動体が公転している必要があり、静止状態や極低速状態では誤差が大きくなってしまうという問題がある。
これに対し、前記第2実施形態では、2つの歪みセンサ22A,22Bの出力信号の和(平均値)から車輪用軸受に作用する荷重を推定しているので、各歪センサ22A,22Bの出力信号に現れる転動体5の一の影響を相殺することができ、軸受が好転していない状態でも荷重を精度良く検出できる。
 また、前記第2実施形態では、センサユニット20Aの2つの歪みセンサ22A,22Bの出力信号の差(振幅値)から車輪用軸受に作用する荷重を推定しているので、各歪みセンサ22A,22Bの出力信号に現れる温度の影響やナックル・フランジ面間の滑りによる影響を相殺でき、荷重を精度良く検出できる。図48は、前記2つの歪みセンサ22A,22Bの出力信号の和と差を求める演算処理回路の一例を示す。しかし、この場合、振幅値を求める演算には、少なくとも1周期の出力信号が必要であり、レスポンスの悪化が避けられない。
 そこで、以下の第1~第3応用形態の目的は、車輪用軸受が静止あるいは低速状態でも、レスポンス良く車輪にかかる荷重を正確に推定できるセンサ付車輪用軸受を提供することである。
 この発明の第1応用形態を図15ないし図22と共に説明する。図16は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示し、図15は、図16におけるXV-XV矢視断面図を示す。図17,18,19はそれぞれ前記第1実施形態の図3,4,5に対応する。
 具体的に説明すると、図15に示すように、図1の荷重推定処理手段30に代えて、荷重推定手段30Aを用いている。また、図16に示すように、図2の4つのセンサユニット20に代えて、4つのセンサユニット20Bを用いている。各センサユニット20Bは、図17に示すように、図3の歪みセンサ22に代えて、3つの歪みセンサ22A,22B,22Cを有し、歪み発生部材21Aの形状も図3の歪み発生部材21の形状よりも複雑になっている。同様に図18では、3つの歪みセンサ22A,22B,22Cが設けられているため、図4に比べ、ボルト挿通孔25,26およびボルト24の数や接触固定部21aの数が増加している。さらに、図19では、図3の歪みセンサ22に代えて、3つの歪みセンサ22A,22B,22Cを用いていることで、溝1c、ボルト24、ボルト挿通孔25、ねじ孔27および接触固定部21aの数が図3の場合に比べ増加している。その他の構造は共通しており、前記第1実施形態を示す図1ないし図8と同一または相当する部分には同一の符号を付して、その詳しい説明は省略する。
 この応用形態において、センサユニット20Bは、図17および図18に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する3つの歪みセンサ22A,22B,22Cとでなる。歪み発生部材21は、前記第1実施形態と同様の薄板材からなり、平面概形が全長にわたり均一幅の帯状で両側辺部にそれぞれ切欠き部21bを有する。各切欠き部21bの隅部は断面円弧状とされている。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される4つ以上(ここでは4つ)の接触固定部21aを有する。4つの接触固定部21aは、歪み発生部材21の長手方向に向け1列に並べて配置される。3つの歪み発生部材22A,22B,22Cは、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に設置される。具体的には、歪み発生部材21の外面側で隣り合う接触固定部21aの間に配置される。
 切欠き部21bは、図17のように、歪み発生部材21の両側辺部における前記歪みセンサ22A,22B,22Cの配置部に対応する3箇所の位置の両側辺にそれぞれ形成されている。これにより、歪みセンサ22A,22B,22Cは歪み発生部材21の切欠き部21bの周辺における長手方向の歪みを検出する。
 このほか、図19に断面図で示すように、外方部材1の外径面における前記歪み発生部材21の各接触固定部21aが固定される箇所の隣り合う中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する各接触固定部21bの中間部位を外方部材1の外径面から離すようにしても良い。
 歪みセンサ22A,22B,22Cとしては、第1実施形態の歪みセンサ22と同様のものを使用することができる。
 各センサユニット20Bの歪みセンサ22A,22B,22Cは、その出力信号から車輪に加わる荷重を推定する荷重推定手段30A(図15)に接続される。ここでは、車輪の垂直方向に作用する垂直方向荷重Fz と、駆動力や制動力となる前後方向に作用する荷重Fx と、軸方向に作用する軸方向荷重Fy が推定される。この荷重推定手段30Aは、図22にブロック図で示すように、平均値演算部131と振幅値演算部132と荷重演算部133とを有する。平均値演算部131および振幅値演算部132は、図では一つのみを示したが、各センサユニット20Bにそれぞれ対応して複数設けられる。
 センサユニット20Bは、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22A,22B,22Cの出力信号は、センサユニット20Bの設置部の近傍を通過する転動体5の影響を受ける。すなわち、転動体5がセンサユニット20Bにおける歪みセンサ22A,22B,22Cに最も近い位置を通過するとき出力信号は最大値となり、その位置から転動体5が遠ざかるにつれて低下する。これにより、軸受回転時には歪みセンサ22A,22B,22Cの出力信号は、図20(C)や図21(C)のように、その振幅が転動体5の配列ピッチPを周期として変化する正弦波に近い波形となる。
 ここでは、各歪みセンサ22A,22B,22Cの前記円周方向の間隔は、図21のように、転動体5の配列ピッチPの1/4(90度位相差)とされている。これにより、左端の歪みセンサ22Aと右端の歪みセンサ22Cの間隔は、転動体5の配列ピッチPの1/2(180度位相差)となる。図20は、間隔が転動体5の配列ピッチPの1/4となる2つの歪みセンサ22A,22Bの出力信号A,Bの波形と転動体位置との関係を示している。他の2つの歪みセンサ22B,22Cの出力信号B,Cの波形と転動体位置との関係も同様である。図21は、間隔が転動体5の配列ピッチPの1/2となる2つの歪みセンサ22A,22Cの出力信号A,Cの波形と転動体位置との関係を示している。
 平均値演算部131は、2つの歪みセンサ22A,22Cの出力信号A,Cからセンサユニット20Bの出力信号の平均値を求める演算部である。振幅値演算部132は、2つの歪みセンサ22B,22Cの出力信号B,Cと前記平均値演算部131で求められる平均値とから、センサユニット20Bの出力信号の振幅値を求める演算部である。転動体5の位置の位相をθとするとき、前記各出力信号A,B,Cは以下の各式で与えられる。
 A=αsin θ+β    ……(1)
 B=αcos θ+β    ……(2)
 C=-αsin θ+β   ……(3)
 ただし、αは振幅値、βは平均値である。
 そこで、平均値演算部131では、出力信号Aと出力信号Cの和をとることにより、つまり、
 β=(A+C)/2    ……(4)
を演算することにより、平均値を求める。
 また、振幅値演算部132では、2つの出力信号B,Cからそれぞれ平均値βを除き、これらの値の二乗和の平方根を求めることにより、つまり
 α={(B-β)+(C-β)1/2
  ={(αcos θ)+(αsin θ)1/2     ……(5)
を演算することにより、振幅値αを求める。なお、この演算では、出力信号A,Bを用いても同様の結果を得ることができる。
 これらの演算は、転動体5の位置に関係なく短時間に求めることができる。つまり、軸受が静止状態や極低速状態であってもレスポンスよく求めることができる。
 平均値演算部131は、求められた演算値の温度によるドリフトを補正する温度補正手段34を有する。各センサユニット20Bの歪み発生部材21には図17のように温度センサ28が設けられ、この温度センサ28の出力信号に基づき、前記温度補正手段34において平均値の補正が行なわれる。
 図22に示す荷重演算部133では、平均値演算部131および振幅値演算部132で求められた各センサユニット20Bに対応する平均値および振幅値を変数とし、これらの変数に補正係数を乗算した所定の荷重演算式から車輪に加わる荷重を演算・推定する。この場合の荷重演算式としては、垂直方向荷重Fz を演算するものと、駆動力や制動力となる前後方向の荷重Fx を演算するものと、軸方向荷重Fy を演算するものとが設けられる。上記各演算式における各補正係数の値は、予め試験やシミュレーションで求めておいて設定する。
 車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。ここでは、図18に示すセンサユニット20Bにおける歪み発生部材21の4つ以上の接触固定部21aが、外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪みセンサ22A,22B,22Cで感度良く検出される。
 特に、図22の荷重推定手段30Aでは、平均値演算部131により、センサユニット20Bにおける2つの歪みセンサ22A,22Cの出力信号A,Cからセンサユニット20Bの出力信号の平均値を求め、振幅値演算部132により、センサユニット20Bにおける2つの歪みセンサ22B,22Cの出力信号B,Cと前記平均値とからセンサユニット20Bの出力信号の振幅値を求め、さらに荷重演算部133において、前記平均値および振幅値を用いた演算処理により車輪に加わる各荷重Fz ,Fx ,Fy を推定するようにしているので、車輪用軸受が静止あるいは低速状態でも、レスポンス良く車輪にかかる荷重を正確に推定することができる。したがって、この推定された荷重値を利用した車両制御の応答性や制御性が向上し、安全性や走行安定性をより高めることができる。
 この第1応用形態では前記センサユニット20Bを4つ設け、各センサユニット20Bを、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
 また、各センサユニット20Bに温度センサ28を設け、前記荷重推定手段30Aの平均値演算部131では、温度補正手段134 により、前記温度センサ28の出力信号に基づき、平均値の温度ドリフトを補正するようにしているので、平均値の温度ドリフトを補正することができる。
 図23は、この発明の第2応用形態を示す。このセンサ付車輪用軸受では、センサユニット20Bの歪み発生部材21における歪みセンサ22A,22B,22Cの配置において、左端の歪みセンサ22Aと中間位置の歪みセンサ22Bとの間隔を転動体配列ピッチPの1/2とし、中間位置の歪みセンサ22Bと右端の歪みセンサ22Cとの間隔を転動体配列ピッチPの1/4としている。また、荷重推定手段30Aにおける平均値演算部131では、左端の歪みセンサ22Aの出力信号Aと中間位置の歪みセンサ22Bの出力信号Bとによりセンサユニット20Bの出力信号の平均値を求め、振幅値演算部132では、中間位置の歪みセンサ22Bの出力信号Bおよび右端の歪みセンサ22Cの出力信号Cと、前記平均値とによりセンサユニット20Bの出力信号の振幅値を求めるようにしている。その他の構成は先の第1応用形態の場合と同様である。
 図24は、この発明の第3応用形態を示す。このセンサ付車輪用軸受では、図15~図22に示した第1応用形態における荷重推定手段30Aにおいて、前記平均値演算部131および振幅値演算部132とは別に、第2の平均値演算部131Aおよび振幅値演算部132Aと、選択出力手段135とを設けている。第2の平均値演算部131Aおよび振幅値演算部132Aは、センサユニット20Bにおける1つの歪みセンサ(ここでは歪みセンサ22C)の転動体振幅の複数周期分の出力信号から、そのセンサユニット20Bの出力信号の平均値および振幅値を求める演算部である。その平均値演算部131Aが温度補正手段136を有し、この温度補正手段136により平均値の温度ドリフトが補正されることは第1の平均値演算部131の場合と同様である。この場合の第2の平均値演算部131Aおよび振幅値演算部132Aも、各センサユニット20Bにそれぞれ対応して複数設けられる。
 このように、1つの歪みセンサの出力信号から平均値および振幅値を求めるためには、その出力信号として複数周期分のデータが必要である。このため、第1の平均値演算部131および振幅値演算部132で平均値および振幅値を求める場合よりもレスポンスが低下する。そこで、第2の平均値演算部131Aおよび振幅値演算部132Aでの演算は、車輪の回転速度が所定の値より高いときに行うようにされる。前記所定の値は、例えば、第2の平均値演算部131Aおよび振幅値演算部132Aの方が第1の平均値演算部131および振幅値演算部132よりも精度良く検出できる速度であり、具体的には、人の歩行速度程度かそれ以下の速度とされる。
 荷重演算部133では、第2の平均値演算部131Aおよび振幅値演算部132Aで求められた各センサユニット20Bに対応する平均値および振幅値を変数とし、これらの変数に補正係数を乗算した所定の荷重演算式から車輪に加わる荷重を演算・推定する処理も行なわれる。つまり、荷重演算部133では、第1の平均値演算部131および振幅値演算部132で求められた平均値および振幅値を用いた荷重推定と、第2の平均値演算部131Aおよび振幅値演算部132Aで求められた平均値および振幅値を用いた荷重推定とが並行して行なわれる。
 選択出力手段135は、荷重演算部133において前記両演算処理により得られる2つの推定荷重値から、車輪回転速度に応じていずれか1つの推定荷重値を切り替え選択して出力する手段である。選択出力択手段135には、例えば外部から車輪回転速度の情報が入力され、この情報に基づいて前記推定荷重値の選択出力が行なわれる。ここで言う外部は、このセンサ付車輪用軸受に対する外部である。この場合、外部からの車輪回転速度の情報として、車体側からのABSセンサ(アンチロックブレーキシステムに用いられる車輪の回転検出センサ)などの回転センサ信号を用い、これにより車輪回転速度を推定するようにしても良い。また、車体側の車内通信バスに接続された上位制御装置から、車輪回転速度の情報に代わるものとして、切り替え選択指令を選択出力手段135が受ける構成としても良い。さらに、車輪回転速度の情報として、前記歪みセンサ22A,22B、22Cの出力信号A,B,Cから転動体5の通過周波数を検出して、車輪回転速度を推定するものとしても良い。
 以上説明した第1~第3応用形態は、実施形態で要件とした荷重推定処理手段30を要件としないつぎの応用態様群I(態様1~12)を含む。
[態様1]
 態様1にかかるセンサ付車輪用軸受は、複列の転走面3が内周に形成された外方部材1と、前記転走面3と対向する転走面4が外周に形成された内方部材2と、両部材1,2の対向する転走面3,4間に介在した複列の転動体5とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、上記外方部材1および内方部材2のうちの固定側部材の外径面に複数のセンサユニット20Bを設け、前記センサユニット20Bは、前記固定側部材の外径面に接触して固定される4つ以上の接触固定部21aを有する歪み発生部材21およびこの歪み発生部材21に取付けられてこの歪み発生部材21の歪みを検出する3つ以上のセンサ22A,22B,22Cを有し、前記センサユニット20Bのセンサ出力信号から車輪に加わる荷重を推定する荷重推定手段30Aを設ける。この荷重推定手段30Aは、前記センサユニット20Bにおける少なくとも2つのセンサの出力信号からセンサユニット20Bの出力信号の平均値を求める平均値演算部131と、前記センサユニット20Bにおける少なくとも2つのセンサの出力信号と前記平均値とからセンサユニット20Bの出力信号の振幅値を求める振幅値演算部132と、前記平均値および前記振幅値を用いた演算処理により車輪に加わる荷重を推定する荷重演算部133とを有する。
 この構成によると、荷重推定手段30Aでは、平均値演算部131により、センサユニット20Bにおける2つのセンサ出力信号からセンサユニット20Bの出力信号の平均値を求め、振幅値演算部132により、センサユニット20Bにおける2つのセンサの出力信号と前記平均値とからセンサユニット20Bの出力信号の振幅値を求め、さらに荷重演算部133において、前記平均値および振幅値を用いた演算処理により車輪に加わる荷重を推定する。このため、車輪用軸受が静止あるいは低速状態でも、レスポンス良く車輪にかかる荷重を正確に推定できる。また、車輪にかかる荷重を遅延なく推定できるので、この推定荷重を利用した車両の制御の応答性や制御性が向上し、より安全性や走行安定性を高めることができる。
[態様2]
 態様1において、前記センサユニット20Bを3つ以上設け、前記荷重推定手段30Aは、前記3つ以上のセンサユニット20Bのセンサ出力信号から車輪用軸受の径方向および軸方向に作用する径方向荷重および軸方向荷重を推定するものとしても良い。
[態様3]
 態様1において、前記センサユニット20Bを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配しても良い。
 このように4つのセンサユニット20Bを配置することで、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
[態様4]
 態様1において、前記センサユニット20Bの3つ以上のセンサ22A,22B,22Cの少なくとも2つは、それらの出力信号の位相差が180°となるように転動体の配列ピッチの{n+1/2(n:整数)}倍となる間隔で配置され、前記荷重推定手段30Aの平均値演算部131は前記2つのセンサの出力信号の和をとることにより、変動成分をキャンセルして平均値を求めるものとしても良い。
[態様5]
 態様1において、前記センサユニット20Bの3つ以上のセンサ22A,22B,22Cの少なくとも2つは、それらの出力信号の位相差が90°となるように転動体の配列ピッチの{n/2+1/4(n:整数)}倍となる間隔で配置され、前記荷重推定手段30Aの振幅値演算部132は前記2つのセンサの出力信号からそれぞれ平均値を除いたものの二乗和の平方根として振幅値を求めるものとしても良い。
[態様6]
 態様1において、前記各センサユニット20Bに温度センサ28を設け、前記荷重推定手段30Aの平均値演算部131は、前記温度センサ28の出力信号に基づき、平均値の温度ドリフトを補正するものとしても良い。この構成の場合、平均値の温度ドリフトを補正することができるので、温度による推定荷重誤差を低減することができる。
[態様7]
 態様1において、前記荷重推定手段30Aは、前記平均値演算部131および振幅値演算部132とは別に、前記センサユニット20Bのいずれか1つのセンサの転動体振幅の複数周期分のセンサ出力信号から平均値および振幅値を求める第2の平均値演算部131Aおよび振幅値演算部132Aを有し、前記荷重演算部133は、車輪回転速度が所定の値よりも高いとき、第2の平均値演算部131Aおよび振幅値演算部132Aで求めた平均値および振幅値を用いた演算処理により車輪に加わる荷重を推定するものとしても良い。前記所定の値は、例えば、第2の平均値演算部131Aおよび振幅値演算部132Aの方が第1の平均値演算部131および振幅値演算部132よりも精度良く検出できる速度であり、具体的には、人の歩行速度程度かそれ以下の速度とされる。
[態様8]
 態様7において、前記荷重推定手段30Aの荷重演算部133は、第1の平均値演算部131および振幅値演算部132により求めた平均値および振幅値を用いた演算処理と、第2の平均値演算部131Aおよび振幅値演算部132Aを用いた演算処理を並行して行い、これら両演算処理により得られる2つの推定荷重値から、車輪回転速度に応じていずれか1つの推定荷重値を切り替え選択して出力する選択出力手段135を設けても良い。
[態様9]
 態様8において、前記選択出力手段135は、外部から車輪回転速度の情報を受けるものとしても良い。ここで言う外部は、このセンサ付車輪用軸受に対する外部である。
[態様10]
 態様8において、前記選択出力手段135は、前記センサの出力信号から転動体の通過周波数を検出して車輪回転速度を推定するものとしても良い。この構成の場合、余分なセンサや配線が不要で、構成が簡単になる。
[態様11]
 態様8において、前記選択出力手段135は、車体側から供給される回転センサ信号から車輪回転速度を推定するものとしても良い。
[態様12]
 態様8において、前記選択出力手段135は、車体側の制御装置から車輪回転速度に応じた切り替え選択指令を受けるものとしても良い。
 つぎに、この発明の荷重推定処理手段30を要件としない第4および第5応用形態を説明する。
 前記第1応用形態と同様、特許文献1の課題を解決するものとして、次の構成のセンサ付車輪用軸受を提案した(特願2008-207031号)。この提案のセンサ付車輪用軸受は、外輪の外径面に、歪み発生部材および歪みセンサを有するセンサユニットの2つを、180度の位相差をなす位置に対として配置する。そのセンサユニット対の2つのセンサ出力信号の和から車輪用軸受に作用する軸方向荷重Fy を推定し、2つのセンサ出力信号の差分から車輪用軸受に作用する径方向荷重(例えば垂直方向荷重Fz や駆動力・制動力となる荷重Fx )を推定する。また、1対のセンサユニットの2つのセンサユニットを外輪の外径面の上面部と下面部に配置し、このセンサユニット対のセンサ出力信号の振幅の差分値から前記軸方向荷重Fy の方向を判別し、判定した方向に応じて軸方向荷重Fy の推定に用いる演算式のパラメータを切り替える。
 図49は、その軸方向荷重Fy の演算処理の流れをブロック図で示している。同図において、演算処理部では、センサ出力信号の平均化、振幅抽出、温度補正などの処理を施す。図50は、前記センサユニット対のセンサ出力信号の振幅の差分値と軸方向荷重Fy の方向の関係を示す。
 しかし、前記センサユニットのセンサ出力信号は、入力荷重が比較的小さい範囲では線形応答するが、急激なコーナリング時などの大きな軸方向荷重Fy に対しては非線形な応答となる。そのため、センサユニットのセンサ出力信号から入力荷重を推定する演算において線形な関係を仮定すると、高い軸方向荷重Fy の領域では推定誤差が大きくなってしまうという問題がある。
 この推定誤差は、非線形な関係をモデル化すれば低減できるが、それでは荷重の推定演算に必要なパラメータが増加し、演算量も大幅に増加するという問題がある。また、特にセンサユニットのセンサ出力信号にドリフトが発生した場合、複雑な演算誤差が重畳することになるため、ドリフトに対するロバスト性の確保が難しいという問題もある。
 この発明の第4および第5応用形態の目的は、軸受の歪み応答に含まれる非線形性を簡易な演算で補正して、荷重推定誤差を低減することができるセンサ付車輪用軸受を提供することである。
 この発明の第4応用形態を図25ないし図31と共に説明する。また、前述した第1実施形態を示す図2ないし図5はこの応用形態にも適用可能である。
 センサユニット20の歪みセンサ22は、その出力信号から車輪に加わる荷重を推定する荷重推定手段30Bに接続される。荷重推定手段30Bは、マイクロコンピュータ等のコンピュータ(これに実行されるプログラムを含む)や、電子回路等からなる。ここでは、車輪の軸方向に作用する軸方向荷重Fy と、垂直方向に作用する垂直方向荷重Fz と、駆動力や制動力となる前後方向に作用する荷重Fx が推定される。この荷重推定手段30Bは、図26にブロック図で示すように、差分値演算部45と荷重演算部47とを有する。図27では、荷重推定手段30Bの演算処理をブロック図で示している。
 荷重推定手段30Bの差分値演算部45は、前記複数のセンサユニット20のうち、外方部材1の円周方向における180度の位相差をなして対向配置された2つのセンサユニット20のセンサ出力信号の振幅値の差分値を演算する。ここでは、その2つのセンサユニット20として、上下に対向配置されたセンサユニット20が選ばれる。図29(A)は外方部材1の外径面の上面部に配置されたセンサユニット20のセンサ出力を示し、図29(B)は外方部材1の外径面の下面部に配置されたセンサユニット20のセンサ出力を示している。これらの図において、横軸は軸方向荷重Fy を表し、縦軸は外方部材1の歪み量つまり歪みセンサ22の出力信号を表し、最大値および最小値は信号の最大値および最小値を表す。
 これらの図から、軸方向荷重Fy が+方向の場合、個々の転動体5の荷重は外方部材1の外径面上面部で小さくなり、外方部材1の外径面下面部で大きくなることが分かる。これに対して、軸方向荷重Fy が-方向の場合には逆に、個々の転動体5の荷重は外方部材1の外径面上面部で大きくなり、外方部材1の外径面下面部で小さくなることが分かる。このことから、前記差分値演算部45で演算される差分値は、軸方向荷重Fy の方向を示すことにもなる。
 また、図26に示すように、差分値演算部45は、入力されてくる各センサユニット20のセンサ出力信号の温度によるドリフトを補正する温度補正手段451と、各センサユニット20のセンサ出力信号の振幅値を演算する振幅値演算手段452と、センサ出力信号のと平均値(直流成分)を演算する平均値演算手段453とを有する。平均値演算手段453は、差分値演算部45に設けずに、荷重演算部47に設けても良い。各センサユニット20の歪み発生部材21には第1実施形態の図3と同様、温度センサ28が設けられ、この温度センサ28の出力信号に基づき、前記温度補正手段451において対応する歪みセンサ22の出力信号が補正される。また、差分値演算部45における前記差分値の演算では、前記振幅値演算手段452で演算された上下のセンサユニット20のセンサ出力信号の振幅値が用いられる。
 ところで、前記差分値演算部45で演算される差分値から軸方向荷重Fy の方向を判別できることから、判別された軸方向荷重Fy の方向に応じて、荷重推定の演算式のパラメータを適切な値に切り替えることで、荷重を精度良く推定できる可能性がある。しかし、軸方向荷重Fy とセンサユニット20のセンサ出力との関係をグラフで示す図30のように、入力荷重の比較的小さな範囲では線形応答するが、急激なコーナリング時(同図において領域Cの部分)などの大きな入力荷重に対しては非線形な応答となり、荷重を精度良く推定できない。
 そこで、荷重推定手段30Bの荷重演算部47では、図31のように、前記差分値演算部45の演算する差分値を所定の複数領域(ここではA,B,Cの3領域)にレベル分けすると共に、各領域に対応して互いにパラメータの異なる複数の荷重演算式473A,473B,473C(図26)を設定し、これらの複数の荷重演算式のうちから、前記差分値が対応する領域の荷重演算式を選択して前記荷重Fx ,Fy ,Fz を推定する。荷重演算部47は、図26に示すように、前記差分値から軸方向荷重Fy の方向を判別する方向判別手段471と、前記差分値が前記複数領域うちのどの領域に属するかを判別する領域判別手段472を有する。
 なお、例えば領域Aに対応する荷重演算式473Aとしては、軸方向荷重Fy 、垂直方向荷重Fz 、および駆動力や制動力となる荷重Fx をそれぞれ推定する3つの演算式が用意され、これらの演算式の間ではパラメータが互いに異なる。例えば同じ軸方向荷重Fy の演算式であっても、異なる領域の演算式の間でパラメータが異なることは上記した通りである。他の領域B,Cに対応する荷重演算式473B,473Cについても同様である。
 この場合、領域Aは軸方向荷重Fy の方向が-となる領域に、領域Bは軸方向荷重Fy の方向が+となる領域であってかつ入力荷重の小さい領域に、領域Cは軸方向荷重Fy の方向が+となる領域であってかつ入力荷重の小さい領域にそれぞれレベル分けされる。これにより、入力荷重の大きい領域においても、センサユニット20のセンサ出力信号に対して線形応答するようなパラメータとした荷重演算式を用意することができ、荷重推定誤差を低減できる。
 前記荷重演算部47に用意される荷重演算式は、例えば各センサユニット20のセンサ出力信号の振幅値を変数とし、この変数に所定の補正係数を乗算した一次式(例えば、Fx =af+b(fはセンサ出力信号の値)の形式の一次式で与えられる場合、この一次式における前記補正係数aや定数bが前記パラメータとなる。また、荷重演算式の他の例として、各センサユニット20のセンサ出力信号の平均値(直流成分)を変数とし、この変数に所定の補正係数を乗算した一次式を用意しても良い。また、荷重演算式のさらに他の例として、各センサユニット20のセンサ出力信号の平均値および振幅値を変数とし、これらの変数にそれぞれ所定の補正係数を乗算した一次式を用意しても良い。前記一次式における各補正係数や定数の値は、予め試験やシミュレーションで求めておいて設定する。
 この第4応用形態の作用については第1実施形態と基本的に同様であり、詳しい説明は省略するが、この応用形態の場合、特に、荷重推定手段30Bでは、外方部材1の円周方向の180度の位相差を成して対向配置された2つのセンサユニット(ここでは上下のセンサユニット)20のセンサ出力信号の振幅の差分値を差分値演算部45で演算し、この差分値をレベル分けした所定の複数領域A,B,Cに対応して設けられた互いにパラメータの異なる複数の荷重演算式473A,473B,473Cのうちから、前記差分値が対応する領域の荷重演算式を選択し、これに各センサユニット20のセンサ出力信号を代入することで荷重演算部47により車輪に加わる各荷重Fx ,Fy ,Fz を推定する。そのため、簡単に荷重推定誤差を低減できて、車輪にかかる荷重を正確に推定できる。軸方向荷重Fy については、その方向も併せて判別される。
 また、この応用形態では前記センサユニット20を4つ設け、各センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
 また、この応用形態では各センサユニット20に温度センサ28を設け、前記荷重推定手段30Bの差分値演算部45では、温度補正手段451により、前記温度センサ28の出力信号に基づき、歪みセンサ22の出力信号の温度ドリフトを補正するようにしているので、歪みセンサ22の出力信号の温度ドリフトを補正することができる。
 なお、上記応用形態では、荷重推定手段30Bの差分値演算部45において、外方部材1の外径面上面部と下面部に対向配置される2つのセンサユニット20のセンサ出力信号の振幅値の差分値を演算したが、このほか外方部材1の外径面左面部と右面部に対向配置される2つのセンサユニット20のセンサ出力信号の振幅値の差分値を演算して、荷重演算部32では、その差分値をレベル分けした所定の複数領域に対応して用意された互いにパラメータの異なる複数の荷重演算式のうちから、差分値が対応する領域の荷重演算式を選択して前記荷重Fz 、Fx 、Fy を推定するようにしても良い。
 このように、左右のセンサユニット20のセンサ出力信号の振幅差を評価値として領域分けを行うことにより、軸方向z回りのモーメント荷重Mzに対しても入力荷重領域をレベル分けすることができる。
 さらに、荷重推定手段30Bの差分値演算部45において、外方部材1の上下に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値と、外方部材1の左右に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値とを演算し、荷重演算部47では、前記両差分値をレベル分けした所定の複数領域の組み合わせからなる複数の組合せ領域に対応して互いにパラメータの異なる複数の荷重演算式を用意し、これらの組合せ領域のうちから、前記両差分値が対応する組合せ領域の荷重演算式を選択して前記荷重Fz 、Fx 、Fy を推定するようにしても良い。
 例えば、次のように、上下のセンサユニット20のセンサ出力信号の振幅値差分値をX、左右のセンサユニット20のセンサ出力信号の振幅値差分値をZとしたとき、各差分値を+の領域と-の領域とに区分けし、これら正負の領域の組合せからなる4つの組合せ領域I,II,III 、IVに対応する各荷重演算式を用意し、両振幅値差分値X,Zの正負の関係から対応する組合せ領域の荷重演算式を選択して前記荷重Fz 、Fx 、Fy を推定する。
   Zの正負  Xの正負  演算領域
    +     +     I
    +     -     II
    -     +     III
    -     -     IV
 このように、上下の振幅値差分値と左右の振幅値差分値を組み合わせて入力荷重をレベル分けすることにより、入力荷重の範囲に応じた最適な荷重演算式により荷重を推定できる。このため、荷重推定誤差をより一層低減できて、車輪にかかる荷重を正確に推定できる。
 図32は、この発明の第5応用形態を示す。このセンサ付車輪用軸受では、図25~図30に示す第4応用形態において、各センサユニット20Aを以下のように構成している。この場合、センサユニット20Aは、前記第2実施形態の図11および図12に示したものと同様であり、詳しい説明は省略する。また、第2実施形態の図13および図14もそのままこの応用形態に適用される。
 この応用形態の場合、図26に示す第4応用形態での荷重推定手段30Bの差分値演算部45における振幅値演算手段452では、図12の2つの歪みセンサ22A,22Bの出力信号の差分値を演算しこれを振幅値として取り出す。また、図26の平均値演算手段453では、各センサユニット20Aの2つの歪みセンサ22A,22Bの出力信号の和を演算しこれを平均値として取り出す。上下のセンサユニット20Aのセンサ出力信号の差分値は、振幅値演算手段452で求められる上下のセンサユニット20Aのセンサ出力信号の振幅値の差分値として求められる。2つの22A,22Bの出力信号a,bは図14に示したとおりである。
 また、この第5応用形態では、図33に示すように、荷重推定手段30Bにおける荷重推定部47に用意する各領域A,B,Cの荷重演算式473A,473B,473Cとして、前記平均値だけを変数として用いた演算式と、前記平均値と振幅値の両方を変数として用いた演算式の2つを用意する。さらに、荷重推定部47には、車輪の回転数に応じて、前記2種類のいずれかを選択する演算式選択手段49を設ける。
 車輪の低速回転時には、センサ出力信号の振幅を検出するための処理時間が長くなり、さらに静止時には振幅の検出そのものが不可能になる。これに対して、平均値は、静止時でも検出可能である。そこで、車輪の回転数が所定値以下の場合に、演算式選択手段49が、各領域における2種類の荷重演算式のうちから平均値だけを用いた演算式を選択することにより、荷重を遅滞なく推定・出力することができる。
 演算式選択手段49には、例えば外部から車輪回転数の情報が入力され、この情報に基づいて前記演算式の選択が行なわれる。この場合、外部からの車輪回転数の情報として、車体側からのABSセンサ(アンチロックブレーキシステム用の回転検出センサ)などの回転センサ信号を用い、これにより車輪回転数を推定するようにしても良い。また、車体側の車内通信バスに接続された上位制御装置から、車輪回転数の情報に代わるものとして、演算式選択指令を演算式選択手段49が受ける構成としても良い。さらに、車輪回転数の情報として、前記歪みセンサ22A,22Bの出力信号a,bから転動体5の通過周波数を検出して、車輪回転数を推定するものとしても良い。
 以上のように、この発明の上記の第4または第5応用形態により、次の効果を得ることができる。
・軸受の歪み応答に含まれる非線形性を補正することで、荷重推定誤差を低減できる。
・領域分けを振幅値の差分としているため、特に影響の大きいFyモーメント荷重に対する感度が高く、領域の分割を正確に行うことができる。
・振幅信号は温度の影響を受け難く、上記領域分けが正確に行えて推定精度が向上する。・また、軸受の内部予圧条件が異なっている場合でも、大きな影響を受けることなく安定した領域分けが可能である。
・さらに、左右に配置されたセンサ信号も領域判定に加えて、より細かく条件分けすることで、より一層精度の良い荷重推定が行える。
 以上説明した第4および第5応用形態は、実施形態で要件とした荷重推定処理手段30を要件としないつぎの応用態様群II(態様13~22)を含む。
[態様13]
 態様13にかかるセンサ付車輪用軸受は、複列の転走面3が内周に形成された外方部材1と、前記転走面3と対向する転走面4が外周に形成された内方部材2と、両部材1,2の対向する転走面3,4間に介在した複列の転動体5とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、上記外方部材1および内方部材2のうちの固定側部材の外径面に複数のセンサユニット20を設け、前記センサユニット20は、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部21aを有する歪み発生部材21およびこの歪み発生部材21に取付けられてこの歪み発生部材21の歪みを検出する1つ以上のセンサを有し、前記複数のセンサユニット20のセンサ出力信号から車輪に加わる荷重を推定する荷重推定手段30Bを設ける。この荷重推定手段30Bは、前記複数のセンサユニット20のうち、前記固定側部材の円周方向における180度の位相差をなして対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値を演算する差分値演算部45と、前記差分値をレベル分けした複数領域にそれぞれ対応して荷重演算用のパラメータが複数設定され、前記差分値演算部45で演算された差分値に対応する領域のパラメータを選択して、前記複数のセンサユニット20のセンサ出力信号から前記車輪に加わる荷重を推定する荷重演算部47とを有する。前記領域分けは、例えば、前記差分値が線形と見なせる線形領域と、この領域よりも差分値が大きく非線形と見なす非線形領域としても良い。
 この構成によると、荷重推定手段30Bの差分値演算部45は、外方部材の円周方向の180度の位相差をなして対向配置された2つのセンサユニットのセンサ出力信号の振幅の差分値を差分値演算部45で演算する。センサ出力信号は、軸受の回転に伴って転動体5が通過することで変動するが、この変動成分の大きさが、上記差分値として差分値演算部45で演算される。荷重演算部47は、差分値をレベル分けした領域毎に設けられた荷重演算用のパラメータの中から、差分値演算部45の演算する差分値が対応する領域のパラメータを選択し、このパラメータを用いて、車輪に加わる荷重を推定する。
 このように領域分けした荷重演算用のパラメータを用いて荷重を演算するため、軸受の歪み応答に含まれる非線形性を補正して荷重推定誤差を低減することができる。上記領域分けは、振幅値の差分値で行っているため、感度が高くて、領域の分割を適切に行うことができる。また、振幅信号は温度の影響を受け難く、上記領域分けが正確に行えて検出精度が向上する。軸受の内部予圧条件が異なっている場合でも、大きな影響を受けることなく、安定した領域分けが可能である。
[態様14]
 態様13において、前記荷重推定手段30Bの差分値演算部45は、前記固定側部材の上下に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値を演算するものとしても良い。上下のセンサユニット20のセンサ出力信号の差分値を評価値とすると、この値は軸方向荷重Fy に対して略線形に変化し、かつ軸方向のモーメント荷重に対する感度が高く、そのため、この評価値によって領域のレベル分けを適正に行うことができる。
[態様15]
 態様13において、前記荷重推定手段30Bの差分値演算部45は、前記固定側部材の左右に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値を演算するものとしても良い。このように左右のセンサユニット20のセンサ出力信号の差分値を評価値とすることにより、軸方向回りのモーメント荷重Mzに対しても、入力荷重領域をレベル分けすることができる。
[態様16]
 態様13において、前記荷重推定手段30Bの差分値演算部45は、前記固定側部材の上下に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値と、前記固定側部材の左右に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値とを演算し、前記荷重推定手段30Bの荷重演算部47は、前記両差分値をレベル分けした複数領域の組合わせからなる複数の組合わせ領域に対応してそれぞれ設けられたパラメータのうちから、前記両差分値が対応する組合わせ領域の荷重演算式を選択して前記荷重を推定するものとしても良い。
 このように、上下の振幅差分値と左右の振幅差分値を組み合わせて入力荷重をレベル分けすることにより、入力荷重の範囲に応じたより一層適切なパラメータにより荷重を推定できる。そのため、荷重推定誤差をより一層低減できて、車輪にかかる荷重を正確に推定できる。
[態様17]
 態様13において、前記センサユニット20を3つ以上設け、前記荷重推定手段30Bは、前記3つ以上のセンサユニット20のセンサ出力信号から車輪用軸受の径方向および軸方向に作用する径方向荷重および軸方向荷重を推定するものとしても良い。
[態様18]
 態様13において、前記センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配しても良い。
 このように4つのセンサユニット20を配置することで、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
[態様19]
 態様13において、前記荷重推定手段30Bは、前記センサ出力信号における転動体振幅の複数周期分の平均値、または振幅値、または平均値と振幅値の両方を用いて車輪に加わる荷重を推定するものであっても良い。
[態様20]
 態様19において、前記荷重推定手段30Bは、荷重推定に用いる前記センサ出力信号の平均値と振幅値の組み合わせを、車輪の回転数に応じて変更するものとしても良い。
 平均値の場合、車輪が停止あるいは低速状態にあるときでも時間平均処理をすることなく求める工夫が可能であり、平均値のみを変数とする荷重演算式を用いることで荷重を短時間に演算出力できる。また、車輪が通常回転状態にあるときには、平均値と振幅値を精度良く演算できるので、振幅値を変数とする荷重演算式、または平均値と振幅値を変数とする荷重演算式を用いることで荷重を精度良く演算出力できる。
[態様21]
 態様13において、前記各センサユニット20に温度センサ28を設け、前記荷重推定手段30Bは、前記温度センサ28の出力信号に基づき、前記センサ出力信号を補正するものとしても良い。この構成の場合、歪みセンサ22の出力信号の温度ドリフトを補正することができる。
[態様22]
 態様19において、前記センサユニット20Aは3つ以上の接触固定部と少なくとも2つ以上のセンサ22を有し、それらのセンサ出力信号の位相差が、転動体の配列ピッチの{n+1/2(n:整数)}倍となるように接触固定部21aの間隔が設定され、前記荷重推定手段30Bは前記2つのセンサ22の出力信号の平均値を用いるものとしても良い。この構成の場合、2つのセンサの出力信号は略180度の位相差を有することになり、その平均値は転動体通過による変動成分をキャンセルした値となる。また、振幅値は温度の影響やナックル・フランジ面などの滑りの影響をより確実に排除した正確なものとなる。
 つぎに、この発明の荷重推定処理手段30を要件としない第6ないし第7応用形態について説明する。これらの応用形態も前記第4および第5応用形態と共通の課題を解決するもので、同様の目的を達成するセンサ付車輪用軸受を提供する。
 この発明の荷重推定処理手段30を要件としない第6および第7応用形態を図34ないし図36と共に説明する。前記第1実施形態の図2~図5および第4応用形態の図25~図31はこの応用形態にも適用できる。なお、前記各実施形態および応用形態と同一または相当する部分には同一の符号を付してその詳しい説明は省略する。
 図34に示す第6応用形態では、センサユニット20の歪みセンサ22(図4)に第1の荷重推定手段30Cおよび第2の荷重推定手段30Dが接続され、前記第1の荷重推定手段30Cに温度センサ28が接続されている。この応用形態のセンサ付車輪用軸受における荷重推定手段である第1の荷重推定手段30C、第2の荷重推定手段30Dの構成例を示すブロック図である図35に示すように、前記センサユニット20の歪みセンサ22は第1の荷重推定手段30Cに接続される。この第1の荷重推定手段30Cは、センサユニット20のセンサ出力信号を所定の荷重演算式に代入して車輪の軸方向に加わる軸方向荷重Fy を推定する軸方向荷重演算部50を有する。また、この第1の荷重推定手段30Cの次段には、各センサユニット20のセンサ出力信号から車輪の軸方向および径方向に加わる軸方向荷重Fy および径方向荷重(ここでは垂直方向荷重Fz 、駆動力や制動力となる荷重Fx )を推定する第2の荷重推定手段30Dが設けられる。図36では、第1の荷重推定手段30Cおよび第2の荷重推定手段30Dの演算処理をブロック図で示している。
 図35において、第1の荷重推定手段30Cの軸方向荷重演算部50で軸方向荷重Fy(図36) の推定に用いられる荷重演算式は、例えば各センサユニット20のセンサ出力信号の振幅値を変数とし、この変数に所定の補正係数を乗算した一次式として表される。この一次式における前記補正係数や定数が演算パラメータとなる。また、荷重演算式の他の例として、各センサユニット20のセンサ出力信号の平均値(直流成分)を変数とし、この変数に所定の補正係数を乗算した一次式を用いても良い。また、荷重演算式のさらに他の例として、各センサユニット20のセンサ出力信号の平均値および振幅値を変数とし、これらの変数にそれぞれ所定の補正係数を乗算した一次式を用いても良い。前記一次式における各補正係数や定数の値は、予め試験やシミュレーションで求めておいて設定する。この場合の荷重演算式のパラメータとしては、軸方向荷重Fy が0~4kN程度の範囲で精度良く荷重推定できる値とすることが望ましい。
 図35に示すように、第1の荷重演算手段30Cは、前記軸方向荷重演算部50のほか、入力されてくる各センサユニット20のセンサ出力信号の温度によるドリフトを補正する温度補正部63と、各センサユニット20のセンサ出力信号の振幅値を演算する振幅値演算部64と、センサ出力信号のと平均値(直流成分)を演算する平均値演算部65と、軸方向荷重Fy の方向を判別する方向判別部51とを有する。各センサユニット20の歪み発生部材21には前記第1実施形態の図3のように温度センサ28が設けられ、この温度センサ28の出力信号に基づき、前記温度補正部63において対応する歪みセンサ22の出力信号が補正される。
 前記方向判別部51では、前記振幅値演算部64で演算された上下のセンサユニット20のセンサ出力信号の振幅値の差分が演算され、この差分値から軸方向荷重Fy の方向が判別される。引用する図29(A)は外方部材1の外径面の上面部に配置されたセンサユニット20のセンサ出力を示し、引用する図29(B)は外方部材1の外径面の下面部に配置されたセンサユニット20のセンサ出力を示している。これらの図において、横軸は軸方向荷重Fy を表し、縦軸は外方部材1の歪み量、つまり歪みセンサ22の出力信号を表し、最大値および最小値は信号の最大値および最小値を表す。これらの図から、軸方向荷重Fy が+方向の場合、個々の転動体5の荷重は外方部材1の外径面上面部で小さくなり、外方部材1の外径面下面部で大きくなることが分かる。これに対して、軸方向荷重Fy が-方向の場合には逆に、個々の転動体5の荷重は外方部材1の外径面上面部で大きくなり、外方部材1の外径面下面部で小さくなることが分かる。このことから、前記方向判別部37で演算される差分値は、軸方向荷重Fy の方向を示すことになる。
 ところで、前記方向判別部51で軸方向荷重Fy の方向を判別できることから、判別された軸方向荷重Fy の方向に応じて、荷重推定の演算式のパラメータを適切な値に切り替えることで、荷重を精度良く推定できる可能性がある。しかし、軸方向荷重Fy とセンサユニット20のセンサ出力との関係をグラフで示す引用した図30のように、入力荷重の比較的小さな範囲では線形応答するが、急激なコーナリング時(同図において領域Bの部分)などの大きな入力荷重に対しては非線形な応答となり、荷重を精度良く推定できない。
 そこで、第2の荷重推定手段30Dでは、図30のように、前記第1の荷重推定手段30Cの演算する軸方向荷重Fy の大きさを所定の複数領域にレベル分けする。すなわち、第2の荷重推定手段30Dは、第1の荷重推定手段30Cの演算する軸方向荷重Fy の大きさがいずれの領域に属するかを判別する領域判別部52(図35)を有する。ここでは、軸方向荷重Fy が+方向である場合、その値がa以下の範囲を領域Aとし、aより大きい範囲を領域Bとしている。そして、これら各領域A,Bに対応して互いにパラメータの異なる複数の荷重演算式53A,53Bを設け、これらの複数の荷重演算式のうちから、前記軸方向荷重Fy の値が対応する領域の荷重演算式を選択して前記各荷重Fx ,Fy ,Fz を推定する。
 この場合、領域A,Bに分ける軸方向荷重Fy の分岐値aとして、例えば4kNに設定するのが望ましい。このとき、領域Aの荷重演算式53Aでは、0~4kNの軸方向荷重Fy を精度良く荷重推定できるパラメータを用い、領域Bの荷重演算式53Bでは、4~7kNの軸方向荷重Fy を精度良く荷重推定できるパラメータを用いる。軸方向荷重Fy が-方向である場合にも、例えばその値がb以下の範囲の領域とbより大きい範囲の領域とにレベル分けし、これらの各領域に対応して互いにパラメータの異なる複数の荷重演算式を設定し、軸方向荷重Fy の値が対応する領域の荷重演算式を選択して各荷重Fx ,Fy ,Fz を推定する。
 第2の荷重推定手段30Dに用いられる荷重演算式も、例えば各センサユニット20のセンサ出力信号の振幅値を変数とし、この変数に所定の補正係数を乗算した一次式として表すことができる。この一次式における前記補正係数や定数が前記演算パラメータとなる。また、荷重演算式の他の例として、各センサユニット20のセンサ出力信号の平均値(直流成分)を変数とし、この変数に所定の補正係数を乗算した一次式を用いても良い。また、荷重演算式のさらに他の例として、各センサユニット20のセンサ出力信号の平均値および振幅値を変数とし、これらの変数にそれぞれ所定の補正係数を乗算した一次式を用いても良い。前記一次式における各補正係数や定数の値は、予め試験やシミュレーションで求めておいて設定する。
 これにより、入力荷重の大きい領域においても、センサユニット20のセンサ出力信号に対して線形応答するようなパラメータとした荷重演算式を用いることができ、荷重推定誤差を低減できる。
 なお、例えば領域Aに対応する荷重演算式53Aとしては、軸方向荷重Fy 、垂直方向荷重Fz 、および駆動力や制動力となる荷重Fx をそれぞれ推定する3つの演算式が用いられ、これらの演算式の間ではパラメータが互いに異なる。領域Bに対応する荷重演算式53Bについても同様である。また、例えば同じ軸方向荷重Fy の演算式であっても、異なる領域の演算式の間でパラメータが異なることは上記した通りである。
 この第6応用形態の作用は、前記第1実施形態の場合と基本的に同様であるので詳しい説明は省略するが、この応用形態の場合、とくに、第1の荷重推定手段30Cにおいて、センサユニット20のセンサ出力信号を所定の荷重演算式に代入して軸方向荷重Fy を推定し、第2の荷重推定手段30Dでは、第1の荷重推定手段30Cで推定される荷重値をレベル分けした所定の複数領域に対応して設けられた互いにパラメータの異なる複数の荷重演算式53A,53Bのうちから、前記荷重値が対応する領域の荷重演算式を選択し、この荷重演算式に前記複数のセンサユニット20のセンサ出力信号を代入して車輪に加わる各荷重Fx ,Fy ,Fz を推定するようにしているので、簡単に荷重推定誤差を低減できて、車輪にかかる荷重を正確に推定できる。軸方向荷重Fy については、その方向も併せて判別される。
 また、この応用形態では前記センサユニット20を4つ設け、各センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
 また、この応用形態では各センサユニット20に温度センサ28を設け、第1の荷重推定手段30Cでは、温度補正部63により、前記温度センサ28の出力信号に基づき、歪みセンサ22の出力信号の温度ドリフトを補正するようにしているので、歪みセンサ22の出力信号の温度ドリフトを補正することができる。
 図37ないし図40は、この発明の第7応用形態を示す。このセンサ付車輪用軸受では、図34~図36に示す第6応用形態において、第1の荷重推定手段30Cによる軸方向荷重Fy の推定に用いていたセンサユニット20のセンサ出力信号に代えて、外方部材1に設けた別の荷重検出センサ67の出力信号を用いるようにしている。この場合の荷重検出センサ67も、センサユニット20の場合と同様に、歪み発生部材68に、この歪み発生部材41の歪みを検出する歪みセンサ22を取付けて構成される。
 歪み発生部材68は、図37に示すように、外方部材1の周面と車体取付用フランジ1aのアウトボード側を向くフランジ面に跨がって設けられる。具体的には、図39(B)に示すように、歪み発生部材68は、前記車体取付用フランジ1aのねじ孔14の近傍に接触固定される第1の接触固定部68aと、外方部材1の外周面に接触固定される第2の接触固定部68bとを有している。また、歪み発生部材68は、前記第1の接触固定部68aを含む径方向に沿った径方向部位68cと、前記第2の接触固定部68aを含む軸方向に沿った軸方向部位68dとでL字形状に構成されている。径方向部位68cは、軸方向部位68dに比べ、剛性が低くなるように肉厚を薄くしてある。歪みセンサ22は、剛性の低い径方向部位68cに取付けられている。
 また、前記荷重検出センサ67は、図37および図38に示すように、歪み発生部材68の第1および第2の接触固定部68a,68bが外方部材1の周方向に対して同位相の位置となるように、外方部材1の外周部に固定される。歪みセンサ22は歪み発生部材68に接着して固定されている。歪み発生部材68は、外方部材1への固定により塑性変形を起こさない形状や材質とされている。また、歪み発生部材68が、車輪用軸受に予想される最大の荷重が印加された場合でも、塑性変形を起こさない形状とされていることは、前記センサユニット20における歪み発生部材68の場合と同様である。その他の構成は図35~図37に示す第6応用形態の場合と同様である。なお、図37および図38では、センサユニット20は省略して示している。
 前記荷重検出センサ67の設置部位は、軸方向荷重Fy に対して変形量の大きい部位であり、そのセンサ出力信号は軸方向荷重Fy を良く評価したものとなる。そこで、図40の第1の荷重推定手段30Cにおける軸方向荷重演算部50では、荷重検出センサ67のセンサ出力信号から軸方向荷重Fy を演算できる。また、第1の荷重推定手段30Cにおける方向判別部51での軸方向荷重Fy の方向判別にも利用できる。また、第1の荷重推定手段30Cの温度補正部63により、温度センサ28の出力信号に基づいて、歪みセンサ22の出力信号の温度ドリフトが補正される。
 また、図9~図14の第2実施形態と同様に、外方部材1の外径面に装着した平板状の歪み発生部材21と2つの歪みセンサ22A,22Bとからなるセンサユニット20Aを用い、このセンサユニット20Aを図40の第1の荷重推定手段30および第2の荷重推定手段30Dと組み合わせてもよい。その場合、図34~図36に示す第6応用形態と同様、第1の荷重推定手段30Cにおける振幅値演算部64では、2つの歪みセンサ22A,22B(図12)の出力信号の差分を演算しこれを振幅値として取り出す。また、平均値演算部65では、各センサユニット20Aの2つの歪みセンサ22A,22Bの出力信号の和を演算しこれを平均値として取り出す。方向判別部51では、振幅値演算部64で求められる上下のセンサユニット20Aのセンサ出力信号の振幅値の差分から軸方向荷重Fy の方向が判別される。
 以上説明した第6および第7応用形態は、実施形態で要件とした荷重推定処理手段30を要件としない応用態様群III(態様23~30)を含む。
[態様23]
 態様23にかかるセンサ付車輪用軸受は、複列の転走面3が内周に形成された外方部材1と、前記転走面と対向する転走面4が外周に形成された内方部材2と、両部材の対向する転走面3,4間に介在した複列の転動体5とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、上記外方部材1および内方部材2のうちの固定側部材の外径面に複数のセンサユニット20を設け、前記センサユニット20は、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部68aを有する歪み発生部材68およびこの歪み発生部材68に取付けられてこの歪み発生部材68の歪みを検出する1つ以上の歪みセンサ22を有し、前記センサユニット20のセンサ出力信号または前記固定側部材に設けられた別の荷重検出センサ67のセンサ出力信号から車輪の軸方向に加わる軸方向荷重を推定する第1の荷重推定手段30Cと、前記複数のセンサユニット20のセンサ出力信号から、所定の荷重演算用のパラメータを用いて車輪に加わる荷重を推定する第2の荷重推定手段30Dとを設ける。第2の荷重推定手段30Dは、第1の荷重推定手段30Cで推定される荷重値をレベル分けした複数の領域にそれぞれ対応して前記パラメータが複数設定され、第1の荷重推定手段30Cで推定された軸方向荷重の大きさによって前記パラメータを切り替えて前記荷重の推定を行う。
 前記複数の領域は、例えば、第1の荷重推定手段30Cで推定される荷重値を線形とみなす線形領域と、この線形領域よりも荷重値が大きく非線形とみなす非線形領域との2つの領域とする。
 この構成によると、第1の荷重推定手段30Cは、前記センサユニット20または別に設けられた荷重検出センサ67の出力信号から軸方向荷重を推定する。第2の荷重推定手段30Dは、第1の荷重推定手段30Cで推定される荷重値により、荷重演算に用いるパラメータを切り替えて、複数のセンサユニット20のセンサ出力信号から荷重を推定する。
[態様24]
 そのため、例えば、前記複数の領域を、第1の荷重推定手段30Cで推定される荷重値を線形とみなす線形領域と非線形とみなす非線形領域との2つの領域とに分け、それぞれの領域に対応したパラメータを設定することで、軸受の歪み応答に含まれる非線形性を簡易な演算で補正して、荷重推定誤差を低減することができる。
[態様25]
 態様23において、前記第1の荷重推定手段30Cが、前記複数のセンサユニットのセンサ出力信号から前記軸方向荷重を推定するものである場合、前記第2の荷重推定手段30Dは、第1の荷重推定手段30Cで推定される荷重値が前記複数の領域のうちの所定の領域にある場合は、第1の荷重推定手段30Cの推定した荷重値を第2の荷重推定手段30Dの推定した荷重値として出力するものとしても良い。上記所定の領域は、例えば第1の荷重推定手段30Cで推定される荷重値を線形とみなす領域である。
 この構成の場合、第1の荷重推定手段30Cで行った演算を重複して第2の荷重推定手段30Dで行う必要がなく、演算が簡素化される。
[態様26]
 態様23において、前記センサユニット20を3つ以上設け、前記第2の荷重推定手段30Dは、前記3つ以上のセンサユニット20のセンサ出力信号から車輪の径方向および軸方向に作用する径方向荷重および軸方向荷重を推定するものとしても良い。センサユニット20を適宜の配置として3つ以上設けることで、径方向荷重および軸方向荷重の両方を推定することができる。
[態様27]
 態様23において、前記センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配しても良い。
 このように4つのセンサユニット20を配置することにより、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、および軸方向荷重Fy を推定することができる。
[態様28]
 態様23において、前記第1の荷重推定手段30Cは、前記固定側部材の上下に対向配置された2つのセンサユニット20のセンサ出力信号の振幅値の差分を演算し、その差分値から前記軸方向荷重Fy の方向を判別する方向判別部51を有するものとしても良い。センサユニット20が固定側部材の上側に配置されるか下側に配置されるかによって、その出力に差が生じるため、差分値から軸方向荷重Fy の方向を判別することが可能となる。
[態様29]
 態様23において、前記センサユニット20とは別の荷重検出センサ67は、前記固定側部材のフランジ面と周面に跨がって設けられた歪み発生部材68、およびこの歪み発生部材68に取付けられてこの歪み発生部材68の歪みを検出する1つ以上の歪みセンサ22を有するものとしても良い。
[態様30]
 態様23において、前記第2の荷重推定手段30Dは、前記各センサユニット20のセンサ出力信号における転動体5の振幅の複数周期分の平均値、または振幅値、または平均値と振幅値の両方を用いて車輪に加わる荷重を推定するものであっても良い。
[態様31]
 態様30において、前記センサユニット20Aは3つ以上の接触固定部と少なくとも2つ以上の歪みセンサ22を有し、それらのセンサ出力信号の位相差が、転動体5の配列ピッチの{n+1/2(n:整数)}倍となるように接触固定部68aの間隔が設定され、前記第2の荷重推定手段30Dは前記2つのセンサ22の出力信号を平均値として用いるものとしても良い。
 この構成の場合、2つの歪みセンサ22の出力信号は略180度の位相差を有することになり、その平均値は、転動体通過による変動成分をキャンセルした値となる。また、振幅値は、温度の影響やナックル・フランジ面などの滑りの影響をより確実に排除した正確なものとなる。
 さらに、この発明の荷重推定処理手段30を要件としない第8および第9応用形態について説明する。前述した特許文献1,2に開示の技術のように、歪みセンサを用いて車輪にかかる荷重を計測する場合、環境温度によるセンサのドリフトや、センサユニットの取付けに伴う歪みによる初期ドリフトが問題となる。
 このセンサユニットの取付けに伴う歪みによるドリフトは、歪みセンサを設置した状態でオフセット調整し、その位置からの変化分を信号出力として換算することで解消し、歪み信号を正確に検出することができる。
 上記したセンサ出力信号のオフセット機能を持たせた荷重推定手段として、例えば図51にブロック図で示す構成のものが考えられる。この例でのセンサユニット50は、車輪用軸受の固定輪である外輪に取付けた歪み発生部材と、この歪み発生部材に固定される歪みセンサとで構成される。
 図51の荷重推定手段30Eは、増幅回路91、オフセット調整回路92、記憶手段93、各種の補正回路94、信号出力回路96、およびコントローラ通信(コントロ-ル)回路99を有する。コントローラ通信回路99(図53)は、前記オフセット調整回路92、記憶手段93、補正回路94、信号出力回路96などの制御を行うとともに、オフセット調整などの前処理が施されたセンサ出力信号を12~16ビット程度の分解能を持つAD変換器55(図53)でデジタル化し、このデジタル化されたセンサ出力信号に基づき、その荷重演算機能によって車輪用軸受にかかる荷重を演算し推定する。オフセット調整回路92は、センサユニット90の初期オフセットや車輪用軸受への固定によるオフセットを、正規の値に調整するものであり、コントローラ回路99による調整、もしくは外部からの指令による調整が可能とされている。
 図52には、センサユニット90、増幅回路91、およびオフセット調整回路92の具体的な接続構成例を示す。オフセット調整回路92は、オペアンプOP、抵抗R3、R4、可変抵抗器VR1,VR2などからなる加算器として構成される。この場合、センサ付車輪用軸受の組立完了後にセンサ出力が規定値(ゼロ点電圧)になるように、可変抵抗器VRI,VR2の抵抗値が調整されて固定される。
 しかし、図51に示す荷重推定手段の回路構成としても、センサユニット90の取付けに伴う歪みの程度や、センサ素子Rg(図52)自体の特性ばらつきをカバーするには、回路に大きなオフセットの調整幅を持たせる必要があり、その調整工程も必要となるため、製造コストが増加してしまう。
 また、長期運転中に大きなオフセット変動が発生した場合、その大きさによっては後段の増幅回路91が飽和してしまい、荷重の検出が困難になってしまう。
 また、図53のように、軸受の外輪60に搭載する歪みセンサ70の数が増えた場合、上記した増幅回路91およびオフセット調整回路92を含む前処理回路も素子数と同じく増加するため、回路基板のサイズが大きくなり、軸受外輪60上に搭載することが難しくなる。そのため、前処理回路を軸受とは離れた場所に設置し、センサ出力信号を引き回す手法をとることになるが、この場合、ケーブルの本数が増加して、足回り部品からボディー側まで太い配線を設置することになり、作業性・信頼性の低下を引き起こす。また、微弱なセンサ出力信号を長い配線で引き出すため、ノイズの影響も大きくなってしまうという問題もある。
 この発明の第8および第9応用形態の目的は、コンパクな構成で車輪の軸受部にかかる荷重を正確に検出できるセンサ付車輪用軸受を提供することである。
 第8応用形態を図41ないし図44により説明する。なお、車輪用軸受の外方部材1をアウトボード側から見た正面図を示す前記第1実施形態の図2は、第8応用形態にも適用される。図2に示すように、センサユニット20を4つ設け、各センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配している。
 図41に示すように、各センサユニット20の歪みセンサ22はAD変換器55を介して推定手段30Eに接続される。すなわち、歪みセンサ22の出力信号は、AD変換器55で直接にAD変換されて、このAD変換された歪みセンサ22の出力信号が推定手段30Eに入力される。AD変換器55は、センサユニット20上、例えば歪み発生部材21上に設置され、または図43のようにセンサユニット20の近傍に設置される。この場合のAD変換器55としては、少なくとも20ビット以上の分解能を持つものが用いられる。また、AD変換器55は多チャンネル入力の小型素子とし、図44のように複数のセンサユニット20からのセンサ出力信号を一つの基板上でまとめてデジタルデータに変換する変換ユニット56を構成し、これを車輪用軸受に設置するのが望ましい。変換ユニット56は、車輪用軸受の外方部材1および内方部材2のうち、固定側の部材、この応用形態では外方部材1に設置する。図43の構成例では、上位置および右位置の2つのセンサユニット20のセンサ出力信号を1つの変換ユニット56でデジタル化し、下位置および左位置の2つのセンサユニット20のセンサ出力信号を他の1つの変換ユニット56でデジタル化している。また、図44の構成例では、上下左右の4つのセンサユニット20のセンサ出力信号を1つの変換ユニット56でデジタル化している。図44の構成例では、変換ユニット56を推定手段30Eに近接して、例えば同じ配線基板上に配置している。AD変換器55の方式は、デジタル・シグマ型変換器とすることが、高精度で比較的高速な特徴を持つ点で望ましい。
 推定手段30Eは、センサユニット20の歪みセンサ22のAD変換された出力信号から、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する手段であり、例えばマイクロコンピュータで構成される。このマイクロコンピュータからなる推定手段30Eは、一つの基板上に各種の電子部品を実装したものであっても、1チップのものであっても良く、図43,図44の例のように車輪用軸受の外方部材1に設置され、あるいはセンサユニット20の歪み発生部材21上等に設けられる。
 推定手段30Eは、オフセット調整回路101、温度補正回路102、ローパスフィルタ等のフィルタ処理回路103、荷重推定演算回路104、コントローラ回路105などを有する。オフセット調整回路101は、歪みセンサ22の初期オフセットや、車輪用軸受への固定によるオフセットなどを、正規の値に調整するものであり、コントローラ回路105による調整、もしくは外部からの指令によるオフセット調整が可能なように構成されている。上記したように、オフセットの原因は歪みセンサ22のばらつきやセンサ固定時の歪みなどであることから、車輪用軸受にセンサユニット20を取付けて、組立が完了した段階でオフセットを調整するのが望ましい。
 このように、センサ付車輪用軸受の組立完了後に、歪みセンサ22の出力信号が規定値となるようにオフセット調整回路101でオフセットを調整すると、センサ付車輪用軸受が完成品となった時点でのセンサ出力をゼロ点とすることができるため、センサ出力信号の品質を確保することができる。
 また、歪みセンサ22の出力信号には、歪みセンサ22自体の温度特性や、固定側部材である外方部材1の温度歪みなどによるドリフト量が存在する。温度補正回路101は、オフセット調整された歪みセンサ22の出力信号の温度に起因するドリフトを補正する回路である。温度によるドリフトを補正するために、引用する第1実施形態の図3のように少なくとも1つのセンサユニット20の歪み発生部材21には温度センサ28が設けられ、この温度センサ28の出力信号がAD変換器55でデジタル化されてから前記温度補正回路101に入力される。
 荷重推定演算回路104では、前記オフセット調整回路101、温度補正回路102、フィルタ処理回路103によりオフセット調整処理、温度補正処理、フィルタ処理などが施された歪みセンサ22のデジタル化された出力信号に基づき、荷重推定演算が行われる。この荷重推定演算回路104は、前記垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy と、歪みセンサ22の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、歪みセンサ22の出力信号から前記関係設定手段を用いて作用力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。
 図43や図44の構成例で示すように、推定手段30Eの荷重推定演算回路104で得られた荷重データは、車体側に設置される上位の電気制御ユニット(ECU)106まで、車内通信バス(例えばCANバス)61などを通じて出力される。この通信経路は無線化されたものであってもよく、軸受側と車体側にそれぞれ送受信器を設置し、荷重データ等の出力を行う構成としてもよい。この場合、電源供給などの必須なケーブルを配線接続してセンサを動作させ、得られたデータは無線で送信する構成とすることで、必要なケーブルの本数を減らすことができ、車体への取り付けが簡単になる。図43や図44において、推定手段30Eに接続された配線61aは上記車内通信バス61を構成する配線である。電気制御ユニット106は、例えば車両の全体を制御する手段であり、マイクロコンピュータ等により構成される。必要に応じてアナログ電圧で出力するものとしても良い。
 前記第2実施形態で図14により説明したセンサユニットの出力信号に対する転動体5位置の影響について、この第8応用形態における前記荷重推定演算回路104(図42)では、荷重を求めるデータとして、歪みセンサ22の出力信号の振幅の平均値(直流成分)を演算する。この演算のために、この第8応用形態では、図41のように外方部材1の内周に転動体5の位置を検出する転動体検出センサ140が設けられ、この転動体検出センサ140の検出信号が前記荷重推定演算回路104(図42)に入力される。これにより、荷重推定演算回路104(図42)で演算される荷重値から転動体通過の影響を解消できる。
 この第8応用形態の作用については第1実施形態の場合と基本的に同様であり、詳しい説明は省略するが、この応用形態の場合、とくに、歪みセンサ22の出力信号を、荷重を推定する推定手段30Eに入力する前に、AD変換器55で直接デジタルデータに変換するようにしているので、提案例で示したようなアナログ信号に対するオフセット調整回路や増幅回路が不要になり、回路設置スペースを削減でき、コンパクト化が可能になる。また、センサデータがデジタル化されることで、推定手段30Eでは、オフセット調整や温度補正を含むすべての前処理をデジタル演算で実施することができる。その結果、オートキャリブレーションによる調整工程の大幅な簡略化、長期的なドリフトへの対応も可能になる。また、増幅回路の飽和などの問題もなくなる。
 このように、信号処理回路をコンパクト化できることから、歪みセンサ22の出力信号である微小なアナログ信号の配線を短縮化でき、その結果ノイズの影響を受け難くなり、最終的な荷重検出精度も向上させることができる。
 また、この第8応用形態ではセンサユニット20の少なくとも1つに温度センサ28を設け、推定手段30Eにおける温度補正回路102(図42)では、前記温度センサ28の出力信号に基づき、歪みセンサ21の出力信号のドリフトを補正するようにしているので、歪みセンサ21の出力信号の温度ドリフトを補正することができる。
 図45および共通図面として引用する前記第2実施形態の図10ないし図14によりこの発明の第9応用形態を説明する。このセンサ付車輪用軸受では、図41~図44に示す第8応用形態において、各センサユニット20Aとして前記図10ないし図14の構造ものを用いた点で相違し、その他の構成は同様であるので、詳しい説明は省略する。
 この第9応用形態の場合、図41~図44に示す第8応用形態における推定手段30Eの荷重推定演算回路104において、各センサユニット20Aの2つの歪みセンサ22A,22Bの出力信号の和や差を演算し、その和を平均値として差を振幅値として取り出す。
 この場合も、前述した第2実施形態の図14(A)~(C)で説明したと同様の作用を奏し、得られる平均値と振幅値を用いることにより、車輪用軸受やタイヤ接地面に作用する荷重をより正確に推定することができる。
 以上説明した第8および第9応用形態は、実施形態で要件とした荷重推定処理手段30を要件としない応用態様群IV(態様32~42)を含む。
[態様32]
 態様32にかかるセンサ付車輪用軸受は、複列の転走面3が内周に形成された外方部材1と、前記転走面3と対向する転走面4が外周に形成された内方部材2と、両部材1,2の対向する転走面3,4間に介在した複列の転動体5とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、上記外方部材1および内方部材2のうちの固定側部材の外径面に1つ以上の荷重検出用のセンサユニット20を設け、前記センサユニット20は前記固定側部材に接触して固定される2つ以上の接触固定部21aを有する歪み発生部材21、およびこの歪み発生部材21に取付けられてこの歪み発生部材21の歪みを検出する1つ以上の歪みセンサ22からなり、これらセンサ22の出力信号を直接にAD変換する少なくとも20ビット以上の分解能を持つAD変換器55を車輪用軸受上に設け、このAD変換されたセンサ22の出力信号から車輪に加わる荷重を推定する推定手段30Eを設けた。なお、前記の「直接にAD変換する」とは、センサ22の出力信号を、信号処理手段を介することなくAD変換器55に入力してAD変換することを言う。
 車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材)にも荷重が印加されて変形が生じる。ここではセンサユニット20における歪み発生部材21の2つ以上の接触固定部21aが、外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みがセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなる。
 とくに、センサ22の出力信号を少なくとも20ビット以上の分解能を持つAD変換器55で直接にAD変換し、このAD変換されたセンサ22の出力信号に基づき、推定手段30Eで車輪に加わる荷重を推定するようにしているので、荷重検出系をコンパクトに構成でき、車輪の軸受部にかかる荷重を正確に検出できる。
[態様33]
 態様32において、前記AD変換器55が、1つで複数のセンサ22の出力信号をAD変換する多チャンネル入力信号のAD変換器であっても良い。この構成の場合、複数のセンサユニット20からのセンサ出力信号を1つのAD変換器55でAD変換できることから、設置スペースを小さくでき、検出系全体を車輪用軸受に設置することができる。
[態様34]
 態様32において、前記AD変換器55を前記センサユニット20の少なくとも1つに取付けても良い。この構成の場合もAD変換器55の設置スペースを小さくできる。
[態様35]
 態様32において、前記AD変換器55を複数有する変換ユニットの少なくとも1つを、前記センサユニット20とは別に車輪用軸受上に設けても良い。この構成の場合もAD変換器55の設置スペースを小さくできる。
[態様36]
 態様32において、前記AD変換器55は、デジタル・シグマ型の変換方式のAD変換器であることが望ましい。
[態様37]
 態様32において、前記センサユニット20は2つの接触固定部21aと1つのセンサ22を有するものとしても良い。
[態様38]
 態様32において、前記センサユニット20は3つ以上の接触固定部21aと2つのセンサ22を有し、それらのセンサ出力信号の位相差が、転動体5の配列ピッチの{n+1/2(n:整数)}倍となるように接触固定部21aの間隔が設定され、前記推定手段30Eは前記2つのセンサ22の出力信号の和をとることにより、変動成分をキャンセルして平均値を求めるものとしても良い。この構成の場合、センサユニット20における2つのセンサ22の出力信号の間では略180度の位相差を有することになり、その平均値は転動体通過による変動成分をキャンセルした値となる。
[態様39]
 態様32において、前記センサユニット20を3つ以上設け、前記推定手段30Eは、前記3つ以上のセンサユニット20のセンサ出力信号から車輪用軸受の径方向および軸方向に作用する径方向荷重および軸方向荷重を推定するものとしても良い。
[態様40]
 態様32において、前記センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配しても良い。
 このように4つのセンサユニット20を配置することで、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
[態様41]
 態様32において、前記センサユニット20の少なくとも1つに温度センサ28を設け、前記推定手段30Eは、前記温度センサ28の出力信号に基づき、前記センサ出力信号の温度ドリフトを補正するものとしても良い。この構成の場合、歪みセンサ22の出力信号の温度ドリフトを補正することができる。
[態様42]
 態様32において、前記推定手段30Eを車体側の車内通信バスに接続し、推定手段30Eで推定された荷重信号を通信により車体側に出力するものとしても良い。
 なお、上記した各実施形態および応用形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材2が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット20は内方部材2の内周となる周面に設ける。
 また、これらの実施形態および応用形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…外方部材
2…内方部材
3,4…転走面
5…転動体
20,20A,20B…センサユニット
21…歪み発生部材
21a…接触固定部
22,22A,22B,22C…歪みセンサ
28…温度センサ
29…車載センサ
30…荷重推定処理手段
30A…荷重推定手段
30B…荷重推定手段
30C…第1の荷重推定手段
30D…第2の荷重推定手段
30E…推定手段
31…主荷重推定手段
32…平均値演算手段
33…補正手段
34…併用推定手段
35…振幅値演算手段
36…振幅処理荷重推定手段
37…ドリフト量推定手段
37a…荷重条件限定手段
38…外部モニタ
39…入力装置
40,40A…平均値演算部
41,41A…振幅値演算部
42,43…温度補正手段
44…選択出力手段
45…差分値演算部
47…荷重演算部
48…温度補正手段
49…演算式選択手段
50…軸方向荷重演算部
51…方向判別部
52…領域判別部
53A,53B…荷重演算式
54…荷重検出センサ
55…AD変換器
56…変換ユニット

Claims (10)

  1.  複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、
     前記外方部材および内方部材のうちの固定側部材に荷重検出用のセンサユニットを設け、前記センサユニットは、前記固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられて歪み発生部材の歪みを検出する1つ以上のセンサを有し、このセンサユニットのセンサの出力信号から車輪に加わる荷重を推定する荷重推定処理手段を設け、
     前記荷重推定処理手段は、
     前記センサユニットのセンサの出力信号の平均値を演算する平均値演算手段を有しその演算した平均値を補正手段で補正して車輪に加わる荷重を推定する主荷重推定手段と、
     前記センサの出力信号の転動体通過による信号波形の振幅値から車輪に加わる荷重に相当する振幅処理荷重推定値を演算する振幅処理荷重推定手段と、
     前記主荷重推定手段の推定値である推定荷重出力と前記振幅処理荷重推定値とを比較することにより、前記推定荷重出力に現れるセンサの出力信号のドリフト量を推定するドリフト量推定手段とを備え、
     前記主荷重推定手段の前記補正手段は、ドリフト量推定手段で推定したドリフト量により荷重推定出力を補正するものとした
     センサ付車輪用軸受。
  2.  請求項1において、前記主荷重推定手段は、前記センサの出力信号の前記補正手段で補正された補正後の平均値と前記センサの出力信号の振幅値との両方を用いて前記推定荷重出力を演算する併用推定手段を有するセンサ付車輪用軸受。
  3.  請求項1において、前記センサユニットを3つ以上設け、前記荷重推定処理手段は、前記3つ以上のセンサユニットのセンサの出力信号から、車輪に加わる荷重のうちの前後方向荷重、垂直方向荷重、および軸方向荷重を推定するものとしたセンサ付車輪用軸受。
  4.  請求項1において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に、円周方向90度の位相差で4つ等配したセンサ付車輪用軸受。
  5.  請求項1において、前記センサユニットの少なくとも1つに温度センサを設け、前記主荷重推定手段は、前記平均値演算手段で演算されて前記補正手段に入力される平均値を前記温度センサの検出温度により補正する温度補正手段を有するセンサ付車輪用軸受。
  6.  請求項1において、前記センサユニットは3つ以上の接触固定部と歪み発生部材の歪みを検出する2つのセンサを有し、隣り合う第1および第2の接触固定部の間、および隣り合う第2および第3の接触固定部の間に各センサをそれぞれ取付け、隣り合う接触固定部もしくは隣り合うセンサの前記固定側部材の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍とし、前記主荷重推定手段の前記平均値演算手段は、前記2つのセンサの出力信号の和を平均値として用いるものとしたセンサ付車輪用軸受。
  7.  請求項1において、前記ドリフト量推定手段は、前記振幅処理荷重推定手段の出力する振幅処理荷重推定値と前記主荷重推定手段の出力する推定荷重出力との関係を、最小自乗推定を適用して求め、この関係から推定荷重出力のドリフト量を推定するものとしたセンサ付車輪用軸受。
  8.  請求項7において、車体に設けられた1つ以上のセンサの出力信号から、車両走行中に軸受に作用する荷重の状態が設定荷重条件を充足するか否かを判断し、設定荷重条件を充足しない場合は、振幅処理荷重推定手段の出力する振幅処理荷重推定値の中から、前記ドリフト量推定手段によりドリフト量の推定処理に用いる振幅処理荷重推定値を設定抽出条件に従って抽出する荷重条件限定手段を設けたセンサ付車輪用軸受。
  9.  請求項1において、前記荷重推定処理手段を車内通信バスに接続し、前記ドリフト量推定手段の推定するドリフト量、および主荷重推定手段による推定荷重出力を、前記車内通信バスを介して外部モニタに出力可能としたセンサ付車輪用軸受。
  10.  請求項9において、前記荷重推定処理手段を車内通信バスを通じて車体搭載の入力装置に接続し、前記荷重推定処理手段は、前記入力装置からの入力により、前記ドリフト量推定手段によるドリフト量の推定、およびその他の前記車輪に加わる荷重の推定の演算に用いるパラメータを設定可能したセンサ付車輪用軸受。
PCT/JP2010/054685 2009-03-26 2010-03-18 センサ付車輪用軸受 WO2010110173A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10755971.8A EP2413121B1 (en) 2009-03-26 2010-03-18 Sensor-equipped bearing for wheel
CN2010800139315A CN102365538B (zh) 2009-03-26 2010-03-18 带有传感器的车轮用轴承
US13/138,712 US8540431B2 (en) 2009-03-26 2010-03-18 Sensor-equipped bearing for wheel

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009-076762 2009-03-26
JP2009076762A JP2010230406A (ja) 2009-03-26 2009-03-26 センサ付車輪用軸受
JP2009-089042 2009-04-01
JP2009089042A JP2010243190A (ja) 2009-04-01 2009-04-01 センサ付車輪用軸受
JP2009093582A JP5268756B2 (ja) 2009-04-08 2009-04-08 センサ付車輪用軸受
JP2009-093582 2009-04-08
JP2009-093581 2009-04-08
JP2009093581A JP5268755B2 (ja) 2009-04-08 2009-04-08 センサ付車輪用軸受
JP2009164474A JP2011021896A (ja) 2009-07-13 2009-07-13 センサ付車輪用軸受
JP2009-164474 2009-07-13

Publications (1)

Publication Number Publication Date
WO2010110173A1 true WO2010110173A1 (ja) 2010-09-30

Family

ID=42780866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054685 WO2010110173A1 (ja) 2009-03-26 2010-03-18 センサ付車輪用軸受

Country Status (4)

Country Link
US (1) US8540431B2 (ja)
EP (1) EP2413121B1 (ja)
CN (1) CN102365538B (ja)
WO (1) WO2010110173A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103083A (ja) * 2010-11-10 2012-05-31 Ntn Corp センサ付車輪用軸受
JP2012103221A (ja) * 2010-11-15 2012-05-31 Ntn Corp センサ付車輪用軸受
WO2014097926A1 (ja) * 2012-12-18 2014-06-26 Ntn株式会社 センサ付車輪用軸受装置
EP2762848A4 (en) * 2011-09-29 2015-08-12 Ntn Toyo Bearing Co Ltd WHEEL BEARING APPARATUS WITH SENSOR
WO2015182432A1 (ja) * 2014-05-29 2015-12-03 Ntn株式会社 センサ付車輪用軸受
US9518609B2 (en) 2010-09-10 2016-12-13 Ntn Corporation Wheel bearing with sensor
US10066665B2 (en) 2010-11-15 2018-09-04 Ntn Corporation Wheel bearing with sensor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148846A1 (ja) * 2010-05-24 2011-12-01 Ntn株式会社 センサ付車輪用軸受
WO2011154016A1 (en) * 2010-06-07 2011-12-15 Aktiebolaget Skf Load sensing on a bearing
JP5911761B2 (ja) 2012-06-27 2016-04-27 Ntn株式会社 センサ付車輪用軸受装置
FR3018649B1 (fr) * 2014-03-14 2017-06-09 Continental Automotive France Procede de transmission d'un signal radioelectrique entre une unite electronique de roue d'un vehicule et une unite de controle electronique centralise fixe du vehicule
KR101740185B1 (ko) * 2015-03-24 2017-05-25 주식회사 엘지화학 접착제 조성물
WO2017073646A1 (ja) * 2015-10-27 2017-05-04 日本精工株式会社 車輪支持用転がり軸受ユニット
JP6714386B2 (ja) * 2016-02-25 2020-06-24 川崎重工業株式会社 鉄道車両の軸受監視装置
JP6734664B2 (ja) * 2016-02-25 2020-08-05 川崎重工業株式会社 鉄道車両の軸受監視装置
JP6964391B2 (ja) * 2016-03-10 2021-11-10 Ntn株式会社 車輪用軸受装置とその製造方法
JP7079582B2 (ja) * 2016-09-21 2022-06-02 Ntn株式会社 補助動力装置付き車輪用軸受装置およびその補助動力装置
CA3059118A1 (en) * 2017-04-07 2018-10-11 Harsco Technologies LLC Encoder bearing hub assembly for rail vehicles
CN106872185A (zh) * 2017-04-11 2017-06-20 怀宁鑫橙信息技术有限公司 一种智能非线性农村快递车路况测量分析装置
DE102018221324A1 (de) * 2018-12-10 2020-06-10 Aktiebolaget Skf Wälzlagereinheit
GB2582597B (en) * 2019-03-27 2021-08-18 S360 Group B V Method of decomposing a load of interest associated with bearing-supported equipment
CN110645266B (zh) * 2019-06-26 2020-11-27 扬州市舜意机械有限公司 一种传感一体化的关节轴承及其使用方法
US11319990B2 (en) * 2020-03-06 2022-05-03 Jtekt Corporation Rolling bearing device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530565A (ja) 2000-04-10 2003-10-14 ザ テイムケン コンパニー 荷重を監視するためのセンサを備えたベアリングアセンブリ
JP2005331496A (ja) * 2003-09-11 2005-12-02 Nsk Ltd 回転速度検出装置及び転がり軸受ユニットの荷重測定装置
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
WO2008093491A1 (ja) * 2007-01-31 2008-08-07 Ntn Corporation センサ付き車輪用軸受装置
WO2008096525A1 (ja) * 2007-02-08 2008-08-14 Ntn Corporation センサ付車輪用軸受
JP2008207031A (ja) 2008-06-10 2008-09-11 Sansei R & D:Kk 遊技機
JP2008542735A (ja) 2005-05-30 2008-11-27 インターフリート テクノロジー アーベー 車輪に働く複数の荷重成分を決定する方法及びシステム
WO2009016829A1 (ja) * 2007-07-31 2009-02-05 Ntn Corporation センサ付車輪用軸受
JP2009076762A (ja) 2007-09-21 2009-04-09 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2009089042A (ja) 2007-09-28 2009-04-23 Kyocera Corp 無線端末及び無線通信方法
JP2009093582A (ja) 2007-10-12 2009-04-30 Fuji Xerox Co Ltd 所見分析装置
JP2009093581A (ja) 2007-10-12 2009-04-30 Fuji Xerox Co Ltd 類義語検索管理システム
JP2009164474A (ja) 2008-01-09 2009-07-23 Osaka Univ 回転可能型の気化する液体用容器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812356B1 (fr) * 2000-07-28 2002-12-06 Roulements Soc Nouvelle Roulement comprenant au moins une zone de deformation elastique et ensemble de freinage le comprenant
NL1016756C2 (nl) 2000-11-30 2002-05-31 Skf Eng & Res Centre Bv Meetelement voor het meten van radiale en/of axiale krachten op een lager.
CN100394189C (zh) * 2003-02-07 2008-06-11 株式会社捷太格特 带传感器的滚动轴承单元
JP2005048823A (ja) * 2003-07-31 2005-02-24 Koyo Seiko Co Ltd センサ付きハブユニット
US20060278022A1 (en) 2003-09-11 2006-12-14 Nsk Ltd Rotation speed detection device and rolling bearing unit load measurement device
JP4925624B2 (ja) * 2005-08-23 2012-05-09 Ntn株式会社 センサ付車輪用軸受
JP2007064778A (ja) * 2005-08-31 2007-03-15 Ntn Corp センサ付車輪用軸受
US7819026B2 (en) * 2005-09-06 2010-10-26 Ntn Corporation Sensor-equipped wheel support bearing assembly
JP2007292158A (ja) * 2006-04-24 2007-11-08 Ntn Corp センサ付車輪用軸受
JP2008275507A (ja) 2007-05-01 2008-11-13 Jtekt Corp センサ付き転がり軸受装置
EP1988376B1 (en) 2007-05-01 2017-06-07 JTEKT Corporation Rolling bearing device with sensor
JP2009001201A (ja) 2007-06-22 2009-01-08 Nsk Ltd 回転機械の状態量測定装置
JP5063270B2 (ja) 2007-09-18 2012-10-31 Ntn株式会社 センサ付車輪用軸受
WO2009069272A1 (ja) 2007-11-28 2009-06-04 Ntn Corporation センサ付車輪用軸受
JP5100567B2 (ja) 2008-08-11 2012-12-19 Ntn株式会社 センサ付車輪用軸受

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530565A (ja) 2000-04-10 2003-10-14 ザ テイムケン コンパニー 荷重を監視するためのセンサを備えたベアリングアセンブリ
JP2005331496A (ja) * 2003-09-11 2005-12-02 Nsk Ltd 回転速度検出装置及び転がり軸受ユニットの荷重測定装置
JP2008542735A (ja) 2005-05-30 2008-11-27 インターフリート テクノロジー アーベー 車輪に働く複数の荷重成分を決定する方法及びシステム
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
WO2008093491A1 (ja) * 2007-01-31 2008-08-07 Ntn Corporation センサ付き車輪用軸受装置
WO2008096525A1 (ja) * 2007-02-08 2008-08-14 Ntn Corporation センサ付車輪用軸受
WO2009016829A1 (ja) * 2007-07-31 2009-02-05 Ntn Corporation センサ付車輪用軸受
JP2009076762A (ja) 2007-09-21 2009-04-09 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2009089042A (ja) 2007-09-28 2009-04-23 Kyocera Corp 無線端末及び無線通信方法
JP2009093582A (ja) 2007-10-12 2009-04-30 Fuji Xerox Co Ltd 所見分析装置
JP2009093581A (ja) 2007-10-12 2009-04-30 Fuji Xerox Co Ltd 類義語検索管理システム
JP2009164474A (ja) 2008-01-09 2009-07-23 Osaka Univ 回転可能型の気化する液体用容器
JP2008207031A (ja) 2008-06-10 2008-09-11 Sansei R & D:Kk 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2413121A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518609B2 (en) 2010-09-10 2016-12-13 Ntn Corporation Wheel bearing with sensor
JP2012103083A (ja) * 2010-11-10 2012-05-31 Ntn Corp センサ付車輪用軸受
JP2012103221A (ja) * 2010-11-15 2012-05-31 Ntn Corp センサ付車輪用軸受
US10066665B2 (en) 2010-11-15 2018-09-04 Ntn Corporation Wheel bearing with sensor
EP2762848A4 (en) * 2011-09-29 2015-08-12 Ntn Toyo Bearing Co Ltd WHEEL BEARING APPARATUS WITH SENSOR
US9404540B2 (en) 2011-09-29 2016-08-02 Ntn Corporation Wheel bearing apparatus with sensor
WO2014097926A1 (ja) * 2012-12-18 2014-06-26 Ntn株式会社 センサ付車輪用軸受装置
EP2937678A4 (en) * 2012-12-18 2016-08-24 Ntn Toyo Bearing Co Ltd DEVICE FOR WHEEL BEARING EQUIPPED WITH A SENSOR
WO2015182432A1 (ja) * 2014-05-29 2015-12-03 Ntn株式会社 センサ付車輪用軸受

Also Published As

Publication number Publication date
EP2413121A1 (en) 2012-02-01
US20120014632A1 (en) 2012-01-19
CN102365538B (zh) 2013-09-18
US8540431B2 (en) 2013-09-24
EP2413121A4 (en) 2015-10-21
EP2413121B1 (en) 2020-08-26
CN102365538A (zh) 2012-02-29

Similar Documents

Publication Publication Date Title
WO2010110173A1 (ja) センサ付車輪用軸受
WO2009125583A1 (ja) センサ付車輪用軸受
KR101818108B1 (ko) 센서가 장착된 베어링
KR20110087288A (ko) 센서가 장착된 차륜용 베어링
JP5143039B2 (ja) センサ付車輪用軸受
WO2012066995A1 (ja) センサ付車輪用軸受
JP5268756B2 (ja) センサ付車輪用軸受
WO2014087871A1 (ja) センサ付車輪用軸受装置
WO2009101793A1 (ja) センサ付車輪用軸受
JP5638310B2 (ja) センサ付車輪用軸受
CN103140745B (zh) 带有传感器的车轮用轴承
JP5268755B2 (ja) センサ付車輪用軸受
JP2010230406A (ja) センサ付車輪用軸受
JP5908243B2 (ja) センサ付車輪用軸受装置
JP6195768B2 (ja) センサ付車輪用軸受のキャリブレーション方法
JP5553731B2 (ja) センサ付車輪用軸受
JP5882699B2 (ja) センサ付車輪用軸受装置
JP5646291B2 (ja) センサ付車輪用軸受
JP5484204B2 (ja) センサ付車輪用軸受
JP5571455B2 (ja) センサ付車輪用軸受
JP2012242273A (ja) センサ付車輪用軸受
JP2010242921A (ja) センサ付車輪用軸受
JP2010243190A (ja) センサ付車輪用軸受
JP5489929B2 (ja) センサ付車輪用軸受
JP2011021896A (ja) センサ付車輪用軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013931.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13138712

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010755971

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE