JP2011142147A - 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置 - Google Patents

端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置 Download PDF

Info

Publication number
JP2011142147A
JP2011142147A JP2010000833A JP2010000833A JP2011142147A JP 2011142147 A JP2011142147 A JP 2011142147A JP 2010000833 A JP2010000833 A JP 2010000833A JP 2010000833 A JP2010000833 A JP 2010000833A JP 2011142147 A JP2011142147 A JP 2011142147A
Authority
JP
Japan
Prior art keywords
layer
emitting
edge
light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010000833A
Other languages
English (en)
Inventor
Masateru Oya
昌輝 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010000833A priority Critical patent/JP2011142147A/ja
Publication of JP2011142147A publication Critical patent/JP2011142147A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】 自励発振機能を有し、動作特性が良好で、かつ、素子寿命が長い端面発光型半導体発光素子を提供する。
【解決手段】
半導体結晶層の積層体と、光出射端面とを含み、前記積層体が、活性層103と、可飽和吸収層105と、光導波路とを含み、
可飽和吸収層105は、結晶構造中に(0001)面を含み、
可飽和吸収層105の(0001)面の法線ベクトル<0001>の可飽和吸収層105主面への投影ベクトルをA、前記光出射端面から出射される直前の光の導波方向のベクトルをBとし、AとBのなす角をθとしたとき、|A|>0、かつ、0≦|cosθ|<1であり、
可飽和吸収層105の不純物濃度は、可飽和吸収層105以外の前記半導体結晶層のうち最も不純物濃度が高い層の不純物濃度以下であることを特徴とする端面発光型半導体発光素子。
【選択図】 図1

Description

本発明は、端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置に関する。
窒化物系半導体レーザ等の端面発光型半導体発光素子は、画像表示装置(ディスプレイ)、情報記録再生装置(例えば、光ディスクシステム)等の光源として重要な素子である。端面発光型半導体発光素子には、自励発振機能を有するものがある(例えば、特許文献2等)。自励発振動作は、光強度を上げると光吸収が飽和して弱くなる、いわゆる可飽和吸収特性を有する領域を、活性層近傍に設けることで実現される。その具体的な手段として、例えば活性層とは独立して可飽和吸収層を設ける構造が知られている(特許文献2等)。
一方、窒化物系半導体等を用いた半導体素子は、例えば、(0001)面を基板主面とするサファイア基板を用い、<0001>方向にGaNをエピタキシャル成長させることにより製造される(例えば、特許文献1参照)。
特開2002−164623号公報 特開2003−031898号公報
次世代光ディスクシステムや次世代ディスプレイなどの光源として用いられる端面発光型半導体発光素子には、以下のような理由により、自励発振などの高機能化が求められる。
例えば、半導体レーザを用いた光ディスクシステムでは、光ディスクの情報を読み取る際に、光ディスクからの反射光により前記半導体レーザに過剰な雑音が誘起されることがある。これを防ぐために、例えば、前記半導体レーザの光出力を百MHz程度から数GHz程度のパルス状にして用いることができる。そのための方法として、前記半導体レーザの駆動回路に高周波重畳モジュールを付加して変調を重畳する方法と、直流駆動でもパルス状の光出力が得られる、いわゆる自励発振型の半導体レーザを用いる方法がある。特に後者の場合、高周波重畳モジュールおよびその不要輻射対策が不要となるため、光ディスクシステムの低コスト化、小型化に極めて有効である。このように、光ディスクシステムにおいて、自励発振型半導体レーザは非常に有用である。同様の理由から、光ディスクシステムのみならず、端面発光型半導体発光素子を用いる全ての分野において、自励発振機能を有する端面発光型半導体発光素子の有用性は極めて高い。
図4の断面図に、自励発振機能を有する端面発光型半導体発光素子の構造の一例を示す。図示のとおり、この素子は、n型基板301、n型バッファ層302、n型クラッド層303、n型光閉じ込め層304、活性層305、p型キャップ層306、p型光閉じ込め層307、可飽和吸収層308、p型クラッド層309、p型コンタクト層310、絶縁層311、p電極312、n電極313から形成されている。n型基板301上には、n型バッファ層302、n型クラッド層303、n型光閉じ込め層304、活性層305、p型キャップ層306、p型光閉じ込め層307、可飽和吸収層308、p型クラッド層309が前記順番で積層されている。p型クラッド層309は、中央付近が隆起してリッジ導波路を形成している。p型クラッド層309上面は、前記リッジ導波路の頂点付近がp型コンタクト層310で覆われ、それ以外の部分が絶縁層311で覆われている。p型コンタクト層310および絶縁層311の上面にはp電極312が形成されている。n型基板301の下面には、n電極313が形成されている。n型基板301の基板主面は(0001)面であり、各層は<0001>方向に積層される。この構造の場合、安定した自励発振動作を持続させるために、可飽和吸収層での光吸収により生成されたキャリアを速やかに消滅させること、すなわち、可飽和吸収層のキャリア寿命を短くすることが重要となる。そのために、例えば、可飽和吸収層へ高濃度の不純物ドーピングを行う方法が用いられる。
しかしながら、上記において説明したような自励発振型の端面発光型半導体発光素子は、可飽和吸収層への高濃度の不純物ドーピングが、活性層への不純物拡散、もしくは不純物に起因した欠陥の拡散を引き起こすことがある。これにより、前記活性層の結晶品質が低下し、素子寿命が短くなってしまうおそれがある。また、電流注入経路に高濃度の不純物ドーピングが行われているため、素子の動作中にも不純物や欠陥の拡散が促進され、活性層品質の経時劣化が顕著となるおそれがある。
そこで、本発明は、自励発振機能を有し、動作特性が良好で、かつ、素子寿命が長い端面発光型半導体発光素子の提供を目的とする。さらに、本発明は、前記端面発光型半導体発光素子の製造方法、前記端面発光型半導体発光素子を用いた画像表示装置および情報記録再生装置を提供する。
前記目的を達成するために、本発明の端面発光型半導体発光素子は、
半導体結晶層の積層体と、光出射端面とを含み、前記積層体が、活性層と、可飽和吸収層と、光導波路とを含み、
前記可飽和吸収層は、結晶構造中に(0001)面を含み、
前記可飽和吸収層の(0001)面の法線ベクトルの前記可飽和吸収層主面への投影ベクトルをA、前記光出射端面から出射される直前の光の導波方向のベクトルをBとし、AとBのなす角をθとしたとき、|A|>0、かつ、0≦|cosθ|<1であり、
前記可飽和吸収層の不純物濃度は、前記可飽和吸収層以外の前記半導体結晶層のうち最も不純物濃度が高い層の不純物濃度以下であることを特徴とする。
また、本発明の製造方法は、半導体基板を準備する基板準備工程と、前記半導体基板上に前記半導体結晶層の積層体をエピタキシャル成長させる積層体成長工程とを含み、前記半導体基板は、結晶構造中に(0001)面を含み、かつ、前記(0001)面以外の面を主面とすることを特徴とする、前記本発明の端面発光型半導体発光素子の製造方法である。
さらに、本発明の画像表示装置は、光源を含み、前記光源が、前記本発明の端面発光型半導体発光素子を含むことを特徴とする。
さらに、本発明の情報記録再生装置は、光源を含み、前記光源が、前記本発明の端面発光型半導体発光素子を含むことを特徴とする。
本発明によれば、自励発振機能を有し、動作特性が良好で、かつ、素子寿命が長い端面発光型半導体発光素子を提供できる。さらに、本発明によれば、前記端面発光型半導体発光素子の製造方法、前記端面発光型半導体発光素子を用いた画像表示装置および情報記録再生装置を提供できる。
本発明の端面発光型半導体発光素子の構造および動作を例示する断面斜視図である。 本発明の端面発光型半導体発光素子の一実施形態を例示する断面図である。 本発明の端面発光型半導体発光素子の別の一例を例示する断面図である。 端面発光型半導体発光素子の構造の一例を示す参考断面図である。
[用語の定義等]
本発明において、「片面側に」は、特に断らない限り、片面側に直接接触している状態でも良いし、他の構成要素等が存在していても良い。「両面に」も、同様とする。「上に」は、特に断らない限り、上面に直接接触している状態でも良いし、間に他の構成要素等が存在していても良い。同様に、「下に」は、特に断らない限り、下面に直接接触している状態でも良いし、間に他の構成要素等が存在していても良い。また、「上面に」は、特に断らない限り、上面に直接接触している状態を指す。同様に、「下面に」は、特に断らない限り、下面に直接接触している状態を指す。
本発明において、前記光導波路、あるいは半導体層の「厚み方向」とは、前記半導体層の主面に垂直な方向をいう。また、本発明において、半導体層あるいは基板の「主面」とは、半導体層あるいは基板において最も広い平面、すなわち、いわゆる表面もしくは裏面、または上面もしくは下面をいう。
本発明において、結晶層とは、単結晶構造または多結晶構造から形成された層をいい、結晶欠陥を含む場合と、含まない場合とがある。また、非結晶層とは、結晶層以外の層をいい、アモルファス層または一部微晶化領域を含むアモルファス層等をいう。
本発明で「光出射端面」とは、特に断らない限り、光の主な出射端面をいう。ここで、光の主な出射端面とは、主目的で利用される光が出射される側の端面をいう。例えば、光ディスクシステムで用いられる半導体レーザの場合、光ディスクの情報を再生・記録するために利用される光が出射される側の端面のことを、光の主な出射端面という。
本発明において、「組成」とは、半導体層等を構成する元素の原子数の量的関係をいう。「組成比」とは、前記半導体層等を構成する特定の元素の原子数と、他の元素の原子数との相対的な割合をいう。例えば、InGa1−xNで表される組成を有する半導体において、xの数値を「In組成比」という。
本発明の端面発光型半導体発光素子では、前述のように、前記可飽和吸収層の(0001)面の法線ベクトルの前記可飽和吸収層主面への投影ベクトルをA、前記光出射端面から出射される直前の光の導波方向のベクトルをBとし、AとBのなす角をθとしたとき、|A|>0、かつ、0≦|cosθ|<1である。なお、前記ベクトルBの方向は、前記光導波路と前記光出射端面との交点近傍において前記光導波路が直線状のときは、前記交点における前記光導波路の方向に等しい。前記ベクトルBの方向は、前記光導波路と前記光出射端面との交点近傍において前記光導波路が曲線状のときは、前記交点における前記光導波路の接線方向に等しい。
ここで、|A|>0とは、前記(0001)面の法線ベクトルの前記可飽和吸収層主面への投影ベクトルの大きさが0ではないことを示すものである。これにより、前記可飽和吸収層の<000−1>方向に発生する内部電界が前記可飽和吸収層主面内に0でない成分をもつ。したがって、前記可飽和吸収層内部のキャリアを前記可飽和吸収層主面方向にドリフトさせることが可能となる。
なお、本発明の端面発光型半導体発光素子は、前述のとおり、半導体結晶層の積層体を含む。前記半導体結晶層は、特に制限されないが、窒化物半導体から形成されることが好ましく、III族窒化物半導体から形成されることがより好ましい。III族窒化物半導体結晶としては、例えば、AlN、AlGaN、GaN、InN、InGaN等の結晶が挙げられる。
前記活性層および前記可飽和吸収層は、In及びGaを含むIII族窒化物半導体結晶により形成されることがさらに好ましい。In及びGaを含むIII族窒化物半導体結晶としては、例えば、AlGaIn1−z−wN(0≦z≦1、0≦w≦1、0≦z+w≦1)の組成で表される半導体結晶が挙げられる。
半導体、特に窒化物系半導体は、(0001)面に垂直な方向、すなわち<0001>あるいは<000−1>の方向に、自発分極とピエゾ分極に起因した大きな内部電界を生ずる。特に、バンドギャップの異なる材料から形成された複数の層を積層した場合、相対的にバンドギャップが小さい層には、<000−1>方向に内部電界が発生する。本発明の端面発光型半導体発光素子は、(0001)面の法線ベクトルの基板主面への投影ベクトルが0でないため、<000−1>方向に発生する内部電界は基板主面内に0でない成分を有する。ここで、<000−1>方向に発生する内部電界の基板主面への投影ベクトルをEとすると、素子内部のキャリアはEによって基板主面内でドリフトする力を受ける。すなわち、Eのストライプ方向の成分をE//、ストライプに直交する成分をE⊥とすると、素子内部のキャリアをE//によってストライプ方向に、E⊥によってストライプと直交する方向にドリフトさせることが可能となる。
以下、本発明の実施形態について説明する。ただし、以下の実施形態は例示であり、本発明はこれらに限定されない。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なる場合がある。
[実施形態1]
図1の断面斜視図に、本実施形態の端面発光型半導体発光素子の構造を示す。同図は、この端面発光型半導体発光素子を、光出射端面に平行に見た断面図である。図示のとおり、この端面発光型半導体発光素子は、III族窒化物半導体結晶層101〜107の積層体から形成されている窒化物半導体レーザである。前記積層体は、活性層103と、可飽和吸収層105と、光導波路とを含む。より具体的には、前記積層体は、n型クラッド層101、n型光閉じ込め層102、活性層103、p型光閉じ込め層104、可飽和吸収層105、電流狭窄層106、およびp型クラッド層107が前記順番で積層されて形成されている。電流狭窄層106は、その一部が除去されて開口部(開口埋め込み部)が形成され、インナーストライプ(光導波路)を構成している。前記開口部(開口埋め込み部)は、p型クラッド層107により埋め込まれている。活性層103及び可飽和吸収層105は、例えば、InGaNから形成することができる。ここで、InGaNとは、In(インジウム)とGa(ガリウム)とN(窒素)を主成分とする半導体である。本発明では、InGaNにおけるIn(インジウム)とGa(ガリウム)とN(窒素)の3元素の含有率は、好ましくは、組成比で99%以上である。なお、図1では、簡略化のため、基板、電極等の構成要素は省略して示している。
図示のとおり、この窒化物半導体レーザにおいて、光出射端面は、可飽和吸収層105の主面に垂直である。また、可飽和吸収層105の(0001)面の法線ベクトル<0001>は、可飽和吸収層105の主面に平行であり、かつ、光出射端面に平行である。また、図1の半導体レーザにおいて、光導波路の全体の形状は図示していないが、光の導波方向が光出射端面に垂直であり、かつ一直線状である。したがって、この窒化物半導体レーザにおいて、(0001)面の法線ベクトルの基板主面への投影ベクトルをA、前記光出射端面から出射される直前の光の導波方向のベクトルをBとし、AとBとのなす角をθとしたとき、|A|>0、かつ、0≦|cosθ|<1となる。なお、0≦|cosθ|<1とは、前記ベクトルAと前記ベクトルBが平行ではないことを意味する。本発明の端面発光型半導体発光素子において、より良好な信頼性を得る観点から、後述のように、0≦|cosθ|<1/√2であることが好ましく、0≦|cosθ|<1/2であることがより好ましく、cosθ=0であることが特に好ましい。図1に示す例では、前記ベクトルAと前記ベクトルBが直交するため、cosθ=0である。なお、√2は、2の平方根であり、かつ正の数である。
図1においては、前述のとおり、導波路における光の導波方向が光出射端面に垂直であり、かつ一直線状である。しかし、本発明の端面発光型半導体発光素子はこれに限定されず、前記光の導波方向が、光出射端面に垂直な方向から傾斜していてもよいし、一直線状でなく屈曲していてもよい。また、図1のように、導波路における光の導波方向が光出射端面に垂直であり、かつ一直線状である場合は、ベクトルBは、前記光出射端面の法線ベクトルに等しくなる。なお、本発明で、光導波路の「始点」とは、光導波路を構成する半導体結晶層において、光出射端面とは反対側の(光出射端面と対を成す)端面での光導波路における幅方向の中心点をいう。同様に、光導波路の「終点」とは、光導波路を構成する半導体結晶層において、光出射端面での光導波路における幅方向の中心点をいう。
図1に示す窒化物半導体レーザは、可飽和吸収層105の(0001)面に垂直な方向、すなわち図示の<0001>(<000−1>とも表記することがある)の方向に、自発分極とピエゾ分極に起因した大きな内部電界を生ずる。特に、バンドギャップの異なる材料から形成された複数の層を積層した場合、相対的にバンドギャップが小さい層には、<000−1>方向に内部電界が発生する。この窒化物半導体レーザは、可飽和吸収層105において、(0001)面の法線ベクトルの主面への投影ベクトルが0でないため、<000−1>方向に発生する内部電界は主面内に0でない成分をもつ。ここで、<000−1>方向に発生する内部電界の可飽和吸収層105主面への投影ベクトルをEとすると、可飽和吸収層105内部のキャリア(電子2および正孔3)はEによって主面内でドリフトする力を受ける。すなわち、ストライプ(前記導波路あるいはインナーストライプ)に直交する成分をE⊥とすると、電子2および正孔3をE⊥によって前記ストライプと直交する方向4にドリフトさせることが可能となる。
可飽和吸収層105で光吸収により励起されたキャリアは、E⊥によって可飽和吸収層105主面内でストライプ(光導波路)と直交する方向にドリフトするため、可飽和吸収層105のキャリア寿命が実効的に短くなる。すなわち、可飽和吸収層105のストライプ内で励起されたキャリアは、迅速にストライプ外へ移動する。これにより、可飽和吸収層105において光との相互作用が最も大きいストライプ内の可飽和吸収特性が迅速に回復される。このように、本発明の端面発光型半導体発光素子では、可飽和吸収層への高濃度不純物ドーピングをしなくても、前記可飽和吸収層において導波路に対応する領域内の励起キャリアを迅速に除去し、可飽和吸収特性を回復できる。このため、本発明の端面発光型半導体発光素子では、可飽和吸収層への高濃度不純物ドーピングによる活性層の結晶性の悪化が避けられ、良好な信頼性と自励発振機能の両立が可能である。この機構によれば、Eがストライプ方向と直交するとき、すなわち、(0001)面の法線ベクトルの基板主面への投影ベクトルが、前記光出射端面から出射される直前の光の導波方向のベクトルと直交するとき、理論上最大の効果が得られる。このような理由により、本発明では、前記ベクトルAおよびBのなす各θが、前述のとおり0≦|cosθ|<1である必要があり、0≦|cosθ|<1/√2であることが好ましく、0≦|cosθ|<1/2であることがより好ましく、cosθ=0であることが特に好ましいのである。
本発明においては、前述の通り、前記ベクトルAと前記ベクトルBとは平行ではない。この条件を満たすことにより、前記光導波路の前記光出射端面近傍において、前述の通り、キャリアを前記光導波路(ストライプ)外に移動させる効果が得られる。前記ベクトルAの方向は、例えば本実施形態のように、前記光出射端面に平行であることが好ましい。前記ベクトルAの方向が前記光出射端面に平行であれば、必ず、前記光出射端面近傍において前記ベクトルAと前記ベクトルBとが平行ではないという前述の条件を満たすことができるためである。
また、本発明の端面発光型半導体発光素子は、図1の構造に限定されない。例えば、半導体結晶層の積層体は、活性層と可飽和吸収層とを含み、かつ端面発光型半導体発光素子として機能しうる必要最小限の構造でも良い。また、半導体結晶層の積層体は、活性層と可飽和吸収層以外に任意の半導体結晶層を含んでいて良く、例えば後述の実施形態2のような構造でもよい。また、導波路は、図1ではインナーストライプ型の構造であるが、後述のようにリッジストライプ型の構造等でもよい。
本発明の端面発光型半導体発光素子の製造方法は特に制限されないが、前述した本発明の製造方法により製造することが好ましい。
[実施形態2]
図2の断面図に、本発明の端面発光型半導体発光素子の別の一実施形態を示す。同図は、この端面発光型半導体発光素子を、光出射端面に平行に見た断面図である。図示のとおり、この端面発光型半導体発光素子は、n型基板201上に、n型バッファ層202、n型クラッド層203、n型光閉じ込め層204、活性層205、p型キャップ層206、第1のp型光閉じ込め層207、可飽和吸収層208、第2のp型光閉じ込め層209、電流狭窄層210、p型クラッド層212およびp型コンタクト層213がこの順番で積層された半導体結晶層積層体を含む窒化物半導体レーザである。電流狭窄層210は、一部がウエットエッチング等により除去されてストライプ状の開口部(開口埋め込み部)211が設けられている。開口部(開口埋め込み部)211は、p型クラッド層212により埋め込まれ、光導波路が形成されている。p型コンタクト層213の上面にはp電極214が設けられ、n型基板201の下面にはn電極215が設けられている。
n型基板201は、例えばGaN基板からなる。n型バッファ層202は、例えば厚さ1μmのGaNからなる。n型クラッド層203は、例えば厚さ2μmのAlGaNからなる。n型光閉じ込め層204は、例えば厚さ0.1μmのGaNからなる。活性層205は、例えば厚さ3nmのInGaN井戸層と厚さ4nmのInGaN障壁層からなる多重量子井戸構造を有する。p型キャップ層206は、例えば厚さ10nmのAlGaNからなる。第1のp型光閉じ込め層207と第2のp型光閉じ込め層209は、例えばそれぞれ厚さ0.05μmのGaNからなる。可飽和吸収層208は、活性層205で発生する発振光を吸収するように組成、層厚が設定され、例えば厚さ3nmのInGaNからなる。電流狭窄層210は、例えば厚さ0.1μmのAlNからなり、水平方向の屈折率差により光分布制御層としての機能も兼ね備える。p型クラッド層212は、例えば厚さ2.5nmのGaNと厚さ2.5nmのAlGaNからなる130周期の超格子構造で構成される。p型コンタクト層213は、例えば厚さ0.1μmのGaNからなる。n型不純物は、例えばSiであり、p型不純物は、例えばMgである。
図2の窒化物半導体レーザにおいて、光出射端面は、可飽和吸収層208の主面に垂直である。また、可飽和吸収層208の(0001)面の法線ベクトル<0001>は、可飽和吸収層208の主面に平行であり、かつ、光出射端面に平行である。また、図2の半導体レーザにおいて、光導波路の全体の形状は図示していないが、実施形態1と同様、光の導波方向が光出射端面に垂直であり、かつ一直線状である。
本実施形態では、可飽和吸収層208(0001)面の法線ベクトルの可飽和吸収層208主面への投影ベクトルをA、前記光出射端面から出射される直前の光の導波方向のベクトルをBとすると、Aが0でなく、かつAとBが直交している。この構造は、n型基板201としてGaN基板を用いる場合、その基板主面として例えば(11−20)面や(1−100)面を選び、ストライプ状の開口部(開口埋め込み部)211をA方向と直交する方向に設けることで実現される。このとき、可飽和吸収層208には、その主面(基板主面と一致する)内で、前記ストライプ(光導波路またはインナーストライプ)に直交する方向に内部電界が発生する。これにより、可飽和吸収層208で光吸収により生成されるキャリアは速やかに水平方向にドリフトする。このため、高濃度ドーピングを施すことなく、可飽和吸収層208のキャリア寿命を実効的に短くすることが可能となり、良好な信頼性と良好な自励発振動作が得られる。なお、活性層205においては、可飽和吸収層208に比べてキャリア密度が高いため、内部電界のスクリーニング効果が大きく、キャリアが水平方向にドリフトする効果は小さい。そのため、活性層205のキャリア寿命が実効的に短くなる効果は小さく、素子特性を悪化させる要因にはならない。
可飽和吸収層208においては、(0001)面の法線ベクトルの主面への投影ベクトルAが0でないように選べば、内部電界は可飽和吸収層208主面(基板主面と一致する)内で0でない成分を持つ。したがって、(11−20)面や(1−100)面以外を基板主面としても良い。また、(0001)面の法線ベクトルの前記主面への投影ベクトルAの方向と、光の主な出射端面の法線ベクトルBとが平行でないように選べば、内部電界は基板主面内でストライプに直交する方向に0でない成分を持つので、AとBが直交していなくても良い。すなわち、0≦|cosθ|<1であれば良い。好ましくは、E⊥>E//、すなわち、0≦|cosθ|<1/√2であり、より好ましくは、0≦|cosθ|<1/2である。こうすることにより、キャリア寿命を実効的に短くする作用を効果的に発揮することが可能となる。しかしながら、実施形態1でも述べたように、前記ベクトルAとBが直交すること、すなわちcosθ=0であることが特に好ましい。図2の端面発光型半導体発光素子では、前述の説明どおり、前記ベクトルAとBが直交しているため、cosθ=0である。
なお、本発明の端面発光型発光素子において、可飽和吸収層は、他の半導体結晶層において最も不純物濃度が高い層における不純物濃度以下のドーピングが施されていても良い。前記可飽和吸収層は、意図的でないドーピングが施された層、すなわち、アンインテンショナリードープ(unintentionally dope)な層でも良い。意図的でないドーピングとは、例えば、可飽和吸収層上に積層された層に不純物をドーピングする際、可飽和吸収層内にも前記不純物が若干ドーピングされる場合がある。前記可飽和吸収層は、ドーピングを施さない、すなわち、アンドープ(ノンドープということもある)な層であることが特に好ましい。こうすることにより、良好な信頼性を実現する作用を特に効果的に発揮できる。なお、アンドープ(ノンドープ)とは、理想的には不純物濃度がゼロであるが、若干の不純物を含んでいてもよい。本発明の端面発光型発光素子において、前記可飽和吸収層における不純物濃度は、特に制限されない。前記アンインテンショナリードープな層において、前記不純物濃度は、特に制限されないが、例えば1×1018cm−3以下である。前記アンドープな層において、前記不純物濃度は、特に制限されないが、例えば5×1016cm−3以下である。なお、前記アンインテンショナリードープな層における前記不純物濃度は、例えば、近接するドーピング層の不純物濃度等に影響される。前記アンドープな層における前記不純物濃度は、例えば、各半導体結晶層の結晶成長条件等に影響される。前記可飽和吸収層における不純物濃度は、全ての半導体結晶層において最も不純物濃度が高い層の不純物濃度に対し、例えば1/10以下、好ましくは1/20以下、より好ましくは1/100以下、さらに好ましくは1/200以下である。すなわち、全ての半導体結晶層において最も不純物濃度が高い層における不純物濃度が1×1019cm−3程度であった場合、前記可飽和吸収層における不純物濃度は、例えば1×1018cm−3以下、好ましくは5×1017cm−3以下、より好ましくは1×1017cm−3以下、さらに好ましくは5×1016cm−3以下である。
本発明の端面発光型半導体発光素子は上記の説明に限定されず、様々な変形例が可能である。例えば、可飽和吸収層208は、バルク層からなっても良く、量子井戸層からなっても良く、多重量子井戸構造からなっても良い。また、可飽和吸収層208を構成する材料は、活性層205で発生する光の波長によって様々に選択することができ、例えばAlzInwGa1−z−wN(0≦z≦1、0≦w≦1、0≦z+w≦1)を含んでなる単層、または複数の層から構成されても良い。
また、図2では光導波路がインナーストライプ型であるが、本実施形態の変形例の一例として、例えば図3の断面図に示すように、光導波路がリッジストライプ型でもよい。図3の端面発光型半導体発光素子において、可飽和吸収層208の(0001)面の法線ベクトル<0001>は、可飽和吸収層208の主面に平行であり、かつ、光出射端面に平行である。このように結晶構造の方向が異なる以外は、図3の端面発光型半導体発光素子の構造は、前述した図4の端面発光型半導体発光素子と同様である。
図2に示す端面発光型半導体発光素子の製造方法は、特に制限されないが、例えば以下の通りである。以下で説明する製造方法は、半導体基板を準備する基板準備工程と、前記半導体基板上に前記半導体結晶層の積層体をエピタキシャル成長させる積層体成長工程とを含む。前記半導体基板は、結晶構造中に(0001)面を含み、かつ、前記(0001)面以外の面を主面とする。すなわち、この製造方法は、前述した本発明の製造工程の一例である。
この製造方法において、素子構造の作製には、300hPaの減圧MOVPE装置を用いる。キャリアガスには水素と窒素の混合ガスを用い、Ga、Al、Inソースとして、それぞれトリメチルガリウム、トリメチルアルミニウムトリメチルインジウムを用いる。n型不純物としてはシラン、p型不純物としてはビスシクロペンタジエニルマグネシウムをそれぞれ用いる。n型GaN基板201の基板主面として、例えば(11−20)面や(1−100)面を用いる。
まず、n型GaN基板201を準備する(基板準備工程)。具体的には、例えば、n型GaN基板201を自家で作製しても良いし、完成品のn型GaN基板201を購入する等しても良い。(11−20)面または(1−100)面を基板主面とするn型GaN基板201の作製方法としては、例えば以下の方法がある。すなわち、まず、(0001)面を有するサファイア基板を準備し、前記(0001)面上にGaNをエピタキシャル成長させる。その後、前記サファイア基板を剥離させ、得られた厚膜のGaN層を研磨または切削加工して、(11−20)面または(1−100)面の面出しをする。さらに、ドーピング等の処理を適宜行い、基板主面が(11−20)面または(1−100)面であるn型GaN基板201を得る。
次に、n型GaN基板201上に前記半導体結晶層の積層体をエピタキシャル成長させる(積層体成長工程)。具体的には以下の通りである。すなわち、まず、n型GaN基板201を成長装置(前記減圧MOVPE装置)に投入後、アンモニアを供給しながらn型GaN基板201を昇温し、成長温度まで達した時点で成長を開始する。1回目の成長では、n型GaNバッファ層202、n型AlGaNクラッド層203、n型GaN光閉じ込め層204、InGaN井戸層とInGaN障壁層からなる多重量子井戸構造を有する活性層205、p型AlGaNキャップ層206、第1のp型GaN光閉じ込め層207、InGaN可飽和吸収層208、第2のp型GaN光閉じ込め層209、AlN電流狭窄層210の前駆層をこの順番に形成する(エピタキシャル成長させる)。成長温度は、例えばAlN電流狭窄層210の前駆層は200〜800℃、活性層205は800℃、それ以外は1100℃とする。AlN電流狭窄層210の前駆層は低温で成長するため、1回目の成長終了時はアモルファス状である。その上にSiO膜を堆積し、通常のフォトリソグラフィー技術を用いて、<0001>方向と直交する方向にストライプ状の開口部を有するSiOマスクを形成する。次に、燐酸と硫酸の混合液を50〜200℃に保持してエッチング液とし、AlN電流狭窄層210の前駆層(アモルファス状)にストライプ状の開口部211を形成する。この時、アモルファス状のAlNは容易にエッチングされ、単結晶のGaNはエッチングが困難であるため、選択性が高く制御性の良好なエッチングがなされる。次に、再び成長装置に投入後、アンモニアを供給しながら基板を昇温し、成長温度まで達した時点で2回目の成長を開始する。この時、AlN電流狭窄層210の前駆層は、基板の昇温過程で単結晶化が進み、AlN電流狭窄層210となる。さらに、開口部211(p型GaN光閉じ込め層209が露出した部分)およびAlN電流狭窄層210の上面に、p型AlGaN/GaN超格子クラッド層212、p型GaNコンタクト層213をこの順番に形成する(エピタキシャル成長させる)。その後、p型GaNコンタクト層213の上面にp電極214を形成し、n型GaN基板201の下面にn電極215を形成して、図2の端面発光型半導体発光素子を得る。
本発明の製造方法は、当業者であれば、本明細書の記載および技術常識に基づいて実施し、本発明の端面発光型半導体発光素子を製造することができる。また、本発明の製造方法は、上記の説明に限定されない。例えば、各層の成長条件、エッチング条件等の各種条件は、公知の半導体素子の製造方法等を参考に、適宜変形を加えても良い。
上記実施形態1および2では、主に半導体レーザ(LD)について説明した。このように、本発明の端面発光型半導体発光素子は、半導体レーザであることが好ましい。ただし、本発明の端面発光型半導体発光素子は、これに限定されず、例えば、スーパールミネッセントダイオード(SLD)、または半導体光増幅器(SOA)等でもよい。本発明の端面発光型半導体発光素子の用途は特に制限されず、画像表示装置(ディスプレイ)、情報記録再生装置(例えば光ディスクシステム)等の製品に広く用いることができる。本発明の端面発光型半導体発光素子は、自励発振機能を有し、動作特性が良好で、かつ、素子寿命が長いという優れた性質を有するから、特に、次世代光ディスクシステムや次世代ディスプレイなどの光源として適する。
(付記1)
半導体結晶層の積層体と、光出射端面とを含み、前記積層体が、活性層と、可飽和吸収層と、光導波路とを含み、
前記可飽和吸収層は、結晶構造中に(0001)面を含み、
前記可飽和吸収層の(0001)面の法線ベクトルの前記可飽和吸収層主面への投影ベクトルをA、前記光出射端面から出射される直前の光の導波方向のベクトルをBとし、AとBのなす角をθとしたとき、|A|>0、かつ、0≦|cosθ|<1であり、
前記可飽和吸収層の不純物濃度は、前記可飽和吸収層以外の前記半導体結晶層のうち最も不純物濃度が高い層の不純物濃度以下であることを特徴とする端面発光型半導体発光素子。
(付記2)
前記活性層および前記可飽和吸収層が、In及びGaを含むIII族窒化物半導体結晶により形成されることを特徴とする付記1に記載の端面発光型半導体発光素子。
(付記3)
半導体レーザであることを特徴とする付記1または2に記載の端面発光型半導体発光素子。
1 前記光出射端面から出射される直前の光の導波方向のベクトルの向き
2 電子
3 正孔
4 電子および正孔の移動(ドリフト)方向
101 n型クラッド層
102 n型光閉じ込め層
103 活性層
104 p型光閉じ込め層
105 可飽和吸収層
106 電流狭窄層
107 p型クラッド層
201 n型基板
202 n型バッファ層
203 n型クラッド層
204 n型光閉じ込め層
205 活性層
206 p型キャップ層
207 第1のp型光閉じ込め層
208 可飽和吸収層
209 p型光閉じ込め層
210 電流狭窄層
211 開口部(開口埋め込み部)
212 p型クラッド層
213 p型コンタクト層
214 p電極
215 n電極
301 n型基板
302 n型バッファ層
303 n型クラッド層
304 n型光閉じ込め層
305 活性層
306 p型キャップ層
307 p型光閉じ込め層
308 可飽和吸収層
309 p型クラッド層
310 p型コンタクト層
311 絶縁層
312 p電極
313 n電極

Claims (10)

  1. 半導体結晶層の積層体と、光出射端面とを含み、前記積層体が、活性層と、可飽和吸収層と、光導波路とを含み、
    前記可飽和吸収層は、結晶構造中に(0001)面を含み、
    前記可飽和吸収層の(0001)面の法線ベクトルの前記可飽和吸収層主面への投影ベクトルをA、前記光出射端面から出射される直前の光の導波方向のベクトルをBとし、AとBのなす角をθとしたとき、|A|>0、かつ、0≦|cosθ|<1であり、
    前記可飽和吸収層の不純物濃度は、前記可飽和吸収層以外の前記半導体結晶層のうち最も不純物濃度が高い層の不純物濃度以下であることを特徴とする端面発光型半導体発光素子。
  2. 前記ベクトルAの方向が、前記光出射端面に平行である請求項1記載の端面発光型半導体発光素子。
  3. 前記可飽和吸収層が、アンインテンショナリードープな層であることを特徴とする請求項1または2記載の端面発光型半導体発光素子。
  4. 前記可飽和吸収層がアンドープな層であることを特徴とする請求項1または2記載の端面発光型半導体発光素子。
  5. 0≦|cosθ|<1/√2であることを特徴とする請求項1から4のいずれか一項に記載の端面発光型半導体発光素子。
  6. cosθ=0であることを特徴とする請求項1から4のいずれか一項に記載の端面発光型半導体発光素子。
  7. 前記半導体結晶層の積層体における各半導体結晶層が、III族窒化物半導体から形成されていることを特徴とする請求項1から6のいずれか一項に記載の端面発光型半導体発光素子。
  8. 半導体基板を準備する基板準備工程と、前記半導体基板上に前記半導体結晶層の積層体をエピタキシャル成長させる積層体成長工程とを含み、
    前記半導体基板は、結晶構造中に(0001)面を含み、かつ、前記(0001)面以外の面を主面とすることを特徴とする、請求項1から7のいずれか一項に記載の端面発光型半導体発光素子の製造方法。
  9. 光源を含み、前記光源が、請求項1から7のいずれか一項に記載の端面発光型半導体発光素子を含むことを特徴とする画像表示装置。
  10. 光源を含み、前記光源が、請求項1から7のいずれか一項に記載の端面発光型半導体発光素子を含むことを特徴とする情報記録再生装置。
JP2010000833A 2010-01-05 2010-01-05 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置 Pending JP2011142147A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000833A JP2011142147A (ja) 2010-01-05 2010-01-05 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000833A JP2011142147A (ja) 2010-01-05 2010-01-05 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置

Publications (1)

Publication Number Publication Date
JP2011142147A true JP2011142147A (ja) 2011-07-21

Family

ID=44457808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000833A Pending JP2011142147A (ja) 2010-01-05 2010-01-05 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置

Country Status (1)

Country Link
JP (1) JP2011142147A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016269A (ja) * 2008-07-07 2010-01-21 Nec Corp 半導体発光素子
JP2015506048A (ja) * 2011-11-25 2015-02-26 京東方科技集團股▲ふん▼有限公司 駆動回路、シフトレジスター、ゲート駆動器、アレイ基板及び表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031898A (ja) * 2001-07-16 2003-01-31 Sharp Corp 窒化物半導体レーザ素子とその製造方法
WO2007099847A1 (ja) * 2006-03-03 2007-09-07 Matsushita Electric Industrial Co., Ltd. 照明光源及びレーザ投射装置
JP2007250971A (ja) * 2006-03-17 2007-09-27 Nec Corp 窒化物系発光素子
JP2008198952A (ja) * 2007-02-15 2008-08-28 Rohm Co Ltd Iii族窒化物半導体発光素子
JP2009123969A (ja) * 2007-11-15 2009-06-04 Tohoku Univ 紫外線窒化物半導体発光素子およびその製造方法
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031898A (ja) * 2001-07-16 2003-01-31 Sharp Corp 窒化物半導体レーザ素子とその製造方法
WO2007099847A1 (ja) * 2006-03-03 2007-09-07 Matsushita Electric Industrial Co., Ltd. 照明光源及びレーザ投射装置
JP2007250971A (ja) * 2006-03-17 2007-09-27 Nec Corp 窒化物系発光素子
JP2008198952A (ja) * 2007-02-15 2008-08-28 Rohm Co Ltd Iii族窒化物半導体発光素子
JP2009123969A (ja) * 2007-11-15 2009-06-04 Tohoku Univ 紫外線窒化物半導体発光素子およびその製造方法
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016269A (ja) * 2008-07-07 2010-01-21 Nec Corp 半導体発光素子
JP2015506048A (ja) * 2011-11-25 2015-02-26 京東方科技集團股▲ふん▼有限公司 駆動回路、シフトレジスター、ゲート駆動器、アレイ基板及び表示装置

Similar Documents

Publication Publication Date Title
JP3653169B2 (ja) 窒化ガリウム系半導体レーザ素子
US20090078944A1 (en) Light emitting device and method of manufacturing the same
JP5627871B2 (ja) 半導体素子およびその製造方法
KR101361016B1 (ko) 반도체 레이저, 반도체 장치의 제조 방법, 광 픽업, 및 광디스크 장치
JP2008277539A (ja) 窒化物半導体発光素子
JP2011101039A (ja) 窒化物半導体レーザ素子
US20100074290A1 (en) Semiconductor laser device
US12057678B2 (en) Surface-emitting laser device and method for manufacturing surface-emitting laser device
JP2007266574A (ja) 半導体レーザ素子及び半導体レーザ素子の製造方法
US9368940B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20090168827A1 (en) Nitride semiconductor laser chip and method of fabricating same
US11837850B2 (en) Surface-emitting laser device and method for manufacturing surface-emitting laser device
JP2004134772A (ja) 窒化物系半導体発光素子
JP2010087083A (ja) 半導体レーザの製造方法、半導体レーザ、光ピックアップおよび光ディスク装置
JP2011142147A (ja) 端面発光型半導体発光素子、端面発光型半導体発光素子の製造方法、画像表示装置、情報記録再生装置
JPH11340573A (ja) 窒化ガリウム系半導体レーザ素子
JP3933637B2 (ja) 窒化ガリウム系半導体レーザ素子
JP4623799B2 (ja) 半導体発光素子の製法および半導体レーザ
JP2008186903A (ja) 半導体レーザ装置
JP5079613B2 (ja) 窒化物系半導体レーザ素子およびその製造方法
JP4760821B2 (ja) 半導体素子の製造方法
JP2009212343A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JP4425948B2 (ja) 窒化物半導体レーザ
JP2011124253A (ja) 半導体レーザの製造方法、半導体レーザ、光ディスク装置、半導体装置の製造方法および半導体装置
JP4826019B2 (ja) 半導体レーザ素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140925