JP5075298B1 - 窒化物系半導体発光素子およびその製造方法 - Google Patents

窒化物系半導体発光素子およびその製造方法 Download PDF

Info

Publication number
JP5075298B1
JP5075298B1 JP2012528980A JP2012528980A JP5075298B1 JP 5075298 B1 JP5075298 B1 JP 5075298B1 JP 2012528980 A JP2012528980 A JP 2012528980A JP 2012528980 A JP2012528980 A JP 2012528980A JP 5075298 B1 JP5075298 B1 JP 5075298B1
Authority
JP
Japan
Prior art keywords
layer
plane
nitride
thickness
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012528980A
Other languages
English (en)
Other versions
JPWO2012157198A1 (ja
Inventor
俊哉 横川
順子 岩永
彰 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012528980A priority Critical patent/JP5075298B1/ja
Application granted granted Critical
Publication of JP5075298B1 publication Critical patent/JP5075298B1/ja
Publication of JPWO2012157198A1 publication Critical patent/JPWO2012157198A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

実施形態の窒化物系半導体発光素子は、成長面がm面であってGaN系半導体から形成されている半導体積層構造を備える。半導体積層構造は、n型半導体層と、p型半導体層と、前記p型半導体層上に設けられたp側電極と、前記n型半導体層と前記p型半導体層との間に位置する活性層とを備える。n型半導体層の厚さに対する活性層の厚さの比Dが1.8×10-4≦D≦14.1×10-4であり、p側電極の面積Sが1×102μm2≦S≦9×104μm2であり、外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上である。
【選択図】図3

Description

本願は、窒化物系半導体発光素子およびその製造方法に関する。
V族元素として窒素(N)を有する窒化物半導体は、そのバンドギャップの大きさから、短波長発光素子の材料として有望視されている。そのなかでも、窒化ガリウム系化合物半導体(GaN系半導体)の研究は盛んに行われ、青色発光ダイオード(LED)、緑色LED、ならびに、GaN系半導体を材料とする半導体レーザも実用化されている(例えば、特許文献1、2参照)。GaN系半導体は、ウルツ鉱型結晶構造を有している。図1は、GaNの単位格子を模式的に示している。AlxGayInzN(0≦x,y,z≦1、x+y+z=1)半導体の結晶では、図1に示すGaの一部がAlおよび/またはInに置換され得る。
図2は、ウルツ鉱型結晶構造の面を4指数表記(六方晶指数)で表すために一般的に用いられている4つの基本ベクトルa1、a2、a3、cを示している。基本ベクトルcは、[0001]方向に延びており、この方向は「c軸」と呼ばれる。c軸に垂直な面(plane)は「c面」または「(0001)面」と呼ばれている。なお、「c軸」および「c面」は、それぞれ、「C軸」および「C面」と表記される場合もある。
GaN系半導体を用いて半導体素子を作製する場合、GaN系半導体結晶を成長させる基板として、c面基板すなわち(0001)面を表面に有する基板が使用される。しかしながら、c面においてはGaの原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、分極(Electrical Polarization)が形成される。このため、「c面」は「極性面」とも呼ばれている。分極の結果、活性層におけるInGaNの量子井戸にはc軸方向に沿ってピエゾ電界が発生する。このようなピエゾ電界が活性層に発生すると、キャリアの量子閉じ込めシュタルク効果により活性層内における電子およびホールの分布に位置ずれが生じるため、内部量子効率(IQE:Internal Quantum Efficiency)が低下する。このため、半導体レーザであれば、しきい値電流の増大が引き起こされる。LEDであれば、消費電力の増大や発光効率の低下が引き起こされる。また、注入キャリア密度の上昇と共にピエゾ電界のスクリーニングが起こり、発光波長の変化も生じる。
そこで、これらの課題を解決するため、非極性面、例えば[10−10]方向に垂直な、m面と呼ばれる(10−10)面を表面に有する基板を使用することが検討されている。ここで、ミラー指数を表すカッコ内の数字の左に付された「−」は、「バー」を意味する。m面は、図2に示されるように、c軸(基本ベクトルc)に平行な面であり、c面と直交している。m面においてはGa原子と窒素原子は同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。その結果、m面に垂直な方向に半導体積層構造を形成すれば、活性層にピエゾ電界も発生しないため、上記課題を解決することができる。
m面は、(10−10)面、(−1010)面、(1−100)面、(−1100)面、(01−10)面、(0−110)面の総称である。なお、本明細書において、「X面成長」とは、六方晶ウルツ鉱構造のX面(X=c、m)に垂直な方向にエピタキシャル成長が生じることを意味するものとする。X面成長において、X面を「成長面」と称する場合がある。また、X面成長によって形成された半導体の層を「X面半導体層」と称する場合がある。
特許文献1〜5は、m面半導体層の積層構造を有する窒化物系半導体素子を開示している。
国際公開第2010/113405号 国際公開第2010/113406号 国際公開第2010/113399号 国際公開第2010/103804号 国際公開第2010/052810号
しかしながら、m面でもさらなる発光効率の向上が求められていた。
本発明の実施形態は、高発光効率の窒化物系半導体発光素子およびその製造方法を提供する。
本発明の一態様において、窒化物系半導体発光素子は、成長面がm面であってGaN系半導体から形成されている半導体積層構造を備えた窒化物系半導体発光素子であって、前記半導体積層構造は、n型半導体層と、p型半導体層と、前記p型半導体層上に設けられたp側電極と、前記n型半導体層と前記p型半導体層との間に位置する活性層とを備え、前記n型半導体層の厚さに対する前記活性層の厚さの比Dが1.8×10-4≦D≦14.1×10-4であり、前記p側電極の面積Sが1×102μm2≦S≦9×104μm2であり、外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上である。
本発明の一態様において、光源は、上記何れかの窒化物系半導体発光素子と、前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部とを備える。
本発明の一態様において、半導体発光素子の製造方法は、成長面がm面であってGaN系半導体から形成されている半導体積層構造を形成する工程(a)と、前記半導体積層構造上にp側電極を形成する工程(b)とを含む窒化物系半導体発光素子の製造方法であって、前記工程(a)は、n型半導体層を形成する工程(a1)と、前記工程(a1)の後、活性層を形成する活性層形成工程(a2)と、前記工程(a2)の後、p型半導体層を形成する工程(a3)とを含み、前記工程(a1)および(a2)では、外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上となるように、前記n型半導体層および前記活性層を形成し、前記工程(a2)では、前記n型半導体層の最終的な厚さに対する前記活性層の厚さの比Dが1.8×10-4≦D≦14.1×10-4となるように前記活性層を形成し、前記工程(b)では、前記p側電極の面積Sが1×102μm2μm2≦S≦9×104μm2となるように前記p側電極を形成する。
本発明の実施形態によれば、成長面がm面である窒化物系半導体発光素子の発光効率を向上させることができる。
GaNの単位格子を模式的に示す斜視図 ウルツ鉱型結晶構造の基本ベクトルa1、a2、a3、cを示す斜視図 (a)は、第1の実施形態の窒化物系半導体発光素子100の断面模式図、(b)はm面の結晶構造を表す図、(c)はc面の結晶構造を表す図 (a)および(b)は、SIMS分析による従来のc面およびm面窒化物系半導体発光素子における酸素、Al、Inの深さ方向のプロファイルを示すグラフ 内部量子効率(IQE)の励起光密度依存性を示すグラフ 従来のc面およびm面LED構造における外部量子効率(EQE:External Quantum fficiency)を示す表 注入電流密度のチップサイズ依存性を示すグラフ 外部量子効率のn型GaN系半導体領域厚さ依存性を示すグラフ 光出力のn型GaN系半導体領域厚さ依存性を示すグラフ n型半導体層の厚さに対する活性層の厚さの比Dに対する外部量子効率のドループの依存性を示すグラフ 各種c面およびm面窒化物系半導体発光素子における外部量子効率を示すグラフ 従来と本実施形態のm面窒化物系半導体発光素子における光出力を示すグラフ 白色光源の実施形態を示す断面図
一般に、c面LEDにおいては、大きな出力を得るために電流を増加すると、注入キャリアが活性層からオーバーフローするため、発光効率の低下を生じる。このオーバーフローを防ぐため、活性層の厚さを増加することによって活性層のキャリア密度を減らすことが考えられる。活性層に注入される電流が一定であれば、活性層の体積が増加するほど、活性層内部の単位体積に含まれるキャリアの数が減少し、オーバーフローが抑制されるからである。しかし、c面LEDの場合、活性層の厚さを増加しても、ピエゾ電界が存在するため、逆に発光効率は低下してしまう。
したがって、従来のc面LEDでは、活性層の厚さを増加させる代わりにチップ面積を大きくし、それによって活性層内のキャリア密度を減らしている。チップ面積は、活性層の面積に対応するため、チップ面積を増加させると、活性層の体積を増加させることができる。チップ面積は、GaN系基板を用いる場合、通常、1mm2またはそれ以上の大きさに設定される。一方、m面LEDでは、活性層内でピエゾ電界が生じないため、活性層の厚さを増加しても発光効率は低下しない。したがって、m面LEDでは、チップ面積を増加させる代わりに活性層の厚さを増加し、それによって活性層の体積を増加することで、活性層内のキャリア密度を減らすことができる。そして、その結果、電流を増加した場合もキャリアのオーバーフローを低減して発光効率の低下を抑制することができる。
しかし、m面LEDの新たな課題を発明者は見出した。すなわち、その課題とは、m面半導体は酸素が混入されやすく、活性層内に非発光中心が多く存在することである。注入キャリア密度が低くなると、非発光中心の影響が強くなる。したがって、低電流密度の場合、注入キャリア密度が低くなり、非発光中心の影響で発光効率が低下することがわかった。特に、フリップチップ構造のような、p電極もn電極も同じ成長面側に形成する構造では、この傾向は顕著となる。また、活性層の厚さを増して活性層の体積を増すと、注入キャリア密度がよりいっそう低下するため、m面LEDの発光効率は低電流領域で更に低くなる。
実用上、理想的には低電流領域から高電流領域のどの電流領域においても高い発光効率が望まれる。したがって、低電流領域において発光効率が低下することが大きな課題となる。
そのような状況の中、本願発明者は、非極性面であるm面上に成長させたGaN系半導体素子が持つ発光効率低下という課題を解決すべく検討した結果、低電流領域から高電流領域のどの電流領域においても高い効率を得ることができる構成を見出した。
本発明の一態様において、窒化物系半導体発光素子は、成長面がm面であってGaN系半導体から形成されている半導体積層構造を備えた窒化物系半導体発光素子であって、前記半導体積層構造は、n型半導体層と、p型半導体層と、前記p型半導体層上に設けられたp側電極と、前記n型半導体層と前記p型半導体層との間に位置する活性層とを備え、前記n型半導体層の厚さに対する前記活性層の厚さの比Dが1.8×10-4≦D≦14.1×10-4であり、前記p側電極の面積Sが1×102μm2≦S≦9×104μm2であり、外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上である。
ある実施形態において、前記n型半導体層の厚さに対する前記活性層の厚さの比Dが2.62×10-4≦D≦8.49×10-4である。
ある実施形態において、前記p側電極の面積Sが1×102μm2≦S≦4×104μm2である。
ある実施形態において、前記活性層は、2×1017cm-3以上の酸素濃度を有する。
ある実施形態において、前記活性層の厚さは、0.027μm以上0.045μm以下である。
ある実施形態において、前記n型半導体層は、n型半導体から形成されている基板を含む。
ある実施形態において、前記半導体積層構造は、AlxGayInzN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成されている。
本発明の一態様において、光源は、上記何れかの窒化物系半導体発光素子と、前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部と、を備える。
本発明の一態様において、半導体発光素子の製造方法は、成長面がm面であってGaN系半導体から形成されている半導体積層構造を形成する工程(a)と、前記半導体積層構造上にp側電極を形成する工程(b)とを含む窒化物系半導体発光素子の製造方法であって、前記工程(a)は、n型半導体層を形成する工程(a1)と、前記工程(a1)の後、活性層を形成する活性層形成工程(a2)と、前記工程(a2)の後、p型半導体層を形成する工程(a3)とを含み、前記工程(a1)および(a2)では、外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上となるように、前記n型半導体層および前記活性層を形成し、前記工程(a2)では、前記n型半導体層の最終的な厚さに対する前記活性層の厚さの比Dが1.8×10-4≦D≦14.1×10-4となるように前記活性層を形成し、前記工程(b)では、前記p側電極の面積Sが1×102μm2μm2≦S≦9×104μm2となるように前記p側電極を形成する。
ある実施形態において、前記工程(a2)では、前記n型半導体層の最終的な厚さに対する前記活性層の厚さの比Dが2.62×10-4≦D≦8.49×10-4となるように前記活性層を形成する。
ある実施形態において、前記工程(b)では、前記p側電極の面積Sが1×102μm2μm2≦S≦4×104μm2となるように前記p側電極を形成する。
ある実施形態において、前記活性層は、2×1017cm-3以上の酸素濃度を有する。
ある実施形態において、前記活性層の厚さは、0.027μm以上0.045μm以下である。
ある実施形態において、前記n型半導体層は、n型半導体から形成されている基板を含む。
ある実施形態において、前記半導体積層構造は、AlxGayInzN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成されている。
以下、図面を参照しながら、本発明の実施形態を説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。
図3(a)は、本発明の実施形態に係る窒化物系半導体発光素子100の断面構成を模式的に示している。図3(a)に示した窒化物系半導体発光素子100は、窒化ガリウム系化合物半導体(GaN系半導体)から形成されている半導体積層構造20を有する半導体デバイスである。
本実施形態の窒化物系半導体発光素子100は、m面を表面(主面)12とするGaN系基板10と、GaN系基板10の上に積層された複数の半導体層とを有する半導体積層構造20、ならびに半導体積層構造20の上に形成されたp側電極30およびn側電極40を備えている。この例において、半導体積層構造20は、GaN系基板10、およびGaN系基板10上に積層された複数の半導体層によって構成される。なお、GaN系基板10に代えて、半導体以外の材料(例えば絶縁材料)から形成された基板が使用される。そのような場合において、半導体積層構造20は、基板を含まず、基板上に積層された半導体層によって構成される。
GaN系基板10はn型半導体の性質を持つ。例えば、GaN系基板10の厚さは25〜450μmであってもよい。さらには、GaN系基板10の厚さは50〜100μmであってもよい。GaN系基板10の厚さが50μm以上であれば、高駆動電流での効率低下が抑制されることがわかった。この点については、後述する。またGaN系基板10の厚さが100μm以下であれば、LEDをチップに分離する際に割りやすく、分離歩留が向上する。
半導体積層構造20は、GaN系半導体から形成されている。より具体的には、本実施形態における半導体積層構造20のうち基板10以外の部分は、AlxGayInzN(0≦x,y,z≦1、x+y+z=1)から形成され、組成比率x、y、zが基板10の主面12の法線方向に階段状または連続的に変化している。半導体積層構造20のうち基板10以外の部分は、m面成長によって形成されたm面半導体積層構造であり、その成長面はm面である。なお、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしもGaN系基板10の表面がm面であることが必須とならない。本実施形態の構成においては、少なくとも半導体積層構造20のうち、p側電極と接触するp型半導体領域の成長面がm面であればよい。
本実施形態の窒化物系半導体発光素子100は、積層された半導体層を支持するGaN基板10を備えているが、GaN基板10に代えて他の基板を備えていても良いし、基板が取り除かれた状態で使用されることも可能である。
図3(b)は、成長面がm面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示している。Ga原子と窒素原子は、m面に平行な同一原子面上に存在するため、m面に垂直な方向に分極は発生しない。すなわち、m面は非極性面であり、m面に垂直な方向に成長した活性層内ではピエゾ電界が発生しない。なお、添加されたInおよびAlは、Gaのサイトに位置し、Gaを置換する。Gaの少なくとも一部がInやAlで置換されていても、m面に垂直な方向に分極は発生しない。
m面を表面に有するGaN系基板は、本明細書では「m面GaN系基板」と称される。m面に垂直な方向に成長したm面窒化物系半導体の積層体を得るには、典型的には、m面GaN基板を用い、その基板のm面上に半導体を成長させればよい。GaN系基板の表面の面方位が、半導体積構造の面方位に反映されるからである。しかし、前述したように、基板の表面がm面である必要は必ずしもなく、また、最終的なデバイスに基板が残っている必要も無い。
参考のために、図3(c)に、成長面がc面である窒化物系半導体の断面(基板表面に垂直な断面)における結晶構造を模式的に示す。Ga原子と窒素原子は、c面に平行な同一原子面上に存在しない。その結果、c面に垂直な方向に分極が発生する。c面を表面に有するGaN系基板を、本明細書では「c面GaN系基板」と称する。
c面GaN系基板は、GaN系半導体結晶を成長させるための一般的な基板である。c面に平行なGaの原子層と窒素の原子層の位置がc軸方向に僅かにずれているため、c軸方向に沿って分極が形成される。
再び、図3(a)を参照する。
半導体積層構造20は、それぞれがGaN系半導体から形成されている第1導電型半導体層、活性層および第2導電型半導体層を備えている。例えば、第1導電型半導体層はn型半導体層であり、第2導電型半導体層はp型半導体層である。p型半導体層の厚さは0.05〜2μmであってもよい。さらには、p型半導体層の厚さは0.1〜0.3μmであってもよい。p型半導体層の厚さが0.1μm以上であれば、活性層へのホールキャリアの注入効率を充分に向上させることができる。p型半導体層の厚さが0.3μm以下であれば、p型のMg不純物による光吸収の影響を小さくできる。また、n型半導体層の厚さは0.5〜5μmであってもよい。さらには、n型半導体層の厚さは1〜3μmであってもよい。n型半導体層の厚さが1μm以上であれば、基板10との界面で発生する欠陥や不純物の影響を小さくすることができる。n型半導体層の厚さが3μm以下であれば、エピタキシャル成長のスループットを向上し、製造コストを抑制できる。なお、基板10がn型半導体から形成されているとき、半導体積層構造20に含まれる「n型半導体層」は、n型半導体から形成された基板10を含むことになる。この場合、半導体積層構造20に含まれる「n型半導体層」の厚さは、上述した0.5〜5μmまたは1〜3μmの厚さと基板10の厚さとの合計値を有する。
活性層の厚さは0.01〜0.1μmであってもよい。「活性層の厚さ」とは、活性層が有する量子井戸構造の井戸層(例えばInGaN層)が1層の場合は、その井戸層の厚さであり、井戸層が複数ある場合は、それぞれの井戸層の厚さを加えたトータルの厚さである。活性層24の厚さは0.027〜0.045μmであってもよい。活性層24の厚さがこの範囲にあれば、電子のキャリアのオーバーフローを低減し、かつ活性層内のキャリアの分布の不均一を生じさせないようにできる。
p側電極の面積は、1×102μm2以上9×104μm2以下である。p側電極の面積は4×1022以上4×104μm2以下であってもよい。p側電極の面積をこの範囲にすることにより、活性層に高い密度の電流を均一に注入できる。この理由の詳細は後述する。
半導体積層構造20は、図3(a)に示されるように、例えば、n型のGaN系半導体層であるn−AluGavInwN層(u+v+w=1, u≧0,v≧0, w≧0)22と、AlaInbGacN層(a+b+c=1,a≧0, b≧0, c≧0)を含む活性層24と、p型のGaN系半導体層であるp−AldGaeN層(d+e=1, d≧0, e≧0)25とを含んでいる。活性層24は、窒化物系半導体発光素子100における電子注入領域である。活性層24は、例えば3周期のGa0.9In0.1N井戸層(例えば、3周期の合計の厚さ15nm)とGaNバリア層(例えば、2層の合計の厚さ30nm)とが交互に積層されたGaInN/GaN多重量子井戸(MQW)構造を有し得る。
活性層24とp−AldGaeN層25との間には、アンドープのGaN層を設けてもよい。このようなアンドープGaN層の厚さは、例えば、0.005〜0.05μmである。アンドープGaN層の厚さが0.005μm以上であれば、活性層へMgが拡散することを防ぐことが可能である。アンドープGaN層の厚さが0.05μm以下であれば、電子のキャリアがアンドープGaN層とp−AldGaeN層25との界面に蓄積されることを防止できる。活性層24と基板10との間には、n型のGaN系半導体層であるn−AluGavInwN層22が形成されている。半導体積層構造20は、上記以外の層を含んでいてもよい。
p−AldGaeN層25において、Alの組成比率dは、厚さ方向に一様である必要は無い。AldGaeN層25において、Alの組成比率dが厚さ方向に連続的または階段的に変化していても良い。すなわち、p−AldGaeN層25は、Alの組成比率dが異なる複数の層が積層された多層構造を有していても良いし、ドーパントの濃度も厚さ方向に変化していてもよい。
p−AldGaeN層25は、その成長面側に、p−AldGaeNコンタクト層26を含んでいる。p−AldGaeNコンタクト層26の厚さは例えば10nm以上500nm以下である。p−AldGaeN層25のうちp−AldGaeNコンタクト層26以外の領域27の厚さは例えば10nm以上500nm以下である。この領域27のMg濃度は例えば1×1018cm-3以上1×1019cm-3以下である。p−AldGaeNコンタクト層26は、p−AldGaeN層25のうちのp−AldGaeNコンタクト層26以外の領域27よりも、高いMg濃度を有する。p−AldGaeNコンタクト層26のMg濃度は、具体的には、4×1019cm-3以上2×1020cm-3以下であり、1×1020cm-3以下であり得る。
本実施形態のp側電極30は、例えば、Ag層を含んでいる。p側電極30のAg層は、半導体積層構造20のp型半導体層、具体的にはp−AldGaeNコンタクト層26に接触しており、p側電極30として機能する。
図4(a)および(b)は、それぞれ、c面およびm面の窒化物系半導体発光素子におけるSIMS分析による酸素、Al、Inの深さ方向のプロファイルを示している。Inが含まれている層がInGaN活性層の領域に相当する。m面の窒化物系半導体発光素子では、InGaN活性層の酸素含有濃度がc面と比較して高くなっていることがわかる。図4の例では、m面の窒化物系半導体発光素子の活性層の酸素含有濃度がc面の窒化物系半導体発光素子の活性層の酸素含有濃度の約10倍になっている。これはm面InGaN結晶が酸素を混入しやすいことを示している。これがm面の窒化物系半導体発光素子の課題となる。
その理由を以下に示す。
図5は、m面の窒化物系半導体発光素子を光励起したときの内部量子効率(IQE)と励起パワー密度(Excitation Power Density)との関係を示す。この関係は測定によって得られた。横軸は励起パワー密度を示す。縦軸はIQEを示す。図5に示すデータポイント群(a)とデータポイント群(b)は、それぞれ、室温(RT)と低温(LT:10K)におけるIQEと励起パワー密度との関係を示す。低温においては、低励起パワー密度でもIQEの低下は見られない。これは励起され活性層に注入されたキャリアの拡散長が低温においては小さいため、非発光中心が存在してもトラップされず、ほとんどのキャリアが発光に寄与するためである。室温においては、低励起パワー密度でIQEの低下が見られる。これは前述の酸素の混入に起因した非発光中心が活性層に存在し、注入キャリアがこれに消費されることによると考えられる。すなわち、m面の窒化物系半導体発光素子では、非発光センターがc面の窒化物系半導体発光素子よりも多いため、注入キャリア密度が低い場合(例えば、励起パワー密度が1kW/cm2以下の場合)にIQEが低下する。一方、励起パワー密度を0.01kW/cm2から0.1kW/cm2、さらに1kW/cm2へと増加すると共にIQEは増加を示す。これは注入されたキャリアによって非発光中心が埋まり、非活性化されることによるものである。このように、m面の窒化物系半導体発光素子では、酸素が高い濃度で混入するため、低電流密度領域では効率が低くなるという、m面特有の課題を本発明者は発見した。
本実施形態では、例えば、活性層の酸素濃度を2×1017cm-3以上8×1017cm-3以下とする。さらに、活性層の酸素濃度を1×1017cm-3以上5×1017cm-3以下としてもよい。
図6は従来のc面およびm面の窒化物系半導体発光素子における外部量子効率(EQE)の比較を示す。前述した光励起と同様に、窒化物系半導体発光素子への電流注入の場合においても酸素混入の影響を調べた。c面の窒化物系半導体発光素子と比較し、m面の窒化物系半導体発光素子では低電流領域の外部量子効率が低下していることが確認された。これは光励起の場合と同様に、酸素による非発光中心に起因した現象と考えられる。すなわち、300A/cm2の大電流密度で外部量子効率がほぼ同等のc面とm面の窒化物系半導体発光素子を比較した場合、c面では10A/cm2の低電流密度で外部量子効率が大きくなっているが、m面では、非発光センターである酸素に起因して、低電流密度で外部量子効率が小さくなっている。
そこで発明者はm面窒化物系半導体発光素子に適正なp側電極の面積(これが活性層の成長面の面積またはチップ面積を決める)、適正なn型GaN系半導体層の厚さと活性層の厚さとの比率を見出し、本課題を解決した。以下、m面窒化物系半導体発光素子の半導体積層構造の成長面の面積をチップ面積、一辺の長さをチップ長さと呼ぶ場合がある。
以下、p側電極が「正方形」である例について説明する。このため、以下の説明において、(p側電極の長さ)×(p側電極の長さ)=(p側電極の面積)の関係が成立する。本発明は、p側電極が「正方形」である場合に限定されない。p側電極が「正方形」ではない場合、「p側電極の面積」の平方根が本明細書における「p側電極の長さ」に相当する。なお、n側電極が設けられている部分および半導体積層構造の成長面において電極が設けられていない部分の面積は微小であり、p側電極面積は、近似的にはチップ面積に等しい。例えば、チップ面積は、p側電極面積の1倍を超え、1.1倍以下となる。n側電極のコンタクト抵抗はp側電極のコンタクト抵抗に比べて低く、一般的に、10分の1以下であるので、n側電極の面積は、p側電極の面積の10分の1以下にしてもよい。以下説明では、半導体積層構造の成長面が「正方形」であって、チップ面積=p側電極面積、チップ長さ=p側電極長さの関係が成立するとして説明を行う。
図7は、図3(a)に示した構造のm面窒化物系半導体発光素子の注入電流密度とp側の電極面積との関係を示す。この関係はシミュレーションによって得られたものである。図7におけるグラフの横軸はp側電極30(正方形)の一辺の長さLa、縦軸は活性層への注入電流密度Jaを示す。注入電流密度Jaは2.9Vのバイアス電圧を電極間に印加したときの値である。
図7の曲線(a)および曲線(b)は、それぞれ、n型電極とp側電極とを半導体積層構造の成長面に投影した場合の電極間距離Lacが5μmの場合と10μmの場合のシミュレーション結果を示す。
なお、シミュレーションに用いた構造において、n型GaN系半導体層22の厚さは3μmである。基板10は、1×1018cm-3のn型キャリア濃度を有し、100μmの厚さを有している。従って、基板10およびn型GaN系半導体層22によって構成されるn型GaN系半導体領域の厚さは、103μmである。一方、p型半導体領域の厚さ、すなわち、p−AldGaeNコンタクト層26を含むp−AldGaeN層2526の厚さは100nmである。活性層は3周期のInGaN井戸層(合計厚さ:15nm=5nm×
3)、2つのGaNの障壁層(合計厚さ:30nm=15nm×2)の多重量子井戸からなり、活性層の合計厚さは45nmである。
図7からわかるように、p側電極30の長さLaを300μmより短くすると、活性層への注入電流密度は大きく増加しはじめる。2×1017cm-3以上8×1017cm-3以下の酸素が混入したm面窒化物系半導体発光素子では、その酸素濃度に相当する非発光中心をすべて埋めるのに必要なキャリアは、シミュレーションによると、0.8A/mm2以上の注入電流密度Jaによって得ることができる。この注入電流密度Jaは、p側電極30が300μmよりも小さければ達成できることが図7からわかる。さらに、注入電流密度Jaは、p側電極30の長さLaを200μmより短くすると急激に増加する。p側電極30の長さLaを100μmより短くすると増加率は小さくなりはじめ、50μmでピークとなり、それ以下では注入電流密度Jaは減少する。
以上のことからわかるように、m面窒化物系半導体発光素子のp側電極30の長さ(チップ長さ)を10μm以上、300μm以下とすることにより、高い注入電流密度が得られ、10μm以上、200μm以下とすることにより、さらに高い注入電流密度が得られ、20μm以上100μm以下とすることにより、さらに高い注入電流密度が得られる。これによってチップサイズを縮小することにより、活性層に酸素が混入している場合においても、酸素による非発光中心を高注入のキャリアによって埋めることができ、低電流においても高効率が達成できる。
なお、p側電極30の長さを2乗することにより、p側電極30の面積が求まる。すなわち、本実施形態のp側電極30の面積は、100μm2以上、90000μm2以下であってもよい。さらに、本実施形態のp側電極30の面積は、100μm2以上、40000μm2以下であってもよい。さらに、本実施形態のp側電極30の面積は、400μm2以上、10000μm2以下であってもよい。チップの分離加工の歩留、ハンドリングの容易さを考慮すればp側電極30の面積は、2500μm2以上、90000μm2以下であってもよい。
本発明の実施形態によれば、p側電極30の面積を100μm2以上、90000μm2以下にすることによって、活性層の注入電流密度を向上でき、酸素による効率低下を抑制し、少なくとも低電流密度において高効率が実現できる。
尚、図7の縦軸Jaは電流密度であり、電圧を2.9Vにバイアス印加した時に流れる電流値をp側電極30の面積で割った値である。図7に示すJaは、n側電極から離れる方向のp側電極の一辺の長さLaとLacが与えれば一義的に決まり、図3に示すp側電極30の奥行きの長さ(n側電極の一辺と平行な方向のp側電極の一辺の長さ)に依存しない。一般的にはp側電極30の形状は正方形が用いられることが多いが、正方形に限定されず、例えば、長方形であっても良い。電流値は、n側電極から離れる方向のp側電極の一辺の長さLaとLacで決まる電流密度Jaにp側電極30の面積(p側電極30の奥行きの長さ×La)をかけた値となる。従って、最適な面積の値は電極形状には依存しない。以下、Lacが5μmの場合を説明するが、Lacは5μm以上、10μm以下であれば同等の効果を得ることができる。また、電圧を2.9Vにバイアス印加した時のJaが0.8A/mm2以上とれば、p側電極の形状、レイアウトにかかわらず、所望の特性が得られる。また、p電極およびn電極の形状、レイアウトは本実施形態のような長方形のn側電極と正方形のp側電極が2つ並んだ構成だけではなく、1つまたは複数のn電極の周囲の一部または全部がp電極に囲まれた構成など様々な種類の構成が考えられるが、その場合もJaのp電極の面積に対する依存性は同等であり、電極の形状、レイアウトに依存しない。
図8は、m面窒化物系半導体発光素子の外部量子効率(EQE)の電流密度依存性とn型GaN系半導体領域の厚さとの関係のシミュレーション結果を示す。横軸はチップの駆動電流、縦軸は外部量子効率を示す。図8の曲線(a)、(b)、(c)、(d)および(e)は、それぞれ、n型GaN基板の厚さがそれぞれ5μm、25μm、50μm、75μmおよび100μmの場合を示す。曲線(a)、(b)、(c)、(d)および(e)の例において、活性層の厚さとn型GaN系半導体領域の厚さとの比は、それぞれ、5.63×10-3,1.61×10-3,8.49×10-4,5.77×10-4,4.37×10-4である。
図8のシミュレーションにおいて、p側電極30の面積は、90000μm2(一辺300μmの正方形)である。このような小面積のp側電極30によれば、高電流注入によって酸素による非発光中心を埋めることができ、また、低電流でも高効率の発光を実現できる。p型AldGaeN層25とp−AldGaeNコンタクト層26との総膜厚は100nmである。活性層は3周期のInGaN井戸層15nm、GaNの障壁層30nmの多重量子井戸からなり、総活性層厚さは45nmである。n型GaN系半導体領域の厚さは3μmである。基板のn型キャリア濃度は1×1018cm-3であり、基板の厚さを変化させることにより、シミュレーションを行い、図8の曲線(a)、(b)、(c)、(d)および(e)を示す結果を得た。
なお、n型GaN系半導体領域は、n型半導体から形成されている基板も含んでいる。すなわち曲線(a)、(b)、(c)、(d)および(e)の例におけるn型GaN系半導体領域の厚さは、それぞれ8μm、28μm、53μm、78μmおよび103μmである。 本実施形態のようにp側電極の面積が小さい場合、低電流領域での外部量子効率は高い値を維持できる。一方で大電流領域での外部量子効率の低下の傾向も見られる。さらに、n型GaN系半導体領域が薄い場合、低電流領域での外部量子効率の最大値は厚い場合と同等であるが、電流の増加と共に効率低下が大きくなる。しかし、n型GaN系半導体領域の厚さを増加すると、外部量子効率が低下し始める電流値が高くなり効率低下が抑制される。n型GaN基板の厚さが50μm以上、すなわちn型GaN系半導体領域の厚さが53μm以上になると、外部量子効率‐電流値特性の変化は小さくなった。さらに、n型GaN基板の厚さが100μm以上、すなわちn型GaN系半導体領域の厚さが103μm以上になると、外部量子効率‐電流値特性の変化はさらに小さくなった。
本発明の実施形態ようにp側電極の面積が小さい場合、低電流領域での外部量子効率は高い値を維持できるものの、一方で大電流領域での外部量子効率が低下する傾向は、次のようなメカニズムによると考えられる。
図3(a)に示すような構成を有する実施形態では、n側電極40およびp側電極30が基板10に対して同じ側に位置するため、電子も正孔も半導体層の同じ側の面から注入される。半導体発光素子を動作させると、n側電極40からn型半導体層(AluGavInwN層22および基板10)に注入された電子が、n型半導体層を横方向に流れ、p側電極30の下方に位置する活性層24に注入される。n型半導体層が薄いと、このn型半導体層を横方向に流れるための断面積が小さくなり、電気抵抗が上昇する。そのため、n型半導体層で大きな電圧降下が発生してしまい、活性層24に印加される実効的な電圧が減少することになる。その結果、活性層24への電子注入量が減少し、外部量子効率の低下が起こる。一方、p側電極30の面積が小さくなると、p型半導体層25の電気抵抗が増加するため。p側電極30の面積が小さくなっても、キャリア注入量が低下して外部量子効率が低下することになる。また、それだけではなく、p側電極30の面積が小さくなると、活性層24に印加される電圧は、n電極40とp電極30との間に位置する領域に主として印加され、電流もその領域に集中する。
本発明は、側電極30の面積およびn型半導体層の厚さを所定の範囲内に調整することにより、電流量の広い範囲で高い発光効率を実現することができる。
図9は、m面窒化物系半導体発光素子の光出力とn型GaN基板の厚さとの関係を示す。この関係は、シミュレーションによって求められた。p側電極の面積は、90000μm2(一辺300μmの正方形)であり、総活性層の厚さは45nmである。曲線(a)、(b)、(c)、(d)および(e)は、図8と同様に、n型GaN基板の厚さがそれぞれ5μm、25μm、50μm、75μmおよび100μmの場合を示す。
前述した外部量子効率の傾向を反映して、n型GaN系基板の厚さを増加することによって光出力のリニアリティーも改善し、高い出力が得られることが分かる。n型GaN系基板の厚さが50μm以上になると、光出力‐電流値特性の変化は非常に小さくなった。
尚、本シミュレーションでは、活性層の厚さは45nmであるが、n型GaN基板の厚さが100μmで活性層の厚さ27nm(D=2.62×10-4)まで検討を行った。その結果、同様な効果が得られるDの下限が27nm(D=2.62×10-4)であることが確認された。
これらの結果により、n型GaN系半導体領域の厚さに対する前記活性層の厚さの比Dが2.62×10-4≦D≦8.49×10-4であり、かつp側電極の面積Sが100μm2≦S≦90000μm2であることにより、m面窒化物系半導体発光素子特有の課題を解決できる。さらに、4.37×10-4≦D≦5.77×10-4とすることにより、高い発光効率を得ることができる。また、2500μm2≦S≦90000μm2とすることによりさらに高い発光効率を得ることができる。
図10は、n型GaN系半導体領域の厚さに対する活性層の厚さの比Dに対する外部量子効率のドループの依存性を示すグラフである。図8に示すようにLEDの駆動電流密度を増加すると共に外部量子効率が低下する。図10は、最大の時の88%以上の外部量子効率が得られる最大電流密度を、Dを変化させてプロットした結果を示している。すなわち各Dについて電流密度を増加させていき、LEDのドループによって外部量子効率が88%に低減した時の電流密度をプロットした結果である。図10の曲線上で電流密度が高いほど、高電流密度まで外部量子効率の低下、すなわちドループの発生が抑制されていることを示す。この結果は、シミュレーションによるものである。
外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上であれば、所望の特性を得ることができる。Dが1.8×10-4≦D≦14.1×10-4であれば、この最大電流密度が2A/mm2以上となる。
図10の線(a),(b),(c),(d)は、p側電極の面積がそれぞれ100、90000、160000、360000μm2の時の依存性を示す。p側電極の面積が100μm2以上90000μm2以下の範囲では、高い電流密度まで外部量子効率の低下が少ないことがわかる。言い換えると、高い電流密度までドループが小さい。また、p側電極の面積が100μm2以上90000μm2以下の範囲の中で、Dが2.62×10-4≦D≦8.49×10-4の範囲で高い電流密度まで外部量子効率の低下が少ないことも確認された。
本実施形態のm面窒化物系半導体発光素子を実験的に検証した。図11は各種c面およびm面窒化物系半導体発光素子における外部量子効率の比較を示す。図11の曲線(a)は、本実施形態のm面窒化物系半導体発光素子であって、一辺が0.3mmの正方形のLEDサイズ(p側電極の面積が81000μm2)を有し0.045μmの総厚さの活性層と、103μmのn型GaN系半導体領域(D=4.37×10-4)と、を備える場合を示す。曲線(b)は、比較例のm面窒化物系半導体発光素子であって、一辺が0.3mmの正方形のLEDサイズ(p側電極の面積が81000μm2)を有し0.06μmの厚さの活性層と、53μmのn型GaN系半導体領域(D=1.13×10-3)と、を備える場合を示す。曲線(c)は、比較例のc面窒化物系半導体発光素子であって、一辺が、0.3mm正方形のLEDサイズ(p側電極の面積が81000μm2)を有し0.06μm厚さの活性層と、8μmのn型GaN系半導体領域(D=7.5×10-3)と、サファイア基板と、を備える場合を示す。曲線(d)は、比較例のc面窒化物系半導体発光素子であって、一辺が1mmの正方形のLEDサイズ(p側電極の面積が900000μm2)を有し0.06μmの厚さの活性層と、8μmのn型GaN系半導体領域(D=7.5×10-3)と、を備える場合を示す。
本実施形態のm面の窒化物系半導体発光素子は低電流領域においても、高電流領域においても高い効率を示すことが確認された。これによって全電流領域に渡って高い外部量子効率が実現できた。
これに対し、図11の曲線(b)に示した比較例のm面窒化物系半導体発光素子は、特に低電流密度で効率が低くなった。また、曲線(c)、(d)に示した比較例のc面窒化物系半導体発光素子は、高電流密度で効率が低くなった。
図12は、比較例のm面窒化物系半導体発光素子の出力と本実施形態のm面窒化物系半導体発光素子の出力との比較を示す。図12の曲線(a)は、一辺が0.3mmの正方形のLEDサイズ(p側電極の面積が81000μm2)を有し0.045μmの厚さの活性層と、103μmのn型GaN系半導体領域(D=4.37×10-4)と、を備えるm面窒化物系半導体発光素子の出力を示し、曲線(b)は、比較例の一辺が0.3mmの正方形のLEDサイズ(p側電極の面積が81000μm2)を有し0.06μmの厚さの活性層と、53μmのn型GaN系半導体領域(D=1.13×10-3)と、を備えるm面窒化物系半導体発光素子の出力を示す。図11で示した結果を反映して、本実施形態の素子では高い電流密度においてもリニアリティーは良好で高い光出力が得られた。
次に、引き続き図3(a)を参照しながら、本実施形態の窒化物系半導体発光素子100の製造方法を説明する。
まず、m面基板10を用意する。本実施形態では、基板10として、GaN基板を用いる。本実施形態のGaN基板は、HVPE(Hydride Vapor Phase Epitaxy)法を用いて得られる。
例えば、まずc面サファイア基板上に5〜20mmオーダの厚膜GaNを成長する。その後、厚膜GaNをc面に垂直方向、m面で切り出すことによりm面GaN基板が得られる。GaN基板の作製方法は、上記に限らず、例えばナトリウムフラックス法などの液相成長やアモノサーマル法などの融液成長方法を用いてバルクGaNのインゴットを作製し、それをm面で切り出す方法でも良い。
基板10としては、GaN基板の他、例えば、酸化ガリウム、SiC基板、Si基板、サファイア基板などを用いることができる。基板上にm面から成るGaN系半導体をエピタキシャル成長するためには、SiCやサファイア基板の面方位もm面である方が良い。ただし、r面サファイア基板上にはa面GaNが成長するという事例もあることから、成長条件によっては必ずしも成長用表面がm面であることが必須とならない場合もあり得る。少なくとも半導体積層構造20の成長面がm面であれば良い。本実施形態では、基板10の上に、MOCVD(Metal Organic Chemical Vapor Deposition)法により結晶層を順次形成していく。
具体的には、m面GaN基板10の上に、n型のAluGavInwN層22を形成する。AluGavInwN層22として、例えば、厚さ3μmのGaNを形成する。GaNを形成する場合には、m面GaN基板10の上に、1100℃でTMG(Ga(CH33)、TMA(Al(CH33)およびNH3を供給することによってGaN層を堆積する。
次に、n型のAluGavInwN層22の上に、活性層24を形成する。本実施形態では、n型半導体層の最終的な厚さ(GaN基板10の厚さとAluGavInwN層22の厚さとの合計)に対する活性層24の厚さの比Dが1.8×10-4≦D≦14.1×10-4となるように活性層24を形成する。さらに、2.62×10-4≦D≦8.49×10-4としてもよい。この例では、活性層24は、3周期の厚さ15nmのGa0.9In0.1N井戸層と、厚さ30nmのGaNバリア層が交互に積層されたGaInN/GaN多重量子井戸(MQW)構造を有している。Ga0.9In0.1N井戸層を形成する際には、Inの取り込みを行なうために、成長温度を800℃に下げてもよい。
次に、活性層24の上に、例えば厚さ30nmのアンドープGaN層を堆積する。次いで、アンドープGaN層の上に、AldGaeN層25を形成する。AldGaeN層25として例えば厚さ0.05μmのp−Al0.14Ga0.86Nを形成する場合には、950℃の成長温度で、TMG、NH3、TMA、およびp型不純物としてCp2Mg(シクロペンタジエニルマグネシウム)を供給する。
次に、p−AldGaeN層25の上部に、例えば厚さ50nmのp−AldGaeNコンタクト層26を形成する。このとき、Cp2Mgの供給量を増加させることにより、p−AldGaeNコンタクト層26のMg濃度をAldGaeN層25の他の部分のMg濃度よりも高くする。
p−AldGaeNコンタクト層26として、4×1019cm-3のMg濃度を有する厚さ50nmのGaN層を形成する場合には、例えば成長温度を950℃に保ち、流量8sccmのTMG、流量7.5slmのNH3、および流量400sccmのCp2Mgを供給すればよい。例えば、原料ガス(結晶および不純物の原料ガス)の流量の合計に対するMgの原料ガスの流量の比が5%以上であれば、p−AldGaeNコンタクト層26の不純物濃度を4×1019cm-3以上にすることができる。
p−AldGaeNコンタクト層26の成長温度は、900℃以上1000℃以下であり得る。成長温度が900℃よりも低ければ成長レート低下による結晶性の低下という問題点があり、1000℃よりも高ければ、窒素の脱離によって表面荒れを起こす。
その後、塩素系ドライエッチングを行うことにより、p−GaNコンタクト層、AldGaeN層25、アンドープGaN層および活性層24の一部を除去して凹部42を形成し、AlxGayInzN層22のn側電極形成領域を露出させる。次いで、凹部42の底部に位置するn側電極形成領域の上に、n側電極40として、Ti/Pt層を形成する。
さらに、p−AldGaeNコンタクト層26の上に、Ag層を形成する。これにより、p側電極30を形成する。その後、600℃の温度で10分間の熱処理を行う。ここで、p側電極30の面積は1×102μm2≦S≦9×104μm2または2.5×10m2≦Sとする。
なお、その後、レーザリフトオフ、エッチング、研磨などの方法を用いて、基板10、AluGavInwN層22の一部までを除去してもよい。この場合、基板10のみを除去してもよいし、基板10およびAluGavInwN層22の一部だけを選択的に除去してもよい。もちろん、基板10、AluGavInwN層22を除去せずに残してもよい。
上記の半導体積層構造を形成する工程は、複数の半導体発光素子の基板10が分割される前の1枚のウェハを形成している状態で実行される。この後、ウェハ状の半導体積層構造を分割することにより、個々のチップに分割する。本実施形態では、分割後における活性層24の成長面の面積Sが1×102μm2<S≦9.9×104μm2となるように半導体積層構造を分割する。また、S≦2.8×10m2とすることにより、分割が容易となる。
以上の工程により、本実施形態の窒化物系半導体発光素子100が形成される。
本実施形態の窒化物系半導体発光素子100において、n側電極40とp側電極30との間に電圧を印加すると、p側電極30から活性層24に向かって正孔が、n側電極40から活性層24に向かって電子が注入され、例えば450nm波長の発光が生じる。
(その他の実施形態)
本発明の実施形態に係る上記の発光素子は、そのまま光源として使用されても良い。しかし、本実施形態に係る発光素子は、波長変換のための蛍光物質を備える樹脂などと組み合わせれば、波長帯域の拡大した光源(例えば白色光源)として好適に使用され得る。
図13は、このような白色光源の一例を示す模式図である。図13の光源は、図3(a)に示す構成を有する発光素子100と、この発光素子100から放射された光の波長を、より長い波長に変換する蛍光体(例えばYAG:Yttrium Alumninum Garnet)が分散された樹脂層200とを備えている。発光素子100は、表面に配線パターンが形成された支持部材220上に搭載されており、支持部材220上には発光素子100を取り囲むように反射部材240が配置されている。樹脂層200は、発光素子100を覆うように形成されている。
なお、電極30と接触するp型半導体領域がGaN、もしくはAlGaNから構成される場合について説明したが、Inを含む層、例えばInGaNであってもよい。この場合、Inの組成を例えば0.2とした「In0.2Ga0.8N」を、電極30と接するコンタクト層に用いることができる。GaNにInを含ませることにより、AlaGabN(a+b=1,a≧0,b>0)のバンドギャップをGaNのバンドギャップよりも小さくできるため、コンタクト抵抗を低減することができる。以上のことから、電極30が接するp型半導体領域(p−AldGaeNコンタクト層26)は、AlxGayInzN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成されていればよい。
なお、実際のm面半導体の成長面または主面は、m面に対して完全に平行な面である必要はなく、m面から所定の角度で傾斜していてもよい。傾斜角度は、窒化物半導体層における実際の成長面の法線とm面(傾斜していない場合のm面)の法線とが形成する角度により規定される。実際の成長面は、m面(傾斜していない場合のm面)から、c軸方向およびa軸方向によって表されるベクトルの方向に向って傾斜することができる。傾斜角度θの絶対値は、c軸方向において5°以下、好ましくは1°以下の範囲であればよい。また、a軸方向において5°以下、好ましくは1°以下の範囲であればよい。
すなわち、本発明においては、「m面」は、±5°の範囲内でm面(傾斜していない場合のm面)から所定の方向に傾斜している面を含む。このような傾斜角度は、窒化物半導体層の成長面は全体的にm面から傾斜しているが、微視的には多数のm面領域が露出している場合を含む。これにより、m面から絶対値で5°以下の角度で傾斜している面は、m面と同様の性質を有すると考えられる。なお、傾斜角度θの絶対値が5°より大きくなると、ピエゾ電界によって内部量子効率が低下する。したがって、傾斜角度θの絶対値を5°以下に設定することが望ましい。
なお、第1、第2の実施形態では、AldGaeN層25およびp−AldGaeNコンタクト層26のp型不純物として、Mgがドープされていた。本発明では、Mg以外のp型ドーパントとして、例えばZn、Beなどがドープされていてもよい。
上述した実施形態によれば、m面基板上で結晶成長させたGaN系半導体素子、または、m面を主面とするGaN系半導体積層構造体において、キャリアオーバーフローを抑え、かつ広範囲の電流密度で安定した高い発光効率が得られる。すなわち、出力のリニアリティーが得られる。したがって、従来、低電流領域で高効率が難しいため積極的な利用が困難であったm面基板上で結晶成長させたGaN系半導体素子、またはm面を主面とするGaN系半導体積層構造体の積極的な利用を図ることができる。
本発明の実施形態は、紫外から青色、緑色、オレンジ色および白色などの可視域全般の波長域における発光ダイオード、レーザダイオード等のGaN系半導体発光素子およびその製造方法に利用することができる。
10 基板(GaN系基板)
12 基板の表面(m面)
20 半導体積層構造
22AluGavInwN層
24 活性層
25AldGaeN層
26 p−AldGaeNコンタクト層
30 p側電極
40 n側電極
100、101 窒化物系半導体発光素子
200 樹脂層
220 支持部材
240 反射部材

Claims (15)

  1. 成長面がm面であってGaN系半導体から形成されている半導体積層構造を備えた窒化物系半導体発光素子であって、
    前記半導体積層構造は、n型半導体層と、p型半導体層と、前記p型半導体層上に設けられたp側電極と、前記n型半導体層と前記p型半導体層との間に位置する活性層とを備え、
    前記n型半導体層の厚さに対する前記活性層の厚さの比Dが1.8×10-4≦D≦14.1×10-4であり、
    前記p側電極の面積Sが1×102μm2≦S≦9×104μm2であり、
    外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上である、窒化物系半導体発光素子。
  2. 前記n型半導体層の厚さに対する前記活性層の厚さの比Dが2.62×10-4≦D≦8.49×10-4である、請求項1に記載の窒化物系半導体発光素子。
  3. 前記p側電極の面積Sが1×102μm2≦S≦4×104μm2である、請求項1または2に記載の窒化物系半導体発光素子。
  4. 前記活性層は、2×1017cm-3以上の酸素濃度を有する、請求項1から3の何れかに記載の窒化物系半導体発光素子。
  5. 前記活性層の厚さは、0.027μm以上0.045μm以下である、請求項1から4の何れかに記載の窒化物系半導体発光素子。
  6. 前記n型半導体層は、n型半導体から形成されている基板を含む、請求項1から5の何れかに記載の窒化物系半導体発光素子。
  7. 前記半導体積層構造は、AlxGayInzN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成されている、請求項1から6の何れかに記載の窒化物系半導体発光素子。
  8. 請求項1から7の何れか一つに記載の窒化物系半導体発光素子と、
    前記窒化物系半導体発光素子から放射された光の波長を変換する蛍光物質を含む波長変換部と、
    を備える光源。
  9. 成長面がm面であってGaN系半導体から形成されている半導体積層構造を形成する工程(a)と、
    前記半導体積層構造上にp側電極を形成する工程(b)と、
    を含む窒化物系半導体発光素子の製造方法であって、
    前記工程(a)は、
    n型半導体層を形成する工程(a1)と、
    前記工程(a1)の後、活性層を形成する活性層形成工程(a2)と、
    前記工程(a2)の後、p型半導体層を形成する工程(a3)と、
    を含み、
    前記工程(a1)および(a2)では、外部量子効率が最大時の88%になる最大電流密度が2A/mm2以上となるように、前記n型半導体層および前記活性層を形成し、
    前記工程(a2)では、前記n型半導体層の最終的な厚さに対する前記活性層の厚さの比Dが1.8×10-4≦D≦14.1×10-4となるように前記活性層を形成し、
    前記工程(b)では、前記p側電極の面積Sが1×10 2 μ2≦S≦9×104μm2となるように前記p側電極を形成する、窒化物系半導体発光素子の製造方法。
  10. 前記工程(a2)では、前記n型半導体層の最終的な厚さに対する前記活性層の厚さの比Dが2.62×10-4≦D≦8.49×10-4となるように前記活性層を形成する、請求項9に記載の窒化物系半導体発光素子の製造方法。
  11. 前記工程(b)では、前記p側電極の面積Sが1×10 2 μ2≦S≦4×104μm2となるように前記p側電極を形成する、請求項9または10に記載の窒化物系半導体発光素子の製造方法。
  12. 前記活性層は、2×1017cm-3以上の酸素濃度を有する、請求項9から11の何れかに記載の窒化物系半導体発光素子の製造方法。
  13. 前記活性層の厚さは、0.027μm以上0.045μm以下である、請求項9から12の何れかに記載の窒化物系半導体発光素子の製造方法。
  14. 前記n型半導体層は、n型半導体から形成されている基板を含む、請求項9から13のいずれかに記載の窒化物系半導体発光素子の製造方法。
  15. 前記半導体積層構造は、AlxGayInzN(x+y+z=1,x≧0,y≧0,z≧0)半導体から形成されている、請求項9から14のいずれかに記載の窒化物系半導体発光素子の製造方法。
JP2012528980A 2011-05-18 2012-05-02 窒化物系半導体発光素子およびその製造方法 Expired - Fee Related JP5075298B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012528980A JP5075298B1 (ja) 2011-05-18 2012-05-02 窒化物系半導体発光素子およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011111110 2011-05-18
JP2011111110 2011-05-18
PCT/JP2012/002969 WO2012157198A1 (ja) 2011-05-18 2012-05-02 窒化物系半導体発光素子およびその製造方法
JP2012528980A JP5075298B1 (ja) 2011-05-18 2012-05-02 窒化物系半導体発光素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP5075298B1 true JP5075298B1 (ja) 2012-11-21
JPWO2012157198A1 JPWO2012157198A1 (ja) 2014-07-31

Family

ID=47176551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012528980A Expired - Fee Related JP5075298B1 (ja) 2011-05-18 2012-05-02 窒化物系半導体発光素子およびその製造方法

Country Status (4)

Country Link
US (1) US8823026B2 (ja)
JP (1) JP5075298B1 (ja)
CN (1) CN103081138A (ja)
WO (1) WO2012157198A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081138A (zh) * 2011-05-18 2013-05-01 松下电器产业株式会社 氮化物类半导体发光元件及其制造方法
JP6328497B2 (ja) * 2014-06-17 2018-05-23 ソニーセミコンダクタソリューションズ株式会社 半導体発光素子、パッケージ素子、および発光パネル装置
JP5983684B2 (ja) * 2014-07-02 2016-09-06 ウシオ電機株式会社 Led素子
JP6135954B2 (ja) * 2015-10-22 2017-05-31 ウシオ電機株式会社 窒化物半導体発光素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186362A (ja) * 1995-12-28 1997-07-15 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
JP2000196146A (ja) * 1998-12-28 2000-07-14 Japan Society For The Promotion Of Science 半導体発光素子
WO2010113405A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079530A (ja) 1996-07-08 1998-03-24 Toshiba Corp 窒化ガリウム系化合物半導体発光素子
JP2000091638A (ja) 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子
JP2001308462A (ja) 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd 窒化物半導体素子の製造方法
JP2003332697A (ja) 2002-05-09 2003-11-21 Sony Corp 窒化物半導体素子及びその製造方法
US6943381B2 (en) 2004-01-30 2005-09-13 Lumileds Lighting U.S., Llc III-nitride light-emitting devices with improved high-current efficiency
JP2009081374A (ja) 2007-09-27 2009-04-16 Rohm Co Ltd 半導体発光素子
JP2010118647A (ja) 2008-10-17 2010-05-27 Sumitomo Electric Ind Ltd 窒化物系半導体発光素子、窒化物系半導体発光素子を作製する方法、及び発光装置
CN101971364B (zh) 2008-11-06 2013-05-15 松下电器产业株式会社 氮化物类半导体元件及其制造方法
CN101981713B (zh) 2009-03-11 2013-11-20 松下电器产业株式会社 氮化物系半导体元件及其制造方法
JP4375497B1 (ja) 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法
WO2010113399A1 (ja) 2009-04-02 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法
WO2010113238A1 (ja) 2009-04-03 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US20110042646A1 (en) 2009-08-21 2011-02-24 Sharp Kabushiki Kaisha Nitride semiconductor wafer, nitride semiconductor chip, method of manufacture thereof, and semiconductor device
CN103081138A (zh) * 2011-05-18 2013-05-01 松下电器产业株式会社 氮化物类半导体发光元件及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186362A (ja) * 1995-12-28 1997-07-15 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
JP2000196146A (ja) * 1998-12-28 2000-07-14 Japan Society For The Promotion Of Science 半導体発光素子
WO2010113405A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 窒化物系半導体素子およびその製造方法

Also Published As

Publication number Publication date
WO2012157198A1 (ja) 2012-11-22
JPWO2012157198A1 (ja) 2014-07-31
CN103081138A (zh) 2013-05-01
US20130214288A1 (en) 2013-08-22
US8823026B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
JP5032171B2 (ja) 半導体発光素子およびその製造方法ならびに発光装置
US6876009B2 (en) Nitride semiconductor device and a process of manufacturing the same
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
JP4989978B2 (ja) 窒化物系発光素子及びその製造方法
WO2011083551A1 (ja) 窒化物系半導体発光素子およびその製造方法
JP3890930B2 (ja) 窒化物半導体発光素子
JPWO2009088084A1 (ja) 半導体発光装置
JP2003017746A (ja) 窒化物半導体素子
JP5504618B2 (ja) Iii族窒化物半導体発光素子及びその製造方法
JP5232338B2 (ja) 窒化物系半導体素子およびその製造方法
JP2009302314A (ja) GaN系半導体装置
JP2008118049A (ja) GaN系半導体発光素子
JP5075298B1 (ja) 窒化物系半導体発光素子およびその製造方法
KR20150032947A (ko) m면 질화물계 발광다이오드의 제조 방법
JP4659926B2 (ja) 窒化物系半導体素子およびその製造方法
JP2008288532A (ja) 窒化物系半導体装置
JP4909448B2 (ja) 窒化物系半導体素子およびその製造方法
JP4423969B2 (ja) 窒化物半導体積層基板およびそれを用いた窒化物半導体デバイス、窒化物半導体レーザ素子
JP2004214337A (ja) 窒化物半導体発光素子
JP2008118048A (ja) GaN系半導体発光素子
JP5543946B2 (ja) 半導体発光素子および発光装置
JP2019117950A (ja) 電子部品
JP2008227103A (ja) GaN系半導体発光素子
JP2006032739A (ja) 発光素子
JP2013229638A (ja) 半導体発光素子および発光装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5075298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees