WO2020256337A1 - 편광판 및 이를 포함하는 광학표시장치 - Google Patents

편광판 및 이를 포함하는 광학표시장치 Download PDF

Info

Publication number
WO2020256337A1
WO2020256337A1 PCT/KR2020/007520 KR2020007520W WO2020256337A1 WO 2020256337 A1 WO2020256337 A1 WO 2020256337A1 KR 2020007520 W KR2020007520 W KR 2020007520W WO 2020256337 A1 WO2020256337 A1 WO 2020256337A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
difference layer
layer
polarizing plate
wavelength
Prior art date
Application number
PCT/KR2020/007520
Other languages
English (en)
French (fr)
Inventor
김윤정
이상흠
정리라
정연주
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN202080032611.8A priority Critical patent/CN113767311A/zh
Priority to US17/593,905 priority patent/US20220187522A1/en
Publication of WO2020256337A1 publication Critical patent/WO2020256337A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/07All plates on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Definitions

  • the present invention relates to a polarizing plate and an optical display device including the same. More specifically, the present invention relates to a polarizing plate that reduces color dispersion in all directions including a polar angle of 60° when applied to an optical display device, and an optical display device including the same.
  • the organic EL panel includes a highly reflective metal electrode layer. Therefore, the visibility of the organic EL panel is deteriorated due to reflection of external light. The visibility deterioration can be improved by attaching a polarizing plate to the organic EL panel.
  • the polarizing plate includes a polarizer and an optical compensation film disposed on one surface of the polarizer.
  • the polarizing plate makes linearly polarized light into circularly polarized light in a process in which incident external light is reflected and emitted from the metal electrode layer, blocks the reflected circularly polarized light, and finally lowers the reflectance, thereby improving screen quality.
  • the reflectance at the side is high compared to the front, development of a polarizing plate that lowers the reflectance at the side (reflectance at the pole angle) is in progress.
  • the color dispersion is high in all directions including a pole angle of 60°. Even with a polarizer that lowers the reflectance from the side, the color dispersion from it may be high. Accordingly, there is a need to develop a polarizing plate capable of reducing color dispersion while lowering the reflectance at the side.
  • An object of the present invention is to provide a polarizing plate that significantly lowers color dispersion.
  • Another object of the present invention is to provide a polarizing plate that significantly lowers the reflectance from the side.
  • Another object of the present invention is to provide a polarizing plate with improved thinness and fairness.
  • One aspect of the present invention is a polarizing plate.
  • the polarizing plate includes a polarizer and a first phase difference layer, a second phase difference layer, and a third phase difference layer sequentially stacked on a lower surface of the polarizer, and the first phase difference layer includes a positive C phase difference layer, and the first
  • the second phase difference layer has a constant wavelength dispersion property, an in-plane retardation at a wavelength of 550 nm of about 220 nm to about 280 nm
  • the third phase difference layer is a constant wavelength dispersion, an in-plane retardation at a wavelength of 550 nm of about 80 nm to about 145 nm
  • the polarizer When the absorption axis of is 0°, the angle formed by the slow axis of the second phase difference layer is about +14° to about +24° or about -24° to about -14°, and the third phase difference The angle formed by the slow axis of the layer is from about +79° to about +89° or from about -89° to about -
  • the angle ⁇ 2 may be about +14° to about +24°, and the angle ⁇ 3 may be about +79° to about +89°.
  • the angle ⁇ 2 may be about -24° to about -14°, and the angle ⁇ 3 may be about -89° to about -79°.
  • an angle ⁇ 1 between the slow axis of the second phase difference layer and the slow axis of the third phase difference layer may be about 61° to about 67°.
  • the stack of the first phase difference layer, the second phase difference layer, and the third phase difference layer may have a degree of biaxiality of about 0.4 to about 1.0 at a wavelength of 550 nm.
  • one of the second phase difference layer and the third phase difference layer may have a refractive index relationship of Equation 3 below, and the other one may have a refractive index relationship of Equation 6:
  • nx, ny, and nz are refractive indexes in the slow axis direction, fast axis direction, and thickness direction of the retardation layer at a wavelength of 550 nm, respectively).
  • nx, ny, and nz are refractive indices in the slow axis direction, fast axis direction, and thickness direction of the retardation layer at a wavelength of 550 nm, respectively).
  • the stacked body of the second phase difference layer and the third phase difference layer may have force field dispersion.
  • the second phase difference layer may represent the following Equation 1 and the following Equation 2:
  • Re(450), Re(550), and Re(650) are in-plane retardation (unit: nm) at wavelengths of 450 nm, 550 nm, and 650 nm of the second phase difference layer, respectively).
  • the second phase difference layer has Re(450)/Re(550) smaller than Re(450)/Re(550) of the third phase difference layer, and the second phase difference layer is Re(650).
  • /Re(550) may be larger than Re(650)/Re(550) of the third phase difference layer.
  • the third phase difference layer may represent the following Equation 4 and the following Equation 5:
  • Re(450), Re(550), and Re(650) are in-plane retardation at wavelengths of 450nm, 550nm, and 650nm of the third phase difference layer (unit: nm)).
  • the first phase difference layer may have nx of about 1.5 to about 1.6, ny of about 1.5 to about 1.6, and nz of about 1.6 to about 1.7.
  • the first phase difference layer may have a retardation in a thickness direction of about -150 nm to about 0 nm at a wavelength of 550 nm.
  • the second phase difference layer may include a cyclic olefin polymer-based film
  • the third phase difference layer may include a polystyrene-based coating layer
  • a protective layer may be further stacked on an upper surface of the polarizer or between the polarizer and the first phase difference layer.
  • an adhesive layer or an adhesive layer may be further formed on the lower surface of the third phase difference layer.
  • the optical display device of the present invention includes the polarizing plate of the present invention.
  • the present invention provides a polarizing plate that significantly lowers color dispersion.
  • the present invention has provided a polarizing plate that significantly lowers the reflectance from the side.
  • the present invention provides a polarizing plate with improved thinness and fairness.
  • FIG. 1 is a cross-sectional view of a polarizing plate according to an embodiment of the present invention.
  • FIG. 2 shows the absorption axis of the polarizer, the slow axis of the second phase difference layer, and the slow axis of the third phase difference layer in FIG. 1.
  • FIG. 3 shows SCE reflectance (Y-axis, unit: %) at a side polar angle ( ⁇ ) (X-axis, unit: °) when the polarizing plates of Examples and Comparative Examples are applied to an OLED display.
  • upper part and lower part are defined based on the drawings, and “upper part” may be changed to “lower part” and “lower part” may be changed to “upper part” according to a perspective view, and “on” or What is referred to as “on” may include a case where other structures are interposed not only above but also in the middle.
  • “directly on” or “directly on” or “directly formed” indicates that other structures such as intermediates are not interposed.
  • in-plane retardation (Re) is represented by the following formula A
  • Thickness direction retardation (Rth) is represented by the following formula B
  • biaxiality degree (NZ) is represented by the following formula C:
  • NZ (nx-nz)/(nx-ny)
  • nx, ny, and nz are refractive indexes in the slow axis direction, fast axis direction, and thickness direction of the optical element at the measurement wavelength, respectively, and d is the thickness of the optical element. (Unit: nm)).
  • the "optical element” refers to a first phase difference layer, a second phase difference layer, a third phase difference layer or a laminate of a first phase difference layer, a second phase difference layer, and a third phase difference layer.
  • "measurement wavelength” may mean a wavelength of 450 nm, 550 nm, or 650 nm.
  • (meth)acrylic means acrylic and/or methacrylic.
  • X to Y means X or more and Y or less (X ⁇ and ⁇ Y).
  • the inventors of the present invention include a first phase difference layer, a second phase difference layer, and a third phase difference layer, which are described below, are sequentially stacked on a lower surface of the polarizer, and a second phase difference layer and a second phase difference layer with respect to the absorption axis of the polarizer.
  • the angle of the slow axis of each of the three phase difference layers was controlled, and the in-plane retardation and wavelength dispersion at a wavelength of 550 nm of each of the second and third phase difference layers were adjusted.
  • the inventors of the present invention controlled the degree of biaxiality in the entire wavelength of 550 nm of the first phase difference layer, the second phase difference layer, and the third phase difference layer.
  • color dispersion can be reduced in all directions including a polar angle of 60°.
  • the "color scattering" indicates a difference in colors visually recognized in each orientation when a polarizing plate is applied to an optical display device.
  • the polarizing plate of the present invention may lower the reflectance at a polar angle ( ⁇ ) of 0° to 60° as a side surface.
  • polar angle
  • the polarizing plate of the present invention can improve screen visibility in the entire display device.
  • even a polarizing plate capable of lowering the reflectance from the side does not necessarily lower the color dispersion, but the polarizing plate of the present invention remarkably improved screen visibility by simultaneously lowering the color dispersion and reflectance.
  • the polarizing plate of the present invention can significantly reduce the reflectance on the entire side surface to 1% or less, for example, 0% to 1%.
  • the polarizing plate is stacked on the lower surface of the polarizer 400 in the order of a first phase difference layer 100, a second phase difference layer 200, and a third phase difference layer 300.
  • a protective layer 500 is stacked on the upper surface of the polarizer 400.
  • the first phase difference layer includes a positive C phase difference layer, the second phase difference layer and the third phase difference layer have an in-plane retardation detailed below, and the second phase difference layer and the third phase difference layer have wavelength dispersion and polarizer absorption as detailed below. It has the angle of the slow axis relative to the axis.
  • the first phase difference layer, the second phase difference layer, and the third phase difference layer have different in-plane retardation at a wavelength of 550 nm.
  • the first phase difference layer, the second phase difference layer, and the third phase difference layer may have the same or different degrees of retardation and biaxiality in the thickness direction at a wavelength of 550 nm.
  • the second phase difference layer 200 exhibits a constant wavelength dispersion in which an in-plane phase difference increases from a long wavelength to a short wavelength. If any one of the second phase difference layer and the third phase difference layer is not a constant wavelength dispersion, the effect of the present invention may not be properly implemented or the effect may be significantly lowered.
  • the second phase difference layer may represent the following Equation 1 and the following Equation 2:
  • Re(450), Re(550), and Re(650) are in-plane retardation (unit: nm) at wavelengths of 450 nm, 550 nm, and 650 nm of the second phase difference layer, respectively).
  • the second phase difference layer may have a Re(450)/Re(550) of about 1.01 to about 1.05.
  • Re(450)/Re(550) may be about 1.01, 1,02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, or 1.1.
  • Re (650) / Re (550) of the second phase difference layer may be larger than Re (650) / Re (550) of the third phase difference layer, and may be about 0.95 or more and less than about 1.00. In the above range, the effect of reducing front and side reflectance may be excellent.
  • the Re(650)/Re(550) may be about 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995, or 0.999.
  • Re(450)/Re(550) of the second phase difference layer may be smaller than Re(450)/Re(550) of the third phase difference layer, and the second phase difference layer is Re(650)/Re (550) may be larger than Re(650)/Re(550) of the third phase difference layer.
  • the effect of reducing reflectance and improving color dispersion may be greater.
  • the second phase difference layer has an in-plane retardation of about 220 nm to about 280 nm at a wavelength of 550 nm. In the above range, it may help to reduce color dispersion and reflectance. Specifically, the in-plane retardation may be about 225 nm to about 275 nm, more specifically about 230 nm to about 270 nm, and most specifically about 230 nm to about 260 nm. For example, the second phase difference layer may have an in-plane retardation of about 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275 or 280 nm at a wavelength of 550 nm.
  • the second phase difference layer may have an in-plane retardation at a wavelength of 450 nm of 220 nm to 280 nm, specifically 225 nm to 275 nm, 220 nm to 270 nm, more specifically 230 nm to 270 nm, and most specifically 230 nm to 260 nm.
  • a wavelength of 450 nm of 220 nm to 280 nm specifically 225 nm to 275 nm
  • 220 nm to 270 nm more specifically 230 nm to 270 nm, and most specifically 230 nm to 260 nm.
  • the second phase difference layer may have an in-plane retardation of about 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275 or 280 nm at a wavelength of 450 nm.
  • the second phase difference layer may have an in-plane retardation at a wavelength of 650 nm of 220 nm to 280 nm, specifically 225 nm to 275 nm, more specifically 230 nm to 270 nm, and most specifically 230 nm to 260 nm.
  • the above-described wavelength dispersion can be reached, and front and side reflectances can be lowered.
  • the second phase difference layer may have an in-plane retardation of about 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275 or 280 nm at a wavelength of 650 nm.
  • the slow axis of the second phase difference layer has a specific angle compared to the absorption axis of the polarizer (machine direction (MD) of the polarizer).
  • the angle ⁇ 2 formed by the absorption axis 410 of the polarizer and the slow axis 210 of the second phase difference layer 200 is From about +14° to about +24° or from about -24° to about -14°.
  • the angle ⁇ 2 is about +16° to about +22° or about -22° to about -16°, more preferably about +18° to about +21° or about -21° to about- It can be 18°.
  • the angle ⁇ 2 is about +14°, +15°, +16°, +17°, +18°, +19°, +20°, +21°, +22°, +23° or +24°, or about -24°, -23°, -22°, -21°, -20°, -19°, -18°, -17°, -16°, -15° or -14° days I can.
  • the second phase difference layer has a refractive index relationship of Equation 3:
  • nx, ny, and nz are refractive indices in the slow axis direction, fast axis direction, and thickness direction of the second phase difference layer at a wavelength of 550 nm, respectively).
  • the second phase difference layer is a positive A phase difference layer.
  • the second phase difference layer has a positive (+) retardation in the thickness direction at a wavelength of 550 nm, preferably about 100 nm to about 300 nm, preferably about 110 nm to about 250 nm, more preferably about 150 nm to about 250 nm.
  • a wavelength of 550 nm preferably about 100 nm to about 300 nm, preferably about 110 nm to about 250 nm, more preferably about 150 nm to about 250 nm.
  • the second phase difference layer may have a degree of biaxiality of about 0.1 to about 3.0, preferably about 1.0 to about 2.0, more preferably about 1.0 to about 1.5 at a wavelength of 550 nm. In the above range, the effect of reducing the reflectance on the entire side surface may be improved.
  • the second phase difference layer has a degree of biaxiality of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 at a wavelength of 550 nm. , 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3.0.
  • the second phase difference layer may include a film formed of a composition containing a resin having a positive intrinsic birefringence. Accordingly, a second phase difference layer having a refractive index in the stretching direction larger than that of a refractive index orthogonal to the stretching direction can be easily manufactured.
  • Resins having positive intrinsic birefringence include polymers in which intrinsic birefringence is positive.
  • Polymers having a positive intrinsic birefringence include, for example, cyclic olefin polymers such as norbornene polymers; Polyesters such as polyethylene terephthalate and polybutylene terephthalate; Polyvinyl alcohol; Polyvinyl chloride; Polyarylsulfone; Polyolefins such as polyethylene and polypropylene; Polyarylate; It may contain one or more types of rod-shaped liquid crystal polymers.
  • a polyolefin-based polymer having excellent mechanical properties, heat resistance, transparency, and dimensional stability, a cyclic olefin polymer, or a polycarbonate having excellent retardation and elongation at low temperatures is preferred.
  • Polymers having positive intrinsic birefringence may be included alone or in combination of two or more.
  • the second phase difference layer may include a cyclic olefin polymer or the like in consideration of oblique stretching and wavelength dispersion.
  • the dispersibility of the constant wavelength of the second phase difference layer may be adjusted in consideration of not only the type of resin having a positive intrinsic birefringence, but also the ratio of monomers in the resin.
  • the second phase difference layer may further include a conventional additive in addition to a resin having a positive intrinsic birefringence.
  • the additive may include, but is not limited to, an anti-coloring agent such as a pigment and a dye, a heat stabilizer, a light stabilizer, a UV absorber, an antistatic agent, an antioxidant, a fine particle, a surfactant, and the like.
  • the second phase difference layer may have a thickness of about 5 ⁇ m to about 100 ⁇ m, specifically about 5 ⁇ m to about 60 ⁇ m. In the above range, it can be used for a polarizing plate.
  • the second phase difference layer may be prepared by manufacturing an unstretched film by melt molding, injection molding, or press molding of a composition containing a resin having a positive intrinsic birefringence, and stretching the unstretched film in an oblique direction.
  • the draw ratio may be about 1.1 times or more and about 4.0 times or less, specifically about 1.3 times or more and about 3.0 times or less.
  • the slow axis direction of the second phase difference layer can be controlled, and the refractive index in the stretching direction can be increased.
  • the stretching temperature may be a glass transition temperature of the unstretched film (Tg) + 2°C or higher and Tg + 30°C or lower.
  • the stretching direction may be set to facilitate manufacturing of the polarizing plate by roll-to-roll while satisfying the angle between the absorption axis of the polarizer and the slow axis of the second phase difference layer described above.
  • the polarizing plate can be manufactured in a roll-to-roll manner, thereby improving processability. Consequently, the second phase difference layer has a slow axis of about +14° to about +24° or about -24° to about -14°, preferably about +16° to about +22° with respect to the MD of the second phase difference layer.
  • the effect of the present invention may be obtained by being about -22° to about -16°, more preferably about +18° to about +21° or about -21° to about -18°.
  • the second phase difference layer may be included in the polarizing plate as the second phase difference layer itself as the above-described stretched film. However, by further forming a primer layer on the second phase difference layer, the adhesion between the second phase difference layer and the third phase difference layer may be increased.
  • the primer layer may include at least one of acrylic resin, urethane resin, acrylic urethane resin, ester resin, and ethylene imine resin, but is not limited thereto.
  • the third phase difference layer 300 is stacked on the lower surface of the second phase difference layer among the polarizing plates. If the third phase difference layer is stacked on the upper surface of the second phase difference layer of the polarizing plate and is stacked in the order of the first phase difference layer, the third phase difference layer, and the second phase difference layer from the polarizer, there is a problem that external light may not be blocked. I can.
  • the third phase difference layer exhibits a constant wavelength dispersion in which the in-plane phase difference increases from a long wavelength to a short wavelength.
  • the polarizing plate can help to reduce color dispersion and reflectance when applied to an optical display device.
  • the third phase difference layer may satisfy Equation 4 and Equation 5 below:
  • Re(450), Re(550), and Re(650) are in-plane retardation (unit: nm) at wavelengths of 450 nm, 550 nm, and 650 nm of the third phase difference layer, respectively).
  • the third phase difference layer may have a Re(450)/Re(550) of about 1.05 to about 1.15, more specifically about 1.1 to about 1.15.
  • Re(450)/Re(550) is about 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1.13, 1.14, 1.15, It can be 1.16, 1.17, 1.18, 1.19 or 1.2.
  • the third phase difference layer may have Re (650) / Re (550) greater than about 0.9 and less than or equal to about 0.95.
  • the third phase difference layer may have Re(650)/Re(550) of about 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, or 0.999.
  • the third phase difference layer has an in-plane retardation of about 80 nm to about 145 nm at a wavelength of 550 nm. It can help to lower the color dispersion and reflectance in the above range.
  • the in-plane retardation may be about 80 nm to about 140 nm, more specifically about 80 nm to about 135 nm, about 80 nm to about 130 nm, and about 90 nm to about 130 nm.
  • the third phase difference layer may have an in-plane retardation of about 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, or 145 nm at a wavelength of 550 nm.
  • the third phase difference layer may have an in-plane retardation of about 100 nm to about 160 nm, specifically about 105 nm to about 155 nm, more specifically about 110 nm to about 150 nm at a wavelength of 450 nm.
  • the above-described wavelength dispersion may be reached, and there may be an effect of reducing front and side reflectances.
  • the third phase difference layer may have an in-plane retardation of about 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155 or 160 nm at a wavelength of 450 nm.
  • the third phase difference layer may have an in-plane retardation at a wavelength of 650 nm of about 80 nm to about 140 nm, specifically about 85 nm to about 135 nm, and more specifically about 90 nm to about 130 nm.
  • the above-described wavelength dispersion may be reached, and there may be an effect of reducing front and side reflectances.
  • the third phase difference layer may have an in-plane retardation of about 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, or 140 nm at a wavelength of 650 nm.
  • the third phase difference layer has a refractive index relationship of Equation 6:
  • nx, ny, and nz are refractive indices in the slow axis direction, fast axis direction, and thickness direction of the third phase difference layer at a wavelength of 550 nm, respectively).
  • the third phase difference layer is a negative A phase difference layer.
  • the slow axis of the second phase difference layer exists between the absorption axis of the polarizer and the slow axis of the third phase difference layer.
  • the slow axis of the third phase difference layer has a specific angle compared to the absorption axis of the polarizer.
  • the angle ⁇ 3 formed by the absorption axis 410 of the polarizer and the slow axis 310 of the third phase difference layer 300 Is from about +79° to about +89° or from about -89° to about -79°.
  • the angle may be about +81° to about +87°, or about -87° to about -81°, about +82° to about +86°, or about -86° to about -82°.
  • the angle ( ⁇ 3) is about +79°, +80°, +81°, +82°, +83°, +84°, +85°, +86°, +87°, +88° or +89°, or about -89°, -88°, -87°, -86°, -85°, -84°, -83°, -82°, -81°, -80°, or -79° Can be.
  • the angle may be achieved by adjusting and laminating an angle between the absorption axis of the polarizer and the slow axis of the third phase difference layer when the third phase difference layer is adhered to the polarizer.
  • the polarizing plate can be manufactured in a roll-to-roll manner, thereby improving processability. Consequently, the third phase difference layer has a slow axis of about +79° to about +89° or about -89° to about -79°, preferably about +81° to about +87° with respect to the MD of the third phase difference layer.
  • the effect of the present invention may be obtained by being about -87° to about -81°, more preferably about +82° to about +86° or about -86° to about -82°.
  • the angle ⁇ 2 may be about +14° to about +24°
  • the angle ⁇ 3 may be about +79° to about +89°.
  • the angle ⁇ 2 is about +14°, +15°, +16°, +17°, +18°, +19°, +20°, +21°, +22°, +23° or +24°
  • the angle ( ⁇ 3) is about +79°, +80°, +81°, +82°, +83°, +84°, +85°, +86°, +87°, +88 It can be ° or +89°.
  • the angle ⁇ 2 may be about -24° to about -14°
  • the angle ⁇ 3 may be about -89° to about -79°.
  • the angle ⁇ 2 is about -24°, -23°, -22°, -21°, -20°, -19°, -18°, -17°, -16°, -15° or -14°
  • the angle ( ⁇ 3) is about -89°, -88°, -87°, -86°, -85°, -84°, -83°, -82°, -81°, -80 It can be ° or -79°.
  • the third phase difference layer has a negative (-) value as opposed to the second phase layer in a thickness direction retardation at a wavelength of 550 nm, about -110 nm to about -50 nm, specifically about -110 nm to about -60 nm, more specifically about- It can be from 100 nm to about -70 nm. In the above range, there may be an effect of improving front reflectance and side reflectance.
  • the third phase difference layer has about -110, -105, -100, -95, -90, -85, -80, -75, -70, -65, -60,- It can be 55 or -50nm.
  • the third phase difference layer may have a degree of biaxiality at a wavelength of 550 nm of about -1.0 to about 0.5, specifically about -1.0 to about 0, more specifically about -1.0 or more and less than about 0. In the above range, there may be an effect of improving front reflectance and side reflectance.
  • the third phase difference layer has a degree of biaxiality at a wavelength of 550 nm of about -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1 , Can be 0.2, 0.3, 0.4 or 0.5.
  • the third phase difference layer may have a thickness of about 2 ⁇ m to about 15 ⁇ m, specifically about 3 ⁇ m to about 10 ⁇ m. In the above range, it can be used for a polarizing plate.
  • the third phase difference layer may have a thickness of about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 ⁇ m.
  • the slow axis of the second phase difference layer and the slow axis of the third phase difference layer may achieve a specific angular range, thereby improving processability of manufacturing a polarizing plate.
  • the angle ⁇ 1 between the slow axis 210 of the second phase difference layer 200 and the slow axis 310 of the third phase difference layer 300 is about 61° to about 67°, preferably It can be from about 63° to about 66°. In the above range, there may be an effect of blocking reflected light.
  • the angle ⁇ 1 may be about 61°, 62°, 63°, 64°, 65°, 66°, or 67°.
  • the third phase difference layer may be formed of a composition for a third phase difference layer including a resin having negative intrinsic birefringence.
  • Resins having negative intrinsic birefringence include polymers in which intrinsic birefringence is negative.
  • Polymers with negative intrinsic birefringence are, for example, homopolymers of styrene or styrene derivatives, polystyrene polymers including copolymers between styrene or styrene derivatives and comonomers, polyacrylonitrile polymers, polymethylmethacrylate copolymers, cellulose esters. It may include one or more of cellulose-based copolymers such as, but is not limited thereto.
  • the comonomer may include at least one of acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene.
  • the third phase difference layer may include at least one of a polystyrene-based polymer and a cellulose-based copolymer, and more preferably, a polystyrene-based polymer.
  • the third phase difference layer may further include a conventional additive in addition to the resin having negative intrinsic birefringence.
  • the additives may include plasticizers, pigments, anti-coloring agents such as dyes, heat stabilizers, light stabilizers, UV absorbers, antistatic agents, antioxidants, fine particles, surfactants, etc., but are not limited thereto.
  • the static wavelength dispersion of the third phase difference layer may be adjusted in consideration of not only the type of resin whose intrinsic birefringence is negative, but also the ratio of monomers in the resin.
  • Laminate of the second phase difference layer and the third phase difference layer Laminate of the second phase difference layer and the third phase difference layer
  • the stacked body of the second phase difference layer and the third phase difference layer may exhibit reverse wavelength dispersion in which the in-plane phase difference decreases from a long wavelength to a short wavelength.
  • the second phase difference layer and the third phase difference layer laminate are reverse wavelength dispersion, but by making each of the second phase difference layer and the third phase difference layer a forward wavelength dispersion, a reverse wavelength dispersion single-sheet film can be obtained.
  • the side reflectance can be lowered and the color dispersion can be lowered, so that when applied to an optical display device, screen quality can be improved from the side.
  • the laminate of the second phase difference layer and the third phase difference layer has an in-plane retardation at a wavelength of 550 nm of about 140 nm to about 200 nm, specifically about 140 nm to about 195 nm, more specifically about 140 nm to about 190 nm, more specifically It can be from about 150 nm to about 190 nm. In the above range, the side reflectivity can be lowered.
  • the laminate of the second phase difference layer and the third phase difference layer has an in-plane retardation of about 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195 or 200 nm at a wavelength of 550 nm. I can.
  • the laminate of the second phase difference layer and the third phase difference layer has a retardation in the thickness direction at a wavelength of 550 nm of about 5 nm to about 200 nm, specifically about 10 nm to about 150 nm, more specifically about 50 nm to about 150 nm, more specifically It may be about 50nm to about 100nm.
  • the side reflectivity can be lowered.
  • the layered body of the second phase difference layer and the third phase difference layer has a retardation of about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 at a wavelength of 550 nm.
  • the stacked body of the second phase difference layer and the third phase difference layer may have a thickness greater than about 0 ⁇ m and less than or equal to about 70 ⁇ m, specifically about 5 ⁇ m to about 60 ⁇ m, more specifically about 10 ⁇ m to about 60 ⁇ m. In the above range, it can be used for a polarizing plate.
  • the third phase difference layer may be a stretched film.
  • the third phase difference layer may be bonded to the second phase difference layer by an adhesive layer and/or an adhesive layer.
  • the third phase difference layer may be prepared by manufacturing an unstretched film by melt molding, injection molding, or press molding of the above-described third phase difference layer composition, and stretching the unstretched film in an oblique direction.
  • the draw ratio may be about 1.1 times or more, about 4.0 times or less, specifically about 1.3 times or more and about 3.0 times or less.
  • the slow axis direction of the third phase difference layer can be controlled, and the refractive index in the stretching direction can be increased.
  • the stretching temperature may be a glass transition temperature of the unstretched film (Tg) + 2°C or higher and Tg + 30°C or lower.
  • the stretching direction may be set to facilitate manufacturing of the polarizing plate by roll-to-roll while satisfying the angle between the absorption axis of the polarizer and the slow axis of the third phase difference layer described above.
  • the third phase difference layer may be a coating layer.
  • the laminate of the second phase difference layer and the third phase difference layer may be a single film of a single sheet.
  • the polarizing plate can perform roll-to-roll lamination when the stack of the second phase difference layer and the third phase difference layer is bonded to the polarizer, thereby improving fairness and improving yield due to defect reduction.
  • the second phase difference layer and the third phase difference layer have different in-plane phase differences, they are formed directly from each other, thereby obtaining a thinning effect of the polarizing plate and an effect of improving fairness.
  • the third phase difference layer may be manufactured by simultaneously diagonally stretching a laminate obtained by coating the above-described composition for the third phase difference layer on a film for preparing the second phase difference layer.
  • the first phase difference layer 100 must be stacked on the upper surface of the second phase difference layer.
  • the color distribution may be remarkably increased and the reflectance may be increased.
  • the first phase difference layer may be a positive C phase difference layer that satisfies the refractive index relationship of Equation 7 below. In this way, the polarizer can reduce the color spread on the side:
  • nx, ny, and nz are refractive indices in the slow axis direction, fast axis direction, and thickness direction of the first phase difference layer at a wavelength of 550 nm, respectively).
  • the first phase difference layer may have a retardation in the thickness direction at a wavelength of 550 nm of about -150 nm to about 0 nm, specifically about -150 nm to about -10 nm, more specifically about -150 nm to about -50 nm. In the above range, the effect of the present invention can be further improved.
  • the first phase difference layer has a retardation in the thickness direction of about -150, -145, -140, -135, -130, -125, -120, -115, -110, -105, -100,- 95, -90, -85, -80, -75, -70, -65, -60, -55, -50, -45, -40, -35, -30, -25, -20, -15, It may be -10, -5 or 0 nm.
  • the first phase difference layer may have an in-plane retardation of about 0 nm to about 10 nm, specifically about 0 nm to about 5 nm at a wavelength of 550 nm. In the above range, the effect of the present invention can be further improved.
  • the first phase difference layer may have an in-plane retardation of about 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or about 10 nm at a wavelength of 550 nm.
  • the first phase difference layer may have nx of about 1.5 to about 1.6, ny of about 1.5 to about 1.6, and nz of about 1.6 to about 1.7 at a wavelength of 550 nm. In the above range, the effect of the present invention can be further improved.
  • the first phase difference layer may have nx of about 1.5, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.57, 1.58, 1.59 or 1.6 at a wavelength of 550 nm, and ny of about 1.5, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.57, 1.58, 1.59, or 1.6 may be, and nz may be about 1.6, 1.61, 1.62, 1.63, 1.64, 1.65, 1.66, 1.67, 1.68, 1.69 or 1.7.
  • the first phase difference layer may be a stretched film or a coating layer if it can implement the above-described positive C phase difference layer.
  • the first phase difference layer may be a stretched film.
  • the stretched film may be formed of a composition comprising a polymer commonly known to those skilled in the art, such as a fumaric acid diester-based resin, but is not limited thereto.
  • the first phase difference layer may be a coating layer.
  • a liquid crystal as a material for the coating layer, it is possible to facilitate the implementation of the retardation in the thickness direction.
  • the liquid crystal may be of a common type known to those skilled in the art, and may include, for example, nematic liquid crystal.
  • the first phase difference layer may have a thickness greater than about 0 ⁇ m and less than or equal to about 70 ⁇ m, specifically about 5 ⁇ m to about 60 ⁇ m, more specifically about 10 ⁇ m to about 60 ⁇ m. In the above range, it can be used for a polarizing plate.
  • the first phase difference layer may be formed directly on the second phase difference layer or may be bonded through an adhesive layer and/or an adhesive layer.
  • Laminate of the first phase difference layer, the second phase difference layer, and the third phase difference layer Laminate of the first phase difference layer, the second phase difference layer, and the third phase difference layer
  • the laminate of the first phase difference layer, the second phase difference layer, and the third phase difference layer has a degree of biaxiality of about 0.4 to about 1.0, specifically about 0.4 to about 0.9, about 0.4 to about 0.7, about 0.4 to about 0.6 at a wavelength of 550 nm. , May be from about 0.4 to about 0.5.
  • reflectance may be lowered in the entire range of about 5° to about 60° of the side surface, and the effect of reducing color dispersion may be further improved.
  • the stack of the first phase difference layer, the second phase difference layer, and the third phase difference layer may have a degree of biaxiality of about 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 at a wavelength of 550 nm.
  • the polarizer 400 may be stacked on an upper surface of the first phase difference layer to linearly polarize external light or light incident from the first phase difference layer, thereby lowering the reflectance from the side.
  • the polarizer may have a polarization degree of about 99% or more and a single light transmittance (Ts) of about 44% or more.
  • Ts single light transmittance
  • the "single light transmittance” means a single light transmittance (Ts) measured in a visible light region, for example, a wavelength of 400 nm to 700 nm, and may be measured by a conventional method known to those skilled in the art.
  • the "polarization" can be measured by a conventional method known to those skilled in the art. Specifically, the degree of polarization may be about 99% to about 99.9999%, and the light transmittance may be about 44% to about 50%.
  • the polarizer may have an orthogonal light transmittance (Tc) of about 0.001% to about 0.7%, specifically about 0.01% to about 0.2%, more specifically about 0.05% to about 0.2% at a wavelength of 380 nm to 780 nm.
  • Tc orthogonal light transmittance
  • the polarizer is laminated on a roll-to-roll stack of the first phase difference layer, the second phase difference layer, and the third phase difference layer, so that the MD of the polarizer is substantially equal to the MD of the first phase difference layer, the second phase difference layer, and the third phase difference layer.
  • the laminate of the first phase difference layer, the second phase difference layer, and the third phase difference layer functions as a lower protective film of the polarizer, and there is no need to laminate a separate protective film on the lower surface of the polarizer, so that the polarizing plate can be thinned.
  • the absorption axis of the polarizer is the MD of the polarizer, and may be a stretching direction when the polarizer is manufactured.
  • the polarizer may include a polyvinyl alcohol-based polarizer manufactured by uniaxially stretching a polyvinyl alcohol-based film, or a polyene-based polarizer manufactured by dehydrating a polyvinyl alcohol-based film.
  • the polarizer may be manufactured by dyeing, stretching, crosslinking, and color correcting a polyvinyl alcohol-based film.
  • a polarizer having both polarization degree and light transmittance described above can be achieved by appropriately changing conditions in the above-described dyeing, stretching, crosslinking, and color correction processes.
  • the polarizer may have a thickness of about 5 ⁇ m to about 40 ⁇ m. In the above range, it can be used for a polarizing plate.
  • the polarizer has a thickness of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 , 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 ⁇ m.
  • an adhesive layer, an adhesive layer, an adhesive adhesive layer, a protective layer described below, or a combination thereof may be further included between the polarizer and the first phase difference layer.
  • the protective layer 500 may be laminated on the upper surface of the polarizer to protect the polarizer.
  • the protective layer protects the polarizer, thereby increasing the reliability of the polarizing plate and increasing the mechanical strength of the polarizing plate. In FIG. 1, if the mechanical properties of the polarizing plate can be secured even without the protective layer, the protective layer may be omitted.
  • the protective layer may include one or more of optically transparent, protective film or protective coating layer.
  • the protective film includes a cellulose ester resin including triacetylcellulose (TAC), a cyclic polyolefin resin including amorphous cyclic polyolefin (COP), a polycarbonate resin, polyethylene terephthalate (PET), etc.
  • Poly(meth)acrylates including polyester resins, polyethersulfone resins, polysulfone resins, polyamide resins, polyimide resins, non-cyclic-polyolefin resins, polymethylmethacrylate resins, etc.
  • a film formed of at least one of resin, polyvinyl alcohol-based resin, polyvinyl chloride-based resin, and polyvinylidene chloride-based resin may be included, but is not limited thereto.
  • the protective coating layer may be formed of an active energy ray-curable resin composition containing an active energy ray-curable compound and a polymerization initiator.
  • the active energy ray-curable compound may include at least one of a cationic polymerizable curable compound, a radical polymerizable curable compound, a urethane resin, and a silicone resin.
  • the protective layer is a phase-free film or has a low in-plane retardation compared to the second and third phase difference layers, and has a lower absolute value of the retardation in the thickness direction compared to the first retardation layer.
  • the protective layer may have an in-plane retardation of about 120 nm to about 160 nm, or about 5 nm to about 0 nm at a wavelength of 550 nm. Within the above range, the polarizing plate can be protected without affecting the effects of the first phase difference layer, the second phase difference layer, and the third phase difference layer.
  • the protective layer may have a thickness of about 10 ⁇ m or less, or about 5 ⁇ m to 300 ⁇ m, about 5 ⁇ m or less, or about 5 ⁇ m to about 200 ⁇ m. In the above range, it can be used for a polarizing plate.
  • a functional coating layer may be additionally formed on the upper surface of the protective layer.
  • the functional coating layer may include one or more of a hard coating layer, an anti-fingerprint layer, an antireflection layer, an anti-glare layer, a low reflection layer, and an ultra low reflection layer, but is not limited thereto.
  • the polarizing plate can be laminated on the optical display device.
  • optical display device of the present invention will be described.
  • the optical display device of the present invention may include one or more of the polarizing plates of the present invention.
  • the optical display device may include a liquid crystal display device, a light emitting device display device, preferably a light emitting device display device, and the like.
  • the liquid crystal display may include a liquid crystal display having a liquid crystal for In Place Switching (IPS).
  • the light emitting device display device includes an organic or organic light emitting device, and includes a light emitting material such as a light emitting diode (LED), an organic light emitting diode (OLED), a quantum dot light emitting diode (QLED), and a phosphor. It may mean a light emitting device.
  • the polyvinyl alcohol film was stretched three times at 60° C., adsorbed iodine, and then stretched 2.5 times in an aqueous boric acid solution at 40° C. to prepare a polarizer (thickness: 12 ⁇ m).
  • a triacetylcellulose (TAC) film (KA25-HC, Konica Minolta Opto, Inc., thickness: 32 ⁇ m) having a hard coating layer formed on the upper surface of the polarizer was adhered.
  • TAC triacetylcellulose
  • a stack of the first phase difference layer, the second phase difference layer, and the third phase difference layer described below is stacked, and the first phase difference layer, the second phase difference layer, and the third phase difference layer are formed from the lower surface of the polarizer.
  • a polarizing plate was prepared by roll-to-roll. At this time, the angle between the absorption axis of the polarizer, the slow axis of the second phase difference layer, and the slow axis of the third phase difference layer were adjusted as shown in Table 1 below.
  • the film is obliquely stretched a resin containing a cyclopolyolefin-based copolymer at a predetermined draw ratio, and a composition containing a polystyrene-based copolymer is coated and dried on one side of the film of the obliquely stretched cyclopolyolefin-based copolymer to prepare a laminate. And, it is a film produced by stretching the laminate again at a predetermined draw ratio.
  • Example 1 a polarizing plate was manufactured in the same manner, except that the detailed configuration of the polarizing plate was as shown in Table 1 below.
  • Example 1 a polarizing plate was manufactured in the same manner except that the second phase difference layer and the third phase difference layer were stacked in the order of the lower surface of the polarizer without the first phase difference layer.
  • Example 1 a polarizing plate was manufactured in the same manner, except that the second phase difference layer, the third phase difference layer, and the first phase difference layer were stacked on the lower surface of the polarizer in this order.
  • I is stacked in the order of a first phase difference layer-a second phase difference layer-a third phase difference layer on the lower surface of the polarizer;
  • III is a second phase difference layer, a third phase difference layer, and a first phase difference layer stacked on the lower surface of the polarizer in this order;
  • IV is stacked on the lower surface of the polarizer in the order of a first phase difference layer and a reverse wavelength dispersion retardation layer.
  • NZ denotes NZ at a wavelength of 550 nm of the laminate disposed on the lower surface of the polarizer.
  • the reflectance was measured by SCE (specular component excluded) reflectance measured by DMS803 (Instrument Systems, Germany) by attaching the polarizing plate of Table 1 to the Galaxy S7 panel.
  • the color distribution according to the azimuth angle was evaluated by the SCE reflection measurement method for the polarizing plates prepared in Examples and Comparative Examples, and the results are shown in Table 2 below.
  • the color distribution was measured based on the CIE a*, b* values, and the polarizing plate of Table 1 was attached to the Galaxy S7 panel and evaluated by the SCE reflection measurement method.
  • the result obtained therefrom was calculated by calculating the reflected hue shift distance for each azimuth to obtain a numerical value for evaluating the hue dispersion.
  • the color distribution represents the difference in color values at a polar angle of 60° when the azimuth angle is changed from 0° to 180° in increments of 45°. The lower the number, the lower the color spread, which means that the screen quality is better.
  • the polarizing plate of the present invention remarkably lowers the color dispersion and remarkably lowers the reflectance from the side.
  • the polarizing plate of the present invention had a low reflectance and a low color value, and referring to FIG. 3, the polarizing plate of the present invention had a low reflectance in the entire side pole angle of 5° to 60°.
  • the polarizing plate of the present invention had a low color distribution when viewed as CIE a* and b* values at a polar angle of 60°.
  • CIE a* and b* values at a polar angle of 60°.
  • Comparative Example 1 in which a reverse wavelength dispersion film was laminated without a positive C layer on the lower surface of the polarizer
  • Comparative Example 4 in which a positive C layer and a reverse wavelength dispersion film were laminated on the lower surface of the polarizer were shown in Table 2 and Figs. According to 3, the effect of the present invention could not be obtained.
  • the entire second phase difference layer and the third phase difference layer exhibit reverse wavelength dispersion, but even if the reverse wavelength dispersion film is stacked on the positive C layer as in Comparative Example 4, the reflectance and color dispersion from the side are remarkable. Was low.
  • Comparative Example 2 without a positive C layer and Comparative Example 3 in which the stacking order of the positive C layer, the second phase difference layer, and the third phase difference layer does not satisfy the order of the present invention is given in Tables 2 and 3 above. , The effect of the present invention could not be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

편광자 및 상기 편광자의 하부면에 순차적으로 적층된 제1위상차층, 제2위상차층 및 제3위상차층을 포함하고, 상기 제1위상차층은 포지티브 C 위상차층을 포함하고, 상기 제2위상차층은 정파장 분산성이고, 파장 550nm에서 면내 위상차가 약 220nm 내지 약 280nm이고, 상기 제3위상차층은 정파장 분산성이고, 파장 550nm에서 면내 위상차가 약 80nm 내지 약 145nm이고, 상기 편광자의 흡수축을 0°라고 할 때, 상기 제2위상차층의 지상축이 이루는 각도는 약 +14° 내지 약 +24° 또는 약 -24° 내지 약 -14°이고, 상기 제3위상차층의 지상축이 이루는 각도는 약 +79° 내지 약 +89° 또는 약 -89° 내지 약 -79°인 것인, 편광판 및 이를 포함하는 광학표시장치가 제공된다.

Description

편광판 및 이를 포함하는 광학표시장치
본 발명은 편광판 및 이를 포함하는 광학표시장치에 관한 것이다. 보다 구체적으로, 본 발명은 광학표시장치에 적용 시 극각 60° 등을 포함하는 전 방위에서 색상 산포를 줄이는 편광판 및 이를 포함하는 광학표시장치에 관한 것이다.
유기 EL 패널은 반사성이 높은 금속 전극층을 포함한다. 따라서, 유기 EL 패널은 외부 광에 대한 반사로 인하여 시인성이 악화된다. 시인성 악화는 유기 EL 패널에 편광판을 부착함으로써 개선될 수 있다.
편광판은 편광자 및 편광자의 일면에 배치되는 광학 보상 필름을 포함한다. 편광판은 입사된 외부 광이 상기 금속 전극층에서 반사되어 출사되는 과정에서 선 편광을 원 편광으로 만들고 반사되는 원 편광을 차단하여 최종적으로는 반사율을 낮춤으로써 화면 품질을 개선한다. 일반적으로 정면 대비 측면에서의 반사율이 높으므로, 측면에서의 반사율(극각에서의 반사율)을 낮추는 편광판 개발이 진행되고 있다. 한편, 측면에서의 반사율을 낮추더라도 극각 60° 등을 포함하는 전 방위에서 색상 산포가 높은 경우 표시장치 화면 전체의 시인성이 좋지 않을 수 있다. 측면에서의 반사율을 낮추는 편광판이더라도 그로부터 나온 색상 산포는 높을 수 있다. 따라서, 측면에서의 반사율을 낮춤과 동시에 색상 산포를 줄일 수 있는 편광판을 개발할 필요가 있다.
본 발명의 배경 기술은 한국공개특허 제10-2016-0107114호 등에 개시되어 있다.
본 발명의 목적은 색상 산포를 현저하게 낮추는 편광판을 제공하는 것이다.
본 발명의 다른 목적은 측면에서의 반사율을 현저하게 낮추는 편광판을 제공하는 것이다.
본 발명의 또 다른 목적은 박형화 및 공정성을 개선한 편광판을 제공하는 것이다.
본 발명의 일 관점은 편광판이다.
1.편광판은 편광자 및 상기 편광자의 하부면에 순차적으로 적층된 제1위상차층, 제2위상차층 및 제3위상차층을 포함하고, 상기 제1위상차층은 포지티브 C 위상차층을 포함하고, 상기 제2위상차층은 정파장 분산성이고, 파장 550nm에서 면내 위상차가 약 220nm 내지 약 280nm이고, 상기 제3위상차층은 정파장 분산성이고, 파장 550nm에서 면내 위상차가 약 80nm 내지 약 145nm이고, 상기 편광자의 흡수축을 0°라고 할 때, 상기 제2위상차층의 지상축(slow axis)이 이루는 각도는 약 +14° 내지 약 +24° 또는 약 -24° 내지 약 -14°이고, 상기 제3위상차층의 지상축(slow axis)이 이루는 각도는 약 +79° 내지 약 +89° 또는 약 -89° 내지 약 -79°이다.
2.1에 있어서, 상기 각도 θ2는 약 +14° 내지 약 +24°이고, 상기 각도 θ3은 약 +79° 내지 약 +89°가 될 수 있다.
3.1-2에 있어서, 상기 각도 θ2는 약 -24° 내지 약 -14°이고, 상기 각도 θ3은 약 -89° 내지 약 -79°가 될 수 있다.
4.1-3에 있어서, 상기 제2위상차층의 지상축과 상기 제3위상차층의 지상축 간의 각도 θ1은 약 61° 내지 약 67°가 될 수 있다.
5.1-4에 있어서, 상기 제1위상차층, 상기 제2위상차층과 상기 제3위상차층의 적층체는 파장 550nm에서 이축성 정도가 약 0.4 내지 약 1.0이 될 수 있다.
6.1-5에 있어서, 상기 제2위상차층, 상기 제3위상차층 중 어느 하나는 하기 식 3의 굴절률 관계를 가지며, 나머지 하나는 하기 식 6의 굴절률 관계를 가질 수 있다:
[식 3]
nx > ny ≒ nz
(상기 식 3에서, 상기 nx, ny, nz는 각각 파장 550nm에서 위상차층의 지상축 방향, 진상축 방향, 두께 방향 굴절률이다).
[식 6]
nx ≒ nz > ny
(상기 식 6에서, nx, ny, nz는 각각 파장 550nm에서 위상차층의 지상축 방향, 진상축 방향, 두께 방향 굴절률이다).
7.1-6에 있어서, 상기 제2위상차층과 상기 제3위상차층의 적층체는 역장 분산성을 가질 수 있다.
8.1-7에 있어서, 상기 제2위상차층은 하기 식 1과 하기 식 2를 나타낼 수 있다:
[식 1]
약 1.0 < Re(450)/Re(550) ≤ 약 1.1
[식 2]
약 0.9 ≤ Re(650)/Re(550) < 약 1.0
(상기 식 1, 식 2에서, Re(450), Re(550), Re(650)은 각각 제2위상차층의 파장 450nm, 550nm, 650nm에서의 면내 위상차(단위: nm)).
9.1-7에 있어서, 상기 제2위상차층은 Re(450)/Re(550)이 상기 제3위상차층의 Re(450)/Re(550)보다 작고, 상기 제2위상차층은 Re(650)/Re(550)이 상기 제3위상차층의 Re(650)/Re(550)보다 클 수 있다.
10.1-9에 있어서, 상기 제3위상차층은 하기 식 4와 하기 식 5를 나타낼 수 있다:
[식 4]
약 1.0 < Re(450)/Re(550) ≤ 약 1.2
[식 5]
약 0.9 ≤ Re(650)/Re(550) < 약 1.0
(상기 식 4, 식 5에서, Re(450), Re(550), Re(650)은 각각 제3위상차층의 파장 450nm, 550nm, 650nm에서의 면내 위상차(단위: nm)).
11.1-10에 있어서, 상기 제1위상차층은 파장 550nm에서, nx가 약 1.5 내지 약 1.6, ny가 약 1.5 내지 약 1.6, nz가 약 1.6 내지 약 1.7일 수 있다.
12.1-11에 있어서, 상기 제1위상차층은 파장 550nm에서 두께 방향 위상차가 약 -150nm 내지 약 0nm일 수 있다.
13.1-12에 있어서, 상기 제2위상차층은 시클릭올레핀폴리머계 필름을 포함하고, 상기 제3위상차층은 폴리스티렌계 코팅층을 포함할 수 있다.
14.1-13에 있어서, 상기 편광자의 상부면 또는 상기 편광자와 상기 제1위상차층 사이에 보호층이 더 적층될 수 있다.
15.1-14에 있어서, 상기 제3위상차층의 하부면에 점착층 또는 접착층이 더 형성될 수 있다.
본 발명의 광학표시장치는 본 발명의 편광판을 포함한다.
본 발명은 색상 산포를 현저하게 낮추는 편광판을 제공하였다.
본 발명은 측면에서의 반사율을 현저하게 낮추는 편광판을 제공하였다.
본 발명은 박형화 및 공정성을 개선한 편광판을 제공하였다.
도 1은 본 발명 일 실시예의 편광판의 단면도이다.
도 2는 도 1에서 편광자의 흡수축, 제2위상차층의 지상축, 제3위상차층의 지상축을 나타낸 것이다.
도 3은 실시예와 비교예의 편광판을 OLED 표시 장치에 적용하였을 때 측면 극각(θ)(X축, 단위: °)에서의 SCE 반사율(Y축, 단위:%)을 나타낸 것이다.
이하, 첨부한 도면을 참조하여, 본 출원의 실시예들을 보다 상세하게 설명한다. 그러나, 본 출원에 개시된 기술은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성 요소를 명확하게 표현하기 위하여 상기 구성 요소의 폭이나 두께 등의 크기를 다소 확대하여 나타낸 것이며, 본 발명 중 상기 구성 요소의 폭이나 두께 등의 크기가 본 발명의 범위에 제한되는 것은 아니다. 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 구성 요소를 지칭한다.
본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것으로서, 시 관점에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있고, "위(on)" 또는 "상(on)"으로 지칭되는 것은 바로 위뿐만 아니라 중간에 다른 구조를 개재한 경우도 포함할 수 있다. 반면, "직접 위(directly on)" 또는 "바로 위" 또는 "직접적으로 형성"으로 지칭되는 것은 중간체 등의 다른 구조를 개재하지 않은 것을 나타낸다.
본 명세서에서 "면내 위상차(Re)"는 하기 식 A로 표시되고, "두께 방향 위상차(Rth)"는 하기 식 B로 표시되고, "이축성 정도(NZ)"는 하기 식 C로 표시된다:
[식 A]
Re = (nx - ny) x d
[식 B]
Rth = ((nx + ny)/2 - nz) x d
[식 C]
NZ = (nx - nz)/(nx - ny)
(상기 식 A 내지 식 C에서, nx, ny, nz는 측정 파장에서 각각 광학 소자의 지상축(slow axis) 방향, 진상축(fast axis) 방향, 두께 방향의 굴절률이고, d는 광학 소자의 두께(단위:nm)이다).
상기 식 A 내지 식 C에서 "광학 소자"는 제1위상차층, 제2위상차층, 제3위상차층 또는 제1위상차층, 제2위상차층 및 제3위상차층의 적층체를 의미한다. 상기 식 A 내지 식 C에서 "측정 파장"은 파장 450nm, 550nm 또는 650nm를 의미할 수 있다.
본 명세서에서 "(메트)아크릴"은 아크릴 및/또는 메타아크릴을 의미한다.
본 명세서에서 수치 범위 기재 시 "X 내지 Y"는 X 이상 Y 이하(X≤ 그리고 ≤Y)를 의미한다.
본 발명의 발명자는 편광판에 있어서, 편광자의 하부면에 하기에서 상술되는 제1위상차층, 제2위상차층 및 제3위상차층이 순차적으로 적층되고, 편광자의 흡수축에 대한 제2위상차층과 제3위상차층 각각의 지상축(slow axis)의 각도를 제어하고, 제2위상차층 및 제3위상차층 각각의 파장 550nm에서의 면내 위상차와 파장 분산성을 조절하였다. 또한, 본 발명의 발명자는 제1위상차층, 제2위상차층 및 제3위상차층 전체의 파장 550nm에서 이축성 정도를 제어하였다.
본 발명의 편광판은 광학표시장치 예를 들면 발광표시장치에 적용하였을 때 극각 60°를 포함하는 전 방위에서 색상 산포를 줄일 수 있다. 상기 "색상 산포(color scattering)"는 편광판을 광학표시장치에 적용하였을 때, 각 방위에서 시인되는 색상의 차이를 나타낸다.
또한, 본 발명의 편광판은 측면으로서 극각(polar angle, θ) 0° 내지 60°에서의 반사율을 낮출 수 있다. 이를 통해, 본 발명의 편광판은 표시 장치 전체에서의 화면 시인성을 좋게 할 수 있다. 특히, 측면에서의 반사율을 낮출 수 있는 편광판이더라도 색상 산포를 반드시 낮출 수 있는 것이 아닌데, 본 발명의 편광판은 색상 산포와 반사율을 동시에 낮춤으로써 화면 시인성을 현저하게 개선하였다. 본 발명의 편광판은 측면 전체에서 반사율을 1% 이하, 예를 들면 0% 내지 1%로 현저하게 낮출 수 있다.
이하, 본 발명의 일 실시예의 편광판을 도 1을 참고하여 설명한다.
도 1을 참고하면, 편광판은 편광자(400)의 하부면에 제1위상차층(100), 제2위상차층(200) 및 제3위상차층(300)의 순서로 적층되어 있다. 편광자(400)의 상부면에는 보호층(500)이 적층되어 있다.
제1위상차층은 포지티브 C 위상차층을 포함하고, 제2위상차층 및 제3위상차층은 하기 상술되는 면내 위상차를 가지며, 제2위상차층과 제3위상차층은 하기 상술되는 파장 분산성과 편광자의 흡수축에 대한 지상축의 각도를 갖는다. 이를 통해, 편광판을 광학표시장치에 적용하였을 때 색상 산포를 줄일 수 있고, 측면 전체에서 반사율을 낮출 수 있다. 도 1의 편광판에서, 제1위상차층이 제2위상차층과 제3위상차층 사이에 배치되는 경우 및 제1위상차층이 제3위상차층의 하부면에 배치되는 경우 색상 산포가 커져서 광학표시장치에서의 화면 품질이 나빠지게 된다.
제1위상차층, 제2위상차층 및 제3위상차층은 파장 550nm에서 면내 위상차가 서로 다르다. 제1위상차층, 제2위상차층 및 제3위상차층은 파장 550nm에서 두께 방향 위상차 및 이축성 정도가 동일할 수도 있고 다를 수도 있다.
제2위상차층
제2위상차층(200)은 장파장에서 단파장으로 갈수록 면내 위상차가 증가하는 정파장 분산성을 나타낸다. 제2위상차층, 제3위상차층 중 어느 하나라도 정파장 분산성이 아닌 경우 본 발명의 효과를 제대로 구현할 수 없거나 효과가 현저하게 낮아질 수 있다.
구체적으로, 제2위상차층은 하기 식 1과 하기 식 2를 나타낼 수 있다:
[식 1]
약 1.0 < Re(450)/Re(550) ≤ 약 1.1
[식 2]
약 0.9 ≤ Re(650)/Re(550) < 약 1.0
(상기 식 1, 식 2에서, Re(450), Re(550), Re(650)은 각각 제2위상차층의 파장 450nm, 550nm, 650nm에서의 면내 위상차(단위: nm)).
일 구체예에서, 제2위상차층은 Re(450)/Re(550)이 약 1.01 내지 약 1.05가 될 수 있다. 상기 범위에서, 정면 및 측면 반사율 감소 효과가 우수할 수 있다. 예를 들면, 상기 제2 위상차층은 Re(450)/Re(550)이 약 1.01, 1,02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09 또는 1.1 일 수 있다.
일 구체예에서, 제2위상차층은 Re(650)/Re(550)이 제3위상차층의 Re(650)/Re(550) 대비 클 수 있고, 약 0.95 이상 약 1.00 미만이 될 수 있다. 상기 범위에서, 정면 및 측면 반사율 감소 효과가 우수할 수 있다.
예를 들면 상기 제2 위상차층은 상기 Re(650)/Re(550)이 약 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995 또는 0.999 일 수 있다.
일 구체예에서, 제2위상차층은 Re(450)/Re(550)이 제3위상차층의 Re(450)/Re(550) 대비 작을 수 있고, 제2위상차층은 Re(650)/Re(550)이 제3위상차층의 Re(650)/Re(550) 대비 클 수 있다. 이런 경우, 반사율 감소 및 색상 산포 개선 효과가 더 커질 수 있다.
제2위상차층은 파장 550nm에서 면내 위상차가 약 220nm 내지 약 280nm이다. 상기 범위에서, 색상 산포와 반사율을 줄이는데 도움을 줄 수 있다. 구체적으로 면내 위상차는 약 225nm 내지 약 275nm, 더 구체적으로 약 230nm 내지 약 270nm, 가장 구체적으로 약 230nm 내지 약 260nm가 될 수 있다. 예를 들면 상기 제2위상차층은 파장 550nm에서 면내 위상차가 약 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275 또는 280nm일 수 있다.
일 구체예에서, 제2위상차층은 파장 450nm에서 면내 위상차가 220nm 내지 280nm, 구체적으로 225nm 내지 275nm, 220nm 내지 270nm, 더 구체적으로 230nm 내지 270nm, 가장 구체적으로 230nm 내지 260nm가 될 수 있다. 상기 범위에서, 상술한 파장 분산성에 도달할 수 있고, 정면 및 측면 반사율을 낮출 수 있다. 예를 들면 상기 제2위상차층은 파장 450nm에서 면내 위상차가 약 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275 또는 280nm일 수 있다.
일 구체예에서, 제2위상차층은 파장 650nm에서 면내 위상차가 220nm 내지 280nm, 구체적으로 225nm 내지 275nm, 더 구체적으로 230nm 내지 270nm, 가장 구체적으로 230nm 내지 260nm가 될 수 있다. 상기 범위에서, 상술한 파장 분산성에 도달할 수 있고, 정면 및 측면 반사율을 낮출 수 있다. 예를 들면 상기 제2위상차층은 파장 650nm에서 면내 위상차가 약 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275 또는 280nm일 수 있다.
제2위상차층의 지상축은 편광자의 흡수축(편광자의 MD(machine direction)) 대비 특정 각도를 갖는다.
도 2를 참조하면, 편광자(400)의 흡수(410)을 0°라고 할 때, 편광자의 흡수축(410)과 제2위상차층(200)의 지상축(210)이 이루는 각도(θ2)는 약 +14° 내지 약 +24° 또는 약 -24° 내지 약 -14°이다. 상기 각도 범위에서, 색상 산포 및 반사율을 줄이는데 도움을 줄 수 있고 편광자와 제2위상차층을 롤 투 롤로 접합하더라도 본 발명의 효과를 내도록 함으로써 공정성도 동시에 개선할 수 있다. 바람직하게는 상기 각도(θ2)는 약 +16° 내지 약 +22° 또는 약 -22° 내지 약 -16°, 더 바람직하게는 약 +18° 내지 약 +21° 또는 약 -21° 내지 약 -18°가 될 수 있다. 예를 들면 상기 각도(θ2)는 약 +14°, +15°, +16°, +17°, +18°, +19°, +20°, +21°, +22°, +23° 또는 +24° 이거나, 약 -24°, -23°, -22°, -21°, -20°, -19°, -18°, -17°, -16°, -15°또는 -14°일 수 있다.
본 명세서에서 각도 기재 시 "+", "-"는 각각 0°(즉, 편광자의 흡수축)를 기준으로 시계 방향, 반시계 방향을 의미한다. 상기 각도는 편광자에 제2위상차층 부착시 편광자의 흡수축과 지상축 간의 각도를 조절하여 합지함으로써 달성될 수 있지만, 이에 제한되지 않는다.
일 구체예에서, 제2위상차층은 하기 식 3의 굴절률 관계를 갖는다: 이를 통해 본 발명의 측면 반사율 저감 효과가 좋아질 수 있다:
[식 3]
nx > ny ≒ nz
(상기 식 3에서, 상기 nx, ny, nz는 각각 파장 550nm에서 제2위상차층의 지상축 방향, 진상축 방향, 두께 방향 굴절률이다).
일 구체예에서, 제2위상차층은 포지티브 A 위상차층이다. 이를 통해, 측면 전체에서 반사율 저감 효과가 좋아질 수 있다.
일 구체예에서, 제2위상차층은 파장 550nm에서 두께 방향 위상차가 양(+)의 값을 갖는데, 약 100nm 내지 약 300nm, 바람직하게는 약 110nm 내지 약 250nm, 더 바람직하게는 약 150nm 내지 약 250nm가 될 수 있다. 상기 범위에서, 측면 전체에서 반사율 저감 효과가 좋아질 수 있다.
일 구체예에서, 제2위상차층은 파장 550nm에서 이축성 정도가 약 0.1 내지 약 3.0, 바람직하게는 약 1.0 내지 약 2.0, 더 바람직하게는 약 1.0 내지 약 1.5가 될 수 있다. 상기 범위에서, 측면 전체에서 반사율 저감 효과가 좋아질 수 있다. 예를 들면 상기 제2위상차층은 파장 550nm에서 이축성 정도가 약 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 또는 3.0이 될 수 있다.
제2위상차층은 고유 복굴절이 양인 수지를 포함하는 조성물로 형성된 필름을 포함할 수 있다. 따라서, 연신 방향의 굴절률이 연신 방향과 직교하는 굴절률 대비 큰 제2위상차층을 용이하게 제조할 수 있다.
고유 복굴절이 양인 수지는 고유 복굴절이 양인 중합체를 포함한다. 고유 복굴절이 양인 중합체는 예를 들면 노르보르넨 중합체 등의 시클릭올레핀폴리머; 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르; 폴리비닐알코올; 폴리염화비닐; 폴리아릴술폰; 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀; 폴리아릴레이트; 막대형 액정 폴리머 중 1종 이상을 포함할 수 있다. 구체적으로, 기계적 물성, 내열성, 투명성, 치수 안정성이 뛰어난 폴리올레핀계, 시클릭올레핀폴리머, 또는 위상차 발현성 및 낮은 온도에서 연신이 뛰어난 폴리카보네이트가 바람직하다. 고유 복굴절이 양인 중합체는 단독 또는 2종 이상 혼합하여 포함될 수 있다. 바람직하게는, 제2위상차층은 경사 연신, 파장 분산성 등을 고려하여 시클릭올레핀폴리머 등을 포함할 수 있다.
제2위상차층의 정파장 분산성은 상기 고유 복굴절이 양인 수지의 종류뿐만 아니라 해당 수지 중 단량체의 비율 등을 고려하여 조절될 수 있다.
제2위상차층은 고유 복굴절이 양인 수지 이외에 통상의 첨가제를 더 포함할 수 있다. 예를 들면, 첨가제는 안료, 염료 등의 착색 방지제, 열안정제, 광안정제, UV 흡수제, 정전기 방지제, 산화 방지제, 미립자, 계면 활성제 등을 포함할 수 있지만, 이에 제한되지 않는다.
제2위상차층은 두께가 약 5㎛ 내지 약 100㎛, 구체적으로 약 5㎛ 내지 약 60㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
제2위상차층은 상술한 고유 복굴절이 양인 수지를 포함하는 조성물을 용융 성형, 사출 성형, 프레스 성형에 의해 미연신 필름을 제조하고, 상기 미연신 필름을 경사 방향으로 연신함으로써 제조될 수 있다. 연신 배율은 약 1.1배 이상 약 4.0배 이하, 구체적으로 약 1.3배 이상 약 3.0배 이하가 될 수 있다. 상기 범위에서, 제2위상차층의 지상축 방향을 제어할 수 있고, 연신 방향의 굴절률을 크게 할 수 있다. 연신 온도는 상기 미연신 필름의 유리전이온도(Tg) + 2℃ 이상, Tg + 30℃ 이하의 온도가 될 수 있다.
상기 연신 방향은 상술한 편광자의 흡수축과 제2위상차층의 지상축 간의 각도를 만족하면서 롤-투-롤에 의한 편광판 제조가 용이할 수 있도록 설정될 수 있다.
도 2를 참조하면, 편광자와 제2위상차층은 각각 서로 MD가 실질적으로 평행함으로써 편광판을 롤-투-롤로 제조할 수 있어 공정성을 개선할 수 있다. 결국, 제2위상차층은 제2위상차층의 MD에 대하여 지상축이 약 +14° 내지 약 +24° 또는 약 -24° 내지 약 -14°, 바람직하게는 약 +16° 내지 약 +22° 또는 약 -22° 내지 약 -16°, 더 바람직하게는 약 +18° 내지 약 +21° 또는 약 -21° 내지 약 -18°가 됨으로써 본 발명의 효과를 얻을 수 있다.
제2위상차층은 상술한 연신 필름으로서 제2위상차층 자체로 편광판에 포함될 수도 있다. 그러나, 제2위상차층에 프라이머층을 더 형성함으로써 제2위상차층과 제3위상차층 간의 접착력을 높일 수 있다. 프라이머층은 아크릴 수지, 우레탄 수지, 아크릴 우레탄 수지, 에스테르 수지, 에틸렌 이민 수지 중 1종 이상을 포함할 수 있지만, 이에 제한되지 않는다.
제3위상차층
제3위상차층(300)은 편광판 중 제2위상차층의 하부면에 적층된다. 제3위상차층이 편광판 중 제2위상차층의 상부면에 적층되어, 편광자로부터 제1위상차층, 제3위상차층, 제2위상차층의 순서로 적층되는 경우 외광이 차단되지 않을 수 있는 문제점이 있을 수 있다.
제3위상차층은 장파장에서 단파장으로 갈수록 면내 위상차가 증가하는 정파장 분산성을 나타낸다. 이를 통해, 편광판은 광학표시장치에 적용시 색상 산포와 반사율을 줄이는데 도움을 줄 수 있다. 구체적으로, 제3위상차층은 하기 식 4와 하기 식 5를 만족할 수 있다:
[식 4]
약 1.0 < Re(450)/Re(550) ≤ 약 1.2
[식 5]
약 0.9 ≤ Re(650)/Re(550) < 약 1.0
(상기 식 4, 식 5에서, Re(450), Re(550), Re(650)은 각각 제3위상차층의 파장 450nm, 550nm, 650nm에서의 면내 위상차(단위:nm)).
일 구체예에서, 제3위상차층은 Re(450)/Re(550)이 약 1.05 내지 약 1.15, 더 구체적으로 약 1.1 내지 약 1.15가 될 수 있다. 상기 범위에서, 정면 및 측면 반사율 감소 효과가 우수할 수 있다. 예를 들면 상기 제3위상차층은 Re(450)/Re(550)이 약 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19 또는 1.2가 될 수 있다. 일 구체예에서, 제3위상차층은 Re(650)/Re(550)이 약 0.9 초과 약 0.95 이하가 될 수 있다. 상기 범위에서, 정면 및 측면 반사율 감소 효과가 우수할 수 있다. 예를 들면 상기 제3위상차층은 Re(650)/Re(550)이 약 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99 또는 0.999 일 수 있다.
제3위상차층은 파장 550nm에서 면내 위상차가 약 80nm 내지 약 145nm이다. 상기 범위에서 색상 산포와 반사율을 낮추는데 도움을 줄 수 있다. 구체적으로, 면내 위상차는 약 80nm 내지 약 140nm, 더 구체적으로 약 80nm 내지 약 135nm, 약 80nm 내지 약 130nm, 약 90nm 내지 약 130nm가 될 수 있다. 예를 들면, 제3위상차층은 파장 550nm에서 면내 위상차가 약 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140 또는 145nm일 수 있다.
일 구체예에서, 제3위상차층은 파장 450nm에서 면내 위상차가 약 100nm 내지 약 160nm, 구체적으로 약 105nm 내지 약 155nm, 더 구체적으로 약 110nm 내지 약 150nm가 될 수 있다. 상기 범위에서, 상술한 파장 분산성에 도달할 수 있고, 정면 및 측면 반사율 감소 효과가 있을 수 있다. 예를 들면, 제3위상차층은 파장 450nm에서 면내 위상차가 약 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155 또는 160nm일 수 있다.
일 구체예에서, 제3위상차층은 파장 650nm에서 면내 위상차가 약 80nm 내지 약 140nm, 구체적으로 약 85nm 내지 약 135nm, 더 구체적으로 약 90nm 내지 약 130nm가 될 수 있다. 상기 범위에서, 상술한 파장 분산성에 도달할 수 있고, 정면 및 측면 반사율 감소 효과가 있을 수 있다. 예를 들면, 제3위상차층은 파장 650nm에서 면내 위상차가 약 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 또는 140nm일 수 있다.
제3위상차층은 하기 식 6의 굴절률 관계를 갖는다: 이를 통해 본 발명의 측면 반사율 저감 효과가 좋아질 수 있다:
[식 6]
nx ≒ nz > ny
(상기 식 6에서, nx, ny, nz는 각각 파장 550nm에서 제3위상차층의 지상축 방향, 진상축 방향, 두께 방향 굴절률이다).
일 구체예에서, 제3위상차층은 네가티브 A 위상차층이다. 이를 통해 본 발명의 측면 반사율 저감 효과가 좋아질 수 있다.
제2위상차층의 지상축은 편광자의 흡수축과 제3위상차층의 지상축 사이에 존재한다. 제3위상차층의 지상축은 편광자의 흡수축 대비 특정 각도를 갖는다.
도 2를 참조하면, 편광자(400)의 흡수축(410)을 0°라고 할 때, 편광자의 흡수축(410)과 제3위상차층(300)의 지상축(310)이 이루는 각도(θ3)는 약 +79° 내지 약 +89° 또는 약 -89° 내지 약 -79°가 된다. 상기 각도 범위에서, 색상 산포 및 반사율을 줄이는데 도움을 줄 수 있고 편광자와 제3위상차층을 롤 투 롤로 접합하더라도 본 발명의 효과를 내도록 함으로써 공정성도 동시에 개선할 수 있다. 바람직하게는 상기 각도는 약 +81° 내지 약 +87° 또는 약 -87° 내지 약 -81°, 약 +82° 내지 약 +86° 또는 약 -86° 내지 약 -82°가 될 수 있다. 예를 들면 상기 각도(θ3)는 약 +79°, +80°, +81°, +82°, +83°, +84°, +85°, +86°, +87°, +88° 또는 +89° 이거나, 약 -89°, -88°, -87°, -86°, -85°, -84°, -83°, -82°, -81°, -80° 또는 -79°가 될 수 있다.
상기 각도는 편광자에 제3위상차층 점착시 편광자의 흡수축과 제3위상차층의 지상축 간의 각도를 조절하여 합지함으로써 달성될 수 있다. 도 2를 참조하면, 편광자와 제3지상축은 각각 서로 MD가 실질적으로 평행함으로써 편광판을 롤-투-롤로 제조할 수 있어 공정성을 개선할 수 있다. 결국, 제3위상차층은 제3위상차층의 MD에 대하여 지상축이 약 +79° 내지 약 +89° 또는 약 -89° 내지 약 -79°, 바람직하게는 약 +81° 내지 약 +87° 또는 약 -87° 내지 약 -81°, 더 바람직하게는 약 +82° 내지 약 +86° 또는 약 -86° 내지 약 -82°가 됨으로써 본 발명의 효과를 얻을 수 있다.
일 구체예에서, 도 2를 참조하면, 각도 θ2가 약 +14° 내지 약 +24°이고, 각도 θ3은 약 +79° 내지 약 +89°가 될 수 있다. 예를 들면 상기 각도(θ2)는 약 +14°, +15°, +16°, +17°, +18°, +19°, +20°, +21°, +22°, +23° 또는 +24° 이고, 상기 각도(θ3)은 약 +79°, +80°, +81°, +82°, +83°, +84°, +85°, +86°, +87°, +88° 또는 +89°일 수 있다.
다른 구체예에서, 도 2를 참조하면, 각도 θ2가 약 -24° 내지 약 -14°이고, 각도 θ3은 약 -89° 내지 약 -79°가 될 수 있다. 예를 들면 상기 각도(θ2)는 약 -24°, -23°, -22°, -21°, -20°, -19°, -18°, -17°, -16°, -15°또는 -14°이고, 상기 각도(θ3)은 약 -89°, -88°, -87°, -86°, -85°, -84°, -83°, -82°, -81°, -80° 또는 -79°가 될 수 있다.
제3위상차층은 파장 550nm에서 두께 방향 위상차가 제2 위상층 대비 반대로 음(-)의 값을 갖는데, 약 -110nm 내지 약 -50nm, 구체적으로 약 -110nm 내지 약 -60nm, 더 구체적으로 약 -100nm 내지 약 -70nm가 될 수 있다. 상기 범위에서, 정면 반사율 및 측면 반사율 개선 효과가 있을 수 있다. 예를 들면 제3위상차층은 파장 550nm에서 두께 방향 위상차가 약 -110, -105, -100, -95, -90, -85, -80, -75, -70, -65, -60, -55 또는 -50nm 일 수 있다.
제3위상차층은 파장 550nm에서 이축성 정도가 약 -1.0 내지 약 0.5, 구체적으로 약 -1.0 내지 약 0, 더 구체적으로 약 -1.0 이상 약 0 미만이 될 수 있다. 상기 범위에서, 정면 반사율 및 측면 반사율 개선 효과가 있을 수 있다. 예를 들면 상기 제3위상차층은 파장 550nm에서 이축성 정도가 약 -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4 또는 0.5가 될 수 있다.
제3위상차층은 두께가 약 2㎛ 내지 약 15㎛, 구체적으로 약 3㎛ 내지 약 10㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다. 예를 들면 상기 제3위상차층은 두께가 약 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 또는 15㎛가 될 수 있다.
제2위상차층의 지상축과 제3위상차층의 지상축은 특정 각도 범위를 이룰 수 있으며, 이를 통해 편광판 제조 공정성을 개선할 수 있다.
도 2를 참조하면, 제2위상차층(200)의 지상축(210)과 제3위상차층(300)의 지상축(310) 간의 각도(θ1)는 약 61° 내지 약 67°, 바람직하게는 약 63° 내지 약 66°가 될 수 있다. 상기 범위에서, 반사광 차단 효과가 있을 수 있다. 예를 들면 상기 각도(θ1)는 약 61°, 62°, 63°, 64°, 65°, 66° 또는 67°일 수 있다.
제3위상차층은 고유 복굴절이 음인 수지를 포함하는 제3위상차층용 조성물로 형성될 수 있다.
고유 복굴절이 음인 수지는 고유 복굴절이 음인 중합체를 포함한다. 고유 복굴절이 음인 중합체는 예를 들면 스티렌 또는 스티렌 유도체의 단독 중합체, 스티렌 또는 스티렌 유도체와 공단량체 간의 공중합체를 포함하는 폴리스티렌계 중합체, 폴리아크릴로니트릴 중합체, 폴리메틸메타아크릴레이트 공중합체, 셀룰로스 에스테르 등의 셀룰로스계 공중합체 중 1종 이상을 포함할 수 있지만 이에 제한되지 않는다. 상기 공단량체는 아크릴로니트릴, 무수말레산, 메틸메타아크릴레이트, 부타디엔 중 1종 이상을 포함할 수 있다. 구체적으로, 바람직하게는, 제3위상차층은 폴리스티렌계 중합체, 셀룰로스계 공중합체 중 1종 이상을 포함할 수 있고, 더 바람직하게는 폴리스티렌계 중합체를 포함할 수 있다.
제3위상차층은 고유 복굴절이 음인 수지 이외에 통상의 첨가제를 더 포함할 수 있다. 예를 들면, 첨가제는 가소제, 안료, 염료 등의 착색 방지제, 열안정제, 광안정제, UV 흡수제, 정전기 방지제, 산화 방지제, 미립자, 계면 활성제 등을 포함할 수 있지만, 이에 제한되지 않는다.
제3위상차층의 정파장 분산성은 상기 고유 복굴절이 음인 수지의 종류뿐만 아니라 해당 수지 중 단량체의 비율 등을 고려하여 조절될 수 있다.
제3위상차층의 제조는 하기에서 상술한다.
제2위상차층과 제3위상차층의 적층체
제2위상차층과 제3위상차층의 적층체는 장파장에서 단파장으로 갈수록 면내 위상차가 감소하는 역파장 분산성을 나타낼 수 있다. 이를 통해, 본 발명의 편광판은 제2위상차층과 제3위상차층 적층체는 역파장 분산성이지만 제2위상차층과 제3위상차층 각각을 정파장 분산성으로 함으로써 역파장 분산성 1매형 필름을 사용한 경우 대비 측면 반사율을 더 낮춤과 동시에 색상 산포를 낮출 수 있어 광학표시장치에 적용시 측면에서 화면 품질을 개선할 수 있다.
일 구체예에서, 제2위상차층과 제3위상차층의 적층체는 파장 550nm에서 면내 위상차가 약 140nm 내지 약 200nm, 구체적으로 약 140nm 내지 약 195nm, 더 구체적으로 약 140nm 내지 약 190nm, 더 구체적으로 약 150nm 내지 약 190nm가 될 수 있다. 상기 범위에서, 측면 반사율을 낮출 수 있다. 예를 들면 상기 제2위상차층과 제3위상차층의 적층체는 파장 550nm에서 면내 위상차가 약 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195 또는 200nm 일 수 있다.
일 구체예에서, 제2위상차층과 제3위상차층의 적층체는 파장 550nm에서 두께 방향 위상차가 약 5nm 내지 약 200nm, 구체적으로 약 10nm 내지 약 150nm, 더 구체적으로 약 50nm 내지 약 150nm, 더 구체적으로 약 50nm 내지 약 100nm 가 될 수 있다. 상기 범위에서, 측면 반사율을 낮출 수 있다. 예를 들면 상기 제2위상차층과 제3위상차층의 적층체는 파장 550nm에서 두께 방향 위상차가 약 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195 또는 200nm 일 수 있다.
제2위상차층과 제3위상차층의 적층체는 두께가 약 0㎛ 초과 약 70㎛ 이하, 구체적으로 약 5㎛ 내지 약 60㎛, 더 구체적으로 약 10㎛ 내지 약 60㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
제2위상차층과 제3위상차층의 적층체에 대해 상술한다.
일 구체예에서, 제3위상차층은 연신 필름이 될 수 있다. 제3위상차층은 점착층 및/또는 접착층에 의해 제2위상차층에 접합될 수 있다.
제3위상차층은 상술한 제3위상차층용 조성물을 용융 성형, 사출 성형, 프레스 성형에 의해 미연신 필름을 제조하고, 상기 미연신 필름을 경사 방향으로 연신함으로써 제조될 수 있다. 연신 배율은 약 1.1배 이상, 약 4.0배 이하, 구체적으로 약 1.3배 이상 약 3.0배 이하가 될 수 있다. 상기 범위에서, 제3위상차층의 지상축 방향을 제어할 수 있고, 연신 방향의 굴절률을 크게 할 수 있다. 연신 온도는 상기 미연신 필름의 유리전이온도(Tg) + 2℃ 이상, Tg + 30℃ 이하의 온도가 될 수 있다.
상기 연신 방향은 상술한 편광자의 흡수축과 제3위상차층의 지상축 간의 각도를 만족하면서 롤-투-롤에 의한 편광판 제조가 용이할 수 있도록 설정될 수 있다.
다른 구체예에서, 제3위상차층은 코팅층이 될 수 있다.
이 경우, 제3위상차층은 제2위상차층에 직접적으로 형성됨으로써, 제2위상차층과 제3위상차층의 적층체는 1매형의 단일 필름이 될 수 있다. 이를 통해, 편광판은 제2위상차층과 제3위상차층의 적층체를 편광자에 접착시 롤 투 롤 합지가 가능하므로 공정성을 개선하고 불량 감소로 인한 수율을 향상시킬 수 있다. 제2위상차층과 제3위상차층은 서로 다른 면내 위상차를 갖지만, 서로 직접적으로 형성됨으로써, 편광판의 박형화 효과 및 공정성 개선 효과를 얻는다.
제3위상차층은 제2위상차층의 제조를 위한 필름에 상술한 제3위상차층용 조성물을 코팅하여 얻은 적층체를 동시에 경사 연신함으로써 제조될 수 있다.
제1위상차층
제1위상차층(100)은 제2위상차층의 상부면에 적층되어야 한다. 제1위상차층이 제2위상차층과 제3위상차층 사이에 있거나 제3위상차층의 하부면에 적층되는 경우 색상 산포가 현저하게 커질 수 있으며 반사율도 높아지게 된다.
제1위상차층은 하기 식 7의 굴절률 관계를 만족하는 포지티브 C 위상차층이 될 수 있다. 이를 통해, 편광판은 측면에서의 색상 산포를 줄일 수 있다:
[식 7]
nz > nx ≒ ny
(상기 식 7에서, nx, ny, nz는 각각 파장 550nm에서 제1위상차층의 지상축 방향, 진상축 방향, 두께 방향 굴절률이다).
일 구체예에서, 제1위상차층은 파장 550nm에서 두께 방향 위상차가 약 -150nm 내지 약 0nm, 구체적으로 약 -150nm 내지 약 -10nm, 더 구체적으로 약 -150nm 내지 약 -50nm가 될 수 있다. 상기 범위에서, 본 발명의 효과가 더 개선될 수 있다. 예를 들면 제1위상차층은 파장 550nm에서 두께 방향 위상차가 약 -150, -145, -140, -135, -130, -125, -120, -115, -110, -105, -100, -95, -90, -85, -80, -75, -70, -65, -60, -55, -50, -45, -40, -35, -30, -25, -20, -15, -10, -5 또는 0nm일 수 있다.
일 구체예에서, 제1위상차층은 파장 550nm에서 면내 위상차가 약 0nm 내지 약 10nm, 구체적으로 약 0nm 내지 약 5nm가 될 수 있다. 상기 범위에서, 본 발명의 효과가 더 개선될 수 있다. 예를 들면 상기 제1위상차층은 파장 550nm에서 면내 위상차가 약 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 약 10nm일 수 있다.
일 구체예에서, 제1위상차층은 파장 550nm에서, nx가 약 1.5 내지 약 1.6, ny가 약 1.5 내지 약 1.6, nz가 약 1.6 내지 약 1.7가 될 수 있다. 상기 범위에서, 본 발명의 효과가 더 개선될 수 있다.
예를 들면 상기 제1위상차층은 파장 550nm에서, nx가 약 1.5, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.57, 1.58, 1.59 또는 1.6 일 수 있으며, ny가 약 1.5, 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.57, 1.58, 1.59 또는 1.6 일 수 있으며, nz가 약 1.6, 1.61, 1.62, 1.63, 1.64, 1.65, 1.66, 1.67, 1.68, 1.69 또는 1.7이 될 수 있다.
제1위상차층은 상술한 포지티브 C 위상차층을 구현할 수 있다면, 연신 필름이거나 코팅층이 될 수 있다.
일 구체예에서, 제1위상차층은 연신 필름이 될 수 있다. 연신 필름은 당업자에게 통상적으로 알려진 중합체 예를 들면 푸마르산 디에스테르계 수지를 포함하는 조성물로 형성될 수 있지만, 이에 제한되지 않는다.
다른 구체예에서, 제1위상차층은 코팅층이 될 수 있다. 코팅층용 물질로는 액정을 사용함으로써, 두께 방향 위상차 구현이 용이하도록 할 수 있다. 액정은 당업자에게 알려진 통상의 종류를 사용할 수 있는데, 예를 들면 네마틱 액정을 포함할 수 있다.
제1위상차층은 두께가 약 0㎛ 초과 약 70㎛ 이하, 구체적으로 약 5㎛ 내지 약 60㎛, 더 구체적으로 약 10㎛ 내지 약 60㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
제1위상차층은 제2위상차층에 직접적으로 형성되거나 또는 점착층 및/또는 접착층을 통해 접합될 수 있다.
제1위상차층, 제2위상차층 및 제3위상차층의 적층체
제1위상차층, 제2위상차층 및 제3위상차층의 적층체는 파장 550nm에서 이축성 정도가 약 0.4 내지 약 1.0, 구체적으로 약 0.4 내지 약 0.9, 약 0.4 내지 약 0.7, 약 0.4 내지 약 0.6, 약 0.4 내지 약 0.5가 될 수 있다. 상기 범위에서, 측면 중 약 5° 내지 약 60° 전체 범위에서 반사율이 낮아지고, 색상 산포 감소 효과가 더 개선될 수 있다. 예를 들면, 상기 제1위상차층, 제2위상차층 및 제3위상차층의 적층체는 파장 550nm에서 이축성 정도가 약 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 또는 1.0일 수 있다.
편광자
편광자(400)는 제1위상차층의 상부면에 적층되어 외부 광 또는 제1위상차층으로부터 입사되는 광을 선 편광시킴으로써 측면에서 반사율을 낮출 수 있다.
편광자는 편광도가 약 99% 이상, 싱글 광 투과율(Ts)이 약 44% 이상이 될 수 있다. 편광자는 상기 편광도와 싱글 광 투과율을 동시에 만족함으로써 상술한 제1위상차층, 제2위상차층 및 제3위상차층의 적층체에 적층되었을 때 측면 특히 극각(θ) 약 5° 내지 약 60° 전체 범위에서 측면 반사율이 현저하게 낮아질 수 있다. 상기 "싱글 광 투과율"은 가시광선 영역 예를 들면 파장 400nm 내지 700nm에서 측정된 싱글 광 투과율(Ts)을 의미하고 당업자에게 알려진 통상의 방법으로 측정될 수 있다. 상기 "편광도"는 당업자에게 알려진 통상의 방법으로 측정될 수 있다. 구체적으로, 편광도는 약 99% 내지 약 99.9999%, 광 투과율은 약 44% 내지 약 50%가 될 수 있다.
편광자는 파장 380nm 내지 780nm에서 직교 광 투과율(Tc)이 약 0.001% 내지 약 0.7%, 구체적으로 약 0.01% 내지 약 0.2%, 더 구체적으로 약 0.05% 내지 약 0.2%가 될 수 있다. 상기 범위에서, 측면 특히 극각 약 5° 내지 약 60° 전체 범위에서 반사 방지 효과가 있을 수 있다.
편광자는 제1위상차층, 제2위상차층 및 제3위상차층의 적층체에 롤 투 롤로 합지되어, 편광자의 MD는 제1위상차층, 제2위상차층 및 제3위상차층 각각의 MD와 실질적으로 동일한 방향이다. 따라서, 제1위상차층, 제2위상차층 및 제3위상차층의 적층체는 편광자의 하부 보호 필름으로 기능하여 편광자의 하부면에는 별도의 보호 필름을 적층시킬 필요가 없어 편광판을 박형화시킬 수 있다.
편광자의 흡수축은 편광자의 MD로 편광자 제조시 연신 방향이 될 수 있다. 편광자는 폴리비닐알코올계 필름을 1축 연신하여 제조되는 폴리비닐알콜계 편광자, 또는 폴리비닐알코올계 필름을 탈수하여 제조되는 폴리엔계 편광자를 포함할 수 있다. 일 구체예에서, 편광자는 폴리비닐알코올계 필름을 염색, 연신, 가교, 색상 보정 공정에 의해 제조될 수 있다. 상술한 편광도와 광 투과율을 동시에 갖는 편광자는 상술한 염색, 연신, 가교, 색상 보정 공정에서 조건을 적절히 변경함으로써 달성될 수 있다.
편광자는 두께가 약 5㎛ 내지 약 40㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다. 예를 들면 상기 편광자는 두께가 약 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 또는 40㎛ 가 될 수 있다.
도 1에서 도시되지 않았지만, 편광자와 제1위상차층 사이에는 점착층, 접착층, 점접착층, 하기 상술되는 보호층 또는 이들의 조합이 더 포함될 수 있다.
보호층
보호층(500)은 편광자의 상부면에 적층되어 편광자를 보호할 수 있다. 보호층은 편광자를 보호하여 편광판의 신뢰성을 높이고 편광판의 기계적 강도를 높일 수 있다. 도 1에서 보호층이 없어도 편광판의 기계적 물성이 확보될 수 있다면, 보호층은 생략될 수도 있다.
보호층은 광학적으로 투명한, 보호 필름 또는 보호 코팅층 중 하나 이상을 포함할 수 있다. 보호 필름은 트리아세틸셀룰로스(TAC) 등을 포함하는 셀룰로스 에스테르계 수지, 비정성 환상 폴리올레핀(COP) 등을 포함하는 고리형 폴리올레핀계 수지, 폴리카보네이트계 수지, 폴리에틸렌테레프탈레이트(PET) 등을 포함하는 폴리에스테르계 수지, 폴리에테르술폰계 수지, 폴리술폰계 수지, 폴리아미드계 수지, 폴리이미드계 수지, 비환형-폴리올레핀계 수지, 폴리메틸메타아크릴레이트 수지 등을 포함하는 폴리(메타)아크릴레이트계 수지, 폴리비닐알코올계 수지, 폴리염화비닐계 수지, 폴리염화비닐리덴계 수지 중 하나 이상으로 형성된 필름을 포함할 수 있지만, 이에 제한되지 않는다.
보호 코팅층은 활성 에너지선 경화성 화합물과 중합 개시제를 포함하는 활성 에너지선 경화성 수지 조성물로 형성될 수 있다. 활성 에너지선 경화성 화합물은 양이온 중합성 경화성 화합물, 라디칼 중합성의 경화성 화합물, 우레탄 수지, 실리콘계 수지 중 하나 이상을 포함할 수 있다.
보호층은 무위상차 필름이거나 제2위상차층, 제3위상차층 대비 면내 위상차가 낮고 제1 위상차층 대비 두께 방향 위상차의 절대값이 낮다. 예를 들면, 보호층은 파장 550nm에서 면내 위상차가 약 120nm 내지 약 160nm, 혹은 약 5nm 내지 약 0nm가 될 수 있다. 상기 범위에서, 제1위상차층, 제2위상차층 및 제3위상차층의 효과에 영향을 주지 않으면서 편광판을 보호할 수 있다.
보호층은 두께가 약 10㎛ 이하, 또는 약 5㎛ 내지 300㎛, 약 5㎛ 이하, 또는 약 5㎛ 내지 약 200㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
도 1에서 도시되지 않았지만, 보호층의 상부면에는 기능성 코팅층이 추가로 형성될 수 있다. 기능성 코팅층은 하드코팅층, 내지문성층, 반사방지층, 안티글레어층, 저반사층, 초저반사층 중 1종 이상을 포함할 수 있지만 이에 제한되지 않는다.
도 1에서 도시되지 않았지만, 제3위상차층의 하부면에는 점착층 및/또는 접착층이 더 형성됨으로써, 편광판을 광학표시장치에 적층시킬 수 있다.
이하, 본 발명의 광학표시장치를 설명한다.
본 발명의 광학표시장치는 본 발명의 편광판 중 하나 이상을 포함할 수 있다. 일 실시예에서 광학표시장치는 액정표시장치, 발광소자 표시 장치, 바람직하게는 발광소자 표시 장치 등을 포함할 수 있다. 상기 액정표시장치는 IPS(In Place Switching) 용 액정을 갖는 액정표시장치를 포함할 수 있다. 상기 발광소자 표시 장치는 유기 또는 유무기 발광소자를 포함하고, 예를 들면 LED(light emitting diode), OLED(organic light emitting diode), QLED(quantum dot light emitting diode), 형광체 등의 발광물질을 포함하는 발광소자를 의미할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다.
실시예 1
폴리비닐알콜 필름을 60℃에서 3배 연신하고 요오드를 흡착시킨 후 40℃의 붕산 수용액에서 2.5배 연신하여 편광자(두께: 12㎛)를 제조하였다.
편광자의 상부면에 하드코팅층이 형성된 트리아세틸셀룰로스(TAC) 필름(KA25-HC, Konica Minolta Opto, Inc., 두께:32㎛)을 접착시켰다. 편광자의 하부면에, 하기 상술되는 제1위상차층, 제2위상차층 및 제3위상차층의 적층체를 적층시키되, 편광자의 하부면으로부터 제1위상차층, 제2위상차층, 제3위상차층의 순서로 접착시켜, 롤-투-롤로 편광판을 제조하였다. 이때, 편광자의 흡수축 대비, 제2위상차층의 지상축, 제3위상차층의 지상축 간의 각도를 하기 표 1과 같이 조절하였다.
제2위상차층[정파장 분산성, 시클릭폴리올레핀계, Re(450)=253.7nm, Re(550)=250nm, Re(650)=249.7nm, Re(450)/Re(550)=1.015, Re(650)/Re(550)=0.999]과 제3위상차층[정파장 분산성, 폴리스티렌계, Re(450)=127.6nm, Re(550)=115nm, Re(650)=109.1nm, Re(450)/Re(550)=1.110, Re(650)/Re(550)=0.948]이 서로 적층된 필름[역파장 분산성, Re(450)/Re(550) =0.93, Re(650)/Re(550) = 1.03]에 대하여 제2위상차층의 상부면에 제1위상차층용 조성물로 액정 조성물(DNP사)을 코팅하고 경화시켜, 제1위상차층[포지티브 C 플레이트, 파장 550nm에서 Rth=-85nm, nx=1.57156, ny=1.57127, nz=1.65717]을 형성함으로써, 제1위상차층, 제2위상차층 및 제3위상차층의 적층체를 제조하였다. 상기 적층체의 파장 550nm에서 이축성 정도는 0.49이었다.
상기 필름은 시클로폴리올레핀계 공중합체를 포함하는 수지를 소정의 연신비로 경사 연신하고, 경사 연신된 시클로폴리올레핀계 공중합체의 필름 일면에 폴리스티렌계 공중합체를 포함하는 조성물을 코팅 및 건조시켜 적층체를 제조하고, 상기 적층체를 소정의 연신비로 다시 연신시켜 제조된 필름이다.
실시예 2 내지 실시예 3
실시예 1에서, 편광판의 상세 구성을 하기 표 1과 같이 한 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
비교예 1
실시예 1에서, 편광자의 하부면에 역파장 분산성 QWP 필름(Teijin사, 변성 PC, 파장 550nm에서 Re=139nm)을 적층시킨 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
비교예 2
실시예 1에서, 편광자의 하부면에 제1위상차층 없이 제2위상차층, 제3위상차층의 순서로 적층시킨 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
비교에 3
실시예 1에서, 편광자의 하부면에 제2위상차층, 제3위상차층, 제1위상차층의 순서로 적층시킨 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
비교예 4
실시예 1에서, 편광자의 하부면에 제1위상차층, HM필름(Teijin사, 변성 PC, 역파장 분산성, 파장 550nm에서 Re=139nm)을 적층시킨 것을 제외하고는 동일한 방법으로 편광판을 제조하였다.
하기 표 1에서 실시예와 비교예의 편광판의 구체적인 사양을 나타내었다.
[표 1]
Figure PCTKR2020007520-appb-I000001
*표 1에서, I는 편광자의 하부면에 제1위상차층-제2위상차층-제3위상차층의 순서로 적층;
II는 편광자의 하부면에 제2위상차층-제3위상차층의 순서로 적층;
III은 편광자의 하부면에 제2위상차층, 제3위상차층, 제1위상차층의 순서로 적층;
IV는 편광자의 하부면에 제1위상차층, 역파장 분산성 위상차층의 순서로 적층.
NZ는 편광자의 하부면에 배치되는 적층체의 파장 550nm에서 NZ.
실시예와 비교예에서 제조한 편광판의 측면 극각 각도에 따른 반사율(단위:%)을 평가하고 그 결과를 하기 표 2 및 도 3에 나타내었다. 상기 반사율은 Galaxy S7 패널에 표 1의 편광판을 부착하여 DMS803(Instrument Systems, Germany) 장비로 측정한 SCE(specular component excluded) 반사율을 측정하였다.
실시예와 비교예에서 제조한 편광판에 대해 SCE반사측정 방법으로 방위각에 따른 색상 산포를 평가하고 그 결과를 하기 표 2에 나타내었다. 상기 색상 산포는 CIE a*, b* 값에 기초하여 측정한 것으로, Galaxy S7 패널에 표 1의 편광판을 부착하고 SCE반사 측정 방법으로 평가하였다. 그로부터 얻은 결과를 방위각별로 반사 색상 이동 거리를 계산하여, 색상 산포를 평가할 수 있는 수치를 얻었다. 색상 산포는 0°에서 45° 단위로 180°까지 방위각을 변화시킬 때의 극각 60°에서의 색상값의 차이를 나타낸다. 수치가 낮을수록 색상 산포가 낮아 화면 품질이 우수함을 의미한다.
[표 2]
Figure PCTKR2020007520-appb-I000002
상기 표 2에서와 같이, 본 발명의 편광판은 색상 산포를 현저하게 낮추고, 측면에서의 반사율도 현저하게 낮추었다. 본 발명의 편광판은 반사율이 낮고 색상값이 낮았으며, 도 3을 참조하면, 본 발명의 편광판은 측면 극각 5° 내지 60° 전체에서 반사율이 낮았다. 또한, 본 발명의 편광판은 극각 60° 에서 CIE a*, b* 값으로 보았을 때 색상 산포가 낮았다. 특히, 상기 표 2에 의할 때, 측면 반사율이 낮다고 하여서 색상 산포가 반드시 낮은 경향을 나타내는 것이 아님을 충분히 알 수 있다.
반면에, 편광자의 하부면에 포지티브 C 층 없이 역파장 분산성 필름이 적층된 비교예 1, 편광자의 하부면에 포지티브 C 층과 역파장 분산성 필름이 적층된 비교예 4는 상기 표 2 및 도 3에 의할 때, 본 발명의 효과를 얻을 수 없었다. 특히, 본 발명에서 제2위상차층과 제3위상차층 전체는 역파장 분산성을 나타내지만, 비교예 4와 같이 포지티브 C층에 역파장 분산성 필름이 적층되더라도 측면에서의 반사율과 색상 산포가 현저하게 낮았다.
또한, 포지티브 C 층이 없는 비교예 2, 포지티브 C 층, 제2위상차층, 제3위상차층의 적층 순서가 본 발명의 순서를 만족하지 않는 비교예 3은 상기 표 2, 도 3에 의할 때, 본 발명의 효과를 얻을 수 없었다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (16)

  1. 편광자 및 상기 편광자의 하부면에 순차적으로 적층된 제1위상차층, 제2위상차층 및 제3위상차층을 포함하고,
    상기 제1위상차층은 포지티브 C 위상차층을 포함하고,
    상기 제2위상차층은 정파장 분산성이고, 파장 550nm에서 면내 위상차가 약 220nm 내지 약 280nm이고,
    상기 제3위상차층은 정파장 분산성이고, 파장 550nm에서 면내 위상차가 약 80nm 내지 약 145nm이고,
    상기 편광자의 흡수축을 0°라고 할 때, 상기 제2위상차층의 지상축(slow axis)이 이루는 각도 θ2는 약 +14° 내지 약 +24° 또는 약 -24° 내지 약 -14°이고, 상기 제3위상차층의 지상축(slow axis)이 이루는 각도 θ3은 약 +79° 내지 약 +89° 또는 약 -89° 내지 약 -79°인 것인, 편광판.
  2. 제1항에 있어서, 상기 각도 θ2는 약 +14° 내지 약 +24°이고, 상기 각도 θ3은 약 +79° 내지 약 +89°인 것인, 편광판.
  3. 제1항에 있어서, 상기 각도 θ2는 약 -24° 내지 약 -14°이고, 상기 각도 θ3은 약 -89° 내지 약 -79°인 것인, 편광판.
  4. 제1항에 있어서, 상기 제2위상차층의 지상축과 상기 제3위상차층의 지상축 간의 각도 θ1은 약 61° 내지 약 67°인 것인, 편광판.
  5. 제1항에 있어서, 상기 제1위상차층, 상기 제2위상차층과 상기 제3위상차층의 적층체는 파장 550nm에서 이축성 정도가 약 0.4 내지 약 1.0인 것인, 편광판.
  6. 제1항에 있어서, 상기 제2위상차층, 상기 제3위상차층 중 어느 하나는 하기 식 3의 굴절률 관계를 가지며, 나머지 하나는 하기 식6의 굴절률 관계를 갖는 것인, 편광판:
    [식 3]
    nx > ny ≒ nz
    (상기 식 3에서, 상기 nx, ny, nz는 각각 파장 550nm에 위상차층의 지상축 방향, 진상축 방향, 두께 방향 굴절률이다).
    [식 6]
    nx ≒ nz > ny
    (상기 식 6에서, nx, ny, nz는 각각 파장 550nm에서 위상차층의 지상축 방향, 진상축 방향, 두께 방향 굴절률이다).
  7. 제1항에 있어서, 상기 제2위상차층과 상기 제3위상차층의 적층체는 역장 분산성을 갖는 것인, 편광판.
  8. 제1항에 있어서, 상기 제2위상차층은 하기 식 1과 하기 식 2를 나타내는 것인, 편광판:
    [식 1]
    약 1.0 < Re(450)/Re(550) ≤ 약 1.1
    [식 2]
    약 0.9 ≤ Re(650)/Re(550) < 약 1.0
    (상기 식 1, 식 2에서, Re(450), Re(550), Re(650)은 각각 제2위상차층의 파장 450nm, 550nm, 650nm에서의 면내 위상차(단위: nm)).
  9. 제8항에 있어서, 상기 제2위상차층은 Re(450)/Re(550)이 상기 제3위상차층의 Re(450)/Re(550)보다 작고, 상기 제2위상차층은 Re(650)/Re(550)이 상기 제3위상차층의 Re(650)/Re(550)보다 큰 것인, 편광판.
  10. 제1항에 있어서, 상기 제3위상차층은 하기 식 4와 하기 식 5를 나타내는 것인, 편광판:
    [식 4]
    약 1.0 < Re(450)/Re(550) ≤ 약 1.2
    [식 5]
    약 0.9 ≤ Re(650)/Re(550) < 약 1.0
    (상기 식 4, 식 5에서, Re(450), Re(550), Re(650)은 각각 제3위상차층의 파장 450nm, 550nm, 650nm에서의 면내 위상차(단위:nm)).
  11. 제1항에 있어서, 상기 제1위상차층은 파장 550nm에서, nx가 약 1.5 내지 약 1.6, ny가 약 1.5 내지 약 1.6, nz가 약 1.6 내지 약 1.7인 것인, 편광판.
  12. 제1항에 있어서, 상기 제1위상차층은 파장 550nm에서 두께 방향 위상차가 약 -150nm 내지 약 0nm인 것인, 편광판.
  13. 제1항에 있어서, 상기 제2위상차층은 시클릭올레핀폴리머계 필름을 포함하고, 상기 제3위상차층은 폴리스티렌계 코팅층을 포함하는 것인, 편광판.
  14. 제1항에 있어서, 상기 편광자의 상부면 또는 상기 편광자와 상기 제1위상차층 사이에 보호층이 더 적층된 것인, 편광판.
  15. 제1항에 있어서, 상기 제3위상차층의 하부면에 점착층 또는 접착층이 더 형성된 것인, 편광판.
  16. 제1항 내지 제15항 중 어느 한 항의 편광판을 포함하는 광학표시장치.
PCT/KR2020/007520 2019-06-19 2020-06-10 편광판 및 이를 포함하는 광학표시장치 WO2020256337A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080032611.8A CN113767311A (zh) 2019-06-19 2020-06-10 偏光板和包含偏光板的光学显示装置
US17/593,905 US20220187522A1 (en) 2019-06-19 2020-06-10 Polarizing plate and optical display device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0073170 2019-06-19
KR1020190073170A KR102444973B1 (ko) 2019-06-19 2019-06-19 편광판 및 이를 포함하는 광학표시장치

Publications (1)

Publication Number Publication Date
WO2020256337A1 true WO2020256337A1 (ko) 2020-12-24

Family

ID=74037342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007520 WO2020256337A1 (ko) 2019-06-19 2020-06-10 편광판 및 이를 포함하는 광학표시장치

Country Status (4)

Country Link
US (1) US20220187522A1 (ko)
KR (1) KR102444973B1 (ko)
CN (1) CN113767311A (ko)
WO (1) WO2020256337A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220134394A (ko) * 2021-03-26 2022-10-05 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008197A1 (en) * 2002-07-17 2004-01-22 Fuji Photo Film Co., Ltd. Polarizing plate having optically anisotropic layer formed from liquid crystal molecules
US20100134910A1 (en) * 2007-08-14 2010-06-03 Seung Hun Chae Optical film and method of manufacturing the same
KR20150046279A (ko) * 2012-10-15 2015-04-29 코니카 미놀타 가부시키가이샤 위상차 필름, 상기 위상차 필름을 사용하여 제작한 원편광판 및 유기 el 디스플레이
KR20160012274A (ko) * 2014-07-23 2016-02-03 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR20170117961A (ko) * 2017-09-29 2017-10-24 삼성에스디아이 주식회사 Oled용 편광판 및 이를 포함하는 광학표시장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI242083B (en) * 2003-08-11 2005-10-21 Sony Corp Liquid crystal display device
KR20140118595A (ko) * 2013-03-29 2014-10-08 제일모직주식회사 Oled용 편광판 및 이를 포함하는 광학표시장치
CN104339796B (zh) * 2013-08-09 2018-03-02 住友化学株式会社 层叠体
KR101731148B1 (ko) * 2013-08-09 2017-04-27 스미또모 가가꾸 가부시키가이샤 광학 필름
KR102453716B1 (ko) * 2016-06-30 2022-10-11 스미또모 가가꾸 가부시끼가이샤 위상차 필름
US20190331838A1 (en) * 2016-12-16 2019-10-31 Nitto Denko Corporation Optical laminate, image display device, and method of manufacturing optical laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008197A1 (en) * 2002-07-17 2004-01-22 Fuji Photo Film Co., Ltd. Polarizing plate having optically anisotropic layer formed from liquid crystal molecules
US20100134910A1 (en) * 2007-08-14 2010-06-03 Seung Hun Chae Optical film and method of manufacturing the same
KR20150046279A (ko) * 2012-10-15 2015-04-29 코니카 미놀타 가부시키가이샤 위상차 필름, 상기 위상차 필름을 사용하여 제작한 원편광판 및 유기 el 디스플레이
KR20160012274A (ko) * 2014-07-23 2016-02-03 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR20170117961A (ko) * 2017-09-29 2017-10-24 삼성에스디아이 주식회사 Oled용 편광판 및 이를 포함하는 광학표시장치

Also Published As

Publication number Publication date
US20220187522A1 (en) 2022-06-16
KR20200144919A (ko) 2020-12-30
KR102444973B1 (ko) 2022-09-19
CN113767311A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2020138878A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2017209473A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
WO2016105017A1 (ko) 광학필름 및 이를 구비한 oled 표시장치
WO2015008925A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2014204205A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2019235832A1 (ko) 점착제 조성물
WO2019083160A1 (ko) 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2020111864A1 (ko) 광학 적층체
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2021034012A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020256337A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2021029626A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020153639A1 (ko) 액정표시장치
WO2021045557A1 (ko) 플렉서블 디스플레이 장치를 위한 폴리에스테르 보호 필름
WO2022098016A1 (ko) 광학표시장치용 모듈 및 이를 포함하는 광학표시장치
WO2016104976A1 (ko) 광학시트, 이를 포함하는 편광판 및 액정표시장치
WO2020130462A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2024053962A1 (ko) 광학표시장치
WO2019245145A1 (ko) 광학필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2012064141A2 (ko) 광학 소자
WO2020184862A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020204411A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2022019469A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2014088273A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2023018080A1 (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826287

Country of ref document: EP

Kind code of ref document: A1