WO2010110059A1 - 冷却ファンの駆動装置及びファン回転数制御方法 - Google Patents

冷却ファンの駆動装置及びファン回転数制御方法 Download PDF

Info

Publication number
WO2010110059A1
WO2010110059A1 PCT/JP2010/053943 JP2010053943W WO2010110059A1 WO 2010110059 A1 WO2010110059 A1 WO 2010110059A1 JP 2010053943 W JP2010053943 W JP 2010053943W WO 2010110059 A1 WO2010110059 A1 WO 2010110059A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fan
rotational speed
hydraulic motor
flow rate
target
Prior art date
Application number
PCT/JP2010/053943
Other languages
English (en)
French (fr)
Inventor
雅明 今泉
稔 和田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN2010800131830A priority Critical patent/CN102362053B/zh
Priority to US13/148,079 priority patent/US8632314B2/en
Priority to JP2011505961A priority patent/JP5202727B2/ja
Priority to EP10755859.5A priority patent/EP2412948B1/en
Publication of WO2010110059A1 publication Critical patent/WO2010110059A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed

Definitions

  • the present invention relates to a cooling fan driving device used in a hydraulic drive machine such as a construction machine and a fan rotation speed control method using the same.
  • a hydraulic drive machine such as a construction machine
  • pressure oil discharged from a hydraulic pump for a cooling fan driven by an engine is supplied to a hydraulic motor that rotates the cooling fan and the flow rate of the hydraulic oil supplied to the hydraulic motor is controlled.
  • the rotation speed of the hydraulic motor that is, the rotation speed of the cooling fan is controlled.
  • the control with respect to the rotation speed of a cooling fan is performed so that the cooling water temperature in an engine, the temperature of hydraulic fluid, etc. may become desired temperature.
  • FIG. 9 is a flowchart showing the fan rotation speed control method, with the fan rotation speed control method described in Patent Document 1 as the prior art in the present invention.
  • the pump drive is started so that the fan is started from the state where the fan rotation speed is the minimum fan rotation speed Nmin.
  • the motor system is controlled (step 1).
  • the pump / motor system includes a hydraulic motor that drives a fan and a hydraulic pump that supplies pressure oil to the hydraulic motor.
  • control is performed such that the state of the minimum fan rotation speed Nmin is maintained for at least several seconds (step 2).
  • control is performed to gradually increase the fan speed from the minimum fan speed Nmin (step 3). Then, after at least several seconds have elapsed since the fan rotational speed is gradually increased, the pump / motor system is controlled so that the fan rotational speed increases to the fan target rotational speed Ntf (step 4). By performing such control, it is possible to prevent peak pressure and pressure hunting from occurring in the pump / motor system. And the pump / motor system is prevented from being damaged.
  • the fan rotation speed is maintained at the minimum fan rotation speed Nmin until the set time T1 elapses from when the engine is started. Then, after a certain time T1 has elapsed, control is performed to gradually increase the fan speed from the lowest fan speed Nmin with a constant gradient to reach the fan target speed Ntf over a certain time T2. Yes. At the same time, feedback control is performed so that each detected temperature of the fluid to be cooled cooled by the fan reaches the respective target temperature.
  • control is performed so that the fan rotational speed is gradually increased at a constant gradient. ing. Then, control is performed so that the pressure oil flow rate required to increase the fan rotation speed with a constant gradient is supplied to the hydraulic motor.
  • An object of the present invention is to provide a cooling fan driving device and a fan rotation speed control method using the same, which can be reduced.
  • the object of the present invention can be achieved by the cooling fan driving device described in claims 1 to 4 and the fan rotation speed control method described in claims 5 and 6. That is, in the cooling fan drive device according to the present invention, a hydraulic pump for a cooling fan driven by an engine, a hydraulic motor that is supplied with pressure oil discharged from the hydraulic pump and rotates the cooling fan, and a temperature of hydraulic oil An oil temperature sensor for detecting the coolant temperature, a water temperature sensor for detecting the temperature of the cooling medium, a rotation speed sensor for detecting the rotation speed of the engine, a flow rate control means for controlling the flow rate of pressure oil supplied to the hydraulic motor, A controller for controlling the flow rate control means, The controller includes a target rotational speed setting unit that sets a target rotational speed of the cooling fan, an acceleration pattern setting unit that sets an acceleration pattern for increasing the rotational speed of the cooling fan to the target rotational speed, A rotation speed command calculation unit that commands the flow rate of pressure oil supplied to the hydraulic motor, The target rotational speed setting unit sets a target rotational speed of the cooling fan
  • the rotational speed command calculation unit is configured to perform the cooling based on the rotational speed of the engine, the target rotational speed of the cooling fan set by the target rotational speed setting unit, and the acceleration pattern set by the acceleration pattern setting unit.
  • the main feature is that a command value for controlling the flow rate control means is calculated so that the rotational speed of the fan increases from the current rotational speed to the target rotational speed based on the acceleration pattern.
  • the main feature of the cooling fan drive device of the present invention is that the acceleration pattern is preset based on the performance of the hydraulic motor and the size, mass, etc. of the cooling fan.
  • the cooling fan driving device of the present invention is characterized in that the flow rate control means is a swash plate angle control valve for controlling the swash plate angle of the variable displacement hydraulic pump. Furthermore, in the cooling fan drive device of the present invention, the main feature is that the flow rate control means is a flow rate control valve for controlling the flow rate of pressure oil supplied to the hydraulic motor.
  • the pressure oil discharged from the hydraulic pump for the cooling fan driven by the engine is supplied to the hydraulic motor for the cooling fan, and the pressure oil flow rate supplied to the hydraulic motor
  • a fan rotation speed control method for controlling the fan rotation speed of the cooling fan The target rotational speed of the cooling fan is determined from the detected temperature of the hydraulic oil, the temperature of the cooling medium for cooling the engine and the rotational speed of the engine, and the rotational speed of the engine and the determined target rotational speed of the cooling fan are determined.
  • the flow rate of pressure oil supplied to the hydraulic motor is controlled from the target rotational speed of the cooling fan and the acceleration pattern, and the rotational speed of the cooling fan is changed from the current rotational speed to the target rotational speed based on the acceleration pattern. It is the most other main feature that it is controlled to rise up to.
  • the acceleration pattern is mainly formed by using a preset acceleration pattern based on the performance of the hydraulic motor and the size, mass, etc. of the cooling fan.
  • the number of rotations of the cooling fan can be increased to the target number of rotations based on an acceleration pattern that takes into account the magnitude of force due to inertia in the cooling fan and the hydraulic motor.
  • the flow rate of pressure oil supplied to the hydraulic motor can be controlled so that the rotational speed of the cooling fan becomes the target rotational speed in consideration of the magnitude of the force due to the inertia of the cooling fan and the hydraulic motor.
  • the hydraulic oil flow can be supplied to the hydraulic motor in accordance with the actual rotation state of the hydraulic motor, and the hydraulic oil flow that is discarded without being used by the hydraulic motor can be reduced as much as possible. Further, energy loss can be reduced, and adverse effects such as deterioration in fuel consumption of the engine, increase in hydraulic oil temperature, and increase in relief noise can be prevented.
  • the acceleration pattern can be obtained and set in advance through experiments or the like based on the performance of the hydraulic motor and the size, mass, etc. of the cooling fan.
  • the rotation speed control of the cooling fan in the present invention can be performed by feedforward control.
  • it is not affected by the fluctuation as in the case of feedback control.
  • it can control so that the rotation speed of a cooling fan may turn into target rotation speed, without receiving the influence by having changed each detection temperature.
  • the rotation speed control of the cooling fan becomes easy, and the configuration for performing the rotation speed control of the cooling fan can be easily configured.
  • the pressure oil flow to be supplied to the hydraulic motor can be controlled by controlling the swash plate angle of the hydraulic pump or by controlling the flow control valve provided in the oil passage connecting the hydraulic pump and the hydraulic motor. You can also.
  • cooling fan driving device and the fan rotation speed control method of the present invention can be suitably applied to a work vehicle including a cooling fan.
  • a working vehicle in which engine acceleration / deceleration is frequently performed.
  • a working vehicle such as a wheel loader
  • the forward / reverse operation and the V-shape operation are repeatedly performed during a cargo handling operation or the like, and the acceleration / deceleration of the engine is frequently performed.
  • the rotation speed of the hydraulic pump for the cooling fan driven by the rotation of the engine is also accelerated / decelerated by the rotation speed of the engine. Since the hydraulic motor for the cooling fan is driven by the flow rate of the hydraulic oil discharged from the hydraulic pump for the cooling fan, the rotational speed of the hydraulic motor for the cooling fan is also affected by the rotation of the engine. Therefore, as the engine is accelerated and decelerated, control for increasing the rotational speed of the hydraulic motor for the cooling fan to the target rotational speed is repeatedly performed.
  • the hydraulic pump when performing the control to start up the rotational speed of the cooling fan to the target rotational speed corresponding to the temperature of the refrigerant to be cooled by the cooling fan, the hydraulic pump is not configured as in the present invention. A situation in which the flow rate of the pressure oil discharged from the waste water is discarded wastefully occurs.
  • the present invention can be particularly suitably applied to a working vehicle in which such acceleration / deceleration of the engine is frequently performed.
  • FIG. 1 is a hydraulic circuit diagram used in a cooling fan driving apparatus according to an embodiment of the present invention.
  • a variable displacement hydraulic pump 2 (hereinafter referred to as a hydraulic pump 2) disposed for a cooling fan is driven by the engine 1.
  • the pump capacity (cc / rev) per rotation in the hydraulic pump 2 is controlled by controlling the swash plate control valve 6 according to a control command from a controller 7 (see FIG. 2) (not shown). .
  • the swash plate control valve 6 controls the angle of the swash plate 2a of the hydraulic pump 2 , and the swash plate angle corresponding to the control command from the controller 7 (see FIG. 2) is hydraulically controlled.
  • the pump 2 can be held.
  • the flow rate of pressure oil discharged from the hydraulic pump 2 can be controlled by the rotational speed of the engine 1 and the swash plate angle controlled by the swash plate control valve 6 at this time, that is, the pump capacity of the hydraulic pump 2. .
  • the pressure oil flow rate discharged from the hydraulic pump 2 is supplied to the hydraulic motor 4 for the cooling fan via the switching valve 3 for forward / reverse rotation.
  • the switching valve 3 can be selectively switched between two positions of the I position and the II position by a control command from a controller 7 (not shown) (see FIG. 2). For example, when switched to the II position shown in FIG. 1, the hydraulic motor 4 can be rotated forward, and when switched to the I position, the hydraulic motor 4 can be rotated reversely.
  • Pressure oil discharged from the hydraulic motor 4 passes through the switching valve 3 and is discharged to the tank 10.
  • a relief valve is provided between the oil passage connecting the hydraulic pump 2 and the switching valve 3 and the tank 10. 9 is provided.
  • the rotation speed of the cooling fan 5 that is rotationally driven by the hydraulic motor 4 can be detected by the cooling fan rotation speed sensor 15, and the detection value detected by the cooling fan rotation speed sensor 15 is input to the controller 7. Further, instead of directly detecting the rotational speed of the cooling fan 5 by the cooling fan rotational speed sensor 15, the rotational speed of the engine 1 is detected by the engine rotational speed sensor 18, and the swash plate angle of the hydraulic pump 2 or the hydraulic motor 4 is detected.
  • the rotational speed of the hydraulic motor 4 can also be obtained indirectly by detecting the flow rate of the pressure oil supplied to.
  • a flow rate control valve 12 disposed in an oil passage connecting the hydraulic pump 2 and the hydraulic motor 4 is controlled. It can be obtained from the value of the control signal. That is, the opening area of the flow control valve 12 is controlled according to the value of the control signal that controls the flow control valve 12. By knowing the opening area of the flow control valve 12 from the value of the control signal controlling the flow control valve 12, the pressure oil flow rate passing through the flow control valve 12 can be obtained.
  • the flow rate of the pressure oil discharged from the hydraulic pump 2 can be obtained from the rotational speed of the engine 1 and the swash plate angle of the hydraulic pump 2, so that by knowing the opening area of the flow control valve 12, the flow control valve 12 The flow rate of pressure oil passing through can be determined.
  • the hydraulic pump 2 in FIG. 7 and FIG. 8 to be described later is also shared with actuators other than the hydraulic motor 4 that drives the cooling fan 5. For this reason, the pump swash plate angle of the hydraulic pump 2 is controlled with respect to the required flow rate including actuators other than the hydraulic motor 4.
  • the flow rate of pressure oil supplied to the hydraulic motor 4 is controlled by using the flow rate control valve 12 or the flow rate control valve 14. 7 and 8, a fixed displacement hydraulic pump can be used instead of a variable displacement hydraulic pump.
  • the rotation speed of the hydraulic motor 4 corresponding to the flow rate of pressure oil supplied to the hydraulic motor 4, that is, the rotation speed of the cooling fan 5 can be obtained indirectly.
  • the rotational speed of the cooling fan 5 is also detected by detecting the rotational speed of the engine 1. be able to.
  • the controller 7 includes the temperature of the cooling medium that has cooled the engine 1 and the like detected by the water temperature sensor 16, the temperature of the hydraulic oil detected by the hydraulic oil temperature sensor 17, and the rotational speed of the engine 1 detected by the engine rotational speed sensor 18. And the rotation speed of the cooling fan 5 detected by the cooling fan rotation speed sensor 15 are input. Only one of the engine rotation sensor 18 and the cooling fan rotation sensor 15 may be input.
  • Each of these detected values is input to a target rotational speed setting unit 22 provided in the controller 7.
  • the target rotational speed of the cooling fan 5 is based on the input values of these detected values. Set.
  • the target rotational speed of the cooling fan 5 for example, the target rotational speed of the cooling fan 5 can be set using the graph shown on the left side of FIG.
  • the target rotational speed of the cooling fan 5 can be obtained by simulation or experiment in association with each detected temperature input to the target rotational speed setting unit 22.
  • each detected temperature input to the target rotational speed setting unit 22 can be calculated using a statistical processing method or the like to obtain the target rotational speed of the cooling fan 5.
  • the method for obtaining the target rotational speed for the cooling fan 5 is not characteristic, and therefore the cooling fan 5 is set to an appropriate rotational speed so that the oil temperature of the cooling medium and hydraulic oil does not overheat.
  • Conventionally known various setting methods can be used as long as the target rotational speed can be set.
  • the acceleration pattern setting unit 23 can set an acceleration pattern for increasing the rotational speed of the cooling fan 5 to the target rotational speed.
  • the magnitude of the force due to the inertia of the cooling fan 5 and the hydraulic motor 4 can be obtained by simulations and experiments using the values of the inertial second moments and angular accelerations of the cooling fan 5 and the hydraulic motor 4, respectively. .
  • the value of the inertial second moment can be calculated by structure calculation, but can also be obtained as described below.
  • the motor pressure Pm [Mpa] of the hydraulic motor 4 provided with the cooling fan 5, the motor rotational speed Rm [rpm] of the hydraulic motor 4 provided with the cooling fan 5, and the motor capacity Qm of the hydraulic motor 4 By obtaining [cc / rev], the torque efficiency ⁇ t of the hydraulic motor 4 provided with the cooling fan 5, and the acceleration time ⁇ tacc [sec], the motor torque T of the hydraulic motor 4 provided with the cooling fan 5 can be obtained. .
  • T Qm ⁇ Pm ⁇ ⁇ t / (2 ⁇ ⁇ ).
  • is a notation of an angle in the arc degree method, and an angle of 180 degrees is expressed as 1 ⁇ ⁇ radians in the arc degree method.
  • an acceleration pattern as shown in the second graph from the left in FIG. 3 can be set.
  • the vertical axis of this graph is the output target
  • the output target can be re-read as the flow rate of pressure oil supplied to the hydraulic motor 4.
  • the acceleration pattern is set so that the starting force gradually increases.
  • the acceleration pattern is a pattern in which the flow rate of pressure oil supplied to the hydraulic motor 4 is gradually increased so that the angular acceleration of the hydraulic motor 4 gradually increases as time elapses from the start of the startup. .
  • the magnitude of the force due to inertia that maintains the cooling fan 5 and the hydraulic motor 4 in the constant speed rotation state can be gradually increased.
  • the relief flow rate that is discarded without being consumed by the hydraulic motor 4 can be reduced. it can.
  • the rotational speed of the hydraulic motor 4 reaches the target rotational speed of the cooling fan 5, it is possible to continue supplying the pressure oil flow rate necessary for maintaining the rotational state reached to the hydraulic motor 4. it can.
  • the acceleration pattern set in the acceleration pattern setting unit 23 includes the rotation number of the cooling fan 5 detected by the cooling fan rotation number sensor 15, the target rotation number set in the target rotation number setting unit 22, and the cooling fan 5
  • the acceleration pattern can also be set based on the magnitude of the force due to the inertia of the hydraulic motor 4, but an acceleration pattern can also be set in advance by experiments, simulations, or the like.
  • an acceleration pattern that effectively uses the state of the force due to inertia in the state of the rotation speed of the cooling fan 5 at the start time point can be configured according to the state of the rotation speed of the cooling fan 5 at the start time point. It can.
  • the start-up in the acceleration pattern can be configured largely. And even if the situation of force due to inertia at the start time is different, it is possible to quickly reach the target rotational speed state.
  • the cooling fan 5 instead of setting different acceleration patterns depending on which rotation speed of the cooling fan 5 is started to increase the target rotation speed, only one acceleration pattern is used. It is also possible to use one acceleration pattern set in advance. In this case, by effectively using the curve portion in the acceleration pattern, the point on the curve portion of the acceleration pattern corresponding to the rotation speed when the cooling fan 5 starts the acceleration rotation toward the target rotation speed, The points on the curve portion of the acceleration pattern corresponding to the target rotational speed are respectively obtained, and the curve portion between the two points can be configured as the acceleration pattern.
  • the rotational speed of the hydraulic pump 2 is also affected by the acceleration / deceleration due to the rotational speed of the engine 1.
  • the pressure oil flow rate discharged from the hydraulic pump 2 is also affected by the acceleration / deceleration. For this reason, when the acceleration / deceleration of the engine 1 is frequently performed, the control of repeatedly increasing the rotational speed of the hydraulic motor 4 from the reduced rotational speed state to the target rotational speed of the cooling fan 5 is repeatedly performed. become.
  • the rotation of the hydraulic motor 4 is performed with an acceleration pattern corresponding to the situation. Since the acceleration can be accelerated, the flow rate of the pressure oil that is discarded without being used for the rotation of the hydraulic motor 4 can be reduced. As a result, it is possible to prevent adverse effects such as deterioration in fuel consumption of the engine, increase in hydraulic oil temperature, and increase in relief noise.
  • the acceleration pattern set by the acceleration pattern setting unit 23 and the target rotation number set by the target rotation number setting unit 22 are input to the rotation number command value calculation unit 24.
  • the control performed by the correction processing unit 26 for the rotation speed of the cooling fan 5 after the rotation speed of the hydraulic motor 4 has increased to the target rotation speed of the cooling fan 5 is also described.
  • the control performed by the correction processing unit 26 will be described later, and the description of the control that skips the control performed by the correction processing unit 26 will be continued.
  • the rotational speed command value calculation unit 24 the rotational speed is adjusted so that the hydraulic oil flow required to increase the current rotational speed of the cooling fan 5 to the target rotational speed along the acceleration pattern is supplied to the hydraulic motor 4.
  • the command value is calculated and a control signal for the flow rate control means 25 is created.
  • a swash plate control valve 6 (see FIG. 1) for controlling the swash plate angle of the hydraulic pump 2 or the hydraulic pump 2, as long as it controls the flow rate of pressure oil supplied to the hydraulic motor 4.
  • a part of the pressure oil flow discharged from the hydraulic motor 4 is supplied to an actuator other than the hydraulic motor 4, and the remaining pressure oil supplied to other actuators is controlled to supply the hydraulic motor 4 with a flow control valve 12 (see FIG. 7).
  • a flow control valve 14 see FIG. 8) or the like.
  • the rotational speed command value calculation unit 24 calculates a control signal for controlling the swash plate angle of the hydraulic pump 2, and the flow control valve 12 (
  • the flow control valve 14 see FIG. 8
  • control signals for controlling the respective opening areas of the flow control valve 12 or the flow control valve 14 are calculated.
  • the flow rate control valve 12 shown in FIG. 7 shows a modification of the flow rate control means 25, and the flow rate control valve as the flow rate control means 25 is connected to an oil passage communicating between the hydraulic pump 2 and the hydraulic motor 4. 12 is provided.
  • the flow control valve 12 has a configuration in which the opening area of the oil passage connecting the hydraulic pump 2 and the hydraulic motor 4 is controlled by a control command from the controller 7 (not shown).
  • the opening area By reducing the opening area, the flow rate of the hydraulic oil supplied to the hydraulic motor 4 can be reduced, and the rotational speed of the hydraulic motor 4 can be reduced. Conversely, by increasing the opening area, the flow rate of the hydraulic oil supplied to the hydraulic motor 4 can be increased, and the rotational speed of the hydraulic motor 4 can be increased.
  • the flow control valve 14 shown in FIG. 8 shows another modified example of the flow control means 25, and includes an oil passage communicating between the hydraulic pump 2 and the hydraulic motor 4, and an oil passage connected to the tank 10. It is configured as a flow control valve that can be connected and disconnected.
  • the flow rate control valve 14 is configured to control an opening area when an oil passage that communicates between the hydraulic pump 2 and the hydraulic motor 4 is connected to the tank 10 by a control command from a controller 7 (not shown). .
  • the processing in the correction processing unit 26 shown in FIGS. 2 and 3 is processing performed after the rotational speed of the hydraulic motor 4 approaches the target rotational speed, and the rotational speed of the hydraulic motor 4, that is, a cooling fan. In the stage until the rotational speed of 5 approaches the target rotational speed, the processing in the correction processing unit 26 is skipped.
  • the acceleration control of the hydraulic motor 4 is performed based on the acceleration pattern set by the acceleration pattern setting unit 23
  • the pressure oil flow rate supplied to the hydraulic motor 4 is based on the acceleration pattern set by the acceleration pattern setting unit 23. Will be controlled.
  • the hydraulic motor 4 is maintained so that the rotational speed of the cooling fan 5 is maintained at the substantially target rotational speed. The number of rotations is controlled.
  • the correction processing unit 26 corrects the value of the target rotational speed of the cooling fan 5.
  • the actual number of rotations of the cooling fan 5 is prevented from changing by making the actual number of rotations of the cooling fan 5 equal to the corrected target number of rotations.
  • the correction processing unit 26 corrects the value of the target rotational speed of the cooling fan 5 based on the difference. That is, based on the control block shown in FIG. 3, the target rotational speed of the hydraulic motor 4 controlled based on the acceleration pattern, the current rotational speed of the cooling fan 5 detected by the cooling fan rotational speed sensor 15, and Is input to the correction processing unit 26.
  • the correction processing unit 26 performs correction processing on the target rotational speed using the conventionally known PID control (P is proportional: I is integral: D is derivative: differentiation) according to the difference. Yes.
  • the difference can be controlled to be small, and the actual rotational speed of the cooling fan 5 can be prevented from fluctuating.
  • PID control the cumulative value of the past deviation is obtained.
  • the proportional operation the current deviation is obtained.
  • the differential operation the future predicted value of the deviation is obtained. Yes.
  • Control performed by assigning weights to the three values thus obtained is called PID control, and is conventionally known as known control.
  • the target rotational speed is basically unchanged, and the control at the normal time and the control at the time of correction perform the same control. Also, PID control need not be performed in all cases.
  • step S1 the water temperature of the cooling medium that cools the engine 1 and the like detected by the water temperature sensor 16, the hydraulic oil temperature detected by the hydraulic oil temperature sensor 17, and the rotational speed of the engine 1 detected by the engine rotational speed sensor 18 are determined. Perform the acquisition process. When the process in step S1 is completed, the process proceeds to step S2.
  • step S2 the target rotational speed setting unit 22 is used to perform a process of setting a final target rotational speed Nt for the cooling fan 5 to be set at the current time t.
  • step S3 a process of obtaining the current target rotational speed Nc (t) corresponding to the current time t based on the acceleration pattern set by the acceleration pattern setting unit 23 is performed.
  • the target rotational speed Nt is a target rotational speed that should be finally reached by the cooling fan 5, which is set at the time t.
  • the current target rotational speed Nc (t) is a target rotational speed based on the acceleration pattern at time t as a stage before the rotational speed of the cooling fan 5 reaches the final target rotational speed Nt.
  • the process for obtaining the current target rotational speed Nc (t) can be obtained by calculation in the rotational speed command value calculation unit 24.
  • the process in step S3 proceeds to step S4.
  • step S4 a difference between the target rotation speed Nt and the current target rotation speed Nc (t) is obtained, and it is determined whether or not this difference is larger than an acceleration / deceleration processing determination value ⁇ N set in advance through experiments or the like.
  • the process proceeds to step S5, and when the difference is smaller than the acceleration / deceleration process determination value ⁇ N, the process proceeds to step S6.
  • step S4 it is determined whether the current target rotational speed Nc (t) at the current time t is approaching the target rotational speed Nt.
  • step S5 an acceleration / deceleration addition amount ⁇ Nc is calculated.
  • the acceleration / deceleration addition amount ⁇ Nc can be obtained as a function value using the target rotational speed Nt and the current target rotational speed Nc (t).
  • step S6 the process for obtaining the acceleration / deceleration addition amount ⁇ Nc is invalidated. That is, it is determined that the difference between the target rotational speed Nt and the current target rotational speed Nc (t) is small, and processing to increase the target rotational speed Nt is performed, that is, the target rotational speed Nt is increased to the current target rotational speed Nt. Processing to make Nc (t) is performed.
  • step S6 the process proceeds to step S7.
  • step S7 it is determined whether the current target rotational speed Nc (t) has reached the target rotational speed Nt.
  • the process proceeds to step S8, and when it has not reached, that is, during acceleration / deceleration, the process proceeds to step S11. That is, when not reached, the processing in the correction processing unit 26 is skipped.
  • step S8 the correction processing unit 26 in FIG. 3 performs processing. That is, the control deviation ⁇ between the current target rotational speed Nc (t) corresponding to the current time t and the rotational speed nf of the cooling fan 5 at the current time t detected by the cooling fan rotational speed sensor 15 is acquired.
  • step S9 a process for calculating the integral addition ⁇ ( ⁇ ) from the time zero to the time t and a process for calculating the deviation differential addition ⁇ are performed.
  • step S9 a process for calculating the integral addition ⁇ ( ⁇ ) from the time zero to the time t and a process for calculating the deviation differential addition ⁇ are performed.
  • step S10 a process of setting the current target rotational speed Nc (t) at the current time t to the current target rotational speed Nc (t + 1) at the time t + 1 is performed.
  • step S10 the process proceeds to step S13.
  • step S11 which is determined to be in acceleration / deceleration in the determination in step S7
  • the value of the acceleration / deceleration addition amount ⁇ Nc obtained in step S5 is added to the value of the current target rotation speed Nc (t) at the current time t. Addition is performed to obtain the current target rotational speed Nc (t + 1) at time t + 1.
  • step S12 processing for invalidating correction by PID control during acceleration / deceleration is performed. That is, a process of setting the control deviation ⁇ to zero and a process of setting the integral addition ⁇ ( ⁇ ) to zero are performed.
  • step S13 processing for accelerating the rotational speed of the hydraulic motor 4 according to the acceleration pattern is performed.
  • step S13 a process for setting the command rotational speed Nf (t + 1) at time t + 1 is performed. That is, the value of the command rotational speed Nf (t + 1) at time t + 1, the value of the current target rotational speed Nc (t + 1) at time t + 1 obtained by the rotational speed command value calculation unit 24, The value obtained by multiplying the control deviation ⁇ by a constant proportional gain kp, the value obtained by multiplying the integral addition ⁇ ( ⁇ ) by the integral gain Ki value, and the value obtained by multiplying the deviation differential addition ⁇ by a constant.
  • a process of adding a value obtained by multiplying a value of a certain differential gain Kd is performed.
  • step S13 the process in step S13 is completed, the process proceeds to step S14.
  • step S14 a process for controlling the flow rate of the pressure oil discharged from the hydraulic pump 2 is performed so that the cooling fan 5 rotates at the command rotational speed Nf (t + 1) set in step S13.
  • the process of calculating the pump swash plate position Q (t + 1) for controlling the swash plate angle of the hydraulic pump 2 is performed.
  • the pump swash plate position Q (t + 1) is shown as the pump capacity Q (cc / rev), but it can also be shown as the swash plate angle of the hydraulic pump 2.
  • the pump swash plate position Q (t + 1) is determined by the command rotational speed Nf (t +1) and a function value based on the engine speed ne.
  • the process of calculating the pump swash plate position Q (t + 1) has been described as the process in step S14 described above.
  • the flow rate control valves 12 and 14 as shown in FIGS.
  • the number of rotations of the hydraulic motor 4 can also be controlled by controlling. Therefore, the process in step S14 may be a process for calculating a control signal for controlling the flow control valves 12 and 14.
  • step S15 a process of outputting a control signal to the flow rate control means 25 in FIG. That is, the pump control current I (t + 1) for controlling the swash plate control valve 6 in FIG. 1 is output to the flow rate control means 25 in FIG.
  • the pump control current I (t + 1) can be obtained as a function value of the pump swash plate position Q (t + 1).
  • step S15 the process in step S15 is completed, the process proceeds to step S16.
  • step S16 the current target speed Nc (t + 1) Is set to the current target rotational speed Nc (t).
  • FIG. 5 and FIG. 6 are schematic diagrams showing the tendency of the measured data at the time of the cooling fan rotation start.
  • FIG. 5 is a graph when the control according to the present invention is performed
  • FIG. 6 is a graph when the control according to the present invention is not performed.
  • the horizontal axis indicates the time shown in the same scale, and the vertical axis corresponds to each graph shown in FIGS. 5 and 6, and in FIGS. 5 and 6, respectively.
  • the number of rotations (rpm) indicated on the same scale and the flow rate (L / min) indicated on the same scale are shown.
  • 5 and FIG. 6 are graphs showing temporal changes in the pump discharge flow rate, temporal changes in the actual rotational speed of the cooling fan 5, and the hydraulic motor 4 when the cooling fan 5 is rotating. The time change of the flow rate of the hydraulic motor 4 that will be used in the It is shown by the graph.
  • FIG. 6 when the current rotational speed of the cooling fan 5 is increased to the target rotational speed, the pressure oil flow rate discharged from the hydraulic pump 2 is the pressure oil flow rate necessary for rotating the cooling fan 5 at the target rotational speed. It shows about the case.
  • FIG. 5 shows a case where the flow rate of pressure oil discharged from the hydraulic pump 2 is controlled by performing control based on the present invention when the current rotation speed of the cooling fan 5 is increased to the target rotation speed. .
  • the graph of the pump discharge flow rate and the graph of the required flow rate of the hydraulic motor 4 are set up along substantially the same curve showing the same tendency. Can continue.
  • almost the entire pump discharge flow rate can be used to drive the hydraulic motor 4, and the fan rotation speed of the cooling fan shows the same tendency as the pump discharge flow graph in conjunction with the drive of the hydraulic motor 4. You can stand up at.
  • the loss flow rate which is the difference between the pump discharge flow rate and the required flow rate of the hydraulic motor 4, can be kept extremely small as shown in the lower side of FIG. Further, as the loss flow rate shown in FIG. 6, while a drive control of the hydraulic motor 4 is being performed, a flow rate of a certain amount or more is always discarded, whereas in the present invention shown in FIG. Some loss flow is generated until the rotation of the motor reaches the target rotation speed, but the amount is extremely lower than the case shown in FIG.
  • the loss flow rate is hardly generated after the rotation of the cooling fan 5 reaches the target rotational speed.
  • the pressure oil flow rate which is the pump discharge flow rate from the hydraulic pump 2
  • the pressure oil flow rate can be used effectively to drive the hydraulic motor 4, and there are harmful effects such as deterioration in engine fuel consumption, increase in hydraulic oil temperature, and increase in relief noise. Can be prevented.
  • the present invention can suitably apply the technical idea of the present invention to the drive control of a cooling fan mounted on a work vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

 冷却ファンの回転数を目標回転数にまで上昇させるときに、油圧ポンプから吐出した圧油流量が、無駄に廃棄されてしまうのを極力低減することができる冷却ファンの駆動装置及び同装置を用いたファン回転数制御方法を得る。 冷却媒体及び作動油の温度とエンジンの回転数に基づいて、コントローラ7の目標回転数設定部22では、冷却ファンの目標回転数を設定する。冷却ファンの回転数と目標回転数設定部22において設定した目標回転数と、冷却ファン及び冷却ファンを駆動する油圧モータの慣性による力の大きさとに基づいて、加速パターン設定部23では、冷却ファンの回転数を目標回転数にまで上昇させるときの加速パターンを設定する。回転数指令値演算部24では、前記加速パターンに基づいて前記油圧モータを加速制御させるときに必要な圧油流量が前記油圧モータに供給されるように制御する。これによって、前記油圧モータの加速制御において消費されず、廃棄されてしまうリリーフ流量を低減できる。

Description

冷却ファンの駆動装置及びファン回転数制御方法
 本願発明は、建設機械などの油圧駆動機械に用いられている、冷却ファンの駆動装置及び同装置を用いたファン回転数制御方法に関する。
 建設機械などの油圧駆動機械では、エンジンによって駆動される冷却ファン用の油圧ポンプから吐出した圧油を、冷却ファンを回転させる油圧モータに供給するとともに、油圧モータに供給する圧油流量を制御することで、油圧モータの回転数、即ち、冷却ファンの回転数を制御している。そして、エンジンにおける冷却水温度や作動油の温度等が所望の温度となるように、冷却ファンの回転数に対する制御を行っている。
 冷却ファンの回転数を制御する構成としては、ファン回転速度制御方法(例えば、特許文献1参照)などが提案されている。特許文献1に記載されているファン回転速度制御方法を本願発明における従来技術として、図9には、ファン回転速度制御方法を示すフローチャートを示している。
 特許文献1に記載されたファン回転速度制御方法では図9に示すように、エンジン始動時において、ファン回転数がファン最低回転数Nminである状態からファンの駆動が開始されるように、ポンプ・モータ系の制御を行っている(ステップ1)。ポンプ・モータ系は、ファンを駆動する油圧モータと同油圧モータに圧油を供給する油圧ポンプとから構成されている。そして、ファンの回転を開始するときには、ファン最低回転数Nminの状態が、少なくとも数秒間維持されるように制御している(ステップ2)。
 ファン最低回転数Nminの状態が少なくとも数秒間維持された後において、ファン回転数をファン最低回転数Nminから漸次増加させていく制御を行う(ステップ3)。そして、ファン回転数を漸次増加させてから少なくとも数秒が経過した後には、ファン回転数がファン目標回転数Ntfにまで増大しているようにポンプ・モータ系を制御している(ステップ4)。
 このような制御を行うことによって、ポンプ・モータ系にピーク圧や圧力ハンチングが発生するのを防止している。そして、ポンプ・モータ系を破損から防いでいる。
特開2005-76525号公報
 特許文献1に記載された発明では、エンジン始動時から設定された一定時間T1が経過するまでの間は、ファン回転数をファン最低回転数Nminの状態に維持している。そして、一定時間T1が経過した後においては、一定時間T2をかけて、ファン回転数をファン最低回転数Nminから一定勾配で漸次増加させて、ファン目標回転数Ntfにまで到達させる制御を行っている。それとともに、ファンで冷却される被冷却流体の各検出温度が、それぞれの目標温度に到達するようにフィードバック制御を行っている。
 このように、特許文献1に記載された発明では、ファン回転数をファン最低回転数Nminからファン目標回転数Ntfにまで到達させるのに、ファン回転数が一定勾配で漸次増加するように制御を行っている。
 一般に、ファンを駆動する油圧モータやファンを、低い回転数の状態から高い回転数の状態にまで加速していく場合において、ファンの回転を開始するためには、油圧モータやファン自身をそれぞれ停止させ続けようとする慣性による力に打ち勝つだけの大きな起動力を必要とする。
 そして、ファンの回転数が高まるのに従って、油圧モータやファンの回転数を高めるために必要とする力も少なくてすむ。即ち、回転数が高まった状態では、油圧モータやファンにおける慣性による力によって、油圧モータやファンの回転を等速度で回転させ続けようとする。このためこのような状態になると、油圧モータやファンを回転させるのには大きな力を必要としなくてすむ。
 ところが、特許文献1に記載された発明のように、ファン回転数を一定勾配で漸次増加させていく制御を行うと、油圧ポンプから吐出した圧油流量が全て油圧モータの回転に使用されずに、使用されなかった圧油流量は、油圧ポンプの保護回路であるリリーフ弁からタンクに廃棄されてしまうことになる。
 即ち、特許文献1に記載された発明では、油圧モータやファン自身の慣性による力の大きさについての考慮が払われていないため、ファン回転数を一定勾配で漸次増加させていくだけの制御を行っている。そして、一定勾配でファン回転数を増加させるのに必要な圧油流量が、油圧モータに供給されるように制御している。
 しかし、ファンが回転を始めるときには、停止状態を続けようとする慣性による力が大きく作用しているので、回転速度は徐々にしか上昇しない。このため、実際にファンの回転数を増加させるために使われる圧油流量よりも多い圧油流量が、油圧ポンプから吐出されていくことになる。
 その結果、油圧ポンプで使用されなかった圧油流量は、油圧ポンプの保護回路であるリリーフ弁からタンクに廃棄されてしまうことになる。このようにして、油圧ポンプから吐出した圧油が無駄に排出されると、エンジンの燃費悪化、作動油温の上昇、リリーフ騒音の増加等の弊害を招くことになる。
 本願発明では、冷却ファンの回転数を目標回転数にまで上昇させるときに、油圧ポンプから吐出した圧油流量が、無駄に廃棄されてしまうのを極力低減させることができ、そして、エネルギーロスを低減させることのできる冷却ファンの駆動装置及び同装置を用いたファン回転数制御方法を提供することにある。
 本願発明の課題は、請求項1~4に記載した冷却ファンの駆動装置及び請求項5、6に記載したファン回転数制御方法により、達成することができる。
 即ち、本願発明における冷却ファンの駆動装置では、エンジンにより駆動される冷却ファン用の油圧ポンプと、前記油圧ポンプから吐出した圧油が供給され、冷却ファンを回転させる油圧モータと、作動油の温度を検出する油温センサと、冷却媒体の温度を検出する水温センサと、前記エンジンの回転数を検出する回転数センサと、前記油圧モータに供給する圧油流量を制御する流量制御手段と、前記流量制御手段を制御するコントローラと、を備え、
 前記コントローラは、前記冷却ファンの目標回転数を設定する目標回転数設定部と、前記冷却ファンの回転数を前記目標回転数にまで上昇させるときの加速パターンを設定する加速パターン設定部と、前記油圧モータに供給する圧油流量を指令する回転数指令演算部と、を有し、
 前記目標回転数設定部は、前記油温センサと前記水温センサと前記回転数センサからの各検出信号に基づいて、前記冷却ファンの目標回転数を設定し、
 前記加速パターン設定部は、前記回転数センサで検出した前記エンジンの回転数と、前記目標回転数設定部で設定した前記冷却ファンの目標回転数と、前記冷却ファン及び前記油圧モータの慣性による力の大きさに基づいて、前記冷却ファンの回転数を前記目標回転数にまで上昇させるときの加速パターンを設定し、
 前記回転数指令演算部は、前記エンジンの回転数と、前記目標回転数設定部で設定した前記冷却ファンの目標回転数と、前記加速パターン設定部で設定した加速パターンとに基づいて、前記冷却ファンの回転数が前記加速パターンに基づいて現在の回転数から前記目標回転数にまで上昇するように、前記流量制御手段を制御する指令値を演算してなることを最も主要な特徴としている。
 また、本願発明の冷却ファンの駆動装置では、前記加速パターンが、前記油圧モータの性能及び前記冷却ファンの大きさ、質量等に基づいて、予め設定されていることを主要な特徴としている。
 更に、本願発明の冷却ファンの駆動装置では、前記流量制御手段が、可変容量型の前記油圧ポンプの斜板角を制御する斜板角制御弁であることを主要な特徴としている。
 更にまた、本願発明の冷却ファンの駆動装置では、前記流量制御手段が、前記油圧モータに供給される圧油流量を制御する流量制御弁であることを主要な特徴としている。
 また、本願発明のファン回転数制御方法は、エンジンにより駆動される冷却ファン用の油圧ポンプから吐出した圧油を、冷却ファン用の油圧モータに供給し、前記油圧モータに供給される圧油流量を制御して、前記冷却ファンのファン回転数を制御するファン回転数制御方法であって、
 検出した作動油の温度及びエンジン等を冷却する冷却媒体の温度及び前記エンジンの回転数から、前記冷却ファンの目標回転数を決定し、前記エンジンの回転数及び決定した前記冷却ファンの目標回転数と、前記冷却ファン及び前記油圧モータの慣性による力の大きさとから、前記冷却ファンの回転数を前記目標回転数にまで上昇させるときの加速パターンを決定し、前記エンジンの回転数と決定した前記冷却ファンの目標回転数及び前記加速パターンから、前記油圧モータに供給する圧油流量を制御して、前記冷却ファンの回転数を前記加速パターンに基づいて、現在の回転数から前記目標回転数にまで上昇させるように制御することを他の最も主要な特徴としている。
 更に、本願発明のファン回転数制御方法では、前記加速パターンとして、前記油圧モータの性能及び前記冷却ファンの大きさ、質量等に基づいて、予め設定されている加速パターンを用いてなることを主要な特徴としている。
 本願発明では、冷却ファン及び油圧モータにおける慣性による力の大きさを考慮した加速パターンに基づいて、冷却ファンの回転数を目標回転数にまで上昇させることができる。これにより、冷却ファンや油圧モータの慣性による力の大きさを考慮した状態で冷却ファンの回転数が、目標回転数となるように、油圧モータに供給する圧油流量を制御することができる。
 従って、油圧モータには、実際の油圧モータの回転状況に即した圧油流量を供給していくことができ、油圧モータで使用されずに廃棄されてしまう圧油流量を極力低減することができる。そして、エネルギーロスを低減させることができ、エンジンの燃費悪化、作動油温の上昇、リリーフ騒音の増加等の弊害を防止することができる。
 加速パターンとしては、油圧モータの性能及び冷却ファンの大きさ、質量等に基づいて、予め実験等により求めて設定しておくこともできる。予め設定した加速パターンを用いることにより、本願発明における冷却ファンの回転数制御を、フィードフォワード制御で行うことができる。しかも、冷却ファンで冷却される被冷却流体の各検出温度が変動したとしても、フィードバック制御で行っていたときのように、その変動の影響を受けてしまうことがない。そして、各検出温度が変動したことによる影響を受けることなく、冷却ファンの回転数を目標回転数となるように制御することができる。
 これによって、冷却ファンの回転数制御が容易となり、冷却ファンの回転数制御を行わせる構成も簡単に構成することができる。
 油圧モータに供給する圧油流量としては、油圧ポンプの斜板角を制御することによって行うことも、油圧ポンプと油圧モータとを接続する油路に設けた流量制御弁を制御することによって行うこともできる。
本願発明に係わる油圧回路図である。(実施例) コントローラの構成図である。(実施例) 制御ブロック図である。(実施例) 冷却ファンの回転数制御に係わるフローチャートである。(実施例) 冷却ファンの回転立ち上がり時における実測データの概略図である。(実施例) 冷却ファンの回転立ち上がり時における実測データの概略図である。(従来例) 本願発明に係わる他の油圧回路図である。(実施例) 本願発明に係わる別の油圧回路図である。(実施例) ファン回転速度制御方法を示すフローチャ-トである。(従来例)
 本願発明の好適な実施の形態について、添付図面に基づいて以下において具体的に説明する。本願発明の冷却ファンの駆動装置及びファン回転数制御方法は、冷却ファンを備えた作業車輌に対して好適に適用することができるものである。
 特に、エンジンの加減速が頻繁に行われる作業車輌に対して好適に適用することができる。例えば、ホイールローダのような作業車輌では、荷役作業時などにおいて前後進作業及びVシェープ作業を繰り返して行っており、エンジンの加減速が頻繁に行われることになる。
 エンジンの加減速が頻繁に行われると、エンジンの回転によって駆動されている冷却ファン用の油圧ポンプにおける回転数もエンジンの回転数によって加減速されることになる。そして、冷却ファン用の油圧ポンプから吐出した圧油流量によって冷却ファン用の油圧モータが駆動されているので、冷却ファン用の油圧モータにおける回転数もエンジンの回転の影響を受ける。そのため、エンジンの加減速に伴って、冷却ファン用の油圧モータの回転数を目標回転数まで上昇させる制御が繰り返して行われることになる。
 そして、冷却ファンの回転数を、冷却ファンで冷却することになる冷媒の温度等に応じた目標回転数にまで、立ち上げる制御を行うときには、本願発明のように構成されていないと、油圧ポンプから吐出した圧油流量が無駄に廃棄されてしまう状況が、頻繁に発生することになる。本願発明は、このようなエンジンの加減速が頻繁に行われる作業車輌に対して、特に、好適に適用することができるものである。
 図1は、本願発明の実施形態に係わる冷却ファンの駆動装置に用いられる油圧回路図である。冷却ファン用として配設した可変容量型の油圧ポンプ2(以下、油圧ポンプ2という。)は、エンジン1によって駆動される。油圧ポンプ2における1回転あたりのポンプ容量(cc/rev)は、図示せぬコントローラ7(図2参照)からの制御指令によって斜板制御弁6が制御されることによって、制御されることになる。
 即ち、斜板制御弁6が制御されることで、油圧ポンプ2の斜板2aの角度が制御されることになり、コントローラ7(図2参照)からの制御指令に応じた斜板角度を油圧ポンプ2に持たせることができる。そして、このときのエンジン1の回転数と斜板制御弁6で制御された斜板角、即ち、油圧ポンプ2のポンプ容量とによって、油圧ポンプ2から吐出する圧油流量を制御することができる。
 油圧ポンプ2から吐出した圧油流量は、正逆回転用の切換弁3を介して冷却ファン用の油圧モータ4に供給される。図示せぬコントローラ7(図2参照)からの制御指令により、切換弁3は、I位置とII位置との二つの位置に選択的に切り換えることができる。例えば、図1に示すII位置に切り換えたときには、油圧モータ4を正回転させることができ、I位置に切換えたときには、油圧モータ4を逆回転させることができる。
 油圧モータ4から排出される圧油は、切換弁3を通りタンク10に排出される。また、油圧モータ4に供給するポンプ圧が、所定の圧力以上とならないように制御するため、油圧ポンプ2と切換弁3とを接続している油路とタンク10との間には、リリーフ弁9が設けられている。
 油圧モータ4により回転駆動される冷却ファン5の回転数は、冷却ファン回転数センサ15によって検出することができ、冷却ファン回転数センサ15で検出した検出値は、コントローラ7に入力される。また、冷却ファン5の回転数を、冷却ファン回転数センサ15によって直接検出する代わりに、エンジン回転数センサ18でエンジン1の回転数を検出するとともに、油圧ポンプ2の斜板角あるいは油圧モータ4に供給されている圧油流量を検出することによって、油圧モータ4の回転数を間接的に求めることもできる。
 油圧モータ4に供給されている圧油流量としては、例えば、後述する図7に示すように、油圧ポンプ2と油圧モータ4とを接続する油路に配設した流量制御弁12を制御している制御信号の値により求めることができる。即ち、流量制御弁12の開口面積は、流量制御弁12を制御している制御信号の値に応じて制御されている。流量制御弁12を制御している制御信号の値から流量制御弁12の開口面積を知ることによって、流量制御弁12を通過する圧油流量を求めることができる。
 即ち、油圧ポンプ2から吐出する圧油流量は、エンジン1の回転数と油圧ポンプ2の斜板角とによって求めることができるので、流量制御弁12の開口面積を知ることによって、流量制御弁12を通過する圧油流量を求めることができる。
 図7及び後述する図8における油圧ポンプ2は、冷却ファン5を駆動する油圧モータ4以外のアクチュエータとも共用している。このため、油圧ポンプ2のポンプ斜板角としては、油圧モータ4以外の他のアクチュエータを含めた必要流量に対して制御されることになる。油圧モータ4に供給する圧油流量は、流量制御弁12、又は流量制御弁14を用いることで制御されることになる。また、図7及び図8における油圧ポンプとしては、可変容量型の油圧ポンプではなく固定容量型の油圧ポンプを用いることもできる。
 従って、油圧モータ4に供給される圧油流量に対応した油圧モータ4の回転数、即ち、冷却ファン5の回転数を間接的に求めることもできる。このように、油圧ポンプ2の斜板角あるいは油圧モータ4に供給されている圧油流量が分かっているときには、エンジン1の回転数を検出することによっても、冷却ファン5の回転数を検出することができる。
 図2を用いて、コントローラ7で行われる、本願発明に係わる冷却ファンの回転数制御について説明する。コントローラ7には、水温センサ16で検出したエンジン1等を冷却した冷却媒体の温度と、作動油温センサ17で検出した作動油の温度と、エンジン回転数センサ18で検出したエンジン1の回転数及び冷却ファン回転数センサ15で検出した冷却ファン5の回転数と、がそれぞれ入力されている。エンジン回転センサ18と冷却ファン回転センサ15は、そのいずれか一方だけの入力であってもよい。
 これらの各検出値は、コントローラ7に設けた目標回転数設定部22に入力され、目標回転数設定部22では、入力したこれらの各検出値の値に基づいて、冷却ファン5の目標回転数を設定する。冷却ファン5の目標回転数としては、例えば、図3の左側に示したグラフを用いて、冷却ファン5の目標回転数を設定することができる。
 図3の左側に示したグラフとしては、目標回転数設定部22に入力した各検出温度に対応づけて、冷却ファン5の目標回転数をシミュレーションや実験などによって求めておくことができる。
 あるいは、例えば、目標回転数設定部22に入力した各検出温度を、統計処理的な手法等を用いて演算し、冷却ファン5の目標回転数を求めるように構成しておくこともできる。本願発明では、冷却ファン5に対する目標回転数の求め方については、特徴を有しているものではないので、冷却媒体や作動油の油温がオーバヒートしないような適切な回転数とする冷却ファン5の目標回転数を設定することができるものであれば、従来から公知の各種設定方法を用いることができる。
 冷却ファン回転数センサ15で検出した現在の冷却ファン5における回転数と目標回転数設定部22において設定した目標回転数と、冷却ファン5及び油圧モータ4の慣性による力の大きさとに基づいて、加速パターン設定部23では、冷却ファン5の回転数を前記目標回転数にまで上昇させるときの加速パターンを設定することができる。
 冷却ファン5及び油圧モータ4の慣性による力の大きさとしては、冷却ファン5及び油圧モータ4におけるそれぞれの慣性二次モーメントの値及び角加速度を用いたシミュレーションや実験などによって求めておくことができる。慣性二次モーメントの値としては、構造計算により算出することもできるが、次に説明するようにして求めることもできる。
 例えば、冷却ファン5及び油圧モータ4の慣性による力の大きさを「Ip」としたとき、慣性による力の大きさ「Ip」の値は、冷却ファン5を設けた油圧モータ4のモータトルクT[N・m]と冷却ファン5を設けた油圧モータ4の角加速度dω/dt[rad/(sec・sec)]との関数として表すことができる。即ち、Ip=T/(dω/dt)として表すことができる。
 そして、実測や実験等によって、冷却ファン5を設けた油圧モータ4のモータ圧Pm[Mpa]、冷却ファン5を設けた油圧モータ4のモータ回転数Rm[rpm]、油圧モータ4のモータ容量Qm[cc/rev]、冷却ファン5を設けた油圧モータ4のトルク効率ηt、加速時間Δtacc[sec]、を求めることによって、冷却ファン5を設けた油圧モータ4のモータトルクTを求めることができる。
 即ち、T=Qm×Pm×ηt/(2×π)として求めることができる。尚、πは、弧度法における角度の標記であって、180度の角度は弧度法では1×πラジアンとして表される。また、角加速度dω/dtは、dω/dt=Rm×2×π/(60×Δtacc)として表すことができる。
 この油圧モータ4のモータトルクTと角加速度dω/dtとを求める式から、慣性による力の大きさ「Ip」の値は、Ip=Qm×Pm×ηt/(2×π)/(Rm×2×π/(60×Δtacc))として表せる。即ち、Ip=60×Qm×Pm×ηt×Δtacc/(4×Rm×π×π)を計算することによって、慣性による力の大きさ「Ip」の値を求めることができる。
 このようにして、図3における左から2番目のグラフで示すような、加速パターンを設定することができる。このグラフの縦軸を出力目標としているが、出力目標としては油圧モータ4に供給する圧油流量として読み直すこともできる。図3で示すように、現在の冷却ファン5における回転数を目標回転数設定部22で設定した目標回転数まで上昇させるとき、起動開始時には冷却ファン5及び油圧モータ4の慣性による力に抗することができるように、起動力が徐々に高まっていくような加速パターンを設定する。
 加速パターンは、前記起動開始時からの時間の経過とともに、油圧モータ4の角加速度が徐々に上昇するように、油圧モータ4に供給する圧油流量を徐々に増量させていくパターンとなっている。この加速パターンに基づいて油圧モータ4の加速制御を行うことで、油圧モータ4の加速制御を行っているときに、消費されずに廃棄されてしまうリリーフ流量を低減させることができる。
 このように、油圧モータ4の角加速度が徐々に上昇するのにともなって、冷却ファン5及び油圧モータ4を等速回転状態に維持することになる慣性による力の大きさも徐々に高めることができる。そして、図3で示すように、油圧モータ4に供給する圧油流量を2次関数的に増大させていくことで、油圧モータ4で消費されずに廃棄されてしまうリリーフ流量を低減させることができる。
 そして、油圧モータ4の回転数が冷却ファン5の目標回転数に到達した後では、油圧モータ4に対して到達した回転状態を維持しておくのに必要な圧油流量を供給し続けることができる。
 加速パターン設定部23において設定する加速パターンは、上述したように、冷却ファン回転数センサ15で検出した冷却ファン5の回転数と目標回転数設定部22において設定した目標回転数と、冷却ファン5及び油圧モータ4の慣性による力の大きさとに基づいて、設定することもできるが、予め実験、シミュレーション等によって加速パターンを設定しておくこともできる。
 予め加速パターンを設定しておいた場合においても、目標回転数にまで上昇させるのに、冷却ファン5の回転数をどの回転数の状態から開始させるのかに応じて、それぞれ異なる加速パターンを設定しておくこともできる。この場合では、目標回転数にまで上昇させるときに、開始時点における冷却ファン5の回転数の状態に応じて、冷却ファン5及び油圧モータ4の慣性による力の状況は異なっている。
 そこで、開始時点における冷却ファン5の回転数の状態での慣性による力の状況を有効に利用した加速パターンを、開始時点における冷却ファン5の回転数の状態に応じてそれぞれ構成しておくことができる。例えば、加速パターンにおける立ち上げを大きく構成しておくことができる。そして、開始時点における慣性による力の状況が異なっていても、早く目標回転数の状態に到達させることができる。
 また、目標回転数にまで上昇させるのに、冷却ファン5の回転数をどの回転数の状態から開始させるのかに応じて、それぞれ異なる加速パターンを設定しておく代わりに、一つの加速パターンだけを予め設定しておいて、この設定した一つの加速パターンを用いることもできる。この場合には、加速パターンにおける曲線部を有効に利用して、冷却ファン5が目標回転数に向かって増速回転を開始するときの回転数に対応した前記加速パターンの曲線部上の点、及び目標回転数に対応した前記加速パターンの曲線部上の点をそれぞれ求め、この二点間における曲線部が前記加速パターンとなるように構成しておくことができる。
 ところで、油圧ポンプ2はエンジン1によって駆動されているので、エンジン1の加減速が頻繁に行われると、油圧ポンプ2における回転数もエンジン1の回転数による加減速の影響を受けることになる。そして、油圧ポンプ2から吐出する圧油流量も加減速による影響を受けることになる。このため、エンジン1の加減速が頻繁に行われる場合には、油圧モータ4の回転数としては、減速した回転数の状態から冷却ファン5の目標回転数にまで上昇させる制御が繰り返し行われることになる。
 上述したように、本発明では、油圧モータ4の低速回転の状態から、冷却ファン5の目標回転数にまで上昇させる制御を行っても、その状況に応じた加速パターンで油圧モータ4の回転を加速させていくことができるので、油圧モータ4の回転に使用されずに廃棄されてしまう圧油流量を低減させることができる。これによって、エンジンの燃費悪化、作動油温の上昇、リリーフ騒音の増加等の弊害を防止しておくことができる。
 図2に示すように、加速パターン設定部23において設定された加速パターンと、目標回転数設定部22で設定された目標回転数は、回転数指令値演算部24に入力される。尚、図3では、油圧モータ4の回転数が冷却ファン5の目標回転数にまで上昇した後における、冷却ファン5の回転数に対して補正処理部26で行う制御についても記載しているが、補正処理部26で行う制御については後述することにして、補正処理部26で行う制御をスキップした制御について説明を続けることにする。
 回転数指令値演算部24では、現在の冷却ファン5の回転数を加速パターンに沿って目標回転数にまで上昇させるのに必要な圧油流量が、油圧モータ4に供給されるように回転数指令値を演算して、流量制御手段25に対する制御信号を作成する。流量制御手段25としては、油圧モータ4に供給する圧油流量を制御するものであれば、油圧ポンプ2の斜板角を制御する斜板制御弁6(図1参照)、あるいは、油圧ポンプ2から吐出した圧油流量の一部を油圧モータ4以外のアクチュエータに供給し、他のアクチュエータに供給して残った圧油を制御して、油圧モータ4に供給する流量制御弁12(図7参照)、又は流量制御弁14(図8参照)等を用いることができる。
 回転数指令値演算部24では、斜板制御弁6(図1参照)を制御する場合には、油圧ポンプ2の斜板角を制御する制御信号を演算することになり、流量制御弁12(図7参照)又は流量制御弁14(図8参照)を制御する場合には、流量制御弁12又は流量制御弁14におけるそれぞれの開口面積を制御する制御信号を演算することになる。
 図7に示した流量制御弁12は、流量制御手段25の変形例を示すものであり、油圧ポンプ2と油圧モータ4との間を連通させる油路に、流量制御手段25としての流量制御弁12を設けた構成である。流量制御弁12は、図示せぬコントローラ7からの制御指令により、油圧ポンプ2と油圧モータ4とを繋ぐ油路の開口面積が制御される構成となっている。
 そして、開口面積を減少させることにより、油圧モータ4に供給される圧油流量を減少させて、油圧モータ4の回転数を減速させることができる。逆に、開口面積を増大させることにより、油圧モータ4に供給される圧油流量を増大させて、油圧モータ4の回転数を増速させることができる。
 図8に示した流量制御弁14は、流量制御手段25の他の変形例を示すものであり、油圧ポンプ2と油圧モータ4との間を連通させる油路とタンク10に接続した油路との断接を行うことができる流量制御弁として構成されている。流量制御弁14は、図示せぬコントローラ7からの制御指令により、油圧ポンプ2と油圧モータ4との間を連通させる油路をタンク10に接続させるときの開口面積を制御する構成となっている。
 そして、タンク10に接続する流量制御弁14の開口面積を遮断状態にしたり減少させたりすることにより、油圧モータ4に供給される圧油流量を増大させて、油圧モータ4の回転数を増速させることができる。逆に、タンク10に接続する流量制御弁14の開口面積を増大させることにより、油圧モータ4に供給される圧油流量を減少させて、油圧モータ4の回転数を減速させることができる。
 このように、図2に示す流量制御手段25を制御することによって、油圧モータ4に対して加速パターンに基づいた加速制御を行わせることができ、加速パターンに基づいて冷却ファン5を現在の回転数から目標回転数まで上昇させることができる。
 このようにして本願発明では、冷却ファン5の回転数を、冷却ファン5で冷却する冷媒の温度等に応じた目標回転数まで増速させるときに、油圧ポンプ2から吐出した圧油流量が無駄に廃棄されてしまう量を極力減少させることができる。特に、本願発明では、エンジン1の加減速が頻繁に行われる作業車輌に対して、極めて効果的な作用を奏することができる。
 尚、図3では、油圧モータ4の回転数が冷却ファン5の目標回転数近くにまで上昇して、油圧モータ4における速度が加速状態から定速状態になりつつある状態の後において、冷却ファン5の回転数に対して制御する制御ブロックについても記載している。そこで、油圧モータ4の回転数が冷却ファン5の目標回転数近くにまで上昇した後における制御についての説明を行う。
 尚、図2、図3に示す補正処理部26での処理は、油圧モータ4の回転数が略目標回転数に近づいた後に行われる処理であり、油圧モータ4の回転数、即ち、冷却ファン5の回転数が目標回転数に近づくまでの段階においては、補正処理部26での処理がスキップされることになる。
 加速パターン設定部23で設定した加速パターンに基づいて、油圧モータ4の加速制御を行っているときには、油圧モータ4に供給する圧油流量は、加速パターン設定部23で設定した加速パターンに基づいて制御されることになる。そして、加速パターンに基づいた制御によって、冷却ファン5の回転数が目標回転数近くまで上昇した後においては、冷却ファン5の回転数が略目標回転数の状態を維持するように、油圧モータ4の回転数が制御される。
 しかしながら、冷却ファン5の目標回転数と実際の冷却ファン5の回転数との間には、経年変化の影響によって違いが生じることがある。そこで、経年変化による劣化に伴って、効率が変化するのに対応させるため、冷却ファン5の目標回転数と冷却ファン回転数センサ15で検出した現在の冷却ファン5の回転数との差分を用いて、冷却ファン5の目標回転数の値を補正することを補正処理部26において行っている。そして、実際の冷却ファン5の回転数が、補正後の目標回転数となるようにすることで、実際の冷却ファン5の回転数が変動するのを防止している。
 そして、目標回転数を補正するため、補正処理部26では、前記差分に基づいて、冷却ファン5の目標回転数の値の補正を行っている。
 即ち、図3に示した制御ブロックに基づいて説明すると、加速パターンに基づいて制御される油圧モータ4の目標回転数と、冷却ファン回転数センサ15で検出した現在の冷却ファン5の回転数との差分を補正処理部26に入力する。補正処理部26では、前記差分に応じて従来から公知のPID制御(PはProportional:比例、IはIntegral:積分、DはDerivative:微分の略)を用いて目標回転数に対する補正処理を行っている。
 これにより、前記差分が少なくなるように制御することができ、実際の冷却ファン5の回転数が変動するのを防止することができる。
 尚、PID制御の積分動作では、過去の偏差の累積値を求めることになり、比例動作では、現在の偏差の大きさを求めることになり、微分動作では、偏差の将来の予測値を求めている。これらの求めた3つの値に対してそれぞれウエイトを持たせて行う制御が、PID制御といわれているものであり、従来から公知の制御として知られている。
 目標回転数は、基本的に不変であって、定常時における制御と、補正時における制御とは、同じような制御を行っている。また、PID制御は、全ての場合に実施する必要はないものである。
 次に、本願発明で行われる制御フローについて、補正処理部26での処理も含めて、図4で示したフローチャートを用いて説明する。ステップS1では、水温センサ16で検出したエンジン1等を冷却する冷却媒体の水温、作動油温センサ17で検出した作動油の油温、及びエンジン回転数センサ18で検出したエンジン1の回転数を取得する処理を行う。ステップS1での処理がすむと、ステップS2に進む。
 ステップS2では、目標回転数設定部22を用いて、現在の時刻tにおいて設定することになる冷却ファン5に対する最終的な目標回転数Ntを設定する処理を行う。ステップS2での処理がすむと、ステップS3に進む。
 ステップS3では、加速パターン設定部23で設定した加速パターンに基づいた、現在の時刻tに対応した現在目標回転数Nc(t)を取得する処理を行う。目標回転数Ntは、時刻tの時点において設定することになる、冷却ファン5を最終的に到達させるべき目標回転数である。また、現在目標回転数Nc(t)は、冷却ファン5の回転数が最終的な目標回転数Ntに到達する前の段階として、時刻tの時点における加速パターンに基づいた目標回転数である。
 現在目標回転数Nc(t)を取得する処理は、回転数指令値演算部24における演算により求めることができる。ステップS3での処理がすむと、ステップS4に進む。
 時刻t=0(ゼロ)の状態、即ち、エンジン始動時のNc(0)の値は、冷却ファン5の最低回転数に設定される。
 ステップS4では、目標回転数Ntと現在目標回転数Nc(t)との差を求め、この差が予め実験等により設定した加減速処理判定値ΔNよりも大きいか否かの判定を行う。前記差が、加減速処理判定値ΔNよりも大きいときには、ステップS5に進み、前記差が、加減速処理判定値ΔNよりも小さいときには、ステップS6に進む。このように、ステップS4では、現在の時刻tにおける現在目標回転数Nc(t)が、目標回転数Ntに近づいているかの判定を行っている。
 ステップS5では、加減速加算量ΔNcの算出処理が行われる。加減速加算量ΔNcを用いることによって、加速パターンに従ってどれだけ油量を増加させるかを求めることができる。加減速加算量ΔNcは、目標回転数Ntと現在目標回転数Nc(t)とを用いた関数値として求めることができる。ステップS5での処理がすむと、ステップS7に進む。
 ステップS6では、加減速加算量ΔNcを求める処理が無効にされる。即ち、目標回転数Ntと現在目標回転数Nc(t)との差が小さいと判断して、目標回転数Ntまで上昇させる処理を行うことになる、即ち、目標回転数Ntを現在目標回転数Nc(t)にする処理が行われる。ステップS6での処理がすむと、ステップS7に進む。
 ステップS7では、現在目標回転数Nc(t)が目標回転数Ntに到達したかの判定が行われる。現在目標回転数Nc(t)が目標回転数Ntに到達したときには、ステップS8に進み、未到達、即ち、加減速中のときには、ステップS11に進む。つまり、未到達のときには、補正処理部26での処理をスキップする。
 ステップS8では、図3における補正処理部26での処理が行われる。即ち、現在の時刻tに対応した現在目標回転数Nc(t)と、冷却ファン回転数センサ15で検出した現在の時刻tにおける冷却ファン5の回転数nfとの制御偏差εを取得する。制御偏差εは、ε=Nc(t)-nfの関係式から演算することができる。ステップS8での処理がすむと、ステップS9に進む。
 ステップS9では、制御偏差εをゼロ時刻のときから時刻tのときまでの積分加算∫(ε)を演算する処理と偏差微分加算Δεを演算する処理とを行う。ステップS9での処理がすむと、ステップS10に進む。
 ところで、現在の制御サイクルが終わった後に行われる次の制御サイクルは、現在の時刻tを時刻t+1にした状態で行われることになる。そこで、ステップS10では、現在の時刻tでの現在目標回転数Nc(t)を、時刻t+1における現在目標回転数Nc(t+1)とする処理を行う。ステップS10での処理がすむと、ステップS13に進む。
 ステップS7における判定で、加減速中であると判定されて進んだステップS11では、現在時刻tにおける現在目標回転数Nc(t)の値に、ステップS5で求めた加減速加算量ΔNcの値を加算して、時刻t+1における現在目標回転数Nc(t+1)を求める処理を行う。ステップS11での処理がすむと、ステップS12に進む。
 ステップS12では、加減速中のPID制御による補正を無効にする処理を行う。即ち、制御偏差εをゼロにする処理と、積分加算∫(ε)をゼロにする処理とを行う。ステップS12での処理がすむと、ステップS13に進む。即ち、加速中は、PID制御は行わず、加速パターンに従って油圧モータ4の回転数を加速させる制御を行うことになる。
 ステップS13では、時刻t+1での指令回転数Nf(t+1)を設定する処理を行う。即ち、時刻t+1での指令回転数Nf(t+1)の値を、回転数指令値演算部24で求めた時刻t+1における現在目標回転数Nc(t+1)の値と、制御偏差εに定数である比例ゲインkpの値を掛けた値と、積分加算∫(ε)の値に定数である積分ゲインKiの値を掛けた値と、偏差微分加算Δεの値に定数である微分ゲインKdの値を掛けた値とを加算した値にする処理を行う。
 加速中は、偏差微分加算Δεの値及び積分加算∫(ε)の値は、共にゼロ(0)なので、Nf(t+1)はNc(t+1)のままとなっている。ステップS13での処理がすむと、ステップS14に進む。
 ステップS14では、ステップS13で設定した指令回転数Nf(t+1)で冷却ファン5が回転するように、油圧ポンプ2から吐出する圧油流量を制御する処理を行う。油圧ポンプ2から吐出する圧油流量を制御する処理を行うため、油圧ポンプ2の斜板角を制御するポンプ斜板位置Q(t+1)を算出する処理を行う。ポンプ斜板位置Q(t+1)としては、ポンプ容量Q(cc/rev)として示しているが、油圧ポンプ2の斜板角度で示しておくこともできる。
 前述したように目標回転数は、現在のエンジン回転数とポンプ容量とにより達成されることになるので、ポンプ斜板位置Q(t+1)は、ステップS13で設定した指令回転数Nf(t+1)とエンジン回転数neとを基にした関数値として求めることができる。上述したステップS14での処理として、ポンプ斜板位置Q(t+1)を算出する処理を行うことについての説明を行ったが、図7や図8に示すような流量制御弁12、14を制御することによっても、油圧モータ4の回転数を制御することができる。そのため、ステップS14における処理としては、流量制御弁12、14を制御する制御信号を算出する処理とすることもできる。ステップS14での処理がすむと、ステップS15に進む。
 ステップS15では、図3における流量制御手段25に対する制御信号を出力する処理を行う。即ち、図1における斜板制御弁6を制御するポンプ制御電流I(t+1)を、図2の流量制御手段25に出力する処理を行う。ポンプ制御電流I(t+1)としては、ポンプ斜板位置Q(t+1)の関数値として求めることができる。
 また、流量制御手段25として図7や図8に示すような流量制御弁12、14を用いたときには、流量制御弁12、14のスプール位置を制御する電気信号を出力させることができる。ステップS15での処理がすむと、ステップS16に進む。
 次回の制御サイクルは、現在の制御サイクルにおいては時刻t+1として扱っているが、次回の制御サイクルでの制御を行っているときには、現在の時刻はtとして読み直しておかなければならない。そのため、現在目標回転数Nc(t+1)の値は次回の制御サイクルでは現在目標回転数Nc(t)として使用することになるので、ステップS16では、現在目標回転数Nc(t+1)の値を現在目標回転数Nc(t)とする処理を行う。ステップS16での処理がすむと、本制御ステップにおける各処理は終了する。
 図5及び図6には、冷却ファンの回転立ち上がり時における実測データの傾向をグラフで示した概略図を示している。図5は、本願発明による制御を行ったときのグラフであり、図6は、本願発明における制御を行わなかったときのグラフである。
 図5及び図6において、横軸はそれぞれ同じスケールで示した時間を示しており、縦軸としては、図5及び図6に示している各グラフに対応させ、図5及び図6において、それぞれ同じスケールで示した回転数(rpm)、それぞれ同じスケールで示した流量(L/min)を示している。そして、図5及び図6における時間的変化を示すグラフとしては、ポンプ吐出流量の時間的変化、冷却ファン5の実回転数の時間的変化、冷却ファン5を回転させているときに油圧モータ4で使用されることになる油圧モータ4の流量の時間的変化、油圧ポンプ2から吐出されたが、油圧モータ4の回転には使用されずに廃棄されるロス流量の時間的変化を、それぞれのグラフによって示している。
 図6では、現在の冷却ファン5の回転数を目標回転数まで上昇させるときに、油圧ポンプ2から吐出する圧油流量を、冷却ファン5を目標回転数で回転させるのに必要な圧油流量とした場合について示している。また、図5には、現在の冷却ファン5の回転数を目標回転数まで上昇させるときに、本願発明に基づく制御を行って油圧ポンプ2から吐出する圧油流量を制御した場合について示している。
 図6に示す場合には、一気に目標回転数まで油圧モータ4の回転数を上昇させることのできる圧油流量を、油圧モータ4に供給している。そのため、油圧ポンプ2からの吐出流量であるポンプ吐出流量は、一気に所望の流量まで上昇することになる。そして、一気に上昇した圧油流量が油圧モータ4に供給されることになる。
 しかし、油圧モータ4や冷却ファン5は、それぞれ停止状態を保とうとする慣性による力の影響によって、一気に回転数を上昇させることはできない。そのため、図6の冷却ファン5の実回転数の時間的変化を示すグラフや油圧モータ4の流量の時間的変化を示すグラフのように、なだらかな状態で徐々に上昇していくことになる。
 このため、ポンプ吐出流量と油圧モータ4の必要流量との差分であるロス流量としては、冷却ファン5の目標回転数への立ち上げ時において、大量のロス流量が発生してしまうことになる。
 これに対して、図5で示す本願発明による制御を行った場合には、ポンプ吐出流量のグラフと油圧モータ4の必要流量のグラフとを、略同じ傾向を示す略同じ曲線に沿って立ち上げていくことができる。しかも、ポンプ吐出流量の略全量を油圧モータ4の駆動に使用することができ、油圧モータ4の駆動に連動して、冷却ファンのファン回転数もポンプ吐出流量のグラフと同様の傾向を示す曲線で立ち上がっていくことができる。
 更に、ポンプ吐出流量と油圧モータ4の必要流量との差分であるロス流量も、図5の下方側に示しているように、極めて少ない状態にしておくことができる。また、図6で示すロス流量としては、油圧モータ4の駆動制御を行っている間では、常に一定量以上の流量が廃棄されているのに対し、図5で示す本願発明では、冷却ファン5の回転が目標回転数に上昇するまでの間において、多少のロス流量が発生することになるが、その量は、図6で示した場合よりも極端に低くなる。
 また、図5で示す本願発明では、冷却ファン5の回転が目標回転数になった後においては、殆どロス流量を発生させることがない。このため、油圧ポンプ2からのポンプ吐出流量である圧油流量は、有効に油圧モータ4の駆動に使用することができ、エンジンの燃費悪化、作動油温の上昇、リリーフ騒音の増加等の弊害を招くことを防止することができる。
 本願発明は、作業車輌に搭載される冷却ファンの駆動制御に対して、本願発明の技術思想を好適に適用することができる。
 2・・・可変容量型の油圧ポンプ、4・・・油圧モータ、5・・・冷却ファン、6・・・斜板制御弁、7・・・コントローラ、12,14・・・流量制御弁、22・・・目標回転数設定部、23・・・加速パターン設定部、24・・・回転数指令値演算部、25・・・流量制御手段、26・・・補正処理部。

Claims (6)

  1.  エンジンにより駆動される冷却ファン用の油圧ポンプと、
     前記油圧ポンプから吐出した圧油が供給され、冷却ファンを回転させる油圧モータと、
     作動油の温度を検出する油温センサと、
     冷却媒体の温度を検出する水温センサと、
     前記エンジンの回転数を検出する回転数センサと、
     前記油圧モータに供給する圧油流量を制御する流量制御手段と、
     前記流量制御手段を制御するコントローラと、を備え、
     前記コントローラは、前記冷却ファンの目標回転数を設定する目標回転数設定部と、前記冷却ファンの回転数を前記目標回転数にまで上昇させるときの加速パターンを設定する加速パターン設定部と、前記油圧モータに供給する圧油流量を指令する回転数指令演算部と、を有し、
     前記目標回転数設定部は、前記油温センサと前記水温センサと前記回転数センサからの各検出信号に基づいて、前記冷却ファンの目標回転数を設定し、
     前記加速パターン設定部は、前記回転数センサで検出した前記エンジンの回転数と、前記目標回転数設定部で設定した前記冷却ファンの目標回転数と、前記冷却ファン及び前記油圧モータの慣性による力の大きさとに基づいて、前記冷却ファンの回転数を前記目標回転数にまで上昇させるときの加速パターンを設定し、
     前記回転数指令演算部は、前記エンジンの回転数と、前記目標回転数設定部で設定した前記冷却ファンの目標回転数と、前記加速パターン設定部で設定した加速パターンとに基づいて、前記冷却ファンの回転数が前記加速パターンに基づいて現在の回転数から前記目標回転数にまで上昇するように、前記流量制御手段を制御する指令値を演算してなることを特徴とする冷却ファンの駆動装置。
  2.  前記加速パターンが、前記油圧モータの性能及び前記冷却ファンの大きさ、質量等に基づいて、予め設定されていることを特徴とする請求項1記載の冷却ファンの駆動装置。
  3.  前記流量制御手段が、可変容量型の前記油圧ポンプの斜板角を制御する斜板角制御弁であることを特徴とする請求項1又は2記載の冷却ファンの駆動装置。
  4.  前記流量制御手段が、前記油圧モータに供給される圧油流量を制御する流量制御弁であることを特徴とする請求項1又は2記載の冷却ファンの駆動装置。
  5.  エンジンにより駆動される冷却ファン用の油圧ポンプから吐出した圧油を、冷却ファン用の油圧モータに供給し、前記油圧モータに供給される圧油流量を制御して、前記冷却ファンのファン回転数を制御するファン回転数制御方法であって、
     検出した作動油の温度及び冷却媒体の温度及び前記エンジンの回転数から、前記冷却ファンの目標回転数を決定し、
     前記エンジンの回転数及び決定した前記冷却ファンの目標回転数と、前記冷却ファン及び前記油圧モータの慣性による力の大きさとから、前記冷却ファンの回転数を前記目標回転数にまで上昇させるときの加速パターンを決定し、
     前記エンジンの回転数と決定した前記冷却ファンの目標回転数及び前記加速パターンから、前記油圧モータに供給する圧油流量を制御して、前記冷却ファンの回転数を前記加速パターンに基づいて、現在の回転数から前記目標回転数にまで上昇させるように制御することを特徴とするファン回転数制御方法。
  6.  前記加速パターンとして、前記油圧モータの性能及び前記冷却ファンの大きさ、質量等に基づいて、予め設定されている加速パターンを用いてなることを特徴とする請求項5記載のファン回転数制御方法。
PCT/JP2010/053943 2009-03-24 2010-03-10 冷却ファンの駆動装置及びファン回転数制御方法 WO2010110059A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800131830A CN102362053B (zh) 2009-03-24 2010-03-10 冷却风扇的驱动装置及风扇转速控制方法
US13/148,079 US8632314B2 (en) 2009-03-24 2010-03-10 Cooling fan driving device and fan rotational speed control method
JP2011505961A JP5202727B2 (ja) 2009-03-24 2010-03-10 冷却ファンの駆動装置及びファン回転数制御方法
EP10755859.5A EP2412948B1 (en) 2009-03-24 2010-03-10 Cooling fan driving device and fan rotation number control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-072122 2009-03-24
JP2009072122 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010110059A1 true WO2010110059A1 (ja) 2010-09-30

Family

ID=42780752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053943 WO2010110059A1 (ja) 2009-03-24 2010-03-10 冷却ファンの駆動装置及びファン回転数制御方法

Country Status (5)

Country Link
US (1) US8632314B2 (ja)
EP (1) EP2412948B1 (ja)
JP (1) JP5202727B2 (ja)
CN (1) CN102362053B (ja)
WO (1) WO2010110059A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048757A (ja) * 2015-09-03 2017-03-09 三井造船株式会社 液化ガス昇圧装置、液化ガスの昇圧方法および燃料供給装置
CN110454373A (zh) * 2019-08-20 2019-11-15 华能国际电力股份有限公司 一种海水直流冷却水系统变频泵优化运行方法
WO2020059130A1 (ja) * 2018-09-21 2020-03-26 日立建機株式会社 油圧駆動ファン制御装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518589B2 (ja) * 2010-06-18 2014-06-11 日立建機株式会社 作業機械
US8893980B2 (en) 2010-09-29 2014-11-25 Astec International Limited Delayed execution and automated model detection for air moving devices
US8747068B2 (en) * 2010-09-29 2014-06-10 Astec International Limited Controlled angular acceleration for air moving devices
US9163849B2 (en) 2010-09-30 2015-10-20 Astec International Limited Jitter control and operating profiles for air moving devices
KR101752503B1 (ko) * 2011-01-12 2017-06-30 두산인프라코어 주식회사 휠로더의 유압 펌프 제어 방법
EP2530273B1 (de) * 2011-06-01 2020-04-08 Joseph Vögele AG Baumaschine mit automatischer Lüfterdrehzahlregelung
US9869232B2 (en) * 2012-06-27 2018-01-16 Ford Global Technologies, Llc Variable-speed pump control for engine coolant system with variable restriction
DE102013000121A1 (de) * 2013-01-04 2014-07-10 Hydac Drive Center Gmbh Ventil zur temperaturabhängigen Ansteuerung mindestens eines hydraulischen Verbrauchers
CN103982289B (zh) * 2013-02-07 2017-07-21 上海汽车集团股份有限公司 汽车冷却系统的风扇转速控制方法及系统
CN103590886B (zh) * 2013-10-24 2017-01-04 广西柳工机械股份有限公司 一种装载机发动机用散热控制方法
CA2926863A1 (en) 2013-10-29 2015-05-07 Raven Industries, Inc. Hydraulic displacement control system
JP5597319B1 (ja) * 2013-12-27 2014-10-01 株式会社小松製作所 作業車両
CN103998693B (zh) * 2013-12-27 2016-05-25 株式会社小松制作所 作业车辆
CN103758622B (zh) * 2014-01-07 2016-08-17 潍柴动力股份有限公司 一种发动机冷却风扇的控制方法和控制系统
CN104912876A (zh) * 2015-04-21 2015-09-16 合肥皖液液压元件有限公司 节能减排齿轮马达
KR101684124B1 (ko) * 2015-06-11 2016-12-07 현대자동차주식회사 엔진 열 관리 제어 방법
CN106275065A (zh) * 2016-08-12 2017-01-04 北京汽车股份有限公司 车辆、车辆的液压转向系统及其降温控制方法
DE112017000002B4 (de) * 2017-01-12 2019-03-21 Komatsu Ltd. Gebläseantriebssystem für eine baumaschine
CN107869383B (zh) * 2017-11-03 2020-10-02 吉林大学 汽车发动机热管理系统建模及控制方法
KR102316824B1 (ko) * 2017-11-17 2021-10-25 현대건설기계 주식회사 건설기계의 냉각장치
KR102540550B1 (ko) * 2018-09-04 2023-06-05 현대자동차주식회사 차량의 엔진 냉각수 온도 제어 방법
IT201900002827A1 (it) * 2019-02-27 2020-08-27 Elt Fluid S R L Apparato idraulico con turbina
IT201900020528A1 (it) * 2019-11-07 2021-05-07 Gazzera S R L Impianto di ventilazione ad azionamento oleodinamico
CN111485986B (zh) * 2020-03-26 2021-08-20 潍柴动力股份有限公司 发动机冷却系统的控制方法、控制装置及发动机冷却系统
DE102020216601B4 (de) * 2020-12-30 2023-03-02 Danfoss Power Solutions Inc. Ventilatorantriebssystem
CN114233674B (zh) * 2021-12-31 2024-04-02 北京中科科仪股份有限公司 一种磁悬浮分子泵过载保护方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225867A (ja) * 2003-01-27 2004-08-12 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2004347040A (ja) * 2003-05-22 2004-12-09 Kobelco Contstruction Machinery Ltd 作業機械の制御装置
JP2005076525A (ja) 2003-08-29 2005-03-24 Shin Caterpillar Mitsubishi Ltd ファン回転速度制御方法
WO2009001633A1 (ja) * 2007-06-25 2008-12-31 Komatsu Ltd. 作業車両および作業車両の制御方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951123A (ja) * 1982-09-20 1984-03-24 Toyota Motor Corp 内燃機関の冷却用電動フアンの運転制御方法
JPS63124820A (ja) * 1986-11-12 1988-05-28 Toyota Motor Corp 内燃機関の冷却フアンの回転速度制御装置
JPH0531209Y2 (ja) * 1987-04-16 1993-08-11
US6076488A (en) * 1997-03-17 2000-06-20 Shin Caterpillar Mitsubishi Ltd. Cooling device for a construction machine
JP4204137B2 (ja) * 1999-04-22 2009-01-07 株式会社小松製作所 冷却用ファンの駆動制御装置
JP4285866B2 (ja) 1999-12-22 2009-06-24 株式会社小松製作所 油圧駆動冷却ファン
JP4464644B2 (ja) * 2003-09-11 2010-05-19 キャタピラージャパン株式会社 ファン回転数制御方法
JP4439287B2 (ja) * 2004-02-19 2010-03-24 株式会社小松製作所 建設機械の冷却装置
JP4651467B2 (ja) * 2005-07-06 2011-03-16 株式会社小松製作所 冷却用油圧駆動ファンの制御装置および制御方法
JP4573751B2 (ja) * 2005-11-02 2010-11-04 日立建機株式会社 走行式作業機械の冷却ファン駆動装置
JP5119481B2 (ja) * 2006-11-30 2013-01-16 株式会社小松製作所 車両の冷却用ファンの制御装置
EP2270321A1 (en) * 2008-03-25 2011-01-05 Komatsu Ltd. Fan drive controlling device and construction machine
JP5292625B2 (ja) * 2008-03-31 2013-09-18 株式会社小松製作所 油圧駆動ファンの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225867A (ja) * 2003-01-27 2004-08-12 Kobelco Contstruction Machinery Ltd 作業機械の油圧制御装置
JP2004347040A (ja) * 2003-05-22 2004-12-09 Kobelco Contstruction Machinery Ltd 作業機械の制御装置
JP2005076525A (ja) 2003-08-29 2005-03-24 Shin Caterpillar Mitsubishi Ltd ファン回転速度制御方法
WO2009001633A1 (ja) * 2007-06-25 2008-12-31 Komatsu Ltd. 作業車両および作業車両の制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048757A (ja) * 2015-09-03 2017-03-09 三井造船株式会社 液化ガス昇圧装置、液化ガスの昇圧方法および燃料供給装置
WO2020059130A1 (ja) * 2018-09-21 2020-03-26 日立建機株式会社 油圧駆動ファン制御装置
JPWO2020059130A1 (ja) * 2018-09-21 2020-12-17 日立建機株式会社 油圧駆動ファン制御装置
US11396839B2 (en) 2018-09-21 2022-07-26 Hitachi Construction Machinery Co., Ltd. Hydraulic drive fan control device
CN110454373A (zh) * 2019-08-20 2019-11-15 华能国际电力股份有限公司 一种海水直流冷却水系统变频泵优化运行方法

Also Published As

Publication number Publication date
JP5202727B2 (ja) 2013-06-05
EP2412948A4 (en) 2017-05-17
US20110293439A1 (en) 2011-12-01
CN102362053B (zh) 2013-07-17
CN102362053A (zh) 2012-02-22
US8632314B2 (en) 2014-01-21
JPWO2010110059A1 (ja) 2012-09-27
EP2412948B1 (en) 2018-08-22
EP2412948A1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5202727B2 (ja) 冷却ファンの駆動装置及びファン回転数制御方法
KR20050094344A (ko) 팬회전수 제어방법
EP3176413B1 (en) Shovel
JP2009013632A (ja) 建設機械のエンジン制御装置
JP2008151211A (ja) 建設機械のエンジン始動システム
WO2014087978A1 (ja) 作業機械
JP2009281149A (ja) エンジン制御装置及びこれを備えた作業機械
WO2021054124A1 (ja) 油圧ユニット
EP3249111A1 (en) Method for controlling flow rate of hydraulic pump of construction machine
JP2008232045A (ja) インバータ駆動液圧装置
JP5206766B2 (ja) 油圧ユニット
JP7489766B2 (ja) 液圧駆動システム、それを備える電液アクチュエータユニット、及び制御装置
JP7553817B2 (ja) 油圧ユニット及び油圧装置
CN114270052B (zh) 工程机械
JP4022032B2 (ja) アクチュエータ、及び、アクチュエータの制御方法
JP2009216182A (ja) 油圧ユニット
JP2019049238A (ja) 建設機械の冷却装置
JP2005146878A (ja) 冷却ファン制御システム
CN202759406U (zh) 变频器驱动多电机控制系统的优化切换系统
JP2000303838A (ja) エンジン負荷制御装置
JP6727829B2 (ja) ポンプユニット及びポンプユニットの制御方法
JP6357492B2 (ja) 建設機械
JP5907843B2 (ja) フィンスタビライザの油圧駆動回路、フィンスタビライザのフィン角度制御方法
CN113235691B (zh) 一种挖掘机回转启动节能控制方法
JPH04143473A (ja) 油圧ポンプの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013183.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011505961

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010755859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE