JP5268755B2 - センサ付車輪用軸受 - Google Patents

センサ付車輪用軸受 Download PDF

Info

Publication number
JP5268755B2
JP5268755B2 JP2009093581A JP2009093581A JP5268755B2 JP 5268755 B2 JP5268755 B2 JP 5268755B2 JP 2009093581 A JP2009093581 A JP 2009093581A JP 2009093581 A JP2009093581 A JP 2009093581A JP 5268755 B2 JP5268755 B2 JP 5268755B2
Authority
JP
Japan
Prior art keywords
sensor
load
unit
difference value
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009093581A
Other languages
English (en)
Other versions
JP2010242902A (ja
Inventor
健太郎 西川
亨 高橋
孝幸 乗松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2009093581A priority Critical patent/JP5268755B2/ja
Priority to EP10755971.8A priority patent/EP2413121B1/en
Priority to PCT/JP2010/054685 priority patent/WO2010110173A1/ja
Priority to CN2010800139315A priority patent/CN102365538B/zh
Priority to US13/138,712 priority patent/US8540431B2/en
Publication of JP2010242902A publication Critical patent/JP2010242902A/ja
Application granted granted Critical
Publication of JP5268755B2 publication Critical patent/JP5268755B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。
自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の外輪フランジに歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受が提案されている(例えば特許文献1)。
特表2003−530565号公報
しかし、特許文献1のように外輪フランジに歪みゲージを貼り付けるのでは、組立性に問題がある。また、検出感度も低く、荷重を精度良く検出できない。
そこで、本発明者等は、上記課題を解決するものとして、次の構成としたセンサ付車輪用軸受を提案した(特願2008−207031号)。この提案のセンサ付車輪用軸受は、外輪の外径面に、歪み発生部材および歪みセンサを有するセンサユニットの2つを、180度の位相差をなす位置に対として配置する。そのセンサユニット対の2つのセンサ出力信号の和から車輪用軸受に作用する軸方向荷重Fy を推定し、2つのセンサ出力信号の差分から車輪用軸受に作用する径方向荷重(例えば垂直方向荷重Fz や駆動力・制動力となる荷重Fx )を推定する。また、1対のセンサユニットの2つのセンサユニットを外輪の外径面の上面部と下面部に配置し、このセンサユニット対のセンサ出力信号の振幅の差分値から前記軸方向荷重Fy の方向を判別し、判定した方向に応じて軸方向荷重Fy の推定に用いる演算式のパラメータを切り替える。図19は、その軸方向荷重Fy の演算処理の流れをブロック図で示している。同図において、演算処理部では、センサ出力信号の平均化、振幅抽出、温度補正などの処理を施す。図20は、前記センサユニット対のセンサ出力信号の振幅の差分値と軸方向荷重Fy の方向の関係を示す。
しかし、前記センサユニットのセンサ出力信号は、入力荷重が比較的小さい範囲では線形応答するが、急激なコーナリング時などの大きな軸方向荷重Fy に対しては非線形な応答となる。そのため、センサユニットのセンサ出力信号から入力荷重を推定する演算において線形な関係を仮定すると、高い軸方向荷重Fy の領域では推定誤差が大きくなってしまうという問題がある。
この推定誤差は、非線形な関係をモデル化すれば低減できるが、それでは荷重の推定演算に必要なパラメータが増加し、演算量も大幅に増加するという問題がある。また、特にセンサユニットのセンサ出力信号にドリフトが発生した場合、複雑な演算誤差が重畳することになるため、ドリフトに対するロバスト性の確保が難しいという問題もある。
この発明の目的は、軸受の歪み応答に含まれる非線形性を簡易な演算で補正して、荷重推定誤差を低減することができるセンサ付車輪用軸受を提供することである。
この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に複数のセンサユニットを設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する1つ以上のセンサを有し、
前記複数のセンサユニットのセンサ出力信号から車輪に加わる荷重を推定する荷重推定手段を設け、この荷重推定手段は、前記複数のセンサユニットのうち、前記固定側部材の円周方向における180度の位相差をなして対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値を演算する差分値演算部と、前記差分値をレベル分けした複数領域にそれぞれ対応して荷重演算用のパラメータが複数設定され、前記差分値演算部で演算された差分値に対応する領域のパラメータを選択して、前記複数のセンサユニットのセンサ出力信号から前記車輪に加わる荷重を推定する荷重演算部とを有するものとしたことを特徴とする。前記領域分けは、例えば、前記差分値が線形と見なせる線形領域と、この領域よりも差分値が大きく非線形と見なす非線形領域としても良い。
この構成によると、荷重推定手段の差分値演算部は、外方部材の円周方向の180度の位相差をなして対向配置された2つのセンサユニットのセンサ出力信号の振幅の差分値を差分値演算部で演算する。センサ出力信号は、軸受の回転に伴って転動体が通過することで変動するが、この変動成分の大きさが、上記差分値として差分値演算部で演算される。荷重演算部は、差分値をレベル分けした領域毎に設けられた荷重演算用のパラメータの中から、差分値演算部の演算する差分値が対応する領域のパラメータを選択し、このパラメータを用いて、車輪に加わる荷重を推定する。
このように領域分けした荷重演算用のパラメータを用いて荷重を演算するため、軸受の歪み応答に含まれる非線形性を補正して荷重推定誤差を低減することができる。上記領域分けは、振幅値の差分値で行っているため、感度が高くて、領域の分割を適切に行うことができる。また、振幅信号は温度の影響を受け難く、上記領域分けが正確に行えて検出精度が向上する。軸受の内部予圧条件が異なっている場合でも、大きな影響を受けることなく、安定した領域分けが可能である。
この発明において、前記荷重推定手段の差分値演算部は、前記固定側部材の上下に対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値を演算するものとしても良い。上下のセンサユニットのセンサ出力信号の差分値を評価値とすると、この値は軸方向荷重Fy に対して略線形に変化し、かつ軸方向のモーメント荷重に対する感度が高く、そのため、この評価値によって領域のレベル分けを適正に行うことができる。
この発明において、前記荷重推定手段の差分値演算部は、前記固定側部材の左右に対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値を演算するものとしても良い。このように左右のセンサユニットのセンサ出力信号の差分値を評価値とすることにより、軸方向回りのモーメント荷重Mzに対しても、入力荷重領域をレベル分けすることができる。
この発明において、前記荷重推定手段の差分値演算部は、前記固定側部材の上下に対向配置されたセンサユニットセンサ出力信号の振幅値の差分値と、前記固定側部材の左右に対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値とを演算し、前記荷重推定手段の荷重演算部は、前記両差分値をレベル分けした複数領域の組合わせからなる複数の組合わせ領域に対応してそれぞれ設けられたパラメータのうちから、前記両差分値が対応する組合わせ領域の荷重演算式を選択して前記荷重を推定するものとしても良い。
このように、上下の振幅差分値と左右の振幅差分値を組み合わせて入力荷重をレベル分けすることにより、入力荷重の範囲に応じたより一層適切なパラメータにより荷重を推定できる。そのため、荷重推定誤差をより一層低減できて、車輪にかかる荷重を正確に推定できる。
この発明において、前記センサユニットを3つ以上設け、前記荷重推定手段は、前記3つ以上のセンサユニットのセンサ出力信号から車輪用軸受の径方向および軸方向に作用する径方向荷重および軸方向荷重を推定するものとしても良い。
この発明において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配しても良い。
このように4つのセンサユニットを配置することで、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
この発明において、前記荷重推定手段は、前記センサ出力信号における転動体振幅の複数周期分の平均値、または振幅値、または平均値と振幅値の両方を用いて車輪に加わる荷重を推定するものであっても良い。
この発明において、前記荷重推定手段は、荷重推定に用いる前記センサ出力信号の平均値と振幅値の組み合わせを、車輪の回転数に応じて変更するものとしても良い。
平均値の場合、車輪が停止あるいは低速状態にあるときでも時間平均処理をすることなく求める工夫が可能であり、平均値のみを変数とする荷重演算式を用いることで荷重を短時間に演算出力できる。また、車輪が通常回転状態にあるときには、平均値と振幅値を精度良く演算できるので、振幅値を変数とする荷重演算式、または平均値と振幅値を変数とする荷重演算演算式を用いることで荷重を精度良く演算出力できる。
この発明において、前記各センサユニットに温度センサを設け、前記荷重推定手段は、前記温度センサの出力信号に基づき、前記センサ出力信号を補正するものとしても良い。この構成の場合、歪みセンサの出力信号の温度ドリフトを補正することができる。
この発明において、前記センサユニットは3つ以上の接触固定部と少なくとも2つ以上のセンサを有し、それらのセンサ出力信号の位相差が、転動体の配列ピッチの{n+1/2(n:整数)}倍となるように接触固定部の間隔が設定され、前記荷重推定手段は前記2つのセンサの出力信号の平均値を用いるものとしても良い。この構成の場合、2つのセンサの出力信号は略180度の位相差を有することになり、その平均値は転動体通過による変動成分をキャンセルした値となる。また、振幅値は温度の影響やナックル・フランジ面などの滑りの影響をより確実に排除した正確なものとなる。
この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材の外径面に複数のセンサユニットを設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する1つ以上のセンサを有し、前記複数のセンサユニットのセンサ出力信号から車輪に加わる荷重を推定する荷重推定手段を設け、この荷重推定手段は、前記複数のセンサユニットのうち、前記固定側部材の円周方向における180度の位相差をなして対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値を演算する差分値演算部と、前記差分値をレベル分けした複数領域にそれぞれ対応して荷重演算用のパラメータが複数設定され、前記差分値演算部で演算された差分値に対応する領域のパラメータを選択して、前記複数のセンサユニットのセンサ出力信号から前記車輪に加わる荷重を推定する荷重演算部とを有するものとしたため、軸受の歪み応答に含まれる非線形性を簡易な演算で補正して、荷重推定誤差を低減することができる。
この発明の一実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。 図3におけるIV−IV矢視断面図である。 センサユニットの他の設置例を示す断面図である。 同センサ付車輪用軸受における荷重推定手段の構成例を示すブロック図である。 同荷重推定手段の演算処理の流れを示す説明図である。 同センサ付車輪用軸受のセンサユニットのセンサ出力信号の波形図である。 (A)は外方部材外径面上面部でのセンサ出力信号振幅と軸方向荷重の方向との関係を示すグラフ、(B)は同外径面下面部でのセンサ出力信号の振幅と軸方向荷重との関係を示すグラフである。 軸方向荷重とセンサユニットのセンサ出力との関係を示すグラフである。 軸方向荷重の大きさと上下のセンサユニットのセンサ出力の差分値との関係を示すグラフである。 この発明の他の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。 図14におけるXV−XV矢視断面図である。 センサユニットの他の設置例を示す断面図である。 センサユニットの出力信号に対する転動体位置の影響の説明図である。 同センサ付車輪用軸受における荷重推定手段の構成例を示すブロック図である。 提案例における荷重演算処理の流れを示す説明図である。 軸方向荷重の大きさと上下のセンサユニットのセンサ出力の差分値との関係を示すグラフである。
この発明の第1の実施形態を図1ないし図9と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。
外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のねじ孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト(図示せず)を前記ねじ孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
図2は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。
固定側部材である外方部材1の外径面には、4つのセンサユニット20が設けられている。ここでは、これらのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に設けられている。
これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する1つの歪みセンサ22とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部21bを有する。切欠き部21bの隅部は断面円弧状とされている。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される2つの接触固定部21aを両端部に有する。なお、歪み発生部材21の形状によっては、接触固定部21aを2つ以上有するものとしても良い。また、歪み発生部材21の切欠き部21bは省略しても良い。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に設置される。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21b周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、例えば、その力が作用しても車輪用軸受は損傷をせず、その力が除去されると車輪用軸受の正常な機能が復元される範囲で最大の力である。
前記センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向の同寸法の位置で、かつ両接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。
接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。
このほか、図5に断面図で示すように、外方部材1の外径面における前記歪み発生部材21の2つの接触固定部21aが固定される2箇所の中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する2つの接触固定部21bの中間部位を外方部材1の外径面から離すようにしても良い。
歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ステレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。
センサユニット20の歪みセンサ22は、その出力信号から車輪に加わる荷重を推定する荷重推定手段30に接続される。荷重推定手段30は、マイクロコンピュータ等のコンピュータ(これに実行されるプログラムを含む)や、電子回路等からなる。ここでは、車輪の軸方向に作用する軸方向荷重Fy と、垂直方向に作用する垂直方向荷重Fz と、駆動力や制動力となる前後方向に作用する荷重Fx が推定される。この荷重推定手段30は、図6にブロック図で示すように、差分値演算部31と荷重演算部32とを有する。図7では、荷重推定手段30の演算処理をブロック図で示している。
センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22の出力信号は、センサユニット20の設置部の近傍を通過する転動体5の影響を受ける。すなわち、転動体5がセンサユニット20における歪みセンサ22に最も近い位置を通過するとき出力信号は最大値となり、その位置から転動体5が遠ざかるにつれて低下する。これにより、軸受回転時には歪みセンサ22の出力信号は、図8のように、転動体5の配列ピッチを周期として変化する正弦波に近い波形となる。
荷重推定手段30の差分値演算部31は、前記複数のセンサユニット20のうち、外方部材1の円周方向における180度の位相差をなして対向配置された2つのセンサユニット20のセンサ出力信号の振幅値の差分値を演算する。ここでは、その2つのセンサユニット20として、上下に対向配置されたセンサユニット20が選ばれる。図9(A)は外方部材1の外径面の上面部に配置されたセンサユニット20のセンサ出力を示し、図9(B)は外方部材1の外径面の下面部に配置されたセンサユニット20のセンサ出力を示している。これらの図において、横軸は軸方向荷重Fy を表し、縦軸は外方部材1の歪み量つまり歪みセンサ22の出力信号を表し、最大値および最小値は信号の最大値および最小値を表す。これらの図から、軸方向荷重Fy が+方向の場合、個々の転動体5の荷重は外方部材1の外径面上面部で小さくなり、外方部材1の外径面下面部で大きくなることが分かる。これに対して、軸方向荷重Fy が−方向の場合には逆に、個々の転動体5の荷重は外方部材1の外径面上面部で大きくなり、外方部材1の外径面下面部で小さくなることが分かる。このことから、前記差分値演算部31で演算される差分値は、軸方向荷重Fy の方向を示すことにもなる。
また、差分値演算部31は、入力されてくる各センサユニット20のセンサ出力信号の温度によるドリフトを補正する温度補正手段33と、各センサユニット20のセンサ出力信号の振幅値を演算する振幅値演算手段34と、センサ出力信号のと平均値(直流成分)を演算する平均値演算手段35とを有する。平均値演算手段35は、差分値演算部31に設けずに、荷重演算部32に設けても良い。各センサユニット20の歪み発生部材21には図3のように温度センサ28が設けられ、この温度センサ28の出力信号に基づき、前記温度補正手段33において対応する歪みセンサ22の出力信号が補正される。また、差分値演算部31における前記差分値の演算では、前記振幅値演算手段34で演算された上下のセンサユニット20のセンサ出力信号の振幅値が用いられる。
ところで、前記差分値演算部31で演算される差分値から軸方向荷重Fy の方向を判別できることから、判別された軸方向荷重Fy の方向に応じて、荷重推定の演算式のパラメータを適切な値に切り替えることで、荷重を精度良く推定できる可能性がある。しかし、軸方向荷重Fy とセンサユニット20のセンサ出力との関係をグラフで示す図10のように、入力荷重の比較的小さな範囲では線形応答するが、急激なコーナリング時(同図において領域Cの部分)などの大きな入力荷重に対しては非線形な応答となり、荷重を精度良く推定できない。
そこで、荷重推定手段30の荷重演算部32では、図11のように、前記差分値演算部31の演算する差分値を所定の複数領域(ここではA,B,Cの3領域)にレベル分けすると共に、各領域に対応して互いにパラメータの異なる複数の荷重演算式38A,38B,38Cを設定し、これらの複数の荷重演算式のうちから、前記差分値が対応する領域の荷重演算式を選択して前記荷重Fx ,Fy ,Fz を推定する。荷重演算部32は、前記差分値から軸方向荷重Fy の方向を判別する方向判別手段36と、前記差分値が前記複数領域うちのどの領域に属するかを判別する領域判別手段37を有する。なお、例えば領域Aに対応する荷重演算式38Aとしては、軸方向荷重Fy 、垂直方向荷重Fz 、および駆動力や制動力となる荷重Fx をそれぞれ推定する3つの演算式が用意され、これらの演算式の間ではパラメータが互いに異なる。例えば同じ軸方向荷重Fy の演算式であっても、異なる領域の演算式の間でパラメータが異なることは上記した通りである。他の領域B,Cに対応する荷重演算式38B,38Cについても同様である。
この場合、領域Aは軸方向荷重Fy の方向が−となる領域に、領域Bは軸方向荷重Fy の方向が+となる領域であってかつ入力荷重の小さい領域に、領域Cは軸方向荷重Fy の方向が+となる領域であってかつ入力荷重の小さい領域にそれぞれレベル分けされる。これにより、入力荷重の大きい領域においても、センサユニット20のセンサ出力信号に対して線形応答するようなパラメータとした荷重演算式を用意することができ、荷重推定誤差を低減できる。
前記荷重演算部32に用意される荷重演算式は、例えば各センサユニット20のセンサ出力信号の振幅値を変数とし、この変数に所定の補正係数を乗算した一次式(例えば、Fx =af+b(fはセンサ出力信号の値)の形式の一時式で与えられる場合、この一次式における前記補正係数aや定数bが前記パラメータとなる。また、荷重演算式の他の例として、各センサユニット20のセンサ出力信号の平均値(直流成分)を変数とし、この変数に所定の補正係数を乗算した一次式を用意しても良い。また、荷重演算式のさらに他の例として、各センサユニット20のセンサ出力信号の平均値および振幅値を変数とし、これらの変数にそれぞれ所定の補正係数を乗算した一次式を用意しても良い。前記一次式における各補正係数や定数の値は、予め試験やシミュレーションで求めておいて設定する。
車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。ここではセンサユニット20における歪み発生部材21の2つ以上の接触固定部21aが、外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪みセンサ22で感度良く検出される。
特に、荷重推定手段30では、外方部材1の円周方向の180度の位相差を成して対向配置された2つのセンサユニット(ここでは上下のセンサユニット)20のセンサ出力信号の振幅の差分値を差分値演算部31で演算し、この差分値をレベル分けした所定の複数領域A,B,Cに対応して設けられた互いにパラメータの異なる複数の荷重演算式38A,38B,38Cのうちから、前記差分値が対応する領域の荷重演算式を選択し、これに各センサユニット20のセンサ出力信号を代入することで荷重演算部32により車輪に加わる各荷重Fx ,Fy ,Fz を推定する。そのため、簡単に荷重推定誤差を低減できて、車輪にかかる荷重を正確に推定できる。軸方向荷重Fy については、その方向も併せて判別される。
また、この実施形態では前記センサユニット20を4つ設け、各センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受に作用する垂直方向荷重Fz 、駆動力や制動力となる荷重Fx 、軸方向荷重Fy を推定することができる。
また、この実施形態では各センサユニット20に温度センサ28を設け、前記荷重推定手段30の差分値演算部31では、温度補正手段33により、前記温度センサ28の出力信号に基づき、歪みセンサ22の出力信号の温度ドリフトを補正するようにしているので、歪みセンサ22の出力信号の温度ドリフトを補正することができる。
なお、上記実施形態では、荷重推定手段30の差分値演算部31において、外方部材1の外径面上面部と下面部に対向配置される2つのセンサユニット20のセンサ出力信号の振幅値の差分値を演算したが、このほか外方部材1の外径面左面部と右面部に対向配置される2つのセンサユニット20のセンサ出力信号の振幅値の差分値を演算して、荷重演算部32では、その差分値をレベル分けした所定の複数領域に対応して用意された互いにパラメータの異なる複数の荷重演算式のうちから、差分値が対応する領域の荷重演算式を選択して前記荷重Fz 、Fx 、Fy を推定するようにしても良い。
このように、左右のセンサユニット20のセンサ出力信号の振幅差を評価値として領域分けを行うことにより、軸方向z回りのモーメント荷重Mzに対しても入力荷重領域をレベル分けすることができる。
さらに、荷重推定手段30の差分値演算部31において、外方部材1の上下に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値と、外方部材1の左右に対向配置されたセンサユニット20のセンサ出力信号の振幅値の差分値とを演算し、荷重演算部32では、前記両差分値をレベル分けした所定の複数領域の組み合わせからなる複数の組合せ領域に対応して互いにパラメータの異なる複数の荷重演算式を用意し、これらの組合せ領域のうちから、前記両差分値が対応する組合せ領域の荷重演算式を選択して前記荷重Fz 、Fx 、Fy を推定するようにしても良い。
例えば、次のように、上下のセンサユニット20のセンサ出力信号の振幅値差分値をX、左右のセンサユニット20のセンサ出力信号の振幅値差分値をZとしたとき、各差分値を+の領域と−の領域とに区分けし、これら正負の領域の組合せからなる4つの組合せ領域I,II,III 、IVに対応する各荷重演算式を用意し、両振幅値差分値X,Zの正負の関係から対応する組合せ領域の荷重演算式を選択して前記荷重Fz 、Fx 、Fy を推定する。
Zの正負 Xの正負 演算領域
+ + I
+ − II
− + III
− − IV
このように、上下の振幅値差分値と左右の振幅値差分値を組み合わせて入力荷重をレベル分けすることにより、入力荷重の範囲に応じた最適な荷重演算式により荷重を推定できる。このため、荷重推定誤差をより一層低減できて、車輪にかかる荷重を正確に推定できる。
図12ないし図18は、この発明の他の実施形態を示す。このセンサ付車輪用軸受では、図1〜図11に示す実施形態において、各センサユニット20を以下のように構成している。この場合、センサユニット20は、図14および図15に拡大平面図および拡大断面図に示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する2つの歪みセンサ22とでなる。歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される3つの接触固定部21aを有する。3つの接触固定部21aは、歪み発生部材21の長手方向に向けて1列に並べて配置される。2つの歪みセンサ22のうち1つの歪みセンサ22Aは、図15において、左端の接触固定部21aと中央の接触固定部21aとの間に配置され、中央の接触固定部21aと右端の接触固定部21aとの間に他の1つの歪みセンサ22Bが配置される。図14のように、歪み発生部材21の両側辺部における前記各歪みセンサ22A,22Bの配置部に対応する2箇所の位置にそれぞれ切欠き部21bが形成されている。
センサユニット20は、その歪み発生部材21の3つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ各接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペース23を介してボルト24により外方部材1の外径面に固定される。
このほか、図16に断面図で示すように、外方部材1の外径面における前記歪み発生材21の3つの接触固定部21aが固定される3箇所の各中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する各部位を外方部材1の外径面から離すようにしても良い。センサユニット20におけるその他の構成や、センサユニット20の配置などは、図1〜図11に示す実施形態の場合と同様である。
この実施形態の場合、図1〜図11に示す実施形態での荷重推定手段30の差分値演算部31における振幅値演算手段34では、2つの歪みセンサ22A,22Bの出力信号の差分値を演算しこれを振幅値として取り出す。また、平均値演算手段35では、各センサユニット20の2つの歪みセンサ22A,22Bの出力信号の和を演算しこれを平均値として取り出す。上下のセンサユニット20のセンサ出力信号の差分値は、振幅値演算手段37で求められる上下のセンサユニット20のセンサ出力信号の振幅値の差分値として求められる。
センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22A,22Bの出力信号a,bは、図17のようにセンサユニット20の設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪みセンサ22A,22Bの出力信号a,bは、転動体5の位置の影響を受ける。すなわち、転動体5がセンサユニット20における歪みセンサ22A,22Bに最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪みセンサ22A,22Bの出力信号a,bは最大値となり、図17(A),(B)のように転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記センサユニット20の設置部の近傍を順次通過するので、歪みセンサ22A,22Bの出力信号a,bは、転動体5の配列ピッチPを周期として図17(C)に実線で示すように周期的に変化する正弦波に近い波形となる。また、歪みセンサ22A,22Bの出力信号a,bは、温度の影響やナックル16と車体取付用フランジ1a(図9)の面間などの滑りによるヒステリシスの影響を受ける。この実施形態では、前記2つの歪みセンサ22A,22Bの出力信号a,bの和を上記した平均値とし、差分値から上記した振幅値を抽出する。これにより、平均値は転動体5の通過による変動成分をキャンセルした値となる。また、振幅値は、2つの歪みセンサ22A,22Bの各出力信号a,bに現れる温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。したがって、この平均値と振幅値を荷重演算式の変数として用いることにより、車輪用軸受やタイヤ接地面に作用する荷重をより正確に推定することができる。
図17では、固定側部材である外方部材1の外径面の円周方向に並ぶ3つの接触固定部21aのうち、その配列の両端に位置する2つの接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定している。この場合、隣り合う接触固定部21aの中間位置にそれぞれ配置される2つの歪みセンサ22A,22Bの間での前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪みセンサ22A,22Bの出力信号a,bは略180度の位相差を有することになり、その和として求められる平均値は転動体5の通過による変動成分をキャンセルしたものとなる。また、その差分値とし求められる振幅値は温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。
なお、図17では、接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定し、隣り合う接触固定部21aの中間位置に各1つの歪みセンサ22A,22Bをそれぞれ配置することで、2つの歪みセンサ22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの略1/2となるようにした。これとは別に、直接、2つの歪みセンサ22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの1/2に設定しても良い。
この場合に、2つの歪みセンサ22A,22Bの前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。この場合にも、両歪みセンサ22A,22Bの出力信号a,bの和として求められる平均値は転動体5の通過による変動成分をキャンセルした値となり、差分値として求められる振幅値は温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。
また、この実施形態では、図18に示すように、荷重推定手段30における荷重推定部32に用意する各領域A,B,Cの荷重演算式38A,38B,38Cとして、前記平均値だけを変数として用いた演算式と、前記平均値と振幅値の両方を変数として用いた演算式の2つを用意する。さらに、荷重推定部32には、車輪の回転数に応じて、前記2種類のいずれかを選択する演算式選択手段39を設ける。
車輪の低速回転時には、センサ出力信号の振幅を検出するための処理時間が長くなり、さらに静止時には振幅の検出そのものが不可能になる。これに対して、平均値は、静止時でも検出可能である。そこで、車輪の回転数が所定値以下の場合に、演算式選択手段39が、各領域における2種類の荷重演算式のうちから平均値だけを用いた演算式を選択することにより、荷重を遅滞なく推定・出力することができる。
演算式選択手段39には、例えば外部から車輪回転数の情報が入力され、この情報に基づいて前記演算式の選択が行なわれる。この場合、外部からの車輪回転数の情報として、車体側からのABSセンサ(アンチロックブレーキシステム用の回転検出センサ)などの回転センサ信号を用い、これにより車輪回転数を推定するようにしても良い。また、車体側の車内通信バスに接続された上位制御装置から、車輪回転数の情報に代わるものとして、演算式選択指令を演算式選択手段39が受ける構成としても良い。さらに、車輪回転数の情報として、前記歪みセンサ22A,22Bの出力信号a,bから転動体5の通過周波数を検出して、車輪回転数を推定するものとしても良い。
なお、上記した各実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット20は内方部材の内周となる周面に設ける。
また、これらの実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
以上のように、この発明の上記のいずれかの実施形態により、次の効果を得ることができる。
・軸受の歪み応答に含まれる非線形性を補正することで、荷重推定誤差を低減できる。
・領域分けを振幅値の差分としているため、特に影響の大きいFyモーメント荷重に対する感度が高く、領域の分割を正確に行うことができる。
・振幅信号は温度の影響を受け難く、上記領域分けが正確に行えて推定精度が向上する。・また、軸受の内部予圧条件が異なっている場合でも、大きな影響を受けることなく安定した領域分けが可能である。
・さらに、左右に配置されたセンサ信号も領域判定に加えて、より細かく条件分けすることで、より一層精度の良い荷重推定が行える。
1…外方部材
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
22…歪みセンサ
28…温度センサ
30…荷重推定手段
31…差分値演算部
32…荷重演算部
33…温度補正手段
39…演算式選択手段

Claims (10)

  1. 複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
    上記外方部材および内方部材のうちの固定側部材の外径面に複数のセンサユニットを設け、前記センサユニットは、前記固定側部材の外径面に接触して固定される2つ以上の接触固定部を有する歪み発生部材およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する1つ以上のセンサを有し、
    前記複数のセンサユニットのセンサ出力信号から車輪に加わる荷重を推定する荷重推定手段を設け、
    この荷重推定手段は、前記複数のセンサユニットのうち、前記固定側部材の円周方向における180度の位相差をなして対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値を演算する差分値演算部と、
    前記差分値をレベル分けした複数領域にそれぞれ対応して荷重演算用のパラメータが複数設定され、前記差分値演算部で演算された差分値に対応する領域のパラメータを選択して、前記複数のセンサユニットのセンサ出力信号から前記車輪に加わる荷重を推定する荷重演算部とを有するものとした
    ことを特徴とするセンサ付車輪用軸受。
  2. 請求項1において、前記荷重推定手段の差分値演算部は、前記固定側部材の上下に対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値を演算するものとしたセンサ付車輪用軸受。
  3. 請求項1において、前記荷重推定手段の差分値演算部は、前記固定側部材の左右に対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値を演算するものとしたセンサ付車輪用軸受。
  4. 請求項1において、前記荷重推定手段の差分値演算部は、前記固定側部材の上下に対向配置されたセンサユニットセンサ出力信号の振幅値の差分値と、前記固定側部材の左右に対向配置されたセンサユニットのセンサ出力信号の振幅値の差分値とを演算し、前記荷重推定手段の荷重演算部は、前記両差分値をレベル分けした複数領域の組合わせからなる複数の組合わせ領域に対応してそれぞれ設けられたパラメータのうちから、前記両差分値が対応する組合わせ領域の荷重演算式を選択して前記荷重を推定するものとしたセンサ付車輪用軸受。
  5. 請求項1ないし請求項4のいずれか1項において、前記センサユニットを3つ以上設け、前記荷重推定手段は、前記3つ以上のセンサユニットのセンサ出力信号から車輪用軸受の径方向および軸方向に作用する径方向荷重および軸方向荷重を推定するものとしたセンサ付車輪用軸受。
  6. 請求項1ないし請求項5のいずれか1項において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配したセンサ付車輪用軸受。
  7. 請求項1ないし請求項6のいずれか1項において、前記荷重推定手段は、前記センサ出力信号における転動体振幅の複数周期分の平均値、または振幅値、または平均値と振幅値の両方を用いて車輪に加わる荷重を推定するものであるセンサ付車輪用軸受。
  8. 請求項7において、前記荷重推定手段は、荷重推定に用いる前記センサ出力信号の平均値と振幅値の組み合わせを、車輪の回転数に応じて変更するものとしたセンサ付車輪用軸受。
  9. 請求項1ないし請求項8のいずか1項において、前記各センサユニットに温度センサを設け、前記荷重推定手段は、前記温度センサの出力信号に基づき、前記センサ出力信号を補正するものとしたセンサ付車輪用軸受。
  10. 請求項7ないし請求項9のいずれか1項において、前記センサユニットは3つ以上の接触固定部と少なくとも2つ以上のセンサを有し、それらのセンサ出力信号の位相差が、転動体の配列ピッチの{n+1/2(n:整数)}倍となるように接触固定部の間隔が設定され、前記荷重推定手段は前記2つのセンサの出力信号の和を平均値として用いるものとしたセンサ付車輪用軸受。
JP2009093581A 2009-03-26 2009-04-08 センサ付車輪用軸受 Expired - Fee Related JP5268755B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009093581A JP5268755B2 (ja) 2009-04-08 2009-04-08 センサ付車輪用軸受
EP10755971.8A EP2413121B1 (en) 2009-03-26 2010-03-18 Sensor-equipped bearing for wheel
PCT/JP2010/054685 WO2010110173A1 (ja) 2009-03-26 2010-03-18 センサ付車輪用軸受
CN2010800139315A CN102365538B (zh) 2009-03-26 2010-03-18 带有传感器的车轮用轴承
US13/138,712 US8540431B2 (en) 2009-03-26 2010-03-18 Sensor-equipped bearing for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093581A JP5268755B2 (ja) 2009-04-08 2009-04-08 センサ付車輪用軸受

Publications (2)

Publication Number Publication Date
JP2010242902A JP2010242902A (ja) 2010-10-28
JP5268755B2 true JP5268755B2 (ja) 2013-08-21

Family

ID=43096105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093581A Expired - Fee Related JP5268755B2 (ja) 2009-03-26 2009-04-08 センサ付車輪用軸受

Country Status (1)

Country Link
JP (1) JP5268755B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762848B1 (en) 2011-09-29 2017-08-30 NTN Corporation Wheel bearing apparatus with sensor
JP5911761B2 (ja) 2012-06-27 2016-04-27 Ntn株式会社 センサ付車輪用軸受装置
CN110704947B (zh) * 2019-09-22 2023-07-07 中国航发沈阳发动机研究所 一种带有立筋的内腔结构计算模型的载荷加载方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665453B2 (ja) * 2003-09-11 2011-04-06 日本精工株式会社 回転速度検出装置及び転がり軸受ユニットの荷重測定装置
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
WO2008093491A1 (ja) * 2007-01-31 2008-08-07 Ntn Corporation センサ付き車輪用軸受装置
JP5147254B2 (ja) * 2007-02-08 2013-02-20 Ntn株式会社 センサ付車輪用軸受
JP5019988B2 (ja) * 2007-07-31 2012-09-05 Ntn株式会社 センサ付車輪用軸受

Also Published As

Publication number Publication date
JP2010242902A (ja) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5274343B2 (ja) センサ付車輪用軸受
WO2010110173A1 (ja) センサ付車輪用軸受
WO2010055636A1 (ja) センサ付車輪用軸受
JP5143039B2 (ja) センサ付車輪用軸受
JP5268756B2 (ja) センサ付車輪用軸受
JP5153373B2 (ja) センサ付車輪用軸受
JP5268755B2 (ja) センサ付車輪用軸受
JP5094457B2 (ja) センサ付車輪用軸受
US20150260590A1 (en) Wheel bearing device with attached sensor
JP5638310B2 (ja) センサ付車輪用軸受
WO2012033018A1 (ja) センサ付車輪用軸受
JP2010230406A (ja) センサ付車輪用軸受
JP6195768B2 (ja) センサ付車輪用軸受のキャリブレーション方法
JP5553731B2 (ja) センサ付車輪用軸受
JP2010127376A (ja) センサ付車輪用軸受
JP5646291B2 (ja) センサ付車輪用軸受
JP2009128265A (ja) センサ付車輪用軸受
JP5996297B2 (ja) センサ付車輪用軸受装置
JP5489929B2 (ja) センサ付車輪用軸受
JP2010101720A (ja) センサ付車輪用軸受
JP2010243190A (ja) センサ付車輪用軸受
JP2010121745A (ja) センサ付車輪用軸受
WO2015005282A1 (ja) センサ付車輪用軸受装置
JP5300429B2 (ja) センサ付車輪用軸受
JP5264206B2 (ja) センサ付車輪用軸受

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees