WO2010103984A1 - 大型車両用ツインクラッチ式変速機 - Google Patents

大型車両用ツインクラッチ式変速機 Download PDF

Info

Publication number
WO2010103984A1
WO2010103984A1 PCT/JP2010/053486 JP2010053486W WO2010103984A1 WO 2010103984 A1 WO2010103984 A1 WO 2010103984A1 JP 2010053486 W JP2010053486 W JP 2010053486W WO 2010103984 A1 WO2010103984 A1 WO 2010103984A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
numbered
odd
intermediate shaft
speed
Prior art date
Application number
PCT/JP2010/053486
Other languages
English (en)
French (fr)
Inventor
中村秀樹
Original Assignee
株式会社日立ニコトランスミッション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ニコトランスミッション filed Critical 株式会社日立ニコトランスミッション
Priority to US13/254,360 priority Critical patent/US8528432B2/en
Priority to CN201080010062.0A priority patent/CN102341616B/zh
Priority to EP10750738.6A priority patent/EP2407688B1/en
Publication of WO2010103984A1 publication Critical patent/WO2010103984A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • F16H2003/123Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches using a brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0407Synchronisation before shifting by control of clutch in parallel torque path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/006Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising eight forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19228Multiple concentric clutch shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19219Interchangeably locked
    • Y10T74/19233Plurality of counter shafts

Definitions

  • the present invention relates to a twin clutch transmission suitable for a large vehicle equipped with a high horsepower engine such as a large truck or a large special work vehicle.
  • meshing clutches such as dog clutches and spline clutches do not require power such as hydraulic pressure to maintain the coupled state when they are coupled, so that engine power can be efficiently transmitted to the output side.
  • These meshing clutches need to synchronize the rotational speeds of the drive side and the driven side when the clutch is engaged, and a transmission for a passenger car generally uses a synchromesh mechanism that uses the frictional force of a tapered cone as a synchronizer. Yes.
  • the engine speed is controlled, and the rotational difference between the driving side and driven side of the clutch to be coupled is kept within a predetermined value to reduce switching shock and prevent damage to the clutch.
  • Patent Document 1 The used twin clutch type transmission for automobiles is described in, for example, Patent Document 1 below.
  • Patent Document 2 As a transmission using a hydraulically operated friction clutch suitable for a large vehicle such as a dump truck, there is a transmission described in Patent Document 2, for example. JP 2008-240832 A JP 2007-303519 A
  • a transmission of a large vehicle equipped with a high horsepower engine requires a synchromesh mechanism (synchronization device) having a large synchronous capacity corresponding to the transmission torque.
  • Existing synchromesh mechanisms such as those used in other transmissions are difficult to use in terms of structure and strength, and are difficult to use in terms of durability and reliability.
  • the inertia also increases, making it difficult to change the engine speed instantaneously even if it is attempted to speed up the synchronization by controlling the engine speed. Due to the problem of increased noise caused by blowing up, transmissions for large vehicles generally employ hydraulically operated friction clutches, and the speeds required by smoothly connecting the individual clutches when switching speed stages. Have gained a step.
  • An object of the present invention is to solve the above-described problems and enable a quick shift of a meshing clutch without a shock with a simple configuration without controlling and synchronizing the engine speed even in a transmission of a large vehicle.
  • the object is to provide a compact twin-clutch transmission that can achieve this.
  • the present invention provides an input shaft connected to an engine, an odd-numbered intermediate shaft and an even-numbered intermediate shaft arranged in parallel with the input shaft, and arranged in parallel between the intermediate shafts.
  • the odd-numbered stage main transmission gear connecting the odd-numbered stage main transmission gear to the odd-numbered stage intermediate shaft, the even-numbered stage main transmission gear rotatably installed on the even-numbered stage intermediate shaft, and the even-numbered stage main transmission gear.
  • An even-numbered main friction clutch coupled to the even-numbered intermediate shaft, a plurality of odd-numbered transmission gears rotatably disposed on the odd-numbered intermediate shaft, and a plurality of even-numbered gears rotatably disposed on the even-numbered intermediate shaft A transmission gear, one of the odd speed transmission gears, and A plurality of output gears fixedly attached to the output shaft so that even-numbered transmission gears that are one gear higher than the several-speed transmission gears mesh with each other; the odd-numbered intermediate shafts and even-numbered intermediate shafts provided on the intermediate shafts;
  • a meshing clutch that selectively couples the transmission gear, the odd-numbered transmission gear and the even-numbered transmission gear that mesh with the same output gear are set to the same number of teeth, and the gear ratio between adjacent gears is set.
  • a meshing clutch synchronization mechanism of a transmission includes an even-odd upshift input gear and an odd-even downshift input gear fixed to an input shaft, and is rotatable to the odd-numbered intermediate shaft.
  • an even-odd downshift synchronization gear coupled to the odd-numbered intermediate shaft by an attached friction clutch
  • an even-odd upshifting synchronous gear which is rotatably installed on the odd-numbered intermediate shaft.
  • Engage with the even-numbered stage input gear, and even-odd downshift synchronous gear connected to the odd-numbered stage intermediate shaft by an attached friction clutch, and rotatably mounted on the even-numbered stage intermediate shaft and meshed with the odd-numbered stage input gear An even-numbered upshift synchronous gear connected to the even-numbered intermediate shaft by a friction clutch attached to the even-numbered intermediate shaft.
  • a meshing clutch synchronization mechanism of a transmission includes an odd-even downshift input gear fixed to an input shaft, and is rotatably installed on the odd-numbered intermediate shaft.
  • an upshift from an odd-numbered transmission gear to an even-numbered transmission gear is referred to as an odd-even shift
  • a downshift is referred to as an odd-even downshift
  • Upshift is called even-odd upshift
  • downshift is called even-odd downshift.
  • an intermediate shaft on which a shift-destination transmission gear is installed is connected to an input shaft via a friction clutch and a gear train, and is shifted during traveling. Since the previous transmission gear and the rotation speed of the intermediate shaft where the transmission gear is installed are synchronized, the mesh clutch at the shift destination is pre-engaged, and the power from the engine is transmitted to the mesh clutch portion via the friction clutch.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the first embodiment.
  • FIG. 3 is a diagram for explaining the operation of the first embodiment.
  • FIG. 4 is a diagram for explaining the operation of the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the first embodiment.
  • FIG. 7 is a diagram for explaining the operation of the first embodiment.
  • FIG. 8 is a diagram for explaining the operation of the first embodiment.
  • FIG. 9 is a diagram for explaining the operation of the first embodiment.
  • FIG. 10 is a block diagram showing a second embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the operation of the second embodiment.
  • FIG. 12 is a diagram for explaining the operation of the second embodiment.
  • FIG. 13 is a diagram for explaining the operation of the second embodiment.
  • FIG. 14 is a diagram for explaining the operation of the second embodiment.
  • FIG. 1 shows a first embodiment of the present invention.
  • the transmission shown in FIG. 1 uses a spline clutch as a meshing clutch, and shows an example of shifting from the first speed to the eighth speed. Note that the reverse gear is not shown because it is not directly related to the gist of the present invention.
  • the output of the engine 1 is input to the input shaft 3 of the transmission 2.
  • An odd-numbered stage input gear 7, an even-numbered stage input gear 8, an even / odd upshift input gear 13, and an odd / even downshift input gear 14 are fixed to the input shaft 3.
  • An odd-numbered intermediate shaft 5 and an even-numbered intermediate shaft 6 are arranged in parallel with the input shaft 3, and an odd-numbered main transmission gear 9 is rotatably installed on the odd-numbered intermediate shaft 5 so as to mesh with the odd-numbered input gear 7. It is arranged.
  • the odd-numbered stage main transmission gear 9 is provided with an odd-numbered stage main friction clutch 10 for connection to the odd-numbered stage intermediate shaft 5.
  • the intermediate shaft fixing member of the odd-numbered main friction clutch 10 is formed integrally with a reverse driven gear (not shown).
  • the even-numbered intermediate shaft 6 is provided with an even-numbered main transmission gear 11 that is rotatably installed on the shaft and meshes with the even-numbered input gear 8.
  • the even-numbered main transmission gear 11 is connected to the even-numbered intermediate shaft 6.
  • An even-numbered main friction clutch 12 is provided.
  • the odd-numbered stage main friction clutch 10 and the even-numbered stage main friction clutch 12 are hydraulically operated, and the friction plates are pressed against each other by supplying hydraulic oil. When the hydraulic pressure is increased, the frictional force increases and the clutch transmission torque increases. To do.
  • the even / odd upshift synchronization gear 15 meshes with the even / odd upshift input gear 13 and is rotatably installed on the odd-numbered intermediate shaft 5, and is connected to the odd-numbered intermediate shaft 5 by coupling of the attached friction clutch 16.
  • the odd-numbered intermediate shaft 5 is rotatably provided with an even / odd downshift synchronization gear 17 that meshes with the even-numbered input gear 8, and the even / odd downshift synchronization gear 17 is odd-numbered by coupling of the attached friction clutch 18. It is connected to the stage intermediate shaft 5.
  • the odd-even upshift synchronization gear 19 meshes with the odd-numbered input gear 7 and is rotatably installed on the even-numbered intermediate shaft 6, and is connected to the even-numbered intermediate shaft 6 by coupling of the attached friction clutch 20.
  • An even-numbered downshift synchronization gear 21 meshing with the even-numbered downshift input gear 14 is rotatably installed on the even-numbered intermediate shaft 6, and the even-numbered downshift synchronization gear 21 is coupled to the attached friction clutch 22.
  • the even-numbered intermediate shaft 6 To the even-numbered intermediate shaft 6.
  • These friction clutches 16, 18, 20, and 22 are also hydraulically operated like the friction clutches 10 and 12.
  • the odd / even upshift synchronization gear 19 and the odd-numbered main transmission gear 9 and the even / odd downshift synchronization gear 17 and the even-numbered main transmission gear 11 have the same number of teeth, and the even / odd upshift synchronization gear 15 and the even / odd upshift.
  • the input gear 13 gear ratio is configured to have a number of teeth that is inversely proportional to the square of the equal ratio, which is the ratio of the gear ratio between adjacent gears, and the odd-even downshift synchronous gear 21 and the odd-even downshift.
  • the gear ratio of the input gear 14 is configured such that the number of teeth is a value proportional to the square of the equal ratio, which is the ratio of the gear ratio between adjacent gears.
  • Even-odd upshift input gear 13, odd-even downshift input gear 14, synchronous gears 15, 17, 19, 21 and friction clutches 16, 18, 20, 22 attached to these synchronous gears 15, 17, 19, 21 Constitutes a synchronization mechanism provided by the present invention to synchronize the rotational speed of the meshing clutch described later.
  • the odd-numbered intermediate shaft 5 is provided with a plurality of (four-stage) odd-numbered transmission gears rotatably.
  • the odd-numbered transmission gears are the first gear 31, the third gear 33, the fifth gear 35, and the seventh gear. 37.
  • the even-numbered intermediate shaft 6 is rotatably provided with a plurality of even-numbered transmission gears including a second gear 32, a fourth gear 34, a sixth gear 36, and an eighth gear 38.
  • the first speed gear 31 and the second speed gear 32 mesh with the transmission output gear 41
  • the third speed gear 33 and the fourth speed gear 34 mesh with the transmission output gear 42
  • the fifth speed gear 35 and the sixth speed gear 36 mesh with the transmission output gear 43.
  • the seventh speed gear 37 and the eighth speed gear 38 are configured to mesh with the speed change output gear 44, and the speed change output gears 41 to 44 are fixed to the output shaft 4.
  • one odd speed gear and an even speed gear that is one gear speed higher than the odd speed gear share a mesh with the same speed change output gear 41 to 44, and the same speed change output gear 41 to 44.
  • the odd number transmission gear and the even number transmission gear that mesh with each other are set to the same number of teeth.
  • the odd-numbered intermediate shaft 5 is provided with a spline clutch composed of splines with meshing teeth for switching between the first speed gear 31 and the third speed gear 33 or the fifth speed gear 35 and the seventh speed gear 37.
  • the speed gear 33 is formed with female splines 31a, 33a which are one meshing teeth of the spline clutch, and the male spline which is the other meshing teeth is mounted on the odd-numbered intermediate shaft 5 so as to be movable in the axial direction. Is formed.
  • female splines 35 a, 37 a are formed in the fifth gear 35 and the seventh gear 37, and the sleeve 24 is movable in the axial direction on the odd-numbered intermediate shaft 5 between the fifth gear 35 and the seventh gear 37. is set up.
  • a spline clutch for switching between the second-speed gear 32 and the fourth-speed gear 34 or the sixth-speed gear 36 and the eighth-speed gear 38 is installed on the even-numbered intermediate shaft 6. That is, female splines 31a, 33a, 36a, and 38a are formed in the second gear 32, the fourth gear 34, the sixth gear 36, and the eighth gear 38, respectively, and between the second gear 32 and the fourth gear 34 and the sixth gear.
  • Sleeves 25 and 26 are installed on the even-numbered intermediate shaft 6 between the gear 36 and the eighth gear 38 so as to be movable in the axial direction.
  • the spline clutch is composed of an intermediate shaft (rotary shaft) 5, female splines 31 a and 33 a, and a sleeve (male spline) 23, and the sleeve 23 is rotated by a shift fork (not shown).
  • the gear stage can be switched by moving in the left-right direction of the shaft 5 and meshing with the female spline 31a of the first-speed gear 31 or the female spline 33a of the third-speed gear 33.
  • the sleeves 23 to 26 may be referred to as clutch sleeves or spline clutches.
  • both male and female splines project a predetermined number of spline teeth in the axial direction toward the insertion side surface. It is desirable to use those formed with the fitted guide teeth (leading guide teeth).
  • the ratio of the rotational speed Ni of the input shaft 3 of the transmission 2 to the rotational speed No of the output shaft 4 in a state where the spline clutch of the selected speed stage and the main friction clutch (10 or 12) are coupled Ni / No
  • the ratio of the gear ratios between adjacent speed stages from the first to the eighth speed is set to be equal.
  • the speed ratio of each speed stage is the gear ratio and the input gear ratio 1 (gear 9 / gear 7) to the odd-numbered intermediate shaft 5 or the gear ratio 2 and the input gear ratio 2 to the even-numbered intermediate shaft 6 (
  • the ratio between the input gear ratio 1 and the input gear ratio 2 is set to a gear ratio corresponding to one shift stage, and the respective reduction ratios in this example are the input gear ratio 1>.
  • 3rd gear ratio (equal ratio x input gear ratio 2 x 2nd gear ratio / input gear ratio 1)
  • Equal ratio (input gear ratio 2 / input gear ratio 1)
  • the equal ratio is substantially equal because practically the number of teeth that can be taken is limited to an integer. For example, when the input gear ratio 1 is set to 2.00 and the input gear ratio 2 is set to 1.567, the equal ratio is about 0.1. 78, when the 2nd gear ratio is set to 2.10, the 3rd gear ratio is set to have a gear ratio in the vicinity of about 1.28 from the above relational expression. Next, the speed change operation will be described.
  • the engine speed remains the same as that before the shift at any speed speed.
  • upshifting from the first speed to the second speed will be described with reference to FIGS.
  • the odd-numbered main friction clutch 10 is engaged to connect the odd-numbered main transmission gear 9 to the odd-numbered intermediate shaft 5, and the male spline of the clutch sleeve 23 is connected to the first-speed gear 31.
  • the total torque of the engine 1 is transmitted to the output shaft 4 through a path indicated by a thick dotted arrow in the first speed running state.
  • the clutch sleeve 25 on the even-numbered intermediate shaft 6 is fastened to the 2nd speed gear 32 during the 1st speed preparation as a gearshift preparation. It is necessary to synchronize the rotation speed within an allowable rotation difference.
  • the second speed gear 32 is connected to the first speed gear 31, that is, the odd-numbered intermediate shaft 5 via the speed change output gear 41 during the first speed traveling, and the second speed gear 32 rotates at the same speed as the odd-numbered intermediate shaft 5 during the first speed traveling. Rotating by number.
  • the shift gear of the shift destination is installed rather than the rotational speed of the shift gear of the shift destination.
  • the rotation speed of the intermediate shaft is higher. This is based on the input gear ratio 1, the input gear ratio 2, the 1st gear ratio to the 8th gear ratio, and the like. It is clear by obtaining the number of revolutions).
  • the rotational speed of the shift destination transmission gear is higher than the rotational speed of the intermediate shaft on which the shift transmission gear is installed.
  • the even-numbered upshift synchronization gear 19 When the friction clutch 20 is engaged (through the half-clutch state), the even-numbered upshift synchronization gear 19 is connected to the even-numbered intermediate shaft 6, and torque is applied to the even-numbered intermediate shaft 6 from the input shaft 3 as indicated by a thin dotted line arrow.
  • the odd-even upshift synchronous gear 19 is connected to the odd-numbered main transmission gear 9 via the odd-numbered main input gear 7 and the odd-even upshift synchronous gear 19 and the odd-numbered main transmission gear 9 are the same. Since the number of teeth is set, the rotational speed of the even-numbered intermediate shaft 6 is reduced to the rotational speed of the odd-numbered intermediate shaft 5.
  • the friction clutch 20 of the odd-even upshift synchronous gear 19 is engaged to synchronize the rotational speeds of the second gear 32 and the even-numbered intermediate shaft 6 to the second gear 32.
  • the clutch 25 is pre-engaged. Even if the clutch 25 is pre-engaged with the second gear 32 during traveling in the first speed, torque transmission to the even-numbered intermediate shaft 6 does not occur because the even-numbered main friction clutch 12 is released. If the spline clutch 25 is pre-engaged with the second-speed gear 32, as shown in FIG.
  • this is an upshift transmission operation from the second speed gear 32 meshing with the transmission output gear 41 to the third speed gear 33 meshing with the transmission output gear 42.
  • the even-numbered main friction clutch 12 is engaged to connect the even-numbered main transmission gear 11 to the even-numbered intermediate shaft 6, and the clutch sleeve 25 is the female spline of the second-speed gear 32.
  • the entire torque of the engine 1 is transmitted to the output shaft 4 through a path indicated by a thick dotted line arrow.
  • the clutch sleeve 23 is fastened to the 3rd speed gear 33 during traveling at the 2nd speed as preparation for shifting, but it is necessary to synchronize the 3rd speed gear 33 and the sleeve 23 for fastening.
  • the third speed gear 33 is connected to the second speed gear 32, that is, the even-numbered intermediate shaft 6 via the speed change output gear 42, the output shaft 4, and the speed change output gear 41 when traveling at the second speed. Is the number of revolutions of the even-numbered intermediate shaft 6 / second gear ratio ⁇ third gear ratio.
  • the rotation speed of the 3rd speed gear 33 becomes the rotation speed of the even-numbered intermediate shaft 6 ⁇ the square of the equal ratio.
  • the rotation speed of the third gear 33 is about 0.61 times the rotation speed of the even-numbered intermediate shaft 6 and is smaller than the even-speed intermediate shaft 6. It is rotating at. At this time, the odd-numbered intermediate shaft 5 is rotated by the drag friction of the odd-numbered main friction clutch 11 as described above.
  • the rotational speed of the odd-numbered intermediate shaft 5 is about 0.78 times the rotational speed of the even-numbered intermediate shaft 6 and is higher than the rotational speed of the third speed gear 33.
  • the even / odd upshift synchronization gear 15 is coupled to the odd-numbered intermediate shaft 5
  • the even / odd upshift synchronization gear 15 is coupled to the input shaft 3 via the even / odd upshift input gear 13.
  • Torque is transmitted from the input shaft 3 to the odd-numbered intermediate shaft 5 as indicated by a thin dotted line arrow.
  • the input shaft 3 is connected to the even-numbered main transmission gear 11 via the even-numbered input gear 8.
  • the gear ratio (synchronous gear 15 / upshift input gear 13) between the even / odd upshift synchronous gear 15 and the even / odd upshift input gear 13 is set in accordance with the equal ratio, and the rotation of the third speed gear 33 as described above.
  • the number is the number of revolutions of the even-numbered intermediate shaft 6 ⁇ the square of the equal ratio
  • the number of revolutions of the input shaft 3 is the number of revolutions of the even-numbered intermediate shaft 6 ⁇ the input gear ratio 2.
  • the rotational speeds of the third speed gear 33 and the clutch sleeve 23 are synchronized, and in this state, the sleeve 23 is engaged with the female spline 33a.
  • the spline clutch 23 is fastened to the third speed gear 33.
  • the friction clutch 16 is released after the spline clutch 23 is engaged with the third speed gear 33.
  • the friction clutch 16 of the even / odd upshift synchronous gear 15 is set to a half clutch so that the rotational speeds of the third gear 33 and the odd-numbered intermediate shaft 5 are synchronized.
  • the spline clutch 23 is pre-engaged.
  • the upshift to 33 is performed in this way, but upshifting from 3rd speed ⁇ 4th speed, 5th speed ⁇ 6th speed, 7th speed ⁇ 8th speed and 2nd speed ⁇ 3rd speed, 4th speed ⁇ 5th speed, 6th speed ⁇
  • the upshift to the seventh speed is performed in the same manner.
  • FIGS. 6 and 7 show a downshift operation from the 6th gear 36 to the 5th gear 35 sharing the mesh with the transmission output gear 43. 6, the even-numbered main friction clutch 12 is engaged to connect the even-numbered main transmission gear 11 to the even-numbered intermediate shaft 6 and the clutch sleeve 26 is a female spline of the sixth-speed gear 36.
  • the entire torque of the engine 1 is transmitted to the output shaft 4 through a path indicated by a thick dotted line arrow.
  • the clutch sleeve 24 is fastened to the fifth speed gear 35 during traveling at the sixth speed as preparation for shifting, but it is necessary to synchronize the fifth speed gear 35 and the clutch sleeve 24 for fastening.
  • the fifth speed gear 35 is connected to the sixth speed gear 36, that is, the even-numbered intermediate shaft 6 via the speed change output gear 43 when traveling at the sixth speed, and the fifth gear 35 rotates at the same rotational speed as the even-numbered intermediate shaft 6. ing.
  • the odd-numbered intermediate shaft 5 is rotated by the drag friction of the odd-numbered main friction clutch 10, but its rotational speed is lower than the rotational speed of the even-numbered intermediate shaft 6 due to the gear ratio as described above.
  • the even / odd downshift synchronous gear 17 is connected to the odd-numbered intermediate shaft 5, and torque is applied to the odd-numbered intermediate shaft 5 from the input shaft 3 as indicated by a thin dotted line arrow. Communicated.
  • the even-odd downshift synchronization gear 17 is connected to the even-numbered stage main transmission gear 11 via the even-numbered stage main input gear 8, and the even-odd downshift synchronization gear 17 and the odd-numbered stage main transmission gear 11 have the same number of teeth. Therefore, the odd-numbered intermediate shaft 5 is increased to the same rotational speed as the even-numbered intermediate shaft 6. By making the rotational speed of the odd-numbered intermediate shaft 5 equal to that of the even-numbered intermediate shaft 6, the fifth speed gear 35 and the clutch sleeve 24 are synchronized, and in this state, the clutch sleeve 24 is engaged with the female spline 35a. The spline clutch 24 is fastened to the gear 35.
  • the friction clutch 18 is released when the spline clutch 24 is engaged with the fifth speed gear 35. In this way, the friction clutch 18 of the even-odd downshift synchronous gear 17 is engaged during the sixth speed traveling so that the rotational speeds of the fifth speed gear 35 and the odd-numbered intermediate shaft 5 are synchronized with each other.
  • the clutch 24 is pre-engaged. Even if the clutch 24 is pre-engaged with the fifth gear 35 during the sixth speed traveling, the odd-numbered stage main friction clutch 10 is released, so that no torque is transmitted to the odd-numbered intermediate shaft 5. If the spline clutch 24 is pre-engaged with the fifth gear 35, the even-numbered main friction clutch 12 is released while the odd-numbered main friction clutch 10 is engaged as shown in FIG.
  • the odd-numbered main friction clutch 10 is engaged to connect the odd-numbered main transmission gear 9 to the odd-numbered intermediate shaft 5, and the clutch sleeve 24 is a female spline of the fifth-speed gear 35.
  • the entire torque of the engine 1 is transmitted to the output shaft 4 through a path indicated by a thick dotted line arrow.
  • the clutch sleeve 25 is fastened to the 4th speed gear 34 during the 5th speed preparation as a gear shift preparation.
  • the rotational speed of the stage intermediate shaft 5 is the square of the equal ratio.
  • the rotational speed of the fourth gear 34 is about 1.63 times the rotational speed of the odd-numbered intermediate shaft 5 and is larger than the odd-numbered intermediate shaft 5. It is rotating.
  • the rotational speed of the even-numbered intermediate shaft 6 is about 1.28 times the rotational speed of the odd-numbered intermediate shaft 5 and is lower than the rotational speed of the fourth speed gear 34.
  • the odd / even downshift synchronization gear 21 is connected to the even-numbered intermediate shaft 6, and the even-numbered intermediate shaft 6 is torqued from the input shaft 3 as indicated by a thin dotted line arrow. Is transmitted.
  • the odd / even downshift synchronous gear 21 is connected to the input shaft 3 via the odd / even downshift input gear 14, and the input shaft 3 is connected to the odd-numbered main transmission gear 9 via the odd-numbered input gear 7.
  • the gear ratio between the odd / even downshift synchronization gear 21 and the odd / even downshift input gear 14 is set in accordance with the equal ratio, and the rotational speed of the fourth gear 34 is about 1 of the rotational speed of the odd-numbered intermediate shaft 5.
  • the rotational speed of the even-numbered intermediate shaft 6 may be set to be equal to this, and the odd / even downshift synchronization gear 21 and the odd / even downshift input gear 14
  • the gear ratio (synchronous gear 21 / downshift input gear 14) is set to square of equal ratio ⁇ input gear ratio 1.
  • the friction clutch 22 of the odd / even downshift synchronous gear 21 is coupled to synchronize the rotational speeds of the shift destination fourth speed gear 34 and the even-numbered intermediate shaft 6 to the fourth speed gear 34.
  • the clutch 25 is pre-engaged. Even if the clutch 25 is pre-engaged with the fourth-speed gear 34 during the fifth-speed traveling, the even-numbered main friction clutch 12 is released, so that torque is not transmitted to the even-numbered intermediate shaft 6. If the spline clutch 25 is pre-engaged with the fourth-speed gear 34, as shown in FIG. 9, when the odd-numbered main friction clutch 10 is released while the even-numbered main friction clutch 12 is engaged, the odd-numbered intermediate shaft 5 from the engine 1 is released.
  • Downshift to 34 is performed in this way, but downshift from 8th speed ⁇ 7th speed, 4th speed ⁇ 3rd speed, 2nd speed ⁇ 1st speed and 7th speed ⁇ 6th speed, 3rd speed ⁇ 2nd speed Is done in the same way.
  • the shift operation of upshift and downshift is performed as described above. The outline is summarized as follows for easy understanding. Upshifts (1st speed ⁇ 2nd speed, 3rd speed ⁇ 4th speed, 5th speed ⁇ 6th speed, 7th speed ⁇ 8th speed) between gears sharing the mesh with the same shift output gear are shifted when the friction clutch 20 is engaged.
  • the number of rotations of the odd-numbered intermediate shaft 5 in which is installed and the number of rotations of the odd-numbered transmission gears 31, 33, 35, 37 are immediately synchronized. This is because the gear ratio between the even-odd upshift synchronous gear 15 and the even-odd upshift input gear 13 is configured to be the input gear ratio 2 / equal ratio squared. Downshift between gears sharing the mesh with the same shift output gear (8th speed ⁇ 7th speed, 6th speed ⁇ 5th speed, 4th speed ⁇ 3rd speed, 2nd speed ⁇ 1st speed) is shifted when the friction clutch 18 is engaged.
  • the number of rotations of the odd-numbered intermediate shaft 5 where the previous transmission gear is installed and the number of rotations of the odd-numbered transmission gears 31, 33, 35, and 37 are immediately synchronized. This is because the even-numbered main transmission gear 11 and the even-odd downshift synchronization gear 17 are configured to have the same number of teeth.
  • a downshift (7th speed ⁇ 6th speed, 5th speed ⁇ 4th speed, 3rd speed ⁇ 2nd speed) between adjacent shift speeds that do not share mesh with the same shift output gear is performed when the friction clutch 22 is engaged and the shift gear to be shifted to The rotational speed of the even-numbered intermediate shaft 6 and the rotational speeds of the even-numbered transmission gears 32, 34, and 36 are immediately synchronized.
  • the up-shift and the down-shift can be performed only by engaging the synchronous clutches respectively attached to the four synchronous gears, and the rotational speeds of both the odd-numbered and even-numbered intermediate shafts are controlled for preliminary engagement. Since there is no need, there is a practical effect that the rotational speed sensors of both intermediate shafts can be dispensed with.
  • the male spline is moved in the direction of the rotation axis.
  • the spline to be moved may be formed on the female spline, and the other to be fitted with the male spline may be formed on the male spline. It is.
  • FIG. 10 shows a second embodiment of the present invention.
  • the number of rotations of the intermediate shaft on which the transmission gear that is preliminarily fastened at the time of upshifting is installed is decelerated by a brake device.
  • a friction brake device 27 having one end fixed to the transmission casing 29 is installed at one end of the odd-numbered intermediate shaft 5.
  • a friction brake device 28 fixed to the transmission casing 29 is installed.
  • hydraulic wet-type multi-plate brakes are used.
  • the other ends of the intermediate shafts 5 and 6 are rotatably supported by the transmission casing 29.
  • the clutch sleeve 25 is fastened to the second speed gear 32 during traveling at the first speed as preparation for shifting. Need to be synchronized.
  • the second speed gear 32 is connected to the first speed gear 31, that is, the odd-numbered intermediate shaft 5 via the speed change output gear 41 during the first speed traveling, and the second speed gear 32 rotates at the same speed as the odd-numbered intermediate shaft 5 during the first speed traveling.
  • the number of rotations predetermined number of rotations).
  • the rotational speed of the even-numbered intermediate shaft 6 is higher than the rotational speed of the odd-numbered intermediate shaft 5 due to drag friction of the even-numbered main friction clutch 11 as described in the description of the first embodiment.
  • the clutch sleeve 25 rotates integrally with the even-numbered intermediate shaft 6, and the number of rotations is determined by the balance of the friction transmission torque between the even-numbered main friction clutch 12 and the friction brake device 28, and also varies depending on the viscosity of the oil. .
  • the even-numbered main friction clutch 12 is coupled to the half-clutch state and the friction brake device 28 is operated, so that the rotational speed of the even-numbered intermediate shaft 6 becomes substantially equal to the predetermined rotational speed of the odd-numbered intermediate shaft 5.
  • the hydraulic pressure of the brake device is controlled.
  • the even-stage main friction clutch 12 When the even-stage main friction clutch 12 is coupled to the half-clutch state, torque is transmitted from the input shaft 3 to the even-stage intermediate shaft 6 as indicated by a thin dotted line arrow, and the even-stage intermediate shaft 6 and the odd-stage intermediate shaft 5 rotate.
  • the numbers are substantially equal, the rotational speeds of the second speed gear 32 and the clutch sleeve 25 are synchronized, and the spline clutch 25 is engaged with the second speed gear 32.
  • the even-numbered main friction clutch 12 is coupled to the half-clutch state during the first speed traveling, and the operating hydraulic pressure of the friction brake device 28 is adjusted to change the rotational speeds of the second gear 32 to be shifted and the even-numbered intermediate shaft 6.
  • the spline clutch 25 is pre-engaged with the second speed gear 32 in the synchronized state. If the spline clutch 25 is pre-engaged with the second gear 32, the even-numbered main friction clutch 12 is engaged and the odd-numbered main friction clutch 10 is released as shown in FIG. As a result, the torque transmitted from the engine 1 to the odd-numbered intermediate shaft 5 is transferred to the even-numbered intermediate shaft 6, and the total torque of the engine 1 passes through the second-speed gear 32 as indicated by the thick dotted arrow, and the shift output gear 41. Is transmitted to the output shaft 4 via.
  • the even-numbered main friction clutch 12 is engaged to connect the even-numbered main transmission gear 11 to the even-numbered intermediate shaft 6, and the clutch sleeve 25 is the female spline of the second-speed gear 32.
  • the entire torque of the engine 1 is transmitted to the output shaft 4 through a path indicated by a thick dotted arrow.
  • the clutch sleeve 23 is engaged with the 3rd speed gear 33 during the 2nd speed traveling as preparation for shifting.
  • the rotation speed of the third-speed gear 33 is the odd-numbered intermediate shaft.
  • the rotational speed is smaller than 5.
  • the clutch sleeve 23 rotates integrally with the odd-numbered intermediate shaft 5, and the number of rotations is determined by the balance of the friction transmission torque between the odd-numbered main friction clutch 10 and the friction brake device 27, and depends on the oil viscosity and the like. Also changes.
  • the odd-numbered stage main friction clutch 10 is coupled to the half-clutch state and the friction brake device 27 is operated so that the rotational speed of the odd-numbered intermediate shaft 5 is substantially equal to the rotational speed of the third gear 33.
  • the hydraulic pressure of the friction brake device 27 is controlled.
  • the rotational speeds of the third speed gear 33 and the clutch sleeve 23 are synchronized, and the spline clutch 23 is engaged with the third speed gear 33.
  • the odd-numbered main friction clutch 10 is connected to the half-clutch state during the second speed traveling, and the operating hydraulic pressure of the friction brake device 27 is adjusted to adjust the rotational speeds of the third gear 33 to be shifted and the odd-numbered intermediate shaft 5.
  • the spline clutch 23 is pre-engaged with the third speed gear 33 in a synchronized state.
  • the even-numbered main friction clutch 12 is released as shown in FIG.
  • the torque transmitted from the engine 1 to the even-numbered intermediate shaft 6 is transferred to the odd-numbered intermediate shaft 5, and the total torque of the engine 1 passes through the third-speed gear 33 as indicated by the thick dotted arrow, and the transmission output gear 42 Is transmitted to the output shaft 4 via.
  • the even-numbered main friction clutch 12 is released, the torque acting on the second speed gear 32 disappears, and the spline clutch 25 is removed from the second speed gear 32 and disengaged to complete the upshift to the third speed.
  • Upshift to 33 is performed in this way, but upshifts from 3rd gear ⁇ 4th gear, 4th gear ⁇ 5th gear, 5th gear ⁇ 6th gear, 6th gear ⁇ 7th gear, 7th gear ⁇ 8th gear are performed in the same way Is called.
  • the downshift in the second embodiment is performed in the same manner as in the first embodiment with the friction clutch 18 or the friction clutch 22 engaged, and the description thereof is omitted.
  • the intermediate shaft on which the shift-destination transmission gear is installed is connected to the input shaft via the friction clutch.
  • the meshing clutch is pre-engaged by synchronizing the rotational speeds of the shift-destination transmission gear and the intermediate shaft on which the transmission gear is installed. Therefore, even for a transmission of a large vehicle that requires a large transmission torque, the meshing clutch can be quickly shifted without a shock with a simple structure without controlling and synchronizing the engine speed. Further, since the upshift can be achieved by simply adding two friction brake devices to the shaft end portion, the overall length of the transmission can be further shortened, and the effect of being small and inexpensive can be achieved.
  • the reverse rotation mechanism that reverses the rotation direction of the output shaft is not shown, but the reverse drive gear and the reverse drive gear are provided between the odd-numbered input gear and the even-numbered input gear installed on the input shaft.
  • a reverse friction clutch that integrally connects the reverse drive gear to the input shaft is provided, and the reverse drive gear is configured to mesh with the reverse driven gear that rotates integrally with the odd-numbered intermediate shaft via the intermediate gear.
  • the reversing mechanism can be installed by effectively utilizing the axial space of the shaft, and there is an advantage that it can be configured without increasing the overall length or width.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 本発明の目的は、大型車両の変速機であっても簡単な構成でショックなく噛み合いクラッチの素早い 変速を可能にすることができるツインクラッチ式変速機を提供することにある。 同一の変速出力ギア41~44に噛み合いを共有する奇数段変速ギア31,33,35,37と偶数 段変速ギア32、34、36、38は同じ歯数にし、隣り合う変速段間の変速比の比が等比率配分とな るように奇数段入力ギア列と偶数段入力ギア列のギア比を設定し、隣接した変速出力ギア41~44に 噛み合う奇数段変速ギアと偶数段変速ギアのギア比の比が等比率の2乗になるように構成する。奇数段 変速ギアと偶数段変速ギアの間の変速時、シフト先の変速ギアが設置されている中間軸5または6を摩 擦クラッチを介して入力軸3に連結してシフト先の変速ギアと当該変速ギアが設置されている中間軸中 間軸5または6の回転数を同期状態にする。変速段切り替えに先立ってシフト先の変速ギアに噛み合い クラッチ23~26を予備締結する。

Description

大型車両用ツインクラッチ式変速機
 本発明は大型トラック、大型特殊作業車両など高馬力のエンジンを搭載した大型車両に適したツインクラッチ式変速機に関する。
 一般に、ドグクラッチやスプラインクラッチなどに代表される噛み合いクラッチは、結合したら結合状態を維持するのに油圧のような動力を必要としないので、エンジンの動力を効率良く出力側に伝達することができることから乗用車用の変速機などに使用されている。
 これらの噛み合いクラッチは、クラッチ結合時に駆動側と被動側の回転数を同期させる必要があり、乗用車用の変速機では一般的に同期装置としてテーパコーンの摩擦力を利用したシンクロメッシュ機構が用いられている。加えて、エンジン回転数を制御し、結合するクラッチの駆動側と被動側の回転差を所定値内に抑えて切り替えショックの低減とクラッチの破損防止を図っており、このようなシンクロメッシュ機構を用いた自動車用のツインクラッチ式変速機は、例えば、下記の特許文献1に記載されている。
また、ダンプトラック等の大型車両に好適な油圧作動式摩擦クラッチを用いた変速機としては、例えば特許文献2に記載されるようなものがある。
特開2008−240832号公報 特開2007−303519号公報
 しかしながら、大きな伝達トルクを必要とするため高馬力のエンジンを搭載した大型車両の変速機においては、伝達トルクに見合った大きな同期容量を備えたシンクロメッシュ機構(同期装置)が必要とされ、乗用車用の変速機で使用されているような既存のシンクロメッシュ機構は構造、強度的に高馬力(大トルク)を伝達することが難しく、耐久性、信頼性の面から使用困難である。加えて、エンジンが大きくなると慣性も大きくなり、エンジン回転数を制御して同期を早めようとしても回転数を瞬時に変化させるのが困難で、指令信号に対する追従性と変速時における頻繁なエンジン回転吹き上げに伴う騒音増大の問題もあって、大型車両用の変速機においては一般的に油圧作動式摩擦クラッチが採用されており、速度段切り替え時に個々のクラッチを滑らかに結合して必要とする速度段を得ている。すなわち、前段変速ギアのクラッチを開放してからシフト先の次段変速ギアのクラッチを滑らせながら順次結合させてシフトアップ又はシフトダウンするので変速時間を短縮するために高精度なクラッチ制御システムと多くの油圧機器を必要とする難点がある。
 本発明の目的は、上記課題を解決し、大型車両の変速機であってもエンジンの回転数を制御して同期させることなく、簡素な構成でショックなく噛み合いクラッチの素早い変速を可能にすることができる、コンパクトなツインクラッチ式変速機を提供することにある。
 上記目的を達成するために、本発明は、エンジンに接続される入力軸と、前記入力軸と並列に配置された奇数段中間軸及び偶数段中間軸と、前記中間軸間と並列に配置された出力軸と、前記入力軸に固着され入力軸の回転を中間軸に伝達する奇数段入力ギア及び偶数段入力ギアと、前記奇数段中間軸に回転自在に設置された奇数段主伝達ギアと、前記奇数段主伝達ギアを前記奇数段中間軸に連結する奇数段主摩擦クラッチと、前記偶数段中間軸に回転自在に設置された偶数段主伝達ギアと、前記偶数段主伝達ギアを前記偶数段中間軸に連結する偶数段主摩擦クラッチと、前記奇数段中間軸に回転自在に設置された複数の奇数段変速ギアと、前記偶数段中間軸に回転自在に設置された複数の偶数段変速ギアと、前記奇数段変速ギアの1つと当該奇数段変速ギアより1変速段上の偶数段変速ギアが噛み合うように出力軸に固着配設された複数の出力ギアと、前記奇数段中間軸及び偶数段中間軸に設けられて中間軸と前記変速ギアを選択的に結合する噛み合いクラッチとを具備し、同一の前記出力ギアに噛み合う前記奇数段変速ギアと前記偶数段変速ギアを同じ歯数に設定し、隣り合う変速段間の変速比の比が等比率配分になるように、前記奇数段入力ギア列と前記偶数段入力ギア列のギア比を設定し、シフト先の変速ギアが設置された中間軸を摩擦クラッチを介して前記入力軸に連結してシフト先の変速ギアと当該変速ギアが設置されている中間軸の回転数を同期させる噛み合いクラッチ同期化機構を設け、変速段切り替えに先立って前記シフト先の変速ギアに前記噛み合いクラッチを予備締結するものである。
 上記目的を達成するために、本発明の変速機の噛み合いクラッチ同期化機構は、入力軸に固着された偶奇アップシフト用入力ギアおよび奇偶ダウンシフト用入力ギアと、前記奇数段中間軸に回転自在に設置され、前記偶奇アップシフト用入力ギアと噛み合い、付設された摩擦クラッチにより前記奇数段中間軸に連結される偶奇ダウンシフト用同期ギアと、前記奇数段中間軸に回転自在に設置されて前記偶数段入力ギアと噛み合い、付設された摩擦クラッチにより前記奇数段中間軸に連結される偶奇ダウンシフト用同期ギアと、前記偶数段中間軸に回転自在に設置されて前記奇数段入力ギアと噛み合い、付設された摩擦クラッチにより前記偶数段中間軸に連結される奇偶アップシフト用同期ギアと、前記偶数段中間軸に回転自在に設置されて前記奇偶ダウンシフト用入力ギアと噛み合い、付設された摩擦クラッチにより前記偶数段中間軸に連結される奇偶ダウンシフト用同期ギアとを具備するものである。
 上記目的を達成するために、本発明の変速機の噛み合いクラッチ同期化機構は、入力軸に固着された奇偶ダウンシフト用入力ギアと、前記奇数段中間軸に回転自在に設置され、前記偶数段入力ギアと噛み合い、付設された摩擦クラッチにより前記奇数段中間軸に連結される偶奇アップシフト用同期ギアと、前記偶数段中間軸に回転自在に設置され、前記奇偶ダウンシフト用入力ギアと噛み合い、付設された摩擦クラッチにより前記偶数段中間軸に連結される奇偶ダウンシフト用同期ギアと、前記奇数段中間軸及び前記偶数段中間軸に設けられた摩擦ブレーキとを具備するものである。
 ここで、本明細書においては、隣り合う変速段間の変速比の比を等比率配分にするとしているが、実際には変速ギアと変速出力ギアの歯数の関係で略等比率にして実用に供されている。以後、説明の便宜上、等比率として説明するが、略等比率も含むものである。
また、本明細書においては、奇数段の変速ギアから偶数段の変速ギアへのアップシフトを奇偶アップシフト、ダウンシフトを奇偶ダウンシフトと称し、偶数段の変速ギアから奇数段の変速ギアへのアップシフトを偶奇アップシフト、ダウンシフトを偶奇ダウンシフトと称する。
 本発明は、奇数段変速ギアと偶数段変速ギアの間の変速時に、シフト先の変速ギアが設置されている中間軸を摩擦クラッチと歯車列を介して入力軸に連結し、走行中にシフト先の変速ギアと当該変速ギアが設置されている中間軸の回転数を同期状態にしてシフト先の噛み合いクラッチを予備締結し、エンジンのから動力を摩擦クラッチ介して噛み合いクラッチ部に伝達するので、高馬力のエンジンを搭載した大型車両用に適用できる、エンジンの回転数を制御して同期させることなく簡素な構成でショックなく素早い変速が可能なコンパクトな変速機が得られる。
図1は本発明の第1の実施例を示す構成図である。
図2は第1の実施例の動作説明図である。
図3は第1の実施例の動作説明図である。
図4は第1の実施例の動作説明図である。
図5は第1の実施例の動作説明図である。
図6は第1の実施例の動作説明図である。
図7は第1の実施例の動作説明図である。
図8は第1の実施例の動作説明図である。
図9は第1の実施例の動作説明図である。
図10は本発明の第2の実施例を示す構成図である。
図11は第2の実施例の動作説明図である。
図12は第2の実施例の動作説明図である。
図13は第2の実施例の動作説明図である。
図14は第2の実施例の動作説明図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 図1に本発明の第1の実施例を示す。図1に示す変速機は噛み合いクラッチとしてスプラインクラッチを用いており、1速から8速まで変速する例を示している。なお、後退ギア本発明の要旨に直接関係ないので図示を省略している。
 図1において、エンジン1の出力は変速機2の入力軸3に入力される。入力軸3には奇数段入力ギア7、偶数段入力ギア8、偶奇アップシフト用入力ギア13及び奇偶ダウンシフト用入力ギア14が固着されている。入力軸3と並列に奇数段中間軸5と偶数段中間軸6が配置されていて、奇数段中間軸5には奇数段主伝達ギア9が回転自在に設置され奇数段入力ギア7と噛み合うように配設されている。奇数段主伝達ギア9には奇数段中間軸5に連結するための奇数段主摩擦クラッチ10が設けられている。なお、奇数段主摩擦クラッチ10の中間軸固着部材は図示しない後進被動ギアと一体に形成されている。
 偶数段中間軸6には、軸に回転自在に設置され偶数段入力ギア8に噛み合う偶数段主伝達ギア11が設けられていて、偶数段主伝達ギア11には偶数段中間軸6に連結するための偶数段主摩擦クラッチ12が設けられている。前記奇数段主摩擦クラッチ10と偶数段主摩擦クラッチ12は油圧作動式を用いており作動油の供給によって摩擦プレートが圧接され、油圧を上昇させると摩擦力が増加してクラッチの伝達トルクが増大する。
 偶奇アップシフト用同期ギア15は偶奇アップシフト用入力ギア13と噛み合い奇数段中間軸5に回転自在に設置されていて、付設された摩擦クラッチ16の結合により奇数段中間軸5に連結される。また、奇数段中間軸5には偶数段入力ギア8と噛み合う偶奇ダウンシフト用同期ギア17が回転自在に設置されていて、偶奇ダウンシフト用同期ギア17は付設された摩擦クラッチ18の結合により奇数段中間軸5に連結される。
 奇偶アップシフト用同期ギア19は奇数段入力ギア7と噛み合い偶数段中間軸6に回転自在に設置されていて、付設された摩擦クラッチ20の結合により偶数段中間軸6に連結される。また、偶数段中間軸6には奇偶ダウンシフト用入力ギア14と噛み合う奇偶ダウンシフト用同期ギア21が回転自在に設置されていて、奇偶ダウンシフト用同期ギア21は付設された摩擦クラッチ22の結合により偶数段中間軸6に連結される。これらの摩擦クラッチ16、18、20、22も前記摩擦クラッチ10、12と同様に油圧作動式が用いられている。
 奇偶アップシフト用同期ギア19と奇数段主伝達ギア9および偶奇ダウンシフト用同期ギア17と偶数段主伝達ギア11は同じ歯数に構成され、また、偶奇アップシフト用同期ギア15と偶奇アップシフト用入力ギア13ギア比は、隣接した変速段間の変速比の比である等比率の2乗に反比例した値となるような歯数に構成され、奇偶ダウンシフト用同期ギア21と奇偶ダウンシフト用入力ギア14のギア比は、隣接した変速段間の変速比の比である等比率の2乗に比例した値となるような歯数に構成されている。
 偶奇アップシフト用入力ギア13、奇偶ダウンシフト用入力ギア14、同期ギア15、17、19、21およびこれらの同期ギア15、17、19、21に付設された摩擦クラッチ16、18、20、22は、後述する噛み合いクラッチの回転数を同期状態にするために本発明によって設けた同期化機構を構成する。
 奇数段中間軸5には複数段(4段)の奇数段変速ギアが回転自在に設置されていて、奇数段変速ギアは1速ギア31、3速ギア33、5速ギア35、7速ギア37から成る。同様に、偶数段中間軸6には2速ギア32、4速ギア34、6速ギア36、8速ギア38から成る複数段の偶数段変速ギアが回転自在に設置されている。
 1速ギア31と2速ギア32は変速出力ギア41に噛み合い、3速ギア33と4速ギア34は変速出力ギア42に噛み合い、5速ギア35と6速ギア36は変速出力ギア43に噛み合い、7速ギア37と8速ギア38は変速出力ギア44に噛み合うように構成されていて、各変速出力ギア41~44は出力軸4に固定されている。
 このように1つの奇数段変速ギアと当該奇数段変速ギアより1変速段上の偶数段変速ギアは同一の変速出力ギア41~44に噛み合いを共有しており、同一の変速出力ギア41~44に噛み合う奇数段変速ギアと偶数段変速ギアは同じ歯数に設定されている。
 奇数段中間軸5には1速ギア31と3速ギア33あるいは5速ギア35と7速ギア37を切り替えるための噛み合い歯がスプラインから成るスプラインクラッチが設置されていて、1速ギア31と3速ギア33にはスプラインクラッチの一方の噛み合い歯である雌スプライン31a、33aが形成され、他方の噛み合い歯である雄スプラインは奇数段中間軸5に軸方向への移動自在に装着されたスリーブ23に形成されている。同様に、5速ギア35と7速ギア37にも雌スプライン35a、37aが形成され、5速ギア35と7速ギア37間の奇数段中間軸5にスリーブ24が軸方向への移動自在に設置されている。
 偶数段中間軸6には2速ギア32と4速ギア34あるいは6速ギア36と8速ギア38を切り替えるためのスプラインクラッチが奇数段中間軸5と同様に設置されている。すなわち、2速ギア32、4速ギア34、6速ギア36および8速ギア38にはそれぞれ雌スプライン31a、33a、36a、38aが形成され、2速ギア32と4速ギア34間および6速ギア36と8速ギア38間の偶数段中間軸6にスリーブ25、26が軸方向に移動自在に設置されている。
 スプラインクラッチは、1速ギア31と3速ギア33についてみると、中間軸(回転軸)5、雌スプライン31a、33a、スリーブ(雄スプライン)23で構成され、スリーブ23は図示しないシフトフォークにより回転軸5の左右軸方向に移動して、1速ギア31の雌スプライン31a又は3速ギア33の雌スプライン33aと噛み合うことで、変速ギア段を切り替えることができる。5速ギア35と7速ギア37、2速ギア32と4速ギア34、6速ギア36と8速ギア38についても同様である。
 なお、以後、スリーブ23~26のことをクラッチスリーブ、スプラインクラッチと称することもある。
 また、スプラインクラッチとしては、本出願人が先に特願2007−278831号で提案しているように、雄雌の両スプラインが、所定個数毎のスプライン歯を嵌挿側面側へ軸方向に突出した嵌合案内歯(先導案内歯)を形成したものを用いるのが望ましい。
 本実施例の構成において、選択した速度段のスプラインクラッチと主摩擦クラッチ(10又は12)を結合した状態における変速機2の入力軸3の回転数Niと出力軸4の回転数Noの比(Ni/No)を変速比と称し、1速から8速までの隣り合う速度段間の変速比の比が等比となるように設定されている。
 ここで、各変速ギア部のギア比は、同一の変速出力ギア41~44に噛み合いを共有しているので次のようになる
 1速ギア比=(ギア41/ギア31)=2速ギア比=(ギア41/ギア32)
 3速ギア比=(ギア42/ギア33)=4速ギア比=(ギア42/ギア34)
 5速ギア比=(ギア43/ギア35)=6速ギア比=(ギア43/ギア36)
 7速ギア比=(ギア44/ギア37)=8速ギア比=(ギア44/ギア38)
 各速度段の変速比は、前記変速ギア比と奇数段中間軸5への入力ギア比1(ギア9/ギア7)、又は前記変速ギア比と偶数段中間軸6への入力ギア比2(ギア11/ギア8)によって構成されており、前記入力ギア比1と入力ギア比2の比は変速段1段分のギア比に設定され、それぞれの減速比はこの例では入力ギア比1>入力ギア比2に設定される。
 したがって、例えば、1速変速比と2速変速比は次のように表せる。
 1速変速比=(入力ギア比1×1速ギア比)
 2速変速比=(入力ギア比2×2速ギア比)
 このように1速ギア31と2速ギア32は、1速ギア比=2速ギア比であっても変速比が異なるようになる。
 同様に、3速変速比は下記のように表せる。
 3速変速比=(入力ギア比1×3速ギア比)
      =(等比率×入力ギア比2×2速ギア比)
 したがって、3速ギア比は下記のようになる。
 3速ギア比=(等比率×入力ギア比2×2速ギア比/入力ギア比1)
 ここで等比率は、
 等比率=(入力ギア比2/入力ギア比1)
であり、3速ギア比は下記のように表すことができる。
 3速ギア比=(等比率の2乗×2速ギア比)
 等比率は、実用上は採り得る歯数が整数に限られることから略等比率になるが、例えば、入力ギア比1=2.00、入力ギア比2=1.567に設定すると約0.78となり、2速ギア比を2.10に設定した場合、前記関係式より3速ギア比は約1.28近辺の歯数比になるよう設定される。
 次に、変速動作を説明するが、変速段切り替えに際してエンジンの回転数はいずれの変速段においても変速前の回転数のまま行う。図2、図3に基づいて1速走行から2速にアップシフトする場合について説明する。
 1速走行中は、図2に示すように、奇数段主摩擦クラッチ10を締結して奇数段主伝達ギア9を奇数段中間軸5に連結し、クラッチスリーブ23の雄スプラインが1速ギア31の雌スプライン31aと噛み合った状態にあり、1速走行状態ではエンジン1の全トルクが太線点線矢印で示す経路で出力軸4に伝達されている。2速にアップシフトするには、変速準備として1速走行中に偶数段中間軸6上のクラッチスリーブ25を2速ギア32に締結するが、締結するには2速ギア32とクラッチスリーブ25の回転数を許容回転差内に同期させる必要がある。2速ギア32は1速走行時に変速出力ギア41を介して1速ギア31、つまり奇数段中間軸5に連結されており、2速ギア32は1速走行時に奇数段中間軸5と等しい回転数で回転している。また、このとき偶数段中間軸6は偶数段主摩擦クラッチ12の引き摺り摩擦によって回転しているので、アップシフトの場合には、シフト先の変速ギアの回転数よりもシフト先の変速ギアが設置されている中間軸の方が回転数は高くなる。このことは入力ギア比1と入力ギア比2,1速ギア比~8速ギア比などに基づきアップシフト先の変速ギアが設置されている中間軸(奇数段中間軸5または偶数段中間軸6)の回転数を求めることにより明らかなことである。
 逆に、ダウンシフトの場合には、シフト先の変速ギアの回転数の方がシフト先の変速ギアが設置されている中間軸の回転数よりも高くなる。
 摩擦クラッチ20を締結(半クラッチ状態を経て)すると奇偶アップシフト用同期ギア19が偶数段中間軸6に連結され、偶数段中間軸6には入力軸3から細線点線矢印で示すようにトルクが伝達されて、奇偶アップシフト用同期ギア19は奇数段主入力ギア7を介して奇数段主伝達ギア9に連結されると共に、奇偶アップシフト用同期ギア19と奇数段主伝達ギア9とが同じ歯数に設定されているので、偶数段中間軸6の回転数は奇数段中間軸5の回転数に減速される。
 偶数段中間軸6の回転数が奇数段中間軸5と等しくなると、2速ギア32とクラッチスリーブ25の回転数は同期状態になり、この状態でスリーブ25を雌スプライン32aに噛み合わせ、2速ギア32にスプラインクラッチ25を締結する。これにより、2速ギア32は奇数段主摩擦クラッチ10と偶数段主摩擦クラッチ12の切り替えに先立ち、偶数段中間軸6に連結される。
なお、摩擦クラッチ20は2速ギア32にスプラインクラッチ25が締結されると開放される。
 このように1速走行中に奇偶アップシフト用同期ギア19の摩擦クラッチ20を締結してシフト先の2速ギア32と偶数段中間軸6の回転数を同期状態にし、2速ギア32にスプラインクラッチ25を予備締結する。1速走行中に2速ギア32へクラッチ25を予備締結しても、偶数段主摩擦クラッチ12が開放されているので偶数段中間軸6へのトルク伝達はない。
 2速ギア32にスプラインクラッチ25を予備締結したならば、図3に示すように、偶数段主摩擦クラッチ12を締結しながら奇数段主摩擦クラッチ10を開放すると、エンジン1から奇数段中間軸5に伝達されていたトルクは偶数段中間軸6に移行し、エンジン1の全トルクは太線点線矢印で示すように、2速ギア32を通り変速出力ギア41を介して出力軸4に伝達される。
 奇数段主摩擦クラッチ10を開放すると1速ギア31に作用するトルクがなくなるので、スプラインクラッチ23は1速ギア31から抜き取られ締結を外される。このようにして1速走行から2速へのアップシフトが完了する。
 次に、図4、図5を参照して2速走行から3速にアップシフトする場合について説明する。つまり、変速出力ギア41と噛み合う2速ギア32から変速出力ギア42と噛み合う3速ギア33へのアップシフト変速動作である。
 2速走行中は、図4に示すように、偶数段主摩擦クラッチ12を締結して偶数段主伝達ギア11を偶数段中間軸6に連結し、クラッチスリーブ25が2速ギア32の雌スプライン32aと噛み合った状態にあり、エンジン1の全トルクが太線点線矢印で示す経路で出力軸4に伝達されている。3速にアップシフトするには、変速準備として2速走行中にクラッチスリーブ23を3速ギア33に締結するが、締結するには3速ギア33とスリーブ23を同期状態にする必要がある。3速ギア33は2速走行時に変速出力ギア42、出力軸4、変速出力ギア41を介して2速ギア32、つまり偶数段中間軸6に連結されているので、3速ギア33の回転数は、偶数段中間軸6の回転数÷2速ギア比×3速ギア比となる。前述のように、3速ギア比=等比率の2乗×2速ギア比なので、結果として3速ギア33の回転数は偶数段中間軸6の回転数×等比率の2乗となる。上述の例では等比率を約0.78に設定したので、3速ギア33の回転数は偶数段中間軸6の回転数の約0.61倍となって偶数段中間軸6より小さい回転数で回転している。また、このとき奇数段中間軸5は上述したように奇数段主摩擦クラッチ11の引き摺り摩擦によって回転しており、上述の例では入力ギア比1=2.00、入力ギア比2=1.567に設定したので、奇数段中間軸5の回転数は偶数段中間軸6の回転数の約0.78倍となり、3速ギア33の回転数より高くなっている。
 摩擦クラッチ16を締結すると偶奇アップシフト用同期ギア15が奇数段中間軸5に連結され、偶奇アップシフト用同期ギア15は偶奇アップシフト用入力ギア13を介して入力軸3に連結されているので、奇数段中間軸5には入力軸3から細線点線矢印で示すようにトルクが伝達される。このとき、入力軸3は偶数段入力ギア8を介して偶数段主伝達ギア11に連結されている。
 偶奇アップシフト用同期ギア15と偶奇アップシフト用入力ギア13とのギア比(同期ギア15/アップシフト用入力ギア13)は、前記等比率に合わせて設定され、前述より3速ギア33の回転数は偶数段中間軸6の回転数×等比率の2乗であり、入力軸3の回転数は偶数段中間軸6の回転数×入力ギア比2であることから、そのギア比は入力ギア比2÷等比率の2乗に設定されている。従って、摩擦クラッチ16を結合すると奇数段中間軸5の回転数は直ちに3速ギア33の回転数まで減速される。
 奇数段中間軸5の回転数が3速ギア33の回転数まで減速されると、3速ギア33とクラッチスリーブ23の回転数は同期状態となり、この状態でスリーブ23を雌スプライン33aに噛み合わせ、3速ギア33にスプラインクラッチ23を締結する。摩擦クラッチ16は、3速ギア33にスプラインクラッチ23を締結後開放される。
 このように2速走行中に偶奇アップシフト用同期ギア15の摩擦クラッチ16を半クラッチにしてシフト先の3速ギア33と奇数段中間軸5の回転数を同期状態にし、3速ギア33にスプラインクラッチ23を予備締結する。なお、2速走行中に3速ギア33へクラッチ23を予備締結しても、奇数段主摩擦クラッチ10が開放されているので奇数段中間軸5へのトルク伝達はない。
 3速ギア33にスプラインクラッチ23を予備締結したならば、図5に示すように、奇数段主摩擦クラッチ10を締結しながら偶数段主摩擦クラッチ12を開放すると、エンジン1から偶数段中間軸6に伝達されていたトルクは奇数段中間軸5に移行し、エンジン1の全トルクは3速ギア33を通り変速出力ギア42を介して全トルクが太線点線矢印で示す経路で出力軸4に伝達される。
 一方、偶数段主摩擦クラッチ12を開放すると2速ギア32の伝達トルクがなくなり、スプラインクラッチ25は2速ギア32から抜き取られて締結を外され、2速走行から3速へのアップシフトが完了する。
 以上説明したように、同一の変速出力ギア41に噛み合いを共有する1速ギア31から2速ギア32へのアップシフトと、隣接する変速出力ギア41と42に噛み合う2速ギア32から3速ギア33へのアップシフトはこのように行われるが、3速→4速、5速→6速、7速→8速へのアップシフトおよび2速→3速、4速→5速、6速→7速へのアップシフトも同様に行われる。
 次に、ダウンシフトの変速動作について図6、図7を参照して説明する。図6、図7は、変速出力ギア43に噛み合いを共有する6速ギア36から5速ギア35へのダウンシフト変速動作を示している。
 6速走行中は、図6に示すように、偶数段主摩擦クラッチ12を締結して偶数段主伝達ギア11を偶数段中間軸6に連結し、クラッチスリーブ26が6速ギア36の雌スプライン36aと噛み合った状態にあり、エンジン1の全トルクが太線点線矢印で示す経路で出力軸4に伝達されている。5速にダウンシフトするには、変速準備として6速走行中にクラッチスリーブ24を5速ギア35に締結するが、締結するには5速ギア35とクラッチスリーブ24を同期状態にする必要がある。5速ギア35は6速走行時に変速出力ギア43を介して6速ギア36、つまり偶数段中間軸6に連結されており、5速ギア35は偶数段中間軸6と等しい回転数で回転している。
 一方、奇数段中間軸5は奇数段主摩擦クラッチ10の引き摺り摩擦によって回転しているが、その回転数は上述したようにギア比の関係で偶数段中間軸6の回転数より低くなっている。この状態で変速準備のために摩擦クラッチ18を締結すると偶奇ダウンシフト同期ギア17が奇数段中間軸5に連結され、奇数段中間軸5には入力軸3から細線点線矢印で示すようにトルクが伝達される。
偶奇ダウンシフト用同期ギア17は偶数段主入力ギア8を介して偶数段主伝達ギア11に連結され、かつ、偶奇ダウンシフト用同期ギア17と奇数段主伝達ギア11とが同じ歯数に構成されているので、奇数段中間軸5は、偶数段中間軸6と同じ回転数に増速される。
 奇数段中間軸5の回転数が偶数段中間軸6と等しくなることによって、5速ギア35とクラッチスリーブ24は同期状態となり、この状態でクラッチスリーブ24を雌スプライン35aに噛み合わせて、5速ギア35にスプラインクラッチ24を締結する。なお、摩擦クラッチ18は、5速ギア35にスプラインクラッチ24が締結されると開放される。
 このように6速走行中に偶奇ダウンシフト用同期ギア17の摩擦クラッチ18を締結してシフト先の5速ギア35と奇数段中間軸5の回転数を同期状態にし、5速ギア35にスプラインクラッチ24を予備締結する。6速走行中に5速ギア35へクラッチ24を予備締結しても、奇数段主摩擦クラッチ10が開放されているので奇数段中間軸5へのトルク伝達はない。
 5速ギア35にスプラインクラッチ24を予備締結したならば、図7に示すように、奇数段主摩擦クラッチ10を締結しながら偶数段主摩擦クラッチ12を開放する。これにより、エンジン1から偶数段中間軸6に伝達していたトルクは奇数段中間軸5に移行し、エンジン1の全トルクは太線点線矢印で示すように5速ギア35を通り変速出力ギア43を介して出力軸4に伝達される。
 偶数段主摩擦クラッチ12を開放すると6速ギア36に作用するトルクがなくなり、スプラインクラッチ24は6速ギア36から引き抜かれ締結を外されて6速走行から5速へのダウンシフトが完了する。
 次に、図8、図9を参照して5速走行から4速にダウンシフトする場合について説明する。つまり、変速出力ギア43と噛み合う5速ギア35から変速出力ギア42と噛み合う4速ギア34へのダウンシフト変速動作である。
 5速走行中は、図8に示すように、奇数段主摩擦クラッチ10を締結して奇数段主伝達ギア9を奇数段中間軸5に連結し、クラッチスリーブ24が5速ギア35の雌スプライン35aと噛み合った状態にあり、エンジン1の全トルクが太線点線矢印で示す経路で出力軸4に伝達されている。4速にダウンシフトするには、変速準備として5速走行中にクラッチスリーブ25を4速ギア34に締結するが、締結するには4速ギア34とスリーブ25を同期状態にする必要がある。4速ギア34は5速走行時に変速出力ギア42、出力軸4、変速出力ギア43を介して5速ギア35、つまり奇数段中間軸5に連結されているので、4速ギア34の回転数は、奇数段中間軸5の回転数÷5速ギア比×4速ギア比となり、5速ギア比=等比率の2乗×4速ギア比なので、結果として4速ギア34の回転数は奇数段中間軸5の回転数÷等比率の2乗となる。この例では等比率を約0.78に設定したので、4速ギア34の回転数は奇数段中間軸5の回転数の約1.63倍となって奇数段中間軸5より大きい回転数で回転している。
一方、このとき偶数段中間軸6は偶数段主摩擦クラッチ12の引き摺り摩擦によって回転しており、この例では入力ギア比1=2.00、入力ギア比2=1.567に設定したので、偶数段中間軸6の回転数は奇数段中間軸5の回転数の約1.28倍となり、4速ギア34の回転数より低くなっている。この状態で変速準備のために摩擦クラッチ22を締結すると奇偶ダウンシフト用同期ギア21が偶数段中間軸6に連結され、偶数段中間軸6には入力軸3から細線点線矢印で示すようにトルクが伝達される。このとき、奇偶ダウンシフト用同期ギア21は奇偶ダウンシフト用入力ギア14を介して入力軸3に連結されており、入力軸3は奇数段入力ギア7を介して奇数段主伝達ギア9に連結されている。
 奇偶ダウンシフト用同期ギア21と奇偶ダウンシフト用入力ギア14とのギア比は前記等比率に合わせて設定され、前記より4速ギア34の回転数は奇数段中間軸5の回転数の約1.63倍となっているので、同期状態を得るには偶数段中間軸6の回転数がこれと等しくなるよう設定すればよく、奇偶ダウンシフト用同期ギア21と奇偶ダウンシフト用入力ギア14とのギア比(同期ギア21/ダウンシフト用入力ギア14)は、等比率の2乗×入力ギア比1に設定されている。これにより、摩擦クラッチ22を結合すると4速ギア34とクラッチスリーブ25の回転数が同期状態になるので、4速ギア34にスプラインクラッチ25が締結される。摩擦クラッチ22は4速ギア34にスプラインクラッチ25が締結されると開放される。
 このように5速走行中に奇偶ダウンシフト用同期ギア21の摩擦クラッチ22を結合してシフト先の4速ギア34と偶数段中間軸6の回転数を同期状態にし、4速ギア34にスプラインクラッチ25を予備締結する。5速走行中に4速ギア34へクラッチ25を予備締結しても、偶数段主摩擦クラッチ12が開放されているので偶数段中間軸6へのトルク伝達はない。
 4速ギア34にスプラインクラッチ25を予備締結したならば、図9に示すように、偶数段主摩擦クラッチ12を締結しながら奇数段主摩擦クラッチ10を開放すると、エンジン1から奇数段中間軸5に伝達していたトルクは偶数段中間軸6に移行し、エンジン1の全トルクは太線点線矢印で示すように4速ギア34を通り変速出力ギア42を介して出力軸4に伝達される。奇数段主摩擦クラッチ10を開放すると5速ギア35の伝達トルクがなくなり、スプラインクラッチ24は5速ギア35から抜き取られ締結を外されて4速へのダウンシフトが完了する。
 以上説明したように、同一の変速出力ギア43に噛み合いを共有する6速ギア36から5速ギア35へのダウンシフトと、隣接する変速出力ギア43と42に噛み合う5速ギア35から4速ギア34へのダウンシフトはこのように行われるが、8速→7速、4速→3速、2速→1速へのダウンシフトおよび7速→6速、3速→2速へのダウンシフトも同様に行われる。
 以上のようにしてアップシフトとダウンシフトの変速動作を行うのであるが、理解を容易にするためにその概要を纏めると次のようになる。
 同一の変速出力ギアに噛み合いを共有する変速段間のアップシフト(1速→2速、3速→4速、5速→6速、7速→8速)は、摩擦クラッチ20を締結するとシフト先の変速ギアが設置されている偶数段中間軸6の回転数と偶数段変速ギア32、34,36,38の回転数が直ちに同期状態になる。これは奇数段主伝達ギア9と奇偶アップシフト用同期ギア19が同じ歯数に構成されているからであり、速やかに予備締結することができる。
 同一の変速出力ギアに噛み合いを共有しない隣接する変速段間のアップシフト(2速→3速、4速→5速、6速→7速)は、摩擦クラッチ16を締結するとシフト先の変速ギアが設置されている奇数段中間軸5の回転数と奇数段変速ギア31、33、35、37の回転数が直ちに同期状態になる。これは偶奇アップシフト用同期ギア15と偶奇アップシフト用入力ギア13とのギア比が入力ギア比2÷等比率の2乗に構成されていることによる。
 同一の変速出力ギアに噛み合いを共有する変速段間のダウンシフト(8速→7速、6速→5速、4速→3速、2速→1速)は、摩擦クラッチ18を締結するとシフト先の変速ギアが設置されている奇数段中間軸5の回転数と奇数段変速ギア31、33、35、37の回転数が直ちに同期状態になる。これは偶数段主伝達ギア11と偶奇ダウンシフト用同期ギア17が同じ歯数に構成されていることによる。
 同一の変速出力ギアに噛み合いを共有しない隣接する変速段間のダウンシフト(7速→6速、5速→4速、3速→2速)は、摩擦クラッチ22を締結するとシフト先の変速ギアが設置されている偶数段中間軸6の回転数と偶数段変速ギア32、34、36の回転数が直ちに同期状態になる。これは奇偶ダウンシフト用同期ギア21と奇偶ダウンシフト用入力ギア14とのギア比が等比率の2乗×入力ギア比1に構成されていることによる。
 以上説明したようにアップシフトとダウンシフトの変速動作を行うのであるが、奇数段変速ギアと偶数段変速ギアの間の変速時、シフト先の変速ギアが設置されている中間軸を摩擦クラッチを介して入力軸に連結し、シフト先の変速ギアと当該変速ギアが設置されている中間軸の回転数を同期状態にして噛み合いクラッチを予備締結し、その後シフト先の主摩擦クラッチを完全に結合するので、大きな伝達トルクを必要とする大型車両の変速機であってもエンジンの回転数を制御して同期させることなく、簡素な構成でショックなく噛み合いクラッチの素早い変速を可能にすることができる。
 また、実施例1は4個の同期ギアにそれぞれ付設した同期クラッチを締結するだけでアップシフトとダウンシフトを行え、予備締結のために奇数段と偶数段の両中間軸の回転数を制御する必要がないので、両中間軸の回転数センサを不要にできる実用上の効果を有する。
 なお、実施例1は雄スプラインを回転軸方向に移動させているが、この移動させるスプラインを雌スプラインに形成し、これと嵌合させる他方を雄スプラインに形成してもよいことは勿論のことである。
 図10に本発明の第2の実施例を示す。実施例2は、アップシフトのときに予備締結する変速ギアが設置されている中間軸の回転数をブレーキ装置で減速するようにしたものである。
 図10において図1と同一符号のものは相当物を示し、奇数段中間軸5の一端には変速機ケーシング29に一方を固定された摩擦ブレーキ装置27が設置され、偶数段中間軸6の一端は変速機ケーシング29に固定された摩擦ブレーキ装置28が設置されている。摩擦ブレーキ装置27、28としては油圧作動の湿式多板ブレーキが用いられる。なお、両中間軸5、6の他端は変速機ケーシング29に回転自在に支持される。
 次に、図11、図12を参照して1速走行から2速にアップシフトする場合、すなわち同一の変速出力ギア41に噛み合いを共有する1速ギア31から2速ギア32へのアップシフト変速動作について説明する。
 1速走行中は、図11に示すように、奇数段主摩擦クラッチ10を締結して奇数段主伝達ギア9を奇数段中間軸5に連結し、クラッチスリーブ23の雄スプラインが1速ギア31の雌スプライン31aと噛み合った状態にあり、1速走行状態では、エンジン1の全トルクが太線点線矢印で示す経路で出力軸4に伝達されている。2速にアップシフトするには、変速準備として1速走行中にクラッチスリーブ25を2速ギア32に締結させるが、締結するには2速ギア32とクラッチスリーブ25の回転数を許容回転差内に同期させる必要がある。2速ギア32は1速走行時に変速出力ギア41を介して1速ギア31、つまり奇数段中間軸5に連結されており、2速ギア32は1速走行時に奇数段中間軸5と等しい回転数(所定回転数)で回転している。このとき、偶数段中間軸6の回転数は実施例1の説明で記載したように偶数段主摩擦クラッチ11の引き摺り摩擦によって奇数段中間軸5の回転数より高くなっている。
 一方、クラッチスリーブ25は偶数段中間軸6と一体に回転するが、この回転数は偶数段主摩擦クラッチ12と摩擦ブレーキ装置28の摩擦伝達トルクのバランスによって決まり、油の粘性等によっても変化する。
 この状態にあるときに偶数段主摩擦クラッチ12を半クラッチ状態に結合すると共に摩擦ブレーキ装置28を作動させ、偶数段中間軸6の回転数が奇数段中間軸5の所定回転数と略等しくなるように該ブレーキ装置の作動油圧を制御する。偶数段主摩擦クラッチ12を半クラッチ状態に結合すると、偶数段中間軸6には入力軸3から細線点線矢印で示すようにトルクが伝達され、偶数段中間軸6と奇数段中間軸5の回転数が略等しくなると2速ギア32とクラッチスリーブ25の回転数は同期状態になり、2速ギア32にスプラインクラッチ25が締結される。
 このように1速走行中に偶数段主摩擦クラッチ12を半クラッチ状態に結合し、摩擦ブレーキ装置28の作動油圧を調整してシフト先の2速ギア32と偶数段中間軸6の回転数を同期状態にし、2速ギア32にスプラインクラッチ25を予備締結する。
 2速ギア32にスプラインクラッチ25を予備締結したならば、図12に示すように、偶数段主摩擦クラッチ12を締結すると共に奇数段主摩擦クラッチ10を開放する。これにより、エンジン1から奇数段中間軸5に伝達されていたトルクは偶数段中間軸6に移行し、エンジン1の全トルクは太線点線矢印で示すように2速ギア32を通り変速出力ギア41を介して出力軸4に伝達される。
 奇数段主摩擦クラッチ10を開放すると1速ギア31に作用するトルクがなくなり、スプラインクラッチ23は1速ギア31から抜き取られて締結を外され、1速走行から2速へのアップシフトが完了する。
 次に、図13、図14を参照して2速走行から3速にアップシフトする場合について説明する。つまり、隣接する変速出力ギアに噛み合うアップシフトで、変速出力ギア41と噛み合う2速ギア32から変速出力ギア42と噛み合う3速ギア33へのアップシフト変速動作である。
 2速走行中は、図13に示すように、偶数段主摩擦クラッチ12を締結して偶数段主伝達ギア11を偶数段中間軸6に連結し、クラッチスリーブ25が2速ギア32の雌スプラインと噛み合った状態にあり、2速走行状態では、エンジン1の全トルクが太線点線矢印で示す経路で出力軸4に伝達されている。3速にアップシフトするには、変速準備として2速走行中にクラッチスリーブ23を3速ギア33に締結する。
 クラッチスリーブ23を3速ギア33に締結するには3速ギア33とクラッチスリーブ23の回転数を同期状態にする必要があるが、3速ギア33は2速走行時に変速出力ギア42、出力軸4、変速出力ギア41を介して2速ギア32、つまり偶数段中間軸6に連結されているので、実施例1の説明で記載したように、3速ギア33の回転数は奇数段中間軸5の回転数より小さくなっている。
 一方、クラッチスリーブ23は奇数段中間軸5と一体になって回転するが、この回転数は、奇数段主摩擦クラッチ10と摩擦ブレーキ装置27の摩擦伝達トルクのバランスによって決まり、油の粘性等によっても変化する。
 この状態にあるときに奇数段主摩擦クラッチ10を半クラッチ状態に結合すると共に摩擦ブレーキ装置27を作動させ、奇数段中間軸5の回転数が3速ギア33の回転数と略等しくなるように摩擦ブレーキ装置27の作動油圧を制御する。奇数段主摩擦クラッチ10を半クラッチ状態に結合にすると、奇数段中間軸5には入力軸3から細線点線矢印で示すようにトルクが伝達され、奇数段中間軸5の回転数が3速ギア33の回転数と略等しくなると3速ギア33とクラッチスリーブ23の回転数は同期状態になり、3速ギア33にスプラインクラッチ23が締結される。
 このように2速走行中に奇数段主摩擦クラッチ10を半クラッチ状態に結合し、摩擦ブレーキ装置27の作動油圧を調整してシフト先の3速ギア33と奇数段中間軸5の回転数を同期状態にし、3速ギア33にスプラインクラッチ23を予備締結する。
 3速ギア33にスプラインクラッチ23を予備締結したならば、図14に示すように、奇数段主摩擦クラッチ10を締結すると共に偶数段主摩擦クラッチ12を開放する。これにより、エンジン1から偶数段中間軸6に伝達されていたトルクは奇数段中間軸5に移行し、エンジン1の全トルクは太線点線矢印で示すように3速ギア33を通り変速出力ギア42を介して出力軸4に伝達される。
 偶数段主摩擦クラッチ12を開放すると2速ギア32に作用するトルクがなくなり、スプラインクラッチ25は2速ギア32から抜き取られて締結を外され、3速へのアップシフトが完了する。
 以上説明したように、同一の変速出力ギア41に噛み合いを共有する1速ギア31から2速ギア32へのアップシフトと、隣接する変速出力ギア41と42に噛み合う2速ギア32から3速ギア33へのアップシフトはこのように行われるが、3速→4速、4速→5速、5速→6速、6速→7速、7速→8速へのアップシフトも同様に行われる。
 なお、実施例2のダウンシフトは、摩擦クラッチ18あるいは摩擦クラッチ22を締結して実施例1と同様に行われるので説明を省略する。
 実施例2は、実施例1と同様に、奇数段変速ギアと偶数段変速ギアの間の変速時、シフト先の変速ギアが設置されている中間軸を摩擦クラッチを介して入力軸に連結し、シフト先の変速ギアと当該変速ギアが設置されている中間軸の回転数を同期状態にして噛み合いクラッチを予備締結している。したがって、大きな伝達トルクを必要とする大型車両の変速機であってもエンジンの回転数を制御して同期させることなく、簡素な構成でショックなく噛み合いクラッチの素早い変速を可能にすることができる。また、アップシフトについては2個の摩擦ブレーキ装置を軸端部に付加するだけで達成できるので、変速機の全長を更に短縮することが可能となり、小型で安価にできるという効果を奏しえる。
 ここで、上述の実施例1、実施例2は噛み合いクラッチとしてスプラインクラッチを用いた例を挙げているが、これに代えて爪クラッチを用いても同様な効果を奏しえることは勿論のことである。
 また、上述の実施例は、シフト先の変速ギアと当該変速ギアが設置されている中間軸の回転数を同期状態にするとしているが、噛み合いクラッチは回転数、位相が若干異なっていても締結できるものであり、同期状態に近い略同期状態で締結するようにしても本発明に含まれることは明らかなことである。
なお、本実施例においては、出力軸の回転方向を反転させる逆転機構の図示を省略したが、入力軸上に設置された奇数段入力ギアと偶数段入力ギアとの間に、後進駆動ギアとこの後進駆動ギアを入力軸に一体に連結する後進用摩擦クラッチとを設け、後進駆動ギアを中間ギアを介して奇数段中間軸と一体回転する後進被動ギアへ噛み合わせるよう構成することによって、入力軸の軸方向空きスペースを有効に活用して逆転機構を設置でき、全長や全幅を伸ばすことなく構成できる利点がある。
1…エンジン、2…変速機、3…入力軸、4…出力軸、5…奇数段中間軸、6…偶数段中間軸、7…奇数段入力ギア、8…偶数段入力ギア、9…奇数段主伝達ギア、10…奇数段主摩擦クラッチ、11…偶数段主伝達ギア、12…偶数段主摩擦クラッチ、13…偶奇アップシフト用入力ギア、14…奇偶ダウンシフト用入力ギア、15…偶奇アップシフト用同期ギア16、18、20、22…摩擦クラッチ、17…偶奇アップシフト用同期ギア、19…奇偶アップシフト用同期ギア、21…奇偶ダウンシフト用同期ギア、23~26…クラッチスリーブ、27、28…摩擦ブレーキ装置、31…1速ギア、33…3速ギア、35…5速ギア、37…7速ギア、32…2速ギア、34…4速ギア、36…6速ギア、38…8速ギア、41~44…変速出力ギア。

Claims (3)

  1. エンジンに接続される入力軸と、前記入力軸と並列に配置された奇数段中間軸及び偶数段中間軸と、前記中間軸間と並列に配置された出力軸と、前記入力軸に固着され入力軸の回転を中間軸に伝達する奇数段入力ギア及び偶数段入力ギアと、前記奇数段中間軸に回転自在に設置された奇数段主伝達ギアと、前記奇数段主伝達ギアを前記奇数段中間軸に連結する奇数段主摩擦クラッチと、前記偶数段中間軸に回転自在に設置された偶数段主伝達ギアと、前記偶数段主伝達ギアを前記偶数段中間軸に連結する偶数段主摩擦クラッチと、前記奇数段中間軸に回転自在に設置された複数の奇数段変速ギアと、前記偶数段中間軸に回転自在に設置された複数の偶数段変速ギアと、前記奇数段変速ギアの1つと当該奇数段変速ギアより1変速段上の偶数段変速ギアが噛み合うように出力軸に固着配設された複数の出力ギアと、前記奇数段中間軸及び偶数段中間軸に設けられて中間軸と前記変速ギアを選択的に結合する噛み合いクラッチとを具備し、同一の前記出力ギアに噛み合う前記奇数段変速ギアと前記偶数段変速ギアを同じ歯数に設定し、隣り合う変速段間の変速比の比が等比率配分になるように、前記奇数段入力ギア列と前記偶数段入力ギア列のギア比を設定し、シフト先の変速ギアが設置された中間軸を摩擦クラッチを介して前記入力軸に連結してシフト先の変速ギアと当該変速ギアが設置されている中間軸の回転数を同期させる噛み合いクラッチ同期化機構を設け、変速段切り替えに先立って前記シフト先の変速ギアに前記噛み合いクラッチを予備締結するように構成したことを特徴とする大型車両用ツインクラッチ式変速機。
  2. 請求の範囲第1項に記載の大型車両用ツインクラッチ式変速機において、前記噛み合いクラッチ同期化機構は前記入力軸に固着された偶奇アップシフト用入力ギアおよび奇偶ダウンシフト用入力ギアと、前記奇数段中間軸に回転自在に設置され、前記偶奇アップシフト用入力ギアと噛み合い、付設された摩擦クラッチにより前記奇数段中間軸に連結される偶奇アップシフト用同期ギアと、前記奇数段中間軸に回転自在に設置されて前記偶数段入力ギアと噛み合い、付設された摩擦クラッチにより前記奇数段中間軸に連結される偶奇ダウンシフト用同期ギアと、前記偶数段中間軸に回転自在に設置されて前記奇数段入力ギアと噛み合い、付設された摩擦クラッチにより前記偶数段中間軸に連結される奇偶アップシフト用同期ギアと、前記偶数段中間軸に回転自在に設置されて前記奇偶ダウンシフト用入力ギアと噛み合い、付設された摩擦クラッチにより前記偶数段中間軸に連結される奇偶ダウンシフト用同期ギアとを具備し、前記奇偶アップシフト用同期ギアと奇数段主伝達ギアおよび偶奇ダウンシフト用同期ギアと偶数段主伝達ギアを同じ歯数に設定し、変速段切り替えに先立って前記4つの同期ギアに付設されたいずれかの摩擦クラッチを結合してシフト先の噛み合いクラッチを同期状態にし、シフト先の変速ギアに前記噛み合いクラッチを予備締結するように構成したことを特徴とする大型車両用ツインクラッチ式変速機。
  3. 請求の範囲第1項に記載の大型車両用ツインクラッチ式変速機において、前記噛み合いクラッチ同期化機構は前記入力軸に固着された奇偶ダウンシフト用入力ギアと、前記奇数段中間軸に回転自在に設置され、前記偶数段入力ギアと噛み合い、付設された摩擦クラッチにより前記奇数段中間軸に連結される偶奇ダウンシフト用同期ギアと、前記偶数段中間軸に回転自在に設置され、前記奇偶ダウンシフト用入力ギアと噛み合い、付設された摩擦クラッチにより前記偶数段中間軸に連結される奇偶ダウンシフト用同期ギアと、前記奇数段中間軸及び前記偶数段中間軸に設けられた摩擦ブレーキとを具備し、前記偶奇ダウンシフト用同期ギアと偶数段主伝達ギアを同じ歯数に設定し、ダウンシフト変速時には前記2つの同期ギアのいずれか一方の摩擦クラッチを結合し、アップシフト変速時には前記中間軸に連結されていない前記主伝達ギアの主摩擦クラッチを介して中間軸を回転させると共に該中間軸の摩擦ブレーキを作動させて噛み合いクラッチを同期状態にし、シフト先の変速ギアに前記噛み合いクラッチを予備締結するように構成したことを特徴とする大型車両用ツインクラッチ式変速機。
PCT/JP2010/053486 2009-03-11 2010-02-25 大型車両用ツインクラッチ式変速機 WO2010103984A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/254,360 US8528432B2 (en) 2009-03-11 2010-02-25 Twin clutch transmission for large-sized vehicle
CN201080010062.0A CN102341616B (zh) 2009-03-11 2010-02-25 大型车辆用双离合器式变速机
EP10750738.6A EP2407688B1 (en) 2009-03-11 2010-02-25 Twin clutch transmission for large-sized vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009057636A JP5155910B2 (ja) 2009-03-11 2009-03-11 大型車両用ツインクラッチ式変速機
JP2009-057636 2009-03-11

Publications (1)

Publication Number Publication Date
WO2010103984A1 true WO2010103984A1 (ja) 2010-09-16

Family

ID=42728274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053486 WO2010103984A1 (ja) 2009-03-11 2010-02-25 大型車両用ツインクラッチ式変速機

Country Status (5)

Country Link
US (1) US8528432B2 (ja)
EP (1) EP2407688B1 (ja)
JP (1) JP5155910B2 (ja)
CN (1) CN102341616B (ja)
WO (1) WO2010103984A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032528A (zh) * 2012-12-20 2013-04-10 东风汽车有限公司 一种双中间轴dct结构及其档位传动比的计算方法
JP2016001017A (ja) * 2014-06-11 2016-01-07 いすゞ自動車株式会社 自動変速装置、その制御方法、及びプログラム
CN105987134A (zh) * 2015-03-02 2016-10-05 韶关飞翔自动变速箱有限公司 共用输入轴齿轮的非等距双中间轴变速箱
US10352401B2 (en) * 2015-05-04 2019-07-16 Deere & Company Transmission arrangement
CN110360278A (zh) * 2019-08-14 2019-10-22 陈奇 拖拉机空间并联双离合动力换挡总成

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595015B2 (ja) * 2008-03-31 2010-12-08 京楽産業.株式会社 遊技機
AT510966B1 (de) * 2011-06-09 2012-08-15 Avl List Gmbh Getriebe, insbesondere doppelkupplungsgetriebe
GB201213466D0 (en) 2012-07-27 2012-09-12 Mclaren Automotive Ltd Gearbox
JP5452681B1 (ja) * 2012-09-14 2014-03-26 富士重工業株式会社 変速機
CN102927248B (zh) * 2012-11-05 2016-02-24 广西汽车集团有限公司 振动试验台及其驱动装置
CN103267089A (zh) * 2013-06-13 2013-08-28 郭质刚 多离合器式变速传动装置
US9951845B2 (en) * 2014-06-17 2018-04-24 Schaeffler Technologies AG & Co. KG Transmission with dual input and gear ratio multiplication
EP3161354B1 (en) * 2014-06-24 2017-11-29 Volvo Truck Corporation A method for controlling a drivetrain of a vehicle
JP6380352B2 (ja) * 2015-11-26 2018-08-29 トヨタ自動車株式会社 車両用自動変速機
US10788041B2 (en) * 2015-12-15 2020-09-29 Superturbo Technologies, Inc. Dual seal arrangement for superchargers
KR102223734B1 (ko) * 2016-04-01 2021-03-05 엘에스엠트론 주식회사 농업용 작업차량의 변속장치
WO2017171472A1 (ko) 2016-04-01 2017-10-05 엘에스엠트론 주식회사 농업용 작업차량의 변속장치
KR102170108B1 (ko) * 2016-04-05 2020-10-27 엘에스엠트론 주식회사 농업용 작업차량의 변속장치
US11174920B2 (en) 2016-04-01 2021-11-16 Ls Mtron Ltd. Transmission apparatus of agricultural working automobile
EP3165790A1 (en) * 2016-04-04 2017-05-10 AVL List GmbH Multi-speed transmission and method for operating a multi-speed transmission
JP6621725B2 (ja) * 2016-09-15 2019-12-18 トヨタ自動車株式会社 車両用変速機
CN107830127A (zh) * 2017-11-30 2018-03-23 江苏沃得农业机械有限公司 拖拉机变速箱的主变速机构
CN108302166A (zh) * 2018-02-06 2018-07-20 江苏沃得农业机械有限公司 拖拉机变速箱传动装置
IT201800007500A1 (it) * 2018-07-25 2020-01-25 Ducati Motor Holding Spa Cambio Seamless
CN115046002B (zh) * 2021-11-29 2023-07-18 长城汽车股份有限公司 一种控制变速器换档的方法、装置、电子设备与存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180859A (ja) * 1982-04-17 1983-10-22 Yoichi Mori 平行軸自動変速機
JPS63203951A (ja) * 1987-02-13 1988-08-23 アー ベー ボルボ 自動車ギアボックス
JPH02146336A (ja) * 1988-11-28 1990-06-05 Hino Motors Ltd ツインクラッチ式変速機
JP2007278831A (ja) 2006-04-06 2007-10-25 Seiko Epson Corp 光学式ロータリエンコーダの異物付着検出方法及びプリンタ
JP2007303519A (ja) 2006-05-10 2007-11-22 Komatsu Ltd 変速機
JP2008240832A (ja) 2007-03-26 2008-10-09 Mitsubishi Motors Corp ダブルクラッチ変速機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2110324B (en) * 1981-11-28 1986-02-12 Brown Gear Ind Power-shift countershaft gearbox
SE467426B (sv) * 1990-11-01 1992-07-13 Volvo Ab Motorfordonsvaexellaada
JP3647399B2 (ja) * 2000-09-14 2005-05-11 株式会社日立製作所 車両用動力伝達システムおよびそれを搭載した自動車
JP4038460B2 (ja) * 2003-09-04 2008-01-23 株式会社日立製作所 アクティブシフト変速機,変速機制御装置、および自動車
DE102006024370A1 (de) * 2006-05-24 2007-12-13 Zf Friedrichshafen Ag Mehrgruppengetriebe und Verfahren zum Gangwechsel bei einem Mehrgruppengetriebe
DE102006043333A1 (de) * 2006-09-15 2008-03-27 Daimler Ag Nutzfahrzeuggetriebe mit einer Hauptgruppe und einer Nachschaltgruppe
JP4782188B2 (ja) * 2008-12-24 2011-09-28 株式会社日立ニコトランスミッション 気動車用ツインクラッチ式変速機
RU2010112596A (ru) * 2010-03-31 2011-12-10 Джи Эм Глоубал Текнолоджи Оперейшнз, Инк. (Us) Многоступенчатая трансмиссия (варианты)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180859A (ja) * 1982-04-17 1983-10-22 Yoichi Mori 平行軸自動変速機
JPS63203951A (ja) * 1987-02-13 1988-08-23 アー ベー ボルボ 自動車ギアボックス
JPH02146336A (ja) * 1988-11-28 1990-06-05 Hino Motors Ltd ツインクラッチ式変速機
JP2007278831A (ja) 2006-04-06 2007-10-25 Seiko Epson Corp 光学式ロータリエンコーダの異物付着検出方法及びプリンタ
JP2007303519A (ja) 2006-05-10 2007-11-22 Komatsu Ltd 変速機
JP2008240832A (ja) 2007-03-26 2008-10-09 Mitsubishi Motors Corp ダブルクラッチ変速機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407688A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032528A (zh) * 2012-12-20 2013-04-10 东风汽车有限公司 一种双中间轴dct结构及其档位传动比的计算方法
CN103032528B (zh) * 2012-12-20 2015-12-16 东风汽车公司 一种双中间轴dct结构及其档位传动比的计算方法
JP2016001017A (ja) * 2014-06-11 2016-01-07 いすゞ自動車株式会社 自動変速装置、その制御方法、及びプログラム
CN105987134A (zh) * 2015-03-02 2016-10-05 韶关飞翔自动变速箱有限公司 共用输入轴齿轮的非等距双中间轴变速箱
US10352401B2 (en) * 2015-05-04 2019-07-16 Deere & Company Transmission arrangement
CN110360278A (zh) * 2019-08-14 2019-10-22 陈奇 拖拉机空间并联双离合动力换挡总成

Also Published As

Publication number Publication date
JP5155910B2 (ja) 2013-03-06
US20110308343A1 (en) 2011-12-22
JP2010210027A (ja) 2010-09-24
CN102341616B (zh) 2014-03-19
EP2407688A1 (en) 2012-01-18
EP2407688B1 (en) 2015-04-15
EP2407688A4 (en) 2013-01-23
CN102341616A (zh) 2012-02-01
US8528432B2 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
JP5155910B2 (ja) 大型車両用ツインクラッチ式変速機
JP5312242B2 (ja) トランスミッション
JP5734287B2 (ja) ツインクラッチ式変速機
JP2007321820A (ja) ダブルクラッチ変速機
WO2004063596A1 (ja) ツインクラッチ式変速機
KR101679967B1 (ko) 다단 변속기
JP5924476B2 (ja) ハイブリッド車用変速装置
KR20170027897A (ko) 차량용 변속기
JP2013119882A (ja) 車両用変速装置
JP2008309332A (ja) ツインクラッチ式変速機
JP2008075665A (ja) 自動変速機
JP5142953B2 (ja) トランスミッション
WO2014171267A1 (ja) 変速装置
JP2013019424A (ja) 車両の変速装置
JP2008291892A (ja) ツインクラッチ式変速機
JP5658068B2 (ja) 変速装置
JP2011085244A (ja) 自動変速機
JP2008291893A (ja) デュアルクラッチ式変速機
JP2016188678A (ja) 変速装置
JP6221485B2 (ja) ツインクラッチ式変速機
JP4922257B2 (ja) トランスミッション
JP4710428B2 (ja) 自動変速機
JP4929222B2 (ja) トランスミッション
JP6772742B2 (ja) デュアルクラッチ式変速機
JP5658069B2 (ja) 変速装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010062.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010750738

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13254360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE