WO2010087653A2 - 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치 및 편광소자 제조방법 - Google Patents

내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치 및 편광소자 제조방법 Download PDF

Info

Publication number
WO2010087653A2
WO2010087653A2 PCT/KR2010/000570 KR2010000570W WO2010087653A2 WO 2010087653 A2 WO2010087653 A2 WO 2010087653A2 KR 2010000570 W KR2010000570 W KR 2010000570W WO 2010087653 A2 WO2010087653 A2 WO 2010087653A2
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
weight
content
boron
crosslinking
Prior art date
Application number
PCT/KR2010/000570
Other languages
English (en)
French (fr)
Other versions
WO2010087653A3 (ko
Inventor
권기옥
김승애
나균일
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN2010800062544A priority Critical patent/CN102301260B/zh
Priority to JP2011547801A priority patent/JP5593551B2/ja
Priority to US13/147,112 priority patent/US20120236408A1/en
Publication of WO2010087653A2 publication Critical patent/WO2010087653A2/ko
Publication of WO2010087653A3 publication Critical patent/WO2010087653A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means

Definitions

  • the present invention relates to a polarizing device, a polarizing plate, an image display device, and a manufacturing method of a polarizing device having excellent durability and heat resistance, and more particularly, excellent durability and heat resistance in which the zinc, boron, and potassium content in the polarizing device is controlled to a specific range.
  • a polarizing element, a polarizing plate, an image display device, and a manufacturing method of a polarizing element are examples of a polarizing element.
  • Polarizing plates are used in image display devices such as liquid crystal displays, organic light emitting (EL) displays, plasma display panels (PDPs), etc., and are required to have a high transmittance and a polarization degree in order to provide images with excellent color reproducibility.
  • a polarizing plate is conventionally produced by dyeing a polyvinyl alcohol-based film using a dichroic iodine or a dichroic dye or the like, crosslinking, and then oriented by a method such as uniaxial stretching.
  • an image display device using a polarizing plate is used for display panels of televisions, monitors, automobile dashboards, computers, notebooks, PDAs, telephones, TVs, audio / video devices, various office and industrial machines.
  • the durability of the conventional polarizer has been improved by modifying the polyvinyl alcohol-based film itself and / or by using a non-sublimable dichroic dye instead of a sublimable iodine polarizer.
  • a non-sublimable dichroic dye instead of a sublimable iodine polarizer.
  • the iodine or dichroic dye may not be sufficiently adsorbed to the polymer matrix, resulting in low polarization or poor transmittance due to modification of the matrix.
  • the method using a non-sublimable dye has a problem in that the orientation control is difficult to obtain when the PVA film is stretched, so that a sufficient degree of polarization cannot be obtained.
  • the present invention provides a polarizing element exhibiting excellent durability and heat resistance.
  • the present invention provides a polarizing plate and an image display device including a polarizing element exhibiting excellent durability and heat resistance.
  • the present invention is to provide a method of manufacturing a polarizing device exhibiting excellent durability and heat resistance.
  • the zinc content (wt%) x boron content (wt%) / potassium content (wt%) in the polarizer is 0.1 to 4.0, the boron content is 1.0 to 5.0 wt% and the potassium content is based on the weight of the polarizer.
  • a polarizing element having 0.3 to 2.0 wt%.
  • a polarizing plate including a polarizing element according to an embodiment of the present invention is provided.
  • An image display device including a polarizer or a polarizer according to one embodiment of the present invention is provided.
  • a polarizing device comprising at least a dyeing step, a crosslinking step, an stretching step and a water washing step
  • the dyeing step is a polyvinyl alcohol film for 150 seconds to 300 seconds in a dyeing solution having a concentration of 0.05 to 0.2% by weight of iodine, 0.2 to 1.5% by weight of potassium iodide, and a temperature of 20 to 40 ° C (degrees).
  • a dyeing solution having a concentration of 0.05 to 0.2% by weight of iodine, 0.2 to 1.5% by weight of potassium iodide, and a temperature of 20 to 40 ° C (degrees).
  • the crosslinking step is a polyvinyl alcohol-based film immersed for 30 seconds to 120 seconds in a crosslinked aqueous solution having a boron concentration of 0.36 to 0.83% by weight, a concentration of potassium iodide of 4 to 7% by weight and a temperature of 15 to 60 ° C (degrees).
  • At least one zinc salt selected from the group consisting of zinc chloride, zinc iodide, zinc sulfate, zinc nitrate and zinc acetate has a concentration of 0.4 to 7.0% by weight of at least one of the dyeing solution, crosslinking solution or separate zinc salt treatment solution. Contained in an aqueous solution,
  • the washing step is provided with a polarizing device manufacturing method is performed by immersing the polyvinyl alcohol-based film for 10 to 30 seconds in pure water of 25 ⁇ 30 °C (degrees) temperature.
  • the polarizing element, the polarizing plate including the same, and the image display device exhibit excellent initial orthogonal transmittance and color, and these characteristics are not only maintained, but excellent initial transmittance, polarization and color are maintained even when left at high temperature. It shows durability and heat resistance.
  • FIG. 1 is a graph showing (Zn + P) * B values according to polarizer thicknesses according to Comparative Example 1, Examples 1, 9, and 10.
  • FIG. 1 is a graph showing (Zn + P) * B values according to polarizer thicknesses according to Comparative Example 1, Examples 1, 9, and 10.
  • the present inventors have conducted research on polarizers and polarizers having excellent durability and heat resistance, and specific content relations of zinc, boron and potassium in the polarizers are closely related to heat resistance and durability, and to improve durability and heat resistance of the polarizers. It was found that the durability and heat resistance of the polarizer were significantly increased by controlling a specific content relationship of zinc, boron, and potassium rather than the content of zinc contained in the polarizer.
  • the present invention is characterized by adjusting the boron content in the polarizing element to a specific range.
  • potassium (K) in the polarizer is due to KI (added to make neutral gray color). If the potassium content is too small, the physical properties such as initial color and polarization degree, and heat resistance This becomes vulnerable, making it impossible to use in an image display apparatus. In addition, even when a large amount of potassium is contained, physical properties such as initial color and polarization degree become weak, and heat resistance properties also become weak. Therefore, in one embodiment of the present invention, the potassium content in the polarizing element is characterized in that it is adjusted to a specific range.
  • the durability and heat resistance of the polarizer are improved by adding zinc, the initial optical properties of the polarizer are weak when zinc is added in an appropriate amount. Therefore, the zinc content control in the polarizer should be controlled in an appropriate amount in terms of the initial optical properties, durability and heat resistance control of the polarizer.
  • the zinc, boron, and potassium contents of the polarizers are related to the initial optical properties, the heat resistance and the durability at high temperature conditions in the polarizers, respectively. Not only exhibits excellent initial optical properties such as initial color and polarization degree, but also exhibits excellent durability and heat resistance in which changes in initial excellent optical properties are minimized even when left under high temperature conditions.
  • zinc content (wt%) x boron content (wt%) / potassium content (wt%) (hereinafter, 'Zn * B / K') is provided with a polarizer having a value of 0.1 to 4.0, a boron content of 1.0 to 5.0% by weight and a potassium content of 0.3 to 2.0% by weight.
  • polyvinyl alcohol or a derivative thereof As the material of the polyvinyl alcohol-based film applied as the polarizing element in the present invention, polyvinyl alcohol or a derivative thereof is used.
  • polyvinyl alcohol derivative any one generally known in the art may be used. Although not limited to this, For example, modified polyvinyl alcohol etc. copolymerized with unsaturated carboxylic acid or its derivative (s), unsaturated sulfonic acid or its derivative (s), olefins, such as ethylene, propylene, etc. can be used.
  • the Zn * B / K value in the polarizer is adjusted to 0.1 to 4.0, 1.0 to 5.0 wt% of boron, and 0.3 to 2.0 wt% of potassium, based on the weight of the polarizer. . That is, specific content relations of zinc, boron, and potassium in the polarizer have a close correlation with the initial optical properties, heat resistance, and durability of the polarizer.
  • the Zn * B / K value of the polarizer is based on the weight of the polarizer. It is characterized in that 0.1 to 4.0.
  • the Zn * B / K value of the polarizing element is less than 0.1, the effect of improving heat resistance is insignificant, and if it exceeds 4.0, the initial color and the degree of polarization are not maintained.
  • the boron content in the polarizer is 1.0 to 5.0% by weight, preferably 2.0 to 5.0% by weight and the potassium content is 0.3 to 2.0 to maintain the initial polarization degree and color of the polarizer.
  • Weight% preferably 0.3-1.0 weight%.
  • the polarizing plate containing the polarizing element whose boron content in a polarizing element is the said range shows the outstanding initial orthogonal color and polarization degree. That is, if the boron content is less than 1.0% by weight, not only the initial orthogonal characteristics but also heat resistance are weak, and when the boron content is higher than 5.0% by weight, the initial orthogonal optical properties become weak.
  • the content of Zn * B / K, zinc, boron and potassium in the polarizing device according to the present invention is
  • ICP method The value measured by ICP method. That is, these contents are measured by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) using an Inductively Coupled Plasma-Atomic Emission Spectrometer.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • each point having a depth (D) of 1 nm (nanometer) ⁇ D ⁇ 60 nm (nanometer) (depth of 1 nanometer or more and 60 nanometers or less) centered from the surface of the polarizing element [Zinc content (% by weight) + phosphorus content (% by weight)] x boron content (% by weight) (hereinafter referred to as '[Zn + P] * B') has a value of 0.2 to 14.0, more preferably 1.5 A polarizing element of ⁇ 14.0 is provided.
  • [Zn + P] * at each point corresponding to a depth D of 1 nm (nanometer) ⁇ D ⁇ 60 nm (nanometer) from the surface of the polarizer.
  • Polarizing elements having a B value of 0.2 to 14.0 have further improved durability and heat resistance.
  • the value of [Zn + P] * B is preferably 0.2 or more in terms of further improvement of durability and heat resistance, and preferably 14.0 or less in terms of excellent initial optical properties and colors.
  • the value of [Zn + P] * B at each point having a depth D of 1 nm (nanometer) ⁇ D ⁇ 60 nm (nanometer) from the surface of the polarizing element is a value measured by the ESCA method.
  • [Zn + P] * B values, zinc, phosphorus and boron content in the polarizer are obtained by means of an ESCA method using a photoelectron spectrometer (XPS or ESCA) ESCALAB 250 (Vg)).
  • the value of [Zn + P] * B was calculated by weight, but in practice, the atomic percentage (at%) of zinc, phosphorus, and boron was measured at each point of the polarizing element by the ESCA method, and the weight of each element component therefrom. It is calculated by converting to.
  • the Zn * B / K value and the [Zn + P] * B value (wherein the depth D of the polarizer is 1 nm (nanometer) ⁇ D ⁇ 60 It can be prepared by the following method so as to satisfy the range of nm (nanometer), boron content and potassium content.
  • Polarizers are generally prepared by dyeing, crosslinking, stretching, washing with water and drying an unstretched polyvinyl alcohol-based (PVA) film.
  • PVA polyvinyl alcohol-based
  • the dyeing, crosslinking, and stretching steps may be performed separately or simultaneously, and the order of each step is also variable, and the order of reaction steps is not fixed.
  • the dyeing step is a step of dyeing iodine or dye on a polyvinyl alcohol-based film, and dyeing iodine molecules or dyes having dichroism on the polyvinyl alcohol-based film.
  • the iodine molecule or dye molecule absorbs light oscillating in the stretching direction of the polarizing plate and transmits light oscillating in the vertical direction, thereby obtaining polarized light having a specific vibration direction.
  • dyeing is performed by impregnating a polyvinyl alcohol-based film in a dyeing solution.
  • the dyeing step is 0.05 to 0.2% by weight of iodine concentration, 0.2 to 1.5% by weight of potassium iodide, and 20 to 40 °C (degrees), preferably 20 to 35
  • the polyvinyl alcohol-based film is immersed in a dyeing aqueous solution at degrees Celsius (degrees) for 150 seconds to 300 seconds.
  • the iodine concentration is less than 0.05% by weight in the dyeing step of the dyeing step is not preferable because the transmittance of the polarizer is too high, and if it exceeds 0.2% by weight is not preferable because the transmittance of the polarizer is too low.
  • the potassium iodide concentration is less than 0.2% by weight, the amount of potassium iodide used as a dissolving aid of iodine is insufficient, so that iodine is not properly dissolved, and if it exceeds 1.5% by weight, the problem of solubility of potassium iodide in water itself and It is not preferable because foreign matter may occur.
  • the temperature of the dyeing solution is less than 20 ° C, the degree of dissolution of iodine and potassium iodide in water becomes weak and the rate of dyeing (deposition) to the PVA film is low. It is not preferable because iodine may sublimate.
  • iodine molecules or dye molecules are adsorbed onto the polymer matrix of the PVC film by boron-providing materials such as boric acid, borates, and borax. If iodine molecules or dye molecules are not properly adsorbed on the polymer matrix, the polarization degree is poor, and the polarizing plate cannot perform its original role.
  • crosslinking is generally used by depositing a polyvinyl alcohol-based film in a crosslinking aqueous solution containing a boron component providing material, it may be performed by spraying or applying a crosslinking aqueous solution to a PVA film.
  • the crosslinking step is a PVA film in a crosslinking aqueous solution having a boron concentration of 0.36 to 0.83% by weight, a potassium iodide concentration of 4 to 7% by weight and a temperature of 15 to 60 ° C (degrees). Is immersed for 30 to 120 seconds.
  • the PVA film may not be sufficiently crosslinked and the initial optical properties and durability become weak, and if it exceeds 0.83%, the solubility in water is not preferable. not.
  • at least one or more selected from the group consisting of boric acid, borate, and borax may be used as the boron component providing material.
  • potassium iodide or the like may be added to the crosslinking aqueous solution, such that iodine ions may be included in the crosslinking aqueous solution.
  • a neutral gray polarizer having a small coloration that is, a neutral gray polarizer that provides approximately constant absorbance for all wavelength ranges of visible light can be obtained. It is preferable that the concentration of potassium iodide in the crosslinking aqueous solution is 4% by weight or more in order to achieve such a neutral gray color.
  • the temperature of the crosslinked aqueous solution is less than 15 ° C., the boron component providing material is not sufficiently dissolved. If the temperature exceeds 60 ° C., the boron component providing material is introduced into the film due to the high temperature. The reaction in which the component donor is eluted is more prevalent and no suitable crosslinking reaction occurs.
  • the immersion time of the polyvinyl alcohol-based film or the dyed polyvinyl alcohol-based film in the cross-linked aqueous solution is less than 30 seconds boric acid does not sufficiently penetrate in the depth direction of the PVA film, it is not properly crosslinked, 120 seconds If exceeded, the crosslinking proceeds excessively due to excessive boric acid inflow into the PVA film, thereby weakening the initial optical properties of the polarizer.
  • the stretching step refers to stretching the film uniaxially so that the polymers of the film are oriented in a constant direction.
  • the iodine molecules or dye molecules are arranged side by side in the stretching direction, so that the iodine molecules (I 2 ) or the dye molecules show dichroism, so the light oscillating in the stretching direction is absorbed and the light oscillating in the vertical direction is transmitted.
  • Stretching methods include wet stretching methods and dry stretching methods, and dry stretching methods are again an inter-roll stretching method, a heating roll stretching method, a compression stretching method, a tenter stretching method, and the like.
  • the stretching method is classified into a tenter stretching method, an inter-roll stretching method, and the like.
  • the stretching method in the present invention is not particularly limited, and any stretching method known in the art may be used.
  • both the wet stretching method and the dry stretching method can be used, and a combination thereof can be used if necessary. It is preferable to perform extending
  • the stretching process may be performed simultaneously or separately with the dyeing process or the crosslinking process.
  • the temperature of the stretching bath may be 35 ° C. to 60 ° C., preferably 40 ° C. to 60 ° C.
  • the temperature of the soft bath is preferably 35 ° C. to 60 ° C. in view of smooth stretching of the PVA film, stretching process efficiency, and prevention of film breakage during stretching.
  • the stretching process is performed simultaneously with the dyeing process, it is preferable that the stretching process is performed in the dye aqueous solution. If the stretching step is performed simultaneously with the crosslinking step, it is preferably performed in the crosslinking aqueous solution.
  • the temperature of aqueous solution is a narrower temperature condition overlapping with the process temperature which advances simultaneously. It is preferable to perform at.
  • stretching can be performed at the aqueous solution temperature of the stretching bath of an extending process.
  • the stretching time is not particularly limited, and the dyeing, crosslinking, separate zinc salt treatment, or separate phosphate treatment process, when performed with dyeing, crosslinking, separate zinc salt treatment, or separate phosphate treatment process It can also be performed in a time range.
  • the wet stretching step is not particularly limited, stretching may be performed in the range of 60 seconds to 120 seconds in consideration of the orientation of the PVA film, the optical characteristics of the polarizing element, the process efficiency, and the like.
  • the washing step is performed by immersing the polyvinyl alcohol-based film dyed, crosslinked and stretched in pure water such as ion-exchanged water or distilled water at a temperature of 25 to 30 ° C (degrees) for 10 to 30 seconds. If the temperature of the pure water is less than 25 °C (degrees) is not preferable in the dissolution and removal of foreign matters, and if it exceeds 30 °C (degrees), elution of boron, potassium, zinc, phosphorus, etc. from the PVA film is excessive.
  • pure water such as ion-exchanged water or distilled water
  • the immersion time of the polyvinyl alcohol-based film on the pure water is less than 10 seconds, the water washing effect is insignificant, and if it exceeds 30 seconds, elution of boron, potassium, zinc, phosphorus, etc. from the PVA film is not preferable.
  • Water washing is performed after the dyeing, crosslinking and stretching step to remove foreign substances remaining on the surface of the polarizer.
  • the washing step not only foreign substances remaining on the surface of the polarizing element are removed, but boric acid, iodine, potassium iodide, zinc salt, and phosphorus components contained in the polyvinyl alcohol-based film are eluted with the washing solution, and thus the polyvinyl alcohol-based film (polarization Part).
  • Zn * B / K value in the polarizing element is 0.1 ⁇ 4.0
  • [Zn + P ] * B value (1 nm (nanometer) ⁇ D1 ⁇ 60 nm (nanometer)) is 0.2 to 14
  • boron content is 1.0 to 5.0% by weight
  • potassium content is 0.3 to 2.0% by weight so that 25 ⁇ 30 °C ( It is preferable to immerse a PVC film for 10-30 second in pure water of temperature. Since the washing step is different in the control order of the substance content in the polarizing element, it is preferable to perform the washing step immediately before drying after the dyeing, crosslinking and stretching process.
  • the polarizer according to the present invention also includes a zinc component, in which at least one of the dyeing step, the crosslinking step, the stretching step, and the separate zinc salt treatment step, the zinc salt is Zn * B / K in the polarizing device. It may be added so that the value is 0.1 ⁇ 4.0.
  • the zinc salt may be added to any one of the dyeing step, the crosslinking step, the wet drawing step and the separate zinc salt treating step, and more preferably added to the plurality of steps.
  • the zinc salt may be added to an aqueous solution prepared in each step (for example, a dyeing solution in the dyeing step, a crosslinking solution in the crosslinking step, a wet stretching bath) or may be added in preparing the aqueous solution in each step.
  • the zinc salt may be added with the iodine, potassium iodide and / or boron component providing material.
  • the zinc salt in the aqueous solution may be 0.4% to 7.0% by weight, preferably 0.5 to 5.0% by weight, more preferably 0.5 to 3.0% by weight. If the zinc salt content is less than 0.4% by weight, the effect of improving durability is insignificant, and if it exceeds 7% by weight, foreign matter may be formed on the surface of the polarizer due to solubility problems and the like. Even when the zinc salt is added to two or more processes, it may be added in an amount of 0.4 wt% to 7 wt% in the aqueous solution of each process.
  • the zinc salt treatment When the zinc salt treatment is performed together with a dyeing, crosslinking or wet stretching step, the zinc salt treatment can be performed under dyeing, crosslinking or wet stretching step conditions (aqueous solution temperature and dipping time).
  • the separate zinc salt treatment process may be carried out at any stage before the washing step, it is most effective to perform at the stage immediately before the washing step.
  • the zinc salt treatment step in particular, when the zinc salt treatment step is performed in a separate step immediately before the washing step, for example, but not limited to, solubility of the zinc salt.
  • the PVA film may be immersed in an aqueous zinc salt solution at 15 ° C. to 40 ° C. for 20 to 60 seconds.
  • the zinc salt zinc chloride, zinc iodide, zinc sulfate, zinc nitrate, zinc acetate, or the like may be used alone or in combination of two or more strengths.
  • the polarizing element by this invention can also contain a phosphorus component arbitrarily as needed.
  • Phosphorus component is the [Zn + P] * B value of the polarizing element in at least one or more of the dyeing step, crosslinking step, stretching step and separate phosphate compound treatment step (however, the depth (D) of the polarizing element) 1 nm (nanometer) ⁇ D ⁇ 60 nm (nanometer) may be added so as to be 0.2 to 14.0.
  • the phosphate compound may be added to any one of the dyeing step, the crosslinking step, the stretching step and the separate phosphate compound treatment step, and more preferably added to the plurality of steps.
  • the phosphate compound may be added to an aqueous solution prepared in advance in each step (eg, an aqueous solution of iodine in the dyeing step, an aqueous solution in the crosslinking step) or may be added in preparing the aqueous solution in each step.
  • the phosphate compound may be added together with the iodine, potassium iodide and / or boron component providing material.
  • the phosphoric acid compound may be added in the range of 10% by weight or less, preferably 0.2 to 10% by weight (weight percent), more preferably 0.5 to 3.0% by weight. Since the phosphoric acid compound is additionally added as necessary, the lower limit concentration in the aqueous solution is not particularly specified, but the content of the phosphoric acid compound is preferably 0.2% by weight so that the additional durability and heat resistance improving effect can be sufficiently expressed, solubility in water and In consideration of the initial orthogonal optical properties, it is preferably 10% by weight or less. Even when the phosphate compound is added to two or more processes, the aqueous solution of each process may be added at 10 wt% or less, similarly to the concentration range of the phosphate compound described above.
  • the phosphoric acid compound can be carried out according to the process conditions (aqueous solution temperature and immersion time) of dyeing, crosslinking or wet stretching.
  • the separate phosphate compound treatment process may be performed at any stage before the washing step, but it is most effective to perform at the stage just before the washing step.
  • the solubility of the phosphate compound in particular, when the phosphate compound treatment is performed in a separate step immediately before the washing step, for example, the solubility of the phosphate compound.
  • the PVA film may be immersed in an aqueous solution of the phosphate compound at 15 ° C. to 40 ° C. for 20 to 60 seconds.
  • phosphate compound at least one selected from the group consisting of phosphoric acid, dibasic calcium phosphate, dibasic magnesium phosphate, dibasic sodium phosphate, first potassium phosphate and first ammonium phosphate may be used alone or in combination.
  • zinc salts and phosphate compounds cannot be added simultaneously in the same process. That is, zinc salts and phosphate compounds may be added to the dyeing, crosslinking or stretching step, respectively, but may not be added to the same process at the same time.
  • neither zinc salts nor phosphate compounds can be added to the aqueous dyeing solution. This is because zinc salt and phosphate react in solution to form zinc phosphate that is insoluble in water.
  • the Zn * B / K value in the polarizing device is 0.1 to 4.0
  • the boron content is 1.0 to 5.0% by weight
  • the potassium content is 0.3 to 2.0% by weight.
  • the PVA film is placed in an oven and dried to obtain a polarizing element.
  • the drying step is generally carried out at 40-100 ° C. (degrees) for 10-500 seconds. If the drying temperature is less than 40 ° C (degrees), the moisture remaining in the PVA film is not enough to dry the film wrinkles, the color of the polarizer is not neutral gray (neutral gray) color becomes blue, the initial orthogonal physical properties This becomes vulnerable. Specifically, the ratio of each iodine ion species is appropriately adjusted through the reaction as in Scheme 1 to give a neutral gray color.
  • this reaction is further accelerated by the heat supplied during the PVA film drying process, the polarizing film is close to the blue color in the previous step of color control by this principle. Therefore, when the temperature of the drying step is low, the reaction as shown in the above reaction does not occur smoothly, the color of the polarizing device is blue (bluish), and thus the initial orthogonal physical properties become weak. If the drying temperature exceeds 100 °C (degrees), the film is easily broken due to excessive drying, and the initial color of the polarizer becomes red outside the neutral gray, thereby making the initial optical properties weak.
  • the drying time is less than 10 seconds, the drying is insufficient, and if it exceeds 500 seconds, the film is easily broken due to excessive drying, and the initial color of the polarizer is reddish out of neutral gray, which makes the initial optical property weak. Become.
  • the polarizing plate is manufactured by laminating a protective film on one or both surfaces of the polarizer manufactured by the above method using an adhesive.
  • the protective film is to prevent the exposure of the outer surface of the polarizing plate during the process and prevents the inflow of contaminants and protects the surface of the polarizing plate.
  • the resin film base material of the protective film one which is easy to be produced as a film base material, has good adhesion with a PVA film (polarizing element), and is optically transparent can be preferably used.
  • cellulose ester films such as triacetyl cellulose film (TAC film), cellulose acetate propionate film, polycarbonate film (PC film), polystyrene film, polyarylate film, norbornene resin film and polysulfone film are transparent. , Mechanical properties and optical anisotropy are preferred.
  • Triacetyl cellulose film (TAC film) and polycarbonate film (PC film) are more preferably used because they are easily formed into a film and are excellent in workability, and in particular, TAC film is most preferably used.
  • the polarizing plate protective film may be surface modified to improve adhesion to the PVA film to which the protective film is bonded.
  • Specific examples of the surface treatment include corona discharge treatment, glow discharge treatment, flame treatment, acid treatment, alkali treatment, ultraviolet irradiation treatment, and the like. It is also preferably used to provide an undercoat layer.
  • Surface modification treatment using a double alkali solution increases the adhesion of the protective film to the polarizing film by introducing a -OH group to the hydrophobic protective film to modify the surface of the protective film to hydrophilic.
  • an aqueous adhesive is generally used.
  • any water-based adhesive generally used in the art may be used, but is not limited thereto.
  • isocyanate-based adhesive, polyvinyl alcohol-based adhesive, gelatin-based adhesive, vinyl latex-based, water-based polyurethane And water-based polyesters can be exemplified.
  • a polyvinyl alcohol adhesive is used preferably.
  • the water based adhesive may comprise a crosslinking agent.
  • the adhesive is usually used as an aqueous solution.
  • the concentration of the aqueous solution of the adhesive is not particularly limited, but is generally 0.1 to 15% by weight, preferably 0.5 to 10% by weight, more preferably about 0.5 to 5% by weight, in consideration of coating properties and standing stability.
  • the said adhesive agent can further mix
  • the polarizing plate to which the protective film is attached to one side or both sides of the polarizing element or the polarizing element is not limited thereto.
  • a liquid crystal display device an organic light emitting (EL) display device, a plasma display panel (PDP), or the like.
  • EL organic light emitting
  • PDP plasma display panel
  • a 75 ⁇ m (micrometer) thick polyvinyl alcohol film was immersed at 30 ° C. for 5 minutes in a dyeing bath containing an aqueous solution containing 0.1% by weight of iodine and 1% by weight of potassium iodide (A. dyeing). step).
  • the dyed polyvinyl alcohol film was stretched five times by immersing in a crosslinked aqueous solution containing 5% by weight of potassium iodide at 50 ° C (degrees) and 0.64% by weight of boron for 120 seconds (B. crosslinking and stretching step).
  • the PVA polarizer obtained by the above process was placed in an oven and dried at 80 ° C. for 5 minutes.
  • a 75 ⁇ m (micrometer) thick TAC film was bonded to both surfaces of the polarizer with a polyvinyl alcohol adhesive and dried at 80 ° C. for 5 minutes to prepare a polarizer.
  • a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1 except that the concentration of boron was adjusted to 0.22 wt% in the crosslinking and stretching step (B) and 2.5 wt% of zinc nitrate was added.
  • a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1 except that the concentration of potassium iodide was adjusted to 1.5 wt% in the crosslinking and stretching step (B) and 2.5 wt% of zinc nitrate was added.
  • the iodine concentration is 0.03% by weight
  • the potassium iodide concentration is 7% by weight
  • the boron concentration is 0.92% by weight and the potassium iodide concentration is adjusted to 10% by weight, respectively.
  • the washing step (C) a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1, except that it was immersed in distilled water at 40 ° C. for 60 seconds.
  • the potassium iodide concentration was adjusted to 0.01 wt%, and a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1 except that zinc chloride was added at 1.0 wt%.
  • the iodine concentration was adjusted to 0.3% by weight and the boron concentration was adjusted to 2.5% by weight in the crosslinking and stretching step (B), and zinc chloride was added at 2.5% by weight, and the washing step (C) was 25 ° C.
  • a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1, except that 20 seconds was immersed in distilled water of FIG.
  • the potassium iodide concentration was adjusted to 7.0% by weight, zinc nitrate was added to 5% by weight, and then a washing step (C) was immersed in distilled water at 25 ° C. (degrees) for 20 seconds. Except for producing a polarizing device and a polarizing plate in the same manner as in Comparative Example 1.
  • the boron concentration was adjusted to 0.46% by weight and the potassium iodide concentration to 7.0% by weight, and zinc sulfate was added at 2.5% by weight, followed by immersion in 25 ° C (degrees) pure water for 20 seconds.
  • a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1 except that the washing step (C) was performed.
  • the dyeing step (A) zinc chloride was added at 3% by weight, the potassium iodide concentration was adjusted to 7.0% by weight in the crosslinking and stretching step (B), and the boron concentration was adjusted to 0.46% by weight in the washing step (C), respectively.
  • a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1 except that the sample was immersed in distilled water at 25 ° C. for 20 seconds.
  • cross-linking and stretching step (B) is added 5% by weight of zinc sulfate, the same method as in Comparative Example 1 except that the washing step (C) to be immersed in distilled water at 25 °C (degrees) for 30 seconds.
  • a polarizing element and a polarizing plate were prepared.
  • step (A) 3 wt% zinc chloride is added in the dyeing step (A), and 0.5 wt% of the first ammonium phosphate is added in the crosslinking and stretching step (B), followed by water washing for 20 seconds in distilled water at 25 ° C (degrees).
  • a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1 except that step (C) was performed.
  • step (A) In the dyeing step (A), 3% by weight of zinc chloride is added, and in the crosslinking and drawing step (B), 1.5% by weight of the first ammonium phosphate is added, followed by water washing for 20 seconds in distilled water at 25 ° C (degrees).
  • a polarizing element and a polarizing plate were manufactured in the same manner as in Comparative Example 1 except that step (C) was performed.
  • Table 2 shows the types of phosphate compounds, zinc salts, phosphate compounds, I 2 , KI and boron in the treatment solutions of Comparative Examples 1 to 7 and Examples 1 to 10 of A. Dyeing step and B. Crosslinking and stretching step. , C: The immersion time of the washing step.
  • the polarizing plates prepared by the methods of Comparative Examples 1 to 7 and Examples 1 to 10 were cut to a size of 50 mm (millimeter) x 50 mm (millimeter) and bonded to glass with an acrylic adhesive to prepare a specimen. Thereafter, the initial optical properties of each polarizing plate, that is, single transmittance (Ts), orthogonal transmittance (Tc), single color (a, b), and cross color (x, y) were measured. Thereafter, the polarizing plate was left in an oven at 100 ° C.
  • the optical properties were measured by an N & K analyzer (N & K Technology Inc.), and the single optical properties L *, a *, b * were measured with one polarizer, and the orthogonal transmittance (Tc) and the orthogonal color (x, y ), One polarizing plate is cut in the stretching direction, the other one is cut in the orthogonal direction of the stretching direction, and the two cut polarizing plates are orthogonal to each other such that the absorption axis is 90 ° (degrees), and then the transmittance was measured.
  • L *, a *, b * are the color values of the group state
  • L *, a *, b * are the color L * values, a * values, b * of the Color Space color coordinate system (defined by the CIE in 1976).
  • L * 0 , a * 0 and b * 0 are the color values of the initial single phase of the polarizer
  • L * 500 , a * 500 , b * 500 Is the color value of single state measured after 500 hours in 100 °C (degree) oven.
  • Tc (%) 100 * (Tc 500 -Tc 0 ) / Tc 0
  • Tc 0 is the initial orthogonal transmittance of each polarizing plate
  • Tc 500 is the orthogonal transmittance measured after 500 hours in 100 °C (degrees) oven
  • orthogonal transmittance (Tc) is measured at the same single transmittance (Ts.) Value)
  • x (%) 100 * (x 500 -x 0 ) / x 0
  • x is the color value of two orthogonal states of polarizer.
  • X is the color value of xyz Chromaticity coordinates and is calculated from the orthogonal color value of two polarizers with N & K analyzer. 0 silver Color value of initial orthogonal state of polarizer, x 500 Measured after 500 hours in an oven at 100 ° C Color value of the orthogonal state of the polarizing plate.
  • Tc relative rate of change Example Tc (%) / Comparative Example 1 Tc (%)
  • Residual inorganic contents (contents of zinc, boron and potassium) in the polarizing elements of Comparative Examples 1 to 7 and Examples 1 to 10 were determined by an ICP-AES method (Inductively Coupled Plasma-Atomic Emission Spectroscophy), and polarized therefrom.
  • the value of Zn * B / K in the device was calculated and shown in Table 2 below. Specifically, 0.1 g (gram) of the sample to be measured (polarizing element) was taken, and 2 ml (milliliter) of distilled water and 3 ml (milliliter) of concentrated nitric acid were added thereto, and the lid was closed to dissolve the sample.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscometer. ICP-AES (ICP 5300DV, Perkinelemer) was operated under the following conditions: Forward Power 1300 W; Torch Height 15 mm (millimeters); Plasma gas flow 15.00 L (liter) / min; Sample gas flow 0.8 L (liter) / min; Auxiliary gas flow 0.20 L / min and pump speed 1.5 ml (milliliters) / min.
  • Electron Spectroscopy of Chemical Analysis (ESCA) analysis is performed by using a photoelectron spectrometer (XPS or ESCA, model name ESCALAB 250 (VG)) to etch the surface of the polarizer step by step as shown in Table 1 below.
  • the atomic% (at%) of, and boron were measured, and the weight of each element component was calculated therefrom to obtain the value of [Zn + P] * B.
  • ESCA analysis conditions were as follows.
  • Base chamber pressure 2.5 x 10 -10 mbar
  • CAE Constant Analyzer Energy
  • Charge Compensation Use low energy flood gun, no ion flood gun.
  • the polarizing device was etched by the etching time of Table 1 to measure the contents of zinc, phosphorus and boron from the surface of the polarizing device to a depth of 200 nm (nanometer). By etching for 10 seconds, the polarizing element 1 nm (nanometer) is etched. In this test, etching was carried out to a total depth of 200 nm (nanometer) (2000 seconds) in the steps as shown in Table 1 below, and the contents of zinc, phosphorus and boron at each point of the polarizer were measured.
  • Tc represents orthogonal transmittance of each polarizing plate
  • Tc Comparative Example 1 represents orthogonal transmittance of Comparative Example 1.
  • Orthogonal transmittance (Tc) of the Example and the comparative example is measured at the same single transmittance (Ts.) Value. Low orthogonal transmittance at the same single transmittance means improved orientation of the light absorbing component.
  • the relative change rate of Tc is the rate of change of Tc before and after heat resistance.
  • the B * Zn / K value, [B + P] * Zn value, the boron content and potassium content includes a polarizing element that satisfies the range according to one embodiment of the present invention
  • the polarizing plate excellent in initial optical characteristics, it was also confirmed that the color after the heat resistance, the orthogonal transmittance change rate, and the like were smaller than those of the comparative example.
  • the polarizing element and the polarizing plate according to one embodiment of the present invention have excellent durability and heat resistance, so that the change of optical properties is small at high temperature and high humidity, and thus, excellent physical properties can be secured even in harsh conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명은 편광소자의 아연, 붕소 및 칼륨의 함량이 특정한 범위로 제어된 내구성, 특히 내열성이 우수한 편광소자, 편광판, 화상표시장치 및 편광소자의 제조방법에 관한 것이다. 본 발명의 일 구현에 의하면, 편광소자의 중량을 기준으로, 아연함량(중량% )x붕소함량(중량% )/칼륨함량(중량% )의 값은 0.1~4.0, 붕소함량은 1.0~5.0중량% 및 칼륨함량은 0.3~2.0중량% 인 편광소자, 이를 포함하는 편광판, 화상표시장치가 제공된다. 또한, 최소한 염색단계, 가교단계, 연신단계 및 수세단계를 포함하는 편광소자 제조방법에 있어서, 상기 염색단계는 요오드 농도가 0.05~0.2중량%, 요오드화 칼륨 농도가 0.2~1.5중량%, 그리고 온도가 20~40℃(도)인 염색 수용액에 폴리비닐알코올계 필름을 150초 내지 300초 동안 침지하여 행하며, 상기 가교단계는 붕소 농도가 0.36 ~ 0.83중량%, 요오드화 칼륨의 농도가 4~7중량% 이고 온도가 15~60℃(도)인 가교 수용액에 폴리비닐알코올계 필름을 30초 내지 120초 동안 침지하여 행하며, 상기 염화아연, 요오드화아연, 황산아연, 질산아연 및 초산아연으로 구성되는 그룹으로부터 선택된 최소 일종의 아연염이 0.4~7.0중량% 의 농도로 상기 염색 수용액, 가교 수용액 혹은 별도의 아연염 처리 수용액 중 최소 일종의 수용액에 포함되며, 상기 수세단계는 25~30℃(도) 온도의 순수에 폴리비닐알코올계 필름을 10 내지 30초 동안 침지하여 행하는 편광소자 제조방법이 제공된다. 본 발명의 일 구현에 의한 편광소자, 편광판 및 화상표시장치는 초기 직교 투과도 및 색상이 유지되고, 고온조건하에서도 투과도, 편광도 및 색상이 유지되는 우수한 내구성 및 내열성을 나타낸다.

Description

내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치 및 편광소자 제조방법
본 발명은 내구성 및 내열성이 우수한 편광소자, 편광판, 화상표시장치 및 편광소자 제조방법에 관한 것이며, 보다 상세하게는 편광소자중의 아연, 붕소 및 칼륨 함량이 특정한 범위로 제어된 내구성 및 내열성이 우수한 편광소자, 편광판, 화상표시장치 및 편광소자 제조방법에 관한 것이다.
편광판은 액정표시장치, 유기발광(EL)표시장치, PDP(플라즈마 디스플레이 패널)등의 화상표시장치에 사용되는 것으로 색상 재현성이 우수한 화상을 제공하기 위해 높은 투과율 및 편광도를 겸비할 것이 요구된다. 이러한 편광판은 종래 폴리비닐알코올계 필름을 이색성 요오드 또는 이색성 염료등을 사용하여 염색하고, 가교한 후, 일축연신등의 방법으로 배향하여 제조된다.
최근 편광판을 사용하는 화상표시장치는 텔레비젼, 모니터, 자동차 계기판, 컴퓨터, 노트북, PDA, 전화기, TV, 오디오/비디오 기기, 각종 사무용, 공업용 기계들의 표시판에 사용되고 있다. 이와 같이 화상표시장치의 사용영역이 확대됨에 따라 고온, 고습등 가혹한 조건에서 장시간 사용하게 되는 경우가 많아졌다. 따라서, 이러한 가혹한 환경에서 편광판 본래의 기능을 잘 발휘할 수 있도록 우수한 내구성 및 내열성을 필요로 한다.
종래 편광판의 내구성은 폴리비닐알코올계 필름자체를 개질하거나 및/또는 승화성 있는 요오드계 편광소자 대신 비승화성 이색성 염료를 사용하는 방법으로 개선하여 왔다. 그러나, 종래 폴리비닐알코올계(이하, 'PVA'라함) 필름 자체를 개질하는 방법에서는 요오드 또는 이색성 염료가 고분자 매트릭스에 충분히 흡착되지 않아 편광도가 낮아지거나 매트릭스의 개질로 인하여 투과도가 떨어지는 문제가 발생할 수 있다. 비승화성 염료를 이용하는 방법은 PVA필름 연신시 배향조절이 어려워 충분한 편광도를 얻을 수 없는 문제가 있다.
본 발명은 우수한 내구성 및 내열성을 나타내는 편광소자를 제공하는 것이다.
본 발명은 우수한 내구성 및 내열성을 나타내는 편광소자를 포함하는 편광판 및 화상표시장치를 제공하는 것이다.
본 발명은 우수한 내구성 및 내열성을 나타내는 편광소자 제조방법을 제공하는 것이다.
본 발명의 일 견지에 의하면,
편광소자의 중량을 기준으로 편광소자중의 아연함량(중량% )x붕소함량(중량% )/칼륨함량(중량% )의 값은 0.1~4.0, 붕소함량은 1.0~5.0중량% 그리고 칼륨함량은 0.3~2.0중량% 인 편광소자가 제공된다.
본 발명의 다른 견지에 의하면,
본 발명의 일 구현에 의한 편광소자를 포함하는 편광판이 제공된다.
본 발명의 또 다른 견지에 의하면,
본 발명의 일 구현에 의한 편광소자 혹은 편광판을 포함하는 화상표시장치가 제공된다.
나아가, 본 발명의 또 다른 견지에 의하면,
최소한 염색단계, 가교단계, 연신단계 및 수세단계를 포함하는 편광소자 제조방법에 있어서,
상기 염색단계는 요오드 농도가 0.05~0.2중량% , 요오드화 칼륨 농도가 0.2~1.5중량%이고, 그리고 온도가 20~40℃(도)인 염색 수용액에 폴리비닐알코올계 필름을 150초 내지 300초 동안 침지하여 행하며,
상기 가교단계는 붕소 농도가 0.36 ~ 0.83중량% , 요오드화 칼륨의 농도가 4~7중량% 이고 온도가 15~60℃(도)인 가교 수용액에 폴리비닐알코올계 필름을 30초 내지 120초 동안 침지하여 행하며,
상기 염화아연, 요오드화아연, 황산아연, 질산아연 및 초산아연으로 구성되는 그룹으로부터 선택된 최소 일종의 아연염이 0.4~7.0중량% 의 농도로 상기 염색 수용액, 가교 수용액 혹은 별도의 아연염 처리 수용액 중 최소 일종의 수용액에 포함되며,
상기 수세단계는 25~30℃(도) 온도의 순수에 폴리비닐알코올계 필름을 10 내지 30초 동안 침지하여 행하는 편광소자 제조방법이 제공된다.
편광소자중의 아연함량(중량% )x붕소함량(중량% )/칼륨함량(중량% )의 값을 0.1~4.0, 붕소함량 1.0~5.0중량% 그리고 칼륨함량 0.3~2.0중량% 로 제어하므로써, 편광소자, 이를 포함하는 편광판 및 화상표시장치는 우수한 초기 직교 투과도 및 색상을 나타내며, 이러한 특성이 유지될 뿐만 아니라, 고온조건에서 방치되는 경우에도, 초기의 우수한 투과도, 편광도 및 색상이 유지되는 우수한 내구성 및 내열성을 나타낸다.
도 1은 비교예 1, 실시예 1, 9, 및 10에 의한 편광소자 두께에 따른 (Zn+P)*B 값을 나타내는 그래프이다.
본 발명자들은 내구성 및 내열성이 우수한 편광소자 및 편광판에 대한 연구결과, 편광소자 중의 아연, 붕소, 칼륨의 특정한 함량관계가 내열성 및 내구성과 매우 밀접한 상관관계 있으며, 편광소자의 내구성 및 내열성을 향상시키기 위해 편광소자에 함유되어 있는 아연의 함량 자체보다는 아연, 붕소 및 칼륨의 특정한 함량관계를 제어함으로써 편광소자의 내구성 및 내열성이 현저하게 증대됨을 발견하였다.
편광소자중 가교제로 사용되는 붕산, 보레이트 혹은 보락스는 수용액중에서 히드록시기(OH)를 발생시키며 이에 의해 폴리비닐알코올계 수지(이하, 'PVA'라 함)가 가교된다. 또한, 요오드가 I5 -, I3 -로 존재하는 폴리요오드는 PVA와 붕소제공 물질에 의한 가교 망상구조 사이에 삽입된다. 따라서, 가교제인 붕소제공물질의 함량이 많아질수록 PVA-폴리요오드 사이의 망상구조가 더욱 견고해지고 연신 후, PVA 및 폴리요오드의 변형 그리고 폴리요오드의 분해(degradation) 및/또는 승화가 억제되어 내열성이 증대되는 것으로 여겨진다. 그러나, 붕소(B)의 함량이 무한정 높아진다고 내열특성이 무한정 우수해지지는 않으며, 붕소를 과량 사용하면 초기 직교 광학물성이 취약해지는 부작용이 발생한다. 또한, 붕소의 함량이 너무 적으면 초기 직교 특성 뿐만 아니라 내열성도 취약해 진다. 따라서, 이를 고려하여 본 발명은 편광소자 중의 붕소함량을 특정한 범위로 조절함을 특징으로 한다.
이와 더불어, 편광소자내의 칼륨(K)는 KI(뉴트럴 그레이(neutral gray) 색상을 만들기 위해 첨가된 것)에서 기인한 것으로 칼륨(K) 함량이 너무 적으면 초기색상, 편광도 등의 물성 및 내열성이 취약해지므로 화상표시 장치에 사용하는 것이 불가능하게 된다. 또한, 칼륨이 다량 함유되어도 초기색상, 편광도 등의 물성이 취약해지며, 내열 특성도 취약해 진다. 따라서, 본 발명의 일 구현에 있어서, 편광소자 중의 칼륨함량을 특정한 범위로 조절함을 특징으로 한다.
또한, 아연이 첨가되므로써 편광소자의 내구성 및 내열성이 개선되지만, 아연이 적정량을 초과하여 첨가되면 편광소자의 초기 광학물성이 취약해진다. 따라서, 편광소자중의 아연함량 제어는 편광소자의 초기 광학물성과 내구성 및 내열성 제어 측면에서 적정 양으로 제어되어야 한다.
이와 같이, 편광소자중의 아연, 붕소 및 칼륨 함량은 각각 편광소자중의 초기 광학물성, 고온조건에서의 내열성 및 내구성과 관련된 것으로, 편광소자 중 이들 성분 함량의 특정한 관계식을 만족하도록 제어하므로써 편광소자가 초기 색상 및 편광도등의 우수한 초기 광학물성을 나타낼 뿐만 아니라, 고온 조건하에서 방치하는 경우에도 초기의 우수한 광학물성의 변화가 최소화되는 우수한 내구성 및 내열성을 나타낸다.
상기한 바와 같은 연구 결과에 따라 본 발명의 일 구현에 있어서, 편광소자의 중량을 기준으로 편광소자중의 아연함량(중량% )x붕소함량(중량% )/칼륨함량(중량% )(이하, 'Zn*B/K'이라 함.)의 값은 0.1~4.0, 붕소함량은 1.0~5.0중량% 그리고 칼륨함량은 0.3~2.0중량% 인 편광소자가 제공된다.
본 발명에서 편광소자로 적용되는 폴리비닐알코올계 필름의 재료로는 폴리비닐알코올 또는 그 유도체가 사용된다. 폴리비닐알코올 유도체로는 이 기술분야에 일반적으로 알려져 있는 어떠한 것이 사용될 수 있다. 이로써 한정하는 것은 아니지만 예를들어, 불포화 카르본산 또는 그 유도체, 불포화 술폰산 또는 그 유도체, 에틸렌, 프로필렌등의 올레핀등과 공중합한 변성 폴리비닐알코올등이 사용될 수 있다.
본 발명의 일 구현에 의한 편광소자는 편광소자의 중량을 기준으로 편광소자중의 Zn*B/K 값은 0.1~4.0, 붕소함량 1.0~5.0중량% 그리고 칼륨함량 0.3~2.0중량% 으로 조절된다. 즉, 편광소자에서 아연, 붕소 및 칼륨의 특정한 함량관계는 편광소자의 초기 광학특성, 내열성 및 내구성과 매우 밀접한 상관관계를 갖는 것으로 편광소자의 중량을 기준으로 편광소자중의 Zn*B/K 값이 0.1~4.0임을 특징으로 한다.
편광소자중 Zn*B/K 값이 0.1 미만이면 내열성 개선 효과가 미미하며, 4.0을 초과하면 초기 색상 및 편광도가 유지되지 않는다. 0.1 내지 4.0범위에서 Zn*B/K이 클수록, 고온조건에서 투과도, 편광도 및 색상 변화가 적은 우수한 내구성 및 내열성을 갖는다.
또한, 편광소자의 초기 편광도 및 색상이 유지되도록 편광소자의 총 중량을 기준으로 편광소자중의 붕소함량은 1.0~5.0중량% , 바람직하게는 2.0-5.0중량% 로 그리고 칼륨함량은 0.3~2.0중량% , 바람직하게는 0.3-1.0중량% 로 조절된다. 편광소자중의 붕소함량이 상기 범위인 편광소자를 포함하는 편광판은 우수한 초기 직교색상 및 편광도를 나타낸다. 즉, 붕소함량이 1.0중량% 미만이면 초기 직교특성 뿐만 아니라 내열성이 취약해지며, 5.0중량% 를 초과하면 초기 직교 광학물성이 취약해진다. 0.3중량% 내지 2.0중량% 의 칼륨함량에서 우수하고 안정적인 초기 색상, 편광도 및 내열성을 나타내며, 칼륨함량이 0.3중량% 미만 혹은 2.0중량% 를 초과하면 초기색상, 편광도 및 내열성이 취약해진다.
상기 본 발명에 의한 편광소자중의 Zn*B/K값, 아연, 붕소 및 칼륨의 함량은
ICP법으로 측정된 값이다. 즉, 이들 함량은 ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometer)를 사용한 유도 결합 플라즈마 분광법(Inductively Coupled Plasma-Atomic Emission Spectrometry)으로 측정된다.
나아가, 본 발명에 다른 구현에 있어서, 편광소자 표면으로부터 중심으로 깊이 (D) 1㎚(나노미터)≤D≤60㎚(나노미터)(깊이가 1나노미터 이상 60나노미터 이하)인 각 지점에서 [아연 함량(중량% ) + 인 함량(중량% )] x 붕소함량(중량% )(이하, '[Zn+P]*B'라 한다.) 값이 0.2 ~14.0, 보다 바람직하게는 1.5 ~14.0 인 편광소자가 제공된다.
편광소자중의 Zn*B/K값 뿐만 아니라, 편광소자 표면으로부터 중심으로 깊이(D) 1㎚(나노미터)≤D≤60㎚(나노미터)에 해당하는 각 지점에서 [Zn+P]*B값이 0.2~14.0인 편광소자는 더욱 개선된 내구성 및 내열성을 갖는다. P이 추가로 포함되는 경우에, [Zn+P]*B 값은 내구성 및 내열성의 추가적인 개선이란 점에서 0.2 이상인 것이 바람직하며, 우수한 초기 광학물성 및 색상 면에서 14.0이하인 것이 바람직하지 않다.
편광소자 표면으로부터 중심으로 깊이(D) 1㎚(나노미터)≤D≤60㎚(나노미터)인 각 지점에서 [Zn+P]*B의 값은 ESCA법으로 측정된 값이다. 광전자 분광기(XPS 혹은 ESCA) ESCALAB 250 (Vg))한 장치를 사용하여 ESCA법으로 편광소자중의 [Zn+P]*B 값, 아연, 인 및 붕소의 함량을 얻는다. 구체적으로, [Zn+P]*B 값은 중량으로 계산하였으나, 실제로는 ESCA법으로 편광소자 각 지점에서 아연, 인, 및 붕소의 원자%(at%)를 측정하고 이로부터 각 원소성분의 중량으로 환산하여 계산한 값이다.
한편, 본 발명의 일 구현에 의한 편광소자는 상기한 Zn*B/K 값, [Zn+P]*B값(단, 편광소자의 깊이(D)는 1㎚(나노미터)≤D≤60㎚(나노미터)), 붕소함량 및 칼륨함량 범위를 만족하도록 다음과 같은 방법으로 제조될 수 있다.
편광소자는 일반적으로 연신되지 않은 폴리비닐알코올계(PVA)필름을 염색, 가교, 연신, 수세 및 건조하여 제조한다. 다만, 염색, 가교, 연신단계는 개별적으로 혹은 동시에 진행될 수 있으며, 각 단계의 진행 순서 또한 가변적인 것으로 반응단계 순서가 고정되는 것은 아니다.
염색단계는 폴리 비닐알코올계 필름에 요오드 또는 염료를 염색하는 공정으로서 이색성을 갖는 요오드 분자 혹은 염료를 폴리비닐알코올계 필름에 염착시키는 단계이다.
상기 요오드 분자 또는 염료 분자는 편광판의 연신 방향으로 진동하는 빛은 흡수하고, 수직 방향으로 진동하는 빛은 투과시킴으로써, 특정한 진동 방향을 갖는 편광을 얻을 수 있도록 해준다.
일반적으로 염색은 폴리비닐알코올계 필름을 염색 용액에 함침시켜서 행한다. 본 발명에 의한 편광소자를 제조함에 있어서, 염색단계는 요오드 농도가 0.05~0.2중량% , 요오드화 칼륨 농도가 0.2~1.5중량% , 그리고 온도가 20~40℃(도), 바람직하게는 20~35℃(도)인 염색 수용액에 폴리비닐알코올계 필름을 150초 내지 300초 동안 침지하여 행한다.
상기 염색단계의 염색 수용액에서 요오드 농도가 0.05중량% 미만이면 편광소자의 투과도가 너무 높아지므로 바람직하지 않고, 0.2중량% 를 초과하면 편광소자의 투과도가 너무 낮아지므로 바람직하지 않다. 또한, 요오드화 칼륨 농도가 0.2중량% 미만이면 요오드의 용해 보조제로 사용되는 요오드화 칼륨의 양이 불충분하여 요오드가 적절히 용해되지 않으며, 1.5중량% 를 초과하면 요오드화 칼륨 자체의 물에 대한 용해도 문제와 이로 인하여 이물질이 발생할 수 있으므로 바람직하지 않다. 염색 수용액의 온도가 20℃(도)미만이면 요오드 및 요오드화 칼륨의 물에 대한 용해 정도가 취약해지며 PVA 필름에 대한 염색(염착) 속도가 낮아지므로 바람직하지 않고 40℃(도)을 초과하면 고온으로 인하여 요오드가 승화될 수 있으므로 바람직하지 않다. 한편, 상기 염색 수용액에 대한 폴리비닐알코올계 필름이 충분히 염착되도록 150초 이상 침지하는 것이 바람직하다. 한편, 편광소자의 투과도 측면에서, 300초이하로 침지하는 것이 바람직하다.
가교단계에서는 붕산, 보레이트, 보락스 등의 붕소제공 물질에 의해 요오드 분자 또는 염료 분자가 PVC 필름의 고분자 매트릭스에 흡착된다. 요오드 분자나 염료분자가 고분자 매트릭스에 제대로 흡착되지 않으면 편광도가 떨어져 편광판이 본래의 역할을 수행할 수 없다.
가교는 폴리비닐 알코올계 필름을 붕소 성분 제공물질을 포함하는 가교 수용액에 침적시켜 수행하는 침적법이 일반적으로 사용되지만, PVA 필름에 가교수용액을 분사 혹은 도포하여 행할 수도 있다.
본 발명에 의한 편광소자를 제조함에 있어서, 상기 가교단계는 붕소 농도가 0.36 ~0.83중량% , 요오드화 칼륨의 농도가 4~7중량% 이고 온도가 15~60℃(도)인 가교 수용액에 PVA 필름을 30초 내지 120초 동안 침지하여 행한다.
상기 가교단계의 가교 수용액에서 붕소 농도가 0.36중량% 미만이면 PVA 필름을 충분히 가교시키지 못하고 초기 광학물성 및 내구성이 취약해지므로 바람직하지 않고, 0.83중량% 를 초과하면 물에 대한 용해도가 낮아지므로 바람직하지 않다. 이로써 한정하는 것은 아니지만, 예를들어, 붕소성분 제공 물질로는 붕산, 보레이트 및 보락스로 구성되는 그룹으로부터 선택된 최소 일종 이상이 사용될 수 있다.
또한, 상기 가교단계에서는 가교 수용액에 요오드화 칼륨 등을 첨가함으로써, 상기 가교 수용액에 요오드 이온이 포함되도록 할 수도 있다. 이와 같이 요오드 이온이 함유된 가교 수용액을 사용할 경우, 적은 착색을 갖는 편광자, 즉, 가시광의 모든 파장 영역에 대하여 대략적으로 일정한 흡광도를 제공하는 뉴트럴 그레이 편광소자를 얻을 수 있다. 이러한, 적절한 뉴트럴 그레이 색상이 구현되도록 가교수용액 중에서 요오드화 칼륨의 농도가 4중량% 이상인 것이 바람직하다. 한편, 요오드화 칼륨의 농도가 7중량% 를 초과하면 요오드화 칼륨에 의해 과량의 I-가 제공되며, 과량의 I-에 의해 고온에서 하기 반응식 1의 정반응이 가속화되어 고온에서 방치 후의 색상변화 및 편광도 저하가 야기된다.
[반응식 1]
I-+ I5 - -> I2 + I3 - + I-
가교 수용액의 온도가 15℃(도)미만이면 붕소성분 제공물질이 충분히 용해되지 않으며, 60℃(도)을 초과하면 높은 온도로 인하여 필름으로 붕소 성분제공물질이 유입되고 가교되는 반응보다 필름으로부터 붕소 성분제공물질이 용출되는 반응이 더욱 우세하여 적절한 가교반응이 일어나지 못한다.
한편, 상기 가교 수용액에 대한 폴리비닐알코올계 필름 혹은 염색된 폴리비닐알코올계 필름의 침지시간이 30초 미만이면 PVA필름의 깊이 방향으로 붕산이 충분히 침투하지 못하므로 적절하게 가교되지 못하고, 120초를 초과하면 PVA필름으로의 과도한 붕산유입으로 인하여 가교가 과도하게 진행되어 편광소자의 초기 광학물성이 취약해진다.
연신단계는 필름의 고분자들이 일정한 방향으로 배향되도록 필름을 일축으로 잡아늘이는 것을 말한다. 연신에 의해 요오드 분자 또는 염료 분자가 연신 방향으로 나란하게 배열되어 요오드 분자(I2) 또는 염료 분자가 이색성을 보이므로 연신 방향으로 진동하는 빛은 흡수하고, 수직한 방향으로 진동하는 빛은 투과하는 기능을 갖게 된다.
연신 방법으로는 습식 연신법과 건식 연신법이 있으며, 건식 연신법은 다시 롤간(inter-roll) 연신 방법, 가열 롤(heating roll) 연신 방법, 압축 연신 방법, 텐터(tenter) 연신 방법 등으로, 습식 연신 방법은 텐터 연신 방법, 롤간 연신 방법 등으로 구분된다.
본 발명에서 연신 방법은 특별히 제한되지 않으며, 이 기술분야에 알려져 있는 어떠한 연신방법이 사용될 수 있다. 또한, 습식 연신법과 건식 연신법을 모두 사용할 수 있으며, 필요한 경우 이들을 조합하여 사용할 수도 있다. 연신은 4 배 내지 6배의 연신비율로 행하는 것이 바람직하다. 연신비율이 4배 미만이면 PVA 필름의 연신이 불충분하며, 6배를 초과하면 과도한 연신으로 인하여 PVA 필름이 파단되거나 PVA 분자의 배향이 틀어지며, 결과적으로 요오드 이온 종의 배향이 취약해져서 초기 광학물성이 나빠진다.
상기 연신공정은 상기 염색 공정 또는 가교 공정과 동시에 또는 별도로 진행될 수 있다. 또한, 습식 연신을 별도로 행하는 경우에, 연신욕의 온도는 35℃(도) 내지 60℃(도), 바람직하게는 40℃(도) 내지 60℃(도)일 수 있다. 연식욕의 온도는 PVA필름의 원활한 연신, 연신 공정효율, 연신도중의 필름 파단 방지 등의 측면에서 35℃(도) 내지 60℃(도)로 하는 것이 바람직하다. 연신 공정이 염색 공정과 동시에 진행되는 경우에는 상기 연신 공정은 염색 수용액 내에서 수행되는 것이 바람직하다. 연신공정이 가교 공정과 동시에 진행되는 경우라면 가교 수용액 내에서 수행되는 것이 바람직하다. 또한, 염색 공정, 가교공정, 후술하는 아연염 처리공정, 혹은 후술하는 임의의 인산 화합물 처리공정과 연신공정이 동시에 진행되는 경우에, 수용액의 온도는 동시에 진행되는 공정 온도와 중복되는 보다 좁은 온도 조건에서 행하는 것이 바람직하다.
예를들어, 가교공정과 습식 연신공정이 동시에 진행되는 경우에는 연신공정의 연신욕의 수용액 온도에서 가교 및 연신을 행할 수 있다. 한편, 연신이 다른 공정과 함께 진행되는 경우에, 여러 가지 공정조건 중 특히 원활하게 진행되도록 하고자 하는 공정이 있는 경우에는 해당 공정의 조건을 따를 수도 있다. 연신 시간은 특별히 한정되지 않으며, 염색, 가교, 별도의 아연염 처리, 또는 별도의 인산화합물 처리공정과 함께 행하여지는 경우에, 상기 염색, 가교, 별도의 아연염 처리, 또는 별도의 인산화합물 처리공정 시간 범위에서 행할 수도 있다. 습식 연신 공정을 별도로 행하는 경우에는 특별히 한정하는 것은 아니지만, PVA필름의 배향성, 편광소자의 광학적 특성 및 공정 효율 등으로 고려하여 60초 내지 120초 범위에서 연신할 수 있다.
수세단계는 25~30℃(도) 온도의 이온교환수, 증류수등의 순수에 염색, 가교 및 연신된 폴리비닐알코올계 필름을 10 내지 30초 동안 침지하여 행한다. 순수의 온도가 25℃(도) 미만이면 이물질의 용해 및 제거가 미미한 점에서 바람직하지 않고, 30℃(도)를 초과하면 PVA 필름으로 부터의 붕소, 칼륨, 아연, 인 등의 용출이 과도하므로 바람직하지 않다. 순수에 대한 폴리비닐알코올계 필름의 침지시간이 10초 미만이면 수세 효과가 미미하며, 30초를 초과하면 PVA필름으로 부터의 붕소, 칼륨, 아연, 인 등의 용출이 과도하므로 바람직하지 않다.
수세는 염색, 가교 및 연신 단계 이후에, 편광소자 표면에 남아 있는 이물질을 제거하기 위해 행하여진다. 수세단계에서 편광소자의 표면에 잔존하는 이물질이 제거될 뿐만 아니라 폴리비닐알코올계 필름내에 포함되어 있는 붕산, 요오드, 요오드화 칼륨, 아연염 및 인 성분들이 수세용액으로 용출되어 폴리비닐알코올계 필름(편광소자)로부터 일부 제거된다. 수세용액에 대한 편광소자의 침지 시간이 길고, 수세용액의 온도가 높을수록 편광소자로부터 용출되어 나오는 붕산, 요오드, 요오드화 칼륨, 아연염 및 인의 함량이 증가하고, 결과적으로 최종 편광소자내에 잔류하는 함량이 감소한다. 따라서, 수세는 염색단계 및 가교단계에서 사용된 요오드, 요오드화 칼륨, 붕산 화합물, 아연염 및 인염등을 함량을 고려하여, 편광소자중의 Zn*B/K 값이 0.1~4.0, [Zn+P]*B 값(1㎚(나노미터)≤D1≤60㎚(나노미터))이 0.2~14, 붕소함량이 1.0~5.0중량% 그리고 칼륨함량이 0.3~2.0중량% 가 되도록 25~30℃(도) 온도의 순수에 PVC 필름을 10 내지 30초 침지하는 것이 바람직하다. 수세 단계는 그 순서가 달라지면, 편광소자내의 물질 함량의 제어가 달라지므로, 염색, 가교 및 연신공정 후에 건조 직전에 행하는 것이 바람직하다.
본 발명에 의한 편광소자는 또한, 아연 성분을 포함하는 것으로, 상기 염색단계, 가교단계, 연신단계 및 별도의 아연염 처리단계 중 최소 하나 이상의 단계에 아연염이 편광소자중의 Zn*B/K 값이 0.1~4.0 이 되도록 첨가될 수 있다. 아연염은 상기 염색 단계, 가교 단계, 습식 연신 단계 및 별도의 아연염 처리단계 중 어느 단계에 투입되어도 무관하며, 복수의 단계에 첨가되는 것이 더 바람직하다.
아연염은 각 단계에서 미리 만들어진 수용액(예를들어, 염색 단계의 염색 수용액, 가교 단계의 가교 수용액, 습식연신욕)에 투입되거나 또는 각 단계의 수용액 제조시 투입될 수 있다. 또한, 상기 아연염은 요오드, 요오드화 칼륨 및/또는 붕소성분 제공물질과 함께 투입될 수 도 있다.
수용액에서 아연염은 0.4중량% ~ 7.0중량% , 바람직하게는 0.5~5.0중량% , 보다 바람직하게는 0.5~3.0중량% 일 수 있다. 아연염의 함량이 0.4중량% 미만이면 내구성 향상 효과가 미미하며, 7 중량% 를 초과하면 용해도 문제 등으로 인해 편광소자 표면에 이물질이 형성될 수 있으므로 바람직하지 않다. 아연염이 2이상의 공정에 투입되는 경우에도, 각 공정의 수용액에서 0.4중량% ~ 7중량% 로 투입될 수 있다.
상기 아연염 처리를 염색, 가교 또는 습식 연신 공정과 함께 행하는 경우에는, 염색, 가교 또는 습식 연신 공정 조건(수용액 온도 및 침지시간)에서 행할 수 있다.
한편, 아연염을 별도의 공정으로 처리하는 경우에, 별도의 아연염 처리공정은 수세단계 전의 어떠한 단계에서 행할 수 있으나, 수세단계 바로 전 단계에서 행하는 것이 가장 효과적이다. 별도의 아연염 처리공정을 행하는 경우에, 특히, 수세단계의 바로 전 단계에서 아연염처리 단계를 별도의 공정으로 행하는 경우에, 이로써 한정하는 것은 아니지만, 예를들어, 아연염의 용해도, 편광소자에 대한 아연염의 침투성, 공정효율 및 편광소자의 광학적 특성을 고려하여 15℃(도) 내지 40℃(도)의 아연염 수용액에 PVA 필름을 20 내지 60초간 침지하여 행할 수 있다. 상기 아연염으로는 염화아연, 요오드화아연, 황산아연, 질산아연, 초산아연 등이 단독으로 혹은 2종 이상의 힘께 사용될 수 있다.
본 발명에 의한 편광소자는 또한, 필요에 따라, 임의로 인 성분을 포함할 수 있다. 인 성분은 상기 염색단계, 가교단계, 연신단계 및 별도의 인산 화합물 처리단계 중 최소 하나 이상의 단계에 인산화합물을 편광소자중의 [Zn+P]*B값(단, 편광소자의 깊이(D) 1㎚(나노미터)≤D≤60㎚(나노미터))이 0.2~14.0이 되도록 첨가될 수 있다. 인산화합물은 상기 염색 단계, 가교 단계, 연신 단계 및 별도의 인산 화합물 처리단계 중 어느 단계에 투입되어도 무관하며, 복수의 단계에 첨가되는 것이 더 바람직하다.
인산화합물은 각 단계에서 미리 만들어진 수용액(예를들어, 염색 단계의 요오드 수용액, 가교 단계의 가교 수용액)에 투입되거나 또는 각 단계의 수용액 제조시 투입될 수 있다. 또한, 상기 인산화합물은 요오드, 요오드화 칼륨 및/또는 붕소성분 제공물질과 함께 투입될 수도 있다.
수용액에 인산 화합물이 추가로 첨가되는 경우에, 인산화합물은 10중량% 이하, 바람직하게는 0.2~10중량%(중량퍼센트) , 보다 바람직하게는 0.5 ~3.0중량% 범위로 첨가할 수 있다. 인산 화합물은 필요에 따라 추가적으로 첨가되므로 수용액중의 하한농도에 대하여 특히 규정하는 것은 아니지만, 추가적인 내구성 및 내열성 개선 효과가 충분히 발현되도록 인산 화합물의 함량이 0.2중량% 인 것이 바람직하며, 물에 대한 용해도 및 초기 직교 광학물성을 고려하여 10중량% 이하인 것이 바람직하다. 인산화합물이 2이상의 공정에 투입되는 경우에도, 각 공정의 수용액에서 상기한 인산화합물의 농도범위와 마찬가지로 10중량% 이하로 투입될 수 있다.
상기 인산화합물을 염색, 가교 및 습식 연신 공정에 추가하여 이들 공정과 함께 행하는 경우에는, 염색, 가교 또는 습식 연신의 공정 조건(수용액 온도 및 침지시간)을 따라 행할 수 있다.
또한, 인산화합물을 별도의 공정으로 처리하는 경우, 별도의 인산화합물 처리공정은 수세단계 전의 어떠한 단계에서 행할 수 있으나, 수세단계 바로 전 단계에서 행하는 것이 가장 효과적이다. 별도의 인산화합물 처리를 행하는 경우에, 특히, 수세단계의 바로 전 단계에서 인산화합물 처리를 별도의 공정으로 행하는 경우에, 이로써 한정하는 것은 아니지만, 예를들어, 인산 화합물의 용해도, 편광소자에 대한 인산화합물의 침투성, 공정효율 및 편광소자의 광학적 특성을 고려하여 15℃(도) 내지 40℃(도)의 인산화합물 수용액에 PVA 필름을 20 내지 60초간 침지하여 행할 수 있다.
상기 인산 화합물로는 인산, 제2 인산칼슘, 제2 인산 마그네슘, 제 2인산 나트륨, 제 1 인산칼륨 및 제 1 인산암모늄으로 구성되는 그룹으로부터 선택된 최소 일종이 단독으로 또는 혼합하여 사용될 수 있다.
다만, 아연염과 인산화합물은 같은 공정에 동시에 첨가할 수는 없다. 즉, 염색, 가교 또는 연신단계에 아연염과 인산화합물이 각각 첨가될 수 있으나, 동시에 같은 공정에 첨가할 수는 없다. 예를들어, 아연염과 인산화합물이 모두 염색단계의 염색 수용액에 첨가될 수 없다. 이는 용액중에서 아연염과 인산화합물이 반응하여 물에 녹지 않는 인산 아연(zinc phosphate)을 생성하기 때문이다.
상기한 본 발명에 의한 편광소자 제조방법에서 편광소자중의 Zn*B/K 값이 0.1~4.0, 붕소함량이 1.0~5.0중량% 그리고 칼륨함량이 0.3~2.0중량% 가 되도록, 또한, [Zn+P]*B (단, 편광소자의 깊이(D) 1㎚(나노미터)≤D≤60㎚(나노미터))이 0.2~14.0이 되도록 상기 염색단계, 가교단계, 연신단계 및 별도의 인산염 처리단계 또는 별도의 인산화합물처리단계 중 최소 하나 이상의 단계에서 요오드 성분, 요오드화 칼륨, 붕소 성분 제공물질, 아연염 및 임의의 인산 화합물의 함량 및 염색 수용액 및 가교 수용액의 온도 및 이들 수용액에 대한 폴리비닐알코올계 필름의 침지시간, 수세온도 및 수세시간 등을 상기 범위에서 제어할 수 있다.
PVA 필름의 염색, 가교, 연신 및 수세 단계가 완료되면, PVA 필름을 오븐에 넣고 건조시켜, 편광 소자를 얻는다. 건조단계는 일반적으로 40-100℃(도)온도에서 10-500초 동안 행한다. 건조온도가 40℃(도) 미만이면 PVA 필름 내에 잔류하는 수분의 건조가 충분하지 않아 필름 주름이 발생하고, 편광소자의 색상이 뉴트럴 그레이(neutral gray)색상을 띄지 않고 청색을 띄게 되므로 초기 직교 물성이 취약해진다. 구체적으로 상기 반응식 1과 같은 반응을 통해 각 요오드 이온종의 비율이 적절하게 조절되어 뉴트럴 그레이 색상을 띄게 된다. 한편, 이러한 반응은 PVA 필름 건조과정에서 공급되는 열에 의해 더욱 가속화되며, 이러한 원리에 의한 색상 조절 이전단계에서 편광필름은 푸른 색상에 가깝다. 따라서, 건조단계의 온도가 낮으면 상기 반응식에서와 같은 반응이 원활하게 일어나지 못해 편광소자의 색상은 청색(bluish)을 띄며, 이러 인하여 초기 직교 물성이 취약해 진다. 건조온도가 100℃(도)를 초과하면 과도한 건조로 인하여 필름이 쉽게 부서지기 쉽고 편광소자의 초기 색상이 뉴트럴 그레이를 벗어나서 적색을 띄게 되며, 이로 인하여 초기 광학물성이 역시 취약해진다. 건조시간이 10초 미만이면 건조가 불충분하며, 500초를 초과하면 과도한 건조로 인하여 필름이 쉽게 부서지기 쉽고 편광소자의 초기 색상이 뉴트럴 그레이를 벗어나서 적색을 띄게 되며, 이로 인하여 초기 광학물성이 역시 취약해진다.
상기 방법으로 제조된 편광소자의 일면 또는 양면에 접착제를 이용하여 보호 필름을 적층시킴으로써 편광판으로 제조된다. 보호필름은 공정진행시 편광판 외측면의 노출을 방지하기 위한 것으로 오염물질이 유입되는 것을 막고 편광판의 표면을 보호하는 역할을 한다.
보호필름의 수지 필름기재로는 필름기재로 제조하기 용이하고 PVA 필름(편광소자)과 접착성이 양호하며 광학적으로 투명한 것이 바람직하게 사용될 수 있다. 이로써 한정하는 것은 아니지만, 예를들어, 셀룰로오스 에스테르 필름, 폴리에스테르 필름(폴리에틸렌테레프탈레이트 필름, 폴리에틸렌나프탈레이트 필름), 폴리카보네이트 필름, 폴리아릴레이트 필름, 폴리술폰(폴리에테르술폰 포함) 필름, 노르보르넨 수지 필름, 폴리올레핀 필름(폴리에틸렌 필름, 폴리프로필렌 필름), 셀로판, 셀룰로오스디아세테이트 필름, 셀룰로오스 아세테이트부틸레이트 필름, 폴리염화비닐리덴 필름, 폴리비닐알코올 필름, 에틸렌비닐알코올 필름, 폴리스티렌 필름, 폴리카르보네이트 필름, 시클로올레핀 중합체 필름, 폴리메틸펜텐 필름, 폴리에테르케톤 필름, 폴리에테르케톤이미드 필름, 폴리아미드계 필름, 불소 수지 필름, 나일론 필름, 폴리메틸메타크릴레이트 필름, 폴리아세테이트 필름, 폴리아크릴 필름기재 등을 들 수 있다.
특히, 트리아세틸 셀룰로오스 필름(TAC 필름), 셀룰로오스 아세테이트 프로피오네이트 필름 등의 셀룰로오스 에스테르 필름, 폴리카보네이트 필름(PC 필름), 폴리스티렌 필름, 폴리아릴레이트 필름, 노르보르넨 수지 필름 및 폴리술폰 필름이 투명성, 기계적 성질, 광학적 이방성이 없는점 등에서 바람직하다. 트리아세틸 셀룰로오스 필름(TAC 필름) 및 폴리카보네이트 필름(PC 필름)이 제막성이 용이하고 가공성이 우수하기 때문에 보다 바람직하게 사용되고, 특히 TAC 필름이 가장 바람직하게 사용된다.
상기 편광판 보호필름은 보호필름이 접착되는 PVA 필름에 대한 접착력을 향상시키기 위해 표면개질 처리될 수 있다. 표면처리의 구체적 예로는, 코로나 방전 처리, 글로우(glow) 방전 처리, 화염 처리, 산 처리, 알칼리 처리, 및 자외선 조사 처리 등이 있다. 또한, 언더코트 층을 제공하는 것도 바람직하게 이용된다. 이중 알칼리 용액을 이용한 표면개질 처리는 소수성 보호필름에 -OH 그룹을 도입하여 보호필름 표면을 친수성으로 개질함으로써 보호필름의 편광필름에 대한 접착력을 증대시킨다.
접착제로는 일반적으로 수계 접착제가 사용된다. 수계 접착제로는 이 기술분야에서 일반적으로 사용되는 어떠한 수계 접착제가 사용될 수 있으며 이로써 한정하는 것은 아니지만 예를들어, 이소시아네이트계 접착제, 폴리비닐알코올계 접착제, 젤라틴계 접착제, 비닐계 라텍스계, 수계 폴리우레탄, 수계 폴리에스테르등을 예시할 수 있다. 이들 중에서도 폴리비닐알코올계 접착제가 바람직하게 사용된다. 수계 접착제는 가교제를 포함할 수 있다. 상기 접착제는 통상 수용액으로 사용된다. 접착제 수용액의 농도는 특히 제한하는 것은 아니지만, 도포성이나 방치 안정성 등을 고려하면 일반적으로 0.1∼15 중량% , 바람직하게는 0.5∼10 중량% , 더욱 바람직하게는 0.5∼5 중량% 정도이다. 또한, 상기 접착제에는, 추가로 실란커플링제, 티탄커플링제 등의 커플링제, 각종 점착 부여제, 자외선 흡수제, 산화 방지제, 내열 안정제, 내가수분해 안정제 등의 안정제 등을 배합할 수도 있다.
상기한 바와 같이 편광소자 혹은 편광소자의 일면 혹은 양면에 보호필름이 접착된 편광판은 이로써 한정하는 것은 아니지만, 예를들어, 액정표시장치, 유기발광(EL)표시장치, PDP(플라즈마 디스플레이 패널) 등에 사용될 수 있다.
이하, 실시예를 통하여 본 발명에 대하여 보다 상세히 설명한다. 다만, 하기 실시예로 본 발명을 한정하는 것으로 아니다.
비교예 1
요오드를 0.1중량% 로 그리고 요오드화 칼륨을 1중량% 로 포함하는 수용액이 담긴 염착조에 두께 75㎛(마이크로미터)의 폴리 비닐 알코올 필름을 30℃(도)에서 5분간 침지시켜 염색하였다(A. 염색단계). 염색된 폴리비닐 알코올 필름을 50℃(도)의 요오드화 칼륨을 5중량% 로 그리고 붕소를 0.64 중량% 로 포함하는 가교 수용액에 120초간 침지시켜서 5배 연신처리하였다(B. 가교 및 연신 단계). 상기 과정에 의해 얻어진 PVA 편광소자를 오븐에 넣고 80℃(도)에서 5분간 건조시켰다. PVA 편광소자의 건조가 완료되면, 상기 편광소자의 양면에 두께 75㎛(마이크로미터)의 TAC 필름을 폴리비닐알코올 접착제로 접합시키고 80℃(도)에서 5분간 건조하여 편광판을 제조하였다.
비교예 2
가교 및 연신 단계(B)에서 붕소의 농도를 0.22 중량% 로 조정하고, 질산 아연을 2.5 중량% 로 첨가하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
비교예 3
가교 및 연신 단계(B)에서 요오드화 칼륨 농도를 1.5 중량% 로 조정하고, 질산아연을 2.5 중량% 로 첨가하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
비교예 4
가교 및 연신단계(B)에서 2.5중량% 의 질산아연을 첨가하고, 이후 25℃(도) 증류수에 100초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
비교예 5
염색단계(A)에서 요오드 농도는 0.03중량% , 요오드화 칼륨 농도는 7중량% 그리고 가교 및 연신단계(B)에서 붕소 농도는 0.92중량% , 요오드화 칼륨 농도는 10중량% 로 각각 조정하고, 염화아연을 0.16중량% 로 첨가하고, 수세단계(C)에서는 40℃(도)의 증류수에 60초간 침지한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
비교예 6
가교 및 연신단계(B)에서 요오드화 칼륨 농도는 0.01중량% 로 각각 조정하고, 염화아연을 1.0중량% 로 첨가한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
비교예 7
염색단계(A)에서 요오드 농도는 0.3중량% 로 그리고 가교 및 연신단계(B)에서 붕소 농도는 2.5중량% 로 각각 조정하고, 염화아연을 2.5중량% 로 첨가하고 수세단계(C)는 25℃(도)의 증류수에 20초간 침지한 것을 제외하고는 한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 1
가교 및 연신 단계(B)에서 질산 아연을 2.5중량% 로 첨가하고, 이후 25℃(도) 증류수에 20초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 2
가교 및 연신 단계(B)에서 질산 아연을 5중량% 로 첨가하고, 이후 25℃(도) 증류수에 20초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 3
가교 및 연신 단계(B)에서 요오드화 칼륨 농도를 7.0중량% 로 조정하고, 질산 아연을 5 중량% 로 첨가하고, 이후 25℃(도) 증류수에 20초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 4
가교 및 연신 단계(B)에서 붕소 농도를 0.46 중량% 로 조절하고, 황산아연을 2.5중량% 로 첨가하고, 이후 25℃(도) 증류수에 20초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 5
가교 및 연신 단계(B)에서 붕소 농도를 0.46 중량% 로 그리고 요오드화 칼륨 농도를 7.0중량% 로 각각 조절하고, 황산 아연을 2.5 중량% 로 첨가하고, 이후 25℃(도) 순수에서 20초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 6
염색단계(A)에서 염화아연을 3중량% 로 첨가하고, 가교 및 연신단계(B)에서 요오드화 칼륨 농도를 7.0중량% 로, 붕소농도를 0.46중량% 로 각각 조절하고, 수세단계(C)에서 25℃(도) 증류수에 20초간 침지한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 7
가교 및 연신단계 (B)에서 황산아연을 5중량% 로 첨가하고, 이 후 25℃(도) 증류수에 10초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 8
가교 및 연신단계 (B)에서 황산아연을 5중량% 로 첨가하고, 이 후 25℃(도) 증류수에 30초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 9
염색단계(A)에서 염화아연을 3중량% 로 첨가하고, 가교 및 연신단계(B)에서 제 1 인산 암모늄을 0.5중량% 로 첨가하고, 이 후 25℃(도) 증류수에 20초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
실시예 10
염색단계(A)에서 염화아연을 3중량% 로 첨가하고, 가교 및 연신단계(B)에서 제 1 인산 암모늄을 1.5중량% 로 첨가하고, 이 후 25℃(도) 증류수에 20초간 침지하는 수세공정(C)을 시행하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 편광소자 및 편광판을 제조하였다.
하기 표 2에 비교예 1 내지 7 및 실시예 1 내지 10의 A. 염색단계 및 B.가교 및 연신단계의 처리액중 인산화합물의 종류, 아연염, 인산화합물, I2, KI 및 붕소의 함량, C: 수세단계의 침지시간을 나타내었다.
시험예: 내열성 평가
상기 비교예 1 내지 7 및 실시예 1 내지 10의 방법으로 제조된 편광판을 50mm(밀리미터) x 50mm(밀리미터) 크기로 절단하고, 이를 아크릴 점착제로 유리에 접합시켜 시편을 준비하였다. 그 후, 각 편광판의 초기 광학 물성, 즉 단체 투과도(Ts), 직교 투과도(Tc), 단체색상(a, b), 직교색상(x, y)를 측정하였다. 그 후, 편광판을 100℃(도)의 오븐에 500시간 동안 방치한 후 상기 광학물성을 다시 측정하고 내열 전/후의 광학물성을 비교하여 B*Zn/K 값에 따른 △ L*ab 상대 변화량, 직교색상 x 상대변화량 및 Tc 상대변화량을 각각 표 3에 나타내었다.
상기 광학물성은 N&K 분석기(analyzer)(N&K Technology Inc.)로 측정하였으며, 단체 광특성 L*, a*, b*는 편광판 한 장으로 측정하였고, 직교 투과도(Tc)와 직교 색상(x, y)는 한장의 편광판은 연신된 방향으로, 나머지 한장은 연신 방향의 직교방향으로 재단하고, 재단된 편광판 두 장을 흡수축이 90°(도)가 되도록 서로 직교시킨후, 투과도를 측정하였다.
내열변화량은 다음과 같이 계산하였다.
△ L*ab = [(L*500-L*0)2+(a*500-a*0)2+(b*500-b*0)2]0.5
(식중 L*, a*, b* 는 단체상태의 색상 값으로 L*, a*, b*는 Color Space 색좌표계(defined by the CIE in 1976)의 색상 L* 값, a* 값, b* 값이다. 이는 N&K 분석기를 사용하여 한장의 편광판 시편으로 측정하였다. L*0, a*0 및 b*0은 편광판의 초기 단체상태의 색상값이며, L*500, a*500, b*500은 100℃(도) 오븐에서 500 시간 방치한 후에 측정한 단체상태의 색상값이다.)
Tc(%) = 100*(Tc500-Tc0)/Tc0
(식중 Tc0 는 각 편광판의 초기 직교 투과도이며, Tc500 은 100℃(도) 오븐에서 500 시간 방치한 후에 측정한 직교 투과도이며, 직교투과도(Tc)는 동일한 단체 투과도(Ts.)값에서 측정하였다.)
x(%) = 100*(x500-x0)/x0
(식중 x는 편광판 두장의 직교상태의 색상값이다. x는 xyz Chromaticity coordinates의 색상값을 나타내며, N&K 분석기로 두 장의 편광소자의 직교색상 값으로부터 계산된다. x0 편광판의 초기 직교상태의 색상값이며, x500 은 100℃(도) 오븐에서 500 시간 방치한 후에 측정한 편광판의 직교상태의 색상값이다.)
△ L*ab 상대 변화율 = 실시예 △ L*ab / 비교예 1 △ L*ab
Tc 상대 변화율 = 실시예 Tc(%) / 비교예 1 Tc(%)
x 상대 변화율 = 실시예 x(%) / 비교예 1 x(%)
무기함량 분석
비교예 1 내지 7 및 실시예 1 내지 10의 편광소자내의 잔존 무기함량(아연, 붕소, 칼륨의 함량)을 ICP-AES법 (Inductively Coupled Plasma-Atomic Emission Spectroscophy)으로 분석하여 구하였으며, 이로부터 편광소자중에 Zn*B/K의 값을 계산하여 하기 표 2에 나타내었다. 구체적으로 측정하고자 하는 시료(편광소자) 0.1g(그램)을 취하고 여기에 증류수 2㎖(밀리리터)와 진한 질산 3㎖(밀리리터)를 첨가하여 뚜껑을 닫고 시료를 용해시켰다. 그 후, 시료가 완전히 용해되면, 초순수 50 ㎖(밀리리터)를 첨가하여 희석하였다. 그 후, 상기 희석된 용액을 다시 10배 희석한 다음에 ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectroscometer)로 분석하였다. ICP-AES(ICP 5300DV, Perkinelemer)은 다음과 같은 조건으로 운전하였다: 순방향 전력(Forward Power) 1300 W; 토치 높이(Torch Height) 15㎜(밀리미터); 플라즈마 가스 흐름 15.00 L(리터)/min; 시료 가스 흐름 0.8 L(리터)/min; 보조가스 흐름 0.20 L/min 및 펌프 속도 1.5 ㎖(밀리리터)/min.
비교예 1, 실시예 1, 9 및 10의 편광소자내의 잔존 무기함량은 ESCA(Electron Spectroscopy of Chemical Analysis)법으로 분석하여 도 4에 나타내었다. ESCA(Electron Spectroscopy of Chemical Analysis)분석법은 광전자 분광기(XPS 혹은 ESCA, 모델명 ESCALAB 250(VG))를 사용하여 하기 표 1과 같이 단계별로 편광소자의 표면을 에칭하여 편광소자의 각 지점에서 아연, 인, 및 붕소의 원자%(at%)를 측정하고 이로부터 각 원소성분의 중량을 계산하여 [Zn+P]*B값을 구하였다. 한편, 본 실시예에서, ESCA 분석조건은 다음과 같이 하였다.
<ESCA 분석조건>
(1) 전체 ESCA 시스템 조건
베이스 챔버 압력 : 2.5 x 10-10 mbar
X-레이 공급원: monochromatic Al Kα(1486.6 eV)
X-레이 스팟(spot) 크기: 400㎛(마이크로미터)
렌즈 모드: LargeAreaXL
오퍼레이션 모드: CAE(Constant Analyzer Energy) 모드
Ar 이온 에칭: 에칭 속도 ~0.1 ㎚(나노미터)/sec (Mag 10) SiO2기준
전하 보상(Charge Compensation): 저에너지 전자 플러드 건(low energy flood gun)사용, 이온플러드 건 사용하지 않음.
(2) 편광소자의 에칭
하기 표 1의 에칭시간으로 편광소자를 에칭하여 편광소자 표면으로 부터 깊이 200㎚(나노미터)까지 에서의 아연, 인 및 붕소의 함량을 측정하였다. 10초 동안 에칭하므로써 편광소자 1㎚(나노미터)가 에칭된다. 본 시험에서는 하기 표 1에 나타낸 바와 같은 단계로 총 200㎚(나노미터) 깊이(2000초)까지 에칭하여, 편광소자 각 지점에서의 아연, 인 및 붕소의 함량을 측정하였다.
[표 1]
Figure PCTKR2010000570-appb-I000001
[표 2]
Figure PCTKR2010000570-appb-I000002
(1) 실시예 9 및 10은 인산화합물이 추가됨.
[표 3]
Figure PCTKR2010000570-appb-I000003
* Tc/Tc,비교예1는 비교예 1의 방법으로 제작한 편광판의 초기 직교투과도를 Tc,비교예1= 1.0으로 두고, 비교예 2 내지 7과 실시예 1 내지 10 의 방법으로 제조된 편광판의 초기 직교투과도 비를 측정한 값임. 여기서, Tc는 각 편광판의 직교 투과도를, Tc비교예1는 비교예 1의 직교 투과도를 나타냄. 실시예와 비교예의 직교 투과도 (Tc)는 동일한 단체 투과도(Ts.)값에서 측정함. 동일한 단체 투과도에서 직교투과도가 낮다는 것은 빛을 흡수하는 성분의 배향성이 향상됨을 의미함.
* Tc상대변화율은 내열 전과 후의 Tc 변화율임.
상기 표 2, 3 및 도 1에서 알 수 있듯이, B*Zn/K 값, [B+P]* Zn 값, 붕소함량 및 칼륨함량이 본 발명의 일 구현에 의한 범위를 만족하는 편광소자를 포함하는 편광판은 초기 광학특성이 우수할 뿐만 아니라, 내열후의 색상, 직교 투과도 변화율 등이 비교예에 비하여 작음을 확인할 수 있었다. 이와 같이 본 발명의 일 구현에 의한 편광소자 및 편광판은 내구성 및 내열성이 우수하여 고온고습에서 광학물성의 변화가 작고 이로부터 가혹한 조건에서도 우수한 물성이 확보됨을 알 수 있다.

Claims (10)

  1. 편광소자의 중량을 기준으로 아연함량(중량%, 중량 퍼센트)x붕소함량(중량%, 중량 퍼센트)/칼륨함량(중량%, 중량 퍼센트)의 값은 0.1~4.0, 붕소함량은 1.0~5.0중량% 그리고 칼륨함량은 0.3~2.0중량% 인 편광소자.
  2. 제 1항에 있어서, 상기 편광소자 표면으로부터 중심으로 깊이 (D) 1㎚(나노미터)≤D≤60㎚(나노미터)인 각 지점에서 편광소자의 중량을 기준으로 [아연함량(중량%, 중량퍼센트)+ 인함량(중량%, 중량퍼센트)] x붕소함량(중량%, 중량퍼센트)의 값이 0.2~14.0임을 특징으로 하는 편광소자.
  3. 제 1항에 있어서, 상기 아연은 염화아연, 요오드화아연, 황산아연, 질산아연 및 초산아연으로 구성되는 그룹으로부터 선택된 최소 일종으로부터 유래함을 특징으로 하는 편광소자.
  4. 제 1항에 있어서, 상기 붕소는 붕산, 보레이트 및 보락스로 구성되는 그룹으로부터 선택된 최소 일종으로부터 유래함을 특징으로 하는 편광소자.
  5. 제 2항에 있어서, 상기 인은 인산, 제2 인산칼슘, 제2 인산 마그네슘, 제 2인산 나트륨, 제 1 인산칼륨 및 제 1 인산암모늄으로 구성되는 그룹으로부터 선택된 최소 일종으로부터 유래함을 특징으로 하는 편광소자.
  6. 청구항 1 내지 5중 어느 한항의 편광소자를 포함하는 편광판.
  7. 청구항 1 내지 5중 어느 한항의 편광소자를 포함하는 화상표시장치.
  8. 최소한 염색단계, 가교단계, 연신단계 및 수세단계를 포함하는 편광소자 제조방법에 있어서,
    상기 염색단계는 요오드 농도가 0.05~0.2중량%(중량퍼센트), 요오드화 칼륨 농도가 0.2~1.5중량%(중량퍼센트)이고, 그리고 온도가 20~40℃(도)인 염색 수용액에 폴리비닐알코올계 필름을 150초 내지 300초 동안 침지하여 행하며,
    상기 가교단계는 붕소 농도가 0.36 ~ 0.83중량%(중량퍼센트), 요오드화 칼륨의 농도가 4~7중량%(중량퍼센트) 이고 온도가 15~60℃(도)인 가교 수용액에 폴리비닐알코올계 필름을 30초 내지 120초 동안 침지하여 행하며,
    상기 염화아연, 요오드화아연, 황산아연, 질산아연 및 초산아연으로 구성되는 그룹으로부터 선택된 최소 일종의 아연염이 0.4~7.0중량%(중량퍼센트) 농도로 상기 염색 수용액, 가교 수용액 혹은 별도의 아연염 처리 수용액 중 최소 일종의 수용액에 포함되며,
    상기 수세단계는 25~30℃(도) 온도의 순수에 폴리비닐알코올계 필름을 10 내지 30초 동안 침지하여 행하는 편광소자 제조방법.
  9. 제 8항에 있어서, 상기 붕소는 붕산, 보레이트 및 보락스로 구성되는 그룹으로부터 선택된 최소 일종으로부터 유래함을 특징으로 하는 편광소자 제조방법.
  10. 제 8항에 있어서, 인산, 제2 인산칼슘, 제2 인산 마그네슘, 제 2인산 나트륨, 제 1 인산칼륨 및 제 1 인산암모늄으로 구성되는 그룹으로부터 선택된 최소 일종의 인산화합물이 10중량% 이하의 농도로 상기 염색 수용액, 가교 수용액 및 별도의 인산화합물 수용액 중 최소 일종의 수용액에 포함됨을 특징으로 하는 편광소자 제조방법.
PCT/KR2010/000570 2009-01-30 2010-01-29 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치 및 편광소자 제조방법 WO2010087653A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800062544A CN102301260B (zh) 2009-01-30 2010-01-29 具有优异耐久性和耐热性的偏振元件、偏振片和图像显示器件以及偏振元件的制造方法
JP2011547801A JP5593551B2 (ja) 2009-01-30 2010-01-29 耐久性及び耐熱性に優れた偏光素子、偏光板、画像表示装置及び偏光素子の製造方法
US13/147,112 US20120236408A1 (en) 2009-01-30 2010-01-29 Outstandingly durable and heat-resistant polarising element, polarising plate and image-display device, and polarising-element production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090007632 2009-01-30
KR10-2009-0007632 2009-01-30

Publications (2)

Publication Number Publication Date
WO2010087653A2 true WO2010087653A2 (ko) 2010-08-05
WO2010087653A3 WO2010087653A3 (ko) 2010-10-28

Family

ID=42396210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000570 WO2010087653A2 (ko) 2009-01-30 2010-01-29 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치 및 편광소자 제조방법

Country Status (5)

Country Link
US (1) US20120236408A1 (ko)
JP (1) JP5593551B2 (ko)
KR (1) KR101260515B1 (ko)
CN (1) CN102301260B (ko)
WO (1) WO2010087653A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091760A (zh) * 2011-11-07 2013-05-08 第一毛织株式会社 具有提高的光耐久性的偏振器及其制备方法
CN103135160A (zh) * 2011-12-02 2013-06-05 第一毛织株式会社 具有高耐久性的偏振器及其制造方法和偏振板
JP2014526069A (ja) * 2011-09-29 2014-10-02 エルジー・ケム・リミテッド 偏光フィルムの色相制御装置及び制御方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475556B1 (ko) * 2011-06-30 2014-12-22 주식회사 엘지화학 내구성 및 배향성이 우수한 편광자, 편광판 및 편광자 제조 방법
JP5831249B2 (ja) * 2012-01-23 2015-12-09 住友化学株式会社 偏光フィルムとその製造方法及び偏光板
KR101938896B1 (ko) * 2012-04-12 2019-01-16 동우 화인켐 주식회사 편광자의 제조방법 및 이를 이용한 편광판
WO2014073812A1 (ko) * 2012-11-12 2014-05-15 동우화인켐 주식회사 편광자의 수절방법
KR101988981B1 (ko) * 2013-07-15 2019-06-13 동우 화인켐 주식회사 편광자의 제조 방법
JP2015180921A (ja) * 2014-03-05 2015-10-15 富士フイルム株式会社 偏光板、および、これを含む液晶表示装置
KR101938409B1 (ko) * 2014-03-19 2019-01-14 동우 화인켐 주식회사 편광자의 제조방법
CN104062291B (zh) * 2014-06-23 2016-09-14 深圳市盛波光电科技有限公司 一种ki和h3bo3混合溶液中ki浓度的测定方法
KR20160091014A (ko) * 2015-01-23 2016-08-02 스미또모 가가꾸 가부시키가이샤 편광자 및 이의 제조 방법
JP6619619B2 (ja) * 2015-11-04 2019-12-11 日東電工株式会社 偏光子、偏光板および偏光子の製造方法
TWI733862B (zh) * 2016-07-26 2021-07-21 日商可樂麗股份有限公司 偏光薄膜及其製造方法
KR102087398B1 (ko) * 2017-06-09 2020-03-10 주식회사 엘지화학 편광필름 및 이를 포함하는 편광판
TWI714906B (zh) * 2017-11-10 2021-01-01 南韓商Lg化學股份有限公司 光學層疊物及顯示裝置
WO2019107867A1 (ko) * 2017-11-28 2019-06-06 주식회사 엘지화학 광학 적층체
CN111406098B (zh) * 2017-11-30 2022-06-03 杉金光电(苏州)有限公司 光学层合体
WO2019188779A1 (ja) 2018-03-28 2019-10-03 日東電工株式会社 偏光子、偏光フィルム、積層偏光フィルム、画像表示パネル、および画像表示装置
JP7202846B2 (ja) * 2018-10-29 2023-01-12 住友化学株式会社 偏光子およびその製造方法
JP2020071241A (ja) 2018-10-29 2020-05-07 住友化学株式会社 偏光子およびその製造方法
CN112042268B (zh) 2018-11-12 2021-08-10 日东电工株式会社 偏光膜、偏振膜、层叠偏振膜、图像显示面板及图像显示装置、以及偏光膜的制造方法
CN111819259B (zh) 2018-11-12 2021-03-16 日东电工株式会社 偏振膜、层叠偏振膜、图像显示面板、以及图像显示装置
TWI828796B (zh) 2018-11-12 2024-01-11 日商日東電工股份有限公司 影像顯示裝置
CN113631364B (zh) * 2019-03-29 2024-02-13 株式会社Lg化学 光学层合体
KR102484682B1 (ko) 2019-03-29 2023-01-05 주식회사 엘지화학 광학 적층체
EP3950313A4 (en) * 2019-03-29 2022-04-27 Lg Chem, Ltd. OPTICAL LAMINATE
JP2021162858A (ja) 2020-03-30 2021-10-11 日東電工株式会社 偏光フィルム、積層偏光フィルム、画像表示パネル、および画像表示装置
JP2021174000A (ja) 2020-04-20 2021-11-01 日東電工株式会社 偏光フィルム、積層偏光フィルム、画像表示パネル、および画像表示装置
JP2021174002A (ja) 2020-04-20 2021-11-01 日東電工株式会社 偏光フィルム、積層偏光フィルム、画像表示パネル、および画像表示装置
JP2021179604A (ja) 2020-05-08 2021-11-18 日東電工株式会社 画像表示装置
JP2021179605A (ja) 2020-05-08 2021-11-18 日東電工株式会社 偏光フィルム積層体
JP2021178508A (ja) 2020-05-08 2021-11-18 日東電工株式会社 画像表示パネル、および画像表示装置
CN114355497A (zh) * 2020-10-14 2022-04-15 恒美光电股份有限公司 一种偏光子及其处理方法和制得的偏光片
JP2022150490A (ja) * 2021-03-26 2022-10-07 住友化学株式会社 偏光フィルム及び偏光板の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142422A (ja) * 1996-11-07 1998-05-29 Nippon Synthetic Chem Ind Co Ltd:The 偏光フィルムの製造方法
JP2004240042A (ja) * 2003-02-04 2004-08-26 Fuji Photo Film Co Ltd 偏光板
KR20050026072A (ko) * 2002-08-02 2005-03-14 닛토덴코 가부시키가이샤 편광필름의 제조방법, 및 이를 사용한 편광필름 및 광학필름
JP2005266048A (ja) * 2004-03-17 2005-09-29 Sumitomo Chemical Co Ltd ヨウ素系偏光フィルム、その製造方法及びそれを用いた偏光板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035512A (ja) * 1998-07-17 2000-02-02 Sumitomo Chem Co Ltd 偏光フィルム
US7651643B2 (en) * 2003-04-21 2010-01-26 Nitto Denko Corporation Polarizer, method for producing same, polarizing plate, optical film, and image display
WO2005029143A1 (ja) * 2003-09-19 2005-03-31 Nippon Kayaku Kabushiki Kaisha 偏光フィルム、偏光板、及び液晶表示装置
JP2006047978A (ja) * 2004-06-29 2006-02-16 Nitto Denko Corp 偏光子、その製造方法、偏光板、光学フィルムおよび画像表示装置
US8031296B2 (en) * 2006-04-05 2011-10-04 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
JP4827255B2 (ja) * 2006-04-05 2011-11-30 日東電工株式会社 液晶パネル及び液晶表示装置
JP5015737B2 (ja) * 2006-12-08 2012-08-29 日東電工株式会社 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
KR100958288B1 (ko) * 2007-02-09 2010-05-19 주식회사 엘지화학 직교투과도가 개선된 요오드계 편광 소자, 편광판 및 그제조 방법
KR100958287B1 (ko) * 2007-02-09 2010-05-19 주식회사 엘지화학 내구성이 우수한 편광 소자, 편광판 및 그 제조 방법
KR20100089793A (ko) * 2009-02-03 2010-08-12 주식회사 엘지화학 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142422A (ja) * 1996-11-07 1998-05-29 Nippon Synthetic Chem Ind Co Ltd:The 偏光フィルムの製造方法
KR20050026072A (ko) * 2002-08-02 2005-03-14 닛토덴코 가부시키가이샤 편광필름의 제조방법, 및 이를 사용한 편광필름 및 광학필름
JP2004240042A (ja) * 2003-02-04 2004-08-26 Fuji Photo Film Co Ltd 偏光板
JP2005266048A (ja) * 2004-03-17 2005-09-29 Sumitomo Chemical Co Ltd ヨウ素系偏光フィルム、その製造方法及びそれを用いた偏光板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014526069A (ja) * 2011-09-29 2014-10-02 エルジー・ケム・リミテッド 偏光フィルムの色相制御装置及び制御方法
US9513419B2 (en) 2011-09-29 2016-12-06 Lg Chem, Ltd. Apparatus for controlling color of polarizing film and method of controlling the same
CN103091760A (zh) * 2011-11-07 2013-05-08 第一毛织株式会社 具有提高的光耐久性的偏振器及其制备方法
CN103135160A (zh) * 2011-12-02 2013-06-05 第一毛织株式会社 具有高耐久性的偏振器及其制造方法和偏振板

Also Published As

Publication number Publication date
KR101260515B1 (ko) 2013-05-06
CN102301260B (zh) 2013-09-25
CN102301260A (zh) 2011-12-28
WO2010087653A3 (ko) 2010-10-28
KR20100088583A (ko) 2010-08-09
JP2012516468A (ja) 2012-07-19
US20120236408A1 (en) 2012-09-20
JP5593551B2 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2010087653A2 (ko) 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치 및 편광소자 제조방법
WO2010090449A2 (ko) 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치
WO2016003105A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광판 제조방법, 이를 이용하여 제조된 편광판
WO2015147551A1 (ko) 국지적 탈색 영역을 포함하는 편광 부재의 제조 방법, 편광 부재 롤의 제조 방법 및 매엽형 편광 부재의 제조 방법
WO2016056803A1 (ko) 편광판의 제조방법 및 이를 이용하여 제조된 편광판
WO2015108261A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판
WO2017209473A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
WO2016105017A1 (ko) 광학필름 및 이를 구비한 oled 표시장치
WO2014178517A1 (ko) 폴리에스테르계 프라이머 조성물, 이를 이용한 광학 필름 및 이를 포함하는 편광판
WO2020138878A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2015046969A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광판 및 그 제조 방법
WO2014204205A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2015008925A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2020256337A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2019245145A1 (ko) 광학필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2022220442A1 (ko) 액정표시소자
WO2021040312A1 (ko) 편광판 적층체 및 이를 포함하는 디스플레이 장치
WO2022098016A1 (ko) 광학표시장치용 모듈 및 이를 포함하는 광학표시장치
WO2020130462A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020138879A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2014088273A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2015046962A1 (ko) 내츄럴 블랙에 근접한 편광판 제조 방법 및 이를 이용하여 제조된 편광판
WO2022211398A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2024117660A1 (ko) 편광판 및 광학표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006254.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10736044

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011547801

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13147112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10736044

Country of ref document: EP

Kind code of ref document: A2