WO2010103674A1 - Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法 - Google Patents

Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法 Download PDF

Info

Publication number
WO2010103674A1
WO2010103674A1 PCT/JP2009/058182 JP2009058182W WO2010103674A1 WO 2010103674 A1 WO2010103674 A1 WO 2010103674A1 JP 2009058182 W JP2009058182 W JP 2009058182W WO 2010103674 A1 WO2010103674 A1 WO 2010103674A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
layer
based semiconductor
nitride based
conductivity type
Prior art date
Application number
PCT/JP2009/058182
Other languages
English (en)
French (fr)
Inventor
孝史 京野
祐介 善積
陽平 塩谷
秋田 勝史
上野 昌紀
隆道 住友
中村 孝夫
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP09812406.8A priority Critical patent/EP2410580A4/en
Priority to CN2009801008614A priority patent/CN101919076B/zh
Priority to US12/714,049 priority patent/US7851821B2/en
Publication of WO2010103674A1 publication Critical patent/WO2010103674A1/ja
Priority to US12/940,879 priority patent/US8053806B2/en
Priority to US13/112,714 priority patent/US8304269B2/en
Priority to US13/243,516 priority patent/US8207556B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Definitions

  • the present invention relates to a group III nitride semiconductor device, an epitaxial substrate, and a method for manufacturing a group III nitride semiconductor device.
  • Patent Document 1 describes n-type GaN having an n-type carrier proportional to the oxygen concentration. Oxygen is included in the source gas to epitaxially grow GaN on the GaAs substrate. The GaAs substrate is removed to obtain a GaN free-standing film.
  • Patent Document 2 describes a method of growing a gallium nitride single crystal. According to this method, oxygen can be taken in as an n-type dopant.
  • Patent Document 3 describes a method for producing a GaN-based compound semiconductor.
  • the filling container is filled with ammonia for producing a GaN-based compound semiconductor so that at least a part thereof is liquid.
  • the water concentration of ammonia in the liquid phase is 0.5 volppm or less as measured by Fourier transform infrared spectroscopy (FT-IR).
  • FT-IR Fourier transform infrared spectroscopy
  • JP 2000-044400 A JP 2002-373864 A JP 2004-363622 A
  • the epitaxial film has an oxygen concentration used when an n-type GaN substrate is used, if considering that oxygen is an n-type dopant in a gallium nitride-based semiconductor, the electrical characteristics of the semiconductor device It is assumed that the change in characteristics cannot be ignored. For example, in a semiconductor optical device, it is estimated that the light emission efficiency and electrical characteristics of the device cannot be ignored depending on the oxygen doping amount in the n-type gallium nitride semiconductor layer, the light emitting layer, and the p-type gallium nitride semiconductor.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a group III nitride semiconductor device including a gallium nitride-based semiconductor film having a good surface morphology.
  • An object of the present invention is to provide a method for manufacturing a semiconductor device, and further to provide an epitaxial substrate including a gallium nitride based semiconductor film having a good surface morphology.
  • a group III nitride semiconductor device includes (a) a group III nitride semiconductor, and is finite with respect to a reference plane orthogonal to a reference axis extending in the c-axis direction of the group III nitride semiconductor.
  • a group III nitride semiconductor support having a principal surface forming an angle; and (b) an oxygen concentration of 5 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 , And a gallium nitride based semiconductor region provided on the main surface of the support.
  • the main surface shows one of semipolar and nonpolar, and the gallium nitride based semiconductor region includes a first conductivity type gallium nitride based semiconductor layer.
  • the gallium nitride based semiconductor region when the gallium nitride based semiconductor region is provided on a semipolar surface or a nonpolar surface and the gallium nitride based semiconductor region contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more, The surface morphology of the gallium semiconductor region becomes flat. The surface of the gallium nitride based semiconductor region also exhibits semipolarity or nonpolarity depending on the semipolar surface or nonpolar surface of the main surface of the substrate. When the gallium nitride based semiconductor region contains oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the crystal quality of the gallium nitride based semiconductor region is not good. Further, when the gallium nitride based semiconductor region contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor region is further flattened.
  • a group III nitride semiconductor device comprises (a) a group III nitride semiconductor, and forms a finite angle with respect to a reference plane orthogonal to a reference axis extending in the c-axis direction of the group III nitride semiconductor.
  • a group III nitride semiconductor support having a main surface; and (b) an oxygen concentration of 5 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 , A gallium nitride based semiconductor region provided on the main surface; (c) an active layer provided on the gallium nitride based semiconductor region; and (d) a second conductivity type gallium nitride provided on the active layer.
  • a semiconductor layer is provided.
  • the main surface indicates one of semipolar and nonpolar
  • the gallium nitride based semiconductor region includes a first conductivity type gallium nitride based semiconductor layer
  • the active layer includes the first conductivity type gallium nitride based.
  • the gallium nitride based semiconductor region when the gallium nitride based semiconductor region is provided on a semipolar surface or a nonpolar surface and the gallium nitride based semiconductor region contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more, The surface morphology of the gallium semiconductor region becomes flat. The surface of the gallium nitride based semiconductor region also exhibits semipolarity or nonpolarity depending on the semipolar surface or nonpolar surface of the main surface of the substrate. When the gallium nitride based semiconductor region contains oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the crystal quality of the gallium nitride based semiconductor region is not good.
  • the active layer can be provided on the first conductivity type gallium nitride semiconductor layer having a good surface morphology. Further, when the gallium nitride based semiconductor region contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor region is further flattened.
  • the oxygen concentration in the active layer may be 5 ⁇ 10 16 cm ⁇ 3 or more. According to this group III nitride semiconductor device, the surface morphology of the active layer becomes flat when the active layer contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more. In addition, since oxygen acts as a donor, when the active layer contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more, there are effects that the driving voltage of the element is reduced and the piezoelectric field of the active layer is reduced. Furthermore, in the group III nitride semiconductor device according to one aspect of the present invention, the oxygen concentration in the active layer may be 1 ⁇ 10 17 cm ⁇ 3 or more. According to this group III nitride semiconductor device, when the active layer contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the active layer is further flattened.
  • the oxygen concentration in the active layer may be 5 ⁇ 10 18 cm ⁇ 3 or less.
  • the active layer contains oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the crystal quality of the active layer is not good. Further, when the active layer contains oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the optical loss due to free carrier absorption in the active layer increases.
  • the oxygen concentration in the second conductivity type gallium nitride based semiconductor layer may be 5 ⁇ 10 16 cm ⁇ 3 or more.
  • the oxygen concentration in the second conductivity type gallium nitride semiconductor layer may be 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the group III nitride semiconductor device when the oxygen concentration in the second conductivity type gallium nitride semiconductor layer contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the second conductivity type gallium nitride semiconductor layer is increased. Becomes even more flat.
  • the oxygen concentration in the second conductivity type gallium nitride based semiconductor layer may be 5 ⁇ 10 18 cm ⁇ 3 or less. According to the group III nitride semiconductor device, when the oxygen concentration in the second conductivity type gallium nitride semiconductor layer exceeds the range of 5 ⁇ 10 18 cm ⁇ 3 or less and contains oxygen, the second conductivity type gallium nitride semiconductor The crystal quality of the layer is not good.
  • the conductivity of the second conductivity type gallium nitride based semiconductor layer is not good.
  • the carbon concentration of the first conductivity type gallium nitride based semiconductor layer is 5 ⁇ 10 18 cm ⁇ 3 or less
  • the second conductivity type gallium nitride based semiconductor layer The carbon concentration of the active layer may be 5 ⁇ 10 18 cm ⁇ 3 or less
  • the carbon concentration of the active layer may be 5 ⁇ 10 18 cm ⁇ 3 or less. According to this group III nitride semiconductor device, a stable c-plane facet is likely to appear when the carbon concentration inevitably taken into the gallium nitride semiconductor during growth is high.
  • the carbon concentration here excludes contamination formed on the surface after the growth of the gallium nitride semiconductor.
  • the group III nitride semiconductor device may further include another second conductivity type gallium nitride based semiconductor layer.
  • the band gap of the second conductivity type gallium nitride based semiconductor layer is larger than the band gap of the other second conductivity type gallium nitride based semiconductor layer, and the oxygen concentration of the second conductivity type gallium nitride based semiconductor layer depends on the activity.
  • the second conductivity type gallium nitride based semiconductor layer is provided between the other second conductivity type gallium nitride based semiconductor layer and the active layer, and the second conductivity type gallium nitride based semiconductor layer is larger than the oxygen concentration of the layer.
  • the gallium semiconductor layer forms a junction with the other second conductivity type gallium nitride semiconductor layer.
  • the second conductivity type gallium nitride semiconductor layer since the oxygen concentration of the second conductivity type gallium nitride semiconductor layer is higher than the oxygen concentration of the active layer, the second conductivity type is different from the second conductivity type gallium nitride semiconductor layer.
  • the junction surface with the gallium nitride based semiconductor layer becomes flat, and therefore the scattering loss at this interface is reduced.
  • the group III nitride semiconductor device may further include a light guide layer made of a gallium nitride semiconductor provided between the active layer and the second conductivity type gallium nitride semiconductor layer.
  • the active layer extends along a plane inclined with respect to the reference plane, and the second conductivity type gallium nitride based semiconductor layer is an electron block layer.
  • the active layer, the light guide layer, and the second conductivity type gallium nitride based semiconductor layer are provided on the semipolar plane and the nonpolar plane, and therefore the piezoelectric field in these semiconductor layers is c Smaller than the piezoelectric field in the semiconductor layer on the surface. Since carrier overflow hardly occurs on the main surface due to the small piezoelectric polarization, oxygen acting as a donor can be added to the p-type semiconductor layer to obtain a planarization effect. Therefore, in addition to the p-type semiconductor layer having a flat surface morphology due to oxygen addition, high carrier injection efficiency can be provided.
  • the active layer includes well layers and barrier layers that are alternately arranged, and the oxygen concentration of the well layer may be 6 ⁇ 10 17 cm ⁇ 3 or less.
  • the oxygen concentration in the active layer when the oxygen concentration in the active layer is high, the optical loss due to free carrier absorption increases. Since the oxygen concentration of the well layer is 6 ⁇ 10 17 cm ⁇ 3 or less, an effective optical loss can be avoided, and a decrease in luminous efficiency due to a decrease in crystal quality of the well layer can be avoided.
  • an angle formed between the normal of the main surface and the reference axis may be 10 degrees or more and 170 degrees or less. According to this group III nitride semiconductor device, the contribution due to nonpolarity is appropriately exhibited. This nonpolarity represents semipolar and nonpolar.
  • an angle formed between the normal line of the main surface and the reference axis is 10 degrees or more and 80 degrees or less, or the normal line of the main surface and the reference axis
  • the angle formed by can be 100 degrees or more and 170 degrees or less. According to this group III nitride semiconductor element, the contribution by semipolarity or nonpolarity is appropriately exhibited.
  • an angle formed between the normal line of the main surface and the reference axis is 63 degrees or more and 80 degrees or less, or the normal line of the main surface and the reference axis
  • the angle formed by can be 100 degrees or more and 117 degrees or less.
  • piezo polarization is particularly small when the off-angle is in the above range. Therefore, carrier overflow is unlikely to occur.
  • the epitaxial wafer is made of (a) a group III nitride semiconductor, and a group III nitride having a main surface that forms a finite angle with respect to a reference plane orthogonal to a reference axis extending in the c-axis direction of the group III nitride semiconductor.
  • a semiconductor substrate and (b) a first oxygen electrode having an oxygen concentration of 5 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 and provided on the main surface of the group III nitride semiconductor substrate.
  • a conductive gallium nitride based semiconductor layer (c) a light emitting layer provided on the first conductive gallium nitride based semiconductor layer; and (d) a second conductive gallium nitride based semiconductor provided on the light emitting layer. And a layer.
  • the main surface shows one of semipolar and nonpolar.
  • the first conductivity type gallium nitride based semiconductor layer is provided on a semipolar surface or a nonpolar surface, and the first conductivity type gallium nitride based semiconductor layer contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more.
  • the surface morphology of the first conductivity type gallium nitride based semiconductor layer becomes flat.
  • the light emitting layer can be provided on the first conductivity type gallium nitride based semiconductor layer having a good surface morphology.
  • the surface of the first conductivity type gallium nitride based semiconductor layer also exhibits nonpolarity.
  • the first conductivity type gallium nitride based semiconductor layer contains oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the crystal quality of the first conductivity type gallium nitride based semiconductor layer is not good.
  • the epitaxial wafer according to another aspect of the present invention may further include another second conductivity type gallium nitride based semiconductor layer.
  • the band gap of the second conductivity type gallium nitride based semiconductor layer is larger than the band gap of the other second conductivity type gallium nitride based semiconductor layer, and the oxygen concentration of the second conductivity type gallium nitride based semiconductor layer is the light emission.
  • the second conductivity type gallium nitride based semiconductor layer is provided between the second second conductivity type gallium nitride based semiconductor layer and the light emitting layer, and the second conductivity type gallium nitride based semiconductor layer is larger than the oxygen concentration of the layer.
  • the gallium semiconductor layer forms a junction with the other second conductivity type gallium nitride semiconductor layer.
  • the band gap of the second conductivity type gallium nitride semiconductor layer is larger than the band gap of another second conductivity type gallium nitride semiconductor layer, and the second conductivity type gallium nitride semiconductor layer is different. Since it is provided between the second conductivity type gallium nitride semiconductor layer and the light emitting layer, the second conductivity type gallium nitride semiconductor layer functions as an electron block layer, and another second conductivity type gallium nitride semiconductor layer is a cladding. Work as a layer.
  • the flatness of the junction between the second conductivity type gallium nitride semiconductor layer and another second conductivity type gallium nitride semiconductor layer Is excellent. This flatness reduces light scattering by the interface between the second conductivity type gallium nitride semiconductor layer and another second conductivity type gallium nitride semiconductor layer.
  • the oxygen concentration of the second conductivity type gallium nitride based semiconductor layer is 5 ⁇ 10 16 cm ⁇ 3 or more, and the oxygen concentration of the second conductivity type gallium nitride based semiconductor layer. Is 5 ⁇ 10 18 cm ⁇ 3 or less.
  • the second conductivity type gallium nitride based semiconductor layer is an electron block layer
  • the light emitting layer includes an active layer having well layers and barrier layers arranged alternately, and the light emitting layer is made of a gallium nitride based semiconductor.
  • the light guide layer is further provided between the active layer and the second conductivity type gallium nitride based semiconductor layer, and the light guide layer of the light emitting layer is arranged with respect to the reference plane. It extends along an inclined plane.
  • the second conductivity type gallium nitride based semiconductor layer may have an oxygen concentration of 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the piezo electric field in these semiconductor layers is a semiconductor on the c plane. Small compared to the piezoelectric field in the layer. From the viewpoint of carrier compensation, it is preferable not to add oxygen as a donor impurity to the p-type semiconductor layer, but carrier overflow is reduced on the main surface of the substrate due to small piezoelectric polarization due to a semipolar surface or a nonpolar surface. Therefore, although the oxygen concentration of the second conductivity type gallium nitride based semiconductor layer is 5 ⁇ 10 16 cm ⁇ 3 or more and 5 ⁇ 10 18 cm ⁇ 3 or less, it is possible to avoid a decrease in carrier injection efficiency.
  • an angle formed between the normal line of the main surface and the reference axis is 10 degrees or more and 80 degrees or less, or a line formed between the normal line of the main surface and the reference axis.
  • the angle can be not less than 100 degrees and not more than 170 degrees.
  • an angle formed between a normal line of the main surface and the reference axis is 63 degrees or more and 80 degrees or less with respect to the reference plane, or a method of the main surface
  • the angle formed by the line and the reference axis is not less than 100 degrees and not more than 117 degrees with respect to the reference plane.
  • Yet another aspect of the present invention is a method of fabricating a group III nitride semiconductor device.
  • This method includes (a) a step of preparing a group III nitride semiconductor substrate made of a group III nitride semiconductor and having a main surface, and (b) supplying a group III material and a nitrogen material to a growth reactor, Growing a first conductivity type gallium nitride based semiconductor layer having an oxygen concentration of 10 16 cm ⁇ 3 or more and 5 ⁇ 10 18 cm ⁇ 3 or less on the main surface of the group III nitride semiconductor substrate; (c) Supplying a Group III material and a nitrogen material to the growth furnace to grow a light emitting layer on the first conductivity type gallium nitride semiconductor layer; and (d) supplying a Group III material and a nitrogen material to the growth furnace.
  • a step of growing a second conductivity type gallium nitride based semiconductor layer on the light emitting layer The main surface shows one of semipolar and nonpolar, and oxygen of the first conductivity type gallium nitride based semiconductor layer is provided as an impurity contained in at least one of the group III material and the nitrogen material
  • the main surface of the group III nitride semiconductor substrate forms a finite angle with respect to a reference plane orthogonal to a reference axis extending in the c-axis direction of the group III nitride semiconductor.
  • the gallium nitride semiconductor layer grown on the semipolar plane or the nonpolar plane contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more
  • the surface morphology of the gallium nitride semiconductor layer is flat. become.
  • the c-plane does not appear on the surface of the first conductivity type gallium nitride semiconductor layer, and the surface of the gallium nitride semiconductor layer also exhibits a polarity corresponding to the main surface of the substrate.
  • the gallium nitride based semiconductor layer grown on the semipolar plane contains oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the crystal quality of the gallium nitride based semiconductor layer is not good.
  • the light emitting layer can be grown on the first conductivity type gallium nitride based semiconductor layer having a good surface morphology. Further, when the gallium nitride based semiconductor layer contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor layer becomes flatter.
  • the nitrogen material includes ammonia, and the nitrogen material includes water as an impurity.
  • the oxygen concentration in the light emitting layer is 5 ⁇ 10 16 cm ⁇ 3 or more, the oxygen concentration in the light emitting layer is 5 ⁇ 10 18 cm ⁇ 3 or less, and the oxygen concentration in the second conductivity type gallium nitride based semiconductor layer is 5 ⁇ and the 10 16 cm -3 or more, the oxygen concentration in the second conductive type gallium nitride semiconductor layer is 5 ⁇ 10 18 cm -3 or less.
  • the oxygen concentration of the second conductivity type gallium nitride based semiconductor layer is preferably higher than the oxygen concentration of the light emitting layer.
  • the oxygen concentration in the light emitting layer may be 1 ⁇ 10 17 cm ⁇ 3 or more. Furthermore, in the method according to the present invention, the oxygen concentration in the light emitting layer is 5 ⁇ 10 18 cm ⁇ 3 or less, and the oxygen concentration in the second conductivity type gallium nitride based semiconductor layer is 1 ⁇ 10 17 cm ⁇ 3 or more. Can be. According to these methods, the surface morphology is further flattened.
  • the growth temperature of the second conductivity type gallium nitride based semiconductor layer is preferably lower than the growth temperature of the first conductivity type gallium nitride based semiconductor layer. According to this method, since the growth temperature of the second conductivity type gallium nitride based semiconductor layer is lowered, the thermal stress on the light emitting layer is reduced.
  • the light emitting layer may include an InAlGaN layer.
  • the oxygen concentration can be adjusted by the aluminum composition, and an appropriate band gap can be obtained by adjusting the In composition.
  • the light emitting layer may include an InGaN layer.
  • ammonia having a water content of 500 ppb% or less can be used as the nitrogen raw material.
  • ammonia having a water content of 50 ppb% or less can be used as the nitrogen raw material.
  • ammonia having a water content of 1 ppb% or less can be used as the nitrogen material.
  • the nitrogen raw material is supplied to the growth furnace.
  • the nitrogen source may be made of ammonia.
  • the moisture concentration of the nitrogen raw material may be 1 ppb% or less.
  • a group III nitride semiconductor device including a gallium nitride-based semiconductor film having a good surface morphology can be provided. Further, according to another aspect of the present invention, a method for producing this group III nitride semiconductor device can be provided. Furthermore, according to still another aspect of the present invention, an epitaxial substrate including a gallium nitride based semiconductor film having a good surface morphology can be provided.
  • FIG. 1 is a drawing schematically showing a group III nitride semiconductor optical device according to the present embodiment.
  • FIG. 2 is a drawing schematically showing a group III nitride semiconductor optical device according to the present embodiment.
  • FIG. 3 is a diagram showing band diagrams in the active layer, the light guide layer, and the p-type gallium nitride based semiconductor layer on the c-plane and the semipolar plane.
  • FIG. 4 is a diagram showing products in main steps in the manufacturing method of the present embodiment.
  • FIG. 5 is a diagram showing products in main steps in the manufacturing method of the present embodiment.
  • FIG. 6 is a drawing showing products in main steps in the manufacturing method of the present embodiment.
  • FIG. 7 is a diagram showing products in main steps in the manufacturing method of the present embodiment.
  • FIG. 8 shows the semiconductor laser LD1 in the first embodiment.
  • FIG. 9 is a drawing showing a differential interference microscope image representing the surface morphology of the p-type contact layer of the laser structure in the semiconductor laser LD1 and the semiconductor laser LDC1.
  • FIG. 10 is a diagram showing a semiconductor laser LD2 in the second embodiment.
  • FIG. 11 is a drawing showing EL spectra measured at an absolute temperature of 300 degrees and an absolute temperature of 10 degrees.
  • FIG. 12 is a view showing a light emitting diode in Example 3.
  • FIG. 13 is a drawing showing the structure of a laser diode in Example 4.
  • FIG. 14 is a drawing showing surface morphology in the p-type contact layer of Example 4 and Comparative Example.
  • FIG. 15 is a drawing showing the structure of a laser diode in Example 5.
  • FIG. 16 is a diagram showing IV characteristics of laser diodes in Example 4 and its comparative example.
  • FIG. 1 is a drawing schematically showing a group III nitride semiconductor optical device according to the present embodiment.
  • the group III nitride semiconductor optical device shown in FIG. 1 has a structure applicable to, for example, a light emitting diode.
  • the group III nitride semiconductor optical device 11 a includes a group III nitride semiconductor support 13, a gallium nitride based semiconductor region 15, an active layer 17, and a gallium nitride based semiconductor region 19.
  • the group III nitride semiconductor support 13 is made of a group III nitride semiconductor such as GaN, InGaN, or AlGaN.
  • Group III nitride semiconductor support 13 includes a main surface 13a and a back surface 13b. Main surface 13a of group III nitride semiconductor support 13 exhibits nonpolarity. This non-polarity represents either semipolar or nonpolar.
  • the main surface 13a can be an a-plane or m-plane of a group III nitride semiconductor, or a by rotation about the c-axis. It can be a plane or a plane inclined from the m-plane.
  • the group III nitride semiconductor support 13 has the semipolar main surface 13a
  • the main surface 13a of the group III nitride semiconductor support 13 has a semipolarity inclined with respect to the reference plane Sc perpendicular to the reference axis Cx.
  • the reference axis Cx extends in the c-axis direction of the group III nitride semiconductor.
  • the reference plane Sc shows a typical c-plane, for example.
  • the reference plane Sc is orthogonal to the c-axis vector VC, and the normal vector VN is shown on the main surface 13a.
  • the c-axis vector VC forms an angle A off with respect to the normal vector VN. This angle A off is called an off angle with respect to the c-plane.
  • a crystal coordinate system CR indicating a hexagonal crystal axis a-axis, m-axis and c-axis of a group III nitride semiconductor, and the c-plane in the hexagonal crystal is expressed as “(0001)”.
  • the plane orientation expressed as “(000-1)” is opposite to the (0001) plane.
  • the orthogonal coordinate system S indicates geometric coordinate axes X, Y, and Z.
  • the direction of the inclination can be, for example, the a axis or the m axis.
  • the gallium nitride based semiconductor region 15, the active layer 17, and the gallium nitride based semiconductor region 19 are arranged along the axis Ax on the nonpolar main surface.
  • the angle formed between the normal vector VN of the main surface 13a and the reference axis Cx can be 10 degrees or more and 170 degrees or less with respect to the reference plane Sc.
  • the gallium nitride based semiconductor region 15 is provided on the main surface 13a.
  • the gallium nitride based semiconductor region 15 has an oxygen concentration of 5 ⁇ 10 16 cm ⁇ 3 or more and 5 ⁇ 10 18 cm ⁇ 3 or less.
  • the oxygen concentration can be controlled by, for example, the impurity concentration in the raw material, the off-angle of the substrate, the growth temperature, the mixed crystal composition, and the like. Further, the oxygen concentration of the gallium nitride based semiconductor region 15 is more preferably 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the gallium nitride based semiconductor region 15 can include one or a plurality of gallium nitride based semiconductor layers.
  • the gallium nitride based semiconductor region 15 includes a first conductivity type gallium nitride based semiconductor layer 21 and a gallium nitride based semiconductor layer 23.
  • the gallium nitride based semiconductor layer 21 can be, for example, an n-type semiconductor layer, and the gallium nitride based semiconductor layer 23 can be, for example, a buffer layer.
  • the first conductivity type gallium nitride based semiconductor layer 21 is made of, for example, an n-type gallium nitride based semiconductor, and an n-type dopant such as silicon is added to the n-type gallium nitride based semiconductor.
  • the n-type gallium nitride based semiconductor can be made of, for example, GaN, AlGaN, InGaN, InAlGaN, or the like.
  • the gallium nitride based semiconductor layer 23 is made of, for example, an undoped gallium nitride based semiconductor.
  • the gallium nitride based semiconductor can be made of, for example, InGaN, InAlGaN, GaN, or the like.
  • the gallium nitride based semiconductor layer 23 has an oxygen concentration of 5 ⁇ 10 16 cm ⁇ 3 or more, the crystal quality of the active layer 17 subsequently grown on the main surface of the gallium nitride based semiconductor layer 23 becomes good.
  • the interface between the gallium nitride based semiconductor layer 23 and the gallium nitride based semiconductor grown on the main surface of the semiconductor layer is improved.
  • the gallium nitride based semiconductor layer 23 has an oxygen concentration of 1 ⁇ 10 17 cm ⁇ 3 or more, the crystal quality of the active layer 17 subsequently grown on the main surface of the gallium nitride based semiconductor layer 23 is further improved. .
  • the gallium nitride based semiconductor region 19 may include one or a plurality of gallium nitride based semiconductor layers.
  • the gallium nitride based semiconductor region 19 includes the gallium nitride based semiconductor layer 25 and the second conductivity type gallium nitride based layer. It consists of a semiconductor layer 27.
  • the gallium nitride based semiconductor layer 25 can be made of, for example, an undoped or p-type gallium nitride based semiconductor.
  • the second conductivity type gallium nitride semiconductor layer 27 is made of, for example, a p-type gallium nitride semiconductor, and a p-type dopant such as magnesium is added to the p-type gallium nitride semiconductor.
  • the p-type gallium nitride based semiconductor can be made of, for example, GaN, AlGaN, InAlGaN, InGaN, or the like.
  • the second conductivity type gallium nitride based semiconductor layer 25 can be, for example, an electron block layer, and the gallium nitride based semiconductor layer 27 can be, for example, a p-type contact layer.
  • An active layer 17 is provided between the gallium nitride based semiconductor layer 21 and the gallium nitride based semiconductor layer 27.
  • the active layer 17 is provided on the gallium nitride based semiconductor region 15, and the gallium nitride based semiconductor region 19 is provided on the active layer 17.
  • this group III nitride semiconductor optical device 11a when the gallium nitride based semiconductor region 15 is provided on the main surface 13a and the gallium nitride based semiconductor region 15 contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more, nitriding is performed. The surface morphology of the main surface 15a of the gallium semiconductor region 15 becomes flat. Further, when the gallium nitride based semiconductor region 15 contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the main surface 15a becomes further flat.
  • the c-face facet does not appear on the surface 15a of the gallium nitride based semiconductor region 15, and the entire surface 15a of the gallium nitride based semiconductor region 15 corresponds to the polar characteristics (semipolar and nonpolar) of the substrate main surface 13a. Shows the polarity characteristics.
  • the gallium nitride based semiconductor region 15 contains oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the crystal quality of the gallium nitride based semiconductor region 15 is not good.
  • the active layer 17 can be provided on the gallium nitride semiconductor region 15 having a good surface morphology. Therefore, the interface 31a between the gallium nitride based semiconductor region 15 and the active layer 17 becomes flat.
  • the addition of oxygen stabilizes the generation of the non-c plane. Therefore, in the growth of the gallium nitride based semiconductor region 15 on the main surface, crystal growth can be performed while maintaining the nonpolarity (either semipolar or nonpolar) of the growth surface. As a result, the surface morphology is improved.
  • As an oxygen supply source intentional addition as a dopant is not excluded, but impurities in the source gas can be used by controlling the amount of impurities contained in the source gas. By controlling the amount of oxygen taken into the semipolar plane and the nonpolar plane, the surface morphology of the gallium nitride based semiconductor region that is the base of the active layer 17 can be flattened.
  • the surface morphology of the active layer 17 becomes flat.
  • the crystal quality of the active layer 17 is good.
  • the active layer 17 of the group III nitride semiconductor optical device 11a may have a quantum well structure 29 including well layers 29a and barrier layers 29b arranged alternately.
  • the well layer 29a can be made of, for example, GaN, AlGaN, InGaN, InAlGaN, or the like
  • the barrier layer 29b can be made of, for example, GaN, AlGaN, InGaN, InAlGaN, or the like.
  • the oxygen concentration of the well layer 29a of the active layer 17 can be 6 ⁇ 10 7 cm ⁇ 3 or less. When the oxygen concentration in the well layer 29a is high, optical loss due to free carrier absorption increases.
  • the oxygen concentration of the well layer 29a is 6 ⁇ 10 7 cm ⁇ 3 or less, an optical loss can be avoided, and a decrease in luminous efficiency due to a decrease in crystal quality of the well layer 29a can be avoided. Further, when the oxygen concentration of the barrier layer 29b is equal to or higher than the oxygen concentration of the well layer 29a, the surface morphology of the barrier layer 29b is improved.
  • the well layer 29a can be grown on the barrier layer 29b having a good surface morphology.
  • the active layer 17 can include an InAlGaN layer, and this InAlGaN layer is used as the well layer 29a and / or the barrier layer 29b.
  • the oxygen concentration can be adjusted by the aluminum composition, and an appropriate band gap can be obtained by adjusting the In composition.
  • the active layer 17 can include an InGaN layer, and this InGaN layer is used as the well layer 29a and / or the barrier layer 29b.
  • the band gap can be easily adjusted in the InGaN layer, and the oxygen concentration is adjusted according to the growth conditions such as the impurity concentration of the raw material and the growth temperature.
  • the crystal quality of the second conductivity type gallium nitride semiconductor layers 25 and 27 that are continuously grown on the main surface of the active layer 17 becomes good. . Further, the interface between the active layer 17 and the gallium nitride based semiconductor grown on the main surface of the semiconductor layer becomes flat. Further, when the oxygen concentration of the active layer 17 is 1 ⁇ 10 17 cm ⁇ 3 or more, the crystal quality of the second conductivity type gallium nitride based semiconductor layers 25 and 27 and the above-described interface flatness are further improved.
  • the gallium nitride based semiconductor layer 25 contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor layer 25 becomes flat. Further, when the gallium nitride based semiconductor layer 25 contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor layer 25 is further flattened.
  • the oxygen concentration of the gallium nitride based semiconductor layer 25 can be 5 ⁇ 10 18 cm ⁇ 3 or less. An oxygen concentration exceeding 5 ⁇ 10 18 cm ⁇ 3 may deteriorate the crystal quality of the gallium nitride based semiconductor layer 25.
  • the gallium nitride based semiconductor layer 27 contains oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor layer 27 becomes flat. Further, when the gallium nitride based semiconductor layer 27 contains oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor layer 27 becomes further flat.
  • the oxygen concentration of the gallium nitride based semiconductor layer 27 can be 5 ⁇ 10 18 cm ⁇ 3 or less. An oxygen concentration exceeding 5 ⁇ 10 18 cm ⁇ 3 deteriorates the crystal quality of the gallium nitride based semiconductor layer 27.
  • the surface morphology of the gallium nitride based semiconductor layer 25 becomes flat, so that the gallium nitride based semiconductor layer 27 formed thereon is flat.
  • the crystal quality is excellent.
  • the oxygen concentration of the gallium nitride based semiconductor layer 25 is smaller than the oxygen concentration of the gallium nitride based semiconductor layer 27, the influence of the compensation of p-type conduction by oxygen is reduced in the gallium nitride based semiconductor layer 25, and the carrier injection efficiency is excellent. become.
  • the carbon concentration of the gallium nitride based semiconductor layers 21 and 23 is preferably 5 ⁇ 10 18 cm ⁇ 3 or less.
  • the gallium nitride based semiconductor layers 25 and 27 may have a carbon concentration of 5 ⁇ 10 18 cm ⁇ 3 or less, and the active layer 17 may have a carbon concentration of 5 ⁇ 10 18 cm ⁇ 3 or less.
  • carbon is supplied from an organic metal raw material. The carbon concentration can be controlled by the impurity concentration in the raw material, the raw material gas for doping carbon, the off-angle of the substrate, the growth temperature, the growth pressure, and the like.
  • the band gap of the gallium nitride based semiconductor layer (for example, the electron block layer) 25 is larger than the band gap of the gallium nitride based semiconductor layer (for example, the p-type contact layer) 27.
  • the gallium nitride based semiconductor layer 25 is provided between the gallium nitride based semiconductor layer 27 and the active layer 17.
  • the gallium nitride based semiconductor layer 25 forms a junction 31b with the gallium nitride based semiconductor layer 27. Since the oxygen concentration of the gallium nitride based semiconductor layer 25 is higher than the oxygen concentration of the active layer 17, the junction surface 31b becomes flat.
  • a first electrode (for example, an anode) 33 is provided on the gallium nitride based semiconductor layer 27. Since the gallium nitride based semiconductor layer 25 is provided on the flat bonding surface 31a, the gallium nitride based semiconductor layer 25 has good crystal quality. Hence, good contact characteristics are provided.
  • the angle A off of the main surface 13a can be not less than 10 degrees and not more than 80 degrees with respect to the reference plane Sc.
  • the angle A off of the main surface 13a can be 100 degrees or more and 170 degrees or less with respect to the reference plane Sc.
  • a second electrode (for example, cathode) 35 is provided on the back surface 13 b of the support base 13.
  • the main surface 13a can be a nonpolar surface. According to this group III nitride semiconductor optical device 11a, the contribution due to nonpolarity is appropriately exhibited.
  • the active layer 17 and the gallium nitride based semiconductor layer 27 are provided on the main surface 13a. Is smaller than the piezoelectric field in the semiconductor layer on the c-plane. Since oxygen acts as a donor, it is preferable not to add it to the p-type semiconductor layer. However, addition of an appropriate range of oxygen provides good contact characteristics.
  • the inclination angle A off can be not less than 63 degrees and not more than 80 degrees with respect to the reference plane Sc. Further, the angle A off may be 100 degrees or more and 117 degrees or less with respect to the reference plane A off . According to this group III nitride semiconductor optical device 11a, piezo polarization is particularly small when the off-angle is in the above range.
  • FIG. 2 is a drawing schematically showing a group III nitride semiconductor optical device according to the present embodiment.
  • the group III nitride semiconductor optical device shown in FIG. 2 has a structure applicable to, for example, a semiconductor laser.
  • the group III nitride semiconductor optical device 11 b includes a group III nitride semiconductor support 13, a gallium nitride based semiconductor region 15, a light emitting layer 37, and a gallium nitride based semiconductor region 19.
  • the light emitting layer 37 can include the active layer 17 and the first and second light guide layers 39 and 41.
  • the active layer 17 is provided between the first light guide layer 39 and the second light guide layer 41.
  • the light guide layers 39 and 41 are made of a gallium nitride based semiconductor, and the gallium nitride based semiconductor can be undoped, for example.
  • the active layer 17, the light guide layers 39 and 41, and the gallium nitride based semiconductor layer 19 are provided on the semipolar surface and the nonpolar surface.
  • the electric field is smaller than the piezoelectric field in the semiconductor layer on the c-plane. Since oxygen acts as a donor, it is preferable not to add it to the p-type semiconductor layer. However, carrier overflow hardly occurs on a semipolar surface or a nonpolar surface due to small piezoelectric polarization. Therefore, although the oxygen concentration is high, a decrease in carrier injection efficiency is suppressed.
  • Each of the first and second light guide layers 39 and 41 preferably has an oxygen concentration of 5 ⁇ 10 16 cm ⁇ 3 or more based on the reasons already described.
  • Each of the first and second light guide layers 39 and 41 may have an oxygen concentration of 5 ⁇ 10 18 cm ⁇ 3 or less based on the reason already described.
  • the gallium nitride based semiconductor region 19 can include another second conductivity type gallium nitride based semiconductor layer 43 in addition to the gallium nitride based semiconductor layers 25 and 27.
  • the gallium nitride based semiconductor layer 43 is made of, for example, a p-type gallium nitride based semiconductor, and a p-type dopant such as magnesium is added to the p-type gallium nitride based semiconductor.
  • the p-type gallium nitride based semiconductor can be made of, for example, GaN, AlGaN, InAlGaN, or the like.
  • the gallium nitride based semiconductor layer 43 can be, for example, a p-type cladding layer.
  • the gallium nitride based semiconductor region 15 can include a gallium nitride based semiconductor layer 45.
  • the gallium nitride semiconductor layer 45 is made of, for example, an n-type gallium nitride semiconductor, and an n-type dopant such as silicon is added to the n-type gallium nitride semiconductor.
  • the n-type gallium nitride based semiconductor can be made of, for example, GaN, AlGaN, InAlGaN, or the like.
  • the gallium nitride based semiconductor layer 45 can be, for example, an n-type cladding layer.
  • a light emitting layer 37 is provided between the gallium nitride based semiconductor layer (for example, n-type cladding layer) 45 and the gallium nitride based semiconductor layer (for example, p-type cladding layer) 43.
  • the refractive indexes of the gallium nitride based semiconductor layer 45 and the gallium nitride based semiconductor layer 43 are smaller than the refractive indexes of the light guide layers 39 and 41.
  • the gallium nitride based semiconductor layer 45 and the gallium nitride based semiconductor layer 43 confine light in the light emitting layer 37.
  • the band gap of the gallium nitride based semiconductor layer 25 is larger than the band gap of the gallium nitride based semiconductor layer 43.
  • the gallium nitride based semiconductor layer 25 forms a junction 45a with the gallium nitride based semiconductor layer 43.
  • the junction surface 45a becomes flat, and therefore, the scattering loss at the interface 45a is reduced.
  • the light emitting layer 37 forms a junction 45 c with the gallium nitride based semiconductor region 19.
  • the gallium nitride based semiconductor region 15 forms a light emitting layer 37 and a junction 45b. Since the oxygen concentration in the gallium nitride based semiconductor region 15 is higher than the oxygen concentration in the light emitting layer 37, the surface morphology of the gallium nitride based semiconductor region 15 is good and the junction 45b becomes flat. Therefore, the scattering loss at the interface 45b is reduced.
  • an insulating film 47 for protection is provided on the gallium nitride based semiconductor layer 27.
  • the insulating film 47 has a stripe-shaped opening 47a.
  • a first electrode (for example, an anode) 49a is provided on the insulating film 47 and the opening 47a.
  • a second electrode (for example, a cathode) 49b is provided on the back surface 13b of the support base 13. Since the gallium nitride based semiconductor layer 27 is provided on the flat morphological gallium nitride based semiconductor layer 43, the gallium nitride based semiconductor layer 27 has good crystal quality and provides good contact characteristics.
  • the gallium nitride based semiconductor layer 43 forms a junction 45d with the gallium nitride based semiconductor layer 27. This joining surface 45d is flat.
  • the group III nitride semiconductor optical device 11b has, for example, a gain guide type laser diode structure.
  • the group III nitride semiconductor optical device 11b can have a pair of end faces 50a and 50b.
  • the end faces 50a and 50b are preferably cleaved faces to form a resonator.
  • Laser light L from group III nitride semiconductor optical device 11b is emitted from one of end faces 50a and 50b.
  • An epitaxial structure of a light emitting device was fabricated by metal organic vapor phase epitaxy.
  • Trimethylgallium (TMG), trimethylaluminum (TMA), trimethylindium (TMI), and ammonia (NH 3 ) were used as raw materials.
  • Silane (SiH 4 ) and biscyclopentadienyl magnesium (CP 2 Mg) were used as dopant gases.
  • a hexagonal semipolar gallium nitride substrate can be used as a group III nitride semiconductor substrate having a semipolar main surface.
  • a hexagonal nonpolar gallium nitride substrate can be used as a group III nitride semiconductor substrate having a nonpolar main surface.
  • oxygen as an n-type dopant is provided as an impurity contained in at least one of a group III material and a nitrogen material. The following description will be made with reference to a hexagonal semipolar gallium nitride substrate.
  • a gallium nitride substrate was prepared as shown in part (a) of FIG.
  • the main surface of the gallium nitride substrate is inclined at an angle of 10 to 80 degrees from the c-plane in the m-plane direction or the a-plane direction.
  • the area of the main surface of the gallium nitride substrate is, for example, 25 square millimeters or more, and this size corresponds to, for example, a 5 millimeter square.
  • the size of the main surface 51a of the gallium nitride substrate 51 is preferably 2 inches or more, for example.
  • a source gas G1 containing a group III source and a nitrogen source is supplied to the growth reactor 10, and an n-type is formed on the main surface 51a of the GaN substrate 51.
  • the gallium nitride based semiconductor region 53 is grown epitaxially.
  • the source gas G1 includes, for example, TMG, TMA, NH 3 , SiH 4 .
  • As the gallium nitride based semiconductor region 53 for example, a Si-doped AlGaN cladding layer is grown at a temperature of 1050 degrees Celsius. The thickness of this AlGaN layer is 2 ⁇ m, for example.
  • the oxygen concentration of the gallium nitride based semiconductor region 53 is, for example, in the range of 5 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 . According to this method, when a gallium nitride-based semiconductor containing oxygen is grown on a semipolar plane, a specific facet plane that does not match the semipolar plane is suppressed from appearing during the growth. For this reason, the surface morphology becomes flat. Also in the subsequent growth, the addition of oxygen can suppress the appearance of a specific facet surface during the growth. Further, when the carbon concentration of the gallium nitride based semiconductor region 53 is 5 ⁇ 10 18 cm ⁇ 3 or less, generation of facets in the gallium nitride based semiconductor can be avoided. In addition, when the oxygen concentration of the gallium nitride based semiconductor region 53 is, for example, 1 ⁇ 10 17 cm ⁇ 3 or more, more flat surface morphology and facet surface suppression are provided.
  • a source gas G2 containing a group III source and a nitrogen source is supplied to the growth reactor 10, An undoped InGaN optical guide layer 55a is grown epitaxially.
  • the source gas G2 includes, for example, TMG, TMI, and NH 3 .
  • the oxygen concentration of the InGaN light guide layer 55a is, for example, in the range of 5 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the InGaN light guide layer 55a is 100 nm.
  • the oxygen concentration of the InGaN light guide layer 55a is preferably 1 ⁇ 10 17 cm ⁇ 3 or more, for example.
  • step S105 as shown in part (b) of FIG. 5, a source gas G3 containing a group III source and a nitrogen source is supplied to the growth reactor 10, and the GaN barrier layer 57 is formed at a substrate temperature of 840 degrees Celsius. It grows on the InGaN light guide layer 55a.
  • the source gas G2 includes, for example, TMG and NH 3 .
  • the thickness of the GaN layer 57 is, for example, 15 nm.
  • a source gas G4 containing a group III source and a nitrogen source is supplied to the growth reactor 10, An undoped InGaN well layer 59 is epitaxially grown on the GaN barrier layer 57.
  • the source gas G4 includes, for example, TMG, TMI, and NH 3 .
  • the oxygen concentration of the InGaN well layer 59 is preferably 6 ⁇ 10 17 cm ⁇ 3 or less, for example.
  • the thickness of the well layer 59 is 3 nm, for example.
  • a GaN barrier layer 57 having a thickness of 15 nm is grown. If necessary, the growth of the barrier layer 57 and the growth of the well layer 59 are repeated. Further, in step S107, a source gas G5 containing a group III source and a nitrogen source is supplied to the growth reactor 10 at a substrate temperature of 840 degrees Celsius, and the undoped InGaN optical guide layer 55b is epitaxially formed in the same manner as the optical guide layer 55a. As shown in FIG. 6A, an active layer 61 and a light emitting layer 63 are produced. When the carbon concentration of the light emitting layer 63 is 5 ⁇ 10 18 cm ⁇ 3 or less, generation of facets can be avoided in the gallium nitride based semiconductor.
  • a Group III material and a nitrogen material are supplied to the growth furnace to grow a second conductivity type gallium nitride based semiconductor region on the light emitting layer 63. Therefore, in step S108, after the substrate temperature is raised to 1000 degrees Celsius, a source gas G6 containing a group III source material and a nitrogen source material is introduced into the growth reactor 10, and as shown in FIG. Further, the electron block layer 65 is epitaxially grown on the light emitting layer 63.
  • the source gas G6 contains, for example, TMG, TMA, NH 3 , CP 2 Mg.
  • the thickness of the electron block layer 65 is 20 nm, for example.
  • a source gas G7 containing a group III source and a nitrogen source is introduced into the growth reactor 10, and the p-type cladding layer is formed on the electron block layer 65 as shown in FIG. 67 is grown epitaxially.
  • the source gas G7 includes, for example, TMG, TMA, NH 3 , CP 2 Mg.
  • the thickness of the p-type cladding layer 67 is 400 nm, for example.
  • a source gas G8 containing a group III source material and a nitrogen source material is introduced into the growth reactor 10, and a p-type contact is formed on the p-type cladding layer 67 as shown in FIG. Layer 69 is grown epitaxially.
  • the source gas G8 includes, for example, TMG, NH 3 , CP 2 Mg.
  • the thickness of the p-type contact layer 69 is, for example, 50 nm.
  • the oxygen concentration of the gallium nitride based semiconductor layers 65, 67, and 69 is 5 ⁇ 10 16 cm ⁇ 3 or more, and the oxygen concentration of the gallium nitride based semiconductor layers 65, 67, and 69 is 5 ⁇ 10 18 cm ⁇ 3 or less. Further, the oxygen concentration can be 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the oxygen concentration of the gallium nitride based semiconductor layers 65, 67 and 69 is preferably larger than the oxygen concentration of the light emitting layer 63. Further, when the carbon concentration of the gallium nitride based semiconductor region 70 is 5 ⁇ 10 18 cm ⁇ 3 or less, generation of facets in the gallium nitride based semiconductor can be avoided.
  • the morphology and oxygen doping of the light emitting layer and the n-type gallium nitride based semiconductor layer will be described. Since the growth temperature of the InGaN well layer is low and atoms are difficult to migrate, it tends to grow in an island shape. On the other hand, since the growth temperature of gallium nitride semiconductors such as n-type GaN and AlGaN is high, it is easy to obtain step flow growth. The effect of flattening the morphology by oxygen doping is different from the above-described growth modes such as islands and step flow growth. The semipolar plane is stabilized by oxygen doping.
  • the c-plane is considered to be a stable surface in the gallium nitride crystal growth, and the c-plane is likely to be generated as a facet surface in the gallium nitride crystal growth on the semipolar plane.
  • the generation of the c-plane deteriorates the morphology in the epitaxial growth on the semipolar plane. Oxygen doping can suppress the generation of facet planes that deteriorate morphology during epitaxial growth on a semipolar plane.
  • the epitaxial substrate EP1 After the substrate temperature is lowered to room temperature, the epitaxial substrate EP1 is taken out from the growth furnace.
  • the epitaxial substrate EP1 includes a group III nitride semiconductor substrate 51, a first conductivity type gallium nitride based semiconductor region 53, a light emitting layer 63, and a second conductivity type gallium nitride based semiconductor region 70.
  • the gallium nitride based semiconductor regions 53 and 70 contain oxygen of 5 ⁇ 10 16 cm ⁇ 3 or more, the surface morphology of the gallium nitride based semiconductor regions 53 and 70 becomes flat.
  • the c-plane does not appear on the surfaces of the gallium nitride based semiconductor regions 53 and 70, and the surfaces of the gallium nitride based semiconductor regions 53 and 70 are also semipolar.
  • the gallium nitride based semiconductor regions 53 and 70 contain oxygen of 1 ⁇ 10 17 cm ⁇ 3 or more, the above technical contribution becomes excellent.
  • the gallium nitride based semiconductor regions 53 and 70 contain oxygen exceeding the range of 5 ⁇ 10 18 cm ⁇ 3 or less, the crystal quality of the gallium nitride based semiconductor regions 53 and 70 is not good.
  • the light emitting layer 63 can be provided on the gallium nitride based semiconductor region 53 having a good surface morphology.
  • An anode electrode is formed on the p-type gallium nitride semiconductor region 70 of the epitaxial substrate EP1 to make an electrical connection to the p-type contact layer 69, and the back surface 51b of the substrate 51 is polished if necessary, and then the cathode is formed on the polished back surface.
  • An electrode is formed. These electrodes are produced by vapor deposition, for example.
  • the semiconductor region 53 is the thickest in the epitaxial film stack of the light emitting element. The contribution to is great. Since oxygen is an n-type dopant, carrier addition does not occur due to the addition of oxygen. When the oxygen concentration of the light emitting layer 63 is low, the light emission efficiency of the light emitting layer 63 is improved. Since the oxygen concentration is an n-type dopant, when the oxygen concentration of the p-type gallium nitride based semiconductor region 70 is low, the influence of carrier compensation due to the addition of oxygen is small.
  • the morphology improvement of the light emitting layer 63 contributes to the improvement of the crystal quality of the p-type gallium nitride semiconductor region 70.
  • the carrier concentration is high.
  • the planarity is easily impaired by the addition of magnesium (Mg). Can be improved.
  • the oxygen concentration of the light emitting layer 63 is low, the light emission efficiency of the light emitting layer 63 is improved.
  • the growth temperature of the p-type gallium nitride based semiconductor region 70 is lowered to increase the oxygen concentration in the semiconductor region 70, thermal stress on the light emitting layer 63 is reduced.
  • the planarity of the semiconductor region 70 can be improved by adding oxygen.
  • the oxygen concentration is increased by increasing Al in the p-type gallium nitride based semiconductor region 70, the optical confinement in the laser diode is improved.
  • the growth temperature of the p-type gallium nitride based semiconductor region 70 is lowered to increase the oxygen concentration in the semiconductor region 70, thermal stress on the light emitting layer 63 is reduced.
  • Example 1 A laser diode LD1 was produced.
  • a GaN substrate 71 having a semipolar principal surface inclined at an angle ⁇ 1 of 75 degrees in the m-axis direction was prepared. This semipolar principal surface corresponds to the (20-21) plane.
  • ammonia (NH 3 ) and hydrogen (H 2 ) were supplied to the growth furnace to hold the GaN substrate 71 in an atmosphere of 1050 degrees Celsius. The retention time was 10 minutes.
  • a raw material gas was supplied to the growth furnace to produce the following laser structure.
  • an n-type Al0.04Ga0.96N cladding layer 72 was grown at 1050 degrees Celsius.
  • the In 0.03 Ga 0.97 N optical guide layer 73a was grown.
  • a quantum well active layer 74 was grown on the In 0.03 Ga 0.97 N optical guide layer 73a.
  • an In 0.03 Ga 0.97 N optical guide layer 73b was grown on the active layer 74 at a substrate temperature of 840 degrees Celsius.
  • an Al 0.12 Ga 0.88 N electron blocking layer 78, a p-type Al 0.06 Ga 0.94 N cladding layer 75, and a p-type GaN contact layer 76 were grown.
  • the photoluminescence wavelength of this laser structure was in the 450 nm band.
  • a cladding layer located directly above the GaN substrate 71 and having a large film thickness.
  • the oxygen concentration of the cladding layer 72 was 3 ⁇ 10 17 cm ⁇ 3 .
  • An anode is formed on the contact layer 76 through the opening of the insulating film 77, and a cathode is formed on the back surface 71b of the GaN substrate 71, so that the semiconductor laser LD1 shown in FIG.
  • FIG. 9A shows the surface morphology of the p-type GaN contact layer of the laser structure in the semiconductor laser LD1.
  • FIG. 9B the p-type contact layer of the laser structure in the semiconductor laser LD0 also shows the surface morphology.
  • the p-type contact layer having a laser structure in the semiconductor laser LD0 exhibits good surface morphology.
  • the semiconductor laser LD1 including the n-type AlGaN cladding layer having a high oxygen concentration it is considered that the semipolar plane is stabilized. By comparing these laser structures, the laser structure in the semiconductor laser LD1 showed a flatter morphology.
  • Example 2 A laser diode was fabricated.
  • a GaN substrate 81 having a semipolar principal surface inclined at an angle ⁇ 2 of 75 degrees in the m-axis direction was prepared. This semipolar principal surface corresponds to the (20-21) plane.
  • ammonia (NH 3 ) and hydrogen (H 2 ) were supplied to the growth furnace to hold the GaN substrate 81 in an atmosphere of 1050 degrees Celsius. The retention time was 10 minutes.
  • the source gas was supplied to the growth furnace to produce the following laser structure.
  • an n-type Al 0.04 Ga 0.96 N cladding layer 82 was grown at 1050 degrees Celsius.
  • an In 0.02 Ga 0.98 N optical guide layer 83a having a thickness of 100 nm was grown.
  • a quantum well active layer 84 was grown on the light guide layer 83.
  • an In 0.02 Ga 0.98 N optical guide layer 83b was grown on the active layer 84 at a substrate temperature of 840 degrees Celsius.
  • an Al 0.12 Ga 0.88 N electron blocking layer 85, a p-type Al 0.06 Ga 0.94 N cladding layer 86, and a p-type GaN contact layer 87 were grown.
  • the photoluminescence wavelength of this laser structure was in the 405 nm band.
  • an anode 89 a was formed through a stripe window (width: 10 ⁇ m) of an insulating film (for example, SiO 2) 88 and a cathode 89 b was formed on the back surface 81 a of the GaN substrate 81. Thereafter, cleavage was performed on the a-plane at intervals of 800 ⁇ m to produce a gain guide type semiconductor laser LD2 shown in FIG.
  • the oxygen concentration of the n-type cladding layer was 3 ⁇ 10 17 cm ⁇ 3 .
  • the oxygen concentration of the quantum well active layer 84 was 2 ⁇ 10 17 cm ⁇ 3 .
  • the oxygen concentration of the p-type electron blocking layer 85 was 1 ⁇ 10 18 cm ⁇ 3 .
  • the oxygen concentration of the p-type cladding layer 86 was 7 ⁇ 10 17 cm ⁇ 3 . In this structure, the oxygen concentration of the p layer is higher than that of the light emitting layer.
  • an LD structure was also fabricated on a c-plane GaN substrate under the same film formation conditions.
  • the amount of oxygen taken into the GaN-based semiconductor was different, and the oxygen concentration was 1 ⁇ 10 17 cm ⁇ 3 or less in all epitaxial layers.
  • cleavage at the m-plane was performed to manufacture a gain guide type semiconductor laser LDC2 having a resonator mirror.
  • a current of 2 mA was applied to these semiconductor lasers LD2 and LDC2, and electroluminescence (EL) was measured at an absolute temperature of 300 degrees (300K) and an absolute temperature of 10 degrees (10K).
  • Part (a) of FIG. 11 shows an EL spectrum measured at an absolute temperature of 300 degrees
  • part (b) of FIG. 11 shows an EL spectrum measured at an absolute temperature of 10 degrees.
  • EL spectra ELS (300) and ELS (10) were measured in the semiconductor laser LD2 of the example
  • EL spectra ELC (300) and ELC (10) were measured in the semiconductor laser LDC2 of the comparative example.
  • the EL spectra at temperatures 300K and 10K were compared.
  • the EL spectra ELS (300) and ELC (300) of any of the semiconductor lasers LD2 and LDC2 have a peak due to MQW near 405 nm.
  • the EL spectrum of the semiconductor laser LD2 of the example showed a single peak, but the semiconductor laser LDC2 of the comparative example has a donor-acceptor pair (DAP) in the p-type semiconductor layer in addition to the MQW peak.
  • DAP donor-acceptor pair
  • oxygen acting as a donor is doped in the p-type semiconductor layer at a higher concentration than the light emitting layer, but exhibits good carrier injection efficiency.
  • the flatness of the p-type semiconductor layer is easily impaired by the addition of Mg.
  • adding oxygen in the proper range provides both surface flatness and carrier injection efficiency. Improving the flatness of the p-type semiconductor layer and increasing the steepness of the interface of the electron block layer / cladding layer leads to a reduction in scattering loss of light propagating through the resonator of the semiconductor laser.
  • Example 3 A light emitting diode was produced.
  • a GaN substrate 91 having a semipolar principal surface inclined at an angle ⁇ 3 of 18 degrees in the a-axis direction was prepared. After the GaN substrate 91 was placed in the growth furnace, ammonia (NH 3 ) and hydrogen (H 2 ) were supplied to the growth furnace to hold the GaN substrate 91 in an atmosphere of 1050 degrees Celsius. The retention time was 10 minutes. After this thermal cleaning, a source gas was supplied to the growth furnace to produce the following light emitting diode structure. First, an n-type GaN layer 92 having a thickness of 2 ⁇ m was grown at 1050 degrees Celsius.
  • the In 0.04 Ga 0.96 N buffer layer 93 was grown.
  • a quantum well active layer 94 was grown on the buffer layer 93 having a thickness of 100 nm. Specifically, a GaN barrier layer 94a having a thickness of 15 nm is grown at a substrate temperature of 840 degrees Celsius and an InAlGaN well layer 94b having a thickness of 3 nm is grown at a substrate temperature of 700 degrees Celsius to form an active layer 94. .
  • a p-type Al 0.18 Ga 0.82 N electron blocking layer 95 having a thickness of 20 nm and a p-type GaN contact layer 96 having a thickness of 50 nm were grown on the active layer 94.
  • An anode (Ni / Au) 97 and a pad electrode 99a were formed on the contact layer 96, and a cathode (Ti / Al) was formed on the back surface 91b of the substrate 91 to produce the light emitting diode LED1 shown in FIG.
  • Light emitting diode structures having InAlGaN well layers with different indium compositions were fabricated. The relationship between the oxygen concentration in the well layer and the light output was investigated.
  • LED structure In composition, Al composition, oxygen concentration (cm ⁇ 3), light output LED1: 0.18, 0, 2 ⁇ 10 17 , 1 LED2: 0.19, 0.03, 4 ⁇ 10 17 , 0.85 LED3: 0.20, 0.06, 1 ⁇ 10 18 , 0.54.
  • the In composition of the well layer was changed so as to obtain an emission wavelength near 450 nm. As the oxygen concentration in the well layer increased, the light emission output decreased. This is considered that the addition of oxygen deteriorates the crystal quality of the well layer.
  • the oxygen concentration in the well layer was controlled by taking advantage of the fact that Al in the well layer easily adsorbs oxygen and that oxygen adsorbed at a low temperature (a temperature at which In is taken into the well layer) is difficult to desorb.
  • Example 4 A GaN substrate having an m-plane principal surface was prepared.
  • a laser diode LD3 was fabricated on the GaN substrate.
  • FIG. 13 is a drawing showing the structure of a laser diode in Example 4. After the GaN substrate 101 is placed in the growth furnace, ammonia (NH 3 ) and hydrogen (H 2 ) are supplied to the growth furnace and thermal cleaning is performed in an atmosphere of 1050 degrees Celsius, and then the same as in Example 1. The following laser structure was fabricated on the nonpolar main surface 101a of the GaN substrate 101.
  • NH 3 ammonia
  • H 2 hydrogen
  • Al 0.04 Ga 0.96 N clad layer 102 n-type, 2 ⁇ m, In 0.03 Ga 0.97 N light guide layer 103a: undoped, 100 nm, Active layer 104: In 0.18 Ga 0.82 N well layer (thickness 3 nm) / GaN barrier layer (thickness 15 nm), In 0.03 Ga 0.97 N light guide layer 103b: undoped, 100 nm, Al 0.12 Ga 0.88 N electron blocking layer 105: p-type, 20 nm, Al 0.06 Ga 0.94 N clad layer 106: p-type, 400 nm, GaN contact layer 107: p-type, 50 nm.
  • An anode 109 a was formed on the insulating film (for example, SiO 2 ) 108 having a stripe window (width 10 ⁇ m) and the contact layer 107, and a cathode 109 b was formed on the back surface 101 b of the GaN substrate 101. Thereafter, a gain guide type semiconductor laser LD3 was fabricated by cleavage.
  • the insulating film for example, SiO 2
  • a cathode 109 b was formed on the back surface 101 b of the GaN substrate 101.
  • FIG. 14 is a drawing showing the surface morphology of the p-type contact layer 107 of Example 4 and the p-type contact layer of the comparative example.
  • the surface of the p-type contact layer shown in FIG. 14 (a) is compared with the surface of the p-type contact layer shown in FIG. 14 (b), the surface of the epitaxial film of Example 4 is relatively flat. The morphology was shown.
  • Example 4 it is considered that there is an effect of stabilization by oxygen even on a nonpolar surface.
  • FIG. 15 is a drawing showing the structure of a laser diode in Example 5.
  • a GaN substrate 111 having a semipolar principal surface inclined at an angle ⁇ 4 of 68 degrees in the m-axis direction was prepared. After the GaN substrate 111 was placed in the growth furnace, ammonia (NH 3 ) and hydrogen (H 2 ) were supplied to the growth furnace to hold the GaN substrate 111 in an atmosphere of 1050 degrees Celsius. After this pretreatment, a source gas was supplied to the growth furnace to produce the following laser structure. First, an n-type Al 0.04 Ga 0.96 N cladding layer 112 was grown at 1050 degrees Celsius.
  • the In 0.03 Ga 0.97 N optical guide layer 113a was grown.
  • An active layer 114 was grown on the In 0.03 Ga 0.97 N optical guide layer 113a.
  • an In 0.03 Ga 0.97 N optical guide layer 113b was grown on the active layer 114 at a substrate temperature of 840 degrees Celsius.
  • an Al 0.12 Ga 0.88 N electron blocking layer 115, a p-type Al 0.06 Ga 0.94 N cladding layer 116, and a p-type GaN contact layer 117 were grown.
  • the photoluminescence wavelength of this laser structure was in the 450 nm band.
  • a purification device was provided between the nitrogen raw material supply source and the growth furnace. This refiner was used to purify and supply ammonia as a nitrogen raw material to the growth reactor. Using the refining apparatus, ammonia having a water content of 500 ppb% or less can be supplied to the growth furnace as the nitrogen raw material. In addition, ammonia having a water content of 50 ppb% or less can be used as a nitrogen raw material using a purification apparatus. Furthermore, ammonia having a water content of 1 ppb% or less can be supplied to the growth reactor as a nitrogen raw material using a purification apparatus. In this example, ammonia having a water concentration of 50 ppb% was supplied to the growth reactor as a nitrogen raw material.
  • the oxygen concentration of the p-type Al 0.06 Ga 0.94 N cladding layer was 2 ⁇ 10 17 cm ⁇ 3 .
  • ammonia having a water concentration of 1 ppm% was used as a nitrogen raw material.
  • the oxygen concentration of this p-type AlGaN layer was 8 ⁇ 10 18 cm ⁇ 3 .
  • An SiO 2 film was formed on the surface of the p-type GaN contact layer 117 in the LD structure of the example, and then a protective window 118 was formed by forming a stripe window having a width of 10 ⁇ m by wet etching.
  • a p electrode 119a made of Ni / Au and a pad electrode made of Ti / Au were formed by vapor deposition.
  • An n electrode 119b made of Ti / Al and a pad electrode made of Ti / Au were formed on the back surface 111b of the substrate by vapor deposition.
  • an SiO 2 film and an electrode were formed as in this example. Thereafter, cleavage to the a-plane was performed at 800 ⁇ m intervals to produce a gain guide type laser.
  • FIG. 16 is a diagram showing IV characteristics of laser diodes in Example 4 and a comparative example. Characteristic lines IV1 and IVC indicate the IV characteristics for Example 5 and the comparative example, respectively.
  • the drive voltage in the laser diode of the comparative example is significantly higher than the drive voltage in the laser diode of the fifth embodiment. This is presumably because in the laser diode of the comparative example, the oxygen concentration in the p-type contact layer was increased due to the low ammonia purity, and the p-type conductivity was impaired.
  • a group III nitride semiconductor optical device including a gallium nitride based semiconductor film having a good surface morphology. Further, according to the present embodiment, it is possible to provide a method for manufacturing this group III nitride semiconductor optical device. Furthermore, according to the present embodiment, an epitaxial substrate including a gallium nitride based semiconductor film having a good surface morphology can be provided.
  • the present embodiment has been described with reference to a semiconductor optical device.
  • the present invention can also be applied to a group III nitride semiconductor electronic device as an example of a semiconductor device. Accordingly, a group III nitride semiconductor electronic device including a gallium nitride based semiconductor film having a good surface morphology can be provided. Further, according to the present embodiment, it is possible to provide a method for manufacturing this group III nitride semiconductor electronic device. Furthermore, according to the present embodiment, an epitaxial substrate including a gallium nitride based semiconductor film having a good surface morphology can be provided.
  • the present invention is not limited to the specific configuration disclosed in the present embodiment.
  • the growth of a nitride semiconductor using metal organic vapor phase epitaxy is described as an example.
  • the present invention describes a nitride semiconductor using a molecular beam epitaxy method with oxygen uptake. It can also be applied to growth. We therefore claim all modifications and changes that come within the scope and spirit of the following claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むIII族窒化物半導 体素子を提供する。III族窒化物半導体光素子11aは、III族窒化物半導体支持体13、GaN系半導体領域15、活性層17及びGaN系半導体領域19を備える。III族窒化物半導体支持体13の主面13aは、基準軸Cxに直交する基準平面Scに対して傾斜する非極性を示しており、基準軸CxはIII族窒化物半導体のc軸方向に延びる。GaN系半導体領域15は半極性主面上13aに設けられる。GaN系半導体領域15のGaN系半導体層21は例えばn型GaN系半導体からなり、n型GaN系半導体にはシリコンが添加されている。GaN系半導体層23の酸素濃度が5×1016cm-3以上であるとき、GaN系半導体層23の主面上に引き続き成長される活性層17の結晶品質が良好になる。

Description

III族窒化物半導体素子、エピタキシャル基板、及びIII族窒化物半導体素子を作製する方法
 本発明は、III族窒化物半導体素子、エピタキシャル基板、及びIII族窒化物半導体素子を作製する方法に関する。
 特許文献1には、酸素濃度に比例したn型キャリアをもつn型GaNが記載されている。酸素を原料ガスに含ませてGaAs基板の上にGaNをエピタキシャル成長させる。GaAs基板を除去してGaN自立膜を得る。
 特許文献2には、窒化ガリウム単結晶を成長する方法が記載されている。この方法によれば、酸素をn型ドーパントとして取り込むことができる。
 特許文献3には、GaN系化合物半導体の製造方法が記載されている。充填容器内に少なくとも一部が液体となるようにGaN系化合物半導体製造用アンモニアを充填する。該液相のアンモニア中の水分濃度がフーリエ変換赤外分光法(FT-IR)で測定して0.5volppm以下である。このアンモニアを原料として、基板を収容した反応室内にガス状態で導入して、GaN系化合物からなる層を基板上に形成する。
特開2000-044400号公報 特開2002-373864号公報 特開2004-363622号公報
 発明者の知見によれば、窒化ガリウムの非c面にはドナーとして働く酸素が取り込まれやすい。この現象は、半極性や無極性を有する主面を有する窒化ガリウム基板上に窒化ガリウム系半導体を堆積するとき、酸素の思わぬ取り込みによりデバイス特性を損ねないように酸素濃度を制御する必要があることを示している。一方、ファセット面に酸素が取り込まれやすいことは、酸素の添加により、窒化ガリウム系半導体の成長中において非c面の生成を安定化できる可能性を示唆している。このとき、窒化ガリウム基板の半極性や無極性を有する主面上への窒化ガリウム系半導体の成長では、窒化ガリウム系半導体はその酸素濃度により異なる結晶品質を有することになる。
 デバイス特性の見地からは、エピタキシャル膜が、n型のGaN基板のときに用いられる酸素濃度を有するとき、酸素が窒化ガリウム系半導体においてn型ドーパントであることを考慮するならば、半導体素子の電気特性が変わることを無視できないと推測される。例えば半導体光素子では、n型窒化ガリウム系半導体層、発光層及びp型窒化ガリウム系半導体への酸素ドープ量に応じてデバイスの発光効率及び電気特性が変わることを無視できないと推測される。
 本発明は、このような事情を鑑みて為されたものであり、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むIII族窒化物半導体素子を提供することを目的とし、また、III族窒化物半導体素子を作製する方法を提供する目的とし、さらに、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むエピタキシャル基板を提供することを目的とする。
 本発明の一側面に係るIII族窒化物半導体素子は、(a)III族窒化物半導体からなり、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす主面を有するIII族窒化物半導体支持体と、(b)5×1016cm-3以上5×1018cm-3以下の酸素濃度を有しており、前記III族窒化物半導体支持体の前記主面上に設けられた窒化ガリウム系半導体領域とを備える。前記主面は半極性及び無極性のいずれか一方を示しており、前記窒化ガリウム系半導体領域は第1導電型窒化ガリウム系半導体層を含む。
 このIII族窒化物半導体素子によれば、窒化ガリウム系半導体領域が半極性面又は無極性面上に設けられると共に窒化ガリウム系半導体領域が5×1016cm-3以上の酸素を含むとき、窒化ガリウム系半導体領域の表面モフォロジが平坦になる。窒化ガリウム系半導体領域の表面も、基板主面の半極性面又は無極性面に応じてそれぞれ半極性又は無極性を示す。窒化ガリウム系半導体領域が5×1018cm-3以下の範囲を超えて酸素を含むとき、窒化ガリウム系半導体領域の結晶品質が良好ではなくなる。また、窒化ガリウム系半導体領域が1×1017cm-3以上の酸素を含むとき、窒化ガリウム系半導体領域の表面モフォロジがさらに平坦になる。
 本発明に係るIII族窒化物半導体素子は、(a)III族窒化物半導体からなり、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす主面を有するIII族窒化物半導体支持体と、(b)5×1016cm-3以上5×1018cm-3以下の酸素濃度を有しており、前記III族窒化物半導体支持体の前記主面上に設けられた窒化ガリウム系半導体領域と、(c)前記窒化ガリウム系半導体領域上に設けられた活性層と、(d)前記活性層上に設けられた第2導電型窒化ガリウム系半導体層とを備える。前記主面は半極性及び無極性のいずれか一方を示しており、前記窒化ガリウム系半導体領域は第1導電型窒化ガリウム系半導体層を含み、前記活性層は、前記第1導電型窒化ガリウム系半導体層と前記第2導電型窒化ガリウム系半導体層との間に設けられる。
 このIII族窒化物半導体素子によれば、窒化ガリウム系半導体領域が半極性面又は無極性面上に設けられると共に窒化ガリウム系半導体領域が5×1016cm-3以上の酸素を含むとき、窒化ガリウム系半導体領域の表面モフォロジが平坦になる。窒化ガリウム系半導体領域の表面も、基板主面の半極性面又は無極性面に応じてそれぞれ半極性又は無極性を示す。窒化ガリウム系半導体領域が5×1018cm-3以下の範囲を超えて酸素を含むとき、窒化ガリウム系半導体領域の結晶品質が良好ではなくなる。上記範囲の酸素濃度によれば、良好な表面モフォロジの第1導電型窒化ガリウム系半導体層上に活性層を設けることができる。また、窒化ガリウム系半導体領域が1×1017cm-3以上の酸素を含むとき、窒化ガリウム系半導体領域の表面モフォロジがさらに平坦になる。
 本発明の一側面に係るIII族窒化物半導体素子では、前記活性層における酸素濃度は5×1016cm-3以上であることができる。このIII族窒化物半導体素子によれば、活性層が5×1016cm-3以上の酸素を含むとき、活性層の表面モフォロジが平坦になる。また、酸素はドナーとして働くので、活性層が5×1016cm-3以上の酸素を含むとき、素子の駆動電圧が低減する、活性層のピエゾ電界が低減する、といった効果もある。さらに、本発明の一側面に係るIII族窒化物半導体素子では、前記活性層における酸素濃度は1×1017cm-3以上であることができる。このIII族窒化物半導体素子によれば、活性層が1×1017cm-3以上の酸素を含むとき、活性層の表面モフォロジがさらに平坦になる。
 本発明の一側面に係るIII族窒化物半導体素子では、前記活性層における酸素濃度は5×1018cm-3以下であることができる。このIII族窒化物半導体素子によれば、活性層が5×1018cm-3以下の範囲を超えて酸素を含むとき、活性層の結晶品質が良好ではなくなる。また、活性層が5×1018cm-3以下の範囲を超えて酸素を含むとき、活性層における自由キャリア吸収による光学ロスが増加する。
 本発明の一側面に係るIII族窒化物半導体素子では、前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1016cm-3以上であることができる。このIII族窒化物半導体素子によれば、第2導電型窒化ガリウム系半導体層における酸素濃度が5×1016cm-3以上の酸素を含むとき、第2導電型窒化ガリウム系半導体層の表面モフォロジが平坦になる。また、本発明の一側面に係るIII族窒化物半導体素子では、前記第2導電型窒化ガリウム系半導体層における酸素濃度は1×1017cm-3以上であることができる。このIII族窒化物半導体素子によれば、第2導電型窒化ガリウム系半導体層における酸素濃度が1×1017cm-3以上の酸素を含むとき、第2導電型窒化ガリウム系半導体層の表面モフォロジがさらに平坦になる。
 本発明の一側面に係るIII族窒化物半導体素子では、前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1018cm-3以下であることができる。このIII族窒化物半導体素子によれば、第2導電型窒化ガリウム系半導体層における酸素濃度が5×1018cm-3以下の範囲を超えて酸素を含むとき、第2導電型窒化ガリウム系半導体層の結晶品質が良好ではなくなる。また、第2導電型窒化ガリウム系半導体層における酸素濃度が5×1018cm-3以下の範囲を超えて酸素を含むとき、第2導電型窒化ガリウム系半導体層の導電性が良好ではなくなる。
 本発明の一側面に係るIII族窒化物半導体素子では、前記第1導電型窒化ガリウム系半導体層の炭素濃度は5×1018cm-3以下であり、前記第2導電型窒化ガリウム系半導体層の炭素濃度は5×1018cm-3以下であり、前記活性層の炭素濃度は5×1018cm-3以下であることができる。このIII族窒化物半導体素子によれば、成長中に不可避的に窒化ガリウム系半導体に取り込まれる炭素濃度が高いとき、安定なc面ファセットが出現しやすくなる。窒化ガリウム系半導体の炭素濃度を下げることにより、窒化ガリウム系半導体にファセットの発生を避けることができる。ただし、ここでいう炭素濃度からは窒化ガリウム系半導体を成長後に表面に形成されるコンタミネーションを除外する。
 本発明の一側面に係るIII族窒化物半導体素子は、別の第2導電型窒化ガリウム系半導体層を更に備えることができる。前記第2導電型窒化ガリウム系半導体層のバンドギャップは前記別の第2導電型窒化ガリウム系半導体層のバンドギャップよりも大きく、前記第2導電型窒化ガリウム系半導体層の酸素濃度は、前記活性層の酸素濃度よりも大きく、前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と前記活性層との間に設けられており、前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と接合を形成する。
 このIII族窒化物半導体素子によれば、第2導電型窒化ガリウム系半導体層の酸素濃度が活性層の酸素濃度よりも大きいので、第2導電型窒化ガリウム系半導体層と別の第2導電型窒化ガリウム系半導体層との接合面が平坦になり、これ故に、この界面における散乱ロスが低減される。
 本発明の一側面に係るIII族窒化物半導体素子は、前記活性層と前記第2導電型窒化ガリウム系半導体層との間に設けられ窒化ガリウム系半導体からなる光ガイド層を更に備えることができる。前記活性層は、前記基準平面に対して傾斜する平面に沿って延在しており、前記第2導電型窒化ガリウム系半導体層は電子ブロック層である。
 このIII族窒化物半導体素子によれば、半極性面や無極性面上に、活性層、光ガイド層及び第2導電型窒化ガリウム系半導体層を設けるので、これらの半導体層におけるピエゾ電界はc面上の半導体層におけるピエゾ電界に比べて小さい。小さいピエゾ分極により該主面上ではキャリアオーバーフローが発生しにくいので、ドナーして働く酸素をp型半導体層に添加して平坦化の効果を得ることができる。これ故に、酸素添加による平坦な表面モフォロジを有するp型半導体層に加えて、高いキャリア注入効率を提供できる。
 本発明のIII族窒化物半導体素子では、前記活性層は、交互に配列された井戸層及び障壁層を含み、前記井戸層の酸素濃度は6×1017cm-3以下であることができる。このIII族窒化物半導体素子によれば、活性層の酸素濃度が高いとき、自由キャリア吸収による光学的ロスが増加する。井戸層の酸素濃度が6×1017cm-3以下であるので、実効的な光学的ロスを避けることができ、また、井戸層の結晶品質の低下による発光効率の低下を避けることができる。
 本発明の一側面に係るIII族窒化物半導体素子では、前記主面の法線と前記基準軸との成す角度は10度以上170度以下であることができる。このIII族窒化物半導体素子によれば、非極性による寄与が適切に発揮される。この非極性は半極性及び無極性を表す。
 本発明の一側面に係るIII族窒化物半導体素子では、前記主面の法線と前記基準軸との成す角度は10度以上80度以下であり、或いは前記主面の法線と前記基準軸との成す角度は100度以上170度以下であることができる。このIII族窒化物半導体素子によれば、半極性や無極性による寄与が適切に発揮される。
 本発明の一側面に係るIII族窒化物半導体素子では、前記主面の法線と前記基準軸との成す角度は63度以上80度以下であり、或いは前記主面の法線と前記基準軸との成す角度は100度以上117度以下であることができる。このIII族窒化物半導体素子によれば、オフ角が上記の範囲にあるとき、ピエゾ分極が特に小さくなる。これ故に、キャリアオーバーフローが生じにくい。
 本発明の別の側面は、III族窒化物半導体素子のためのエピタキシャルウエハである。エピタキシャルウエハは、(a)III族窒化物半導体からなり、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす主面を有するIII族窒化物半導体基板と、(b)5×1016cm-3以上5×1018cm-3以下の酸素濃度を有しており、前記III族窒化物半導体基板の前記主面上に設けられた第1導電型窒化ガリウム系半導体層と、(c)前記第1導電型窒化ガリウム系半導体層上に設けられた発光層と、(d)前記発光層上に設けられた第2導電型窒化ガリウム系半導体層とを備える。前記主面は半極性及び無極性のいずれか一方を示す。
 このエピタキシャルウエハによれば、第1導電型窒化ガリウム系半導体層が半極性面や無極性面上に設けられると共に第1導電型窒化ガリウム系半導体層が5×1016cm-3以上の酸素を含むとき、第1導電型窒化ガリウム系半導体層の表面モフォロジが平坦になる。良好な表面モフォロジの第1導電型窒化ガリウム系半導体層上に発光層を設けることができる。また、第1導電型窒化ガリウム系半導体層の表面も非極性を示す。第1導電型窒化ガリウム系半導体層が5×1018cm-3以下の範囲を超えて酸素を含むとき、第1導電型窒化ガリウム系半導体層の結晶品質が良好ではなくなる。
 本発明の別の側面に係るエピタキシャルウエハは、別の第2導電型窒化ガリウム系半導体層を更に備えることができる。前記第2導電型窒化ガリウム系半導体層のバンドギャップは前記別の第2導電型窒化ガリウム系半導体層のバンドギャップよりも大きく、前記第2導電型窒化ガリウム系半導体層の酸素濃度は、前記発光層の酸素濃度よりも大きく、前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と前記発光層との間に設けられており、前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と接合を形成する。
 このエピタキシャルウエハによれば、第2導電型窒化ガリウム系半導体層のバンドギャップが別の第2導電型窒化ガリウム系半導体層のバンドギャップよりも大きいと共に第2導電型窒化ガリウム系半導体層が別の第2導電型窒化ガリウム系半導体層と発光層との間に設けられるので、第2導電型窒化ガリウム系半導体層は電子ブロック層として働き、また別の第2導電型窒化ガリウム系半導体層はクラッド層として働く。第2導電型窒化ガリウム系半導体層の酸素濃度が発光層の酸素濃度よりも大きいので、第2導電型窒化ガリウム系半導体層と別の第2導電型窒化ガリウム系半導体層との接合の平坦性が優れる。これ平坦性により、第2導電型窒化ガリウム系半導体層と別の第2導電型窒化ガリウム系半導体層との界面による光散乱が低減される。
 本発明の別の側面に係るエピタキシャルウエハでは、前記第2導電型窒化ガリウム系半導体層の酸素濃度は5×1016cm-3以上であり、前記第2導電型窒化ガリウム系半導体層の酸素濃度は5×1018cm-3以下である。前記第2導電型窒化ガリウム系半導体層は電子ブロック層であり、前記発光層は、交互に配列された井戸層及び障壁層を有する活性層を含み、前記発光層は、窒化ガリウム系半導体からなる光ガイド層を更に備え、該光ガイド層は、前記活性層と前記第2導電型窒化ガリウム系半導体層との間に設けられ、前記発光層の前記光ガイド層は、前記基準平面に対して傾斜する平面に沿って延在している。また、本発明の別の側面に係るエピタキシャルウエハでは、前記第2導電型窒化ガリウム系半導体層の酸素濃度は1×1017cm-3以上であることができる。
 このエピタキシャルウエハによれば、半極性面や無極性面上に、活性層、光ガイド層及び第2導電型窒化ガリウム系半導体層を設けるので、これらの半導体層におけるピエゾ電界はc面上の半導体層におけるピエゾ電界に比べて小さい。キャリア補償の観点からドナー不純物の酸素をp型半導体層に添加しないことが良いが、半極性面や無極性面による小さいピエゾ分極のため本基板主面ではキャリアオーバーフローが低減される。これ故に、第2導電型窒化ガリウム系半導体層の酸素濃度が5×1016cm-3以上5×1018cm-3以下であるけれども、キャリア注入効率の低下を避けることができる。
 本発明の別の側面に係るエピタキシャルウエハでは、前記主面の法線と前記基準軸との成す角度は10度以上80度以下であり、或いは前記主面の法線と前記基準軸との成す角度は100度以上170度以下であることができる。或いは、本発明の別の側面に係るエピタキシャルウエハでは、前記主面の法線と前記基準軸との成す角度は前記基準平面に対して63度以上80度以下であり、或いは前記主面の法線と前記基準軸との成す角度は前記基準平面に対して100度以上117度以下である。
 本発明の更なる別の側面は、III族窒化物半導体素子を作製する方法である。この方法は、(a)III族窒化物半導体からなり、主面を有するIII族窒化物半導体基板を準備する工程と、(b)III族原料及び窒素原料を成長炉に供給して、5×1016cm-3以上5×1018cm-3以下の酸素濃度を有する第1導電型窒化ガリウム系半導体層を前記III族窒化物半導体基板の前記主面上に成長する工程と、(c)III族原料及び窒素原料を前記成長炉に供給して、前記第1導電型窒化ガリウム系半導体層上に発光層を成長する工程と、(d)III族原料及び窒素原料を前記成長炉に供給して、第2導電型窒化ガリウム系半導体層を前記発光層上に成長する工程とを備える。前記主面は半極性及び無極性のいずれか一方を示し、前記第1導電型窒化ガリウム系半導体層の酸素は、前記III族原料及び前記窒素原料の少なくともいずれか一つに含まれる不純物として提供され、前記III族窒化物半導体基板の前記主面は、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす。
 この方法によれば、半極性面や無極性面上に成長された窒化ガリウム系半導体層が、5×1016cm-3以上の酸素を含むとき、この窒化ガリウム系半導体層の表面モフォロジが平坦になる。このため、第1導電型窒化ガリウム系半導体層の表面にc面が現れることなく、窒化ガリウム系半導体層の表面も基板主面に応じた極性を示す。半極性面上に成長された窒化ガリウム系半導体層が5×1018cm-3以下の範囲を超える酸素を含むとき、この窒化ガリウム系半導体層の結晶品質が良好ではなくなる。良好な表面モフォロジの第1導電型窒化ガリウム系半導体層上に発光層の成長を行うことができる。また、窒化ガリウム系半導体層が、1×1017cm-3以上の酸素を含むとき、この窒化ガリウム系半導体層の表面モフォロジがより平坦になる。
 本発明に係る方法では、前記窒素原料はアンモニアを含み、前記窒素原料は不純物として水を含む。前記発光層における酸素濃度は5×1016cm-3以上であり、前記発光層における酸素濃度は5×1018cm-3以下であり、前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1016cm-3以上であり、前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1018cm-3以下である。前記第2導電型窒化ガリウム系半導体層の酸素濃度は、前記発光層の酸素濃度よりも大きいことが良い。
 この方法によれば、酸素を含む窒化ガリウム系半導体の成長を主面上に行う際に、該主面の極性の向きに合わない特定のファセット面が成長中に出現することを抑制できる。このため、表面モフォロジが平坦になる。また、本発明に係る方法では、前記発光層における酸素濃度は1×1017cm-3以上であることができる。さらに、本発明に係る方法では、前記発光層における酸素濃度は5×1018cm-3以下であり、前記第2導電型窒化ガリウム系半導体層における酸素濃度は1×1017cm-3以上であることができる。これらの方法によれば、表面モフォロジがさらに平坦になる。
 本発明に係る方法では、前記第2導電型窒化ガリウム系半導体層の成長温度は前記1導電型窒化ガリウム系半導体層の成長温度よりも低いことが良い。この方法によれば、第2導電型窒化ガリウム系半導体層の成長温度を下げるので、発光層への熱ストレスが低減される。
 本発明に係る方法では、前記発光層はInAlGaN層を含むことができる。InAlGaN層では、アルミニウム組成により酸素濃度を調整可能であり、In組成の調整により適切なバンドギャップを得ることができる。或いは、本発明に係る方法では、前記発光層はInGaN層を含むことができる。
 本発明に係る方法では、前記窒素原料として、水分含有量500ppb%以下のアンモニアを用いることができる。また、本発明に係る方法では、前記窒素原料として、水分含有量50ppb%以下のアンモニアを用いることができる。さらに、前記窒素原料として、水分含有量1ppb%以下のアンモニアを用いることができる。
 本発明に係る方法では、前記窒素原料の原料源と前記成長炉との間に設けられた精製装置を用いて前記窒素原料の水分濃度を調整した後に、前記成長炉に前記窒素原料を供給し、前記窒素原料はアンモニアからなることができる。この発明に係る方法では、前記窒素原料の前記水分濃度は1ppb%以下であることができる。窒素原料中の水分濃度を調整することによって、半導体層中の酸素濃度を制御することができる。同様にして、半導体層中の酸素濃度を制御するのに、III族原料中の水分濃度を調整してもよい。
 本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の望ましい実施の形態の以下の詳細な記述から、より容易に明らかになる。
 以上説明したように、本発明の一側面によれば、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むIII族窒化物半導体素子を提供できる。また、本発明の別の側面によれば、このIII族窒化物半導体素子を作製する方法を提供できる。さらに、本発明の更なる別の側面によれば、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むエピタキシャル基板を提供できる。
図1は、本実施の形態に係るIII族窒化物半導体光素子を概略的に示す図面である。 図2は、本実施の形態に係るIII族窒化物半導体光素子を概略的に示す図面である。 図3は、c面及び半極性面上における、活性層、光ガイド層及びp型窒化ガリウム系半導体層におけるバンドダイアグラムを示す図面である。 図4は本実施の形態の作製方法における主要な工程における生産物を示す図面である。 図5は本実施の形態の作製方法における主要な工程における生産物を示す図面である。 図6は本実施の形態の作製方法における主要な工程における生産物を示す図面である。 図7は本実施の形態の作製方法における主要な工程における生産物を示す図面である。 図8は、実施例1における半導体レーザLD1を示す図面である。 図9は、半導体レーザLD1及び半導体レーザLDC1におけるレーザ構造のp型コンタクト層の表面モフォロジを表す微分干渉顕微鏡像を示す図面である。 図10は、実施例2における半導体レーザLD2を示す図面である。 図11は、絶対温度300度及び絶対温度10度において測定したELスペクトルを示す図面である。 図12は、実施例3における発光ダイオードを示す図面である。 図13は、実施例4におけるレーザダイオードの構造を示す図面である。 図14は、実施例4および比較例のp型コンタクト層における表面モフォロジを示す図面である。 図15は、実施例5におけるレーザダイオードの構造を示す図面である。 図16は、実施例4及びその比較例におけるレーザダイオードのI-V特性を示す図面である。
 本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明のIII族窒化物半導体素子、エピタキシャル基板、並びにエピタキシャル基板及びIII族窒化物半導体素子を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。引き続く説明では、半導体素子の一例として半導体光素子を説明する。
 図1は、本実施の形態に係るIII族窒化物半導体光素子を概略的に示す図面である。図1に示されたIII族窒化物半導体光素子は、例えば発光ダイオードに適用可能な構造を有する。III族窒化物半導体光素子11aは、III族窒化物半導体支持体13と、窒化ガリウム系半導体領域15と、活性層17と、窒化ガリウム系半導体領域19とを備える。III族窒化物半導体支持体13は、例えばGaN、InGaN、AlGaNといったIII族窒化物半導体からなる。III族窒化物半導体支持体13は主面13a及び裏面13bを含む。III族窒化物半導体支持体13の主面13aは、非極性を示す。この非極性は、半極性及び無極性のいずれかを表す。
 III族窒化物半導体支持体13が無極性の主面13aを有するとき、主面13aは、III族窒化物半導体のa面、m面であることができ、或いはc軸の回りに関する回転によりa面又はm面から傾斜した面であることができる。III族窒化物半導体支持体13が半極性の主面13aを有するとき、III族窒化物半導体支持体13の主面13aは、基準軸Cxに直交する基準平面Scに対して傾斜する半極性を示しており、基準軸CxはIII族窒化物半導体のc軸方向に延びる。
 基準平面Scは例えば代表的なc面を示している。基準平面Scはc軸ベクトルVCに直交しており、主面13aには法線ベクトルVNが示されている。c軸ベクトルVCは法線ベクトルVNに対して角度Aoffの角度を成す。この角度Aoffはc面に対するオフ角と呼ばれる。図1を参照すると、III族窒化物半導体の六法晶系の結晶軸a軸、m軸及びc軸を示す結晶座標系CRが示されており、六法晶におけるc面を「(0001)」を表記し、「(000-1)」と表記される面方位は(0001)面に対して反対を向く。また、直交座標系Sは、幾何学座標軸X、Y、Zを示す。傾斜の方向は例えばa軸またはm軸であることができる。窒化ガリウム系半導体領域15、活性層17及び窒化ガリウム系半導体領域19は非極性主面上に軸Axに沿って配列されている。主面13aの法線ベクトルVNと基準軸Cxとの成す角度は基準平面Scに対して10度以上170度以下であることができる。
 窒化ガリウム系半導体領域15は主面上13aに設けられている。窒化ガリウム系半導体領域15は、5×1016cm-3以上5×1018cm-3以下の酸素濃度を有する。酸素濃度は、例えば原料中の不純物濃度、基板のオフ角、成長温度、混晶の組成等により制御可能である。また、窒化ガリウム系半導体領域15の酸素濃度は、1×1017cm-3以上であることがさらに良い。窒化ガリウム系半導体領域15は一または複数の窒化ガリウム系半導体層を含むことができる。本実施例では、窒化ガリウム系半導体領域15は第1導電型窒化ガリウム系半導体層21及び窒化ガリウム系半導体層23からなる。窒化ガリウム系半導体層21は例えばn型半導体層であり、窒化ガリウム系半導体層23は例えば緩衝層であることができる。第1導電型窒化ガリウム系半導体層21は例えばn型窒化ガリウム系半導体からなり、n型窒化ガリウム系半導体には、例えばシリコンといったn型ドーパントが添加されている。n型窒化ガリウム系半導体は、例えばGaN、AlGaN、InGaN、InAlGaN等からなることができる。窒化ガリウム系半導体層23は例えばアンドープ窒化ガリウム系半導体からなる。窒化ガリウム系半導体は、例えばInGaN、InAlGaN、GaN等からなることができる。窒化ガリウム系半導体層23が5×1016cm-3以上の酸素濃度を有するとき、窒化ガリウム系半導体層23の主面上に引き続き成長される活性層17の結晶品質が良好になる。また、窒化ガリウム系半導体層23とこの半導体層の主面上に成長される窒化ガリウム系半導体との界面が良好になる。また、窒化ガリウム系半導体層23が1×1017cm-3以上の酸素濃度を有するとき、窒化ガリウム系半導体層23の主面上に引き続き成長される活性層17の結晶品質がさらに良好になる。
 また、窒化ガリウム系半導体領域19は一または複数の窒化ガリウム系半導体層を含むことができ、本実施例では、窒化ガリウム系半導体領域19は窒化ガリウム系半導体層25及び第2導電型窒化ガリウム系半導体層27からなる。窒化ガリウム系半導体層25は例えばアンドープまたはp型窒化ガリウム系半導体からなることができる。第2導電型窒化ガリウム系半導体層27は例えばp型窒化ガリウム系半導体からなり、p型窒化ガリウム系半導体には、例えばマグネシウムといったp型ドーパントが添加されている。p型窒化ガリウム系半導体は、例えばGaN、AlGaN、InAlGaN、InGaN等からなることができる。第2導電型窒化ガリウム系半導体層25は例えば電子ブロック層であり、窒化ガリウム系半導体層27は例えばp型コンタクト層であることができる。窒化ガリウム系半導体層21と窒化ガリウム系半導体層27との間には、活性層17が設けられる。活性層17は窒化ガリウム系半導体領域15上に設けられており、窒化ガリウム系半導体領域19は活性層17上に設けられる。
 このIII族窒化物半導体光素子11aによれば、窒化ガリウム系半導体領域15が主面13a上に設けられると共に窒化ガリウム系半導体領域15が5×1016cm-3以上の酸素を含むとき、窒化ガリウム系半導体領域15の主面15aにおける表面モフォロジが平坦になる。また、窒化ガリウム系半導体領域15が1×1017cm-3以上の酸素を含むとき、主面15aにおける表面モフォロジがさらに平坦になる。このため、窒化ガリウム系半導体領域15の表面15aにc面ファセットが現れることなく、窒化ガリウム系半導体領域15の表面15aの全体が、基板主面13aの極性特性(半極性、無極性)に応じた極性特性を示す。窒化ガリウム系半導体領域15が5×1018cm-3以下の範囲を超えた酸素を含むとき、窒化ガリウム系半導体領域15の結晶品質が良好ではなくなる。上記の酸素濃度の範囲では、良好な表面モフォロジの窒化ガリウム系半導体領域15上に活性層17を設けることができる。これ故に、窒化ガリウム系半導体領域15と活性層17との界面31aが平坦になる。
 酸素の添加は、非c面の生成を安定化させていると考えられる。これ故に、主面上への窒化ガリウム系半導体領域15の成長では成長面の非極性(半極性及び無極性のいずれか)を保ちながら結晶成長を行うことができる。この結果、表面モフォロジが良好になる。酸素の供給源としては、意図的にドーパントとして添加することを排除するものではないが、原料ガスに含まれている不純物量を管理することによって、原料ガスの不純物を利用できる。半極性面や無極性面に取り込まれる酸素量を制御することによって、活性層17の下地となる窒化ガリウム系半導体領域の表面モフォロジを平坦にできる。
 活性層17が5×1016cm-3以上の酸素を含むとき、活性層17の表面モフォロジが平坦になる。活性層17が5×1018cm-3以下の酸素を含むとき、活性層17の結晶品質が良好である。活性層17の表面の平坦性の向上により、発光ダイオードでは発光の不均一が低減可能になる。また、活性層17が1×1017cm-3以上の酸素を含むとき、活性層17の表面モフォロジがさらに平坦になる。この更なる平坦性向上により、発光ダイオードでは発光の不均一がさらに低減可能になる。
 III族窒化物半導体光素子11aの活性層17は、交互に配列された井戸層29a及び障壁層29bを含む量子井戸構造29を有することができる。井戸層29aは、例えばGaN、AlGaN、InGaN、InAlGaN等からなることができ、障壁層29bは、例えばGaN、AlGaN、InGaN、InAlGaN等からなることができる。活性層17の井戸層29aの酸素濃度は、6×10cm-3以下であることができる。井戸層29aの酸素濃度が高いとき、自由キャリア吸収による光学的ロスが増加する。井戸層29aの酸素濃度が6×10cm-3以下であるので、光学的ロスを避けることができ、また、井戸層29aの結晶品質の低下による発光効率の低下を避けることができる。また、障壁層29bの酸素濃度は井戸層29aの酸素濃度以上であるとき、障壁層29bの表面モフォロジが良好になる。良好な表面モフォロジの障壁層29b上に井戸層29aを成長できる。
 活性層17はInAlGaN層を含むことができ、このInAlGaN層は、井戸層29a及び/又は障壁層29bとして用いられる。InAlGaN層では、アルミニウム組成により酸素濃度を調整可能であり、In組成の調整により適切なバンドギャップを得ることができる。或いは、活性層17はInGaN層を含むことができ、このInGaN層は、井戸層29a及び/又は障壁層29bとして用いられる。InGaN層ではバンドギャップの調整が容易であり、酸素濃度の調整は原料の不純物濃度や成長温度といった成長条件によって行う。
 活性層17の酸素濃度は5×1016cm-3以上であるとき、引き続き活性層17の主面上に成長される第2導電型窒化ガリウム系半導体層25、27の結晶品質が良好になる。また、活性層17とこの半導体層の主面上に成長される窒化ガリウム系半導体との界面が平坦になる。さらに、活性層17の酸素濃度は1×1017cm-3以上であるとき、第2導電型窒化ガリウム系半導体層25、27の結晶品質および上記の界面平坦性がさらに優れたものになる。
 窒化ガリウム系半導体層25が5×1016cm-3以上の酸素を含むとき、窒化ガリウム系半導体層25の表面モフォロジが平坦になる。また、窒化ガリウム系半導体層25が1×1017cm-3以上の酸素を含むとき、窒化ガリウム系半導体層25の表面モフォロジがさらに平坦になる。窒化ガリウム系半導体層25の酸素濃度は5×1018cm-3以下であることができる。5×1018cm-3を越える酸素濃度は窒化ガリウム系半導体層25の結晶品質を低下させる可能性がある。
 また、窒化ガリウム系半導体層27が5×1016cm-3以上の酸素を含むとき、窒化ガリウム系半導体層27の表面モフォロジが平坦になる。また、窒化ガリウム系半導体層27が1×1017cm-3以上の酸素を含むとき、窒化ガリウム系半導体層27の表面モフォロジがさらに平坦になる。窒化ガリウム系半導体層27の酸素濃度は5×1018cm-3以下であることができる。5×1018cm-3を越える酸素濃度は、窒化ガリウム系半導体層27の結晶品質を低下させる。窒化ガリウム系半導体層25の酸素濃度が窒化ガリウム系半導体層27の酸素濃度より大きいとき、窒化ガリウム系半導体層25の表面モフォロジが平坦になるため、その上に形成される窒化ガリウム系半導体層27の結晶品質が優れたものになる。窒化ガリウム系半導体層25の酸素濃度が窒化ガリウム系半導体層27の酸素濃度より小さいとき、窒化ガリウム系半導体層25において酸素によるp型電導の補償の影響が低減され、キャリア注入効率が優れたものになる。
 半極性面や無極性面上に設けられる窒化ガリウム系半導体では、窒化ガリウム系半導体に取り込まれる炭素濃度が高いとき、安定なc面ファセットが出現しやすくなる。窒化ガリウム系半導体の炭素濃度を下げることにより、窒化ガリウム系半導体にファセットの発生を避けることができる。これ故に、窒化ガリウム系半導体層21、23の炭素濃度は5×1018cm-3以下であることが良い。窒化ガリウム系半導体層25、27の炭素濃度は5×1018cm-3以下であり、活性層17の炭素濃度は5×1018cm-3以下であることができる。炭素は例えば有機金属原料から供給される。炭素濃度は、原料中の不純物濃度、炭素をドープするための原料ガス、基板のオフ角、成長温度、成長圧力等により制御可能である。
 このIII族窒化物半導体光素子11aによれば、窒化ガリウム系半導体層(例えば、電子ブロック層)25のバンドギャップは窒化ガリウム系半導体層(例えば、p型コンタクト層)27のバンドギャップよりも大きく、また窒化ガリウム系半導体層25は窒化ガリウム系半導体層27と活性層17との間に設けられている。窒化ガリウム系半導体層25は窒化ガリウム系半導体層27と接合31bを形成する。窒化ガリウム系半導体層25の酸素濃度は、活性層17の酸素濃度よりも大きいので、接合面31bが平坦になる。
 III族窒化物半導体光素子11aでは、窒化ガリウム系半導体層27上には、第1の電極(例えばアノード)33が設けられる。窒化ガリウム系半導体層25が平坦な接合面31a上に設けられるので、窒化ガリウム系半導体層25が良好な結晶品質を有する。これ故に、良好なコンタクト特性が提供される。
 III族窒化物半導体光素子11aでは、主面13aの角度Aoffは基準平面Scに対して10度以上80度以下であることができる。主面13aの角度Aoffは基準平面Scに対して100度以上170度以下であることができる。このIII族窒化物半導体光素子11aによれば、半極性による寄与が適切に発揮される。支持基体13の裏面13b上には、第2の電極(例えばカソード)35が設けられる。また、III族窒化物半導体光素子11aでは、主面13aが無極性面であることができる。このIII族窒化物半導体光素子11aによれば、無極性による寄与が適切に発揮される。
 III族窒化物半導体光素子11aでは、このIII族窒化物半導体光素子11aによれば、主面13a上に、活性層17及び窒化ガリウム系半導体層27を設けるので、これらの半導体層におけるピエゾ電界はc面上における半導体層におけるピエゾ電界に比べて小さい。酸素はドナーして働くので、p型半導体層に添加しないことが良いけれども、適切な範囲の酸素の添加により、良好なコンタクト特性が提供される。
 III族窒化物半導体光素子11aでは、傾斜の角度Aoffは基準平面Scに対して63度以上80度以下であることができる。また、角度Aoffは基準平面Aoffに対して100度以上117度以下であることができる。このIII族窒化物半導体光素子11aによれば、オフ角が上記の範囲にあるとき、ピエゾ分極が特に小さくなる。
 図2は、本実施の形態に係るIII族窒化物半導体光素子を概略的に示す図面である。図2に示されたIII族窒化物半導体光素子は、例えば半導体レーザに適用可能な構造を有する。III族窒化物半導体光素子11bは、III族窒化物半導体支持体13と、窒化ガリウム系半導体領域15と、発光層37と、窒化ガリウム系半導体領域19とを備える。本実施例では、発光層37は、活性層17と、第1及び第2の光ガイド層39、41を含むことができる。活性層17は、第1の光ガイド層39と第2の光ガイド層41との間に設けられている。光ガイド層39、41は窒化ガリウム系半導体からなり、この窒化ガリウム系半導体は例えばアンドープであることができる。
 このIII族窒化物半導体光素子11bによれば、半極性面や無極性面上に、活性層17、光ガイド層39、41及び窒化ガリウム系半導体層19を設けるので、これらの半導体層におけるピエゾ電界は、図3の(a)部及び図3の(b)部に示されるように、c面上における半導体層におけるピエゾ電界に比べて小さい。酸素はドナーして働くので、p型半導体層に添加しないことが良いけれども、小さいピエゾ分極により半極性面や無極性面上ではキャリアオーバーフローが発生しにくい。これ故に、酸素濃度が高めであるけれども、キャリア注入効率の低下が抑制される。
 第1及び第2の光ガイド層39、41の各々は、既に説明した理由に基づき、5×1016cm-3以上の酸素濃度を有することが良い。第1及び第2の光ガイド層39、41の各々は、既に説明した理由に基づき、5×1018cm-3以下の酸素濃度であることが良い。
 窒化ガリウム系半導体領域19は、窒化ガリウム系半導体層25、27に加えて、更なる別の第2導電型窒化ガリウム系半導体層43を含むことができる。窒化ガリウム系半導体層43は例えばp型窒化ガリウム系半導体からなり、p型窒化ガリウム系半導体には、例えばマグネシウムといったp型ドーパントが添加されている。p型窒化ガリウム系半導体は、例えばGaN、AlGaN、InAlGaN等からなることができる。窒化ガリウム系半導体層43は例えばp型クラッド層であることができる。
 窒化ガリウム系半導体領域15は、窒化ガリウム系半導体層45を含むことができる。窒化ガリウム系半導体層45は例えばn型窒化ガリウム系半導体からなり、n型窒化ガリウム系半導体には、例えばシリコンといったn型ドーパントが添加されている。n型窒化ガリウム系半導体は、例えばGaN、AlGaN、InAlGaN等からなることができる。窒化ガリウム系半導体層45は例えばn型クラッド層であることができる。
 窒化ガリウム系半導体層(例えばn型クラッド層)45と窒化ガリウム系半導体層(例えばp型クラッド層)43との間には、発光層37が設けられる。窒化ガリウム系半導体層45及び窒化ガリウム系半導体層43の屈折率は、光ガイド層39、41の屈折率よりも小さい。窒化ガリウム系半導体層45及び窒化ガリウム系半導体層43は、発光層37に光を閉じ込める。
 窒化ガリウム系半導体層25のバンドギャップは窒化ガリウム系半導体層43のバンドギャップよりも大きい。窒化ガリウム系半導体層25は窒化ガリウム系半導体層43と接合45aを形成する。窒化ガリウム系半導体層25の酸素濃度は、発光層37の酸素濃度よりも大きいとき、接合面45aが平坦になり、これ故に、この界面45aにおける散乱ロスが低減される。また、発光層37は窒化ガリウム系半導体領域19と接合45cを成す。
 また、窒化ガリウム系半導体領域15は発光層37と接合45bを形成する。窒化ガリウム系半導体領域15の酸素濃度は、発光層37の酸素濃度よりも大きくするので、窒化ガリウム系半導体領域15の表面モフォロジが良好であり、また接合45bが平坦になる。これ故に、この界面45bにおける散乱ロスが低減される。
 III族窒化物半導体光素子11bでは、窒化ガリウム系半導体層27上には、保護のための絶縁膜47が設けられている。絶縁膜47は、ストライブ状の開口47aを有する。絶縁膜47及び開口47a上に第1の電極(例えばアノード)49aが設けられる。支持基体13の裏面13b上には、第2の電極(例えばカソード)49bが設けられる。窒化ガリウム系半導体層27が平坦なモフォロジの窒化ガリウム系半導体層43上に設けられるので、窒化ガリウム系半導体層27が良好な結晶品質を有し、良好なコンタクト特性が提供される。窒化ガリウム系半導体層43は窒化ガリウム系半導体層27と接合45dを形成する。この接合面45dが平坦である。
 III族窒化物半導体光素子11bでは、傾斜の角度Aoffは基準平面Scに対して63度以上80度以下及び100度以上117度以下の範囲であるとき、キャリアオーバーフローが生じにくい。
 このIII族窒化物半導体光素子11bは例えば利得ガイド型レーザダイオードの構造を有する。III族窒化物半導体光素子11bは、一対の端面50a、50bを有することができる。端面50a、50bは、共振器を形成するために劈開面であることが良い。III族窒化物半導体光素子11bによるレーザ光Lは、端面50a、50bの一方から出射される。
 次いで、エピタキシャル基板及びIII族窒化物半導体光素子を作製する方法を説明する。図4~図7は、上記の作製方法における主要な工程における生産物を示す図面である。
 有機金属気相成長法により発光素子のエピタキシャル構造を作製した。原料にはトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)、アンモニア(NH)を用いた。ドーパントガスとして、シラン(SiH)及びビスシクロペンタジエニルマグネシウム(CPMg)を用いた。引き続く説明では、例えば半極性主面を有するIII族窒化物半導体基板として、六方晶系半極性窒化ガリウム基板を用いることができる。また、例えば無極性主面を有するIII族窒化物半導体基板として、六方晶系無極性窒化ガリウム基板を用いることができる。以下の説明において、n型ドーパントとしての酸素は、III族原料及び窒素原料の少なくともいずれか一つに含まれる不純物として提供される。引き続く説明では、六方晶系半極性窒化ガリウム基板を参照しながら説明する。
 工程S101では、図4の(a)部に示されるように、窒化ガリウム基板を準備した。窒化ガリウム基板の主面はc面からm面方向又はa面方向に10~80度の角度で傾斜している。窒化ガリウム基板の主面の面積は、例えば25平方ミリメートル以上であり、このサイズは例えば5ミリメートル角に相当する。窒化ガリウム基板51の主面51aのサイズは、例えば2インチ以上であることが良い。反応炉10内にGaN基板51を設置した後に、工程S102では、図4の(b)部に示されるように、GaN基板51のサーマルクリーニングを成長炉10を用いて行う。摂氏1050度の温度で、NHとHを含むガスG0を成長炉10に流しながら、10分間の熱処理を行う。
 工程S103では、図4の(c)部に示されるように、III族原料及び窒素原料を含む原料ガスG1を成長炉10に供給して、GaN基板51の主面51a上に、n型の窒化ガリウム系半導体領域53をエピタキシャルに成長する。原料ガスG1は、例えばTMG、TMA、NH、SiHを含む。窒化ガリウム系半導体領域53として、例えば摂氏1050度の温度でSiドープAlGaNクラッド層を成長する。このAlGaN層の厚さは例えば2μmである。窒化ガリウム系半導体領域53の酸素濃度は、例えば5×1016cm-3以上5×1018cm-3以下の範囲である。この方法によれば、酸素を含む窒化ガリウム系半導体の成長を半極性面上に行う際に、半極性面に合わない特定のファセット面が成長中に出現することを抑制する。このため、表面モフォロジが平坦になる。引き続く成長においても、酸素の添加により、特定のファセット面が成長中に出現することを抑制できる。また、窒化ガリウム系半導体領域53の炭素濃度は5×1018cm-3以下であるとき、窒化ガリウム系半導体にファセットの発生を避けることができる。また、窒化ガリウム系半導体領域53の酸素濃度は、例えば1×1017cm-3以上であるとき、より平坦な表面モフォロジ及びファセット面の抑制が提供される。
 次いで、摂氏840度に基板温度を下げた後に、工程S104では、図5の(a)部に示されるように、III族原料及び窒素原料を含む原料ガスG2を成長炉10に供給して、アンドープInGaN光ガイド層55aをエピタキシャルに成長する。原料ガスG2は、例えばTMG、TMI、NHを含む。InGaN光ガイド層55aの酸素濃度は、例えば5×1016cm-3以上5×1018cm-3以下の範囲である。InGaN光ガイド層55aの厚さは、100nmである。また、InGaN光ガイド層55aの酸素濃度は、例えば1×1017cm-3以上であることが良い。
 引き続き、量子井戸構造を有する活性層を成長する。この活性層における平均酸素濃度は5×1016cm-3以上であり、活性層における平均酸素濃度は5×1018cm-3以下である。また、この平均酸素濃度は1×1017cm-3以上であることができる。工程S105では、図5の(b)部に示されるように、III族原料及び窒素原料を含む原料ガスG3を成長炉10に供給して、摂氏840度の基板温度で、GaN障壁層57をInGaN光ガイド層55a上に成長する。原料ガスG2は、例えばTMG、NHを含む。このGaN層57の厚さは例えば15nmである。
 この後に摂氏790度に基板温度を下げた後に、工程S106では、図5の(c)部に示されるように、III族原料及び窒素原料を含む原料ガスG4を成長炉10に供給して、GaN障壁層57上に、アンドープInGaN井戸層59をエピタキシャルに成長する。原料ガスG4は、例えばTMG、TMI、NHを含む。InGaN井戸層59の酸素濃度は、例えば6×1017cm-3以下であることが良い。井戸層59の厚さは例えば3nmである。
 その後、摂氏840度まで基板温度を上げた後に、厚さ15nmのGaN障壁層57を成長する。必要な場合には、障壁層57の成長及び井戸層59の成長を繰り返す。さらに、工程S107で、摂氏840度の基板温度で、III族原料及び窒素原料を含む原料ガスG5を成長炉10に供給して、光ガイド層55aと同様に、アンドープInGaN光ガイド層55bをエピタキシャルに成長して、図6の(a)部に示されるように、活性層61及び発光層63を作製する。発光層63の炭素濃度は5×1018cm-3以下であるとき、窒化ガリウム系半導体にファセットの発生を避けることができる。
 次いで、III族原料及び窒素原料を前記成長炉に供給して、第2導電型窒化ガリウム系半導体領域を発光層63上に成長する。このために、工程S108では、基板温度を摂氏1000度に上昇した後に、III族原料及び窒素原料を含む原料ガスG6を成長炉10に導入して、図6の(b)部に示されるように、発光層63上に、電子ブロック層65をエピタキシャルに成長する。原料ガスG6は、例えばTMG、TMA、NH、CPMgを含む。電子ブロック層65の厚さは例えば20nmである。
 次いで、工程S109において、III族原料及び窒素原料を含む原料ガスG7を成長炉10に導入して、図7の(a)部に示されるように、電子ブロック層65上に、p型クラッド層67をエピタキシャルに成長する。原料ガスG7は、例えばTMG、TMA、NH、CPMgを含む。p型クラッド層67の厚さは例えば400nmである。
 続けて、工程S110において、III族原料及び窒素原料を含む原料ガスG8を成長炉10に導入して、図7の(b)部に示されるように、p型クラッド層67上にp型コンタクト層69をエピタキシャルに成長する。原料ガスG8は、例えばTMG、NH、CPMgを含む。p型コンタクト層69の厚さは例えば50nmである。
 窒化ガリウム系半導体層65、67、69の酸素濃度は5×1016cm-3以上であり、窒化ガリウム系半導体層65、67、69の酸素濃度は5×1018cm-3以下である。また、酸素濃度は1×1017cm-3以上であることができる。窒化ガリウム系半導体層65、67、69の酸素濃度は、発光層63の酸素濃度よりも大きいことが良い。また、窒化ガリウム系半導体領域70の炭素濃度は5×1018cm-3以下であるとき、窒化ガリウム系半導体にファセットの発生を避けることができる。
 ここで、発光層とn型窒化ガリウム系半導体層のモフォロジと酸素ドーピングについて説明する。InGaN井戸層の成長温度は低く、原子がマイレーションしにくいので、島状に成長する傾向にある。一方、n型GaN、AlGaNといった窒化ガリウム系半導体の成長温度は高いので、ステップフロー成長を得やすい。酸素ドーピングによってモフォロジが平坦化する効果は、上述の島状、ステップフロー成長といった成長モードとは異なる。酸素のドーピングにより、半極性面が安定化される。例えば窒化ガリウムの結晶成長においてc面は安定な面であると考えられており、半極性面上への窒化ガリウムの結晶成長において、ファセット面としてc面が生成されやすい。c面の生成は、半極性面上でのエピタキシャル成長において、モフォロジを悪化させる。酸素のドーピングにより、半極性面上でのエピタキシャル成長においてモフォロジを悪化させるファセット面の生成を抑制できる。
 基板温度を室温まで降温した後に、エピタキシャル基板EP1を成長炉から取り出す。エピタキシャル基板EP1は、III族窒化物半導体基板51と、第1導電型窒化ガリウム系半導体領域53と、発光層63と、第2導電型窒化ガリウム系半導体領域70とを備える。このエピタキシャル基板EP1によれば、窒化ガリウム系半導体領域53、70が5×1016cm-3以上の酸素を含むとき、窒化ガリウム系半導体領域53、70の表面モフォロジが平坦になる。このため、窒化ガリウム系半導体領域53、70の表面にc面が現れることなく、窒化ガリウム系半導体領域53、70の表面も半極性を示す。窒化ガリウム系半導体領域53、70が1×1017cm-3以上の酸素を含むとき、上記の技術的な寄与が優れたものになる。窒化ガリウム系半導体領域53、70が5×1018cm-3以下の範囲を超えた酸素を含むとき、窒化ガリウム系半導体領域53、70の結晶品質が良好ではなくなる。良好な表面モフォロジの窒化ガリウム系半導体領域53上に発光層63を設けることができる。
 エピタキシャル基板EP1のp型窒化ガリウム系半導体領域70上にアノード電極を形成してp型コンタクト層69に電気的な接続を成すと共に基板51の裏面51bを必要に応じて研磨した後に研磨裏面にカソード電極を形成する。これらの電極は、例えば蒸着により作製される。
 n型窒化ガリウム系半導体領域53の酸素濃度が、発光層63及びp型窒化ガリウム系半導体領域70の酸素濃度よりも大きいとき、発光素子のエピタキシャル膜積層において半導体領域53が最も厚いので、モフォロジ改善への寄与が大きい。酸素がn型ドーパントであるので、酸素の添加によりキャリアの補償が生じることがない。発光層63の酸素濃度が低いとき、発光層63の発光効率が向上される。酸素濃度がn型ドーパントであるので、p型窒化ガリウム系半導体領域70の酸素濃度が低いとき、酸素の添加によるキャリアの補償の影響が小さい。
 発光層63の酸素濃度がp型窒化ガリウム系半導体領域70の酸素濃度よりも大きいとき、発光層63のモフォロジ改善はp型窒化ガリウム系半導体領域70の結晶品質の改善に寄与する。p型窒化ガリウム系半導体領域70の酸素濃度が低いとき、キャリア濃度が大きい。
 p型窒化ガリウム系半導体領域70の酸素濃度が、発光層63の酸素濃度よりも小さいとき、マグネシウム(Mg)の添加により平坦性が損なわれやすいけれども、酸素の添加により、この半導体領域70の平坦性が改善できる。発光層63の酸素濃度が低いとき、発光層63の発光効率が良好になる。p型窒化ガリウム系半導体領域70の成長温度を下げてこの半導体領域70の酸素濃度を高めるとき、発光層63への熱的ストレスが低減される。
 p型窒化ガリウム系半導体領域70の酸素濃度が、n型窒化ガリウム系半導体領域53よりも大きいとき、酸素の添加により、この半導体領域70の平坦性が改善できる。p型窒化ガリウム系半導体領域70のAl増加により酸素濃度を高めるとき、レーザダイオードにおける光閉じ込め性が向上される。p型窒化ガリウム系半導体領域70の成長温度を下げてこの半導体領域70の酸素濃度を高めるとき、発光層63への熱的ストレスが低減される。
 (実施例1)
レーザダイオードLD1を作製した。m軸方向に75度の角度θ1で傾斜させた半極性主面を有するGaN基板71を準備した。この半極性主面は(20-21)面に相当する。GaN基板71を成長炉に配置した後に、成長炉にアンモニア(NH)及び水素(H)を供給して、摂氏1050度の雰囲気にGaN基板71を保持した。保持時間は10分であった。この前処理(サーマルクリーニング)の後に、原料ガスを成長炉に供給して以下のレーザ構造を作製した。まず、n型Al0.04Ga0.96Nクラッド層72を摂氏1050度で成長した。摂氏840度に基板温度を下げた後にIn0.03Ga0.97N光ガイド層73aを成長した。In0.03Ga0.97N光ガイド層73a上に量子井戸活性層74を成長した。さらに、摂氏840度に基板温度で、この活性層74上にIn0.03Ga0.97N光ガイド層73bを成長した。摂氏1000度に基板温度を上昇した後に、Al0.12Ga0.88N電子ブロック層78、p型Al0.06Ga0.94Nクラッド層75及びp型GaNコンタクト層76を成長した。このレーザ構造のフォトルミネッセンス波長は450nm帯にあった。このレーザ構造において表面モフォロジに最も大きく影響するものは、GaN基板71の直上に位置しかつ大きな膜厚のクラッド層である。この実施例ではクラッド層72の酸素濃度は3×1017cm-3であった。コンタクト層76には絶縁膜77の開口を介してアノードを形成すると共にGaN基板71の裏面71bにカソードを形成して、図8に示される半導体レーザLD1を作製した。
 摂氏1150度の成長温度でn型Al0.04Ga0.96Nクラッド層を成長して、半導体レーザLD0を作製した。このクラッド層の酸素濃度を9×1016cm-3であった。図9の(a)部は、半導体レーザLD1におけるレーザ構造のp型GaNコンタクト層の表面モフォロジを示す。図9の(b)部は、半導体レーザLD0におけるレーザ構造のp型コンタクト層も表面モフォロジを示す。半導体レーザLD0におけるレーザ構造のp型コンタクト層は、良好な表面モフォロジを示す。高い酸素濃度のn型AlGaNクラッド層を含む半導体レーザLD1では、半極性面が安定化されたと考えられる。これらのレーザ構造の比較により、半導体レーザLD1におけるレーザ構造はより平坦なモフォロジを示した。
 (実施例2)
レーザダイオードを作製した。m軸方向に75度の角度θ2で傾斜させた半極性主面を有するGaN基板81を準備した。この半極性主面は(20-21)面に相当する。GaN基板81を成長炉に配置した後に、成長炉にアンモニア(NH)及び水素(H)を供給して、摂氏1050度の雰囲気にGaN基板81を保持した。保持時間は10分であった。このサーマルクリーニングの後に、原料ガスを成長炉に供給して以下のレーザ構造を作製した。まず、n型Al0.04Ga0.96Nクラッド層82を摂氏1050度で成長した。摂氏840度に基板温度を下げた後に、厚さ100nmのIn0.02Ga0.98N光ガイド層83aを成長した。光ガイド層83上に量子井戸活性層84を成長した。さらに、摂氏840度に基板温度で、この活性層84上にIn0.02Ga0.98N光ガイド層83bを成長した。摂氏1000度に基板温度を上昇した後に、Al0.12Ga0.88N電子ブロック層85、p型Al0.06Ga0.94Nクラッド層86及びp型GaNコンタクト層87を成長した。このレーザ構造のフォトルミネッセンス波長は405nm帯にあった。
 コンタクト層87には絶縁膜(例えばSiO2)88のストライプ窓(幅10μm)を介してアノード89aを形成すると共にGaN基板81の裏面81aにカソード89bを形成した。この後に、800μm間隔でa面でへき開して、図10に示されるゲインガイド型半導体レーザLD2を作製した。
 この実施例では、n型クラッド層の酸素濃度は3×1017cm-3であった。量子井戸活性層84の酸素濃度は2×1017cm-3であった。p型電子ブロック層85の酸素濃度は1×1018cm-3であった。p型クラッド層86の酸素濃度は7×1017cm-3であった。この構造では、p層の酸素濃度が発光層よりも高い。
 比較のために、同じ成膜条件で、c面GaN基板上にもLD構造を作製した。同じ成膜条件でc面上への成長においては、GaN系半導体への酸素の取り込み量が異なり、酸素濃度は全エピタキシャル層で1×1017cm-3以下であった。また、m面でへき開を行って、共振器ミラーを有するゲインガイド型半導体レーザLDC2を作製した。
 これらの半導体レーザLD2、LDC2に電流2mAを印加して、エレクトロルミネッセンス(EL)を絶対温度300度(300K)と絶対温度10度(10K)において測定した。図11の(a)部は、絶対温度300度において測定したELスペクトルを示し、図11の(b)部は、絶対温度10度において測定したELスペクトルを示す。ELスペクトルELS(300)及びELS(10)は実施例の半導体レーザLD2において測定され、ELスペクトルELC(300)及びELC(10)は、比較例の半導体レーザLDC2において測定された。温度300K及び10KにおけるELスペクトルを比較した。温度300Kでは、いずれの半導体レーザLD2、LDC2のELスペクトルELS(300)及びELC(300)は、405nm付近にMQWに起因するピークを有する。一方、測定温度10Kでは、実施例の半導体レーザLD2のELスペクトルは単一のピークを示したが、比較例の半導体レーザLDC2は、MQWピークの他にp型半導体層におけるドナーアクセプタ対(DAP)発光を有する。これは、比較例ではホールが枯渇する低温において電子がp型半導体層へオーバーフローしていることを示す。
 本実施例の半導体レーザLD2では、p型半導体層にドナーとして働く酸素を発光層よりも高い濃度でドープしているけれども、良好なキャリア注入効率を示す。p型半導体層の平坦性はMg添加によって損なわれやすい。しかし、適正な範囲で酸素を添加することによって、表面平坦性とキャリア注入効率の両方が提供される。p型半導体層の平坦性を改善し、電子ブロック層/クラッド層の界面の急峻性を高めることは、半導体レーザの共振器を伝搬する光の散乱ロス低減につながる。
 (実施例3)
発光ダイオードを作製した。a軸方向に18度の角度θ3で傾斜させた半極性主面を有するGaN基板91を準備した。GaN基板91を成長炉に配置した後に、成長炉にアンモニア(NH)及び水素(H)を供給して、摂氏1050度の雰囲気にGaN基板91を保持した。保持時間は10分であった。このサーマルクリーニングの後に、原料ガスを成長炉に供給して以下の発光ダイオード構造を作製した。まず、厚さ2μmのn型GaN層92を摂氏1050度で成長した。摂氏840度に基板温度を下げた後にIn0.04Ga0.96N緩衝層93を成長した。厚さ100nmの緩衝層93上に量子井戸活性層94を成長した。具体的には、摂氏840度の基板温度で厚さ15nmのGaN障壁層94aを成長すると共に摂氏700度の基板温度で厚さ3nmのInAlGaN井戸層94bを成長して、活性層94を形成した。摂氏1000度に基板温度を上昇した後に、この活性層94上に厚さ20nmのp型Al0.18Ga0.82N電子ブロック層95及び厚さ50nmのp型GaNコンタクト層96を成長した。コンタクト層96にはアノード(Ni/Au)97とパッド電極99aを形成すると共に基板91の裏面91bにカソード(Ti/Al)を形成して、図12に示される発光ダイオードLED1を作製した。異なるインジウム組成のInAlGaN井戸層を有する発光ダイオード構造を作製した。井戸層の酸素濃度と光出力との関係を調べた。
LED構造、In組成、Al組成、酸素濃度(cm-3)、光出力
LED1 :0.18、0、   2×1017、    1
LED2 :0.19、0.03、4×1017、    0.85
LED3 :0.20、0.06、1×1018、    0.54。
450nm付近の発光波長を得るように、井戸層のIn組成を変更した。井戸層中の酸素濃度が増加するに従い、発光出力は低下した。これは、酸素の添加が井戸層の結晶品質を低下させたと考えられる。井戸層のAlは酸素を吸着しやすくまた低温(井戸層にInが取り込まれるような温度)で吸着した酸素が脱離しにくいことを利用して、井戸層の酸素濃度を制御した。
 (実施例4)
m面主面を有するGaN基板を準備した。このGaN基板上にレーザダイオードLD3を作製した。図13は、実施例4におけるレーザダイオードの構造を示す図面である。GaN基板101を成長炉に配置した後に、成長炉にアンモニア(NH)及び水素(H)を供給して、摂氏1050度の雰囲気でサーマルクリーニングを行った後に、実施例1と同様にして、以下のレーザ構造をGaN基板101の無極性主面101a上に作製した。
Al0.04Ga0.96Nクラッド層102:n型、2μm、
In0.03Ga0.97N光ガイド層103a:アンドープ、100nm、
活性層104:In0.18Ga0.82N井戸層(厚さ3nm)/GaN障壁層(厚さ15nm)、
In0.03Ga0.97N光ガイド層103b:アンドープ、100nm、
Al0.12Ga0.88N電子ブロック層105:p型、20nm、
Al0.06Ga0.94Nクラッド層106:p型、400nm、
GaNコンタクト層107:p型、50nm。
ストライプ窓(幅10μm)を有する絶縁膜(例えばSiO)108及びコンタクト層107上にアノード109aを形成すると共に、GaN基板101の裏面101bにカソード109bを形成した。この後に、へき開によりゲインガイド型半導体レーザLD3を作製した。
 測定の結果、このレーザ構造のn型Al0.04Ga0.96Nクラッド層102の酸素濃度は1×1017cm-3であった。この値は、比較のためのLD構造における酸素濃度2×1016cm-3に比べて大きい。図14は、実施例4のp型コンタクト層107および比較例のp型コンタクト層における表面モフォロジを示す図面である。図14の(a)部に示されたp型コンタクト層表面を図14の(b)部に示されたp型コンタクト層表面と比較すると、実施例4のエピタキシャル膜の表面は比較的平坦なモフォロジを示した。一方、比較例のエピタキシャル膜の表面にはc軸に直交する方向に延びる多数のファセットが見られた。実施例4によれば、無極性面でも酸素による安定化の効果があるものと考えられる。
 (実施例5)
レーザダイオードLD4を作製した。図15は、実施例5におけるレーザダイオードの構造を示す図面である。m軸方向に68度の角度θ4で傾斜させた半極性主面を有するGaN基板111を準備した。GaN基板111を成長炉に配置した後に、成長炉にアンモニア(NH)及び水素(H)を供給して、摂氏1050度の雰囲気にGaN基板111を保持した。この前処理の後に、原料ガスを成長炉に供給して以下のレーザ構造を作製した。まず、n型Al0.04Ga0.96Nクラッド層112を摂氏1050度で成長した。摂氏840度に基板温度を下げた後にIn0.03Ga0.97N光ガイド層113aを成長した。In0.03Ga0.97N光ガイド層113a上に活性層114を成長した。さらに、摂氏840度に基板温度で、この活性層114上にIn0.03Ga0.97N光ガイド層113bを成長した。摂氏1000度に基板温度を上昇した後に、Al0.12Ga0.88N電子ブロック層115、p型Al0.06Ga0.94Nクラッド層116及びp型GaNコンタクト層117を成長した。このレーザ構造のフォトルミネッセンス波長は450nm帯にあった。
 アンモニアといった窒素原料の水分濃度を調整するために、窒素原料の供給源と成長炉との間に精製装置を設けた。この精製装置を用いて、精製されて窒素原料としてアンモニアを成長炉に供給した。精製装置を用いて、窒素原料として、水分含有量500ppb%以下のアンモニアを成長炉に供給できる。また、精製装置を用いて、窒素原料として水分含有量50ppb%以下のアンモニアを用いることができる。さらに、精製装置を用いて、窒素原料として、水分含有量1ppb%以下のアンモニアを成長炉に供給できる。この実施例において、水分濃度50ppb%のアンモニアを窒素原料として成長炉に供給した。
 測定によれば、p型Al0.06Ga0.94Nクラッド層の酸素濃度は2×1017cm-3であった。比較のために、水分濃度1ppm%のアンモニアを窒素原料として用いた。測定によれば、このp型AlGaN層の酸素濃度は8×1018cm-3であった。
 実施例のLD構造におけるp型GaNコンタクト層117の表面にSiO2膜を成膜し、この後に幅10μmのストライプ窓をウェットエッチングにより形成して保護膜118を設けた。Ni/Auからなるp電極119aとTi/Auから成るパッド電極を蒸着により形成した。基板裏面111bにはTi/Alから成るn電極119bとTi/Auから成るパッド電極を蒸着により形成した。比較例のLD構造にも、本実施例と同様に、SiO膜及び電極を形成した。この後に、800μm間隔でa面へき開して、ゲインガイド型レーザを作製した。
 図16は、実施例4及び比較例におけるレーザダイオードのI-V特性を示す図面である。特性線IV1、IVCは、それぞれ、実施例5及び比較例のためのI-V特性を示す。比較例のレーザダイオードにおける駆動電圧は、実施例5のレーザダイオードにおける駆動電圧に比べて著しく高い。これは、比較例のレーザダイオードでは、低いアンモニア純度に起因してp型コンタクト層中の酸素濃度が高くなり、p型導電性が損なわれたためと考えられる。
 以上説明したように、本実施の形態によれば、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むIII族窒化物半導体光素子を提供できる。また、本実施の形態によれば、このIII族窒化物半導体光素子を作製する方法を提供できる。さらに、本実施の形態によれば、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むエピタキシャル基板を提供できる。
 以上の説明では、半導体光素子を参照しながら本実施の形態を説明したが、本発明は、半導体素子の一例としてIII族窒化物半導体電子デバイスにも適用可能である。したがって、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むIII族窒化物半導体電子デバイスを提供できる。また、本実施の形態によれば、このIII族窒化物半導体電子デバイスを作製する方法を提供できる。さらに、本実施の形態によれば、良好な表面モフォロジを有する窒化ガリウム系半導体膜を含むエピタキシャル基板を提供できる。
 望ましい実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本実施の形態では、本発明は、本実施の形態に開示された特定の構成に限定されるものではない。また、本実施の形態では、有機金属気相成長法を用いる窒化物半導体の成長について例示的に説明しているけれども、本発明は、酸素の取り込みがある分子線エピタキシ法を用いる窒化物半導体の成長にも適用できる。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
11a、11b…III族窒化物半導体光素子、13…III族窒化物半導体支持体、15…窒化ガリウム系半導体領域、17…活性層、19…窒化ガリウム系半導体領域、Sc…基準平面、VC…c軸ベクトル、VN…法線ベクトル、Aoff…傾斜角、21…第1導電型窒化ガリウム系半導体層、23…窒化ガリウム系半導体層、25…窒化ガリウム系半導体層、27…第2導電型窒化ガリウム系半導体層、29a…井戸層、29b…障壁層、29…量子井戸構造、31a、31b…接合面、33…第1の電極、35…第2の電極 

Claims (29)

  1.  III族窒化物半導体からなり、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす主面を有するIII族窒化物半導体支持体と、
     5×1016cm-3以上5×1018cm-3以下の酸素濃度を有しており、前記III族窒化物半導体支持体の前記主面上に設けられた窒化ガリウム系半導体領域とを備え、
     前記主面は半極性及び無極性のいずれか一方を示し、
     前記窒化ガリウム系半導体領域は、第1導電型窒化ガリウム系半導体層を含む、ことを特徴とするIII族窒化物半導体素子。
  2.  前記窒化ガリウム系半導体領域上に設けられた活性層と、
     前記活性層上に設けられた第2導電型窒化ガリウム系半導体層と
    を更に備え、
     前記活性層は、前記第1導電型窒化ガリウム系半導体層と前記第2導電型窒化ガリウム系半導体層との間に設けられる、ことを特徴とする請求項1に記載されたIII族窒化物半導体素子。
  3.  前記活性層における酸素濃度は5×1016cm-3以上であり、前記活性層における酸素濃度は5×1018cm-3以下である、ことを特徴とする請求項2に記載されたIII族窒化物半導体素子。
  4.  前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1016cm-3以上であり、前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1018cm-3以下である、ことを特徴とする請求項2または請求項3に記載されたIII族窒化物半導体素子。
  5.  前記第1導電型窒化ガリウム系半導体層の炭素濃度は5×1018cm-3以下であり、
     前記第2導電型窒化ガリウム系半導体層の炭素濃度は5×1018cm-3以下であり、
     前記活性層の炭素濃度は5×1018cm-3以下である、ことを特徴とする請求項2~請求項4のいずれか一項に記載されたIII族窒化物半導体素子。
  6.  前記第2導電型窒化ガリウム系半導体層の酸素濃度は5×1016cm-3以上であり、
     前記活性層の酸素濃度は5×1016cm-3以上である、ことを特徴とする請求項2~請求項5のいずれか一項に記載されたIII族窒化物半導体素子。
  7.  前記活性層は、交互に配列された井戸層及び障壁層を含み、
     前記井戸層の酸素濃度は6×1017cm-3以下である、ことを特徴とする請求項2~請求項6のいずれか一項に記載されたIII族窒化物半導体素子。
  8.  別の第2導電型窒化ガリウム系半導体層を更に備え、
     前記第2導電型窒化ガリウム系半導体層のバンドギャップは前記別の第2導電型窒化ガリウム系半導体層のバンドギャップよりも大きく、
     前記第2導電型窒化ガリウム系半導体層の酸素濃度は、前記活性層の酸素濃度よりも大きく、
     前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と前記活性層との間に設けられており、
     前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と接合を形成する、ことを特徴とする請求項2~請求項7のいずれか一項に記載されたIII族窒化物半導体素子。
  9.  前記活性層と前記第2導電型窒化ガリウム系半導体層との間に設けられ窒化ガリウム系半導体からなる光ガイド層を更に備え、
     前記活性層は、前記基準平面に対して傾斜する平面に沿って延在しており、
     前記第2導電型窒化ガリウム系半導体層は電子ブロック層である、ことを特徴とする請求項2~請求項8のいずれか一項に記載されたIII族窒化物半導体素子。
  10.  前記主面の法線と前記基準軸との成す角度は10度以上170度以下である、ことを特徴とする請求項2~請求項9のいずれか一項に記載されたIII族窒化物半導体素子。
  11.  前記主面の法線と前記基準軸との成す角度は10度以上80度以下及び100度以上170度以下の範囲にある、ことを特徴とする請求項2~請求項10のいずれか一項に記載されたIII族窒化物半導体素子。
  12.  前記主面の法線と前記基準軸との成す角度は63度以上80度以下及び100度以上117度以下の範囲にある、ことを特徴とする請求項2~請求項11のいずれか一項に記載されたIII族窒化物半導体素子。
  13.  III族窒化物半導体素子のためのエピタキシャルウエハであって、
     III族窒化物半導体からなり、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす主面を有するIII族窒化物半導体基板と、
     5×1016cm-3以上5×1018cm-3以下の酸素濃度を有しており、前記III族窒化物半導体基板の前記主面上に設けられた第1導電型窒化ガリウム系半導体層と、
     前記第1導電型窒化ガリウム系半導体層上に設けられた発光層と、
     前記発光層上に設けられた第2導電型窒化ガリウム系半導体層と
    を備え、
     前記主面は半極性及び無極性のいずれか一方を示す、ことを特徴とするエピタキシャルウエハ。
  14.  別の第2導電型窒化ガリウム系半導体層を更に備え、
     前記第2導電型窒化ガリウム系半導体層のバンドギャップは前記別の第2導電型窒化ガリウム系半導体層のバンドギャップよりも大きく、
     前記第2導電型窒化ガリウム系半導体層の酸素濃度は、前記発光層の酸素濃度よりも大きく、
     前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と前記発光層との間に設けられており、
     前記第2導電型窒化ガリウム系半導体層は前記別の第2導電型窒化ガリウム系半導体層と接合を形成する、ことを特徴とする請求項13に記載されたエピタキシャルウエハ。
  15.  前記第2導電型窒化ガリウム系半導体層の酸素濃度は5×1016cm-3以上であり、前記第2導電型窒化ガリウム系半導体層の酸素濃度は5×1018cm-3以下であり、
     前記第2導電型窒化ガリウム系半導体層は電子ブロック層であり、
     前記発光層は、交互に配列された井戸層及び障壁層を有する活性層を含み、
     前記発光層は、窒化ガリウム系半導体からなる光ガイド層を更に備え、該光ガイド層は、前記活性層と前記第2導電型窒化ガリウム系半導体層との間に設けられ、
     前記発光層の前記光ガイド層は、前記基準平面に対して傾斜する平面に沿って延在している、ことを特徴とする請求項13または請求項14に記載されたエピタキシャルウエハ。
  16.  前記主面の法線と前記基準軸との成す角度は10度以上170度以下である、ことを特徴とする請求項13~請求項15のいずれか一項に記載されたエピタキシャルウエハ。
  17.  前記主面の法線と前記基準軸との成す角度は10度以上80度以下及び100度以上170度以下の範囲にある、ことを特徴とする請求項13~請求項16のいずれか一項に記載されたエピタキシャルウエハ。
  18.  前記主面の法線と前記基準軸との成す角度は63度以上80度以下及び100度以上117度以下の範囲にある、ことを特徴とする請求項13~請求項17のいずれか一項に記載されたエピタキシャルウエハ。
  19.  III族窒化物半導体素子を作製する方法であって、
     III族窒化物半導体からなり、主面を有するIII族窒化物半導体基板を準備する工程と、
     III族原料及び窒素原料を成長炉に供給して、5×1016cm-3以上5×1018cm-3以下の酸素濃度を有する第1導電型窒化ガリウム系半導体層を前記III族窒化物半導体基板の前記主面上に成長する工程と、
     III族原料及び窒素原料を前記成長炉に供給して、前記第1導電型窒化ガリウム系半導体層上に発光層を成長する工程と、
     III族原料及び窒素原料を前記成長炉に供給して、第2導電型窒化ガリウム系半導体層を前記発光層上に成長する工程と
    を備え、
     前記主面は半極性及び無極性のいずれか一方を示し、
     前記第1導電型窒化ガリウム系半導体層の酸素は、前記III族原料及び前記窒素原料の少なくともいずれか一つに含まれる不純物として提供され、
     前記III族窒化物半導体基板の前記主面は、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす、ことを特徴とする方法。
  20.  前記窒素原料はアンモニアを含み、
     前記窒素原料は不純物として水を含み、
     前記発光層における平均酸素濃度は5×1016cm-3以上であり、前記発光層における酸素濃度は5×1018cm-3以下であり、
     前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1016cm-3以上であり、前記第2導電型窒化ガリウム系半導体層における酸素濃度は5×1018cm-3以下であり、
     前記第2導電型窒化ガリウム系半導体層の酸素濃度は、前記発光層の酸素濃度よりも大きい、ことを特徴とする請求項19に記載された方法。
  21.  前記第2導電型窒化ガリウム系半導体層の成長温度は前記第1導電型窒化ガリウム系半導体層の成長温度よりも低い、ことを特徴とする請求項19または請求項20に記載された方法。
  22.  前記発光層はInGaN層を含む、ことを特徴とする請求項19~請求項21のいずれか一項に記載された方法。
  23.  前記主面の法線と前記基準軸との成す角度は10度以上170度以下である、ことを特徴とする請求項19~請求項22のいずれか一項に記載された方法。
  24.  前記主面の法線と前記基準軸との成す角度は63度以上80度以下及び100度以上117度以下の範囲にある、ことを特徴とする請求項19~請求項23のいずれか一項に記載された方法。
  25.  前記窒素原料の原料源と前記成長炉との間に設けられた精製装置を用いて前記窒素原料の水分濃度を調整した後に、前記成長炉に前記窒素原料を供給し、
    前記窒素原料はアンモニアからなる、ことを特徴とする請求項19~請求項24のいずれか一項に記載された方法。
  26.  前記窒素原料として、水分含有量500ppb%以下のアンモニアを用いる、ことを特徴とする請求項19~請求項25のいずれか一項に記載された方法。
  27.  前記窒素原料として、水分含有量50ppb%以下のアンモニアを用いる、ことを特徴とする請求項19~請求項26のいずれか一項に記載された方法。
  28.  前記窒素原料として、水分含有量1ppb%以下のアンモニアを用いる、ことを特徴とする請求項19~請求項27のいずれか一項に記載された方法。
  29.  前記窒素原料の前記水分濃度は1ppb%以下である、ことを特徴とする請求項25に記載された方法。
PCT/JP2009/058182 2009-03-11 2009-04-24 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法 WO2010103674A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09812406.8A EP2410580A4 (en) 2009-03-11 2009-04-24 GROUP III NITRIDE SEMICONDUCTOR DEVICE, EPITAXIAL SUBSTRATE AND METHOD FOR PRODUCING THE GROUP III NITRIDE SEMICONDUCTOR DEVICE
CN2009801008614A CN101919076B (zh) 2009-03-11 2009-04-24 Ⅲ族氮化物半导体器件、外延衬底及ⅲ族氮化物半导体器件的制作方法
US12/714,049 US7851821B2 (en) 2009-03-11 2010-02-26 Group III nitride semiconductor device, epitaxial substrate, and method of fabricating group III nitride semiconductor device
US12/940,879 US8053806B2 (en) 2009-03-11 2010-11-05 Group III nitride semiconductor device and epitaxial substrate
US13/112,714 US8304269B2 (en) 2009-03-11 2011-05-20 Method of fabricating group III nitride semiconductor device
US13/243,516 US8207556B2 (en) 2009-03-11 2011-09-23 Group III nitride semiconductor device and epitaxial substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-058057 2009-03-11
JP2009058057A JP4375497B1 (ja) 2009-03-11 2009-03-11 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/714,049 Continuation US7851821B2 (en) 2009-03-11 2010-02-26 Group III nitride semiconductor device, epitaxial substrate, and method of fabricating group III nitride semiconductor device

Publications (1)

Publication Number Publication Date
WO2010103674A1 true WO2010103674A1 (ja) 2010-09-16

Family

ID=41459696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058182 WO2010103674A1 (ja) 2009-03-11 2009-04-24 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Country Status (7)

Country Link
US (4) US7851821B2 (ja)
EP (1) EP2410580A4 (ja)
JP (1) JP4375497B1 (ja)
KR (1) KR101151953B1 (ja)
CN (1) CN101919076B (ja)
TW (1) TW201034054A (ja)
WO (1) WO2010103674A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011722A1 (ja) * 2011-07-21 2013-01-24 住友電気工業株式会社 Iii族窒化物半導体発光素子、及びiii族窒化物半導体発光素子を作製する方法
WO2016017506A1 (ja) * 2014-07-29 2016-02-04 住友化学株式会社 窒化物半導体ウエハおよびその製造方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277826B2 (ja) 2005-06-23 2009-06-10 住友電気工業株式会社 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
US9708735B2 (en) 2005-06-23 2017-07-18 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
US8771552B2 (en) 2005-06-23 2014-07-08 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
JP4518209B1 (ja) * 2009-09-07 2010-08-04 住友電気工業株式会社 Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP5346443B2 (ja) * 2007-04-16 2013-11-20 ローム株式会社 半導体発光素子およびその製造方法
US10036099B2 (en) 2008-08-07 2018-07-31 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of gallium nitride boules
JP2010184833A (ja) * 2009-02-12 2010-08-26 Denso Corp 炭化珪素単結晶基板および炭化珪素単結晶エピタキシャルウェハ
US7933303B2 (en) 2009-06-17 2011-04-26 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method for fabricating group-III nitride semiconductor laser device
JP5206699B2 (ja) * 2010-01-18 2013-06-12 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
US9525093B2 (en) * 2009-06-30 2016-12-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Infrared attenuating or blocking layer in optical proximity sensor
JP5234022B2 (ja) * 2009-07-15 2013-07-10 住友電気工業株式会社 窒化物系半導体発光素子
JP5635246B2 (ja) * 2009-07-15 2014-12-03 住友電気工業株式会社 Iii族窒化物半導体光素子及びエピタキシャル基板
JP5381581B2 (ja) * 2009-09-30 2014-01-08 住友電気工業株式会社 窒化ガリウム基板
JP5397136B2 (ja) * 2009-09-30 2014-01-22 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5515575B2 (ja) * 2009-09-30 2014-06-11 住友電気工業株式会社 Iii族窒化物半導体光素子、エピタキシャル基板、及びiii族窒化物半導体光素子を作製する方法
WO2011058682A1 (ja) 2009-11-12 2011-05-19 パナソニック株式会社 窒化ガリウム系化合物半導体発光素子
JP5131266B2 (ja) * 2009-12-25 2013-01-30 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP5201129B2 (ja) * 2009-12-25 2013-06-05 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法
JP2011142147A (ja) * 2010-01-05 2011-07-21 Nec Corp 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置
WO2011083551A1 (ja) 2010-01-06 2011-07-14 パナソニック株式会社 窒化物系半導体発光素子およびその製造方法
JP2011146651A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Iii族窒化物発光ダイオード
JP2011146650A (ja) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd GaN系半導体発光素子およびその製造方法
JP5749888B2 (ja) * 2010-01-18 2015-07-15 住友電気工業株式会社 半導体素子及び半導体素子を作製する方法
JP5446044B2 (ja) * 2010-01-22 2014-03-19 日本電気株式会社 窒化物半導体発光素子および電子装置
JP5573941B2 (ja) 2010-03-19 2014-08-20 富士通株式会社 化合物半導体装置及びその製造方法
CN103003961B (zh) 2010-04-30 2015-11-25 波士顿大学理事会 具有能带结构电位波动的高效紫外发光二极管
EP2595181B8 (en) * 2010-07-14 2018-07-04 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
JP5136615B2 (ja) * 2010-09-08 2013-02-06 住友電気工業株式会社 Iii族窒化物半導体発光素子を製造する方法
JP6031733B2 (ja) * 2010-09-27 2016-11-24 住友電気工業株式会社 GaN結晶の製造方法
JP2012089651A (ja) * 2010-10-19 2012-05-10 Showa Denko Kk Iii族窒化物半導体素子、多波長発光iii族窒化物半導体層及び多波長発光iii族窒化物半導体層の形成方法
JP5361925B2 (ja) * 2011-03-08 2013-12-04 株式会社東芝 半導体発光素子およびその製造方法
US9236530B2 (en) * 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
WO2012137462A1 (ja) 2011-04-08 2012-10-11 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US8823026B2 (en) 2011-05-18 2014-09-02 Panasonic Corporation Nitride semiconductor light-emitting element and manufacturing method therefor
JP5099254B1 (ja) * 2011-09-13 2012-12-19 住友電気工業株式会社 Iii族窒化物半導体レーザ素子を作製する方法
WO2013128913A1 (ja) 2012-02-28 2013-09-06 パナソニック株式会社 窒化物半導体発光素子およびその窒化物半導体発光素子を備えた光源
WO2013134432A1 (en) 2012-03-06 2013-09-12 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
EP4228109A3 (en) * 2012-05-08 2023-10-25 MACOM Technology Solutions Holdings, Inc. Lasers with beam-shape modification
US10145026B2 (en) 2012-06-04 2018-12-04 Slt Technologies, Inc. Process for large-scale ammonothermal manufacturing of semipolar gallium nitride boules
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
JP2013230971A (ja) * 2013-05-22 2013-11-14 Hitachi Cable Ltd Ld用iii族窒化物半導体基板及びそれを用いたld用iii族窒化物半導体エピタキシャル基板
TWI577046B (zh) * 2014-12-23 2017-04-01 錼創科技股份有限公司 半導體發光元件及其製作方法
JP6885547B2 (ja) 2016-03-15 2021-06-16 三菱ケミカル株式会社 GaN結晶の製造方法
JP6966843B2 (ja) * 2017-02-08 2021-11-17 スタンレー電気株式会社 垂直共振器型発光素子
JP6945666B2 (ja) * 2017-03-24 2021-10-06 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP6654596B2 (ja) 2017-03-24 2020-02-26 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP7169613B2 (ja) * 2017-11-10 2022-11-11 学校法人 名城大学 窒化物半導体発光素子の製造方法
CN112820633B (zh) * 2021-01-14 2024-01-16 镓特半导体科技(上海)有限公司 氮化镓层及其同质外延生长方法
JP7288936B2 (ja) * 2021-09-21 2023-06-08 日機装株式会社 窒化物半導体発光素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044400A (ja) * 1998-05-28 2000-02-15 Sumitomo Electric Ind Ltd 窒化ガリウム単結晶基板及びその製造方法
JP2002026464A (ja) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd 窒化物系半導体素子
JP2002231997A (ja) * 2001-01-31 2002-08-16 Sharp Corp 窒化物系半導体発光素子
JP2002373864A (ja) * 2001-04-12 2002-12-26 Sumitomo Electric Ind Ltd 窒化ガリウム結晶への酸素ドーピング方法と酸素ドープされたn型窒化ガリウム単結晶基板
JP2008034658A (ja) * 2006-07-28 2008-02-14 Rohm Co Ltd 窒化物半導体素子
WO2008075581A1 (ja) * 2006-12-20 2008-06-26 Rohm Co., Ltd. 窒化物半導体発光素子およびその製造方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US267092A (en) * 1882-11-07 Peters
US117105A (en) * 1871-07-18 Improvement in hand corn-shellers
US231270A (en) * 1880-08-17 Stephen a
US308815A (en) * 1884-12-02 Half to oliver c
US222927A (en) * 1879-12-23 Improvement in skates
US4599790A (en) 1985-01-30 1986-07-15 Texas Instruments Incorporated Process for forming a T-shaped gate structure
US4985369A (en) 1987-01-21 1991-01-15 Ford Microelectronics, Inc. Method for making self-aligned ohmic contacts
US5709745A (en) 1993-01-25 1998-01-20 Ohio Aerospace Institute Compound semi-conductors and controlled doping thereof
US6083812A (en) * 1993-02-02 2000-07-04 Texas Instruments Incorporated Heteroepitaxy by large surface steps
US5619352A (en) * 1994-04-04 1997-04-08 Rockwell International Corporation LCD splay/twist compensator having varying tilt and /or azimuthal angles for improved gray scale performance
JPH0888201A (ja) 1994-09-16 1996-04-02 Toyoda Gosei Co Ltd サファイアを基板とする半導体素子
JP3557011B2 (ja) 1995-03-30 2004-08-25 株式会社東芝 半導体発光素子、及びその製造方法
US5625202A (en) 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
JP3461274B2 (ja) * 1996-10-16 2003-10-27 株式会社東芝 半導体装置
US6165874A (en) * 1997-07-03 2000-12-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for growth of crystal surfaces and growth of heteroepitaxial single crystal films thereon
TW428331B (en) 1998-05-28 2001-04-01 Sumitomo Electric Industries Gallium nitride single crystal substrate and method of producing the same
US6455877B1 (en) * 1999-09-08 2002-09-24 Sharp Kabushiki Kaisha III-N compound semiconductor device
JP3707339B2 (ja) * 2000-03-16 2005-10-19 コニカミノルタビジネステクノロジーズ株式会社 画像形成装置
US8178221B2 (en) 2000-07-10 2012-05-15 Amit Goyal {100}<100> or 45°-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices
JP2001177188A (ja) 2000-12-21 2001-06-29 Toyoda Gosei Co Ltd 窒化ガリウム系化合物半導体発光素子
US6773504B2 (en) * 2001-04-12 2004-08-10 Sumitomo Electric Industries, Ltd. Oxygen doping method to gallium nitride single crystal substrate and oxygen-doped N-type gallium nitride freestanding single crystal substrate
US6663989B2 (en) * 2001-06-06 2003-12-16 Max-Planck-Institut Fur Mikrostrukturphysik Non c-axis oriented bismuth-layered perovskite ferroelectric structure epitaxially grown on buffered silicon
US20070032046A1 (en) 2001-07-06 2007-02-08 Dmitriev Vladimir A Method for simultaneously producing multiple wafers during a single epitaxial growth run and semiconductor structure grown thereby
JP4031628B2 (ja) * 2001-10-03 2008-01-09 松下電器産業株式会社 半導体多層膜結晶、およびそれを用いた発光素子、ならびに当該半導体多層膜結晶の成長方法
JP4133460B2 (ja) * 2002-05-27 2008-08-13 シャープ株式会社 投影型画像表示装置
US6869480B1 (en) * 2002-07-17 2005-03-22 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method for the production of nanometer scale step height reference specimens
TWI292961B (en) * 2002-09-05 2008-01-21 Nichia Corp Semiconductor device and an optical device using the semiconductor device
KR101284932B1 (ko) * 2002-12-27 2013-07-10 제너럴 일렉트릭 캄파니 갈륨 나이트라이드 결정, 호모에피택셜 갈륨 나이트라이드계 디바이스 및 이들의 제조 방법
CN100507623C (zh) * 2003-03-25 2009-07-01 富士胶片株式会社 合成激光的调芯方法及激光合成光源
US7462882B2 (en) * 2003-04-24 2008-12-09 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus
EP1515368B1 (en) 2003-09-05 2019-12-25 Nichia Corporation Light equipment
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
JP4121985B2 (ja) 2004-07-16 2008-07-23 昭和電工株式会社 GaN系化合物半導体の製造方法
KR101030659B1 (ko) * 2006-03-10 2011-04-20 파나소닉 전공 주식회사 발광 소자
US8278739B2 (en) 2006-03-20 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor film, semiconductor device, and method for manufacturing thereof
JP5278720B2 (ja) * 2006-03-27 2013-09-04 Nltテクノロジー株式会社 液晶パネル、液晶表示装置及び端末装置
JP2008109066A (ja) * 2006-09-29 2008-05-08 Rohm Co Ltd 発光素子
JP2008263023A (ja) 2007-04-11 2008-10-30 Sumitomo Electric Ind Ltd Iii−v族化合物半導体の製造方法、ショットキーバリアダイオード、発光ダイオード、レーザダイオード、およびそれらの製造方法
EP2019155A3 (en) * 2007-05-02 2010-09-22 Sumitomo Electric Industries, Ltd. Gallium nitride substrate and gallium nitride film deposition method
EP2003230A2 (en) * 2007-06-14 2008-12-17 Sumitomo Electric Industries, Ltd. GaN substrate, substrate with an epitaxial layer, semiconductor device, and GaN substrate manufacturing method
TWI469186B (zh) * 2007-06-15 2015-01-11 Univ California 非極性三族氮化物膜、使用其製造之裝置及生長其之方法
KR100885190B1 (ko) * 2007-06-29 2009-02-24 우리엘에스티 주식회사 발광소자와 그의 제조방법
US20090039356A1 (en) * 2007-08-08 2009-02-12 The Regents Of The University Of California Planar nonpolar m-plane group iii-nitride films grown on miscut substrates
WO2009039402A1 (en) * 2007-09-19 2009-03-26 The Regents Of The University Of California (al,in,ga,b)n device structures on a patterned substrate
WO2009124317A2 (en) * 2008-04-04 2009-10-08 The Regents Of The University Of California Mocvd growth technique for planar semipolar (al, in, ga, b)n based light emitting diodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044400A (ja) * 1998-05-28 2000-02-15 Sumitomo Electric Ind Ltd 窒化ガリウム単結晶基板及びその製造方法
JP2002026464A (ja) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd 窒化物系半導体素子
JP2002231997A (ja) * 2001-01-31 2002-08-16 Sharp Corp 窒化物系半導体発光素子
JP2002373864A (ja) * 2001-04-12 2002-12-26 Sumitomo Electric Ind Ltd 窒化ガリウム結晶への酸素ドーピング方法と酸素ドープされたn型窒化ガリウム単結晶基板
JP2008034658A (ja) * 2006-07-28 2008-02-14 Rohm Co Ltd 窒化物半導体素子
WO2008075581A1 (ja) * 2006-12-20 2008-06-26 Rohm Co., Ltd. 窒化物半導体発光素子およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N.A. FICHTENBAUM ET AL.: "Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition", JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 1124 - 1131, XP022499545 *
See also references of EP2410580A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011722A1 (ja) * 2011-07-21 2013-01-24 住友電気工業株式会社 Iii族窒化物半導体発光素子、及びiii族窒化物半導体発光素子を作製する方法
JP2013026452A (ja) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd Iii族窒化物半導体発光素子、及びiii族窒化物半導体発光素子を作製する方法
CN103748749A (zh) * 2011-07-21 2014-04-23 住友电气工业株式会社 Iii族氮化物半导体发光元件及iii族氮化物半导体发光元件的制作方法
US8872156B2 (en) 2011-07-21 2014-10-28 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor light emitting device and method of fabricating group III nitride semiconductor light emitting device
WO2016017506A1 (ja) * 2014-07-29 2016-02-04 住友化学株式会社 窒化物半導体ウエハおよびその製造方法

Also Published As

Publication number Publication date
EP2410580A1 (en) 2012-01-25
US20120086015A1 (en) 2012-04-12
CN101919076B (zh) 2012-10-17
EP2410580A4 (en) 2013-11-06
JP4375497B1 (ja) 2009-12-02
KR20100115701A (ko) 2010-10-28
US8053806B2 (en) 2011-11-08
TW201034054A (en) 2010-09-16
US20110057200A1 (en) 2011-03-10
JP2010212493A (ja) 2010-09-24
US20110223701A1 (en) 2011-09-15
KR101151953B1 (ko) 2012-06-04
US20100230690A1 (en) 2010-09-16
CN101919076A (zh) 2010-12-15
US7851821B2 (en) 2010-12-14
US8304269B2 (en) 2012-11-06
US8207556B2 (en) 2012-06-26

Similar Documents

Publication Publication Date Title
JP4375497B1 (ja) Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法
US6455877B1 (en) III-N compound semiconductor device
WO2011007777A1 (ja) Iii族窒化物半導体光素子、エピタキシャル基板
JP5381439B2 (ja) Iii族窒化物半導体光素子
JP5842324B2 (ja) Iii族窒化物半導体素子、iii族窒化物半導体素子を作製する方法、及びエピタキシャル基板
WO2013002389A1 (ja) Iii族窒化物半導体素子、及び、iii族窒化物半導体素子の製造方法
KR20100099066A (ko) 질화갈륨계 반도체 광소자, 질화갈륨계 반도체 광소자를 제조하는 방법 및 에피택셜 웨이퍼
US9209361B2 (en) Nitride semiconductor light-emitting element
JP5326787B2 (ja) Iii族窒化物半導体レーザダイオード、及びiii族窒化物半導体レーザダイオードを作製する方法
JP5651077B2 (ja) 窒化ガリウム系半導体レーザ素子、及び、窒化ガリウム系半導体レーザ素子の製造方法
JP2010212651A (ja) Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法
JP5310382B2 (ja) Iii族窒化物半導体光素子、及びiii族窒化物半導体光素子を作製する方法
WO2013065381A1 (ja) 窒化物半導体発光素子、及び、窒化物半導体発光素子の作製方法
JP2012089706A (ja) Iii族窒化物半導体光素子、iii族窒化物半導体光素子を形成する方法、iii族窒化物半導体膜を成長する方法及びエピタキシャル基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100861.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20097027194

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009812406

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE