WO2010108506A1 - Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften - Google Patents

Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften Download PDF

Info

Publication number
WO2010108506A1
WO2010108506A1 PCT/EP2009/002169 EP2009002169W WO2010108506A1 WO 2010108506 A1 WO2010108506 A1 WO 2010108506A1 EP 2009002169 W EP2009002169 W EP 2009002169W WO 2010108506 A1 WO2010108506 A1 WO 2010108506A1
Authority
WO
WIPO (PCT)
Prior art keywords
spp
pyrid
plants
formula
seed
Prior art date
Application number
PCT/EP2009/002169
Other languages
English (en)
French (fr)
Inventor
Heike Hungenberg
Peter Jeschke
Robert Velten
Wolfgang Thielert
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Priority to PCT/EP2009/002169 priority Critical patent/WO2010108506A1/de
Priority to EP09776471A priority patent/EP2410849A1/de
Priority to MX2011009916A priority patent/MX2011009916A/es
Priority to CN200980159532.7A priority patent/CN102448305B/zh
Priority to BRPI0924986A priority patent/BRPI0924986A8/pt
Priority to US13/259,937 priority patent/US8828907B2/en
Publication of WO2010108506A1 publication Critical patent/WO2010108506A1/de
Priority to ZA2011/06808A priority patent/ZA201106808B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings

Definitions

  • the present invention relates to novel drug combinations containing at least one known compound of formula (I) on the one hand and at least one other known active ingredient from the class of chitin synthesis inhibitors, the Molting hormone agonist or other classes on the other hand and very well for the control of animal Pests such as insects and unwanted acarids are suitable.
  • the invention also relates to methods for controlling animal pests on plants and seeds, the use of the active compound combinations according to the invention for the treatment of seed, a method for protecting seed and, not least, the seed treated with the active compound combinations according to the invention.
  • A represents pyrid-2-yl or pyrid-4-yl or pyrid-3-yl which is optionally substituted in the 6-position by fluorine, chlorine, bromine, methyl, trifluoromethyl or trifluoromethoxy or for pyridazin-3-yl, which is optionally substituted in the 6-position by chlorine or methyl or for pyrazine-3-yl or 2-chloro-pyrazin-5-yl or l, 3-thiazol-5-yl, which is optionally substituted in the 2-position by chlorine or methyl, or
  • A is a radical pyrimidinyl, pyrazolyl, thiophenyl, oxazolyl, isoxazolyl, 1,2,4-oxadiazolyl, isothiazolyl, 1, 2,4-triazolyl or 1,2,5-thiadiazolyl, which is optionally substituted by fluorine, chlorine, Bromine, cyano, nitro, C 1 -C 4 -alkyl (which is optionally substituted by fluorine and / or chlorine), C 1 -C 3 -alkylthio (which is optionally substituted by fluorine and / or chlorine), or C 1 -C 3 - Alkylsulfonyl (which is optionally substituted by fluorine and / or chlorine),
  • X is halogen, alkyl or haloalkyl
  • Y is halogen, alkyl, haloalkyl, haloalkoxy, azido or cyano and
  • R 1 is alkyl, haloalkyl, alkenyl, haloalkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, halocycloalkyl, alkoxy, alkoxyalkyl, or halocycloalkylalkyl,
  • the effect of the insecticidal compound of the formula (I) or of the active substances from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes is generally good. However, especially at low application rates and with certain pests, they do not always satisfy the needs of agricultural practice, and there is still a need for economically efficient and ecologically safe pest control.
  • insecticidal compounds include reducing the dosage amount; a substantial broadening of the spectrum of pests to be controlled including resistant pests; increased application security; a reduced toxicity to plants and thus a better plant tolerance; the control of pests at their various stages of development; a better behavior during the preparation of the insecticidal compounds, for example during milling or mixing, during their storage or during their use; a very favorable biocidal spectrum even at low concentrations with associated good compatibility by warm-blooded animals, fish and plants; and the achievement of an additional effect, for example, an algicidal, anthelmintic, avicidal, bactericidal, fungicidal, molluscicidal, nematicidal, plant-activating, rodenticidal or virucidal activity.
  • insecticidal compounds used in vegetative and generative plant propagation material include negligible phytotoxicity when applied to the seed and plant propagation material, compatibility with soil conditions (eg, as regards the binding of the compound to the soil), a systemic effect the plant, have no negative impact on germination and efficacy throughout the life cycle of the corresponding pest.
  • the object of the invention is to satisfy one or more of the above-mentioned claims, e.g. the lowering of the dosage amount, a widening of the combinable spectrum of pests, including resistant pests, and in particular the specific requirements for applicability to vegetative and generative plant propagation material.
  • chitin synthesis inhibitors Molting hormone agonists or other classes: - - a) inhibitors of chitin biosynthesis, such as benzoyl ureas such
  • Chlorofluorazuron (known from DE-A 28 18 830)
  • Flufenoxuron (known from EP-A 0 161 019)
  • Flucycloxuron (known from P. Scheites, T.W. Hofinan, A.C. Grosscurt, BCPC Conf. Pests Dis. 1988, 2, 559-666, EP-A 00117320)
  • Buprofezin (Known from Proc. Br. Crop Prot. Conf. - Pests Dis., 1981, 1, 59)
  • juvenile hormones mimetics such as pyriproxifen (known from GB-A 2 140 010)
  • Molting hormone (ecdysone) agonists for example diacylhydrazines such as
  • Chromafenozides (known from EP 00496342)
  • insecticidal and acaricidal activity of the active compound combinations according to the invention is substantially higher than the sum of the effects of the individual active compounds. There is an unpredictable true synergistic effect and not just an action supplement.
  • the synergistic effect of the active compound combinations according to the invention of a compound of formula (I) and an active ingredient from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes extends the range of action of the compound of formula (I) and the active ingredient from the class of Chitin synthesis inhibitors, Molting hormone agonists or other classes primarily by reducing the dosage amount and by expanding the range of combinable pests.
  • the active compound combinations according to the invention can show even more surprising advantages, including increased safety in use; a reduced phytotoxicity and thus a better plant compatibility; the control of pests at their various stages of development; better behavior during the preparation of the insecticidal compounds, for example during milling or mixing, during their storage or during their use; a very advantageous biocidal spectrum even at low concentrations with associated good compatibility by warm-blooded animals, fish and plants; and the achievement of an additional effect, for example, an algicidal, anthelmintic, avicidal, bactericidal, fungicidal, molluscicidal, nematicidal, plant-activating, rodenticidal or virucidal activity.
  • the active compound combinations according to the invention are particularly suitable for protecting seeds and / or sprouts and leaves of a plant grown from the seeds against damage by pests.
  • the active compound combinations according to the invention thus show a negligible phytotoxicity when applied to the plant propagation material, a compatibility with soil conditions (eg as regards the binding of the compound to the soil), a systemic effect in the plant, no negative influence on the germination and activity during the corresponding pest lifecycle.
  • the active compound combinations according to the invention contain at least one of the above-listed active compounds 1 to 22 from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes.
  • the active compound combinations according to the invention preferably contain precisely one compound of the formula (I) and exactly one of the above-listed active compounds 1 to 22 from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes.
  • Also preferred are combinations of active ingredients which contain a compound of the formula (I) and two of the above-listed active compounds 1 to 22 from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes. Preference is furthermore given to mixtures which comprise two compounds of the formula (I) and one of the above-listed active compounds 1 to 22 from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes.
  • Preferred subgroups for the compounds of the above-mentioned formula (I) in the active compound combinations according to the invention are listed below with at least one of the above-listed active compounds 1 to 22 from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes with the proviso that 4 - ⁇ [(6-chloro-pyrid-3-yl) methyl] (methyl) amino ⁇ furan-2 (5H) -one and 4 - ⁇ [(6-chloropyrid-3-yl) methyl] (Cyclopropyl) amino ⁇ furan-2 (5H) -one are excluded.
  • A is preferably 6-fluoropyrid-3-yl, 6-chloropyrid-3-yl, 6-bromo-pyrid-3-yl, 6-methyl-pyrid-3-yl, 6-trifluoromethyl-pyridine 3-yl, 6-trifluoromethoxypyrid-3-yl, 6-chloro-1, 4-pyridazin-3-yl, 6-methyl-1,4-pyridazin-3-yl, 2-chloro-1,3-thiazole 5-yl or 2-methyl-l, 3-thiazol-5-yl, 2-chloropyrimidin-5-yl, 2-trifluoromethyl-pyrimidin-5-yl, 5,6-difluoropyrid-3-yl, 5-Chloro-6-fluoro-pyrid-3-yl, 5-bromo-6-fluoro-pyrid-3-yl, 5-iodo-6-fluoro-pyrid-3-yl, 5-fluoro-6-chloro pyrid-3-y
  • R 1 preferably represents optionally fluorine-substituted Q-Cs-alkyl, C 2 -Cs-alkenyl, C 3 -C 5 -cycloalkyl, C 3 -C 5 -cycloalkylalkyl or C r C 5 -alkoxy.
  • R 1 particularly preferably represents methyl, methoxy, ethyl, propyl, vinyl, allyl, propargyl, cyclopropyl, 2-fluoroethyl, 2,2-difluoroethyl or 2-fluorocyclopropyl.
  • R 1 very particularly preferably represents methyl, cyclopropyl, methoxy, 2-fluoroethyl or 2,2-difluoroethyl.
  • A is most preferably the radical 6-chloro-pyrid-3-yl or 5-fluoro-6-chloro-pyrid-3-yl
  • R 1 is most preferably methyl, 2-fluoroethyl or 2,2-difluoro-ethyl.
  • A is 6-chloro-pyrid-3-yl
  • R 1 is methyl
  • R 1 is ethyl
  • R 1 is cyclopropyl. In another highlighted group of compounds of formula (I), R 1 is 2-fluoroethyl.
  • R 1 is 2,2-difluoroethyl.
  • a preferred subgroup of the compounds of the formula (I) are those of the formula (I-a)
  • B is pyrid-2-yl or pyrid-4-yl or pyrid-3-yl, which may optionally be in 6-
  • Position is substituted by fluorine, chlorine, bromine, methyl, trifluoromethyl or trifluoromethoxy or for pyridazin-3-yl which is optionally substituted in the 6-position by chlorine or methyl or for pyrazine-3-yl or for 2-chloro pyrazine-5-yl or for l, 3-thiazol-5-yl which is optionally substituted in the 2-position by chlorine or methyl,
  • R 2 is haloalkyl, haloalkenyl, halocycloalkyl or halocycloalkylalkyl,
  • B is preferably 6-fluoropyrid-3-yl, 6-chloropyrid-3-yl, 6-bromo-pyrid-3-yl, 6-methyl-pyrid-3-yl, 6-trifluoromethyl-pyridine 3-yl, 6-trifluoromethoxypyrid-3-yl, 6-chloro-1, 4-pyridazin-3-yl, 6-methyl-1,4-pyridazin-3-yl, 2-chloro-1,3-thiazole 5-yl or 2-methyl-1,3-thiazol-5-yl.
  • R 2 preferably represents fluorine-substituted Ci-C 5 alkyl, C 2 -C 5 alkenyl, C 3 -C 5 - cycloalkyl or C 3 -C 5 cycloalkylalkyl.
  • B particularly preferably represents the radical 6-fluoropyrid-3-yl, 6-chloropyrid-3-yl, 6
  • R 2 particularly preferably represents 2-fluoroethyl, 2,2-difluoroethyl, 2-fluorocyclopropyl.
  • B is very particularly preferably the radical 6-chloropyrid-3-yl.
  • R 2 is most preferably 2-fluoro-ethyl or 2,2-difluoro-ethyl.
  • B is 6-chloro-pyrid-3-yl
  • R 2 is 2-fluoroethyl
  • R 2 is 2,2-difluoroethyl.
  • Another preferred subgroup of the compounds of the formula (I) are those of the formula (Ib)
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl or alkoxy
  • D is preferably one of the radicals 5,6-difluoropyrid-3-yl, 5-chloro-6-fluoropyrid-3-yl, 5-bromo-6-fluoropyrid-3-yl, 5-iodo 6-fluoro-pyrid-3-yl, 5-fluoro-6-chloro-pyrid-3-yl, 5,6-dichloro-pyrid-3-yl, 5-bromo-6-chloro-pyrid-3-yl , 5-iodo-6-chloro-pyrid-3-yl, 5-iodo-6-chloro-pyrid-3-yl, 5-fluoro-6-bromo-pyrid-3-yl, 5-chloro-6-bromo-pyrid-3-yl, 5,6-dibromo-pyrid 3-yl, 5-fluoro-6-iodo-pyrid-3-yl, 5-chloro-6-iodo-pyrid-3-yl
  • R 3 is preferably C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl or C 3 -C 4 -cycloalkyl.
  • D is more preferably 5-fluoro-6-chloro-pyrid-3-yl, 5,6-dichloro-pyrid-3-yl, 5-bromo-6-chloro-pyrid-3-yl, 5-fluoro-6 bromo-pyrid-3-yl, 5-chloro-6-bromo-pyrid-3-yl, 5,6-dibromo-pyrid-3-yl, 5-methyl-6-chloro-pyrid-3-yl, 5 Chloro-6-iodo-pyrid-3-yl or 5-difluoromethyl-6-chloro-pyrid-3-yl.
  • R 3 particularly preferably represents C 1 -C 4 -alkyl.
  • D is most preferably 5-fluoro-6-chloro-pyrid-3-yl or 5-fluoro-6-bromo-pyrid-3-yl.
  • R 3 very particularly preferably represents methyl, ethyl, propyl, vinyl, allyl, propargyl or cyclopropyl.
  • D is most preferably 5-fluoro-6-chloro-pyrid-3-yl.
  • R 3 most preferably represents methyl or cyclopropyl.
  • D is 5,6-dichloropyrid-3-yl
  • D is 5-chloro-6-iodo-pyrid-3-yl
  • R 3 is methyl
  • R 3 is ethyl
  • R 3 is cyclopropyl
  • Another preferred subgroup of the compounds of the formula (I) are those of the formula (I-c)
  • R 4 is haloalkyl, haloalkenyl, halocycloalkyl or halocycloalkylalkyl.
  • E is preferably one of the radicals 5,6-difluoropyrid-3-yl, 5-chloro-6-fluoropyrid-3-yl, 5
  • R 4 preferably represents fluorine-substituted Ci-C 5 alkyl, C 2 -C 5 alkenyl, C 3 -C 5 - cycloalkyl or C 3 -C 5 cycloalkylalkyl.
  • E is more preferably 2-chloro-pyrimidin-5-yl, 5-fluoro-6-chloro-pyrid-3-yl, 5,6-dichloro-pyrid-3-yl, 5-bromo-6-chloro-pyrid 3-yl, 5-fluoro-6-bromo-pyrid-3-yl, 5-chloro-6-bromo-pyrid-3-yl, 5,6-dibromo-pyrid-3-yl, 5-methyl-6 -chloro-pyrid-3-yl, 5-chloro-6-iodo-pyrid-3-yl or 5-difluoromethyl-6-chloro-pyrid-3-yl.
  • R 4 particularly preferably represents 2-fluoroethyl, 2,2-difluoroethyl, 2-fluoro-cyclopropyl.
  • E is most preferably 5-fluoro-6-chloro-pyrid-3-yl.
  • R 4 is very particularly preferably 2-fluoroethyl or 2,2-difluoroethyl.
  • E is 5-bromo-6-chloro-pyrid-3-yl
  • E is 5-chloro-6-iodo-pyrid-3-yl
  • R 4 is 2-fluoroethyl
  • R 4 is 2,2-difluoroethyl.
  • a preferred subgroup of the compounds of the formula (I) are those of the formula (I-d)
  • G is pyrid-2-yl or pyrid-4-yl or pyrid-3-yl which is optionally substituted in the 6-position by fluorine, chlorine, bromine, methyl, trifluoromethyl or trifluoromethoxy or for pyridazin-3-yl, which is optionally substituted in the 6-position by chlorine or methyl thyl or for pyrazine-3-yl or for 2-chloro-pyrazin-5-yl or for l, 3-thiazol-5-yl which is optionally substituted in the 2-position by chlorine or methyl, and
  • R 5 is C r C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C 3 -C 4 cycloalkyl or C r C 4 alkoxy;
  • G preferably represents 6-fluoropyrid-3-yl, 6-chloropyrid-3-yl, 6-bromo-pyrid-3-yl, 6-methyl-pyrid-3-yl, 6-trifluoromethyl-pyridine 3-yl, 6-trifluoromethoxypyrid-3-yl, 6-chloro-1, 4-pyridazin-3-yl, 6-methyl-1,4-pyridazin-3-yl, 2-chloro-1,3-thiazole 5-yl or 2-methyl-1,3-thiazol-5-yl.
  • R 5 is preferably C r C 4 alkyl, C r alkoxy, C 2 -C 4 alkenyl, C 2 -C 4 -alkynyl or C 3 -C 4 - cycloalkyl.
  • G particularly preferably represents the radical 6-fluoropyrid-3-yl, 6-chloropyrid-3-yl, 6-bromopyrid-3-yl, 6-chloro-1, 4-pyridazin-3-yl, 2 chloro-l, 3-thiazol-5-yl,
  • R 5 particularly preferably represents methyl, methoxy, ethyl, propyl, vinyl, allyl, propargyl or cyclopropyl.
  • G is very particularly preferably the radical 6-chloropyrid-3-yl.
  • R 5 very particularly preferably represents methyl or cyclopropyl.
  • G is 6-chloro-1, 4-pyridazin-3-ylyl
  • G is 2-chloro-1,3-thiazol-5-yl
  • R > 5 c is methyl
  • R 5 is cyclopropyl
  • the active compound combinations according to the invention preferably comprise at least one of the compounds of the formula (I) which is selected from the group consisting of the compounds of the abovementioned formulas (Ia), (Ib), (Ic) or (Id), with the proviso that 4 - ⁇ [(6-chloropyrid-3-yl) methyl] (methyl) amino ⁇ furan-2 (5H) -one and 4 - ⁇ [(6-chloropyrid-3-yl) methyl] (cyclopropyl) amino ⁇ furan-2 (5H) -one are excluded, and one of the above-listed individual compounds 1 to 22 from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes.
  • the active compound combinations according to the invention furthermore preferably comprise at least one of the compounds of the formula (I) which is selected from the group consisting of the compounds of the abovementioned formulas (Ia), (Ib) or (Ic) and one of the active compounds 1 to 1 listed above 22 from the class of chitin synthesis inhibitors, Molting hormone agonists or other classes.
  • the active compound combinations according to the invention particularly preferably comprise at least one of the compounds of the formula (I) in which A is selected from the radicals 6-fluoropyrid-3-yl, 6-chloropyrid-3-yl, 6-bromo-pyrid-3-yl, 5-fluoro-6-chloro-pyrid-3-yl, 2-chloro-1,3-thiazol-5-yl and 5, 6-dichloro-pyrid-3-yl and R 1 is selected from the groups methyl, cyclopropyl, methoxy, 2-fluoroethyl or 2,2-difluoro-ethyl, with the proviso that 4 - ⁇ [(6-chloropyrid-3 - yl) methyl] (methyl) amino ⁇ furan-2 (5H) -one and 4 - ⁇ [(6-chloropyrid-3-yl) methyl] (cyclopropyl) amino ⁇ furan-2 (5H) -one excluded and one of the above
  • the active compound combinations according to the invention very particularly preferably comprise at least one compound of the formula (I) which is selected from the group consisting of the compounds of the formulas (I-1), (1-2), (1-3), (1-4 ), (1-5), (1-6), (1-7) and (1-8), and one of the above-listed 1 to 22 active ingredients from the class of chitin synthesis inhibitors, Molting Hormone Agonists or other classes.
  • each combination represents a preferred erf ⁇ ndungswashe embodiment per se.
  • each combination represents a preferred erfmdungswashe embodiment per se.
  • each combination represents a preferred erf ⁇ ndungswashe embodiment per se.
  • the combinations according to the invention comprise an active compound of the formula (I) and one of the above-listed active compounds 1 to 22 from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes in the following preferred and particularly preferred mixing ratios:
  • Particularly preferred mixing ratio 25: 1 to 1:25
  • the mixing ratios are based on weight ratios.
  • the ratio is to be understood as compound of the formula (I): active ingredient 1 to 22.
  • Further mixing ratios of the compound of the formula (I) to one of the above-listed individual active ingredients 1 to 22 from the class of the Chinese synthesis inhibitors, the Molting hormone agonists or other classes are given below and sorted by increasing preference of the mixing ratios: 95: 1 to 1:95, 95: 1 to 1:90, 95: 1 to 1:85, 95: 1 to 1:80, 95: 1 to 1:75, 95: 1 to 1:70, 95: 1 to 1: 65, 95: 1 to 1:60, 95: 1 to 1:55, 95: 1 to 1:50, 95: 1 to 1:45, 95: 1 to 1:40, 95: 1 to 1:35, 95: 1 to 1:30, 95: 1 to 1:25, 95: 1 to 1:20, 95: 1 to 1:15, 95: 1 to 1:10, 95: 1 to 1: 5, 95: 1 to 1: 4, 95: 1
  • the compounds of formula (I) or the class of chitin synthesis inhibitors, molecular hormone agonists or other classes having at least one basic center are capable of forming, for example, acid addition salts, for example with strong inorganic acids such as mineral acids , for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids such as unsubstituted or substituted, eg halogen-substituted, C 1 -C 4 -alkanecarboxylic acids, for example acetic acid, saturated or unsaturated dicarboxylic acids, for example oxalic acid, Malonic acid, succinic acid, maleic acid, fumaric acid and phthalic acid, hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid and citric acid, or benzoic acid, or with organic sulfonic acids such as unsubstit
  • the compounds of formula (I) or the class of chitin synthesis inhibitors, Molting hormone agonists or other classes having at least one acidic group are capable of forming, for example, salts with bases, for example metal salts such as alkali or alkaline earth salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a lower mono-, di- or trialkylamine, for example ethyl, diethyl, triethyl or Dimethylpropylamine, or a lower mono-, di- or trihydroxyalkylamine, for example mono-, di- or triethanolamine.
  • bases for example metal salts such as alkali or alkaline earth salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a lower mono-, di- or trialkylamine, for example ethy
  • Agrochemically advantageous salts are preferred in the context of the invention.
  • the Molting hormone agonists or other classes in free form and in the form of their salts
  • reference to the free ones should be given above and below
  • Compounds of formula (I) or free drugs from the class of chitin synthesis inhibitors the Molting hormone agonists or other classes or their salts are understood to mean that the corresponding salts or the free compounds of formula (I) or the free agents of the class of chitin synthesis inhibitors, Molting hormone agonists or other classes are included, as appropriate and appropriate.
  • This also applies correspondingly to tautomers of the compounds of the formula (I) or of the active compounds from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes and to their salts.
  • the term "combination of active ingredients” for various combinations of compounds of formula (I) and active ingredients from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes for example in the form of a single ready mix ("Ready Mix "), in a combined spray mixture, which is composed of separate formulations of the individual active substances, eg a tank mix or in a combined use of the individual active substances, if these are used separately.
  • Ready Mix a combined spray mixture, which is composed of separate formulations of the individual active substances, eg a tank mix or in a combined use of the individual active substances, if these are used separately.
  • the order of application of the compounds of formula (I) and of the class of chitin synthesis inhibitors, of the Molting hormone agonists or other classes is not critical to the practice of the present invention.
  • the application rates can be varied within a relatively wide range, depending on the mode of administration.
  • the application rate of the active compound combinations according to the invention is in the treatment of parts of plants, e.g.
  • Leaves from 0.1 to 10,000 g / ha preferably from 10 to 1,000 g / ha, more preferably from 50 to 300g / ha (when applied by pouring or drop, the application rate can even be reduced, especially if inert substrates such as rock wool or Perlite can be used); in the seed treatment of 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, most preferably from 2.5 to 12.5 g per 100 kg of seed; in the soil treatment from 0.1 to 10,000 g / ha, preferably from 1 to 5,000 g / ha.
  • the active compound combinations according to the invention can be used to protect plants within a certain period of time after treatment against infestation by said animal pests.
  • the period of time within which protection is afforded generally ranges from 1 to 28 days, preferably from 1 to 14 days, more preferably from 1 to 10 days, most preferably from 1 to 7 days after treatment of the plants with the active ingredients or up to 200 days after seed treatment.
  • the active compound combinations according to the invention are suitable with good plant tolerance, favorable warm-blooded toxicity and good environmental compatibility for the protection of plants and plants
  • Plant organs to increase crop yields, to improve the quality of the crop and to control animal pests, in particular insects, arachnids, helminths,
  • the above mentioned pests include: From the order of the Anoplura (Phthiraptera) eg Damalinia spp., Haematopinus spp., Lynognathus spp., Pediculus spp., Trichodectes spp.
  • Anoplura eg Damalinia spp., Haematopinus spp., Lynognathus spp., Pediculus spp., Trichodectes spp.
  • arachnids e.g. Acarus siro, Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp.
  • Eriophyes spp. Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latrodectus mactans, Metatetranychus spp., Oligonychus spp., Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora, Polyphago- tarsonemus latus, Psoroptes spp., Rhipicephalus spp , Rhizoglyphus spp., Sarcoptes spp., Sco ⁇ io maurus, Stenotarsonemus spp., Tarsonemus spp., Tetranychus spp., Vasates lycopersici.
  • Ceuthorhynchus spp. Ceuthorhynchus spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Curculio spp., Cryptorhynchus lapathi, Dermestes spp., Diabrotica spp., Epilachna spp., Faustinus cubae, Gibbium psylloides, Heteronychus arator, Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypothenemus spp., Lachnosterna consanguinea, Leptinotarsa decemlineata, Lissorhoptrus oryzophilus, Lixus spp., Lyctus spp., Meligethes aeneus, Melolontha melolontha, Migdolus spp., Mono
  • Gastrophilus spp. Hylemyia spp., Hyppobosca spp., Hypoderma spp., Liriomyza spp. Lucilia Spp., Musca spp., Nezara spp., Oestrus spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Stomoxys spp., Tabanus spp., Tannia spp., Tipula paludosa, Wohlfahrtia spp.
  • Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Succinea spp.
  • helminths e.g. Ancylostoma duodenale, Ancylostoma ceylanicum, Acyostoma braziliensis, Ancylostoma spp., Ascaris lubricoides, Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp, Dicytocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus
  • protozoa such as Eimeria
  • Eimeria protozoa
  • Heliopeltis spp. Horcias nobilellus, Leptocorisa spp., Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus seriatetus, Pseudacysta persea, Rhodnius spp , Sahlbergella singularis, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
  • Psylla spp. Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhapa- losiphum spp., Saissetia spp., Scaphoides titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Tenalaphara malayensis, Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes vaporariorum, Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitif OLII.
  • Hymenoptera e.g. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
  • Orthoptera e.g. Acheta domesticus, Blatta orientalis, Blattella germanica, Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta americana, Schistocerca gregaria.
  • siphonaptera e.g. Ceratophyllus spp., Xenopsylla cheopis.
  • Thysanura e.g. Lepisma saccharina.
  • the plant parasitic nematodes include e.g. Anguina spp., Aphelenchoides spp., Belonoclampus spp., Bursaphelenchus spp., Ditylenchus dipsaci, Globodera spp., Heliocotylenchus spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, Ro- Tylenchus spp., Trichodorus spp., Tylenchorhynchus spp., Tylenchulus spp., Tylenchulus semipetnetrans, Xiphinema spp.
  • Anguina spp. Aphelenchoides spp., Belonoclampus spp., Bursaphelenchus spp., Ditylenchus dipsaci, Globod
  • the active compound combinations according to the invention may optionally also be used in certain concentrations or application rates as herbicides, safeners, growth regulators or agents for improving plant properties, or as microbicides, for example as fungicides, antimycotics, bactericides, viricides (including anti-viral agents) or as anti-MLO agents ( Mycoplasma-like-organism) and RLO (Rickettsia-like-organism).
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, active ingredient impregnated synthetic materials, fertilizers and micro-encapsulants in polymeric materials.
  • customary formulations such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, active substance-impregnated natural products, active ingredient impregnated synthetic materials, fertilizers and micro-encapsulants in polymeric materials.
  • formulations are prepared in a known manner, e.g. by mixing the active compounds with extenders, ie liquid solvents and / or solid carriers, if appropriate using surface-active agents, ie emulsifiers and / or dispersants and / or foam-forming agents.
  • extenders ie liquid solvents and / or solid carriers
  • surface-active agents ie emulsifiers and / or dispersants and / or foam-forming agents.
  • Excipients which can be used are those which are suitable for imparting special properties to the composition itself and / or preparations derived therefrom (for example spray liquor, seed dressing), such as certain technical properties and / or specific biological properties.
  • Typical auxiliaries are: extenders, solvents and carriers.
  • Suitable extenders are, for example, water, polar and non-polar organic chemical liquids, for example from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), alcohols and polyols (which may also be substituted). ized, etherified and / or esterified), ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly) ethers, simple and substituted amines, atnides, lactams (such as N-alkylpyrrolidones) and Lactones, sulfones and sulfoxides (such as dimethylsulfoxide).
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted.
  • Aromatics such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic
  • Hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as
  • the carrier means a natural or synthetic, organic or inorganic substance which may be solid or liquid, with which the active ingredients are mixed or combined for better applicability, in particular for application to plants or plant parts or seeds.
  • the solid or liquid carrier is generally inert and should be useful in agriculture.
  • Suitable solid or liquid carriers are:
  • ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic minerals, such as finely divided silica, alumina and silicates, as solid carriers for granules in question: eg broken and fractionated natural rocks such Calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as paper, sawdust, coconut shells, corn cobs and tobacco stalks;
  • suitable emulsifiers and / or foam formers are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates and protein hydrolysates;
  • POE ethers fatty and / or POP POE adducts, POE and / or POP polyol derivatives, POE and / or POP sorbitan or sugar adducts, alkyl or aryl sulfates, sulfonates and phosphates or the corresponding PO-ether adducts.
  • Further suitable oligo- or polymers for example starting from vinylic monomers, from acrylic acid, from EO and / or PO alone or in combination with, for example, (poly) alcohols or (poly) amines.
  • Further Lignin and its sulfonic acid derivatives, simple and modified celluloses, aromatic and / or aliphatic sulfonic acids and their adducts with formaldehyde can be used.
  • Adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-type polymers can be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • additives may be fragrances, mineral or vegetable optionally modified oils, waxes and nutrients (also trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present.
  • the active substance content of the application forms prepared from the commercial formulations can vary within wide ranges.
  • the active ingredient concentration of the use forms is in the range of 0.00000001 to 97 wt .-% of active ingredient, preferably in the range of 0.0000001 to 97 wt .-%, particularly preferably in the range of 0.000001 to 83 wt .-% or 0, 000001 to 5 wt .-% and most preferably in the range of 0.0001 to 1 wt .-%.
  • the active compound combinations according to the invention can be present in their commercially available formulations and in the formulations prepared from these formulations in admixture with other active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances, herbicides, safeners, fertilizers or semiochemicals.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth-regulating substances, herbicides, safeners, fertilizers or semiochemicals.
  • a mixture with other known active ingredients, such as herbicides, fertilizers, growth regulators, safeners, semiochemicals, or with agents for improving the plant properties is possible.
  • active compound combinations according to the invention can be present as insecticides in their commercial formulations and in the forms of use prepared from these formulations in admixture with synergists.
  • Synergists are compounds, through which the effect of the active ingredients is increased, without the added synergist itself must be active.
  • the active compound combinations according to the invention can also be present in their commercial formulations and in the forms of use prepared from these formulations in mixtures with inhibitors which inhibit degradation of the active ingredient after application in the environment of the plant, on the surface of parts of plants or in plants Reduce tissue.
  • the application is done in a custom forms adapted to the application forms.
  • plants and parts of plants can be treated.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • Plant parts are to be understood as meaning all aboveground and underground parts and organs of the plants, such as shoot, leaf, flower and root, by way of example leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example fruits, seeds, cuttings, tubers, rhizomes, offshoots, seeds, bulbs, sinkers and shoots.
  • the treatment according to the invention of the plants and plant parts with the active compound combinations takes place directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, evaporating, atomizing, spreading, brushing, injecting and in propagating material, in particular in seeds, further by single or multilayer coating.
  • plants which can be treated according to the invention mention may be made of the following: cotton, flax, grapevine, fruits, vegetables, such as Rosaceae sp. (for example, pome fruits such as apple and pear, but also drupes such as apricots, cherries, almonds and peaches and soft fruits such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp. , Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp.
  • Rosaceae sp. for example, pome fruits such as apple and pear, but also drupes such as apricots, cherries, almonds and peaches and soft fruits such as strawberries
  • Rosaceae sp. for example, pome fruits such as apple and pe
  • Rubiaceae sp. for example, coffee
  • Theaceae sp. Sterculiceae sp.
  • Rutaceae sp. for example, lemons, organs and grapefruit
  • Solanaceae sp. for example tomatoes
  • Liliaceae sp. for example, Asteraceae sp.
  • Umbelliferae sp. Cmciferae sp., Chenopodiaceae sp., Cucurbitaceae sp. (for example cucumber), Alliaceae sp. leek, onion), Papilionaceae sp.
  • Main crops such as Gramineae sp. (for example corn, turf, cereals such as wheat, rye, rice, barley, oats, millet and triticale), Asteraceae sp. (for example, sunflower), Brassicaceae sp. (for example, white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes and rapeseed, mustard, horseradish and cress), Fabacae sp. (for example, bean, peanuts), Papilionaceae sp. (for example, soybean), Solanaceae sp. (for example potatoes), Chenopodiaceae sp. (for example, sugar beet, fodder beet, Swiss chard, beet); Useful plants and ornamental plants in the garden and forest; and each genetically modified species of these plants.
  • Gramineae sp. for example corn, turf, cereals such as wheat, rye, rice
  • the active compound combinations according to the invention are suitable for the treatment of seed.
  • This phase is particularly critical, as the roots and shoots of the growing plant are particularly sensitive and even minor damage can lead to the death of the entire plant. There is therefore a particular interest in protecting the seed and the germinating plant by the use of suitable agents.
  • the present invention therefore also relates, in particular, to a method for protecting seed and germinating plants from attack by pests by treating the seed with a combination of active substances according to the invention.
  • the method according to the invention for the protection of seeds and germinating plants from infestation by pests comprises a method in which the seed is treated at the same time with an active ingredient of the formula (I) and one of the above individually listed active compounds 1 to 22 from the class of chitin synthesis inhibitors, the modifying hormone agonists or other classes.
  • the invention also comprises a process in which the seed is treated at different times with an active ingredient of formula (I) and one of the above-listed active ingredients 1 to 22 from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes .
  • the invention also relates to the use of the active ingredient combinations according to the invention for the treatment of seed for the protection of the seed and the resulting plant from pests.
  • the invention relates to seed which has been treated for protection against pests with a combination of active substances according to the invention.
  • the invention also relates to seed treated at the same time with an active ingredient of the formula (I) and one of the above-listed active ingredients 1 to 22 from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes.
  • the invention further relates to seed which has been treated at different times with an active ingredient of the formula (I) and one of the above-listed active ingredients 1 to 22 from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes.
  • the individual active ingredients of agent according to the invention may be contained in different layers on the seed.
  • the layers which contain an active substance of the formula (I) and one of the active ingredients 1 to 22 listed individually from the class of the chitin synthesis inhibitors, the Molting hormone agonists or other classes may optionally be separated by an intermediate layer .
  • the invention also relates to seeds in which an active ingredient of the formula (I) and one of the above-listed active ingredients 1 to 22 from the class of chitin synthesis inhibitors, the Molting hormone agonists or other classes as part of an enclosure or as additional layer or further layers are applied in addition to an enclosure.
  • One of the advantages of the present invention is that because of the particular systemic properties of the active compound combinations according to the invention, the treatment of the seed with these active ingredient combinations not only protects the seed itself, but also the resulting plants after emergence from pests. In this way, the immediate treatment of the culture at the time of sowing or shortly afterwards can be omitted.
  • Another advantage consists in the synergistic increase of the insecticidal activity of the active compound combinations according to the invention over the insecticidal single active substance, which goes beyond the expected efficacy of the two individually applied active ingredients. Also advantageous is the synergistic increase in the fungicidal activity of the invention Combination of active ingredients compared to the fungicidal single active substance, which goes beyond the expected efficacy of the individually applied drug. This allows optimization of the amount of active ingredients used.
  • the active compound combinations according to the invention can be used in particular also in transgenic seed, wherein the plants resulting from this seed are capable of expressing a protein directed against pests.
  • certain pests can already be detected by the expression of e.g. insecticidal protein are controlled, and are additionally protected by the active compound combinations according to the invention from damage.
  • the active compound combinations according to the invention are suitable for the protection of seed of any plant variety as already mentioned above, which is used in agriculture, in the greenhouse, in forests or in horticulture.
  • these are corn, peanut, canola, rapeseed, poppy, soybean, cotton, turnip (eg sugarbeet and fodder beet), rice, millet, wheat, barley, oats, rye, sunflower, tobacco, potatoes or vegetables ( eg tomatoes, cabbages).
  • the active compound combinations according to the invention are likewise suitable for the treatment of the seed of fruit plants and vegetables as already mentioned above. Of particular importance is the treatment of the seeds of maize, soya, cotton, wheat and canola or rapeseed.
  • transgenic seed with a combination of active substances according to the invention is of particular importance.
  • the heterologous genes in transgenic seed can originate from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly useful for the treatment of transgenic seed containing at least one heterologous gene derived from Bacillus sp. and whose gene product shows activity against corn borer and / or corn rootworm. Most preferably, this is a heterologous gene derived from Bacillus thuringiensis.
  • the active ingredient combination according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a condition that is so stable that no damage occurs during the treatment.
  • the treatment of the seed at any time between harvest and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • the agents according to the invention can be applied directly, ie without containing further components and without being diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
  • the active compounds which can be used according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • formulations are prepared in a known manner by mixing the active ingredients with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • conventional additives such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, CI. Pigment Red 112 and CI. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are alkylnaphthalene sulfonates such as diisopropyl or diisobutylnaphthalene sulfonates.
  • Suitable dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active compounds.
  • nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants are, in particular, ethylene oxide-propylene oxide, block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • all substances which can be used for such purposes in agrochemical compositions can be present in the seed dressing formulations which can be used according to the invention.
  • examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly dispersed silicic acid.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds, including seed of transgenic plants. In this case, additional synergistic effects may occur in interaction with the substances formed by expression.
  • the procedure for pickling is to place the seed in a blender which contains the desired amount of pickling agent. emulsions added either as such or after prior dilution with water and mixed until uniform distribution of the formulation on the seed.
  • a drying process follows.
  • the treatment method according to the invention can be used for the treatment of genetically modified organisms (GMOs), eg. As plants or seeds are used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene essentially means a gene which is provided or assembled outside the plant and which when introduced into the nuclear genome, the chloroplast genome or the hypochondria genome confers new or improved agronomic or other properties to the transformed plant expressing a protein or polypeptide of interest or that it is downregulating or shutting down another gene present in the plant or other genes present in the plant (for example by means of antisense technology, cosuppression technology or RNAi technology [RNA Interference]) ,
  • a heterologous gene present in the genome is also called a transgene.
  • a transgene defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects.
  • the following effects are possible, which go beyond the expected effects: reduced application rates and / or extended spectrum of action and / or increased efficacy of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low Temperatures, increased tolerance to dryness or water or soil salinity, increased flowering, harvesting, ripening, higher yields, larger fruits, greater plant height, intense green color of the leaf, earlier flowering, higher quality and / or higher nutritional value of the harvested products, higher Sugar concentration in the fruits, better storage and / or processability of the harvested products.
  • the active compound combinations according to the invention can also exert a strengthening effect on plants. They are therefore suitable for mobilizing the plant defense system against attack by undesirable phytopathogenic fungi and / or microorganisms and / or viruses. This may optionally be one of the reasons for the increased effectiveness of the combinations according to the invention, for example against fungi.
  • Plant-strengthening (resistance-inducing) substances in the present context should also mean those substances or combinations of substances which are able to stimulate the plant defense system in this way, that the treated plants, when subsequently inoculated with undesirable phytopathogenic fungi and / or microorganisms and / or viruses, have a considerable degree of resistance to these undesired phytopathogenic fungi and / or microorganisms and / or viruses.
  • phytopathogenic fungi, bacteria and viruses are understood to be undesirable phytopathogenic fungi and / or microorganisms and / or viruses.
  • the substances according to the invention can therefore be employed for the protection of plants against attack by the mentioned pathogens within a certain period of time after the treatment.
  • the period of time over which a protective effect is achieved generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active substances.
  • Plants and plant varieties which are preferably treated according to the invention include all plants which have genetic material conferring on these plants particularly advantageous, useful features (whether obtained by breeding and / or biotechnology).
  • Plants and plant varieties which are also preferably treated according to the invention are resistant to one or more biotic stressors, i. H. These plants have an improved defense against animal and microbial pests such as nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and / or viroids.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are resistant to one or more abiotic stress factors.
  • Abiotic stress conditions may include, for example, drought, cold and heat conditions, osmotic stress, waterlogging, increased soil salinity, increased exposure to minerals, ozone conditions, high light conditions, limited availability of nitrogen nutrients, limited availability of phosphorous nutrients, or avoidance of shade.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are characterized by increased yield properties.
  • An increased yield can in these plants z. B. based on improved plant physiology, improved plant growth and improved plant development, such as water efficiency, water retention efficiency, improved nitrogen utilization, increased carbon assimilation, improved photosynthesis, increased germination and accelerated Abreife.
  • Yield may be further influenced by improved plant architecture (under stress and non-stress conditions), including early flowering, flowering control for hybrid seed production, seedling growth, plant size, internode count and spacing, rooting, Seed size, fruit size, pod size, pod or ear number, number of seeds per pod or ear, seed mass, increased seed filling, reduced seed drop, reduced pod popping and stability.
  • Other yield-related traits include seed composition such as carbohydrate content, Protein content, oil content and oil composition, nutritional value, reduction of nontoxic compounds, improved processability and improved shelf life.
  • Plants which can be treated according to the invention are hybrid plants which already express the properties of the heterosis or of the hybrid effect, which generally leads to higher yields, higher vigor, better health and better resistance to biotic and abiotic stress factors.
  • Such plants are typically produced by crossing an inbred male sterile parental line (the female crossover partner) with another inbred male fertile parent line (the male crossbred partner).
  • the hybrid seed is typically harvested from the male sterile plants and sold to propagators.
  • Pollen-sterile plants may sometimes be produced (eg in maize) by delaving (i.e., mechanically removing male genitalia or male flowers); however, it is more common for male sterility to be due to genetic determinants in the plant genome.
  • cytoplasmic male sterility have been described, for example, for Brassica species (WO 1992/005251, WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 and US 6,229,072).
  • pollen sterile plants can also be obtained using plant biotechnology methods such as genetic engineering.
  • a particularly convenient means of producing male-sterile plants is described in WO 89/10396, wherein, for example, a ribonuclease such as a barnase is selectively expressed in the tapetum cells in the stamens. The fertility can then be restorated by expression of a ribonuclease inhibitor such as barstar in the tapetum cells (eg WO 1991/002069).
  • Plants or plant varieties which can be treated according to the invention are herbicidally tolerant plants, ie plants that have been tolerated to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection of plants containing a mutation conferring such herbicide tolerance.
  • Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, ie plants that have been tolerated to the herbicide glyphosate or its salts.
  • glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371), the bacterium Agrobacterium sp. (Barry et al., Curr Topics Plant Physiol. (1992), 7, 139-145), the genes that are useful for EPSPS from the petunia (Shah et al., Science (1986), 233, 478-481). , for an EPSPS from the tomato (Gasser et al., J. Biol. Chem. (1988), 263, 4280-4289) or for an EPSPS from Eleusine (WO 2001/66704) encode.
  • AroA gene mutant CT7 of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371)
  • the bacterium Agrobacterium sp. Barry et al., Curr Topics Plant Physiol. (19
  • Glyphosate-tolerant plants can also be obtained by expressing a gene coding for a glyphosate oxidoreductase enzyme as described in US 5,776,760 and US 5,463,175.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme as described in, e.g. As WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782 is encoded.
  • Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described, for example, in WO 2001/024615 or WO 2003/013226.
  • herbicide-resistant plants are, for example, plants which have been tolerated to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate. Such plants can be obtained by expressing an enzyme which detoxifies the herbicide or a mutant of the enzyme glutamine synthase, which is resistant to inhibition.
  • an effective detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein of Streptomyces species).
  • Plants expressing an exogenous phosphinotricin acetyltransferase are described, for example, in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7,112,665.
  • hydroxyphenylpyruvate dioxygenase HPPD
  • HPPD hydroxyphenylpyruvate dioxygenases
  • HPPD inhibitors may be treated with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutant HPPD enzyme according to WO 1996/038567, WO 1999/024585 and WO 1999 / 024586, are transformed.
  • a Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants in addition to a gene coding for an HPPD-tolerant enzyme with a gene coding for a prephenate dehydrogenase enzyme, as described in WO 2004 / 024928 is described.
  • ALS inhibitors include sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides.
  • ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • plants which are tolerant to imidazolinone and / or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding, as for example for the soybean in US 5,084,082, for rice in WO 1997/41218, for the sugar beet in US 5,773,702 and WO 1999/057965, for salad in US 5,198,599 or for the sunflower in WO 2001/065922.
  • Plants or plant varieties which can also be treated according to the invention are insect-resistant transgenic plants, ie plants that have been made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such insect resistance.
  • insect-resistant transgenic plant as used herein includes any plant containing at least one transgene comprising a coding sequence encoding:
  • an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof such as the insecticidal crystal proteins described by Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, by Crickmore et al. (2005) in the Bacillus thuringiensis toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal parts thereof, e.g. Proteins of the cry protein classes CrylAb, CrylAc, CrylF, Cry2Ab, Cry3Ae or Cry3Bb or insecticidal parts thereof; or
  • a crystal protein from Bacillus thuringiensis or a part thereof which is insecticidal in the presence of a second, different crystal protein than Bacillus thuringiensis or a part thereof, such as the binary toxin consisting of the crystal proteins Cy34 and Cy35 (Moellenbeck et al., Nat Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environment Microb. (2006), 71, 1765-1774); or
  • an insecticidal hybrid protein comprising parts of two different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g. The protein CrylA.105 produced by the corn event MON98034 (WO 2007/027777); or
  • VIPs vegetative insecticidal proteins
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin consisting of the proteins VIPlA and VIP2A (WO 1994/21795); or 7) an insecticidal hybrid protein comprising parts of various secreted proteins of Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins of 1) or a hybrid of the proteins of 2) above; or
  • 8) a protein according to any one of items 1) to 3) above, in which some, in particular 1 to 10, amino acids have been replaced by another amino acid in order to achieve a higher insecticidal activity against a target insect species and / or the spectrum and / or due to changes induced in the coding DNA during cloning or transformation (preserving coding for an insecticidal protein) such as protein VIP3Aa in cotton event COT 102.
  • insect-resistant transgenic plants in the present context also include any plant comprising a combination of genes encoding the proteins of any of the above classes 1 to 8.
  • an insect-resistant plant contains more than one transgene encoding a protein of any one of the above 1 to 8 in order to extend the spectrum of the corresponding target insect species or to delay the development of resistance of the insects to the plants by use different proteins which are insecticidal for the same target insect species, but have a different mode of action, such as binding to different receptor binding sites in the insect.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant to abiotic stress factors. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such stress resistance. Particularly useful plants with stress tolerance include the following:
  • Plants which contain a transgene capable of reducing the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants, as described in WO 2000/004173 or EP 04077984.5 or EP 06009836.5 is described.
  • Plants containing a stress tolerance-enhancing transgene encoding a plant-functional enzyme of the nicotinamide adenine dinucleotide salvage biosynthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase as described e.g. As described in EP 04077624.7 or WO 2006/133827 or PCT / EP07 / 002433. Plants or plant varieties (obtained by plant biotechnology methods such as genetic engineering) which can also be treated according to the invention have a changed amount, quality and / or storability of the harvested product and / or altered characteristics of certain components of the harvested product, such as:
  • Transgenic plants which synthesize a modified starch with respect to their chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the gel strength, the starch grain size and / or starch grain morphology is altered in wildtype plant cells or plants compared to the synthesized starch, so that this modified starch is better suited for certain applications.
  • transgenic plants which synthesize a modified starch are described, for example, in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581, WO 1996/27674, WO 1997/11188, WO 1997/26362, WO 1997/32985, WO 1997/42328, WO 1997/44472, WO 1997/45545, WO 1998/27212, WO 1998/40503, WO 99/58688, WO 1999/58690, WO 1999/58654, WO 2000/008184, WO 2000/008185, WO 2000/28052, WO 2000/77229, WO 2001/12782, WO 2001/12826, WO 2002/101059, WO 2003/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927,
  • Transgenic plants that synthesize non-starch carbohydrate polymers or non-starch carbohydrate polymers whose properties are altered compared to wild-type plants without genetic modification.
  • plants which produce polyfructose, in particular of the inulin and levan type, as described in EP 0663956, WO 1996/001904, WO 1996/021023, WO 1998/039460 and WO 1999/024593, plants which are alpha-1 , 4-glucans, as described in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712,107, WO 1997/047806, WO 1997/047807, WO 1997/047808 and WO 2000/14249, plants which alpha-1, 6-branched alpha-1,4-glucans, as described in WO 2000/73422, and plants producing alternan, as described in WO 2000/047727, EP 06077301.7, US 5,908,975 and EP 0728213 is.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as cotton plants with altered fiber properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered fiber properties; these include:
  • plants such as cotton plants, which contain an altered form of rsw2 or rsw3 homologous nucleic acids, as described in WO 2004/053219;
  • plants such as cotton plants having an increased expression of sucrose phosphate synthase, as described in WO 2001/017333;
  • plants such as cotton plants with an increased expression of sucrose synthase, as described in WO 02/45485;
  • plants such as cotton plants with modified reactivity fibers, e.g. By expression of the N-acetylglucosamine transferase gene, including nodC, and chitin synthase genes, as described in WO 2006/136351.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering, which can also be treated according to the invention, are plants such as oilseed rape or related Brassica plants with altered properties of the oil composition. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include:
  • plants such as rape plants producing oil of high oleic acid content, as described, for example, in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947; b) plants such as oilseed rape plants which produce low linolenic acid oil, as described in US 6,270,828, US 6,169,190 or US 5,965,755.
  • plants such as oilseed rape plants which produce oil with a low saturated fatty acid content, such as e.g. As described in US 5,434,283.
  • transgenic plants which can be treated according to the invention are plants with one or more genes coding for one or more toxins, the transgenic plants offered under the following commercial names: YIELD GARD® (for example maize, cotton, Soybeans), KnockOut® (for example corn), Bite-Gard® (for example corn), BT-Xtra® (for example corn), StarLink® (for example corn), Bollgard® (cotton), Nucotn® (cotton) , Nucotn 33B® (cotton), NatureGard® (for example corn), Protecta® and NewLeaf® (potato).
  • YIELD GARD® for example maize, cotton, Soybeans
  • KnockOut® for example corn
  • Bite-Gard® for example corn
  • BT-Xtra® for example corn
  • StarLink® for example corn
  • Bollgard® cotton
  • Nucotn® cotton
  • Nucotn 33B® cotton
  • NatureGard® for example corn
  • Protecta® and NewLeaf® pot
  • Herbicide-tolerant crops to be mentioned are, for example, corn, cotton and soybean varieties sold under the following tradenames: Roundup Ready® (glyphosate tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example rapeseed) , IMI® (imidazolinone tolerance) and SCS® (sylphonylurea tolerance), for example corn.
  • Herbicide-resistant plants (plants traditionally grown for herbicide tolerance) to be mentioned include the varieties sold under the name Clearfield® (for example corn).
  • transgenic plants that can be treated according to the invention are plants that contain transformation events, or a combination of transformation events, and that are listed, for example, in the files of various national or regional authorities (see, for example, http: // /gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).
  • the plants listed can be treated particularly advantageously with the active substance combinations according to the invention.
  • the preferred ranges given above for the active substance combinations also apply to the treatment of these plants.
  • Particularly emphasized is the plant treatment with the active ingredient combinations specifically mentioned in the present text.
  • the active compound combinations according to the invention not only act against plant, hygiene and storage pests, but also in the veterinary sector against animal parasites (ecto- and endoparasites) such as ticks, leather ticks, mange mites, running mites, flies (stinging and licking), parasitic fly larvae, lice , Hair pieces, featherlings and fleas.
  • animal parasites ecto- and endoparasites
  • ecto- and endoparasites such as ticks, leather ticks, mange mites, running mites, flies (stinging and licking), parasitic fly larvae, lice , Hair pieces, featherlings and fleas.
  • parasites include: From the order of the Anoplurida eg Haematopinus spp., Linognathus spp., Pediculus spp., Phytus spp., Solenopotes spp.
  • Trimenopon spp. Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.
  • Nematocerina and Brachycerina e.g. Aedes spp i., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp i., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp.
  • Haematopota spp. Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp , Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp.,
  • siphonaptrida e.g. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.
  • heteropterid e.g. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
  • Actinedida Prostigmata
  • Acaridida e.g. Acarapis spp., Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp , Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.
  • the active compound combinations according to the invention are also suitable for controlling arthropods, the livestock, such as cattle, sheep, goats, horses, pigs, donkeys, camels, buffalos, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as dogs , Cats, caged birds, aquarium fish and so-called experimental animals, such as hamsters, guinea pigs, rats and mice infested.
  • livestock such as cattle, sheep, goats, horses, pigs, donkeys, camels, buffalos, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as dogs , Cats, caged birds, aquarium fish and so-called experimental animals, such as hamsters, guinea pigs, rats and mice infested.
  • the application of the active compound combinations according to the invention takes place in the veterinary sector and in animal husbandry in a known manner by enteral administration in the form of, for example, tablets, capsules, infusions, drenches, granules, pastes, boilies, the feed-through process, suppositories, by parenteral administration, as by injections (intramuscular, subcutaneous, intravenous, intraperitoneal, etc.), implants, by nasal application, by dermal application in the form of, for example, diving or bathing (dipping), spraying, pouring (pour-on and spot-on ), washing, powdering and with the aid of active substance-containing moldings, such as collars, ear tags, tail marks, limb bands, holsters, marking devices, etc.
  • enteral administration in the form of, for example, tablets, capsules, infusions, drenches, granules, pastes, boilies, the feed-through process, suppositories
  • parenteral administration as by injections (
  • the active ingredient combinations When used for livestock, poultry, pets, etc., the active ingredient combinations may be used as formulations (for example, powders, emulsions, flowables) containing the active ingredients in an amount of 1 to 80% by weight, directly or after 100 to 10,000 dilution or use as a chemical bath.
  • formulations for example, powders, emulsions, flowables
  • the active compound combinations according to the invention have a high insecticidal activity against insects which destroy industrial materials.
  • insects By way of example and preferably without limiting however, the following insects are mentioned:
  • Hymenoptera such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur;
  • Termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zooter- mopsis nevadensis, Coptotermes formosanus;
  • Bristle tails like Lepisma saccharina.
  • Technical materials in the present context are non-living materials, such as preferably plastics, adhesives, glues, papers and cardboard, leather, wood, wood processing products and paints.
  • the ready-to-use agents may optionally contain further insecticides and, if appropriate, one or more fungicides.
  • the active compound combinations according to the invention can be used to protect against fouling of objects, in particular of hulls, screens, nets, structures, quays and signal systems, which come into contact with seawater or brackish water.
  • active compound combinations according to the invention can be used alone or in combinations with other active substances as antifouling agents.
  • the active ingredient combinations are also suitable for controlling animal pests in household, hygiene and storage protection, in particular of insects, arachnids and mites, which are used in closed rooms, such as apartments, factory buildings, offices, vehicle cabins u.a. occurrence. They can be used to control these pests, alone or in combination with other active ingredients and adjuvants in household insecticide products. They are effective against sensitive and resistant species and against all stages of development. These pests include:
  • Acarina e.g. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
  • Opiliones e.g. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
  • Zygentoma e.g. Ctenolepisma spp., Lepisma saccharina, Lepismodes inqui- linus.
  • Diptera e.g. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp. , Stomoxys calcitrans, Tipula paludosa.
  • Lepidoptera e.g. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
  • Ctenocephalides canis Ctenocephalides felis, Pul ex irri- tans, Tunga penetrans, Xenopsylla cheopis.
  • Hymenoptera e.g. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
  • Application is in aerosols, non-pressurized sprays, e.g. Pump and atomizer sprays, misting machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, mote bags and moth gels, as granules or dusts, in straw baits or bait stations.
  • Pump and atomizer sprays misting machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, mote bags and moth gels, as granules or dusts, in straw baits or bait stations.
  • a synergistic effect is always present in insecticides and acaricides whenever the effect of the active ingredient combinations is greater than the sum of the effects of the individually applied active ingredients.
  • X means the degree of killing, expressed in% of the untreated control, when using the active substance A at a rate of m g / ha or in a concentration of m ppm,
  • Y means the degree of killing, expressed in% of the untreated control, when using the active ingredient B in an application rate of n g / ha or in a concentration of n ppm
  • Active substances A and B in amounts of m and n g / ha or in a concentration of m and n ppm,
  • the combination is over-additive in its kill, i. there is a synergistic effect.
  • the actually observed kill rate must be greater than the expected kill rate (E) value calculated from the above formula.
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Cabbage leaves (ßrassica oleracea) which are heavily infested with the green peach aphid (Myzus persicae) are treated by spraying with the preparation of active compound in the desired concentration.
  • the kill is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
  • the determined mortality values are calculated according to the Colby formula (see above).
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Cabbage leaves (Brassica olerace ⁇ ) are treated by spraying with the preparation of active compound in the desired concentration and are populated with larvae of the horseradish beetle (Phaedon cochleariae) while the leaves are still moist.
  • the kill is determined in%. 100% means that all beetle larvae have been killed; 0% means that no beetle larvae have been killed.
  • the determined mortality values are calculated according to the Colby formula (see above).
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Cabbage leaves (ßrassica oleracea) are treated by spraying with the preparation of active compound in the desired concentration and occupied with larvae of armyworm (Spodoptera frugiperda) while the leaves are still moist.
  • the kill is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
  • the determined mortality values are calculated according to the Colby formula (see above).
  • Tetranychus urticae - test surgical-resistant / spray treatment
  • Emulsifier 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Bean leaf discs Phaseolus vulgaris infected by all stages of the common spider mite (Tetranychus urticae) are sprayed with an active compound preparation of the desired concentration.
  • the effect is determined in%. 100% means that all spider mites have been killed; 0% means that no spider mites have been killed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die mindestens eine bekannte Verbindung der Formel (I), worin R1 und A die in der Beschreibung angegebenen Bedeutungen haben, einerseits und mindestens einen weiteren bekannten Wirkstoff aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen andererseits enthalten und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschten Akariden geeignet sind.

Description

Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die mindestens eine bekannte Verbindung der Formel (I) einerseits und mindestens einen weiteren bekannten Wirkstoff aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen andererseits enthalten und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschten Akariden geeignet sind. Die Erfindung betrifft auch Verfahren zur Bekämpfung tierischer Schädlinge auf Pflanzen und Saatgut, die Verwendung der erfindungsgemäßen Wirkstoffkombinationen zur Behandlung von Saatgut, ein Verfahren zum Schutz von Saatgut und nicht zuletzt das mit den erfindungsgemäßen Wirkstoffkombinationen behandelte Saatgut.
Es ist bereits bekannt, dass Verbindungen der Formel (I)
Figure imgf000002_0001
in welcher
A für Pyrid-2-yl oder Pyrid-4-yl steht oder für Pyrid-3-yl, welches gegebenenfalls in 6- Position substituiert ist durch Fluor, Chlor, Brom, Methyl, Trifluormethyl oder Trifiuormethoxy oder für Pyridazin-3-yl, welches gegebenenfalls in 6-Position substituiert ist durch Chlor oder Methyl oder für Pyrazin-3-yl oder für 2-Chlor-pyrazin-5-yl oder für l,3-Thiazol-5-yl, welches gegebenenfalls in 2-Position substituiert ist durch Chlor oder Methyl, oder
A für einen Rest Pyrimidinyl, Pyrazolyl, Thiophenyl, Oxazolyl, Isoxazolyl, 1,2,4-Oxa- diazolyl, Isothiazolyl, 1 ,2,4-Triazolyl oder 1,2,5-Thiadiazolyl steht, welcher gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Ci-C4-Alkyl (welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist), Ci-C3-Alkylthio (welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist), oder Ci-C3-Alkylsulfonyl (welches gegebenenfalls durch Fluor und/oder Chlor substituiert ist), substituiert ist,
oder A für einen Rest
Figure imgf000003_0001
in welchem
X für Halogen, Alkyl oder Halogenalkyl steht
Y für Halogen, Alkyl, Halogenalkyl, Halogenalkoxy, Azido oder Cyan steht und
R1 für Alkyl, Halogenalkyl, Alkenyl, Halogenalkenyl, Alkinyl, Cycloalkyl, Cycloalkylalkyl, Halogencycloalkyl, Alkoxy, Alkoxyalkyl, oder Halogencycloalkylalkyl steht,
insektizide Wirkung aufweisen (vgl. EP 0 539 588, WO 2007/115643 Al, WO 2007/115644 Al und WO 2007/115646 Al).
Weiterhin ist bekannt, dass bestimmte Wirkstoffe aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen insektizide und akarizide Eigenschaften aufweisen. Diese Verbindungen wurden in veröffentlichten Patentschriften und wissenschaftlichen Publikationen offenbart. Die hier beschriebenen insektiziden Verbindungen aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen sind als Ein- zelwirkstoffe in Mitteln zur Bekämpfung tierischer Schädlinge kommerziell erhältlich. Diese Verbindungen und Mittel sind in Kompendien wie "The Pesticide Manual, 14th edition, C. D. S. Thomlin (Ed.), British Crop Protection Council, Surrey, UK, 2006" beschrieben, auf das hiermit für die meisten der hier offenbarten Wirkstoffe aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen verwiesen wird. Die Wirkstoffe, die weder kommerziell erhältlich sind noch im „Pesticide Manual" aufgelistet sind, werden durch die IUPAC Nummer und/oder die Strukturformel identifiziert.
Die Wirkung der insektiziden Verbindung der Formel (I) beziehungsweise der Wirkstoffe aus der Klasse Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen ist im Allgemeinen gut. Insbesondere bei niedrigen Aufwandmengen und bei bestimmten Schädlingen befriedigen sie jedoch nicht immer die Bedürfnisse der landwirtschaftlichen Praxis, und es besteht immer noch ein Bedarf an einer ökonomisch effizienten und ökologisch sicheren Schädlingsbekämpfung. Weitere an insektizide Verbindungen gestellte Ansprüche schließen die Absenkung der Dosierungsmenge; eine wesentliche Verbreiterung des Spektrums zu bekämpfender Schädlinge einschließlich resistenter Schädlinge; eine erhöhte Anwendungssicherheit; eine verminderte Toxizität gegenüber Pflanzen und somit eine bessere Pflanzenverträglichkeit; die Bekämpfung der Schädlin- ge in ihren verschiedenen Entwicklungsstadien; ein besseres Verhalten während der Herstellung der insektiziden Verbindungen, zum Beispiel während des Vermahlens oder Mischens, während ihrer Lagerung oder während ihrer Anwendung; ein sehr vorteilhaftes biozides Spektrum selbst bei niedrigen Konzentrationen mit damit einhergehender guter Verträglichkeit durch Warmblüter, Fische und Pflanzen; und das Erzielen einer zusätzlichen Wirkung, zum Beispiel einer algiziden, anthelmintischen, aviziden, bakteriziden, fungiziden, molluskiziden, nematiziden, pflanzenaktivierenden, rodentiziden oder viruziden Wirkung.
Weitere spezifische Anforderungen an bei vegetativem und generativem Pflanzenvermehrungsma- terial verwendete insektizide Verbindungen schließen eine vernachlässigbare Phytotoxizität bei der Anwendung auf dem Saatgut und Pflanzenvermehrungsmaterial, eine Verträglichkeit mit Boden- bedingungen (z.B. was die Bindung der Verbindung an den Boden betrifft), eine systemische Wirkung in der Pflanze, keinen negativen Einfluss auf die Keimung und eine Wirksamkeit während des Lebenszyklus des entsprechenden Schädlings ein.
Aufgabe der Erfindung ist die Befriedigung eines oder mehrerer der oben erwähnten Ansprüche wie z.B. die Absenkung der Dosierungsmenge, eine Verbreiterung des bekämpfbaren Spektrums an Schädlingen einschließlich resistenter Schädlinge, und insbesondere die speziellen Anforderungen zur Anwendbarkeit auf vegetativem und generativem Pflanzenvermehrungsmaterial.
Es wurde nun gefunden, dass Kombinationen von mindestens einer Verbindung der Formel (I), mit der Maßgabe, dass 4-{[(6-Chlorpyrid-3-yl)methyl](methyl)amino}furan-2(5H)-on und 4-{[(6- Chloφyrid-3-yl)methyl](cyclopropyl)amino}furan-2(5H)-on ausgeschlossen sind, und mindestens einer Verbindung aus der Gruppe der unten einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen synergistisch wirksam sind und sich zur Bekämpfung tierischer Schädlinge eignen.
Im Einzelnen seien die folgenden Verbindungen 1 bis 22 aus der Klasse der Chitin-Synthese- Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen genannt: - - a) Inhibitoren der Chitin-Biosynthese, beispielsweise Benzoylharnstoffe wie
1. Chlorfluazuron (bekannt aus DE-A 28 18 830)
Figure imgf000005_0001
2. Diflubenzuron (bekannt aus DE-A 21 23 236)
Figure imgf000005_0002
3. Lufenuron (bekannt aus EP-A 0 179 022)
Figure imgf000005_0003
4. Teflubenzuron (bekannt aus EP-A 0 052 833)
Figure imgf000005_0004
5. Triflumuron (bekannt aus DE-A 26 01 780)
Figure imgf000005_0005
6. Novaluron (bekannt aus US 4,980,376)
Figure imgf000006_0001
7. Hexaflumuron (bekannt aus EP-A 0 071 279)
Figure imgf000006_0002
8. Bistrifluron (DBI-3204) (bekannt aus WO 98/00394)
Figure imgf000006_0003
9. Flufenoxuron (bekannt aus EP-A 0 161 019)
Figure imgf000006_0004
10. Flucycloxuron (bekannt aus P. Scheites, T.W. Hofinan, A.C. Grosscurt, BCPC Conf. Pests Dis. 1988, 2, 559-666, EP-A 00117320)
Figure imgf000007_0001
11. Noviflumuron (bekannt aus WO 9819542A1 , 1998)
Figure imgf000007_0002
12. Fluazuron (bekannt aus EP-A 00079311 )
Figure imgf000007_0003
b) Inhibitoren der Chitin-Biosynthese wie
13. Buprofezin (bekannt aus Proc. Br. Crop Prot. Conf. - Pests Dis., 1981, 1, 59)
Figure imgf000007_0004
c) Hemmstoffe der Häutung (moulting disruptor) wie
14. Cyromazine (bekannt aus GB-A 1 587 573)
Figure imgf000008_0001
d) Juvenile Hormone Mimetika wie 15. Pyriproxifen (bekannt aus GB-A 2 140 010)
Figure imgf000008_0002
16. Diofenolan (bekannt aus DE 2 655 910)
Figure imgf000008_0003
17. Fenoxycarb (bekannt aus EP 0 004 334)
Figure imgf000008_0004
e) Molting hormone (Ecdyson) Agonisten, beispielsweise Diacylhydrazine wie
18. Tebufenozide (bekannt aus US 4,985,461)
Figure imgf000009_0001
19. Methoxyfenozide (bekannt aus US 5,344,958)
Figure imgf000009_0002
20. Chromafenozide (bekannt aus EP 00496342)
Figure imgf000009_0003
21. Halofenozide (bekannt aus EP 228 564)
Figure imgf000009_0004
22. 2,3-Dihydro-2,7-dimethyl-6-benzofurancarbonsäure-2-(3,5-dimethyl-benzoyl)-2-
(l,l-dimethylethyl)-hydrazid (JS 118) (bekannt aus CN-Pat. 1313276)
Figure imgf000010_0001
Überraschenderweise ist die insektizide und akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen wesentlich höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt ein nicht vorhersehbarer echter synergistischer Effekt vor und nicht nur eine Wirkungsergän- zung.
Die synergistische Wirkung der erfindungsgemäßen Wirkstoffkombinationen einer Verbindung der Formel (I) und eines Wirkstoffs aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen erweitert den Wirkungsbereich der Verbindung der Formel (I) und des Wirkstoffs aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Ago- nisten oder anderer Klassen primär durch eine Verminderung der Dosierungsmenge und durch eine Erweiterung des Spektrums an bekämpfbaren Schädlingen. So lässt sich mit der erfϊndungsgemä- ßen Wirkstoffkombination einer Verbindung der Formel (I) und eines Wirkstoffs aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen immer noch ein hoher Grad an Schädlingsbekämpfung erzielen, selbst in Fällen, bei denen die einzelnen Verbindungen der erfindungsgemäßen Wirkstoffkombinationen bei den niedrigen angewendeten Aufwandmengen keine ausreichende Wirkung zeigen.
Zusätzlich zu der oben beschriebenen synergistischen Wirkung können die erfindungsgemäßen Wirkstoffkombinationen noch weitere überraschende Vorteile zeigen, einschließlich einer erhöhten Anwendungssicherheit; einer verminderten Phytotoxizität und somit einer besseren Pflanzen- Verträglichkeit; der Bekämpfung von Schädlingen in ihren verschiedenen Entwicklungsstadien; eines besseren Verhaltens während der Herstellung der insektiziden Verbindungen, zum Beispiel während des Vermahlens oder des Mixens, während ihrer Lagerung oder während ihrer Anwendung; eines sehr vorteilhaften bioziden Spektrums selbst bei niedrigen Konzentrationen mit damit einhergehender guter Verträglichkeit durch Warmblüter, Fische und Pflanzen; und des Erzielens einer zusätzlichen Wirkung, zum Beispiel einer algiziden, anthelmintischen, aviziden, bakteriziden, fungiziden, molluskiziden, nematiziden, pflanzenaktivierenden, rodentiziden oder viruziden Wirkung. Weiterhin wurde überraschenderweise gefunden, dass sich die erfindungsgemäßen Wirkstoffkombinationen besonders zum Schutz von Samen und/oder Sprösslingen und Blättern einer aus den Samen herangezogenen Pflanze gegen eine Schädigung durch Schädlinge eignen. Die erfindungsgemäßen Wirkstoffkombinationen zeigen somit eine vernachlässigbare Phytotoxizität bei der An- wendung auf das Pflanzenfortpflanzungsmaterial, eine Verträglichkeit mit Bodenbedingungen (z.B. was die Bindung der Verbindung an den Boden betrifft), eine systemische Wirkung in der Pflanze, keinen negativen Einfluss auf die Keimung und Wirksamkeit während des entsprechenden Schädlingslebenszyklus .
Die erfϊndungsgemäßen Wirkstoffkombinationen enthalten neben mindestens einer Verbindung der Formel (I) mindestens einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen. Bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen genau eine Verbindung der Formel (I) und genau einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin- Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen. Weiterhin bevorzugt sind Wirkstoffkombinationen, die eine Verbindung der Formel (I) und zwei der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen enthalten. Weiterhin bevorzugt sind Mischungen, die zwei Verbindungen der Formel (I) und einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen enthalten.
Im Folgenden sind bevorzugte Untergruppen für die Verbindungen der in der oben erwähnten Formel (I) in den erfindungsgemäßen Wirkstoffkombinationen mit mindestens einem der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen aufgeführt, mit der Maßgabe, dass 4-{[(6- Chlθφyrid-3-yl)methyl](methyl)amino}furan-2(5H)-on und 4-{[(6-Chlorpyrid-3-yl)methyl] (cyc- lopropyl)amino}furan-2(5H)-on ausgeschlossen sind.
A steht bevorzugt für 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6-Brom-pyrid-3-yl, 6-Methyl- pyrid-3-yl, 6-Trifiuormethyl-pyrid-3-yl, 6-Trifluormethoxypyrid-3-yl, 6-Chlor-l,4-pyridazin-3-yl, 6-Methyl-l,4-pyridazin-3-yl, 2-Chlor-l,3-thiazol-5-yl oder 2-Methyl-l,3-thiazol-5-yl, 2-Chlor- pyrimidin-5-yl, 2-Trifluormethyl-pyrimidin-5-yl, 5,6-Difluor-pyrid-3-yl, 5-Chlor-6-fluor-pyrid-3- yl, 5-Brom-6-fluor-pyrid-3-yl, 5-Iod-6-fluor-pyrid-3-yl, 5-Fluor-6-chlor-pyrid-3-yl, 5,6-Dichlor- pyrid-3-yl, 5-Brom-6-chlor-pyrid-3-yl, 5-Iod-6-chlor-pyrid-3-yl, 5-Fluor-6-brom-pyrid-3-yl, 5-Chlor-6-brom-pyrid-3-yl, 5,6-Dibrom-pyrid-3-yl, 5-Fluor-6-iod-pyrid-3-yl, 5-Chlor-6-iod-pyrid- 3-yl, 5-Brom-6-iod-pyrid-3-yl, 5-Methyl-6-fluor-pyrid-3-yl, 5-Methyl-6-chlor-pyrid-3-yl, 5-Methyl- 6-brom-pyrid-3-yl, 5-Methyl-6-iod-pyrid-3-yl, 5-Difluormethyl-6-fluor-pyrid-3-yl, 5- Difluormethyl-6-chlor-pyrid-3-yl, 5-Difluoraiethyl-6-brom-pyrid-3-yl oder 5-Difluormethyl-6-iod- pyrid-3-yl.
R1 steht bevorzugt für gegebenenfalls durch Fluor substituiertes Q-Cs-Alkyl, C2-Cs-Alkenyl, C3-C5-Cycloalkyl, C3-C5-Cycloalkylalkyl oder CrC5-Alkoxy.
A steht besonders bevorzugt für den Rest 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6- Brompyrid-3-yl, 6-Chlor-l,4-pyridazin-3-yl, 2-Chlor-l,3-thiazol-5-yl, 2-Chlor-pyrimidin-5-yl, 5- Fluor-6-chlor-pyrid-3-yl, 5,6-Dichlor-pyrid-3-yl, 5-Brom-6-chlor-pyrid-3-yl, 5-Fluor-6-brom-pyrid- 3-yl, 5-Chlor-6-brom-pyrid-3-yl, 5,6-Dibrom-pyrid-3-yl, 5-Methyl-6-chlor-pyrid-3-yl, 5-Chlor-6- iod-pyrid-3-yl oder S-Difiuormethyl-ό-chlor-pyrid-S-yl.
R1 steht besonders bevorzugt für Methyl, Methoxy, Ethyl, Propyl, Vinyl, Allyl, Propargyl, Cyclopropyl, 2-Fluor-ethyl, 2,2-Difluor-ethyl oder 2-Fluor-cyclopropyl.
A steht ganz besonders bevorzugt für den Rest 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6- Brom-pyrid-3-yl, 5-Fluor-6-chlor-pyrid-3-yl, 2-Chlor-l,3-thiazol-5-yl oder 5,6-Dichlor-pyrid-3-yl.
R1 steht ganz besonders bevorzugt für Methyl, Cyclopropyl, Methoxy, 2-Fluorethyl oder 2,2- Difluor-ethyl.
A steht am meisten bevorzugt für den Rest 6-Chlor-pyrid-3-yl oder 5-Fluor-6-chlor-pyrid-3- yi-
R1 steht am meisten bevorzugt für Methyl, 2-Fluorethyl oder 2,2-Difluor-ethyl.
In einer hervorgehobenen Gruppe von Verbindungen der Formel (I) steht A für 6-Chlor-pyrid-3-yl
Figure imgf000012_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht A für 6-Brom- pyrid-3-yl
Figure imgf000012_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht A für 6-Chlor- l,4-pyridazin-3-yl-
Figure imgf000013_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht A für 2-Chlor- l,3-thiazol-5-yl-
Figure imgf000013_0002
hi einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht A für 5-Fluor-6- chlor-pyrid-3-yl,
Figure imgf000013_0003
hl einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht A für 5-Fluor-6- brom-pyrid-3-yl,
Figure imgf000013_0004
hi einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht A für 5,6-Di- chlor-pyrid-3-yl,
Figure imgf000013_0005
hi einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R1 für Methyl.
hi einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R1 für Ethyl.
hi einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R1 für Cyc- lopropyl. In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R1 für 2- Fluorethyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I) steht R1 für 2,2- Difluorethyl.
Die oben aufgeführten allgemeinen oder in Vorzugsbereiche aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Vorzugsbereichen, beliebig kombiniert werden.
Erfindungsgemäß bevorzugt werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß besonders bevorzugt werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß ganz besonders bevorzugt werden Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Eine bevorzugte Untergruppe der Verbindungen der Formel (I) sind solche der Formel (I-a)
Figure imgf000014_0001
in welcher
B für Pyrid-2-yl oder Pyrid-4-yl steht oder für Pyrid-3-yl, welches gegebenenfalls in 6-
Position substituiert ist durch Fluor, Chlor, Brom, Methyl, Trifluormethyl oder Trifluormethoxy oder für Pyridazin-3-yl, welches gegebenenfalls in 6-Position substituiert ist durch Chlor oder Me- thyl oder für Pyrazin-3-yl oder für 2-Chlor-pyrazin-5-yl oder für l,3-Thiazol-5-yl, welches gegebenenfalls in 2-Position substituiert ist durch Chlor oder Methyl,
R2 für Halogenalkyl, Halogenalkenyl, Halogencycloalkyl oder Halogencycloalkylalkyl steht,
Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formel (I-a) aufgeführten Reste werden im Folgenden erläutert. B steht bevorzugt für 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6-Brom-pyrid-3-yl, 6-Methyl- pyrid-3-yl, 6-Trifluormethyl-pyrid-3-yl, 6-Trifluormethoxypyrid-3-yl, 6-Chlor-l,4-pyridazin-3-yl, 6-Methyl-l,4-pyridazin-3-yl, 2-Chlor-l,3-thiazol-5-yl oder 2-Methyl-l,3-thiazol-5-yl.
R2 steht bevorzugt für durch Fluor substituiertes Ci-C5-Alkyl, C2-C5-Alkenyl, C3-C5- Cycloalkyl oder C3-C5-Cycloalkylalkyl.
B steht besonders bevorzugt für den Rest 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6-
Brompyrid-3-yl, 6-Chlor-l,4-pyridazin-3-yl, 2-Chlor-l,3-thiazol-5-yl.
R2 steht besonders bevorzugt für 2-Fluor-ethyl, 2,2-Difluor-ethyl, 2-Fluor-cyclopropyl.
B steht ganz besonders bevorzugt für den Rest 6-Chlor-pyrid-3-yl.
R2 steht ganz besonders bevorzugt für 2-Fluor-Ethyl oder 2,2-Difluor-ethyl.
In einer hervorgehobenen Gruppe von Verbindungen der Formel (I-a) steht B für 6-Chlor-pyrid-3- yi
Figure imgf000015_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-a) steht B für 6-Brom- pyrid-3-yl
Figure imgf000015_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-a) steht B für 6-Chlor- 1 ,4-pyridazin-3-yl-
Figure imgf000015_0003
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-a) steht R2 für 2- Fluorethyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-a) steht R2 für 2,2- Difluorethyl. Eine weitere bevorzugte Untergruppe der der Verbindungen der Formel (I) sind solche der Formel (I-b)
Figure imgf000016_0001
in welcher
D für einen Rest
Figure imgf000016_0002
steht
in welchem
X und Y die oben angegebenen Bedeutungen haben,
R3 für Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder Alkoxy steht,
Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formel (I-b) aufgeführten Reste werden im Folgenden erläutert.
D steht bevorzugt für einen der Reste 5,6-Difluor-pyrid-3-yl, 5-Chlor-6-fluor-pyrid-3-yl, 5- Brom-6-fluor-pyrid-3-yl, 5-Iod-6-fluor-pyrid-3-yl, 5-Fluor-6-chlor-pyrid-3-yl, 5,6-Dichlor-pyrid-3- yl, 5-Brom-6-chlor-pyrid-3-yl, 5-Iod-6-chlor-pyrid-3-yl, 5-Fluor-6-brom-pyrid-3-yl, 5-Chlor-6- brom-pyrid-3-yl, 5,6-Dibrom-pyrid-3-yl, 5-Fluor-6-iod-pyrid-3-yl, 5-Chlor-6-iod-pyrid-3-yl, 5- Brom-6-iod-pyrid-3-yl, 5-Methyl-6-fluor-pyrid-3-yl, 5-Methyl-6-chlor-pyrid-3-yl, 5-Methyl-6- brom-pyrid-3-yl, 5-Methyl-6-iod-pyrid-3-yl, 5-Difluormethyl-6-fluor-pyrid-3-yl, 5-Difluormethyl- 6-chlor-pyrid-3-yl, 5-Difluormethyl-6-brom-pyrid-3-yl, 5-Difluormethyl-6-iod-pyrid-3-yl.
R3 steht bevorzugt für C, -C4-Alkyl, C2-C4-Alkenyl, C2-C4-Alkinyl oder C3-C4-Cycloalkyl.
D steht besonders bevorzugt für 5-Fluor-6-chlor-pyrid-3-yl, 5,6-Dichlor-pyrid-3-yl, 5-Brom- 6-chlor-pyrid-3-yl, 5-Fluor-6-brom-pyrid-3-yl, 5-Chlor-6-brom-pyrid-3-yl, 5,6-Dibrom-pyrid-3-yl, 5-Methyl-6-chlor-pyrid-3-yl, 5-Chlor-6-iod-pyrid-3-yl oder 5-Difluormethyl-6-chlor-pyrid-3-yl. R3 steht besonders bevorzugt für Ci-C4-Alkyl.
D steht ganz besonders bevorzugt für 5-Fluor-6-chlor-pyrid-3-yl oder 5-Fluor-6-brom-pyrid- 3-yl.
R3 steht ganz besonders bevorzugt für Methyl, Ethyl, Propyl, Vinyl, Allyl, Propargyl oder Cyclopropyl.
D steht am meisten bevorzugt für 5-Fluor-6-chlor-pyrid-3-yl.
R3 steht am meisten bevorzugt für Methyl oder Cyclopropyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht D für 5-Fluor- 6-chlor-pyrid-3-yl,
Figure imgf000017_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht D für 5,6- Dichlor-pyrid-3-yl
Figure imgf000017_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht D für 5- Brom-6-chlor-pyrid-3 -yl
Figure imgf000017_0003
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht D für 5- Methyl-6-chlor-pyrid-3 -yl
Figure imgf000018_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht D für 5-Fluor- 6-brom-pyrid-3 -yl
Figure imgf000018_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht D für 5- Chlor-6-brom-pyrid-3 -yl
Figure imgf000018_0003
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht D für 5- Chlor-6-iod-pyrid-3-yl
Figure imgf000018_0004
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht R3 für Methyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht R3 für Ethyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-b) steht R3 für Cyc- lopropyl.
Eine weitere bevorzugte Untergruppe der Verbindungen der Formel (I) sind solche der Formel (I- c)
Figure imgf000019_0001
in welcher
E für einen Rest
Figure imgf000019_0002
in welchem
X und Y die oben angegebenen Bedeutungen haben und
R4 für Halogenalkyl, Halogenalkenyl, Halogencycloalkyl oder Halogencycloalkylalkyl steht.
Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formel (I-c) aufgeführten Reste werden im Folgenden erläutert.
E steht bevorzugt für einen der Reste 5,6-Difluor-pyrid-3-yl, 5-Chlor-6-fluor-pyrid-3-yl, 5-
Brom-6-fluor-pyrid-3-yl, 5-Iod-6-fluor-pyrid-3-yl, 5-Fluor-6-chlor-pyrid-3-yl, 5,6-Dichlor-pyrid-3- yl, 5-Brom-6-chlor-pyrid-3-yl, 5-Iod-6-chlor-pyrid-3-yl, 5-Fluor-6-brom-pyrid-3-yl, 5-Chlor-6- brom-pyrid-3-yl, 5,6-Dibrom-pyrid-3-yl, 5-Fluor-6-iod-pyrid-3-yl, 5-Chlor-6-iod-pyrid-3-yl, 5- Brom-6-iod-pyrid-3-yl, 5-Methyl-6-fluor-pyrid-3-yl, 5-Methyl-6-chlor-pyrid-3-yl, 5-Methyl-6- brom-pyrid-3-yl, 5-Methyl-6-iod-pyrid-3-yl, 5-Difluormethyl-6-fluor-pyrid-3-yl, 5-Difluormethyl- 6-chlor-pyrid-3-yl, 5-Difluormethyl-6-brom-pyrid-3-yl, 5-Difluormethyl-6-iod-pyrid-3-yl.
R4 steht bevorzugt für durch Fluor substituiertes Ci-C5-Alkyl, C2-C5-Alkenyl, C3-C5- Cycloalkyl oder C3-C5-Cycloalkylalkyl.
E steht besonders bevorzugt für 2-Chlor-pyrimidin-5-yl, 5-Fluor-6-chlor-pyrid-3-yl, 5,6- Dichlor-pyrid-3-yl, 5-Brom-6-chlor-pyrid-3-yl, 5-Fluor-6-brom-pyrid-3-yl, 5-Chlor-6-brom-pyrid- 3-yl, 5,6-Dibrom-pyrid-3-yl, 5-Methyl-6-chlor-pyrid-3-yl, 5-Chlor-6-iod-pyrid-3-yl oder 5- Difluormethyl-6-chlor-pyrid-3-yl.
R4 steht besonders bevorzugt für 2-Fluor-ethyl, 2,2-Difluor-ethyl, 2-Fluor-cyclopropyl. E steht ganz besonders bevorzugt für 5-Fluor-6-chlor-pyrid-3-yl.
R4 steht ganz besonders bevorzugt für 2-Fluor-ethyl oder 2,2-Difluor-ethyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht E für 5-Fluor- 6-chlor-pyrid-3-yl,
Figure imgf000020_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht E für 5,6- Dichlor-pyrid-3 -yl
Figure imgf000020_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht E für 5-Brom- 6-chlor-pyrid-3-yl
Figure imgf000020_0003
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht E für 5- Methyl-6-chlor-pyrid-3-yl
Figure imgf000020_0004
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht E für 5-Fluor- 6-brom-pyrid-3-yl
Figure imgf000021_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht E für 5-Chlor- 6-brom-pyrid-3 -yl
Figure imgf000021_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht E für 5-Chlor- 6-iod-pyrid-3-yl
Figure imgf000021_0003
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht R4 für 2- Fluorethyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-c) steht R4 für 2,2- Difluorethyl.
Eine bevorzugte Untergruppe der Verbindungen der Formel (I) sind solche der Formel (I-d)
Figure imgf000021_0004
in welcher
G für Pyrid-2-yl oder Pyrid-4-yl steht oder für Pyrid-3-yl, welches gegebenenfalls in 6- Position substituiert ist durch Fluor, Chlor, Brom, Methyl, Trifluormethyl oder Trifluormethoxy oder für Pyridazin-3-yl, welches gegebenenfalls in 6-Position substituiert ist durch Chlor oder Me- thyl oder für Pyrazin-3-yl oder für 2-Chlor-pyrazin-5-yl oder für l,3-Thiazol-5-yl, welches gegebenenfalls in 2-Position substituiert ist durch Chlor oder Methyl, und
R5 für CrC4-Alkyl, C2-C4-Alkenyl, C2-C4-Alkinyl, C3-C4-Cycloalkyl oder CrC4-Alkoxy steht,
mit der Maßgabe, dass 4-{[(6-CUoφyrid-3-yl)methyl](methyl)arnino}furan-2(5H)-on und 4-{[(6- Chloφyrid-3-yl)methyl] (cyclopropyl)amino}furan-2(5H)-on ausgeschlossen sind.
Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formel (I-d) aufgeführten Reste werden im Folgenden erläutert.
G steht bevorzugt für 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6-Brom-pyrid-3-yl, 6-Methyl- pyrid-3-yl, 6-Trifluormethyl-pyrid-3-yl, 6-Trifluormethoxypyrid-3-yl, 6-Chlor-l,4-pyridazin-3-yl, 6-Methyl-l,4-pyridazin-3-yl, 2-Chlor-l,3-thiazol-5-yl oder 2-Methyl-l,3-thiazol-5-yl.
R5 steht bevorzugt für CrC4-Alkyl, CrAlkoxy, C2-C4-Alkenyl, C2-C4-Alkinyl oder C3-C4- Cycloalkyl.
G steht besonders bevorzugt für den Rest 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6- Brompyrid-3-yl, 6-Chlor-l,4-pyridazin-3-yl, 2-Chlor-l,3-thiazol-5-yl,
R5 steht besonders bevorzugt für Methyl, Methoxy, Ethyl, Propyl, Vinyl, Allyl, Propargyl oder Cyclopropyl.
G steht ganz besonders bevorzugt für den Rest 6-Chlor-pyrid-3-yl.
R5 steht ganz besonders bevorzugt für Methyl oder Cyclopropyl.
In einer hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht G für 6-Chlor-pyrid-3- yl
Figure imgf000022_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht G für 6- Brom-pyrid-3 -yl
Figure imgf000022_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht G für 6- Chlor- 1 ,4-pyridazin-3 -yl-
Figure imgf000023_0001
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht G für 2- Chlor-l,3-thiazol-5-yl-
Figure imgf000023_0002
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht G für 6-Fluor- pyrid-3-yl
Figure imgf000023_0003
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) G für 6- Trifluormethyl-pyrid-3 -yl-
Figure imgf000023_0004
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht G für 6-Fluor- pyrid-3-yl
Figure imgf000023_0005
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht R >5 c fü-r Methyl.
In einer weiteren hervorgehobenen Gruppe von Verbindungen der Formel (I-d) steht R5 für Cyc- lopropyl.
Im Einzelnen seien die folgenden Verbindungen der allgemeinen Formel (I) genannt: • Verbindung (1-1), 4-{[(6-Brompyrid-3-yl)methyl](2-fluorethyl)amino}furan-2(5H)-on, besitzt die Formel
Figure imgf000024_0001
und ist bekannt aus WO 2007/115644 Al .
• Verbindung (1-2), 4-{[(6-Fluoφyrid-3-yl)methyl](2,2-difluorethyl)amino}furan-2(5H)-on, besitzt die Formel
Figure imgf000024_0002
und ist bekannt aus WO 2007/115644 Al.
• Verbindung (1-3), 4-{[(2-Chlor-l,3-thiazol-5-yl)methyl](2-fluorethyl)amino}furan-2(5H)- on, besitzt die Formel
Figure imgf000024_0003
und ist bekannt aus WO 2007/115644 Al.
• Verbindung (1-4), 4-{[(6-Chlθφyrid-3-yl)methyl](2-fluorethyl)amino}furan-2(5H)-on, besitzt die Formel
Figure imgf000025_0001
und ist bekannt aus WO 2007/115644 Al.
• Verbindung (1-5), 4-{[(6-Chloφyrid-3-yl)methyl](2,2-difluorethyl)amino}furan-2(5H)-on, besitzt die Formel
Figure imgf000025_0002
und ist bekannt aus WO 2007/115644 Al.
• Verbindung (1-6), 4-{[(6-Chlor-5-fluorpyrid-3-yl)methyl](methyl)amino}furan-2(5H)-on, besitzt die Formel
Cl
Figure imgf000025_0003
P
und ist bekannt aus WO 2007/115643 Al
• Verbindung (1-7), 4-{[(5,6-Dichlθφyrid-3-yl)methyl](2-fluorethyl)amino}furan-2(5H)-on, besitzt die Formel
Figure imgf000026_0001
und ist bekannt aus WO 2007/115646 Al.
• Verbindung (1-8), 4-{[(6-Chlor-5-fluoφyrid-3-yl)methyl](cyclopropyl)amino}furan-2(5H)- on, besitzt die Formel
Figure imgf000026_0002
und ist bekannt aus WO 2007/115643 Al .
Bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen mindestens eine der Verbindungen der Formel (I), die ausgewählt ist aus der Gruppe bestehend aus den Verbindungen der oben erwähnten Formeln (I-a), (I-b), (I-c) oder (I-d), mit der Maßgabe, dass 4-{[(6-Chlorpyrid-3- yl)methyl](methyl)amino}furan-2(5H)-on und 4-{[(6-Chlorpyrid-3-yl)methyl] (cyclopro- pyl)amino}furan-2(5H)-on ausgeschlossen sind, und einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen.
Die erfindungsgemäßen Wirkstoffkombinationen enthalten weiterhin bevorzugt mindestens eine der Verbindungen der Formel (I), die ausgewählt ist aus der Gruppe bestehend aus den Verbindungen der oben erwähnten Formeln (I-a), (I-b) oder (I-c) und einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen.
Besonders bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen mindestens eine der Verbindungen der Formel (I), in welcher A ausgewählt ist aus den Resten 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6-Brom-pyrid-3-yl, 5-Fluor-6-chlor-pyrid-3-yl, 2-Chlor-l,3-thiazol-5-yl und 5,6-Dichlor-pyrid-3-yl und R1 ausgewählt ist aus den Resten Methyl, Cyclopropyl, Methoxy, 2- Fluorethyl oder 2,2-Difluor-ethyl, mit der Maßgabe, dass 4-{[(6-Chlorpyrid-3- yl)methyl](methyl)amino}furan-2(5H)-on und 4-{[(6-Chlorpyrid-3-yl)methyl](cyclopropyl) ami- no}furan-2(5H)-on ausgeschlossen sind, und einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen.
Ganz besonders bevorzugt enthalten die erfindungsgemäßen Wirkstoffkombinationen mindestens eine Verbindung der Formel (I), die ausgewählt ist aus der Gruppe bestehend aus den Verbindungen der Formeln (I- 1), (1-2), (1-3), (1-4), (1-5), (1-6), (1-7) und (1-8), und einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen.
Damit erhält man die in Tabelle 1 aufgeführten Kombinationen, wobei jede Kombination für sich eine ganz besonders bevorzugte erfindungsgemäße Ausführungsform darstellt.
Tabelle 1
Figure imgf000027_0001
Figure imgf000028_0001
Weiterhin erhält man die in Tabelle 2 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfindungsgemäße Ausführungsform darstellt.
Tabelle 2
Figure imgf000028_0002
Weiterhin erhält man die in Tabelle 3 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfindungsgemäße Ausführungsform darstellt. Tabelle 3
Figure imgf000029_0001
Weiterhin erhält man die in Tabelle 4 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfϊndungsgemäße Ausführungsform darstellt.
Tabelle 4
Figure imgf000029_0002
Figure imgf000030_0001
Weiterhin erhält man die in Tabelle 5 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfmdungsgemäße Ausführungsform darstellt.
Tabelle 5
Figure imgf000030_0002
Figure imgf000031_0001
Weiterhin erhält man die in Tabelle 6 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfϊndungsgemäße Ausführungsform darstellt.
Tabelle 6
Figure imgf000031_0002
6-22 1-6 und 22 (JS 118)
Weiterhin erhält man die in Tabelle 7 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfindungsgemäße Ausführungsform darstellt.
Tabelle 7
Figure imgf000032_0001
Weiterhin erhält man die in Tabelle 8 aufgeführten Kombinationen, wobei jede Kombination für sich eine bevorzugte erfϊndungsgemäße Ausführungsform darstellt. Tabelle 8
Figure imgf000033_0001
Wenn die Wirkstoffe in den erfindungsgemäßen Wirkstoffkombinationen in bestimmten Gewichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ großen Bereich variiert werden. Im allgemeinen enthalten die erfindungsgemäßen Kombinationen einen Wirkstoff der Formel (I) und einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen in folgenden bevorzugten und besonders bevorzugten Mischungsverhältnissen:
Bevorzugtes Mischungsverhältnis: 125:1 bis 1 : 125
Besonders bevorzugtes Mischungsverhältnis: 25:1 bis 1 :25
Die Mischungsverhältnisse basieren auf Gewichtsverhältnissen. Das Verhältnis ist zu verstehen als Verbindung der Formel (I) : Wirkstoff 1 bis 22. Weitere Mischungsverhältnisse der Verbindung der Formel (I) zu einem der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chi- tin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen sind im Folgenden angegeben und nach steigender Präferenz der Mischungsverhältnisse sortiert: 95:1 bis 1:95, 95:1 bis 1:90, 95:1 bis 1:85, 95:1 bis 1:80, 95:1 bis 1:75, 95:1 bis 1:70, 95:1 bis 1:65, 95:1 bis 1:60, 95:1 bis 1:55, 95:1 bis 1:50, 95:1 bis 1:45, 95:1 bis 1:40, 95:1 bis 1:35, 95:1 bis 1:30, 95:1 bis 1:25, 95:1 bis 1:20, 95:1 bis 1:15, 95:1 bis 1:10, 95:1 bis 1:5, 95:1 bis 1:4, 95:1 bis 1:3, 95:1 bis 1:2, 90:1 bis 1:90, 90:1 bis 1:95, 90:1 bis 1:85, 90:1 bis 1:80, 90:1 bis 1:75, 90:1 bis 1:70, 90:1 bis 1:65, 90:1 bis 1:60, 90:1 bis 1:55, 90:1 bis 1:50, 90:1 bis 1:45, 90:1 bis 1:40, 90:1 bis 1:35, 90:1 bis 1:30, 90:1 bis 1:25, 90:1 bis 1:20, 90:1 bis 1:15, 90:1 bis 1:10, 90:1 bis 1:5, 90:1 bis 1:4, 90:1 bis 1:3, 90:1 bis 1:2, 85:1 bis 1:85, 85:1 bis 1:95, 85:1 bis 1:90, 85:1 bis 1:80, 85:1 bis 1:75, 85:1 bis 1:70, 85:1 bis 1:65, 85:1 bis 1:60, 85:1 bis 1:55, 85:1 bis 1:50, 85:1 bis 1:45, 85:1 bis 1:40, 85:1 bis 1:35, 85:1 bis 1:30, 85:1 bis 1:25, 85:1 bis 1:20, 85:1 bis 1:15, 85:1 bis 1:10, 85:1 bis 1:5, 85:1 bis 1:4, 85:1 bis 1:3, 85:1 bis 1:2, 80:1 bis 1:80, 80:1 bis 1:95, 80:1 bis 1:90, 80:1 bis 1:85, 80:1 bis 1:75, 80:1 bis 1:70, 80:1 bis 1:65, 80:1 bis 1:60, 80:1 bis 1:55, 80:1 bis 1:50, 80:1 bis 1:45, 80:1 bis 1:40, 80:1 bis 1:35, 80:1 bis 1:30, 80:1 bis 1:25, 80:1 bis 1:20, 80:1 bis 1:15, 80:1 bis 1:10, 80:1 bis 1:5, 80:1 bis 1:4, 80:1 bis 1:3, 80:1 bis 1:2, 75:1 bis 1:75, 75:1 bis 1:95, 75:1 bis 1:90, 75:1 bis 1:85, 75:1 bis 1:80, 75:1 bis 1:70, 75:1 bis 1:65, 75:1 bis 1:60, 75:1 bis 1:55, 75:1 bis 1:50, 75:1 bis 1:45, 75:1 bis 1:40, 75:1 bis 1:35, 75:1 bis 1:30, 75:1 bis 1:25, 75:1 bis 1:20, 75:1 bis 1:15, 75:1 bis 1:10, 75:1 bis 1:5, 75:1 bis 1:4, 75:1 bis 1:3, 75:1 bis 1:2, 70:1 bis 1:70, 70:1 bis 1:95, 70:1 bis 1:90, 70:1 bis 1:85, 70:1 bis 1:80, 70:1 bis 1:75, 70:1 bis 1:65, 70:1 bis 1:60, 70:1 bis 1:55, 70:1 bis 1:50, 70:1 bis 1:45, 70:1 bis 1:40, 70:1 bis 1:35, 70:1 bis 1:30, 70:1 bis 1:25, 70:1 bis 1:20, 70:1 bis 1:15, 70:1 bis 1:10, 70:1 bis 1:5, 70:1 bis 1:4, 70:1 bis 1:3, 70:1 bis 1:2, 65:1 bis 1:65, 65:1 bis 1:95, 65:1 bis 1:90, 65:1 bis 1:85, 65:1 bis 1:80, 65:1 bis 1:75, 65:1 bis 1:70, 65:1 bis 1:60, 65:1 bis 1:55, 65:1 bis 1:50, 65:1 bis 1:45, 65:1 bis 1:40, 65:1 bis 1:35, 65:1 bis 1:30, 65:1 bis 1:25, 65:1 bis 1:20, 65:1 bis 1:15, 65:1 bis 1:10, 65:1 bis 1:5, 65:1 bis 1:4, 65:1 bis 1:3, 65:1 bis 1:2, 60:1 bis 1:60, 60:1 bis 1:95, 60:1 bis 1:90, 60:1 bis 1:85, 60:1 bis 1:80, 60:1 bis 1:75, 60:1 bis 1:70, 60:1 bis 1:65, 60:1 bis 1:55, 60:1 bis 1:50, 60:1 bis 1:45, 60:1 bis 1:40, 60:1 bis 1:35, 60:1 bis 1:30, 60:1 bis 1:25, 60:1 bis 1:20, 60:1 bis 1:15, 60:1 bis 1:10, 60:1 bis 1:5, 60:1 bis 1:4, 60:1 bis 1:3, 60:1 bis 1:2, 55:1 bis 1:55, 55:1 bis 1:95, 55:1 bis 1:90, 55:1 bis 1:85, 55:1 bis 1:80, 55:1 bis 1:75, 55:1 bis 1:70, 55:1 bis 1:65, 55:1 bis 1:60, 55:1 bis 1:50, 55:1 bis 1:45, 55:1 bis 1:40, 55:1 bis 1:35, 55:1 bis 1:30, 55:1 bis 1:25, 55:1 bis 1:20, 55:1 bis 1:15, 55:1 bis 1:10, 55:1 bis 1:5, 55:1 bis 1:4, 55:1 bis 1:3, 55:1 bis 1:2, 50:1 bis 1:95, 50:1 bis 1:90, 50:1 bis 1:85, 50:1 bis 1:80, 50:1 bis 1:75, 50:1 bis 1:70, 50:1 bis 1:65, 50:1 bis 1:60, 50:1 bis 1:55, 50:1 bis 1:45, 50:1 bis 1:40, 50:1 bis 1:35, 50:1 bis 1:30, 50:1 bis 1:25, 50:1 bis 1:20, 50:1 is 1:15, 50:1 bis 1:10, 50:1 bis 1:5, 50:1 bis 1:4, 50:1 bis 1:3, 50:1 bis 1:2, 45:1 bis 1:45, 45:1 bis 1:95, 45:1 bis 1:90, 45:1 bis 1:85, 45:1 bis 1:80, 45:1 bis 1:75, 45:1 bis 1:70, 45:1 bis 1:65, 45:1 - - bis 1:60, 45:1 bis 1:55, 45:1 bis 1:50, 45:1 bis 1:40, 45:1 bis 1:35, 45:1 bis 1:30, 45:1 bis 1:25, 45:1 bis 1:20, 45:1 bis 1:15, 45:1 bis 1:10, 45:1 bis 1:5, 45:1 bis 1:4, 45:1 bis 1:3, 45:1 bis 1:2, 40:1 bis 1:40, 40:1 bis 1:95, 40:1 bis 1:90, 40:1 bis 1:85, 40:1 bis 1:80, 40:1 bis 1:75, 40:1 bis 1:70, 40:1 bis 1:65, 40:1 bis 1:60, 40:1 bis 1:55, 40:1 bis 1:50, 40:1 bis 1:45, 40:1 bis 1:35, 40:1 bis 1:30, 40:1 bis 1:25, 40:1 bis 1:20, 40:1 bis 1:15, 40:1 bis 1:10, 40:1 bis 1:5, 40:1 bis 1:4, 40:1 bis 1:3, 40:1 bis 1:2, 35:1 bis 1:35, 35:1 bis 1:95, 35:1 bis 1:90, 35:1 bis 1:85, 35:1 bis 1:80, 35:1 bis 1:75, 35:1 bis 1:70, 35:1 bis 1:65, 35:1 bis 1:60, 35:1 bis 1:55, 35:1 bis 1:50, 35:1 bis 1:45, 35:1 bis 1:40, 35:1 bis 1:30, 35:1 bis 1:25, 35:1 bis 1:20, 35:1 bis 1:15, 35:1 bis 1:10, 35:1 bis 1:5, 35:1 bis 1:4, 35:1 bis 1:3, 35:1 bis 1:2, 30:1 bis 1:30, 30:1 bis 1:95, 30:1 bis 1:90, 30:1 bis 1:85, 30:1 bis 1:80, 30:1 bis 1:75, 30:1 bis 1:70, 30:1 bis 1:65, 30:1 bis 1:60, 30:1 bis 1:55, 30:1 bis 1:50, 30:1 bis 1:45, 30:1 bis 1:40, 30:1 bis 1:35, 30:1 bis 1:25, 30:1 bis 1:20, 30:1 bis 1:15, 30:1 bis 1:10, 30:1 bis 1:5, 30:1 bis 1:4, 30:1 bis 1:3, 30:1 bis 1:2, 25:1 bis 1:25, 25:1 bis 1:95, 25:1 bis 1:90, 25:1 bis 1:85, 25:1 bis 1:80, 25:1 bis 1:75, 25:1 bis 1:70, 25:1 bis 1:65, 25:1 bis 1:60, 25:1 bis 1:55, 25:1 bis 1:50, 25:1 bis 1:45, 25:1 bis 1:40, 25:1 bis 1:35, 25:1 bis 1:30, 25:1 bis 1:20, 25:1 bis 1:15, 25:1 bis 1:10, 25:1 bis 1:5, 25:1 bis 1:4, 25:1 bis 1:3, 25:1 bis 1:2, 20:1 bis 1:95, 20:1 bis 1:90, 20:1 bis 1:85, 20:1 bis 1:80, 20:1 bis 1:75, 20:1 bis 1:70, 20:1 bis 1:65, 20:1 bis 1:60, 20:1 bis 1:55, 20:1 bis 1:50, 20:1 bis 1:45, 20:1 bis 1:40, 20:1 bis 1:35, 20:1 bis 1:30, 20:1 bis 1:25, 20:1 bis 1:15, 20:1 bis 1:10, 20:1 bis 1:5, 20:1 bis 1:4, 20:1 bis 1:3, 20:1 bis 1:2, 15:1 bis 1:15, 15:1 bis 1:95, 15:1 bis 1:90, 15:1 bis 1:85, 15:1 bis 1:80, 15:1 bis 1:75, 15:1 bis 1:70, 15:1 bis 1:65, 15:1 bis 1:60, 15:1 bis 1:55, 15:1 bis 1:50, 15:1 bis 1:45, 15:1 bis 1:40, 15:1 bis 1:35, 15:1 bis 1:30, 15:1 bis 1:25, 15:1 bis 1:20, 15:1 bis 1:10, 15:1 bis 1:5, 15:1 bis 1:4, 15:1 bis 1:3, 15:1 bis 1:2, 10:1 bis 1:10, 10:1 bis 1:95, 10:1 bis 1:90, 10:1 bis 1:85, 10:1 bis 1:80, 10:1 bis 1:75, 10:1 bis 1:70, 10:1 bis 1:65, 10:1 bis 1:60, 10:1 bis 1:55, 10:1 bis 1:50, 10:1 bis 1:45, 10:1 bis 1:40, 10:1 bis 1:35, 10:1 bis 1:30, 10:1 bis 1:25, 10:1 bis 1:20, 10:1 bis 1:15, 10:1 bis 1:5, 10:1 bis 1:4, 10:1 bis 1:3, 10:1 bis 1:2, 5:1 bis 1:5, 5:1 bis 1:95, 5:1 bis 1:90, 5:1 bis 1:85, 5:1 bis 1:80, 5:1 bis 1:75, 5:1 bis 1:70, 5:1 bis 1:65, 5:1 bis 1:60, 5:1 bis 1:55, 5:1 bis 1:50, 5:1 bis 1:45, 5:1 bis 1:40, 5:1 bis 1:35, 5:1 bis 1:30, 5:1 bis 1:25, 5:1 bis 1:20, 5:1 bis 1:15, 5:1 bis 1:10, 5:1 bis 1:4, 5:1 bis 1:3, 5:1 bis 1:2, 4:1 bis 1:4, 4:1 bis 1:95, 4:1 bis 1:90, 4:1 bis 1:85, 4:1 bis 1:80, 4:1 bis 1:75, 4:1 bis 1:70, 4:1 bis 1:65, 4:1 bis 1:60, 4:1 bis 1:55, 4:1 bis 1:50, 4:1 bis 1:45, 4:1 bis 1:40, 4:1 bis 1:35, 4:1 bis 1:30, 4:1 bis 1:25, 4:1 bis 1:20, 4:1 bis 1:15, 4:1 bis 1:10, 4:1 bis 1: 5, 4:1 bis 1:3, 4:1 bis 1:2, 3:1 bis 1:3, 3:1 bis 1:95, 3:1 bis 1:90, 3:1 bis 1:85, 3:1 bis 1:80, 3:1 bis 1:75, 3:1 bis 1:70, 3:1 bis 1:65, 3:1 bis 1:60, 3:1 bis 1:55, 3:1 bis 1:50, 3:1 bis 1:45, 3:1 bis 1:40, 3:1 bis 1:35, 3:1 bis 1:30, 3:1 bis 1:25, 3:1 bis 1:20, 3:1 bis 1:15, 3:1 bis 1:10, 3:1 bis 1: 5, 3:1 bis 1:4, 3:1 bis 1:2, 2:1 bis 1:2, 2:1 bis 1:95, 2:1 bis 1:90, 2:1 bis 1:85, 2:1 bis 1:80, 2:1 bis 1:75, 2:1 bis 1:70, 2:1 bis 1:65, 2:1 bis 1:60, 2:1 bis 1:55, 2:1 bis 1:50, 2:1 bis 1:45, 2:1 bis 1:40, 2:1 bis 1:35, 2:1 bis 1:30, 2:1 bis 1:25, 2:1 bis 1:20, 2:1 bis 1:15, 2:1 bis 1:10, 2:1 bis 1: 5, 2:1 bis 1:4, 2:1 bis 1:3. Die Verbindungen der Formel (I) oder die Wirkstoffe aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen mit wenigstens einem basischen Zentrum sind dazu in der Lage, beispielsweise Säureadditionssalze zu bilden, z.B. mit starken anorganischen Säuren wie Mineralsäuren, z.B. Perchlorsäure, Schwefelsäure, Salpetersäure, salpetri- ger Säure, einer Phosphorsäure oder einer Halogenwasserstoffsäure, mit starken organischen Carbonsäuren wie unsubstituierten oder substituierten, z.B. halogensubstituierten, C1-C4- Alkancarbonsäuren, z.B. Essigsäure, gesättigten oder ungesättigten Dicarbonsäuren, z.B. Oxalsäure, Malonsäure, Bernsteinsäure, Maleinsäure, Fumarsäure und Phthalsäure, Hydroxycarbonsäuren, z.B. Ascorbinsäure, Milchsäure, Äpfelsäure, Weinsäure und Citronensäure, oder Benzoesäure, oder mit organischen Sulfonsäuren wie unsubstituierten oder substituierten, z.B. halogensubstituierten, Ci-CrAlkan- oder Arylsulfonsäuren, z.B. Methan- oder p-Toluolsulfonsäure. Die Verbindungen der Formel (I) oder die Wirkstoffe aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen mit wenigstens einer sauren Gruppe sind dazu in der Lage, zum Beispiel Salze mit Basen zu bilden, z.B. Metallsalze wie Alkali- oder Erdalkali- salze, z.B. Natrium-, Kalium- oder Magnesiumsalze, oder Salze mit Ammoniak oder einem organischen Amin wie Morpholin, Piperidin, Pyrrolidin, einem niederen Mono-, Di- oder Trialkylamin, z.B. Ethyl-, Diethyl-, Triethyl- oder Dimethylpropylamin, oder einem niederen Mono-, Di- oder Trihydroxyalkylamin, z.B. Mono-, Di- oder Triethanolamin. Darüber hinaus können gegebenenfalls entsprechende innere Salze gebildet werden. Im Rahmen der Erfindung sind agrochemisch vorteilhafte Salze bevorzugt. Angesichts der engen Beziehung zwischen den Verbindungen der Formel (I) oder den Wirkstoffen aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen in freier Form und in Form ihrer Salze sollte oben und im folgenden jeder Verweis auf die freien Verbindungen der Formel (I) oder freie Wirkstoffe aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen oder auf ihre Salze so verstanden werden, dass auch die entsprechenden Salze bzw. die freien Verbindungen der Formel (I) oder die freien Wirkstoffe aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen eingeschlossen sind, wenn dies angebracht und zweckmäßig ist. Dies trifft entsprechend auch auf Tautomere der Verbindungen der Formel (I) bzw. der Wirkstoffe aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hor- mone Agonisten oder anderer Klassen und auf ihre Salze zu.
Im Rahmen der vorliegenden Erfindung steht der Begriff „Wirkstoffkombination" für verschiedene Kombinationen von Verbindungen der Formel (I) und Wirkstoffen aus der Klasse der Chitin- Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen, z.B. in Form einer einzelnen Fertigmischung („Ready-Mix"), in einer kombinierten Spraymischung, die zusammenge- setzt ist aus getrennten Formulierungen der einzelnen Wirkstoffe, z.B. einer Tankmischung („Tank-Mix") oder in einer kombinierten Verwendung der einzelnen Wirkstoffe, wenn diese se- quentiell appliziert werden, z.B. nacheinander innerhalb eines angemessen kurzen Zeitraums, z.B. wenigen Stunden oder Tagen. Gemäß einer bevorzugten Ausfuhrungsform ist die Reihenfolge der Applikation der Verbindungen der Formel (I) und der Wirkstoffe aus der Klasse der Chitin- Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen für die Ausführung der vorliegenden Erfindung nicht entscheidend.
Beim Einsatz der erfindungsgemäßen Wirkstoffkombinationen als Insektizide und Akarizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Die Aufwandmenge der erfindungsgemäßen Wirkstoffkombinationen beträgt bei der Behandlung von Pflanzenteilen, z.B. Blättern von 0,1 bis 10.000 g/ha, bevorzugt von 10 bis 1.000 g/ha, besonders bevorzugt von 50 bis 300g/ha (bei Anwendung durch Gießen oder Tropfen kann die Aufwandmenge sogar verringert werden, vor allem wenn inerte Substrate wie Steinwolle oder Perlit verwendet werden); bei der Saatgutbehandlung von 2 bis 200 g pro 100 kg Saatgut, bevorzugt von 3 bis 150 g pro 100 kg Saatgut, besonders bevorzugt von 2,5 bis 25 g pro 100 kg Saatgut, ganz besonders bevorzugt von 2,5 bis 12,5 g pro 100 kg Saatgut; bei der Bodenbehandlung von 0,1 bis 10.000 g/ha, bevorzugt von 1 bis 5.000 g/ha.
Diese Aufwandmengen seien nur beispielhaft und nicht limitierend im Sinne der Erfindung genannt.
Die erfindungsgemäßen Wirkstoffkombinationen können eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten tieri- sehen Schädlinge zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen auf 1 bis 28 Tage, bevorzugt auf 1 bis 14 Tage, besonders bevorzugt auf 1 bis 10 Tage, ganz besonders bevorzugt auf 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen bzw. auf bis zu 200 Tage nach einer Saatgutbehandlung.
Die erfindungsgemäßen Wirkstoffkombinationen eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und
Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes und zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen,
Nematoden und Mollusken, die in der Landwirtschaft, im Gartenbau, bei der Tierzucht, in Forsten, in Gärten und Freizeiteinrichtungen, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam.
Zu den oben erwähnten Schädlingen gehören: Aus der Ordnung der Anoplura (Phthiraptera) z.B. Damalinia spp., Haematopinus spp., Li- nognathus spp., Pediculus spp., Trichodectes spp.
Aus der Klasse der Arachnida z.B. Acarus siro, Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latrodectus mactans, Metatetranychus spp., Oligonychus spp., Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora, Polyphago- tarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scoφio maurus, Stenotarsonemus spp., Tarsonemus spp., Tetranychus spp., Vasates lycopersici.
Aus der Klasse der Bivalva z.B. Dreissena spp.
Aus der Ordnung der Chilopoda z.B. Geophilus spp., Scutigera spp.
Aus der Ordnung der Coleoptera z.B. Acanthoscelides obtectus, Adorerus spp., Agelastica alni, Agriotes spp., Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apogonia spp., Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus spp., Ceuthorhynchus spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zea- landica, Curculio spp., Cryptorhynchus lapathi, Dermestes spp., Diabrotica spp., Epilachna spp., Faustinus cubae, Gibbium psylloides, Heteronychus arator, Hylamorpha elegans, Hylotrupes baju- lus, Hypera postica, Hypothenemus spp., Lachnosterna consanguinea, Leptinotarsa decemlineata, Lissorhoptrus oryzophilus, Lixus spp., Lyctus spp., Meligethes aeneus, Melolontha melolontha, Migdolus spp., Monochamus spp., Naupactus xanthographus, Niptus hololeucus, Oryctes rhino- ceros, Oryzaephilus surinamensis, Otiorrhynchus sulcatus, Oxycetonia jucunda, Phaedon cochlea- riae, Phyllophaga spp., Popillia japonica, Premnotrypes spp., Psylliodes chrysocephala, Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Sitophilus spp., Sphenophorus spp., Sternechus spp., Symphyletes spp., Tenebrio molitor, Tribolium spp., Trogoderma spp., Tychius spp., Xy- lotrechus spp., Zabrus spp.
Aus der Ordnung der Collembola z.B. Onychiurus armatus.
Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.
Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Bibio hortulanus, Calliphora e- rythrocephala, Ceratitis capitata, Chrysomyia spp., Cochliomyia spp., Cordylobia anthropophaga,
Culex spp., Cuterebra spp., Dacus oleae, Dermatobia hominis, Drosophila spp., Fannia spp.,
Gastrophilus spp., Hylemyia spp., Hyppobosca spp., Hypoderma spp., Liriomyza spp.. Lucilia spp., Musca spp., Nezara spp., Oestrus spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Stomoxys spp., Tabanus spp., Tannia spp., Tipula paludosa, Wohlfahrtia spp.
Aus der Klasse der Gastropoda z.B. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Succinea spp.
Aus der Klasse der Helminthen z.B. Ancylostoma duodenale, Ancylostoma ceylanicum, Acy- lostoma braziliensis, Ancylostoma spp., Ascaris lubricoides, Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp, Dic- tyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp., Oesophagostomum spp., Opisthorchis spp., Onchocerca volvulus, Ostertagia spp., Paragonimus spp., Schistosomen spp, Strongyloides fuelleborni, Strongyloides stercoralis, Stronyloides spp., Taenia saginata, Tae- nia solium, Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichuria, Wuchereria bancrofti.
Weiterhin lassen sich Protozoen, wie Eimeria, bekämpfen.
Aus der Ordnung der Heteroptera z.B. Anasa tristis, Antestiopsis spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Eurygaster spp., Heliopeltis spp., Horcias nobilellus, Leptocorisa spp., Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus seria- tus, Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
Aus der Ordnung der Homoptera z.B. Acyrthosipon spp., Aeneolamia spp., Agonoscena spp., A- leurodes spp., Aleurolobus barodensis, Aleurothrixus spp., Amrasca spp., Anuraphis cardui, Aoni- diella spp., Aphanostigma piri, Aphis spp., Arboridia apicalis, Aspidiella spp., Aspidiotus spp., Atanus spp., Aulacorthum solani, Bemisia spp., Brachycaudus helichrysii, Brachycolus spp., Bre- vicoryne brassicae, Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cerco- pidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chro- maphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Dalbulus spp., Dialeurodes spp., Diaphorina spp., Diaspis spp., Doralis spp., Drosicha spp., Dysaphis spp., Dysmicoccus spp., Empoasca spp., Eriosoma spp., Erythroneura spp., Euscelis bilobatus, Geococcus coffeae, Homalodisca coagulata, Hyalopterus arundinis, Icerya spp., Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lepidosaphes spp., Lipaphis erysimi, Macrosiphum spp., Mahanarva fimbriolata, Melanaphis sacchari, Metcalfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Nasonovia ribisnigri, Nephotettix spp., Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Parabe- misia myricae, Paratrioza spp., Parlatoria spp., Pemphigus spp., Peregrinus maidis, Phenacoccus spp., Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., Pinnaspis aspidistrae, Planococ- cus spp., Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., Psylla spp., Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopa- losiphum spp., Saissetia spp., Scaphoides titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Tenalaphara malayensis, Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes vaporariorum, Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii.
Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
Aus der Ordnung der Isopoda z.B. Armadillidium vulgäre, Oniscus asellus, Porcellio scaber.
Aus der Ordnung der Isoptera z.B. Reticulitermes spp., Odontotermes spp.
Aus der Ordnung der Lepidoptera z.B. Acronicta major, Aedia leucomelas, Agrotis spp., Alabama argillacea, Anticarsia spp., Barathra brassicae, Bucculatrix thurberiella, Bupalus piniarius, Cacoe- cia podana, Capua reticulana, Caφocapsa pomonella, Cheimatobia brumata, Chilo spp., Choristo- neura fumiferana, Clysia ambiguella, Cnaphalocerus spp., Earias insulana, Ephestia kuehniella, Euproctis chrysorrhoea, Euxoa spp., Feltia spp., Galleria mellonella, Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homona magnanima, Hyponomeuta padella, Laphygma spp., Leucoptera spp., Lithocolletis blancardella, Lithophane antennata, Loxagrotis albicosta, Ly- mantria spp., Malacosoma neustria, Mamestra brassicae, Mocis repanda, Mythimna separata, Oria spp., Oulema oryzae, Panolis flammea, Pectinophora gossypiella, Phyllocnistis citrella, Pieris spp., Plutella xylostella, Prodenia spp., Pseudaletia spp., Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia spp., Spodoptera spp., Thermesia gemmatalis, Tinea pellionella, Tineola bisselliella, Tortrix viridana, Trichoplusia spp., Tuta spp.
Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Blatta orientalis, Blattella germanica, Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta americana, Schistocerca gregaria.
Aus der Ordnung der Siphonaptera z.B. Ceratophyllus spp., Xenopsylla cheopis.
Aus der Ordnung der Symphyla z.B. Scutigerella immaculata. Aus der Ordnung der Thysanoptera z.B. Baliothrips biformis, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Kakothrips spp., Rhipiphorothrips cruentatus, Scir- tothrips spp., Taeniothrips cardamoni, Thrips spp.
Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
Zu den pflanzenparasitären Nematoden gehören z.B. Anguina spp., Aphelenchoides spp., Belono- aimus spp., Bursaphelenchus spp., Ditylenchus dipsaci, Globodera spp., Heliocotylenchus spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, Ro- tylenchus spp., Trichodorus spp., Tylenchorhynchus spp., Tylenchulus spp., Tylenchulus semipe- netrans, Xiphinema spp.
Die erfindungsgemäßen Wirkstoffkombinationen können gegebenenfalls in bestimmten Konzentrationen bzw. Aufwandmengen auch als Herbizide, Safener, Wachstumsregulatoren oder Mittel zur Verbesserung der Pflanzeneigenschaften, oder als Mikrobizide, beispielsweise als Fungizide, Antimykotika, Bakterizide, Virizide (einschließlich Mittel gegen Viroide) oder als Mittel gegen MLO (Mycoplasma-like-organism) und RLO (Rickettsia-like-organism) verwendet werden.
Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, wasser- und ölbasierte Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, lösliche Granulate, Streugranulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Naturstoffe, Wirkstoff-imprägnierte synthetische Stoffe, Düngemittel sowie Feinst- verkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Die Herstellung der Formulierungen erfolgt entweder in geeigneten Anlagen oder auch vor oder während der Anwendung.
Als Hilfsstoffe können solche Stoffe Verwendung finden, die geeignet sind, dem Mittel selbst oder und/oder davon abgeleitete Zubereitungen (z.B. Spritzbrühen, Saatgutbeizen) besondere Eigenschaften zu verleihen, wie bestimmte technische Eigenschaften und/oder auch besondere biologische Eigenschaften. Als typische Hilfsmittel kommen in Frage: Streckmittel, Lösemittel und Trägerstoffe.
Als Streckmittel eignen sich z.B. Wasser, polare und unpolare organische chemische Flüssigkeiten z.B. aus den Klassen der aromatischen und nicht-aromatischen Kohlenwasserstoffe (wie Paraffine, Alkylbenzole, Alkylnaphthaline, Chlorbenzole), der Alkohole und Polyole (die ggf. auch substitu- iert, verethert und/oder verestert sein können), der Ketone (wie Aceton, Cyclohexanon), Ester (auch Fette und Öle) und (poly-)Ether, der einfachen und substituierten Amine, Atnide, Lactame (wie N-Alkylpyrrolidone) und Lactone, der Sulfone und Sulfoxide (wie Dimethylsulfoxid).
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösemittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösemittel kommen im wesentlichen in Frage:
Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphati- sche Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische
Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Ace- ton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie
Dimethylsulfoxid, sowie Wasser.
Erfindungsgemäß bedeutet Trägerstoff eine natürliche oder synthetische, organische oder anorganische Substanz, welcher fest oder flüssig sein kann, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, insbesondere zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der feste oder flüssige Trägerstoff ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein.
Als feste oder flüssige Trägerstoffe kommen in Frage:
z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Papier, Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nich- tionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen- Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage nicht-ionische und/oder ionische Stoffe, z.B. aus den Klassen der Alkohol-POE- und/oder POP-Ether, Säure- und/oder POP- POE- Ester, Alkyl-Aryl- und/oder POP- POE-Ether, Fett- und/oder POP- POE-Addukte, POE- und/oder POP-Polyol Derivate, POE- und/oder POP-Sorbitan- oder Zucker-Addukte, Alky- oder Aryl- Sulfate, Sulfonate und Phosphate oder die entsprechenden PO-Ether-Addukte. Ferner geeignete Oligo- oder Polymere, z.B. ausgehend von vinylischen Monomeren, von Acrylsäure, aus EO und/oder PO allein oder in Verbindung mit z.B. (poly-) Alkoholen oder (poly-) Aminen. Ferner können Einsatz finden Lignin und seine Sulfonsäure-Derivate, einfache und modifizierte Cellulo- sen, aromatische und/oder aliphatische Sulfonsäuren sowie deren Addukte mit Formaldehyd.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, PoIy- vinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Weitere Additive können Duftstoffe, mineralische oder vegetabile gegebenenfalls modifizierte Öle, Wachse und Nährstoffe (auch Spurennährstoffe), wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink sein.
Weiterhin enthalten sein können Stabilisatoren wie Kältestabilisatoren, Konservierungsmittel, Oxidationsschutzmittel, Lichtschutzmittel oder andere die chemische und/oder physikalische Stabilität verbessernde Mittel.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen liegt im Bereich von 0,00000001 bis 97 Gew.-% Wirkstoff, vorzugsweise im Bereich von 0,0000001 bis 97 Gew.-%, besonders bevorzugt im Bereich von 0,000001 bis 83 Gew.-% oder 0,000001 bis 5 Gew.-% und ganz besonders bevorzugt im Bereich von 0,0001 bis 1 Gew.-%.
Der erfindungsgemäßen Wirkstoffkombinationen können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen, Herbiziden, Safenern, Düngemitteln oder Semiochemicals vorliegen.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden, Düngemitteln, Wachstumsregulatoren, Safenern, Semiochemicals, oder auch mit Mitteln zur Verbesserung der Pflanzeneigenschaften ist möglich.
Die erfmdungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss.
Die erfindungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten An- wendungsformen in Mischungen mit Hemmstoffen vorliegen, die einen Abbau des Wirkstoffes nach Anwendung in der Umgebung der Pflanze, auf der Oberfläche von Pflanzenteilen oder in pflanzlichen Geweben vermindern.
Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen wer- den hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Saatgut sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Früchte, Samen, Stecklinge, Knollen, Rhizome, Ableger, Saatgut, Brutzwiebeln, Absenker und Ausläufer.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffkombinationen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen, Injizieren und bei Vermehrungsmaterial, insbesondere bei Saatgut, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende erwähnt: Baumwolle, Flachs, Weinrebe, Obst, Gemüse, wie Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie Erdbee- ren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise Bananenbäume und - plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise Tomaten), Liliaceae sp., Asteraceae sp. (beispielsweise Salat), Umbelliferae sp., Cmciferae sp., Chenopodiaceae sp., Cucurbita- ceae sp. (beispielsweise Gurke), Alliaceae sp. (beispielsweise Lauch, Zwiebel), Papilionaceae sp. (beispielsweise Erbsen); Hauptnutzpflanzen, wie Gramineae sp. (beispielsweise Mais, Rasen, Getreide wie Weizen, Roggen, Reis, Gerste, Hafer, Hirse und Triticale), Asteraceae sp. (beispielsweise Sonnenblu- me), Brassicaceae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen sowie Raps, Senf, Meerrettich und Kresse), Fabacae sp. (beispielsweise Bohne, Erdnüsse), Papilionaceae sp. (beispielsweise Sojabohne), Solanaceae sp. (beispielsweise Kartoffeln), Chenopodiaceae sp. (beispielsweise Zuckerrübe, Futterrübe, Mangold, Rote Rübe); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen.
Insbesondere eignen sich die erfindungsgemäßen Wirkstoffkombinationen zur Behandlung von Saatgut. Bevorzugt sind dabei die vorstehend als bevorzugt oder besonders bevorzugt genannten erfindungsgemäßen Kombinationen zu nennen. So entsteht ein großer Teil des durch Schädlinge verursachten Schadens an Kulturpflanzen bereits durch den Befall des Saatguts während der Lagerung und nach dem Einbringen des Saatguts in den Boden sowie während und unmittelbar nach der Keimung der Pflanzen. Diese Phase ist besonders kritisch, da die Wurzeln und Sprosse der wachsenden Pflanze besonders empfindlich sind und bereits ein geringer Schaden zum Absterben der ganzen Pflanze führen kann. Es besteht daher ein insbesondere großes Interesse daran, das Saatgut und die keimende Pflanze durch den Einsatz geeigneter Mittel zu schützen.
Die Bekämpfung von Schädlingen durch die Behandlung des Saatguts von Pflanzen ist seit langem bekannt und ist Gegenstand ständiger Verbesserungen. Dennoch ergeben sich bei der Behandlung von Saatgut eine Reihe von Problemen, die nicht immer zufrieden stellend gelöst werden können. So ist es erstrebenswert, Verfahren zum Schutz des Saatguts und der keimenden Pflanze zu entwickeln, die das zusätzliche Ausbringen von Pflanzenschutzmitteln nach der Saat oder nach dem Auflaufen der Pflanzen überflüssig machen. Es ist weiterhin erstrebenswert, die Menge des einge- setzten Wirkstoffs dahingehend zu optimieren, dass das Saatgut und die keimende Pflanze vor dem Befall durch Schädlinge bestmöglich geschützt werden, ohne jedoch die Pflanze selbst durch den eingesetzten Wirkstoff zu schädigen. Insbesondere sollten Verfahren zur Behandlung von Saatgut auch die intrinsischen insektiziden Eigenschaften transgener Pflanzen einbeziehen, um einen optimalen Schutz des Saatguts und auch der keimenden Pflanze bei einem minimalen Aufwand an Pflanzenschutzmitteln zu erreichen.
Die vorliegende Erfindung bezieht sich daher insbesondere auch auf ein Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen, indem das Saatgut mit einer erfindungsgemäßen Wirkstoffkombination behandelt wird. Das erfindungsgemäße Verfahren zum Schutz von Saatgut und keimenden Pflanzen vor dem Befall von Schädlingen umfasst ein Verfah- ren, in dem das Saatgut zur gleichen Zeit mit einem Wirkstoff der Formel (I) und einem der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der MoI- ting Hormone Agonisten oder anderer Klassen behandelt wird. Es umfasst auch ein Verfahren, in dem das Saatgut zu unterschiedlichen Zeiten mit einem Wirkstoff der Formel (I) und einem der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen behandelt wird. Die Erfindung bezieht sich ebenfalls auf die Verwendung der erfindungsgemäßen Wirkstoffkombinationen zur Behandlung von Saatgut zum Schutz des Saatguts und der daraus entstehenden Pflanze vor Schädlingen. Weiterhin bezieht sich die Erfindung auf Saatgut, welches zum Schutz vor Schädlingen mit einer erfindungsgemäßen Wirkstoffkombination behandelt wurde. Die Erfindung bezieht sich auch auf Saatgut, welches zur gleichen Zeit mit einem Wirkstoff der Formel (I) und einem der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen behandelt wurde. Die Erfindung bezieht sich weiterhin auf Saatgut, welches zu unterschiedlichen Zeiten mit einem Wirkstoff der Formel (I) und einem der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen behandelt wurde. Bei Saatgut, welches zu unterschiedlichen Zeiten mit einem Wirkstoff der Formel (I) und einem der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen behandelt wurde, können die einzelnen Wirkstoffe des erfindungsgemäßen Mittels in unterschiedlichen Schichten auf dem Saatgut enthalten sein. Dabei kön- nen die Schichten, die einen Wirkstoff der Formel (I) und einen der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen enthalten, gegebenenfalls durch eine Zwischenschicht getrennt sein. Die Erfindung bezieht sich auch auf Saatgut, bei dem ein Wirkstoff der Formel (I) und eines der oben einzeln aufgeführten Wirkstoffe 1 bis 22 aus der Klasse der Chitin-Synthese-Inhibitoren, der Molting Hormone Agonisten oder anderer Klassen als Bestandteil einer Umhüllung oder als weitere Schicht oder weitere Schichten zusätzlich zu einer Umhüllung aufgebracht sind.
Einer der Vorteile der vorliegenden Erfindung ist es, dass aufgrund der besonderen systemischen Eigenschaften der erfindungsgemäßen Wirkstoffkombinationen die Behandlung des Saatguts mit diesen Wirkstoffkombinationen nicht nur das Saatgut selbst, sondern auch die daraus hervorge- henden Pflanzen nach dem Auflaufen vor Schädlingen schützt. Auf diese Weise kann die unmittelbare Behandlung der Kultur zum Zeitpunkt der Aussaat oder kurz danach entfallen.
Ein weiterer Vorteil besteht in der synergistischen Erhöhung der insektiziden Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen gegenüber dem insektiziden Einzelwirkstoff, die über die zu erwartende Wirksamkeit der beiden einzeln angewendeten Wirkstoffe hinausgeht. Vorteil- haft ist auch die synergistische Erhöhung der fungiziden Wirksamkeit der erfindungsgemäßen Wirkstoffkombinationen gegenüber dem fungiziden Einzelwirkstoff, die über die zu erwartende Wirksamkeit des einzeln angewendeten Wirkstoffs hinausgeht. Damit wird eine Optimierung der Menge der eingesetzten Wirkstoffe ermöglicht.
Ebenso ist es als vorteilhaft anzusehen, dass die erfindungsgemäßen Wirkstoffkombinationen ins- besondere auch bei transgenem Saatgut eingesetzt werden können, wobei die aus diesem Saatgut hervorgehenden Pflanzen zur Expression eines gegen Schädlinge gerichteten Proteins befähigt sind. Durch die Behandlung solchen Saatguts mit den erfindungsgemäßen Wirkstoffkombinationen können bestimmte Schädlinge bereits durch die Expression des z.B. insektiziden Proteins kontrolliert werden, und zusätzlich durch die erfindungsgemäßen Wirkstoffkombinationen vor Schäden bewahrt werden.
Die erfindungsgemäßen Wirkstoffkombinationen eignen sich zum Schutz von Saatgut jeglicher Pflanzensorte wie bereits vorstehend genannt, die in der Landwirtschaft, im Gewächshaus, in Forsten oder im Gartenbau eingesetzt wird. Insbesondere handelt es sich dabei um Saatgut von Mais, Erdnuss, Canola, Raps, Mohn, Soja, Baumwolle, Rübe (z.B. Zuckerrübe und Futterrübe), Reis, Hirse, Weizen, Gerste, Hafer, Roggen, Sonnenblume, Tabak, Kartoffeln oder Gemüse (z.B. Tomaten, Kohlgewächse). Die erfindungsgemäßen Wirkstoffkombinationen eignen sich ebenfalls zur Behandlung des Saatguts von Obstpflanzen und Gemüse wie vorstehend bereits genannt. Besondere Bedeutung kommt der Behandlung des Saatguts von Mais, Soja, Baumwolle, Weizen und Canola oder Raps zu.
Wie vorstehend bereits erwähnt, kommt auch der Behandlung von transgenem Saatgut mit einer erfindungsgemäßen Wirkstoffkombination eine besondere Bedeutung zu. Dabei handelt es sich um das Saatgut von Pflanzen, die in der Regel zumindest ein heterologes Gen enthalten, das die Expression eines Polypeptids mit insbesondere insektiziden Eigenschaften steuert. Die heterologen Gene in transgenem Saatgut können dabei aus Mikroorganismen wie Bacillus, Rhizobium, Pseu- domonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Die vorliegende Erfindung eignet sich besonders für die Behandlung von transgenem Saatgut, das zumindest ein heterologes Gen enthält, das aus Bacillus sp. stammt und dessen Genprodukt Wirksamkeit gegen Maiszünsler und/oder Maiswurzel-Bohrer zeigt. Besonders bevorzugt handelt es sich dabei um ein heterologes Gen, das aus Bacillus thuringiensis stammt.
Im Rahmen der vorliegenden Erfindung wird die erfindungsgemäße Wirkstoffkombination alleine oder in einer geeigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge der auf das Saatgut aufgebrachten erfϊndungsgemäßen Wirkstoffkombination und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2.
Die erfindungsgemäß verwendbaren Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konser- vierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser.
Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, CI. Pigment Red 112 und CI. Solvent Red 1 bekannten Farbstoffe.
Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diisopropyl- oder Diisobutylnaphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vor- zugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Ge- eignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat-Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat.
Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure- derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose.
Als Gibberelline, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen vorzugsweise die Gibberelline Al, A3 (= Gibberellinsäure), A4 und A7 infrage, besonders bevorzugt verwendet man die Gibberellinsäure. Die Gibberelline sind bekannt (vgl. R. Wegler „Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel", Bd. 2, Springer Verlag, 1970, S. 401-412).
Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten.
Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-For- mulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an.
Das erfindungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizier- ten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Hypochondriengenom der transformierten Pflanze da- durch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, daß es ein interessierendes Protein oder Polypeptid exprimiert oder daß es ein anderes Gen, das in der Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense-Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeich- net. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet.
In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegenüber Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Ernteer- leichterung, Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Ernteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfahigkeit und/oder Verar- beitbarkeit der Ernteprodukte.
In gewissen Aufwandmengen können die erfindungsgemäßen Wirkstoffkombinationen auch eine stärkende Wirkung auf pflanzen ausüben. Sie eignen sich daher für die Mobilisierung des pflanzlichen Abwehrsystems gegen Angriff durch unerwünschte phytopathogene Pilze und/oder Mikroorganismen und/oder Viren. Dies kann gegebenenfalls einer der Gründe für die erhöhte Wirksamkeit der erfindungsgemäßen Kombinationen sein, zum Beispiel gegen Pilze. Pflanzenstärkende (resistenzinduzierende) Substanzen sollen im vorliegenden Zusammenhang auch solche Substanzen oder Substanzkombinationen bedeuten, die fähig sind, das pflanzliche Abwehrsystem so zu stimulieren, daß die behandelten Pflanzen, wenn sie im Anschluß daran mit unerwünschten phytopathogenen Pilzen und/oder Mikroorganismen und/oder Viren inokkuliert werde, einen beträchtlichen Resistenzgrad gegen diese unerwünschten phytopathogenen Pilze und/oder Mikroorganismen und/oder Viren aufweisen. Im vorliegenden Fall versteht man unter unerwünschten phytopathogenen Pilzen und/oder Mikroorganismen und/oder Viren phytopathogene Pilze, Bakterien und Viren. Die erfindungsgemäßen Substanzen lassen sich daher zum Schutz von Pflanzen gegen Angriff durch die erwähnten Pathogene innerhalb eines gewissen Zeitraums nach der Behandlung einsetzen. Der Zeitraum, über den eine Schutzwirkung erzielt wird, erstreckt sich im Allgemeinen von 1 bis 10 Tagen, vorzugsweise 1 bis 7 Tagen, nach der Behandlung der Pflanzen mit den Wirkstoffen.
Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde).
Pflanzen und Pflanzensorten, die ebenfalls vorzugsweise erfindungsgemäß behandelt werden, sind gegen einen oder mehrere biotische Streßfaktoren resistent, d. h. diese Pflanzen weisen eine ver- besserte Abwehr gegen tierische und mikrobielle Schädlinge wie Nematoden, Insekten, Milben, phytopathogene Pilze, Bakterien, Viren und/oder Viroide auf.
Pflanzen und Pflanzensorten, die ebenfalls erfindungsgemäß behandelt werden können, sind solche Pflanzen, die gegen einen oder mehrere abiotische Streßfaktoren resistent sind. Zu den abiotischen Streßbedingungen können zum Beispiel Dürre, Kälte- und Hitzebedingungen, osmotischer Streß, Staunässe, erhöhter Bodensalzgehalt, erhöhtes Ausgesetztsein an Mineralien, Ozonbedingungen, Starklichtbedingungen, beschränkte Verfügbarkeit von Stickstoffnährstoffen, beschränkte Verfügbarkeit von Phosphornährstoffen oder Vermeidung von Schatten zählen.
Pflanzen und Pflanzensorten, die ebenfalls erfindungsgemäß behandelt werden können, sind solche Pflanzen, die durch erhöhte Ertragseigenschaften gekennzeichnet sind. Ein erhöhter Ertrag kann bei diesen Pflanzen z. B. auf verbesserter Pflanzenphysiologie, verbessertem Pflanzenwuchs und verbesserter Pflanzenentwicklung, wie Wasserverwertungseffizienz, Wasserhalteeffizienz, verbesserter Stickstoffverwertung, erhöhter Kohlenstoffassimilation, verbesserter Photosynthese, verstärkter Keimkraft und beschleunigter Abreife beruhen. Der Ertrag kann weiterhin durch eine verbesserte Pflanzenarchitektur (unter Streß- und nicht-Streß-Bedingungen) beeinflußt werden, darun- ter frühe Blüte, Kontrolle der Blüte für die Produktion von Hybridsaatgut, Keimpfianzenwüchsig- keit, Pflanzengröße, Internodienzahl und -abstand, Wurzelwachstum, Samengröße, Fruchtgröße, Schotengröße, Schoten- oder Ährenzahl, Anzahl der Samen pro Schote oder Ähre, Samenmasse, verstärkte Samenfüllung, verringerter Samenausfall, verringertes Schotenplatzen sowie Standfestigkeit. Zu weiteren Ertragsmerkmalen zählen Samenzusammensetzung wie Kohlenhydratgehalt, Proteingehalt, Ölgehalt und Ölzusammensetzung, Nährwert, Verringerung der nährwidrigen Verbindungen, verbesserte Verarbeitbarkeit und verbesserte Lagerfähigkeit.
Pflanzen, die erfϊndungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abi- otische Streßfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, daß man eine ingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen ingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollen- sterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d. h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, daß die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, daß die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, daß die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica-Arten beschrieben (WO 1992/005251, WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 und US 6,229,072). Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentech- nik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden (z. B. WO 1991/002069).
Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhal- ten werden. Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Bei- spiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371), das CP4-Gen des Bakteriums Agrobac- terium sp. (Barry et al., Curr. Topics Plant Physiol. (1992), 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., Science (1986), 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., J. Biol. Chem. (1988), 263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 2001/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln, wie sie zum Beispiel in EP-A 0837944, WO 2000/066746, WO 2000/066747 oder WO 2002/026995 beschrieben ist. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, daß man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym, wie es in US 5,776,760 und US 5,463,175 beschrieben ist, kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, daß man ein Gen exprimiert, das für ein Glyphosate-acetyltransferase-Enzym, wie es in z. B. WO 2002/036782, WO 2003/092360, WO 2005/012515 und WO 2007/024782 beschrieben ist, kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, daß man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene, wie sie zum Beispiel in WO 2001/024615 oder WO 2003/013226 beschrieben sind, enthalten, selektiert.
Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, daß man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces-Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind zum Beispiel in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 und US 7,112,665 beschrieben.
Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der pa- ra-Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes HPPD-Enzym gemäß WO 1996/038567, WO 1999/024585 und WO 1999/024586 kodiert, transformiert werden. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, daß man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen und Gene sind in WO 1999/034008 und WO 2002/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, daß man Pflanzen zusätzlich zu einem Gen, das für ein HPPD-tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie dies in WO 2004/024928 beschrieben ist.
Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfo- nylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfony- laminocarbonyltriazolinon-Herbizide. Es ist bekannt, daß verschiedene Mutationen im Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen, wie dies zum Beispiel bei Tranel und Wright, Weed Science (2002), 50, 700-712, jedoch auch in US 5,605,011, US 5,378,824, US 5,141,870 und US 5,013,659, beschrieben ist. Die Herstellung von sulfonylharnstofftoleranten Pflanzen und imidazolinontoleranten Pflanzen ist in US 5,605,011; US 5,013,659; US 5,141,870; US 5,767,361; US 5,731,180; US 5,304,732; US 4,761,373; US 5,331,107; US 5,928,937; und US 5,378,824; sowie in der internationalen Veröffentlichung WO 1996/033270 beschrieben. Weitere imidazolinontolerante Pflanzen sind auch in z. B. WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351 und WO 2006/060634 beschrieben. Weitere Sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch in z.B. WO 2007/024782 beschrieben.
Weitere Pflanzen, die gegenüber Imidazolinon und/oder Sulfonylharnstoff tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden, wie dies zum Beispiel für die Sojabohne in US 5,084,082, für Reis in WO 1997/41218, für die Zuckerrübe in US 5,773,702 und WO 1999/057965, für Salat in US 5,198,599 oder für die Sonnenblume in WO 2001/065922 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind insekten- resistente transgene Pflanzen, d.h. Pflanzen, die gegen Befall mit gewissen Zielinsekten resistent gemacht wurden. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Insektenresistenz verleiht, erhalten werden. Der Begriff "insektenresistente transgene Pflanze" umfaßt im vorliegenden Zusammenhang jegliche Pflanze, die mindestens ein Transgen enthält, das eine Kodiersequenz umfaßt, die für folgendes kodiert:
1) ein insektizides Kristallprotein aus Bacillus thuringiensis oder einen insektiziden Teil davon, wie die insektiziden Kristallproteine, die von Crickmore et al., Microbiology and Molecular Bio- logy Reviews (1998), 62, 807-813, von Crickmore et al. (2005) in der Bacillus thuringiensis - Toxinnomenklatur aktualisiert, online bei: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), zusammengestellt wurden, oder insek- tizide Teile davon, z.B. Proteine der Cry-Proteinklassen CrylAb, CrylAc, CrylF, Cry2Ab, Cry3Ae oder Cry3Bb oder insektizide Teile davon; oder
2) ein Kristallprotein aus Bacillus thuringiensis oder einen Teil davon, der in Gegenwart eines zweiten, anderen Kristallproteins als Bacillus thuringiensis oder eines Teils davon insektizid wirkt, wie das binäre Toxin, das aus den Kristallproteinen Cy34 und Cy35 besteht (Moellenbeck et al., Nat. Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environm. Microb. (2006), 71, 1765- 1774); oder
3) ein insektizides Hybridprotein, das Teile von zwei unterschiedlichen insektiziden Kristallproteinen aus Bacillus thuringiensis umfaßt, wie zum Beispiel ein Hybrid aus den Proteinen von 1) oben oder ein Hybrid aus den Proteinen von 2) oben, z. B. das Protein CrylA.105, das von dem Mais-Event MON98034 produziert wird (WO 2007/027777); oder
4) ein Protein gemäß einem der Punkte 1) bis 3) oben, in dem einige, insbesondere 1 bis 10, A- minosäuren durch eine andere Aminosäure ersetzt wurden, um eine höhere insektizide Wirksamkeit gegenüber einer Zielinsektenart zu erzielen und/oder um das Spektrum der entsprechenden Zielinsektenarten zu erweitern und/oder wegen Veränderungen, die in die Kodier- DNA während der Klonierung oder Transformation induziert wurden, wie das Protein Cry3Bbl in Mais-Events MON863 oder MON88017 oder das Protein Cry3A im Mais-Event MIR 604; oder
5) ein insektizides sezerniertes Protein aus Bacillus thuringiensis oder Bacillus cereus oder einen insektiziden Teil davon, wie die vegetativ wirkenden insektentoxischen Proteine (vegetative insek- ticidal proteins, VIP), die unter http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/vip.html angeführt sind, z. B. Proteine der Proteinklasse VIP3Aa; oder
6) ein sezerniertes Protein aus Bacillus thuringiensis oder Bacillus cereus, das in Gegenwart eines zweiten sezernierten Proteins aus Bacillus thuringiensis oder B. cereus insektizid wirkt, wie das binäre Toxin, das aus den Proteinen VIPlA und VIP2A besteht (WO 1994/21795); oder 7) ein insektizides Hybridprotein, das Teile von verschiedenen sezernierten Proteinen von Bacil- lus thuringiensis oder Bacillus cereus umfaßt, wie ein Hybrid der Proteine von 1) oder ein Hybrid der Proteine von 2) oben; oder
8) ein Protein gemäß einem der Punkte 1) bis 3) oben, in dem einige, insbesondere 1 bis 10, A- minosäuren durch eine andere Aminosäure ersetzt wurden, um eine höhere insektizide Wirksamkeit gegenüber einer Zielinsektenart zu erzielen und/oder um das Spektrum der entsprechenden Zielinsektenarten zu erweitern und/oder wegen Veränderungen, die in die Kodier- DNA während der Klonierung oder Transformation induziert wurden (wobei die Kodierung für ein insektizides Protein erhalten bleibt), wie das Protein VIP3Aa im Baumwoll-Event COT 102.
Natürlich zählt zu den insektenresistenten transgenen Pflanzen im vorliegenden Zusammenhang auch jegliche Pflanze, die eine Kombination von Genen umfaßt, die für die Proteine von einer der oben genannten Klassen 1 bis 8 kodieren. In einer Ausführungsform enthält eine insektenresistente Pflanze mehr als ein Transgen, das für ein Protein nach einer der oben genannten 1 bis 8 kodiert, um das Spektrum der entsprechenden Zielinsektenarten zu erweitern oder um die Entwicklung einer Resistenz der Insekten gegen die Pflanzen dadurch hinauszuzögern, daß man verschiedene Proteine einsetzt, die für dieselbe Zielinsektenart insektizid sind, jedoch eine unterschiedliche Wirkungsweise, wie Bindung an unterschiedliche Rezeptorbindungsstellen im Insekt, aufweisen.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfmdungsgemäß behandelt werden können, sind gegen- über abiotischen Streßfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Streßresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Streßtoleranz zählen folgende:
a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag, wie dies in WO 2000/004173 oder EP 04077984.5 oder EP 06009836.5 beschrieben ist.
b. Pflanzen, die ein streßtoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag, wie dies z.B. in WO 2004/090140 beschrieben ist;
c. Pflanzen, die ein streßtoleranzförderndes Transgen enthalten, das für ein in Pflanzen funktio- nelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Nico- tinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase, wie dies z. B. in EP 04077624.7 oder WO 2006/133827 oder PCT/EP07/002433 beschrieben ist. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Ernteprodukts auf, wie zum Beispiel:
1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemischphysikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin- Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekorngröße und/oder Stärkekornmorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder - pflanzen verändert ist, so daß sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet. Diese transgenen Pflanzen, die eine modifizierte Stärke synthetisieren, sind zum Beispiel in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581, WO 1996/27674, WO 1997/11188, WO 1997/26362, WO 1997/32985, WO 1997/42328, WO 1997/44472, WO 1997/45545, WO 1998/27212, WO 1998/40503, WO 99/58688, WO 1999/58690, WO 1999/58654, WO 2000/008184, WO 2000/008185, WO 2000/28052, WO 2000/77229, WO 2001/12782, WO 2001/12826, WO 2002/101059, WO 2003/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 2000/22140, WO 2006/063862, WO 2006/072603, WO 2002/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1, EP 07090009.7, WO 2001/14569, WO 2002/79410, WO 2003/33540, WO 2004/078983, WO 2001/19975, WO 1995/26407, WO 1996/34968, WO 1998/20145, WO 1999/12950, WO 1999/66050, WO 1999/53072, US 6,734,341, WO 2000/11192, WO 1998/22604, WO 1998/32326, WO 2001/98509, WO 2001/98509, WO 2005/002359, US 5,824,790, US 6,013,861, WO 1994/004693, WO 1994/009144, WO 1994/11520, WO 1995/35026 bzw. WO 1997/20936 beschrieben.
2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolyrnere synthetisieren, oder Nichtstärke- kohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, wie dies in EP 0663956, WO 1996/001904, Wo 1996/021023, WO 1998/039460 und WO 1999/024593 beschrieben ist, Pflanzen, die alpha- 1,4-Glucane produzieren, wie dies in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712,107, WO 1997/047806, WO 1997/047807, WO 1997/047808 und WO 2000/14249 beschrieben ist, Pflanzen, die alpha- 1 ,6-verzweigte alpha- 1,4-Glucane produzieren, wie dies in WO 2000/73422 beschrieben ist, und Pflanzen, die Alternan produzieren, wie dies in WO 2000/047727, EP 06077301.7, US 5,908,975 und EP 0728213 beschrieben ist. 3) Transgene Pflanzen, die Hyaluronan produzieren, wie dies zum Beispiel in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006/304779 und WO 2005/012529 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gen- technik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen:
a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen ent- halten, wie dies in WO 1998/000549 beschrieben ist,
b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3 -homologen Nukleinsäuren enthalten, wie dies in WO 2004/053219 beschrieben ist;
c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephosphat- synthase, wie dies in WO 2001/017333 beschrieben ist;
d) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase, wie dies in WO 02/45485 beschrieben ist;
e) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuerung der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven ß-l,3-Glucanase, wie dies in WO 2005/017157 beschrieben ist;
f) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen, wie dies in WO 2006/136351 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammenset- zung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen:
a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produzieren, wie dies zum Beispiel in US 5,969,169, US 5,840,946 oder US 6,323,392 oder US 6,063, 947 beschrieben ist; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren, wie dies in US 6,270828, US 6,169,190 oder US 5,965,755 beschrieben ist.
c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren, wie dies z. B. in US 5,434,283 beschrieben ist.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut® (zum Beispiel Mais), Bite- Gard® (zum Beispiel Mais), BT-Xtra® (zum Beispiel Mais), StarLink® (zum Beispiel Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle), Nucotn 33B® (Baumwolle), NatureGard® (zum Beispiel Mais), Protecta® und NewLeaf® (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready® (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link® (Phosphinotricintoleranz, zum Beispiel Raps), IMI® (Imidazolinontoleranz) und SCS® (Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herbizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield® angebotenen Sorten (zum Beispiel Mais).
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen, die Transformations-Events, oder eine Kombination von Transformations-Events, enthalten und die zum Beispiel in den Dateien von verschiedenen nationalen oder regionalen Behörden angeführt sind (siehe zum Beispiel http://gmoinfo.jrc.it/gmp_browse.aspx und http://www.agbios.com/dbase.php).
Die aufgeführten Pflanzen können besonders vorteilhaft mit den erfindungsgemäßen Wirk- Stoffkombinationen behandelt werden. Die bei den Wirkstoffkombinationen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Wirkstoffkombinationen.
Die erfindungsgemäßen Wirkstoffkombinationen wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ekto- und Endoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören: Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phti- rus spp., Solenopotes spp..
Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..
Aus s ddeerr Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp i., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp i., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohl- fahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp.,
Lipoptena spp., Melophagus spp..
Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Cera- tophyllus spp..
Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..
Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..
Aus der Unterklasse der Acari (Acarina) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp..
Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..
Die erfindungsgemäßen Wirkstoffkombinationen eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfalle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so daß durch den Einsatz der erfϊndungsgemäßen Wirkstoffkombinationen eine wirtschaftlichere und einfachere Tierhaltung möglich ist.
Die Anwendung der erfindungsgemäßen Wirkstoffkombinationen geschieht im Veterinärsektor und bei der Tierhaltung in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, BoIi, des feed-through- Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.
Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffkombinationen als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.
Außerdem wurde gefunden, daß die erfϊndungsgemäßen Wirkstoffkombinationen eine hohe in- sektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.
Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:
Käfer wie Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillo- sum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brun- neus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus;
Hautflügler wie Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur;
Termiten wie Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zooter- mopsis nevadensis, Coptotermes formosanus;
Borstenschwänze wie Lepisma saccharina. Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.
Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und ge- gebenenfalls noch ein oder mehrere Fungizide enthalten.
Hinsichtlich möglicher zusätzlicher Zumischpartner sei auf die oben genannten Insektizide und Fungizide verwiesen.
Zugleich können die erfindungsgemäßen Wirkstoffkombinationen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.
Weiter können die erfindungsgemäßen Wirkstoffkombinationen allein oder in Kombinationen mit anderen Wirkstoffen als Antifouling-Mittel eingesetzt werden.
Die Wirkstoffkombinationen eignen sich auch zur Bekämpfung von tierischen Schädlingen im Haushalts-, Hygiene- und Vorratsschutz, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.a. vorkommen. Sie können zur Bekämpfung dieser Schädlinge allein oder in Kombination mit anderen Wirk- und Hilfsstoffen in Haushaltsinsektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:
Aus der Ordnung der Scorpionidea z.B. Buthus occitanus.
Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.
Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber.
Aus der Ordnung der Diplopoda z.B. Blaniulus gutrulatus, Polydesmus spp.. Aus der Ordnung der Chilopoda z.B. Geophilus spp..
Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inqui- linus.
Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leu- cophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta america- na, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.
Aus der Ordnung der Saltatoria z.B. Acheta domesticus.
Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.
Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.
Aus der Ordnung der Coleoptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, A- nopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.
Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pul ex irri- tans, Tunga penetrans, Xenopsylla cheopis.
Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius ni- ger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus corporis, Pemphigus spp., Phylloera vastatrix, Phthirus pubis.
Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans. Die Anwendung im Bereich der Haushaltsinsektizide erfolgt allein oder in Kombination mit anderen geeigneten Wirkstoffen wie Phosphorsäureestern, Carbamaten, Neonikotinoiden, Pyrethroiden, Wachstumsregulatoren oder Wirkstoffen aus anderen bekannten Insektizidklassen.
Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mot- tensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Die gute insektizide und akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in der Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungs- summierung hinausgeht.
Ein synergistischer Effekt liegt bei Insektiziden und Akariziden immer dann vor, wenn die Wirkung der Wirkstoffkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe.
Die zu erwartende Wirkung für eine gegebene Kombination zweier Wirkstoffe kann nach S. R. Colby, Weeds 15 (1967), 20-22 wie folgt berechnet werden:
Wenn
X den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha oder in einer Konzentration von m ppm bedeutet,
Y den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes B in einer Aufwandmenge von n g/ha oder in einer Konzentration von n ppm bedeutet und
E den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der
Wirkstoffe A und B in Aufwandmengen von m und n g/ha oder in einer Konzentration von m und n ppm bedeutet,
dann ist
X Y
E=X + Y- 100 - -
Ist der tatsächliche insektizide oder akarizide Abtötungsgrad größer als berechnet, so ist die Kombination in ihrer Abtötung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Abtötungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Abtötungsgrad (E).
Beispiele
Beispiel A
Myzus persicae -Test
Lösungsmittel: 78 Gewichtsteile Aceton
1 ,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (ßrassica oleracea), die stark von der Grünen Pfirsichblattlaus (Myzus persicae) befal- len sind, werden durch Besprühen mit der Wirkstoffzubereitung in der gewünschten Konzentration behandelt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe oben).
Bei diesem Test zeigen z. B. die folgenden Wirkstoffkombinationen gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle A-I: Myzus persicae - Test
Figure imgf000066_0001
*gef.=gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Tabelle A-2: Myzus persicae - Test
Figure imgf000066_0002
*gef.=gefundeneWirkung
** ber. = nach der Colby-Formel berechnete Wirkung Beispiel B
Phaedon cochleariae - Larven -Test
Lösungsmittel: 78 Gewichtsteile Aceton 1 ,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlblätter (Brassica oleraceά) werden durch Besprühen mit der Wirkstoffzubereitung in der ge- wünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe oben).
Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle B-I: Phaedon cochleariae Larven - Test
Figure imgf000067_0001
*gef.=gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung Tabelle B-2: Phaedon cochleariae Larven - Test
Figure imgf000068_0001
*gef.=gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel C
Spodoptera frugiperda - Larven -Test
Lösungsmittel: 78 Gewichtsteile Aceton 1 ,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration. Kohlblätter (ßrassica oleracea) werden durch Spritzen mit der Wirkstoffzubereitung in der gewünschten Konzentration behandelt und mit Larven des Heerwurms (Spodoptera frugiperda) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe oben).
Bei diesem Test zeigen die folgenden Wirkstoffkombinationen gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle C-I: Spodoptera frugiperda - Test
Figure imgf000069_0001
*gef.=gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Tabelle C-2: Spodoptera frugiperda - Test
Figure imgf000070_0001
*gef.=gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung Beispiel D
Tetranychus urticae - Test (OP-resistent/Spritzbehandlung)
Lösungsmittel: 78 Gewichtsteile Aceton 1,5 Gewichtsteile Dimethylformamid
Emulgator: 0,5 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Bohnenblattscheiben (Phaseolus vulgaris), die von allen Stadien der Gemeinen Spinnmilbe (Tetra- nychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.
Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, dass alle Spinnmilben abgetötet wurden; 0 % bedeutet, dass keine Spinnmilben abgetötet wurden.
Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:
Tabelle D-I: Tetranychus urticae - Test
Figure imgf000071_0001
*gef.=gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung

Claims

Patentansprüche
1. Wirkstoffkombinationen enthaltend mindestens eine Verbindung der Formel (I)
Figure imgf000072_0001
in welcher
A für den Rest 6-Fluor-pyrid-3-yl, 6-Chlor-pyrid-3-yl, 6-Brom-pyrid-3-yl, 5-Fluor-6-chlor- pyrid-3-yl, 2-Chlor-l,3-thiazol-5-yl oder 5,6-Dichlor-pyrid-3-yl steht und
R1 für Methyl, Cyclopropyl, Methoxy, 2-Fluorethyl oder 2,2-Difluor-ethyl steht,
mit der Maßgabe, dass 4-{[(6-Chloφyrid-3-yl)methyl](methyl)amino}füran-2(5H)-on und 4- { [(6-Chlorpyrid-3 -yl)methyl](cyclopropyl)amino } furan-2(5H)-on ausgeschlossen sind,
und mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus
a) den Inhibitoren der Chitin-Biosynthese, Benzoylharnstoffen,
1. Chlorfluazuron
Figure imgf000072_0002
2. Diflubenzuron
Figure imgf000072_0003
3. Lufenuron
Figure imgf000073_0001
4. Teflubenzuron
Figure imgf000073_0002
5. Triflumuron
6. Novaluron
Figure imgf000073_0004
7. Hexaflumuron
Figure imgf000073_0005
8. Bistrifluron (DBI-3204)
Figure imgf000074_0001
9. Flufenoxuron
Figure imgf000074_0002
10. Flucycloxuron
Figure imgf000074_0003
11. Noviflumuron
Figure imgf000074_0004
12. Fluazuron
Figure imgf000075_0001
b) dem Inhibitor der Chitin-Biosynthese
13. Buprofezin
Figure imgf000075_0002
c) dem Hemmstoff der Häutung (moulting disruptor)
14. Cyromazine
Figure imgf000075_0003
d) den Juvenile Hormone Mimetika
15. Pyriproxifen
Figure imgf000075_0004
16. Diofenolan
Figure imgf000076_0001
17. Fenoxycarb
Figure imgf000076_0002
und e) den Molting Hormone (Ecdyson) Agonisten, Diacylhydrazinen,
18. Tebufenozide
Figure imgf000076_0003
19. Methoxyfenozide
Figure imgf000076_0004
20. Chromafenozide
Figure imgf000077_0001
21. Halofenozide
Figure imgf000077_0002
22. 2,3-Dihydro-2,7-dimethyl-6-berizofurancarbonsäure-2-(3,5-dimethyl- benzoyl)-2-
(l,l-dimethylethyl)-hydrazid (JS 118) (bekannt aus CN-Pat. 1313276)
Figure imgf000077_0003
Wirkstoffkombinationen gemäß Anspruch 1, dadurch gekennzeichnet, dass die Verbindung der Formel (I) ausgewählt ist aus der Gruppe bestehend aus den Verbindungen der For- mein (1-1), (1-2), (1-3), (1-4), (1-5), (1-6), (1-7) und (1-8).
Verwendung einer Wirkstoffkombination, wie in Anspruch 1 oder 2 definiert, zur Bekämpfung tierischer Schädlinge.
4. Verfahren zur Bekämpfung tierischer Schädlinge, dadurch gekennzeichnet, dass man eine Wirkstoffkombination, wie in Anspruch 1 oder 2 definiert, auf tierische Schädlinge und/oder deren Lebensraum und/oder Saatgut einwirken lässt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man einen Wirkstoff der Formel (I) und einen der Wirkstoffe 1 bis 22 zur gleichen Zeit auf Saatgut einwirken lässt.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man einen Wirkstoff der Formel (I) und einen der Wirkstoffe 1 bis 22 zu unterschiedlichen Zeiten auf Saatgut einwir- ken lässt.
7. Verwendung einer Wirkstoffkombination gemäß Anspruch 1 oder 2 zur Behandlung von Saatgut.
8. Verwendung einer Wirkstoffkombination gemäß gemäß Anspruch 1 oder 2 zur Behandlung von transgenen Pflanzen.
9. Verwendung einer Wirkstoffkombination gemäß Anspruch 1 oder 2 zur Behandlung von Saatgut transgener Pflanzen.
10. Saatgut, welches mit einer Wirkstoffkombination gemäß Anspruch 1 oder 2 behandelt wurde.
11. Saatgut nach Anspruch 10, welches zur gleichen Zeit mit einem Wirkstoff der Formel (I) und einem der Wirkstoffe 1 bis 22 behandelt wurde.
12. Saatgut nach Anspruch 10, welches zu unterschiedlichen Zeiten mit einem Wirkstoff der Formel (I) und einem der Wirkstoffe 1 bis 22 behandelt wurde.
PCT/EP2009/002169 2009-03-25 2009-03-25 Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften WO2010108506A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/EP2009/002169 WO2010108506A1 (de) 2009-03-25 2009-03-25 Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP09776471A EP2410849A1 (de) 2009-03-25 2009-03-25 Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
MX2011009916A MX2011009916A (es) 2009-03-25 2009-03-25 Combinaciones de principios activos con propiedades insecticidas y acaricidas.
CN200980159532.7A CN102448305B (zh) 2009-03-25 2009-03-25 具有杀昆虫和杀螨虫特性的活性成分结合物
BRPI0924986A BRPI0924986A8 (pt) 2009-03-25 2009-03-25 "combinações de substâncias ativas com propriedades inseticidas e acaricidas, seus usos e método para o controle de pragas animais".
US13/259,937 US8828907B2 (en) 2009-03-25 2009-03-25 Active ingredient combinations having insecticidal and acaricidal properties
ZA2011/06808A ZA201106808B (en) 2009-03-25 2011-09-19 Active ingredient combinations having insecticidal and acaricidal properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/002169 WO2010108506A1 (de) 2009-03-25 2009-03-25 Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften

Publications (1)

Publication Number Publication Date
WO2010108506A1 true WO2010108506A1 (de) 2010-09-30

Family

ID=41278720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/002169 WO2010108506A1 (de) 2009-03-25 2009-03-25 Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften

Country Status (7)

Country Link
US (1) US8828907B2 (de)
EP (1) EP2410849A1 (de)
CN (1) CN102448305B (de)
BR (1) BRPI0924986A8 (de)
MX (1) MX2011009916A (de)
WO (1) WO2010108506A1 (de)
ZA (1) ZA201106808B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA104887C2 (uk) 2009-03-25 2014-03-25 Баєр Кропсаєнс Аг Синергічні комбінації активних речовин
EP2410848A1 (de) 2009-03-25 2012-02-01 Bayer CropScience AG Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
CN102395271A (zh) 2009-03-25 2012-03-28 拜尔农作物科学股份公司 具有杀虫和杀螨特性的活性化合物结合物
BRPI0924436B1 (pt) 2009-03-25 2017-06-06 Bayer Cropscience Ag combinações de substâncias ativas com propriedades inseticidas e acaricidas e seu uso, bem como método para o controle de pragas e animais
AT12071U1 (de) * 2010-07-26 2011-10-15 Nicole Nipp Schnuller
CN103651503A (zh) * 2012-09-25 2014-03-26 陕西美邦农药有限公司 一种含氟吡呋喃酮的杀虫组合物
CN106614680A (zh) * 2016-10-11 2017-05-10 深圳诺普信农化股份有限公司 一种含有氟吡呋喃酮的杀虫组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539588A1 (de) * 1990-07-05 1993-05-05 Nippon Soda Co., Ltd. Aminderivat
WO2007112843A1 (de) * 2006-03-29 2007-10-11 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden eigenschaften
WO2007115643A1 (de) * 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituierte enaminocarbonylverbindungen
WO2007115644A1 (de) * 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituierte enaminocarbonylverbindungen

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL160809C (nl) 1970-05-15 1979-12-17 Duphar Int Res Werkwijze ter bereiding van benzoylureumverbindingen, alsmede werkwijze ter bereiding van insekticide prepara- ten op basis van benzoylureumverbindingen.
US4097581A (en) 1975-12-12 1978-06-27 Ciba-Geigy Corporation Dioxolane derivatives
DE2601780B2 (de) 1976-01-20 1979-07-26 Bayer Ag, 5090 Leverkusen N-Phenyl-N'-benzoylharnstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide
CH609835A5 (en) 1976-08-19 1979-03-30 Ciba Geigy Ag Pesticide
NL189293C (nl) 1978-02-06 1993-03-01 Ishihara Sangyo Kaisha Insecticide n-benzoyl-n'-fenylureumverbindingen en insecticide samenstelling op basis van een dergelijke verbinding.
CA1137506A (en) 1978-03-17 1982-12-14 Ulf Fischer Carbamic acid derivatives
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
DE3161657D1 (en) 1980-11-22 1984-01-19 Celamerck Gmbh & Co Kg Urea derivatives, preparation and use
ZA825470B (en) 1981-07-30 1984-03-28 Dow Chemical Co Substituted n-aroyl n'-phenyl urea compounds
EP0079311B1 (de) 1981-11-10 1987-03-18 Ciba-Geigy Ag Phenylbenzoylharnstoffe zur Bekämpfung von Schädlingen
EP0117320B1 (de) 1983-01-24 1987-03-04 Duphar International Research B.V Benzoylharnstoffderivate und diese Verbindungen enthaltende Pestizide Kompositionen
JPS59199673A (ja) 1983-04-25 1984-11-12 Sumitomo Chem Co Ltd 含窒素複素環化合物、その製造法およびそれを有効成分とする有害生物防除剤
US5331107A (en) 1984-03-06 1994-07-19 Mgi Pharma, Inc. Herbicide resistance in plants
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US4623658A (en) 1984-04-10 1986-11-18 Shell Oil Company Pesticidal benzoylurea compounds
IL76708A (en) 1984-10-18 1990-01-18 Ciba Geigy Ag Substituted n-benzoyl-n'-(2,5-dichloro-4(1,1,2,3,3,3-hexafluoropropyloxy)-phenyl)ureas,their preparation and pesticidal compositions containing them
IT1186717B (it) 1985-05-30 1987-12-16 Donegani Guido Ist Benzoil-uree ad attivita' insetticida
US4985461A (en) 1985-10-21 1991-01-15 Rohm And Haas Company Insecticidal N'-substituted-N,N'-diacylhydrazines
ATE72231T1 (de) 1985-12-09 1992-02-15 American Cyanamid Co Insektentoetende diacylhydrazinverbindungen.
ES2018274T5 (es) 1986-03-11 1996-12-16 Plant Genetic Systems Nv Celulas vegetales resistentes a los inhibidores de glutamina sintetasa, preparadas por ingenieria genetica.
US5637489A (en) 1986-08-23 1997-06-10 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5276268A (en) 1986-08-23 1994-01-04 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5273894A (en) 1986-08-23 1993-12-28 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5378824A (en) 1986-08-26 1995-01-03 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5605011A (en) 1986-08-26 1997-02-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
US5638637A (en) 1987-12-31 1997-06-17 Pioneer Hi-Bred International, Inc. Production of improved rapeseed exhibiting an enhanced oleic acid content
GB8810120D0 (en) 1988-04-28 1988-06-02 Plant Genetic Systems Nv Transgenic nuclear male sterile plants
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
US6013861A (en) 1989-05-26 2000-01-11 Zeneca Limited Plants and processes for obtaining them
EP0412911B1 (de) 1989-08-10 2001-07-18 Aventis CropScience N.V. Pflanzen mit modifizierten Blüten
US5908810A (en) 1990-02-02 1999-06-01 Hoechst Schering Agrevo Gmbh Method of improving the growth of crop plants which are resistant to glutamine synthetase inhibitors
US5739082A (en) 1990-02-02 1998-04-14 Hoechst Schering Agrevo Gmbh Method of improving the yield of herbicide-resistant crop plants
ATE152572T1 (de) 1990-04-04 1997-05-15 Pioneer Hi Bred Int Herstellung von rapssamen mit verringertem gehalt an gesättigten fettsäuren
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
AU655197B2 (en) 1990-06-25 1994-12-08 Monsanto Technology Llc Glyphosate tolerant plants
FR2667078B1 (fr) 1990-09-21 1994-09-16 Agronomique Inst Nat Rech Sequence d'adn conferant une sterilite male cytoplasmique, genome mitochondrial, mitochondrie et plante contenant cette sequence, et procede de preparation d'hybrides.
IL100643A (en) 1991-01-25 1996-10-31 Nippon Kayaku Kk History of hydrazine and pesticides containing these histories as an active ingredient
DE4104782B4 (de) 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
US5731180A (en) 1991-07-31 1998-03-24 American Cyanamid Company Imidazolinone resistant AHAS mutants
US6270828B1 (en) 1993-11-12 2001-08-07 Cargrill Incorporated Canola variety producing a seed with reduced glucosinolates and linolenic acid yielding an oil with low sulfur, improved sensory characteristics and increased oxidative stability
US5344958A (en) 1992-11-23 1994-09-06 Rohm And Haas Company Insecticidal N'-substituted-N,N'-diacylhydrazines
DE4227061A1 (de) 1992-08-12 1994-02-17 Inst Genbiologische Forschung DNA-Sequenzen, die in der Pflanze die Bildung von Polyfructanen (Lävanen) hervorrufen, Plasmide enthaltend diese Sequenzen sowie Verfahren zur Herstellung transgener Pflanzen
GB9218185D0 (en) 1992-08-26 1992-10-14 Ici Plc Novel plants and processes for obtaining them
AU690517B2 (en) 1992-10-14 1998-04-30 Syngenta Limited Novel plants and processes for obtaining them
GB9223454D0 (en) 1992-11-09 1992-12-23 Ici Plc Novel plants and processes for obtaining them
CZ290301B6 (cs) 1993-03-25 2002-07-17 Novartis Ag Pesticidní proteiny, kmeny které je obsahují, nukleotidové sekvence které je kódují a rostliny jimi transformované
DE69420718T2 (de) 1993-04-27 2000-04-27 Cargill Inc Nichthydriertes rapsöl zur nahrungsanwendung
DE4327165A1 (de) 1993-08-09 1995-02-16 Inst Genbiologische Forschung Debranching-Enzyme und deren kodierende DNA-Sequenzen, geeignet zur Veränderung des Verzweigungsgrades von Amylopektin - Stärke in Pflanzen
DE4330960C2 (de) 1993-09-09 2002-06-20 Aventis Cropscience Gmbh Kombination von DNA-Sequenzen, die in Pflanzenzellen und Pflanzen die Bildung hochgradig amylosehaltiger Stärke ermöglichen, Verfahren zur Herstellung dieser Pflanzen und die daraus erhaltbare modifizierte Stärke
DE675198T1 (de) 1993-10-01 1996-06-27 Mitsubishi Corp Gene die steriles pflanzencytoplasma identifizieren und verfahren zur herstellung hybrider pflanzen durch verwendung derselben.
AU692791B2 (en) 1993-10-12 1998-06-18 Agrigenetics, Inc. Brassica napus variety AG019
BR9408286A (pt) 1993-11-09 1997-08-26 Du Pont Construção de DNA recombinante planta método de produção de frutose método de produção de dextran método de produção de alternan planta de batata método de aumento de níveis de fructan nas plantas semente e planta de soja
EP0754235A1 (de) 1994-03-25 1997-01-22 National Starch and Chemical Investment Holding Corporation Verfahren zur herstellung veränderten stärke aus kartoffelpflanzen
ATE368118T1 (de) 1994-05-18 2007-08-15 Bayer Bioscience Gmbh Für enzyme, die die fähigkeit besitzen lineare alpha 1,4-glucane in pflanzen, pilzen und mikroorganismen zu synthesieren, kodierende dna sequenzen
US5824790A (en) 1994-06-21 1998-10-20 Zeneca Limited Modification of starch synthesis in plants
NL1000064C1 (nl) 1994-07-08 1996-01-08 Stichting Scheikundig Onderzoe Produktie van oligosacchariden in transgene planten.
DE4441408A1 (de) 1994-11-10 1996-05-15 Inst Genbiologische Forschung DNA-Sequenzen aus Solanum tuberosum kodierend Enzyme, die an der Stärkesynthese beteiligt sind, Plasmide, Bakterien, Pflanzenzellen und transgene Pflanzen enhaltend diese Sequenzen
DE4447387A1 (de) 1994-12-22 1996-06-27 Inst Genbiologische Forschung Debranching-Enzyme aus Pflanzen und DNA-Sequenzen kodierend diese Enzyme
DE69637239T2 (de) 1995-01-06 2008-05-29 Plant Research International B.V. Für kohlenhydratpolymere-bildende enzyme-kodierende dna-sequenzen und verfahren zur herstellung transgener pflanzen
DE19509695A1 (de) 1995-03-08 1996-09-12 Inst Genbiologische Forschung Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke
US5853973A (en) 1995-04-20 1998-12-29 American Cyanamid Company Structure based designed herbicide resistant products
DE69636637T2 (de) 1995-04-20 2007-08-23 Basf Ag Auf basis ihrer struktur entworfene herbizid-resistente produkte
ATE366318T1 (de) 1995-05-05 2007-07-15 Nat Starch Chem Invest Verbesserungen in oder in bezug auf pfanzenstärkeverbindungen
FR2734842B1 (fr) 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
US5712107A (en) 1995-06-07 1998-01-27 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US6284479B1 (en) 1995-06-07 2001-09-04 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
GB9513881D0 (en) 1995-07-07 1995-09-06 Zeneca Ltd Improved plants
FR2736926B1 (fr) 1995-07-19 1997-08-22 Rhone Poulenc Agrochimie 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene
DK0851934T3 (da) 1995-09-19 2006-07-31 Bayer Bioscience Gmbh Planter, som syntetiserer en modificeret stivelse, fremgangsmåder til deres fremstilling samt modificeret stivelse
GB9524938D0 (en) 1995-12-06 1996-02-07 Zeneca Ltd Modification of starch synthesis in plants
DE19601365A1 (de) 1996-01-16 1997-07-17 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind
DE19608918A1 (de) 1996-03-07 1997-09-11 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Mais codieren
US5773704A (en) 1996-04-29 1998-06-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
DE19618125A1 (de) 1996-05-06 1997-11-13 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Kartoffel codieren
AU737403B2 (en) 1996-05-29 2001-08-16 Bayer Cropscience Ag Nucleic acid molecules encoding enzymes from wheat which are involved in starch synthesis
EP0904454A1 (de) 1996-06-12 1999-03-31 Pioneer Hi-Bred International, Inc. Ersatzmaterial für modofizierte stärke in der papierherstellung
JP2001503607A (ja) 1996-06-12 2001-03-21 パイオニア ハイ―ブレッド インターナショナル,インコーポレイテッド 製紙における改変澱粉の代用品
WO1997047808A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
AUPO069996A0 (en) 1996-06-27 1996-07-18 Australian National University, The Manipulation of plant cellulose
KR100194534B1 (ko) 1996-06-29 1999-06-15 우종일 2-클로로-3,5-비스 (트피플루오르메틸) 페닐 벤조일 우레아 유도체 및 이의 제조방법
US5850026A (en) 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
GB9623095D0 (en) 1996-11-05 1997-01-08 Nat Starch Chem Invest Improvements in or relating to starch content of plants
WO1998019542A1 (en) 1996-11-08 1998-05-14 Dow Agrosciences Llc New benzoylphenylurea insecticides and methods of using certain benzoylphenylureas to control cockroaches, ants, fleas, and termites
US6232529B1 (en) 1996-11-20 2001-05-15 Pioneer Hi-Bred International, Inc. Methods of producing high-oil seed by modification of starch levels
DE19653176A1 (de) 1996-12-19 1998-06-25 Planttec Biotechnologie Gmbh Neue Nucleinsäuremoleküle aus Mais und ihre Verwendung zur Herstellung einer modifizierten Stärke
CA2193938A1 (en) 1996-12-24 1998-06-24 David G. Charne Oilseed brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
DE19708774A1 (de) 1997-03-04 1998-09-17 Max Planck Gesellschaft Nucleinsäuremoleküle codierend Enzyme die Fructosylpolymeraseaktivität besitzen
DE19709775A1 (de) 1997-03-10 1998-09-17 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle codierend Stärkephosphorylase aus Mais
TW476856B (en) 1997-06-27 2002-02-21 Toshiba Corp Liquid crystal display device
GB9718863D0 (en) 1997-09-06 1997-11-12 Nat Starch Chem Invest Improvements in or relating to stability of plant starches
DE19749122A1 (de) 1997-11-06 1999-06-10 Max Planck Gesellschaft Nucleinsäuremoleküle codierend Enzyme, die Fructosyltransferaseaktivität besitzen
US6245968B1 (en) 1997-11-07 2001-06-12 Aventis Cropscience S.A. Mutated hydroxyphenylpyruvate dioxygenase, DNA sequence and isolation of plants which contain such a gene and which are tolerant to herbicides
FR2772789B1 (fr) 1997-12-24 2000-11-24 Rhone Poulenc Agrochimie Procede de preparation enzymatique d'homogentisate
EP1068333A1 (de) 1998-04-09 2001-01-17 E.I. Du Pont De Nemours And Company Homologe proteine der stärke r1 phosphorylierung
DE19820608A1 (de) 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19820607A1 (de) 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
HU228219B1 (en) 1998-05-13 2013-02-28 Bayer Bioscience Gmbh Transgenic plants with a modified activity of a plastidial adp/atp translocator
DE19821614A1 (de) 1998-05-14 1999-11-18 Hoechst Schering Agrevo Gmbh Sulfonylharnstoff-tolerante Zuckerrübenmutanten
CA2331300C (en) 1998-06-15 2009-01-27 National Starch And Chemical Investment Holding Corporation Improvements in or relating to plants and plant products
US6693185B2 (en) 1998-07-17 2004-02-17 Bayer Bioscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
DE19836099A1 (de) 1998-07-31 2000-02-03 Hoechst Schering Agrevo Gmbh Nukleinsäuremoleküle kodierend für eine ß-Amylase, Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
DE19836098A1 (de) 1998-07-31 2000-02-03 Hoechst Schering Agrevo Gmbh Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
WO2000011192A2 (en) 1998-08-25 2000-03-02 Pioneer Hi-Bred International, Inc. Plant glutamine: fructose-6-phosphate amidotransferase nucleic acids
EP1109916A1 (de) 1998-09-02 2001-06-27 Planttec Biotechnologie GmbH Für eine amylosucrase kodierende nucleinsäuremoleküle
DE19924342A1 (de) 1999-05-27 2000-11-30 Planttec Biotechnologie Gmbh Genetisch modifizierte Pflanzenzellen und Pflanzen mit erhöhter Aktivität eines Amylosucraseproteins und eines Verzweigungsenzyms
PL347223A1 (en) 1998-10-09 2002-03-25 Planttec Biotechnologie Gmbh Nucleic acid molecules which code a branching enzyme from bacteria of the genus neisseria, and a method for producing α-1,6-branched α-1,4-glucans
BR9915152A (pt) 1998-11-09 2001-08-07 Planttec Biotechnologie Gmbh Moléculas de ácido nucléico de arroz e o seu uso para a produção de amido modificado
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
US6531648B1 (en) 1998-12-17 2003-03-11 Syngenta Participations Ag Grain processing method and transgenic plants useful therein
DE19905069A1 (de) 1999-02-08 2000-08-10 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle codierend Alternansucrase
US6323392B1 (en) 1999-03-01 2001-11-27 Pioneer Hi-Bred International, Inc. Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds
CZ20013859A3 (cs) 1999-04-29 2002-04-17 Syngenta Ltd. Herbicidně rezistentní rostliny
JP2003523173A (ja) 1999-04-29 2003-08-05 シンジェンタ リミテッド 除草剤耐性植物
DE19926771A1 (de) 1999-06-11 2000-12-14 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus Weizen, transgene Pflanzenzellen und Pflanzen und deren Verwendung für die Herstellung modifizierter Stärke
DE19937348A1 (de) 1999-08-11 2001-02-22 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus Pflanzen codierend Enzyme, die an der Stärkesynthese beteiligt sind
DE19937643A1 (de) 1999-08-12 2001-02-22 Aventis Cropscience Gmbh Transgene Zellen und Pflanzen mit veränderter Aktivität des GBSSI- und des BE-Proteins
WO2001014569A2 (de) 1999-08-20 2001-03-01 Basf Plant Science Gmbh Erhöhung des polysaccharidgehaltes in pflanzen
US6423886B1 (en) 1999-09-02 2002-07-23 Pioneer Hi-Bred International, Inc. Starch synthase polynucleotides and their use in the production of new starches
US6472588B1 (en) 1999-09-10 2002-10-29 Texas Tech University Transgenic cotton plants with altered fiber characteristics transformed with a sucrose phosphate synthase nucleic acid
GB9921830D0 (en) 1999-09-15 1999-11-17 Nat Starch Chem Invest Plants having reduced activity in two or more starch-modifying enzymes
AR025996A1 (es) 1999-10-07 2002-12-26 Valigen Us Inc Plantas no transgenicas resistentes a los herbicidas.
CA2401093A1 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
EP2266390A3 (de) 2000-03-09 2011-04-20 E. I. du Pont de Nemours and Company Sulfonylurea tolerante Sonnenblumenpflanzen
US7169970B2 (en) 2000-09-29 2007-01-30 Syngenta Limited Herbicide resistant plants
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
US6734340B2 (en) 2000-10-23 2004-05-11 Bayer Cropscience Gmbh Monocotyledon plant cells and plants which synthesise modified starch
FR2815969B1 (fr) 2000-10-30 2004-12-10 Aventis Cropscience Sa Plantes tolerantes aux herbicides par contournement de voie metabolique
JP2004534505A (ja) 2000-10-30 2004-11-18 マキシジェン, インコーポレイテッド 新規のグリホセートn−アセチルトランスフェラーゼ(gat)遺伝子
AU2036302A (en) 2000-12-08 2002-06-18 Commw Scient Ind Res Org Modification of sucrose synthase gene expression in plant tissue and uses therefor
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
CN1161325C (zh) 2001-03-26 2004-08-11 江苏省农药研究所 作为杀虫剂的二酰基肼类化合物及制备此种化合物的中间体以及它们的制备方法
WO2002079410A2 (en) 2001-03-30 2002-10-10 Basf Plant Science Gmbh Glucan chain length domains
WO2002101059A2 (en) 2001-06-12 2002-12-19 Bayer Cropscience Gmbh Transgenic plants synthesising high amylose starch
WO2003013226A2 (en) 2001-08-09 2003-02-20 Cibus Genetics Non-transgenic herbicide resistant plants
DE10208132A1 (de) 2002-02-26 2003-09-11 Planttec Biotechnologie Gmbh Verfahren zur Herstellung von Maispflanzen mit erhöhtem Blattstärkegehalt und deren Verwendung zur Herstellung von Maissilage
AU2003234328A1 (en) 2002-04-30 2003-11-17 Pioneer Hi-Bred International, Inc. Novel glyphosate-n-acetyltransferase (gat) genes
FR2844142B1 (fr) 2002-09-11 2007-08-17 Bayer Cropscience Sa Plantes transformees a biosynthese de prenylquinones amelioree
CA2498511A1 (en) 2002-10-29 2004-05-13 Basf Plant Science Gmbh Compositions and methods for identifying plants having increased tolerance to imidazolinone herbicides
US20040110443A1 (en) 2002-12-05 2004-06-10 Pelham Matthew C. Abrasive webs and methods of making the same
DE60323149D1 (de) 2002-12-19 2008-10-02 Bayer Cropscience Gmbh Pflanzenzellen und pflanzen, die eine stärke mit erhöhter endviskosität synthetisieren
CA2517879A1 (en) 2003-03-07 2004-09-16 Basf Plant Science Gmbh Enhanced amylose production in plants
BRPI0409363A (pt) 2003-04-09 2006-04-25 Bayer Bioscience Nv métodos e meios para o aumento da toleráncia de plantas a condições de tensão
BRPI0409816B8 (pt) 2003-04-29 2022-12-06 Pioneer Hi Bred Int Genes de glifosato-n-acetiltransferase (gat), construtos os compreendendo, célula bacteriana, polipeptídeo tendo atividade de gat, bem como método para a produção de uma planta transgênica resistente ao glifosato e métodos para controlar ervas daninhas em um campo contendo uma safra
US20060282917A1 (en) 2003-05-22 2006-12-14 Syngenta Participations Ag Modified starch, uses, methods for production thereof
AU2004243416B2 (en) 2003-05-28 2009-06-11 Basf Se Wheat plants having increased tolerance to imidazolinone herbicides
EP1493328A1 (de) 2003-07-04 2005-01-05 Institut National De La Recherche Agronomique Verfahren zur Herstellung von doppel null fertilität-restaurations Linien von B. napus mit guter agromomischer Qualität
WO2005012529A1 (ja) 2003-07-31 2005-02-10 Toyo Boseki Kabushiki Kaisha ヒアルロン酸生産植物
WO2005017157A1 (en) 2003-08-15 2005-02-24 Commonwealth Scientific And Industrial Research Organisation (Csiro) Methods and means for altering fiber characteristics in fiber-producing plants
EP2982240B1 (de) 2003-08-29 2019-07-31 Instituto Nacional de Tecnologia Agropecuaria Reispflanzen mit erhöhter resistenz gegen imidazolinonherbizide
ATE491784T1 (de) 2003-09-30 2011-01-15 Bayer Cropscience Ag Pflanzen mit reduzierter aktivität eines klasse-3-verzweigungsenzyms
WO2005030941A1 (en) 2003-09-30 2005-04-07 Bayer Cropscience Gmbh Plants with increased activity of a class 3 branching enzyme
AR048026A1 (es) 2004-03-05 2006-03-22 Bayer Cropscience Gmbh Procedimientos para la identificacion de proteinas con actividad enzimatica fosforiladora de almidon
US7919682B2 (en) 2004-03-05 2011-04-05 Bayer Cropscience Ag Plants with reduced activity of a starch phosphorylating enzyme
AR048025A1 (es) 2004-03-05 2006-03-22 Bayer Cropscience Gmbh Plantas con actividad aumentada de una enzima fosforilante del almidon
AR048024A1 (es) 2004-03-05 2006-03-22 Bayer Cropscience Gmbh Plantas con actividad aumentada de distintas enzimas fosforilantes del almidon
US7432082B2 (en) 2004-03-22 2008-10-07 Basf Ag Methods and compositions for analyzing AHASL genes
BRPI0512208A (pt) 2004-06-16 2008-02-19 Basf Plant Science Gmbh molécula isolada de polinucleotìdeo, cassete de expressão, vetor de transformação, planta transformada, semente transformada, célula de planta transformada, métodos para melhorar a resistência a herbicidas de uma planta, para selecionar uma célula de planta transformada, e para controlar ervas daninhas na vizinhança de uma planta transformada, célula hospedeira não humana, e, polipeptìdeo isolado
DE102004029763A1 (de) 2004-06-21 2006-01-05 Bayer Cropscience Gmbh Pflanzen, die Amylopektin-Stärke mit neuen Eigenschaften herstellen
CA2576813A1 (en) 2004-07-30 2006-03-09 Basf Agrochemical Products B.V. Herbicide-resistant sunflower plants, polynucleotides encoding herbicide-resistant acetohydroxy acid synthase large subunit proteins comprising a p182l and uses thereof
WO2006015376A2 (en) 2004-08-04 2006-02-09 Basf Plant Science Gmbh Monocot ahass sequences and methods of use
EP1786908B1 (de) 2004-08-18 2010-03-03 Bayer CropScience AG Pflanzen mit erhöhter plastidär aktivität der stärkephosphorylierenden r3-enzyme
WO2006021972A1 (en) 2004-08-26 2006-03-02 Dhara Vegetable Oil And Foods Company Limited A novel cytoplasmic male sterility system for brassica species and its use for hybrid seed production in indian oilseed mustard brassica juncea
SI1805312T1 (sl) 2004-09-23 2009-12-31 Bayer Cropscience Ag Postopki in sredstva za izdelavo hialuronana
SI1794306T1 (sl) 2004-09-24 2010-04-30 Bayer Bioscience Nv Rastline, odporne na stres
CN101090971B (zh) 2004-10-29 2013-01-02 拜尔作物科学公司 耐受胁迫的棉花植物
AR051690A1 (es) 2004-12-01 2007-01-31 Basf Agrochemical Products Bv Mutacion implicada en el aumento de la tolerancia a los herbicidas imidazolinona en las plantas
EP1672075A1 (de) 2004-12-17 2006-06-21 Bayer CropScience GmbH Transformierte Pflanzen, die Dextransucrase exprimieren und eine veränderte Stärke synthetisieren
EP1679374A1 (de) 2005-01-10 2006-07-12 Bayer CropScience GmbH Transformierte Pflanzen, die Mutansucrase exprimieren und eine veränderte Stärke synthetisieren
JP2006304779A (ja) 2005-03-30 2006-11-09 Toyobo Co Ltd ヘキソサミン高生産植物
EP1707632A1 (de) 2005-04-01 2006-10-04 Bayer CropScience GmbH Phosphorylierte waxy-Kartoffelstärke
EP1710315A1 (de) 2005-04-08 2006-10-11 Bayer CropScience GmbH Hoch Phosphat Stärke
US8143192B2 (en) 2005-06-15 2012-03-27 Bayer Cropscience N.V. Methods for increasing the resistance of plants to hypoxic conditions
MX2008000097A (es) 2005-06-24 2008-03-19 Bayer Bioscience Nv Metodos para alterar la reactividad de las paredes de las celulas vegetales.
AR054174A1 (es) 2005-07-22 2007-06-06 Bayer Cropscience Gmbh Sobreexpresion de sintasa de almidon en vegetales
WO2007024782A2 (en) 2005-08-24 2007-03-01 Pioneer Hi-Bred International, Inc. Compositions providing tolerance to multiple herbicides and methods of use thereof
CN102766652B (zh) 2005-08-31 2015-07-29 孟山都技术有限公司 编码杀虫蛋白的核苷酸序列
EP1951030B1 (de) 2005-10-05 2015-02-25 Bayer Intellectual Property GmbH Verbesserte verfahren und mittel für die herstellung von hyaluronan
CA2624496A1 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Plants with an increased production of hyaluronan ii
WO2007039314A2 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Plants with increased hyaluronan production
WO2007107326A1 (en) 2006-03-21 2007-09-27 Bayer Bioscience N.V. Stress resistant plants
DE102006015468A1 (de) * 2006-03-31 2007-10-04 Bayer Cropscience Ag Substituierte Enaminocarbonylverbindungen
EP2018431B1 (de) 2006-05-12 2011-08-10 Bayer BioScience N.V. Neue mit Stress verbundene Mikro-RNS-Moleküle und Verwendungen davon
EP1887079A1 (de) 2006-08-09 2008-02-13 Bayer CropScience AG Genetisch modifizierte Pflanzen, die eine Stärke mit erhöhtem Quellvermögen synthetisieren
AR064558A1 (es) 2006-12-29 2009-04-08 Bayer Cropscience Sa Proceso para la modificacion de las propiedades termicas y de digestion de almidones de maiz y harinas de maiz
AR064557A1 (es) 2006-12-29 2009-04-08 Bayer Cropscience Ag Almidon de maiz y harinas y alimentos de maiz que comprenden este almidon de maiz
EP1950303A1 (de) 2007-01-26 2008-07-30 Bayer CropScience AG Genetisch modifizierte Pflanzen, die eine Stärke mit geringem Amylosegehalt und erhöhtem Quellvermögen synthetisieren
BRPI0924436B1 (pt) 2009-03-25 2017-06-06 Bayer Cropscience Ag combinações de substâncias ativas com propriedades inseticidas e acaricidas e seu uso, bem como método para o controle de pragas e animais
UA104887C2 (uk) 2009-03-25 2014-03-25 Баєр Кропсаєнс Аг Синергічні комбінації активних речовин
CN102395271A (zh) 2009-03-25 2012-03-28 拜尔农作物科学股份公司 具有杀虫和杀螨特性的活性化合物结合物
EP2410848A1 (de) 2009-03-25 2012-02-01 Bayer CropScience AG Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539588A1 (de) * 1990-07-05 1993-05-05 Nippon Soda Co., Ltd. Aminderivat
WO2007112843A1 (de) * 2006-03-29 2007-10-11 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden eigenschaften
WO2007115643A1 (de) * 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituierte enaminocarbonylverbindungen
WO2007115644A1 (de) * 2006-03-31 2007-10-18 Bayer Cropscience Ag Substituierte enaminocarbonylverbindungen

Also Published As

Publication number Publication date
MX2011009916A (es) 2011-10-06
BRPI0924986A8 (pt) 2016-06-21
CN102448305A (zh) 2012-05-09
ZA201106808B (en) 2012-11-28
CN102448305B (zh) 2015-04-01
BRPI0924986A2 (pt) 2015-08-11
EP2410849A1 (de) 2012-02-01
US20120077675A1 (en) 2012-03-29
US8828907B2 (en) 2014-09-09

Similar Documents

Publication Publication Date Title
EP2205081B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP2194784B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
KR101671299B1 (ko) 동물 해충을 구제하기 위한 활성 성분 배합물의 용도
WO2010108504A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
US8828906B2 (en) Active compound combinations having insecticidal and acaricidal properties
US8846568B2 (en) Active compound combinations having insecticidal and acaricidal properties
US8828907B2 (en) Active ingredient combinations having insecticidal and acaricidal properties
DE102007045953B4 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
EP2200435B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eingenschaften
DE102007045919B4 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045955A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
WO2010078899A2 (de) Verfahren zur bekämpfung resistenter tierischer schädlinge
DE102007045957A1 (de) Wirkstoffkombinationen mit insektiziden und akarziden Eigenschaften
BRPI0924986B1 (pt) "combinations of active substances with inseticid and acaricid properties, its uses and method for the control of animal plagues".

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159532.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09776471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009776471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/009916

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 7317/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13259937

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924986

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110922