WO2010101145A1 - 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体 - Google Patents

長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体 Download PDF

Info

Publication number
WO2010101145A1
WO2010101145A1 PCT/JP2010/053329 JP2010053329W WO2010101145A1 WO 2010101145 A1 WO2010101145 A1 WO 2010101145A1 JP 2010053329 W JP2010053329 W JP 2010053329W WO 2010101145 A1 WO2010101145 A1 WO 2010101145A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
particles
composite resin
resin
weight
Prior art date
Application number
PCT/JP2010/053329
Other languages
English (en)
French (fr)
Inventor
恭孝 筒井
正彦 小澤
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN2010800102170A priority Critical patent/CN102341445B/zh
Priority to KR1020117020611A priority patent/KR101665741B1/ko
Priority to US13/147,662 priority patent/US8765826B2/en
Priority to EP10748740.7A priority patent/EP2404958B1/en
Publication of WO2010101145A1 publication Critical patent/WO2010101145A1/ja
Priority to US14/212,090 priority patent/US8901183B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers

Definitions

  • the present invention relates to a foamable composite resin particle for long-term storage. More specifically, the present invention relates to a foamable composite resin particle for long-term storage, which contains water and pentane as a volatile foaming agent in a composite resin of a polyolefin resin and a polystyrene resin. Furthermore, it is related with the pre-expanded particle
  • expandable particles also simply referred to as expandable composite resin particles
  • a composite resin of polyolefin resin and polystyrene resin impregnate composite resin particles (also simply referred to as resin particles) with a volatile foaming agent. It is obtained by.
  • moisture is contained in the foamable composite resin particles in order to improve the moldability of the foamed molded product (see, for example, Japanese Patent Publication No. 6-104746 (Patent Document 1)).
  • the water content of the expandable composite resin particles described in Patent Document 1 is 0.5 to 1.5% by weight, and the volatile foaming agent used in the examples is butane (n-butane 70%, isobutane 30%). It is.
  • the volatile blowing agent actually used in the above publication is butane.
  • Butane is a gas at normal temperature, but due to differences in properties such as pentane being liquid, it is difficult to obtain a certain quality of pentane, and butane is generally used.
  • the place where the expandable composite resin particles are manufactured and the place where the obtained expandable composite resin particles are subjected to foaming are often different. If they are different, it is necessary to transport the foamable composite resin particles, but in order to transport the butane-containing foamable composite resin particles that are usually used as a readily volatile foaming agent, the foamability is suppressed by suppressing butane escape as much as possible. It is necessary to transport the composite resin particles while maintaining the foaming ability.
  • the commonly used means is refrigeration or freezing transportation.
  • expandable composite resin particles containing butane for example, it is stored frozen at about ⁇ 15 ° C.
  • a pressure-resistant container from the viewpoint of safety. Therefore, the foamable composite resin particles cannot be transported in a large amount, and there is a problem that transportation itself is costly.
  • the pentane-containing foamable composite resin particles can be sealed without using a pressure-resistant container (bag-shaped container) if refrigerated or frozen.
  • a pressure-resistant container bag-shaped container
  • the safety at the time of preliminary foaming and the foaming ability of the foamable composite resin particles can be sufficiently ensured.
  • a foamable composite resin particle for long-term storage containing 500 to 5000 ppm of water and 7.5 to 11.0% by weight of pentane in a composite resin of a polyolefin resin and a polystyrene resin.
  • the present invention also provides pre-expanded particles obtained by pre-expanding the long-term storage expandable composite resin particles.
  • a foamable molded body obtained by molding the pre-expanded particles in a mold.
  • the foamable composite resin particles for long-term storage of the present invention long-term storage in a normal sealed container becomes possible by containing a predetermined amount of water and pentane as a volatile foaming agent.
  • the foamable composite resin particles can be transported in large quantities, and the transport cost can be reduced.
  • FIG. 2 is a scanner image of a slice surface of a molded body obtained in Example 1.
  • FIG. 4 is a scanner image of a slice surface of a molded body obtained in Example 2.
  • FIG. 3 is a scanner image of a slice surface of a molded body obtained in Comparative Example 1.
  • FIG. 10 is a scanner image of a slice surface of a molded body obtained in Comparative Example 5. It is the graph which showed the relationship between a polystyrene-type resin ratio (weight%) and an absorbance ratio ( A698 / A2850 ).
  • the foamable composite resin particle for long-term storage of the present invention contains a predetermined amount of moisture and pentane in a composite resin of a polyolefin resin and a polystyrene resin.
  • Long-term storage means that the amount of water and pentane can be maintained within a predetermined range for 72 hours or more when refrigerated or frozen.
  • polyolefin-type resin A well-known resin can be used.
  • the polyolefin resin may be cross-linked.
  • polyethylene resins such as branched low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and cross-linked products of these polymers
  • polypropylene resins such as propylene homopolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, and ethylene-propylene-butene random copolymer.
  • the low density is preferably 0.91 ⁇ 0.94g / cm 3, more preferably 0.91 ⁇ 0.93g / cm 3.
  • the high density is preferably 0.95 to 0.97 g / cm 3 , and more preferably 0.95 to 0.96 g / cm 3 .
  • the medium density is an intermediate density between these low density and high density.
  • Polystyrene resin is polystyrene or a copolymer of styrene as a main component and other monomers copolymerizable with styrene.
  • the main component means that styrene accounts for 70% by weight or more of the total monomers.
  • examples of other monomers include ⁇ -methylstyrene, p-methylstyrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, alkyl acrylate ester, alkyl methacrylate ester, divinylbenzene, polyethylene glycol dimethacrylate, and the like.
  • alkyl means alkyl having 1 to 8 carbon atoms.
  • the polyolefin resin is branched low density polyethylene, linear low density polyethylene or ethylene-vinyl acetate copolymer
  • the polystyrene resin is polystyrene, styrene-acrylic acid alkyl ester copolymer or styrene-methacrylic acid. More preferably, it is an alkyl ester copolymer.
  • the low density is preferably 0.91 to 0.93 g / cm 3 .
  • the polystyrene resin is contained in the expandable resin particles in the range of 110 to 730 parts by weight with respect to 100 parts by weight of the polyolefin resin particles. Further, the blending amount of the styrene monomer as the raw material of the polystyrene resin with respect to 100 parts by weight of the polyolefin resin particles corresponds to the content of the polystyrene resin and is 110 to 730 parts by weight. When there is more content of a polystyrene-type resin than 730 weight part, the crack resistance of a foaming molding may fall.
  • a more preferable content of the polystyrene resin is 120 to 560 parts by weight, and a still more preferable content is 140 to 450 parts by weight.
  • the composite resin of polyolefin resin and polystyrene resin means a mixed resin of polyolefin resin and polystyrene resin.
  • the mixed resin a resin obtained by simply mixing both resins can be used, but a polyolefin-modified styrene resin described below is preferable.
  • a more preferable mixed resin is a polyethylene-modified styrene resin.
  • the polyolefin-modified styrene resin particles (also referred to as modified resin particles) can be obtained by adding a styrene monomer to an aqueous medium in which the polyolefin resin particles are dispersed and held for polymerization. A method for producing the modified resin particles will be described below.
  • the polyolefin resin particles can be obtained by a known method.
  • polyolefin resin particles can be prepared by first melt-extruding a polyolefin resin using an extruder and then granulating it by underwater cutting, strand cutting, or the like.
  • the shape of the polyolefin resin particles to be used is, for example, a true sphere, an oval sphere (egg), a cylinder, a prism, a pellet, or a granular.
  • the polyolefin resin particles are also referred to as micropellets.
  • the polyolefin resin particles may contain a radical scavenger.
  • the radical scavenger may be added to the polyolefin resin particles in advance, or may be added simultaneously with melt extrusion.
  • a compound having an action of scavenging radicals such as a polymerization inhibitor (including a polymerization inhibitor), a chain transfer agent, an antioxidant, a hindered amine light stabilizer, and the like, which is difficult to dissolve in water, is preferable. .
  • Polymerization inhibitors include t-butylhydroquinone, paramethoxyphenol, 2,4-dinitrophenol, t-butylcatechol, sec-propylcatechol, N-methyl-N-nitrosoaniline, N-nitrosophenylhydroxylamine, triphenyl Phosphite, tris (nonylphenyl phosphite), triethyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, tris (tridecyl) phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite Phyto, diphenyl mono (tridecyl) phosphite, dilauryl hydrogen phosphite, tetraphenyl dipropylene glycol diphosphite,
  • chain transfer agents examples include ⁇ -mercaptopropionic acid 2-ethylhexyl ester, dipentaerythritol hexakis (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate, and the like. Is done.
  • Antioxidants include 2,6-di-t-butyl-4-methylphenol (BHT), n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, pentaerythris Lithyl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- ⁇ 3- (3-t- Butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, distearyl pentae Thritol dip
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1 , 2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate.
  • the amount of the radical scavenger used is preferably 0.005 to 0.5 parts by weight with respect to 100 parts by weight of the polyolefin resin particles.
  • Polyolefin resin particles include talc, calcium silicate, calcium stearate, foamed nucleating agents such as synthetic or naturally produced silicon dioxide, ethylene bis stearamide, methacrylic ester copolymers, hexabromocyclododecane, etc.
  • a flame retardant such as triallyl isocyanurate hexabromide, a colorant such as carbon black, iron oxide, and graphite may be included.
  • the micropellets are dispersed in an aqueous medium in a polymerization vessel and polymerized while impregnating the styrenic monomer into the micropellets.
  • aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, alcohol).
  • any of styrene and substituted styrene (substituent includes lower alkyl, halogen atom (especially chlorine atom) and the like) can be used.
  • substituted styrene include chlorostyrenes, vinyltoluenes such as p-methylstyrene, and ⁇ -methylstyrene. Of these, styrene is generally preferred.
  • the styrenic monomer is a mixture of styrene and substituted styrene, a small amount of other monomers copolymerizable with styrene (for example, acrylonitrile, alkyl methacrylate (about 1 to 8 carbon atoms in the alkyl portion), maleic acid, and the like.
  • styrene preferably occupies a dominant amount (for example, 50% by weight or more).
  • a solvent such as toluene, xylene, cyclohexane, ethyl acetate, dioctyl phthalate, or tetrachloroethylene may be added to the styrene monomer.
  • the amount of the styrene monomer used is 110 to 730 parts by weight with respect to 100 parts by weight of the polyolefin resin particles. More preferred is 120 to 560 parts by weight, still more preferred is 140 to 450 parts by weight. When the amount of the styrene monomer used exceeds 730 parts by weight, particles of the polystyrene resin alone may be generated without being impregnated into the polyolefin resin particles.
  • the crack resistance of the foamed molded product is lowered, but also the chemical resistance may be lowered.
  • the ability to hold the foaming agent of the expandable resin particles may be lowered. If it falls, it will become difficult to make it highly foamed.
  • the rigidity of the foamed molded product may be reduced.
  • the impregnation of the polyolefin resin particles with the styrene monomer may be performed while polymerizing, or may be performed before the polymerization is started. Of these, it is preferable to carry out the polymerization.
  • polymerization is performed after impregnation, polymerization of the styrene monomer near the surface of the polyolefin resin particles tends to occur, and the styrene monomer not impregnated in the polyolefin resin particles is polymerized alone. In some cases, a large amount of fine particle polystyrene resin particles are produced.
  • the polyolefin resin particles for calculating the content are particles composed of a polyolefin resin, an impregnated styrene monomer, and an impregnated polystyrene resin that has already been impregnated. Means.
  • the styrenic monomer can be continuously or intermittently added to the aqueous medium in the polymerization vessel. In particular, it is preferable to gradually add the styrenic monomer into the aqueous medium.
  • An oil-soluble radical polymerization initiator can be used for the polymerization of the styrene monomer.
  • a polymerization initiator generally used for the polymerization of styrene monomers can be used.
  • benzoyl peroxide lauroyl peroxide, t-butyl peroxy octoate, t-hexyl peroxy octoate, t-butyl peroxy benzoate, t-amyl peroxy benzoate, t-butyl peroxybivalate, t- Butyl peroxyisopropyl carbonate, t-hexyl peroxyisopropyl carbonate, t-butylperoxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t- Examples thereof include organic peroxides such as butyl peroxybutane, di-t-hexyl peroxide and dicumyl peroxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. These oil-soluble radical polymerization initiators may be used alone or in combination.
  • Various methods can be used as a method of adding the polymerization initiator to the aqueous medium in the polymerization vessel.
  • a method in which a polymerization initiator is dissolved and contained in a styrene monomer in a container different from the polymerization container, and the styrene monomer is supplied into the polymerization container.
  • B A solution is prepared by dissolving the polymerization initiator in a part of a styrene monomer, a solvent such as isoparaffin, or a plasticizer.
  • a method of simultaneously supplying this solution and a predetermined amount of styrenic monomer into the polymerization vessel (C) A dispersion in which a polymerization initiator is dispersed in an aqueous medium is prepared. Examples thereof include a method of supplying the dispersion and the styrene monomer into a polymerization vessel.
  • the polymerization initiator is preferably used in an amount of 0.02 to 2.0% by weight based on the total amount of the styrene monomer used. It is preferable to dissolve a water-soluble radical polymerization inhibitor in the aqueous medium.
  • the water-soluble radical polymerization inhibitor not only suppresses the polymerization of the styrene monomer on the surface of the polyolefin resin particles, but also prevents the styrene monomer floating in the aqueous medium from being polymerized alone. This is because the generation of fine particles can be reduced.
  • a polymerization inhibitor that can dissolve 1 g or more in 100 g of water can be used.
  • thiocyanate such as ammonium thiocyanate, zinc thiocyanate, sodium thiocyanate, potassium thiocyanate, and aluminum thiocyanate.
  • Nitrate mercapto Ethanol, monothiopropylene glycol, thioglycerol, thioglycolic acid, thiohydroacrylic acid, thiolactic acid, thiomalic acid, thioethanolamine, 1,2-dithioglycerol, 1,3-dithioglycerol
  • Water-soluble sulfur-containing organic compound it may be mentioned addition of ascorbic acid, ascorbic acid sodium or the like. Of these, nitrite is particularly preferable.
  • the amount of the water-soluble radical polymerization inhibitor used is preferably 0.001 to 0.04 parts by weight with respect to 100 parts by weight of water in the aqueous medium.
  • a dispersant examples include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, and magnesium phosphate.
  • inorganic dispersants such as magnesium carbonate and magnesium oxide. Of these, inorganic dispersants are preferred.
  • a surfactant when used, it is preferable to use a surfactant in combination.
  • a surfactant include sodium dodecylbenzene sulfonate and sodium ⁇ -olefin sulfonate.
  • the shape and structure of the polymerization vessel is not particularly limited as long as it has a stirring blade conventionally used for suspension polymerization of a styrene monomer.
  • the shape of the stirring blade is not particularly limited, and specifically, a paddle blade such as a V-shaped paddle blade, a fiddler blade, an inclined paddle blade, a flat paddle blade, a pull margin blade, a turbine blade, a fan turbine blade, etc. Examples include a turbine blade and a propeller blade such as a marine propeller blade. Of these stirring blades, paddle blades are preferred.
  • the stirring blade may be a single-stage blade or a multi-stage blade.
  • a baffle may be provided in the polymerization container.
  • the temperature of the aqueous medium when the styrene monomer is polymerized in the micropellet is not particularly limited, but is preferably in the range of ⁇ 30 to + 20 ° C. of the melting point of the polyolefin resin to be used. More specifically, 70 to 140 ° C. is preferable, and 80 to 130 ° C. is more preferable.
  • the temperature of the aqueous medium may be a constant temperature from the start to the end of the polymerization of the styrenic monomer, or may be increased stepwise. When increasing the temperature of the aqueous medium, it is preferable to increase it at a rate of temperature rise of 0.1 to 2 ° C./min.
  • the crosslinking may be performed in advance before impregnating the styrene monomer, or while impregnating and polymerizing the styrene monomer in the micropellet. Or after impregnating and polymerizing a styrenic monomer in a micropellet.
  • crosslinking agent used for crosslinking the polyolefin resin examples include 2,2-di-t-butylperoxybutane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxy. An organic peroxide such as hexane may be mentioned.
  • a crosslinking agent may be individual or may be used together 2 or more types. The amount of the crosslinking agent used is usually preferably 0.05 to 1.0 part by weight with respect to 100 parts by weight of the polyolefin resin particles (micropellets).
  • Examples of the method of adding the crosslinking agent include a method of directly adding to the polyolefin resin particles, a method of adding the crosslinking agent after dissolving it in a solvent, a plasticizer or a styrene monomer, and a method of dispersing the crosslinking agent in water.
  • the method of adding above etc. are mentioned.
  • the method of adding after dissolving a crosslinking agent in a styrene-type monomer is preferable. Modified resin particles are obtained by the above method.
  • the amount of water contained in the expandable composite resin particles is 500 to 5000 ppm. If the amount of water is less than 500 ppm, pre-foamed particles tend to have a majority of pre-foamed particles with very fine bubbles on the surface and inside, and the bubble variation tends to become very large. Most of the pre-expanded particles with very coarse internal bubbles tend to cause the appearance of the foamed molded product to be very poor.
  • a preferable amount of water is 1000 to 4500 ppm.
  • the pentane can be selected from i-pentane, n-pentane, and a mixture of both pentanes. In particular, it is preferable to use pentane containing i-pentane and n-pentane in a ratio of 20:80 to 100: 0.
  • the amount of pentane contained in the expandable composite resin particles is 7.5 to 11.0% by weight. If the pentane content is less than 7.5% by weight, the foamability of the foamable composite resin particles may be lowered. When foamability is lowered, it becomes difficult to obtain low-bulk density pre-expanded particles having a high bulk ratio, and the foam-molded product obtained by molding the pre-expanded particles in a mold has a lower fusion rate and is resistant to cracking. May decrease. On the other hand, if it exceeds 11.0% by weight, the bubble size in the pre-foamed particles tends to be excessive, and the moldability and the strength properties such as compression and bending of the resulting foamed molded product may be reduced. .
  • a more preferable content ratio of pentane is in the range of 8.5 to 10.0% by weight.
  • the expandable composite resin particles containing a predetermined amount of pentane can be obtained by a method of impregnating pentane in an aqueous medium (wet impregnation method) or a method of impregnation in the absence of a medium (dry impregnation method).
  • the method for adjusting the moisture content of the expandable composite resin particles to a predetermined amount is not particularly limited, and can be adjusted by a known method.
  • the composite resin particles when the composite resin particles contain a small amount of water, the composite resin particles are dispersed in an aqueous medium, and the medium is kept at 110 to 140 ° C. for 2 to 5 hours under sealing to impart moisture to the composite resin particles. .
  • the composite resin particles contain a large amount of water, the composite resin particles are dried with a dryer to adjust the water content.
  • a batch type air dryer it can be adjusted to a predetermined amount of water by flowing air at 10 to 70 ° C., more preferably 20 to 60 ° C. for 0.5 to 3 hours.
  • the moisture content may be adjusted by placing the composite resin particles in a constant temperature and humidity controlled atmosphere for a certain period of time.
  • the resulting composite resin particles may be pneumatically transported to another container.
  • composite resin particles containing a predetermined amount of moisture can be obtained by adjusting the air temperature (referred to as the pneumatic temperature) and the flow velocity during pneumatic transportation of the composite resin particles.
  • the pneumatic temperature referred to as the pneumatic temperature
  • it can be easily adjusted to a predetermined amount of water by transporting at a pneumatic temperature of 10 to 70 ° C., preferably 20 to 60 ° C., and a flow rate of 5 to 30 m / sec, preferably 10 to 20 m / sec.
  • the moisture content may exceed 5000 ppm
  • the moisture content may be less than 500 ppm
  • the flow rate is less than 5 m / sec, it may be difficult to transport the composite resin particles in the vertical direction, or the water content may be less than 500 ppm.
  • the flow rate exceeds 30 m / sec, it is not inconvenient, but it is not economical because the blower needs to be large, or the water content may exceed 5000 ppm.
  • the composite resin particles whose water content is adjusted to a predetermined amount are impregnated with a predetermined amount of pentane by a wet impregnation method or a dry impregnation method, and expandable composite resin particles containing a predetermined amount of water and pentane.
  • Pre-expanded particles and foamed molded product Next, a method for obtaining pre-foamed particles and further foamed molded products from the foamable composite resin particles will be described.
  • Pre-expanded particles can be obtained by heating the expandable composite resin particles using a heating medium such as water vapor and pre-expanding them to a predetermined bulk density as necessary.
  • the pre-expanded particles preferably have a bulk ratio of 5 to 70 times (bulk density 0.014 to 0.2 g / cm 3 ). A more preferable bulk magnification is 10 to 60 times.
  • the closed cell ratio of the pre-expanded particles is lowered, and the strength of the foamed molded product obtained by foaming the pre-expanded particles may be lowered.
  • the weight of the foamed molded product obtained by foaming the pre-foamed particles may increase.
  • Storage of the expandable composite resin particles before the pre-expansion is refrigerated or frozen. Specifically, it is 5 ° C. or lower. Preferably, it is ⁇ 5 ° C. or lower. More preferably, it is ⁇ 15 ° C. or lower.
  • the pre-expanded particles are filled in a mold of a molding machine, heated and subjected to secondary foaming, and the pre-expanded particles are fused and integrated with each other to obtain a foam-molded article having a desired shape.
  • the molding machine there can be used an EPS molding machine or the like used when producing a foam molded body from polystyrene resin pre-foamed particles.
  • the obtained foamed molded product can be used for applications such as cushioning materials (cushion materials) for home appliances, electronic parts, various industrial materials, food containers and the like. It can also be suitably used as an impact energy absorbing material such as a vehicle bumper core material and a door interior cushioning material.
  • ⁇ In-mold molding conditions The pre-expanded particles are filled in the mold of the molding machine, heated and cooled under the following conditions, and then the molded foam is removed from the mold.
  • Molding machine ACE-3SP manufactured by Sekisui Koki Co., Ltd. Mold dimension: 300mm (width) x 400mm (length) x 50mm (thickness) Molding conditions Mold heating: 5 seconds One heating: 10 seconds Reverse one heating: 5 seconds Double-side heating: 20 seconds Water cooling: 20 seconds Vacuum cooling: Until the maximum surface pressure becomes 0.01 kgf / cm 2 or less Set steam pressure: 0 .6 to 1.0 kgf / cm 2
  • ⁇ Bulk density and bulk multiple of pre-expanded particles The weight (a) of about 5 g of pre-expanded particles is weighed at the second decimal place. Next, weighed pre-expanded particles in a 500 cm 3 graduated cylinder with a minimum memory unit of 5 cm 3 , and a round resin plate slightly smaller than the caliber of the graduated cylinder, about 1.5 cm wide at the center, The volume (b) of the pre-expanded particles is read by applying a pressing tool in which a rod-shaped resin plate having a length of about 30 cm is fixed upright, and the bulk density (g) of the pre-expanded particles is calculated according to the formula (a) / (b). / Cm 3 ). The bulk multiple is the reciprocal of the bulk density, that is, the formula (b) / (a).
  • the average cell diameter of the pre-expanded particles is measured as follows. Pre-expanded 30 times or 50 times the bulk magnification, arbitrarily collected 30 pre-expanded particles, each divided into two from the surface through the center with a razor, and the cross section of the two divided sections was scanned by an electron microscope (Hitachi) The photograph is taken at a magnification of 15 to 30 times (in some cases 200 times) with S-3000N (manufactured by Seisakusho). Print the captured images one by one on A4 paper, draw two straight lines that pass through the center so as to be orthogonal, and measure the length of the straight line and the number of bubbles on the straight line (also measure the bubbles in contact with the straight line) ).
  • the average chord length (t) of the bubbles is calculated by the following formula.
  • Bubble diameter d t / 0.616
  • the arithmetic mean of those be an average bubble diameter.
  • ⁇ Measurement of contained gas Precisely weigh 5 to 20 mg of the expandable resin particles to obtain a measurement sample.
  • This measurement sample is set in a pyrolysis furnace (PYR-1A manufactured by Shimadzu Corporation) maintained at 180 to 200 ° C., and after sealing the measurement sample, it is heated for 120 seconds to release the blowing agent component.
  • a chart of the blowing agent component is obtained under the following conditions using a gas chromatograph (manufactured by Shimadzu Corporation: GC-14B, detector: FID) for the released blowing agent component. Based on the calibration curve of the foaming agent component measured in advance, the foaming agent content (wt%) in the foamable resin particles is calculated from the obtained chart.
  • Measurement condition column of gas chromatograph “Shimalite 60/80 NAW” ( ⁇ 3 mm ⁇ 3 m) manufactured by Shinwa Chemical Industry Co., Ltd. Column temperature: 70 ° C Detector temperature: 110 ° C Inlet temperature: 110 ° C Carrier gas: Nitrogen carrier gas Flow rate: 60 ml / min
  • the object is to measure the absorbance ratio (A 698 / A 2850 ) in the following manner and to measure the polystyrene ratio of the pre-expanded particles or the expanded molded article.
  • pre-expanded particles 10 particles are arbitrarily collected, and each is divided into two from the surface through the center by a razor, and the cross section of the two divided sections is subjected to ATR infrared spectroscopy to obtain an infrared absorption spectrum.
  • each pre-expanded particle is divided into two equal parts (for example, pre-expanded particles having a particle size of 5 mm are cut into 2.5 ⁇ 0.5 mm), and the ATR prism is closely attached to the cross section. To measure.
  • the absorbance ratio (A 698 / A 2850 ) is calculated from each infrared absorption spectrum, and the minimum absorbance ratio and the maximum absorbance ratio are excluded.
  • the arithmetic average of the remaining 8 absorbance ratios is taken as the absorbance ratio (A 698 / A 2850 ).
  • the absorbance is measured using a measuring apparatus sold by Nicolet under the trade name “Fourier transform infrared spectrophotometer MAGNA 560”.
  • a standard sample is obtained by the following method. First, a total of 2 g of a polystyrene resin and a polyethylene resin having the same composition as those contained in the composite resin particles to be measured so that the composition ratio (polystyrene resin / polyethylene resin) is the following ratio is precisely weighed.
  • injection molding machine for example, a machine sold under the trade name “CS-183” by CSI can be used, and for example, molding can be performed under the following conditions. Injection molding conditions: heating temperature 200 to 250 ° C., kneading time 10 minutes The absorbance ratio of the standard sample with the above ratio was measured with the measuring device, and the polystyrene resin ratio (% by weight) and the absorbance ratio (A 698 / A 2850 ) The calibration curve of FIG. 5 is obtained by graphing the relationship.
  • PE polyethylene resin
  • PS polystyrene resin
  • the polyethylene-modified styrene resin particles obtained as described above were dehydrated with a basket-type centrifuge, and the dehydrated polyethylene-modified styrene resin particles were removed at room temperature with a cylindrical dryer. It was dried by flowing air for an hour.
  • the polyethylene-modified styrenic resin particles thus obtained had a water content of 583 ppm.
  • Impregnation of foaming agent 2 kg of the water-containing polyethylene-modified styrene resin particles obtained as described above are placed in a 5 L autoclave with a stirrer, 2 kg of pure water and 2 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in the aqueous medium. After maintaining for 10 minutes, 240 g of pentane containing 97% or more of i-pentane (gas type a: manufactured by SK Sangyo Co., Ltd., product name: isopentane) was added.
  • the expandable composite resin particles thus obtained had a pentane content of 8.3% by weight and a water content of 661 ppm.
  • FIG. 1 shows an image in which a slice of 50 ⁇ 75 ⁇ 1-2 (t) mm is stored using a scanner (Epson GT-S600).
  • Example 2 The production of polyethylene-modified styrene resin particles was carried out in the same manner as in a) of Example 1, and the moisture content was adjusted in the same manner as in b) of Example 1 except that the drying time was 0.5 hour.
  • the impregnation of the agent was carried out in the same manner as c) (wet impregnation method) in Example 1 except that 260 g of pentane (gas type a: manufactured by ESK Sangyo Co., Ltd., product name Isopentane) containing 97% or more of i-pentane was used.
  • Storage, preliminary foaming and foam molding were carried out in the same manner as in d), e) and f) of Example 1 to obtain a foam molded article.
  • Example 3 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 40/60 Extruded ethylene / vinyl acetate copolymer resin particles (manufactured by Nippon Polyethylene, LV-115) The mixture was heated and mixed in a machine and granulated into pellets by an underwater cutting method (the ethylene / vinyl acetate copolymer resin particles were adjusted to 80 mg per 100 grains).
  • PE polyethylene resin
  • PS polystyrene resin
  • the styrene monomer was used in an amount of 150 parts by weight with respect to 100 parts by weight of the ethylene / vinyl acetate copolymer resin particles.
  • the moisture content was adjusted in the same manner as in Example 1 b), and impregnation with the blowing agent was performed except that 280 g of pentane containing 97% or more of i-pentane (product type isopentane, product name isopentane) was used.
  • i-pentane product type isopentane, product name isopentane
  • Example 4 The production of polyethylene-modified styrene resin particles is carried out in the same manner as in a) of Example 3, and the moisture content adjustment is carried out in the same manner as in b) of Example 1 except that the drying time is 0.5 hour.
  • the impregnation of the agent was carried out in the same manner as c) (wet impregnation method) in Example 1 except that 280 g of pentane (gas type a: manufactured by ESK SANGYO Co., Ltd., product name Isopentane) containing 97% or more of i-pentane was used.
  • Example 5 The production of polyethylene-modified styrene resin particles was carried out in the same manner as in a) of Example 1, and the moisture content was adjusted in the same manner as in b) of Example 1 except that the drying time was 1 hour.
  • Impregnation of foaming agent dry impregnation method
  • the foamable composite resin particles thus obtained had a pentane content of 9.2% by weight and a water content of 2178 ppm. Storage, pre-foaming and foam molding were carried out in the same manner as d), e) and f) of Example 1, respectively. Various measurement results are shown in Table 1.
  • Comparative Example 1 The polyethylene-modified styrene resin particles were produced in the same manner as in Example 1 a), and the moisture content was adjusted in the same manner as in Example 1 b) except that the drying time was 5 hours.
  • the impregnation was carried out in the same manner as in c) (wet impregnation method) of Example 1 except that 280 g of pentane (gas type a: manufactured by ESK Sangyo Co., Ltd., product name Isopentane) containing 97% or more of i-pentane was used.
  • Pre-foaming and foaming were performed in the same manner as d), e) and f) of Example 1, respectively.
  • Various measurement results are shown in Table 1. Further, in the same manner as in Example 1, a scanner image of the slice surface of the obtained molded body is shown in FIG.
  • Comparative Example 2 The same procedure as in Example 1 was performed except that the moisture content was not adjusted. Various measurement results are shown in Table 1.
  • Comparative Example 3 The polyethylene-modified styrene resin particles were produced in the same manner as in Example 1 a), and the moisture content was adjusted in the same manner as in Example 1 b) except that the drying time was 5 hours. Impregnation was carried out in the same manner as in c) (dry impregnation method) of Example 5 except that 1800 g of pentane (gas type a: manufactured by ESK SANGYO Co., Ltd., product name Isopentane) containing 97% or more of i-pentane was used. Pre-foaming and foaming were performed in the same manner as d), e) and f) of Example 1, respectively. Various measurement results are shown in Table 1.
  • Comparative Example 4 The polyethylene-modified styrene resin particles were produced in the same manner as in Example 1 a), and the moisture content was adjusted in the same manner as in Example 1 b) except that the drying time was 1 hour.
  • the impregnation was carried out in the same manner as in Example 1 except that 1500 g of pentane containing 97% or more of i-pentane (gas type a: manufactured by ESK Sangyo Co., Ltd., product name: isopentane) was heated to 50 ° C. and stirring was continued for 2 hours at this temperature In the same manner as 5)
  • pre-foaming was attempted in the same manner as in e) of Example 1, but foaming of a predetermined multiple was not possible.
  • Various measurement results are shown in Table 1.
  • Comparative Example 6 The polyethylene-modified styrene resin particles were produced in the same manner as in Example 1 a), and the moisture content was adjusted in the same manner as in Example 1 b) except that the drying time was 2 hours.
  • storage, preliminary foaming and foam molding were carried out in the same manner as in d), e) and f) of Example 1, respectively. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂に、500~5000ppmの水分と7.5~11.0重量%のペンタンとを含有する長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体。

Description

長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体
 本発明は、長期保存用発泡性複合樹脂粒子に関する。更に詳しくは、本発明は、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂に、水分と揮発性発泡剤としてペンタンとを含有する長期保存用発泡性複合樹脂粒子に関する。さらに、その発泡性複合樹脂粒子から得られる予備発泡粒子と発泡成形体に関する。
 一般に、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂の発泡性粒子(単に、発泡性複合樹脂粒子ともいう)は、複合樹脂粒子(単に、樹脂粒子ともいう)に揮発性発泡剤を含浸させることで得られる。また、発泡成形体の成形性等を改善するために、発泡性複合樹脂粒子中に水分を含ませることが知られている(例えば特公平6-104746号公報(特許文献1)を参照)。
 特許文献1に記載の発泡性複合樹脂粒子の水分含量は0.5~1.5重量%で、実施例で使用されている揮発性発泡剤はブタン(n-ブタン70%、イソブタン30%)である。
特公平6-104746号公報
 上記公報で実際に使用されている揮発性発泡剤はブタンである。ブタンは常温で気体であるが、ペンタンは液体であるなどの性状の違いにより、ペンタンでは一定品質のものを得るのが困難であり、一般的にはブタンが使用されている。
 近年、発泡性複合樹脂粒子の製造場所と、得られた発泡性複合樹脂粒子を発泡加工する場所とが異なる場合が多々ある。異なる場合は、発泡性複合樹脂粒子を輸送する必要があるが、易揮発性発泡剤として通常用いられるブタン含有の発泡性複合樹脂粒子を輸送する為には、ブタンの抜けを極力抑えて発泡性複合樹脂粒子の発泡能力を維持した状態で輸送する必要がある。一般的に用いられる手段は冷蔵あるいは冷凍輸送であるが、ブタン含有の発泡性複合樹脂粒子の場合は、例えば-15℃程度で冷凍保存し、十分に冷やした後に冷凍輸送したとしても、その後の常温での予備発泡を考えると安全性の観点から耐加圧性の容器を使用する必要がある。そのため、発泡性複合樹脂粒子を大量に輸送できず、輸送自体にコストがかかる問題があった。
 一方、発泡剤として常温で液体であるペンタンを用いた場合、そのペンタン含有の発泡性複合樹脂粒子を冷蔵あるいは冷凍すれば耐加圧性の容器を使用しなくても密閉可能な容器(袋形状のものも含む)で十分に予備発泡時の安全性と発泡性複合樹脂粒子の発泡能力は確保することができる。
 しかしながら、一定期間冷蔵あるいは冷凍保管後、予備発泡し、この予備発泡粒子を用いて成形した発泡成形体は、外観が不良で、その物性も低いという問題があった。
 従って、通常の密閉容器(袋形状のものも含む)で大量に輸送可能な、長期保存用発泡性複合樹脂粒子が望まれていた。
 かくして本発明によれば、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂に、500~5000ppmの水分と7.5~11.0重量%のペンタンとを含有する長期保存用発泡性複合樹脂粒子が提供される。
 また、本発明によれば、上記長期保存用発泡性複合樹脂粒子を予備発泡させた予備発泡粒子が提供される。
 更に、本発明によれば、上記予備発泡粒子を型内成形した発泡性成形体が提供される。
 本発明の長期保存用発泡性複合樹脂粒子によれば、所定量の水分と揮発性発泡剤としてのペンタンとを含むことにより、通常の密閉容器中での長期保存が可能となる。その結果、発泡性複合樹脂粒子を大量に輸送することが可能となり、輸送コストを低くすることができる。
実施例1で得られた成形体のスライス面のスキャナー画像である。 実施例2で得られた成形体のスライス面のスキャナー画像である。 比較例1で得られた成形体のスライス面のスキャナー画像である。 比較例5で得られた成形体のスライス面のスキャナー画像である。 ポリスチレン系樹脂比率(重量%)と吸光度比(A698/A2850)の関係を示したグラフである。
 本発明の長期保存用発泡性複合樹脂粒子は、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂に、所定の範囲の量の水分及びペンタンとを含有する。長期保存とは、冷蔵あるいは冷凍保存した場合、水分及びペンタン量を所定の範囲内に72時間以上維持できることを意味する。
 (複合樹脂粒子)
 ポリオレフィン系樹脂としては、特に限定されず、公知の樹脂が使用できる。また、ポリオレフィン系樹脂は、架橋していてもよい。例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂、プロピレン単独重合体、エチレン-プロピレンランダム共重合体、プロピレン-1-ブテン共重合体、エチレン-プロピレン-ブテンランダム共重合体等のポリプロピレン系樹脂が挙げられる。上記例示中、低密度は、0.91~0.94g/cm3であることが好ましく、0.91~0.93g/cm3であることがより好ましい。高密度は、0.95~0.97g/cm3であることが好ましく、0.95~0.96g/cm3であることがより好ましい。中密度はこれら低密度と高密度の中間の密度である。
 ポリスチレン系樹脂としては、ポリスチレン、もしくはスチレンを主成分とし、スチレンと共重合可能な他のモノマーとの共重合体である。主成分とはスチレンが全モノマーの70重量%以上を占めることを意味する。他のモノマーとしては、α-メチルスチレン、p-メチルスチレン、アクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、ジビニルベンゼン、ポリエチレングリコールジメタクリレート等が例示される。例示中、アルキルとは、炭素数1~8のアルキルを意味する。
 ポリオレフィン系樹脂としては、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン又はエチレン-酢酸ビニル共重合体であり、ポリスチレン系樹脂は、ポリスチレン、スチレン-アクリル酸アルキルエステル共重合体又はスチレン-メクリル酸アルキルエステル共重合体であることがより好ましい。上記例示中、低密度は、0.91~0.93g/cm3であることが好ましい。
 ポリスチレン系樹脂は、発泡性樹脂粒子中に、ポリオレフィン系樹脂粒子100重量部に対して110~730重量部の範囲で含まれる。また、ポリオレフィン系樹脂粒子100重量部に対するポリスチレン系樹脂の原料のスチレン系モノマーの配合量は、ポリスチレン系樹脂の含有量と対応し、110~730重量部である。
 ポリスチレン系樹脂の含有量が730重量部より多いと、発泡成形体の耐割れ性が低下することがある。一方、110重量部より少ないと、耐割れ性は大幅に向上するが、発泡性樹脂粒子の表面からの発泡剤の逸散が速くなる傾向がある。そのため、発泡剤の保持性が低下することによって発泡性樹脂粒子のビーズライフが短くなることがある。より好ましいポリスチレン系樹脂の含有量は120~560重量部、更に好ましい含有量は140~450重量部である。
 ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂とは、ポリオレフィン系樹脂とポリスチレン系樹脂との混合樹脂を意味する。混合樹脂は、両樹脂を単純に混合した樹脂が使用できるが、以下で説明するポリオレフィン改質スチレン系樹脂が好ましい。より好ましい混合樹脂は、ポリエチレン改質スチレン系樹脂である。
 ポリオレフィン改質スチレン系樹脂の粒子(改質樹脂粒子ともいう)は、ポリオレフィン系樹脂粒子が分散保持された水性媒体中にスチレン系モノマーを加えて重合させることで得られる。改質樹脂粒子の製造方法を以下で説明する。
 ポリオレフィン系樹脂粒子は、公知の方法で得ることができる。例えば、まず、押出機を使用してポリオレフィン系樹脂を溶融押出した後、水中カット、ストランドカット等により造粒することで、ポリオレフィン系樹脂粒子を作製できる。通常、使用するポリオレフィン系樹脂粒子の形状は、例えば、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状である。以下では、ポリオレフィン系樹脂粒子をマイクロペレットとも記す。
 ポリオレフィン系樹脂粒子には、ラジカル捕捉剤が含まれていてもよい。ラジカル捕捉剤は、予めポリオレフィン系樹脂粒子に添加しておくか、もしくは溶融押出と同時に添加してもよい。ラジカル捕捉剤としては、重合禁止剤(重合抑制剤を含む)、連鎖移動剤、酸化防止剤、ヒンダードアミン系光安定剤等のラジカルを捕捉する作用を有する化合物で、水に溶解し難いものが好ましい。
 重合禁止剤としは、t-ブチルハイドロキノン、パラメトキシフェノール、2,4-ジニトロフェノール、t-ブチルカテコール、sec-プロピルカテコール、N-メチル-N-ニトロソアニリン、N-ニトロソフェニルヒドロキシルアミン、トリフェニルフォスファイト、トリス(ノニルフェニルフォスファイト)、トリエチルフォスファイト、トリス(2-エチルヘキシル)フォスファイト、トリデシルフォスファイト、トリス(トリデシル)フォスファイト、ジフェニルモノ(2-エチルヘキシル)フォスファイト、ジフェニルモノデシルフォスファイト、ジフェニルモノ(トリデシル)フォスファイト、ジラウリルハイドロゲンフォスファイト、テトラフェニルジプロピレングリコールジフォスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラフォスファイト等のフェノール系重合禁止剤、ニトロソ系重合禁止剤、芳香族アミン系重合禁止剤、亜リン酸エステル系重合禁止剤、チオエーテル系重合禁止剤等が例示される。
 また、連鎖移動剤としては、β-メルカプトプロピオン酸2-エチルヘキシルエステル、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート等が例示される。
 酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール(BHT)、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス〔2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1、1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5・5〕ウンデカン、ジステアリルペンタエリスリトールジフォスファイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジフォスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレンジフォスフォナイト、ビス(2-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、フェニル-1-ナフチルアミン、オクチル化ジフェニルアミン、4,4-ビス(α,α-ジメチルベンジル)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン等のフェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等が例示できる。
 ヒンダードアミン系光安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート等が例示できる。
 ラジカル捕捉剤の使用量としては、ポリオレフィン系樹脂粒子100重量部に対して0.005~0.5重量部であることが好ましい。
 ポリオレフィン系樹脂粒子は、他に、タルク、珪酸カルシウム、ステアリン酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、ヘキサブロモシクロドデカン、トリアリルイソシアヌレート6臭素化物等の難燃剤、カーボンブラック、酸化鉄、グラファイト等の着色剤等を含んでいてもよい。
 次に、マイクロペレットを重合容器内の水性媒体中に分散させ、スチレン系モノマーをマイクロペレットに含浸させながら重合させる。
 水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
 スチレン系モノマーは、スチレン及び置換スチレン(置換基には、低級アルキル、ハロゲン原子(特に塩素原子)等が含まれる)のいずれも使用できる。置換スチレンとしては、例えば、クロルスチレン類、p-メチルスチレン等のビニルトルエン類、α-メチルスチレン等が挙げられる。この内、スチレンが一般に好ましい。また、スチレン系モノマーは、スチレンと、置換スチレンとの混合物、スチレンと共重合可能な少量の他のモノマー(例えば、アクリロニトリル、メタクリル酸アルキルエステル(アルキル部分の炭素数1~8程度)、マレイン酸モノないしジアルキル(アルキル部分の炭素数1~4程度)、ジビニルベンゼン、エチレングリコールのモノないしジアクリル酸ないしメタクリル酸エステル、無水マレイン酸、N-フェニルマレイド等)との混合物が使用できる。これら混合物中、スチレンが優位量(例えば、50重量%以上)を占めることが好ましい。
 なお、スチレン系モノマーには、トルエン、キシレン、シクロヘキサン、酢酸エチル、フタル酸ジオクチル、テトラクロルエチレン等の溶剤(可塑剤)を添加してもよい。
 スチレン系モノマーの使用量は、ポリオレフィン系樹脂粒子100重量部に対して110~730重量部である。より好ましくは120~560重量部、更に好ましくは140~450重量部である。
 スチレン系モノマーの使用量が730重量部を超えると、ポリオレフィン系樹脂粒子に含浸されずに、ポリスチレン系樹脂単独の粒子が発生することがある。加えて、発泡成形体の耐割れ性が低下するだけでなく、耐薬品性も低下することがある。一方、110重量部未満であると、発泡性樹脂粒子の発泡剤を保持する能力が低下する場合がある。低下すると、高発泡化が困難となる。また、発泡成形体の剛性も低下することがある。
 ポリオレフィン系樹脂粒子へのスチレン系モノマーの含浸は、重合させつつ行ってもよく、重合を開始する前に行ってもよい。この内、重合させつつ行うことが好ましい。なお、含浸させた後に重合を行う場合、ポリオレフィン系樹脂粒子の表面近傍でのスチレン系モノマーの重合が起こり易く、また、ポリオレフィン系樹脂粒子中に含浸されなかったスチレン系モノマーが単独で重合して、多量の微粒子状のポリスチレン系樹脂粒子が生成する場合がある。
 重合させつつ含浸を行う場合、上記含有量を算出する場合のポリオレフィン系樹脂粒子とは、ポリオレフィン系樹脂と含浸されたスチレン系モノマー、更に含浸されて既に重合したポリスチレン系樹脂とから構成された粒子を意味する。
 含有量を0~35重量%に維持するために、スチレン系モノマーを重合容器内の水性媒体に連続的にあるいは断続的に添加できる。特に、スチレン系モノマーを水性媒体中に徐々に添加していくのが好ましい。
 スチレン系モノマーの重合には、油溶性のラジカル重合開始剤を使用できる。この重合開始剤としては、スチレン系モノマーの重合に汎用されている重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシオクトエート、t-ヘキシルパーオキシオクトエート、t-ブチルパーオキシベンゾエート、t-アミルパーオキシベンゾエート、t-ブチルパーオキシビバレート、t-ブチルパーオキシイソプロピルカーボネート、t-ヘキシルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサノエート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、2,2-ジ-t-ブチルパーオキシブタン、ジ-t-ヘキシルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。なお、これら油溶性のラジカル重合開始剤は、単独で用いられても併用されてもよい。
 重合開始剤を重合容器内の水性媒体に添加する方法としては、種々の方法が挙げられる。例えば、
(a)重合容器とは別の容器内でスチレン系モノマーに重合開始剤を溶解して含有させ、このスチレン系モノマーを重合容器内に供給する方法、
(b)重合開始剤をスチレン系モノマーの一部、イソパラフィン等の溶剤又は可塑剤に溶解させて溶液を作製する。この溶液と、所定量のスチレン系モノマーとを重合容器内に同時に供給する方法、
(c)重合開始剤を水性媒体に分散させた分散液を作製する。この分散液とスチレン系モノマーとを重合容器内に供給する方法
等が挙げられる。
 上記重合開始剤の使用割合は、通常スチレン系モノマーの使用総量の0.02~2.0重量%添加することが好ましい。
 水性媒体中には、水溶性のラジカル重合禁止剤を溶解させておくことが好ましい。水溶性のラジカル重合禁止剤はポリオレフィン系樹脂粒子表面におけるスチレン系モノマーの重合を抑制するだけでなく、水性媒体中に浮遊するスチレン系モノマーが単独で重合するのを防止して、ポリスチレン系樹脂の微粒子の生成を減らすことができるからである。
 水溶性のラジカル重合禁止剤としては、水100gに対して1g以上溶解する重合禁止剤が使用でき、例えば、チオシアン酸アンモニウム、チオシアン酸亜鉛、チオシアン酸ナトリウム、チオシアン酸カリウム、チオシアン酸アルミニウム等のチオシアン酸塩、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸アンモニウム、亜硝酸カルシウム、亜硝酸銀、亜硝酸ストロンチウム、亜硝酸セシウム、亜硝酸バリウム、亜硝酸マグネシウム、亜硝酸リチウム、亜硝酸ジシクロヘキシルアンモニウム等の亜硝酸塩、メルカプトエタノール、モノチオプロピレングリコール、チオグリセロール、チオグリコール酸、チオヒドロアクリル酸、チオ乳酸、チオリンゴ酸、チオエタノールアミン、1,2-ジチオグリセロール、1,3-ジチオグリセロール等の水溶性イオウ含有有機化合物、更にアスコルビン酸、アスコルビン酸ソーダ等を挙げることができる。これらの中でも特に亜硝酸塩が好ましい。
 上記水溶性のラジカル重合禁止剤の使用量としては、水性媒体の水100重量部に対して0.001~0.04重量部が好ましい。
 なお、上記水性媒体中に分散剤を添加しておくことが好ましい。このような分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。
 無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α-オレフィンスルホン酸ソーダ等が挙げられる。
 重合容器の形状及び構造としては、従来からスチレン系モノマーの懸濁重合に用いられている攪拌翼を備えたものであれば、特に限定されない。
 また、攪拌翼の形状についても特に限定はなく、具体的には、V型パドル翼、ファードラー翼、傾斜パドル翼、平パドル翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら攪拌翼の内では、パドル翼が好ましい。攪拌翼は、単段翼であっても多段翼であってもよい。重合容器に邪魔板(バッフル)を設けてもよい。
 また、スチレン系モノマーをマイクロペレット中にて重合させる際の水性媒体の温度は、特に限定されないが、使用するポリオレフィン系樹脂の融点の-30~+20℃の範囲であることが好ましい。より具体的には、70~140℃が好ましく、80~130℃がより好ましい。更に、水性媒体の温度は、スチレン系モノマーの重合開始から終了までの間、一定温度であってもよいし、段階的に上昇させてもよい。水性媒体の温度を上昇させる場合には、0.1~2℃/分の昇温速度で上昇させることが好ましい。
 更に、架橋したポリオレフィン系樹脂からなる粒子を使用する場合、架橋は、スチレン系モノマーを含浸させる前に予め行っておいてもよいし、マイクロペレット中にスチレン系モノマーを含浸、重合させている間に行ってもよいし、マイクロペレット中にスチレン系モノマーを含浸、重合させた後に行ってもよい。
 ポリオレフィン系樹脂の架橋に用いられる架橋剤としては、例えば、2,2-ジ-t-ブチルパーオキシブタン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン等の有機過酸化物が挙げられる。なお、架橋剤は、単独でも二種以上併用してもよい。また、架橋剤の使用量は、通常、ポリオレフィン系樹脂粒子(マイクロペレット)100重量部に対して0.05~1.0重量部が好ましい。
 架橋剤を添加する方法としては、例えば、ポリオレフィン系樹脂粒子に直接添加する方法、溶剤、可塑剤又はスチレン系モノマーに架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系モノマーに架橋剤を溶解させた上で添加する方法が好ましい。
 上記方法により改質樹脂粒子が得られる。
 (水分及びペンタン量)
 発泡性複合樹脂粒子に含まれる水分の量は500~5000ppmである。500ppmを下回る水分の量では、予備発泡すると表面及び内部の気泡が非常に微細な予備発泡粒子が過半数を占め、気泡バラツキが非常に大きくなる傾向があり、5000ppmを超えると、予備発泡すると表面及び内部の気泡が非常に粗大な予備発泡粒子が大半となり、発泡成形体の外観が非常に粗悪になる傾向がある。好ましい水分の量は1000~4500ppmである。
 ペンタンは、i-ペンタン、n-ペンタン、及び両ペンタンの混合物から選択できる。特に、i-ペンタンとn-ペンタンとを20:80~100:0の比で含むペンタンを使用することが好ましい。
 発泡性複合樹脂粒子に含まれるペンタンの量は7.5~11.0重量%である。ペンタンの含有割合が7.5重量%未満であると、発泡性複合樹脂粒子の発泡性が低下することがある。発泡性が低下すると、嵩倍数の高い低嵩密度の予備発泡粒子が得られ難くなると共に、この予備発泡粒子を型内成形して得られる発泡成形体は融着率が低下し、耐割れ性が低下することがある。一方、11.0重量%を超えると、予備発泡粒子中の気泡サイズが過大となり易く、成形性の低下や、得られる発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。より好ましいペンタンの含有割合は、8.5~10.0重量%の範囲である。
 所定量のペンタンを含む発泡性複合樹脂粒子は、ペンタンを、水性媒体中で含浸させる方法(湿式含浸法)か、又は媒体非存在下で含浸させる方法(乾式含浸法)により得られる。
 発泡性複合樹脂粒子の含有水分を所定量に調整する方法としては、特に限定されず、公知の方法で調整できる。例えば、複合樹脂粒子の含有水分量が少ない場合は、複合樹脂粒子を水性媒体に分散させ、密閉下、この媒体を110~140℃で2~5時間保持し、複合樹脂粒子に水分を付与する。なお、水性媒体には分散剤を添加しておくことが好ましい。複合樹脂粒子の含有水分量が多い場合は、乾燥機で複合樹脂粒子を乾燥させて水分量を調整する。例えば、バッチ式の気流乾燥機の場合、10~70℃、より好ましくは20~60℃の空気を0.5~3時間流すことで所定量の水分に調整できる。また、複合樹脂粒子に多量の水分を含有させた後に、乾燥機で乾燥させて調整してもよい。また、温度、湿度が一定に制御された雰囲気中に複合樹脂粒子を一定時間置いて水分量を調整してもよい。
 さらに、複合樹脂粒子を大量に生産する場合においては、得られる複合樹脂粒子を別の容器に空気輸送する場合がある。その際は、複合樹脂粒子の空気輸送時の空気温度(ニューマ温度という)と流速とを調整することにより、所定量の水分を含む複合樹脂粒子が得られる。例えば、ニューマ温度10~70℃、好ましくは20~60℃で、流速5~30m/秒、好ましくは10~20m/秒で輸送することにより簡便に所定量の水分に調整できる。ニューマ温度が10℃未満のとき、含有水分量が5000ppmを超えることがあり、ニューマ温度が70℃を超えるとき、含有水分量が500ppm未満となることがある。一方、流速が5m/秒未満のとき、垂直方向への複合樹脂粒子の輸送が困難となるか、あるいは含有水分量が500ppm未満となることがある。流速が30m/秒を超えるとき、不都合ではないがブロワーを大型にする必要があり経済的ではないか、あるいは含有水分量が5000ppmを超えることがある。
 このようにして、含有水分を所定量に調整した複合樹脂粒子に湿式含浸法か、又は乾式含浸法により所定量のペンタンを含浸させて、所定量の水分及びペンタンを含有した発泡性複合樹脂粒子を得る。
 (予備発泡粒子及び発泡成形体)
 次に、発泡性複合樹脂粒子から予備発泡粒子、更に発泡成形体を得る方法について説明する。
 発泡性複合樹脂粒子を、必要に応じて、水蒸気等の加熱媒体を用いて加熱して所定の嵩密度に予備発泡させることで、予備発泡粒子を得ることができる。
 予備発泡粒子は、嵩倍数5~70倍(嵩密度0.014~0.2g/cm3)を有していることが好ましい。より好ましい嵩倍数は10~60倍である。嵩倍数が70倍より大きいと、予備発泡粒子の独立気泡率が低下して、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下することがある。一方、5倍より小さいと、予備発泡粒子を発泡させて得られる発泡成形体の重量が増加することがある。
 予備発泡前の発泡性複合樹脂粒子の保管は冷蔵あるいは冷凍である。具体的には、5℃以下である。好ましくは、-5℃以下である。更に好ましくは、-15℃以下である。
 更に、予備発泡粒子を成形機の型内に充填し、加熱して二次発泡させ、予備発泡粒子同士を融着一体化させることによって所望形状を有する発泡成形体を得ることができる。上記成形機としては、ポリスチレン系樹脂予備発泡粒子から発泡成形体を製造する際に用いられるEPS成形機等を用いることができる。
 得られた発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器等の用途に用いることができる。車輌用バンパーの芯材、ドア内装緩衝材等の衝撃エネルギー吸収材として好適に用いることもできる。
 以下、実施例を挙げて更に説明するが、本発明はこれら実施例によって限定されるものではない。
 <予備発泡粒子の製造方法>
 冷凍庫(-25℃に設定)に168時間保管した後、室温25℃、湿度50%の環境下に1時間放置した後、以下の条件で予備発泡させる。
 スチームで予熱した常圧予備発泡機(機内容積50L)に発泡性樹脂粒子を500~2000g投入し、攪拌しながら約0.02MPaの設定までスチームを導入しつつ、空気も供給して、約2~3分間で所定の嵩密度(嵩倍数)まで発泡させる。
 <型内成形条件>
 予備発泡粒子を成形機の金型内に充填し、次の条件でスチーム加熱及び冷却した後に発泡成形体を金型から取り出す。
成形機:積水工機製作所社製ACE-3SP
金型寸法:300mm(幅)×400mm(長さ)×50mm(厚さ)
成形条件 金型加熱:5秒
     一方加熱:10秒
    逆一方加熱:5秒
     両面加熱:20秒
       水冷:20秒
     真空冷却:最高面圧が0.01kgf/cm2以下になるまで
  設定スチーム圧:0.6~1.0kgf/cm2
 <予備発泡粒子の嵩密度及び嵩倍数>
 約5gの予備発泡粒子の重量(a)を小数以下2位で秤量する。次に、最小メモリ単位が5cm3である500cm3メスシリンダーに秤量した予備発泡粒子を入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に巾約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、式(a)/(b)により予備発泡粒子の嵩密度(g/cm3)を求め
る。なお、嵩倍数は嵩密度の逆数、すなわち式(b)/(a)とする。
 <予備発泡粒子の気泡バラツキ評価方法>
 ASTM D2842-69の試験方法に準拠し、以下のように予備発泡粒子の平均気泡径を測定する。
 嵩倍数30倍又は50倍に予備発泡し、この予備発泡粒子を任意に30個採取し、それぞれ剃刀により表面から中心を通って2分割し、2分割した切片の断面を走査型電子顕微鏡(日立製作所社製S-3000N)で15~30倍(場合により200倍)に拡大して撮影する。
 撮影した画像をA4用紙上に1画像づつ印刷し、中心を通る直線2本を直交するように引き、この直線の長さと直線上の気泡数を計測する(直線に接している気泡も計測する)。
 上記の結果から下記式により気泡の平均弦長(t)を算出する。但し、任意の直線はできる限り気泡が接点でのみ接しないようにする(接してしまう場合は気泡数に含める)。
   平均弦長t=線長/(気泡数×写真の倍率)
 そして、次式により気泡径を算出する。
   気泡径d=t/0.616
 更に、それらの算術平均を平均気泡径とする。
   平均気泡径D(mm)=(気泡径n=1+気泡径n=2+・・・+気泡径n=30)/30
 次に、平均気泡径(D)と気泡径のバラツキを表す標準偏差(s)との比(U)(U=s/D)を算出し、これを気泡バラツキ度合とし、Uの値が0.5未満を◎、Uの値が0.5以上0.8未満を○、Uの値が0.8以上を×とする。
 <含有水分量測定>
 複合樹脂粒子あるいは発泡性複合樹脂粒子5gを200mlのメタノール中に浸漬し、約1分間攪拌して粒子表面の水分を置換する。その後、真空濾過装置にて粒子とメタノールを分離し、5分間風乾させる。その後、試料重量0.5gを精秤し、微量水分測定装置(平沼産業社製AQ-2100)を使用し、加熱温度150℃でカールフィッシャー法により測定する。
 <含有ガス(発泡剤ペンタン及びブタン)量測定>
 発泡性樹脂粒子を5~20mg精秤し測定試料とする。この測定試料を180~200℃に保持された熱分解炉(島津製作所社製PYR-1A)にセットし測定試料を密閉後、120秒間に亘って加熱して発泡剤成分を放出させる。この放出された発泡剤成分をガスクロマトグラフ(島津製作所社製:GC-14B、検出器:FID)を用いて下記条件にて発泡剤成分のチャートを得る。予め測定しておいた、発泡剤成分の検量線に基づいて、得られたチャートから発泡性樹脂粒子中の発泡剤含有量(重量%)を算出する。
 ガスクロマトグラフの測定条件
カラム:信和化工社製「Shimalite 60/80 NAW」(φ3mm×3m)
カラム温度:70℃
検出器温度:110℃
注入口温度:110℃
キャリアーガス:窒素
キャリアーガス流量:60ml/分
 <ポリスチレン系樹脂比率測定>
 吸光度比(A698/A2850)を下記の要領で測定し、予備発泡粒子あるいは発泡成形体のポリスチレン比率を測定することを目的とする。
 予備発泡粒子の場合、任意に10個採取し、それぞれ剃刀により表面から中心を通って2分割し、2分割した切片の断面をATR法赤外分光分析を行って赤外吸収スペクトルを得る。
 発泡成形体の場合、発泡成形体より任意に粒子を10個採取し、それぞれ剃刀により表面から中心を通って2分割し、2分割した切片の断面をATR法赤外分光分析を行って赤外吸収スペクトルを得る。
 ここで粒子中心部の測定では、各予備発泡粒子を2等分(例えば、粒径5mmの予備発泡粒子を2.5±0.5mmに切断する)し、更にその断面にATRプリズムを密着させて測定する。
 各赤外吸収スペクトルから吸光度比(A698/A2850)をそれぞれ算出し、最小の吸光度比と最大の吸光度比を除外する。そして、残余8個の吸光度比の相加平均を吸光度比(A698/A2850)とする。尚、吸光度は、Nicolet社から商品名「フーリエ変換赤外分光光度計 MAGNA560」で販売されている測定装置を用いて測定する。
 標準試料は、次の方法により得る。まず、組成割合(ポリスチレン系樹脂/ポリエチレン系樹脂)が下記比率になるように測定しようとする複合樹脂粒子に含まれるものと同じ組成のポリスチレン系樹脂およびポリエチレン系樹脂を合計2g精秤する。
   組成割合(PS/PE:重量比):0/10=PE系樹脂のみ、1/9、2/8、3/7、4/6、5/5、6/4、7/3、8/2、10/0=PS系樹脂のみ
 これを小型射出成形機にて下記条件に加熱混練して、直径が25mmでかつ高さが2mmの円柱上に成形することによって標準試料を得る。
 尚、小型射出成形機としては、例えば、CSI社から商品名「CS-183」で販売されているものを用い、例えば、下記の条件で成形することができる。
   射出成形条件:加熱温度200~250℃、混練時間10分
 上記比率の標準試料の吸光度比を前記測定装置で測定し、ポリスチレン系樹脂比率(重量%)と吸光度比(A698/A2850)の関係をグラフ化することで、図5の検量線が得られる。
 図5において、ポリスチレン系樹脂比率が30重量%以下の場合、検量線は下記の式(1)で近似される。
   Y=21.112X  (1)
 また、図5において、ポリスチレン系樹脂比率が30重量%以上、80重量%未満の場合、検量線は下記の式(2)で近似される。
   Y=28.415Ln(X)+20.072  (2)
 更に、図5において、ポリスチレン系樹脂比率が80重量%以上の場合、検量線は下記の式(3)で近似される。
   Y=12.577Ln(X)+53.32  (3)
 尚、上記式において、Xは吸光度比(A698/A2850)を示し、Yはポリスチレン系樹脂比率を示す。
 予備発泡粒子あるいは発泡成形体試料のポリスチレン系樹脂比率(重量%)が、図5の検量線を基に算出される。
 実施例1
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=30/70のポリエチレン改質スチレン系樹脂粒子の製造
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ポリエチレン社製、LV-115)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は100粒あたり80mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子10.5kgを攪拌機付100Lオートクレーブに入れ、水性媒体としての純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド5.4gを溶解させたスチレンモノマー4.5kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で1時間45分攪拌を続けた。その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた後、重合開始剤としてベンゾイルパーオキサイド39.2g、t-ブチルパーオキシベンゾエート4.9gと架橋剤としてのジクミルパーオキサイド98.7gを溶解したスチレンモノマー6.2kgを2時間かけて滴下した。次いで、エチレンビスステアリン酸アミド175gを溶解したスチレンモノマー13.8kgを2時間かけて滴下した。この滴下終了後、90℃で1時間保持し、次いで、143℃に昇温し、その温度で2時間保持して重合を完結させた。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子を取り出した。
 なお、スチレンモノマーは、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対して、233重量部使用した。
 b)含有水分量調整
 上記のようにして得られたポリエチレン改質スチレン系樹脂粒子をバスケット型遠心分離機で脱水し、脱水したポリエチレン改質スチレン系樹脂粒子を常温で円筒形乾燥機にて3時間空気を流すことで乾燥した。このようして得たポリエチレン改質スチレン系樹脂粒子は583ppmの含水量を有した。
 c)発泡剤の含浸(湿式含浸法)
 上記のようにして得られた含水ポリエチレン改質スチレン系樹脂粒子2kgを攪拌機付5Lオートクレーブに入れ、水性媒体として純水2kg、ドデシルベンゼンスルホン酸ソーダ2gを加え、攪拌して水性媒体中に懸濁させ、10分間保持後、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)240gを加えた。次いで、60℃に昇温し、この温度で3時間攪拌を続けた。その後、常温まで冷却し、粒子を取り出した。このようして得た発泡性複合樹脂粒子は、8.3重量%のペンタン含有量及び661ppmの含水量を有した。
 d)保管
 上記のようにして得られた発泡性複合樹脂粒子約を1000gずつ、2Lアルミ性密閉容器に充填し、-25℃に設定した冷凍庫で168時間保管した。
 e)予備発泡
 上記のように保管後、2Lアルミ性密閉容器に充填した状態で発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に1時間放置した後、前記の予備発泡条件下、発泡性複合樹脂粒子を嵩倍数50倍を狙って予備発泡させることで、嵩倍数50倍の予備発泡粒子を得た。
 得られた予備発泡粒子を、前記の予備発泡粒子の気泡バラツキ評価方法により評価した。
 それらの結果をまとめて表1に示す。
 f)発泡成形
 上記のようにして得られた予備発泡粒子を室温25℃、湿度50%の環境下に1日保管した後、前記の型内成形条件下で発泡成形し、倍数50倍の発泡成形体を得た。得られた成形体を50×75mmにカットし、更に表皮面を約5mm除去した後、表皮を除去した面を約1~2mmの厚さでスライスした。この50×75×1~2(t)mmのスライスをスキャナー(エプソン社製 GT-S600)を用いて保存した画像を図1に示す。
 実施例2
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は乾燥時間が0.5時間であること以外は実施例1のb)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)260gを用いたこと以外は実施例1のc)(湿式含浸法)と同様にして、保管、予備発泡及び発泡成形はそれぞれ実施例1のd)、e)及びf)と同様にして行って、発泡成形体を得た。各種測定結果を表1に示す。また、実施例1と同様にして、得られた成形体のスライス面のスキャナー画像を図2に示す。
 嵩倍数50倍の予備発泡粒子の中心部のポリスチレン系樹脂比率は68重量%であった。(ほぼ配合比率通りであった。)
 実施例3
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=40/60のポリエチレン改質スチレン系樹脂粒子の製造
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ポリエチレン社製、LV-115)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は100粒あたり80mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子14kgを攪拌機付100Lオートクレーブに入れ、水性媒体としての純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド7.2gを溶解させたスチレンモノマー6.0kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で2時間攪拌を続けた。その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた後、重合開始剤としてベンゾイルパーオキサイド39.9g、t-ブチルパーオキシベンゾエート3.2gと架橋剤としてのジクミルパーオキサイド102.2gを溶解したスチレンモノマー5kgを1.5時間かけて滴下した。次いで、エチレンビスステアリン酸アミド105gを溶解したスチレンモノマー10kgを1.5時間かけて滴下した。この滴下終了後、90℃で1時間保持し、次いで、143℃に昇温し、その温度で2.5時間保持して重合を完結させた。その後、常温まで冷却し、粒子を取り出した。
 なお、スチレンモノマーは、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対して、150重量部使用した。
 含有水分量調整は実施例1のb)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)280gを用いたこと以外は実施例1のc)(湿式含浸法)と同様にして、保管は実施例1のd)と同様にして、予備発泡は嵩倍数が30倍であること以外は実施例1のe)と同様にして、発泡成形は実施例1のf)と同様にして行って、発泡成形体を得た。各種測定結果を表1に示す。
 実施例4
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例3のa)と同様にして、含有水分量調整は乾燥時間が0.5時間であること以外は実施例1のb)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)280gを用いたこと以外は実施例1のc)(湿式含浸法)と同様にして、保管は実施例1のd)と同様にして、予備発泡は嵩倍数が30倍であること以外は実施例1のe)と同様にして、発泡成形は実施例1のf)と同様にして行って、発泡成形体を得た。各種測定結果を表1に示す。
 嵩倍数30倍の予備発泡粒子の中心部のポリスチレン系樹脂比率は62重量%であった。(ほぼ配合比率通りであった。)
 実施例5
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は乾燥時間が1時間であること以外は実施例1のb)と同様にして行った。
 c)発泡剤の含浸(乾式含浸法)
 上記のようにして得られた含水ポリエチレン改質スチレン系樹脂粒子15kgとi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)1950gを50L V型ブレンダーに入れ、10分間攪拌した。次いで、60℃に昇温し、この温度で3時間攪拌を続けた。その後、常温まで冷却し、粒子を取り出した。このようして得た発泡性複合樹脂粒子は、9.2重量%のペンタン含有量及び2178ppmの含水量を有した。
 保管、予備発泡及び発泡成形はそれぞれ実施例1のd)、e)及びf)と同様にして行った。各種測定結果を表1に示す。
 実施例6
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は実施例1のb)と同様にして、発泡剤の含浸はn-ペンタン/i-ペンタン=75/25~85/15のペンタン(ガス種b:コスモ石油社製、製品名ペンタン)240gを用いたこと以外は実施例1のc)(湿式含浸法)と同様にして、保管、予備発泡及び発泡成形はそれぞれ実施例1のd)、e)及びf)と同様にして行った。各種測定結果を表1に示す。
 比較例1
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は乾燥時間が5時間であること以外は実施例1のb)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)280gを用いたこと以外は実施例1のc)(湿式含浸法)と同様にして、保管、予備発泡及び発泡成形はそれぞれ実施例1のd)、e)及びf)と同様にして行った。各種測定結果を表1に示す。また、実施例1と同様にして、得られた成形体のスライス面のスキャナー画像を図3に示す。
 比較例2
 含有水分量調整を行わないこと以外は、実施例1と同様にして行った。各種測定結果を表1に示す。
 比較例3
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は乾燥時間が5時間であること以外は実施例1のb)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)1800gを用いたこと以外は実施例5のc)(乾式含浸法)と同様にして、保管、予備発泡及び発泡成形はそれぞれ実施例1のd)、e)及びf)と同様にして行った。各種測定結果を表1に示す。
 比較例4
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は乾燥時間が1時間であること以外は実施例1のb)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)1500gを用い、50℃に昇温し、この温度で2時間攪拌を続けたこと以外は実施例5のc)(乾式含浸法)と同様にして、保管は実施例1のd)と同様にして行った。しかし、予備発泡を実施例1のe)と同様にして行おうとしたが、所定の倍数の発泡ができなかった。各種測定結果を表1に示す。
 比較例5
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は実施例1のb)と同様にして、発泡剤の含浸はn-ペンタン/i-ペンタン=75/25~85/15のペンタン(ガス種b:コスモ石油社製、製品名ペンタン)320gを用い、70℃に昇温し、この温度で5時間攪拌を続けたこと以外は実施例1のc)(湿式含浸法)と同様にして、保管、予備発泡及び発泡成形はそれぞれ実施例1のd)、e)及びf)と同様にして行った。各種測定結果を表1に示す。また、実施例1と同様にして、得られた成形体のスライス面のスキャナー画像を図4に示す。
 比較例6
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、含有水分量調整は乾燥時間が2時間であること以外は実施例1のb)と同様にして、発泡剤の含浸はn-ブタン/i-ブタン=60/40~70/30のブタン(ガス種c:コスモ石油社製、製品名コスモブタンシルバー)240gを用いたこと以外は実施例1のc)(湿式含浸法)と同様にして、保管、予備発泡及び発泡成形はそれぞれ実施例1のd)、e)及びf)と同様にして行った。それらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6と比較例1~5とから、改質樹脂粒子に含まれる水分量が500~5000ppmでかつ発泡剤の含有量が7.5~11.0重量%の発泡性複合樹脂粒子は長期保存してもその品質がほとんど変わらないことが分かる。
 更に、実施例1~6と比較例6とから、発泡剤としてはブタンよりもペンタンの方が優れていることが分かる。

Claims (7)

  1.  ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂に、500~5000ppmの水分と7.5~11.0重量%のペンタンとを含有する長期保存用発泡性複合樹脂粒子。
  2.  前記複合樹脂が、ポリオレフィン系樹脂としてのポリエチレン系樹脂100重量部とポリスチレン系樹脂110~730重量部とを含む請求項1に記載の長期保存用発泡性複合樹脂粒子。
  3.  前記複合樹脂が、ポリオレフィン系樹脂としてのポリエチレン系樹脂100重量部とポリスチレン系樹脂120~560重量部とを含む請求項1に記載の長期保存用発泡性複合樹脂粒子。
  4.  前記複合樹脂が、ポリオレフィン系樹脂としてのポリエチレン系樹脂100重量部とポリスチレン系樹脂140~450重量部とを含む請求項1に記載の長期保存用発泡性複合樹脂粒子。
  5.  前記水分が1000~4500ppmと前記ペンタンが8.5~10.0重量%含まれる請求項1に記載の長期保存用発泡性複合樹脂粒子。
  6.  請求項1に記載の長期保存用発泡性複合樹脂粒子を予備発泡させた予備発泡粒子。
  7.  請求項6に記載の予備発泡粒子を型内成形した発泡成形体。
PCT/JP2010/053329 2009-03-03 2010-03-02 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体 WO2010101145A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800102170A CN102341445B (zh) 2009-03-03 2010-03-02 用于长期保存的发泡性复合树脂颗粒、由其形成的预发泡颗粒和发泡模制品
KR1020117020611A KR101665741B1 (ko) 2009-03-03 2010-03-02 장기 보존용 발포성 복합 수지 입자, 그 예비 발포 입자 및 발포 성형체
US13/147,662 US8765826B2 (en) 2009-03-03 2010-03-02 Expandable composite resin particles for long-term storage, pre-expanded particles formed therefrom and expanded molded articles
EP10748740.7A EP2404958B1 (en) 2009-03-03 2010-03-02 Expandierbare verbundharzpartikel für langzeitlagerung, daraus geformte vorexpandierte kügelchen und geformter schaumstoff
US14/212,090 US8901183B2 (en) 2009-03-03 2014-03-14 Expandable composite resin particles for long-term storage, pre-expanded particles formed therefrom and expanded molded articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009049212A JP5192420B2 (ja) 2009-03-03 2009-03-03 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体
JP2009-049212 2009-03-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/147,662 A-371-Of-International US8765826B2 (en) 2009-03-03 2010-03-02 Expandable composite resin particles for long-term storage, pre-expanded particles formed therefrom and expanded molded articles
US14/212,090 Continuation US8901183B2 (en) 2009-03-03 2014-03-14 Expandable composite resin particles for long-term storage, pre-expanded particles formed therefrom and expanded molded articles

Publications (1)

Publication Number Publication Date
WO2010101145A1 true WO2010101145A1 (ja) 2010-09-10

Family

ID=42709702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053329 WO2010101145A1 (ja) 2009-03-03 2010-03-02 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体

Country Status (7)

Country Link
US (2) US8765826B2 (ja)
EP (1) EP2404958B1 (ja)
JP (1) JP5192420B2 (ja)
KR (1) KR101665741B1 (ja)
CN (1) CN102341445B (ja)
TW (1) TWI470019B (ja)
WO (1) WO2010101145A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157538A1 (ja) * 2013-03-28 2014-10-02 積水化成品工業株式会社 複合樹脂発泡成形体
JP2014196423A (ja) * 2013-03-29 2014-10-16 積水化成品工業株式会社 発泡成形体
US10184036B2 (en) * 2013-09-30 2019-01-22 Sekisui Plastics Co., Ltd. Composite resin pre-expanded particles containing carbon black and method for producing same, and expanded molded article

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184355A (ja) * 2011-03-07 2012-09-27 Sekisui Plastics Co Ltd 予備発泡粒子および発泡成形体
JP5689011B2 (ja) * 2011-03-31 2015-03-25 積水化成品工業株式会社 樹脂粒子、その製造方法、発泡性樹脂粒子、発泡粒子及び発泡成形体
JP5957599B2 (ja) * 2013-03-29 2016-07-27 積水化成品工業株式会社 発泡粒子の製造方法及び発泡粒子の製造装置
JP6228610B2 (ja) * 2013-09-30 2017-11-08 積水化成品工業株式会社 ポリスチレン系複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子及び発泡成形体の製造方法
JP6453995B2 (ja) * 2015-02-27 2019-01-16 積水化成品工業株式会社 複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体
WO2016152243A1 (ja) * 2015-03-24 2016-09-29 積水化成品工業株式会社 発泡性複合樹脂粒子含有スラリーとその充填用容器、発泡粒子および発泡成形体
CN105175794A (zh) * 2015-09-30 2015-12-23 华南理工大学 一种淀粉基发泡包装材料前驱体、淀粉基发泡包装材料及制备方法
JP7015226B2 (ja) * 2018-09-27 2022-02-02 積水化成品工業株式会社 スチレン複合ポリエチレン系樹脂発泡粒子、その製造方法及び発泡成形体
JP2021054931A (ja) * 2019-09-30 2021-04-08 積水化成品工業株式会社 スチレン複合ポリエチレン系樹脂発泡粒子、その製造方法及び発泡成形体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198541A (ja) * 1982-05-14 1983-11-18 Sekisui Plastics Co Ltd 発泡性粒子の製造法
JPH01279935A (ja) * 1988-05-06 1989-11-10 Sekisui Plastics Co Ltd スチレン改質ポリオレフィン発泡性樹脂粒子の製造方法
JPH0431448A (ja) * 1990-05-28 1992-02-03 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子の製造方法
JPH0431449A (ja) * 1990-05-28 1992-02-03 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子の製造方法
JPH0439338A (ja) * 1990-06-04 1992-02-10 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子の製造方法
JPH06104746A (ja) 1992-09-21 1994-04-15 Mitsubishi Electric Corp Pll回路
JP2008133449A (ja) * 2006-10-26 2008-06-12 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4305697A1 (de) * 1993-02-25 1994-09-01 Basf Ag Perlförmige, expandierbare Styrolpolymerisate mit verringertem Innenwassergehalt und Verfahren zu ihrer Herstellung
DE4416852A1 (de) * 1994-05-13 1995-11-16 Basf Ag Expandierbare Styrolpolymerisate
DE4416861A1 (de) * 1994-05-13 1995-11-16 Basf Ag Expandierbare Styrolpolymerisate
US6225363B1 (en) * 1998-04-07 2001-05-01 Pactiv Corporation Foamable composition using high density polyethylene
JP4017538B2 (ja) 2003-02-14 2007-12-05 積水化成品工業株式会社 スチレン系樹脂発泡性粒子とその製造方法及びスチレン系樹脂発泡成形体
EP1607436B2 (en) 2003-03-25 2019-06-12 Sekisui Plastics Co., Ltd. Expandable resin beads of styrene-modified linear low-density polyethylene
KR100660431B1 (ko) 2003-03-25 2006-12-22 세키스이가세이힝코교가부시키가이샤 스티렌 개질 직쇄상 저밀도 폴리에틸렌계 발포성 수지입자, 그 제조방법, 예비발포 입자 및 발포 성형체
US7683101B2 (en) 2003-08-29 2010-03-23 Sekisui Plastics Co., Ltd. Pre-expanded particle of olefin-modified polystyrene resin, process for producing the same, and molded foam
TWI361201B (en) * 2006-10-26 2012-04-01 Sekisui Plastics Formable polystyrene resin particles and production process thereof, pre-foamed particles and foam molded product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198541A (ja) * 1982-05-14 1983-11-18 Sekisui Plastics Co Ltd 発泡性粒子の製造法
JPH01279935A (ja) * 1988-05-06 1989-11-10 Sekisui Plastics Co Ltd スチレン改質ポリオレフィン発泡性樹脂粒子の製造方法
JPH0431448A (ja) * 1990-05-28 1992-02-03 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子の製造方法
JPH0431449A (ja) * 1990-05-28 1992-02-03 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子の製造方法
JPH0439338A (ja) * 1990-06-04 1992-02-10 Sekisui Plastics Co Ltd 発泡性スチレン改質ポリオレフィン系樹脂粒子の製造方法
JPH06104746A (ja) 1992-09-21 1994-04-15 Mitsubishi Electric Corp Pll回路
JP2008133449A (ja) * 2006-10-26 2008-06-12 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157538A1 (ja) * 2013-03-28 2014-10-02 積水化成品工業株式会社 複合樹脂発泡成形体
JPWO2014157538A1 (ja) * 2013-03-28 2017-02-16 積水化成品工業株式会社 複合樹脂発泡成形体
JP2014196423A (ja) * 2013-03-29 2014-10-16 積水化成品工業株式会社 発泡成形体
US10184036B2 (en) * 2013-09-30 2019-01-22 Sekisui Plastics Co., Ltd. Composite resin pre-expanded particles containing carbon black and method for producing same, and expanded molded article

Also Published As

Publication number Publication date
US8765826B2 (en) 2014-07-01
TW201037030A (en) 2010-10-16
US20120041085A1 (en) 2012-02-16
EP2404958B1 (en) 2019-11-27
US8901183B2 (en) 2014-12-02
EP2404958A4 (en) 2013-12-25
KR101665741B1 (ko) 2016-10-12
KR20110130414A (ko) 2011-12-05
US20140200282A1 (en) 2014-07-17
JP2010202752A (ja) 2010-09-16
CN102341445A (zh) 2012-02-01
TWI470019B (zh) 2015-01-21
JP5192420B2 (ja) 2013-05-08
EP2404958A1 (en) 2012-01-11
CN102341445B (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5192420B2 (ja) 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体
JP5667164B2 (ja) 冷凍保存用発泡性複合樹脂粒子、その製造方法、その保存方法及び冷凍保存発泡性複合樹脂粒子
JP4917511B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP5548621B2 (ja) 予備発泡粒子、その製造方法及び発泡成形体
JP5528429B2 (ja) 複合樹脂粒子中の揮発性有機化合物の低減方法
JP5232397B2 (ja) 改質ポリスチレン系樹脂粒子の製造方法、発泡性改質ポリスチレン系樹脂粒子、改質ポリスチレン系樹脂発泡粒子、改質ポリスチレン系樹脂発泡成形体
JP2013123851A (ja) 複合樹脂粒子中の臭気の低減方法、複合樹脂粒子、発泡性粒子、予備発泡粒子、発泡成形体及び自動車内装材
JP2009263639A (ja) 発泡性スチレン改質ポリオレフィン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP5401083B2 (ja) 予備発泡粒子、その製造方法及び発泡成形体
JP5346571B2 (ja) 予備発泡粒子の製造方法
JP2011068821A (ja) 発泡性複合樹脂粒子、予備発泡粒子、それらの製造方法及び発泡成形体
JP6081266B2 (ja) 発泡成形体
JP2011068776A (ja) 発泡成形体
JP5957599B2 (ja) 発泡粒子の製造方法及び発泡粒子の製造装置
JP5216843B2 (ja) 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体
WO2011030731A1 (ja) 発泡性樹脂粒子の製造方法、予備発泡粒子及び発泡成形体
JP6698566B2 (ja) 発泡粒子の製造方法及び発泡成形体の製造方法
JP5358237B2 (ja) 発泡性複合樹脂粒子及びその湿式製造方法
JP2010222530A (ja) 発泡性複合樹脂粒子、その乾式製造方法、予備発泡粒子及び発泡成形体
JP2010180354A (ja) 発泡性熱可塑性樹脂粒子の製造方法及びその製造装置
JP2012184355A (ja) 予備発泡粒子および発泡成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010217.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6197/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010748740

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117020611

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13147662

Country of ref document: US