WO2021034012A1 - 편광판 및 이를 포함하는 광학표시장치 - Google Patents

편광판 및 이를 포함하는 광학표시장치 Download PDF

Info

Publication number
WO2021034012A1
WO2021034012A1 PCT/KR2020/010768 KR2020010768W WO2021034012A1 WO 2021034012 A1 WO2021034012 A1 WO 2021034012A1 KR 2020010768 W KR2020010768 W KR 2020010768W WO 2021034012 A1 WO2021034012 A1 WO 2021034012A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
difference layer
polarizing plate
layer
wavelength
Prior art date
Application number
PCT/KR2020/010768
Other languages
English (en)
French (fr)
Inventor
이상흠
구준모
김봉춘
유정훈
신동윤
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN202080058165.8A priority Critical patent/CN114270232A/zh
Priority to US17/634,220 priority patent/US20220299691A1/en
Publication of WO2021034012A1 publication Critical patent/WO2021034012A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Definitions

  • the present invention relates to a polarizing plate and an optical display device including the same. More specifically, the present invention relates to a polarizing plate capable of remarkably lowering reflectance in all directions including side surfaces and remarkably increasing ellipticity, and an optical display device including the same.
  • OLED displays require a polarizer to improve screen quality by preventing electrode reflection.
  • the circular polarizing plate function is essential to the polarizing plate.
  • Two typical methods of implementing a circular polarizing plate are a method using a material having a constant wavelength dispersion and a method using a material having a reverse wavelength dispersion.
  • An object of the present invention is to provide a polarizing plate having a remarkably low reflectance in all directions including the side surface.
  • Another object of the present invention is to provide a polarizing plate having a remarkably high ellipticity in all directions including side surfaces.
  • Another object of the present invention is to provide a polarizing plate provided with a polarizer protective film having excellent thickness thinning effect, excellent manufacturing processability, and excellent mechanical strength.
  • One aspect of the present invention is a polarizing plate.
  • the polarizing plate includes a polarizer and a stack of a first phase difference layer and a second phase difference layer and a third phase difference layer sequentially stacked on a lower surface of the polarizer,
  • the slow axis of the first phase difference layer based on the absorption axis or transmission axis of the polarizer forms an angle of about +40° to +50° or about -50° to -40°,
  • the slow axis of the first phase difference layer and the slow axis of the second phase difference layer form an angle of about +80° to +100° or about -100° to -80°
  • the first phase difference layer has a constant wavelength dispersion and an in-plane retardation at a wavelength of about 550 nm of about 50 nm to 100 nm,
  • the second phase difference layer has a constant wavelength dispersion property or a flat wavelength dispersion property, and an in-plane retardation at a wavelength of about 550 nm is about 180 nm to 240 nm.
  • the polarizing plate may be stacked from the polarizer in the order of a first phase difference layer, a second phase difference layer, and a third phase difference layer.
  • the polarizing plate may be stacked from the polarizer in the order of a second phase difference layer, a first phase difference layer, and a third phase difference layer.
  • the third phase difference layer is a positive C plate, and the retardation in the thickness direction at a wavelength of about 550 nm may be about -100 nm to -10 nm.
  • the first phase difference layer may be a negative A plate.
  • the second phase difference layer may be a positive A plate or a negative B plate.
  • the first phase difference layer may satisfy Equation 1 below:
  • Re(450) and Re(550) are the in-plane retardation at wavelengths of about 450 nm and 550 nm of the first phase difference layer, respectively).
  • the first phase difference layer may have a degree of biaxiality of about -0.5 to 0 at a wavelength of about 550 nm.
  • the second phase difference layer may satisfy Equation 3 below:
  • Re (450) and Re (550) are the in-plane retardation at wavelengths of about 450 nm and 550 nm of the second phase difference layer, respectively).
  • the second phase difference layer may have a degree of biaxiality of about 1.0 to 1.4 at a wavelength of about 550 nm.
  • the second phase difference layer has a slow axis of about +40° to +50°, about -50° to -40°, and about +130° to +140° based on the absorption axis or transmission axis of the polarizer. Alternatively, it may be about -140° to -130°.
  • the angle formed by the slow axis of the first phase difference layer is about +40° to +50°, and the slow axis of the first phase difference layer and the second The angle formed by the slow axis of the retardation layer may be about +80° to +100°.
  • the laminate of the first phase difference layer and the second phase difference layer may have an in-plane retardation of about 100 nm to 180 nm at a wavelength of about 550 nm.
  • the stack of the first phase difference layer and the second phase difference layer may have a biaxial degree of about -0.2 to 1.4 at a wavelength of about 550 nm.
  • each of the first phase difference layer and the third phase difference layer may be a non-liquid crystal layer.
  • the first phase difference layer and the third phase difference layer are each substituted or unsubstituted, alkyl (meth)acrylic including styrene, (meth)acrylonitrile, methyl (meth)acrylate, etc. It may include a coating layer formed of a composition containing at least one of rate-based and cellulose-based.
  • the composition may further include an additive having an aromatic group.
  • the second phase difference layer may include an MD uniaxially stretched or obliquely stretched film.
  • a primer layer may be further formed on at least one surface of each of the first phase difference layer, the second phase difference layer, and the third phase difference layer.
  • the optical display device of the present invention includes the polarizing plate of the present invention.
  • the present invention provides a polarizing plate having remarkably low reflectance in all directions including the side surface.
  • the present invention provides a polarizing plate having a remarkably high ellipticity in all directions including the side surface.
  • the present invention provides a polarizing plate provided with a polarizer protective film having excellent thickness thinning effect, manufacturing processability, and excellent mechanical strength.
  • FIG. 1 is a cross-sectional view of a polarizing plate according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an angle formed by an absorption axis of a polarizer, a slow axis of a first layer, and a slow axis of a second layer of the polarizing plate of FIG. 1.
  • FIG 3 is a cross-sectional view of a polarizing plate according to another embodiment of the present invention.
  • the'in-plane retardation (Re)' is represented by the following formula A
  • the'thickness direction retardation (Rth)' is represented by the following formula B
  • the'biaxiality degree (NZ)' is represented by the following formula C:
  • NZ (nx-nz)/(nx-ny)
  • nx, ny, and nz are refractive indexes in the slow axis direction, fast axis direction, and thickness direction of the optical element at the measurement wavelength, respectively, and d is the thickness of the optical element. (Unit: nm)).
  • the measurement wavelength may be about 450 nm, about 550 nm, or about 650 nm.
  • the inventor of the present invention sequentially laminates a stack of a first phase difference layer and a second phase difference layer and a third phase difference layer on one side of the polarizer, specifically on the side of the polarizer and the display panel, and the first and second phase difference layers.
  • the angle between the absorption axis of the polarizer and the slow axis of the first phase difference layer, and the angle between the slow axis of the first phase difference layer and the second phase difference layer within a specific range of the present invention. It was confirmed that the reflectance in all directions including the side, particularly the side, can be remarkably lowered and the ellipticity can be remarkably increased, and the present invention was completed.
  • the polarizing plate of the present invention has a first phase difference layer, a second phase difference layer, and a third phase difference layer on one side of the polarizer, it is possible to manufacture by roll-to-roll bonding, so it has excellent manufacturing processability and mechanical strength as a polarizer protective film. It was excellent.
  • the polarizing plate may include a polarizer and a first phase difference layer, a second phase difference layer, and a third phase difference layer sequentially stacked from the polarizer on the lower surface of the polarizer.
  • the polarizing plate may include a polarizer and a second phase difference layer, a first phase difference layer, and a third phase difference layer sequentially stacked from the polarizer on the lower surface of the polarizer.
  • the polarizing plate includes a first phase difference layer 110, a second phase difference layer 120, and a third phase difference layer sequentially stacked from the polarizer 140 on the lower surface of the polarizer 140 and the polarizer 140. It includes (130).
  • an adhesive layer and/or an adhesive layer is formed on the lower surface of the third phase difference layer 130 to attach a polarizing plate to an adherend (for example, an optical display panel including a panel of a light emitting display device). Can be stacked.
  • the absorption axis or transmission axis of the polarizer, the slow axis of the first phase difference layer, and the slow axis of the second phase difference layer must satisfy a specific angular relationship with each other. This will be described with reference to FIG. 2.
  • the angle ⁇ formed by the slow axis 110a of the first phase difference layer 110 with respect to the absorption axis 140a of the polarizer 140 is about +40° to +50. ° (e.g., +40, +41, +42, +43, +44, +45, +46, +47, +48, +49 or +50°) or about -50° to -40° ( For example, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41 or -40°), and the slow axis of the first phase difference layer 110
  • the angle ⁇ formed between (110a) and the slow axis 120a of the second phase difference layer 120 is about +80° to +100° (eg, +80, +81, +82, +83, + 84, +85, +86, +87, +88, +89, +90, +91, +92, +93, +94, +95, +96, +97
  • a polarizing plate including all of the first phase difference layer, the second phase difference layer, and the third phase difference layer as in the polarizing plate of the present invention when the angles ⁇ and ⁇ satisfy all of the above ranges, the reflectance and ellipticity in all directions including the side surface are It can be easy to improve significantly.
  • the angle ⁇ may be about +42° to +48°, about +43° to +47°, and preferably about +45°. In another embodiment, the angle ⁇ may be about -48° to -42°, about -47° to -43°, preferably about -45°.
  • the angle ⁇ may be about +83° to +97°, about +85° to +95°, and preferably about +90°. In another embodiment, the angle ⁇ may be about -97° to -83°, about -95° to -85°, and preferably about -90°.
  • an angle formed by the slow axis of the first phase difference layer may be determined based on the transmission axis of the polarizer.
  • an angle formed by the slow axis of the first phase difference layer may be determined based on the absorption axis of the polarizer.
  • the angle ⁇ formed by the slow axis of the first phase difference layer is about +40° to +50°, and the slow axis of the first phase difference layer and the second The angle ⁇ formed by the slow axis of the retardation layer may be about +80° to +100°.
  • the angle ⁇ formed by the slow axis of the first phase difference layer is about -40° to -50°, and the slow axis of the first phase difference layer and the second The angle ⁇ formed by the slow axis of the retardation layer may be about -80° to -100°.
  • the inventor of the present invention confirmed that it is not possible to improve both the reflectance and the ellipticity when applied to an optical display device simply by controlling the three angles described above. Accordingly, the wavelength dispersion of each of the first and second phase difference layers and the in-plane retardation at a wavelength of about 550 nm were controlled.
  • a first phase difference layer and a second phase difference layer having a remarkably different range of in-plane retardation compared to the conventional 1/2 in-plane retardation and 1/4 in-plane retardation known at a wavelength of about 550 nm are employed. It was confirmed that both reflectance and ellipticity can be remarkably improved by controlling the wavelength dispersion of each of the phase difference layer and the second phase difference layer.
  • first phase difference layer a first phase difference layer
  • second phase difference layer a second phase difference layer
  • third phase difference layer a polarizer of the polarizing plate
  • the first phase difference layer 110 has a constant wavelength dispersion, and has an in-plane retardation of about 50 nm to 100 nm at a wavelength of about 550 nm (eg, 50, 60, 70, 80, 90, or 100 nm).
  • The'static wavelength dispersion' means that the in-plane retardation decreases as the wavelength increases at a wavelength of 450 nm to 650 nm.
  • the first phase difference layer may have a constant wavelength dispersion at a wavelength of about 450 nm to 550 nm.
  • the first phase difference layer may have a constant wavelength dispersion or a flat wavelength dispersion at a wavelength of about 550 nm to 650 nm.
  • the first phase difference layer may allow the polarizing plate of the present invention to improve reflectance and ellipticity in the side surface.
  • the first phase difference layer 110 has an in-plane retardation in a range different from the 1/4 in-plane retardation known at a conventional wavelength of about 550 nm, and has a constant wavelength dispersion, thereby obtaining an effect of improving reflectance and ellipticity in the polarizing plate of the present invention.
  • the first phase difference layer 110 may have an in-plane retardation of about 50 nm to 90 nm, about 50 nm to 80 nm, and about 50 nm to 70 nm at a wavelength of 550 nm.
  • the first phase difference layer 110 may satisfy the following Equation 1: When the following Equation 1 is satisfied, it may help to improve reflectance and ellipticity at the side when the polarizing plate is applied.
  • Re(450), Re(550), and Re(650) are in-plane retardation at wavelengths of about 450 nm, 550 nm, and 650 nm of the first phase difference layer, respectively).
  • Re(450)/Re(550) may be about 1.1 to 1.4, preferably about 1.2 to 1.3. In the above range, there may be an excellent anti-reflection effect.
  • Re(650)/Re(550) may be about 0.9 to 1.0, preferably about 0.93 or more and less than 1.0. In the above range, there may be an excellent anti-reflection effect.
  • Re (450) may be about 60 to 90 nm, specifically about 70 nm to 80 nm, and Re (650) may be about 40 nm to 70 nm, specifically about 50 nm to 60 nm. . In the above range, there may be an excellent anti-reflection effect.
  • the first phase difference layer 110 is a negative A plate (-A plate) and may satisfy the refractive index relationship of Equation 2 below.
  • the -A plate As the first phase difference layer, there may be more anti-reflection effects.
  • nx is the refractive index of the first phase difference layer in the slow axis direction
  • ny is the refractive index of the first phase difference layer in the fast axis direction
  • nz is the thickness direction refractive index of the first phase difference layer. All of the refractive indices are values at a wavelength of about 550 nm.
  • the first phase difference layer 110 may have a retardation in the thickness direction of about -100 nm to 0 nm, specifically about -80 nm to -20 nm, preferably about -60 nm to -30 nm at a wavelength of about 550 nm. In the above range, there may be an excellent anti-reflection effect.
  • the first phase difference layer 110 has a degree of biaxiality of about -0.5 to 0 (eg -0.5, -0.4, -0.3, -0.2, -0.1 or 0) at a wavelength of about 550 nm, specifically about -0.4 to 0 Can be In the above range, there may be an excellent anti-reflection effect.
  • the first phase difference layer 110 may be a film or a coating layer.
  • The'coating layer' means a layer formed by coating and curing a composition for a first phase difference layer on a second phase difference layer or a base film.
  • the first phase difference layer becomes a coating layer, thereby providing a thinning effect of the polarizing plate.
  • the first phase difference layer 110 may have a thickness of about 30 ⁇ m or less, for example, greater than about 0 ⁇ m and 10 ⁇ m or less. In the above range, it can be used for a polarizing plate, and a thinning effect can be obtained.
  • the first phase difference layer 110 may be manufactured by stretching an optically transparent unstretched resin film to have physical properties such as the above-described in-plane retardation.
  • the stretching may include uniaxial, biaxial or oblique stretching.
  • the resin film is a polycarbonate, polyethylene terephthalate, polyester including polyethylene naphthalate, polyamide, polyarylate, polyimide, polyethylene, polyolefin including polypropylene, cyclic olefin polymer (COP) It may include a resin film containing one or more of.
  • the first phase difference layer 110 may include a coating layer formed from a composition including a monomer, oligomer, or resin for a coating layer.
  • the first phase difference layer 110 may be a non-liquid crystal layer.
  • an alignment layer must be included in order to align the liquid crystal at a certain angle, and foreign matter may be generated.
  • the monomer, oligomer, or resin for the coating layer is substituted or unsubstituted, at least one of alkyl (meth)acrylate-based, cellulose-based, including styrene-based, (meth)acrylonitrile-based, methyl (meth)acrylate, etc. It may include, and preferably includes a substituted or unsubstituted, cellulose-based, for example, cellulose ester-based.
  • the cellulose ester system facilitates the implementation of the first phase difference layer of the present invention, and as will be described below, the composition is coated on the film for the second phase difference layer and then stretched simultaneously to facilitate a laminate of the first phase difference layer and the second phase difference layer. .
  • At least one of the hydrogen atoms is halogen, a C1 to C20 straight or branched alkyl group, a C6 to C20 aryl group, a C1 to C20 straight or branched alkyl-containing acyl group, and a C6 to C20 aryl It means substituted with a group-containing acyl group, but is not limited thereto.
  • the first phase difference layer may be formed of a composition containing a cellulose ester compound.
  • the first phase difference layer may be formed of a composition comprising a cellulose ester-based compound and a compound having an aromatic fused ring.
  • the cellulose ester compound may include at least one of a cellulose ester resin, a cellulose ester oligomer, and a cellulose ester monomer.
  • the cellulose ester compound refers to a condensation reaction product from the reaction of a hydroxyl group on cellulose and a carboxylic acid group of a carboxylic acid.
  • the cellulose ester-based compound may be optionally or randomly substituted.
  • Regioselectivity can be determined by determining the relative degree of substitution at C6, C3, C2 on the cellulose ester by carbon 13 NMR.
  • Cellulosic ester-based compounds can be prepared by conventional methods by contacting a cellulose solution with one or more C1 to C20 acylating agents for a contact time sufficient to provide a cellulose ester having the desired degree of substitution and polymerization.
  • Preferred acylating agents are one or more C1 to C20 straight or branched chain alkyl or aryl carboxylic anhydrides, carboxylic acid halides, diketones, or acetoacetic acid esters.
  • carboxylic anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, hexanoic anhydride, 2-ethylhexanoic anhydride, nonanoic anhydride, lauric anhydride, palmitic anhydride, Stearic anhydride, benzoic anhydride, substituted benzoic anhydride, phthalic anhydride, isophthalic anhydride.
  • carboxylic acid halides include acetyl, propionyl, butyryl, hexanoyl, 2-ethylhexanoyl, lauroyl, palmitoyl, benzoyl, substituted benzoyl, and stearoyl chloride.
  • Examples of the acetoacetic acid ester may include methylacetoacetate, ethylacetoacetate, propylacetoacetate, butylacetoacetate, tertiary butylacetoacetate.
  • acylating agents are C2 to C9 straight or branched chain alkyl carboxylic anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, 2-ethylhexanoic anhydride, nonanoic anhydride, stearic anhydride, and the like.
  • cellulose ester compound may include, but are not limited to, cellulose acetate (CA), cellulose acetate propionate (CAP), and cellulose acetate butyrate (CAB).
  • CA cellulose acetate
  • CAP cellulose acetate propionate
  • CAB cellulose acetate butyrate
  • the cellulose ester-based compound may have a substituent of two different acyl groups. At least one or more of the acyl groups may include an aromatic substituent, and the cellulose ester-based compound may have a relative degree of substitution (RDS) of C6>C2>C3.
  • RDS relative degree of substitution
  • C6 is the degree of substitution at carbon 6 in the cellulose ester
  • C2 is the degree of substitution at carbon 2 in the cellulose ester
  • C3 is the degree of substitution at carbon 3 in the cellulose ester.
  • the aromatic compound may include benzoate or substituted benzoate.
  • the cellulose ester-based compound comprises a regioselectively substituted cellulose ester compound having the following (a), (b),
  • the cellulose ester-based compound has a hydroxyl group substitution degree of about 0.1 to about 1.2, the cellulose ester-based compound has a chromophore acyl substitution degree of about 0.4 to about 1.6, and the chromophore at carbon 2 of the cellulose ester-based compound
  • the difference between the total sum of the degree of mophor acyl substitution and the degree of chromophore acyl substitution at carbon 3 and the degree of chromophore acyl substitution at carbon 6 is about 0.1 to about 1.6
  • the chromophore-acyl is the following ( i), (ii), (iii), (iv) may be selected from:
  • heteroaryl is a 5-10 membered ring having 1-4 heteroatoms selected from N, O, S, and the heteroaryl is unsubstituted or 1-5 R Is substituted with 1
  • the aryl is C 1-6 aryl
  • the aryl is unsubstituted or substituted with 1 to 5 R 1,
  • the heteroaryl is a 5 to 10 membered ring having 1 to 4 heteroatoms selected from N, O, S, and the heteroaryl is unsubstituted or substituted with 1 to 5 R 1,
  • Each of R 1 is independently, nitro, cyano, (C 1-6 ) alkyl, halo (C 1-6 ) alkyl, (C 6-20 )aryl-CO 2 -, (C 6-20 )aryl , (C 1-6 ) alkoxy, halo (C 1-6 ) alkoxy, halo, 5 to 10 membered heteroaryl having 1 to 4 heteroatoms selected from N,O,S, or
  • the chromophore-acyl may be unsubstituted or substituted benzoyl, unsubstituted or substituted naphthyl.
  • the chromophore-acyl may be selected from the following group:
  • * represents the bonding site of the chromophore-acyl substituent to oxygen of the cellulose ester.
  • the first phase difference layer may further include an additive having an aromatic fused ring.
  • the additive having the aromatic fused ring serves to adjust the retardation expression rate and wavelength dispersion of the first phase difference layer.
  • the additive having the aromatic fused ring may include naphthalene, anthracene, phenanthrene, pyrene, or structure 1 or 2 below.
  • the additive having an aromatic fused ring may include 2-naphthyl benzoate, 2,6-naphthalene dicarboxylic acid diester of the following structure 3, naphthalene, an abietic acid ester of the following structure 4, etc. Not limited:
  • R is C1 to C20 alkyl or C6 to C20 aryl, n is an integer of 0 to 6)
  • R is a C1 to C20 alkyl or C6 to C20 aryl
  • the additive having an aromatic fused ring is an additive having an aromatic ring, for example, naphthalene, anthracene, phenanthrene, pyrene, 2-naphthyl benzoate, 2,6-naphthalene dicarboxylic acid di of Structure 3 It may contain one or more of esters.
  • the additive having an aromatic fused ring may be included in an amount of about 0.1% to 30% by weight, preferably about 10% to 30% by weight of the first phase difference layer. In the above range, there may be an effect of increasing thermal stability, increasing a retardation rate per thickness, and adjusting wavelength dispersion.
  • the first phase difference layer 110 is one or more of conventional additives known to those skilled in the art, such as UV absorbers, wavelength dispersion regulators, polymerization inhibitors, antioxidants, heat stabilizers, plasticizers, block inhibitors, slip agents, lubricants, and retardation improvers. It may further include, but is not limited thereto.
  • the first phase difference layer 110 may be a single layer, or may be a multilayer of two or more layers.
  • a primer layer may be present on at least one surface of the first phase difference layer 110.
  • the primer layer may improve adhesion or adhesion between the first phase difference layer and the polarizer, or between the first phase difference layer and the second phase difference layer.
  • the primer layer may be formed of a conventional resin known to a person skilled in the art, and may include, for example, an acrylic resin, a urethane resin, an acrylic urethane resin, an ester resin, an ethylene imine resin, but is not limited thereto.
  • the thickness of the primer layer may be adjusted within a range that does not affect the thinning effect and adhesion improvement effect of the polarizing plate, and may be, for example, about 10 nm to 500 nm, specifically about 50 nm to 300 nm.
  • the first phase difference layer 110 may be formed directly on the second phase difference layer 120 without an adhesive layer or an adhesive layer, or laminated on the second phase difference layer via an adhesive layer (eg, pressure sensitive adhesive (PSA) or an adhesive layer).
  • PSA pressure sensitive adhesive
  • the "directly formed” means that no adhesive layer or adhesive layer exists between the first phase difference layer and the second phase difference layer.
  • the second phase difference layer 120 has a constant wavelength dispersion property or a flat wavelength dispersion property, and has an in-plane retardation of about 180 nm to 240 nm (e.g., 180, 190, 200, 210, 220, 230, or 240 nm) at a wavelength of about 550 nm.
  • The'static wavelength dispersion' is as described above.
  • The'flat wavelength dispersion' means that the in-plane retardation does not substantially increase or decrease as the wavelength increases at about 450 nm to 650 nm.
  • the second phase difference layer 120 may allow the polarizing plate of the present invention to improve reflectance and ellipticity at the side.
  • the second phase difference layer 120 has an in-plane retardation in a range different from the known 1/2 in-plane retardation at a conventional wavelength of about 550 nm, and has a constant wavelength dispersion property or a flat wavelength dispersion property, thereby reflecting and ellipticity in the polarizing plate of the present invention.
  • the improvement effect was obtained.
  • the second phase difference layer 120 may have an in-plane retardation of about 180 nm to 230 nm and 180 nm to 220 nm at a wavelength of about 550 nm.
  • the second phase difference layer 120 may satisfy the following Equation 3: When the following Equation 3 is satisfied, it may help to improve reflectance and ellipticity at the side when the polarizing plate is applied.
  • Re(450), Re(550), and Re(650) are in-plane retardation at wavelengths of about 450 nm, 550 nm, and 650 nm of the second phase difference layer, respectively).
  • Re(450)/Re(550) may be about 0.95 to 1.03, preferably about 0.97 to 1.03. In the above range, there may be an excellent anti-reflection effect.
  • Re(650)/Re(550) may be about 0.95 to 1.03, preferably about 0.97 to 1.03. In the above range, there may be an excellent anti-reflection effect.
  • Re (450) may be about 180 nm to 240 nm, specifically about 200 nm to 230 nm
  • Re (650) may be about 180 nm to 240 nm, specifically about 190 nm to 230 nm. .
  • the second phase difference layer 110 is a positive A plate (+A plate) or a negative B plate (-B plate) and may satisfy the refractive index relationship of Equation 4 below or Equation 5: +A plate or as the second phase difference layer
  • -B plate By using the -B plate, there may be more excellent anti-reflection effects.
  • nx is the refractive index of the second phase difference layer in the slow axis direction
  • ny is the refractive index of the second phase difference layer in the fast axis direction
  • nz is the thickness direction refractive index of the second phase difference layer. All of the refractive indices are values at a wavelength of about 550 nm.
  • the second phase difference layer 120 may have a retardation in the thickness direction of about 50 nm to 250 nm at a wavelength of about 550 nm, specifically about 80 nm to 200 nm, and preferably about 100 nm to 180 nm. In the above range, there may be an excellent anti-reflection effect.
  • the second phase difference layer 120 may have a degree of biaxiality of about 1.0 to 1.4, specifically greater than about 1.0 and less than or equal to 1.4 (for example, 1.1, 1.2, 1.3 or 1.4) at a wavelength of 550 nm. In the above range, there may be an excellent anti-reflection effect.
  • the second phase difference layer 120 has a slow axis of about +40° to +50° (e.g., +40, +41, +42, +43, +44, +45) based on the absorption axis or transmission axis of the polarizer. , +46, +47, +48, +49, or +50°), about -50° to -40° (e.g. -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, or -40°), about +130° to +140° (e.g.
  • the second phase difference layer 120 may be a film or a coating layer. Preferably, since the second phase difference layer becomes a film, it is possible to facilitate formation of the first phase difference layer and the third phase difference layer in the polarizing plate.
  • the second phase difference layer 120 may have a thickness of about 60 ⁇ m or less, for example, greater than about 0 ⁇ m and 50 ⁇ m or less. In the above range, it can be used for a polarizing plate, and an effect as a lower protective film of the polarizing plate can be obtained at the same time.
  • the second phase difference layer 120 may be manufactured by stretching the optically transparent unstretched resin film described above to have physical properties such as the above-described in-plane retardation.
  • the stretching may include uniaxial, biaxial or oblique stretching.
  • the resin film may include a resin film including a cyclic olefin polymer (COP).
  • the second phase difference layer may be an MD uniaxially stretched film or an obliquely stretched film.
  • the second phase difference layer 120 has a retardation expression rate (a ratio to a change in the in-plane retardation of the second phase difference layer according to a change in the thickness of the second phase difference layer) of about 5 nm/ ⁇ m or more, preferably about 5 nm. It may be greater than / ⁇ m, for example about 5nm/ ⁇ m to 20nm/ ⁇ m. In the above range, the polarizing plate can be made thinner by using the thin second phase difference layer.
  • the second phase difference layer 120 may further include one or more of conventional additives known to those skilled in the art, such as a UV absorber, a wavelength dispersion regulator, a polymerization inhibitor, an antioxidant, a heat stabilizer, and a plasticizer, but is not limited thereto. .
  • the second phase difference layer 120 may be a single layer or a multilayer of two or more layers.
  • the laminate of the first phase difference layer 110 and the second phase difference layer 120 has an in-plane retardation of about 100 nm to 180 nm at a wavelength of about 550 nm (for example, 100, 110, 120, 130, 140, 150, 160, 170 , Or 180nm), specifically about 120nm to 160nm. In the above range, the effects of the present invention can be better implemented.
  • the laminate of the first phase difference layer 110 and the second phase difference layer 120 may have a retardation in the thickness direction of about 50 nm to 120 nm, specifically about 50 nm to 110 nm at a wavelength of about 550 nm. In the above range, the effects of the present invention can be better implemented.
  • the stacked body of the first phase difference layer 110 and the second phase difference layer 120 has a degree of biaxiality of about -0.2 to 1.4 (e.g., -0.2, -0.1, 0, 0.1, 0.2, 0.3) at a wavelength of about 550 nm. , 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, or 1.4) Specifically, it may be about -0.1 to 1.3. In the above range, the effects of the present invention can be better implemented.
  • a primer layer may be present on at least one surface of the second phase difference layer 120.
  • the contents of the primer layer are as described above.
  • the second phase difference layer 120 may be formed directly on the third phase difference layer 130 without an adhesive layer or an adhesive layer, or laminated on the third phase difference layer through an adhesive layer (eg, pressure sensitive adhesive (PSA) or an adhesive layer).
  • PSA pressure sensitive adhesive
  • the "directly formed” means that there is no adhesive layer or adhesive layer between the second phase difference layer and the third phase difference layer.
  • the third phase difference layer 130 differs from the first phase difference layer 110 and the second phase difference layer 120 in an in-plane retardation and/or a retardation in the thickness direction at a wavelength of about 550 nm.
  • the reflectance from the side surface is significantly lowered and the ellipticity is improved.
  • the effect was not good in both reflectance and ellipticity.
  • the third phase difference layer 130 has a retardation in the thickness direction of about -100 nm to -10 nm at a wavelength of about 550 nm (for example, -100, -90, -80, -70, -60, -50, -40, -30 , -20, or -10nm).
  • the retardation in the thickness direction at a wavelength of about 550 nm may be about -90 nm to -30 nm, more preferably about -80 nm to -40 nm.
  • the third phase difference layer 130 is a positive C plate (+C plate) and may satisfy the refractive index relationship of Equation 6: By using the +C plate as the third phase difference layer, an excellent anti-reflection effect can be further obtained from the side. have.
  • nx, ny, and nz are each nx is the refractive index in the slow axis direction of the third phase difference layer, ny is the refractive index in the fast axis direction of the third phase difference layer, and nz is the thickness direction refractive index of the third phase difference layer. ). All of the refractive indices are values at a wavelength of about 550 nm.
  • the third phase difference layer 130 may have an in-plane retardation of 10 nm or less at a wavelength of 550 nm, for example, about 0 nm to 10 nm.
  • the third phase difference layer 130 may have forward wavelength dispersion, reverse wavelength dispersion, or flat wavelength dispersion characteristics.
  • the third phase difference layer 130 may be a film or a coating layer. Preferably, the third phase difference layer becomes a coating layer, thereby providing a thinning effect of the polarizing plate.
  • the third phase difference layer 130 may have a thickness of about 30 ⁇ m or less, for example, greater than about 0 ⁇ m and 10 ⁇ m or less. In the above range, it can be used for a polarizing plate, and a thinning effect can be obtained.
  • the optically transparent unstretched resin film may be stretched to have physical properties such as the above-described in-plane retardation.
  • the stretching may include uniaxial, biaxial or oblique stretching.
  • the third phase difference layer 130 may be a non-liquid crystal layer.
  • the third phase difference layer is formed of a liquid crystal, an alignment layer must be included in order to align the liquid crystal at a predetermined angle, and foreign matter may be generated.
  • the type of the coating layer is not limited as long as it can implement the retardation in the thickness direction and the positive C plate described above.
  • the coating layer includes at least one of substituted or unsubstituted, styrene-based, (meth)acrylonitrile-based, methyl (meth)acrylate-based alkyl (meth)acrylate-based, cellulose-based, etc.
  • a substituted or unsubstituted, cellulose resin for example, a cellulose ester resin.
  • the cellulose ester-based resin may facilitate the implementation of the third phase difference layer of the present invention.
  • the first phase difference layer, the second phase difference layer, and the third phase difference layer may be integrated.
  • The'integration' refers to a three-layer structure in which a first phase difference layer and a third phase difference layer are stacked on a second phase difference layer without an adhesive layer or an adhesive layer.
  • the composition for the first phase difference layer By coating the composition for the first phase difference layer to a predetermined thickness on the upper surface of the unstretched film for the second phase difference layer or the partially stretched film, and simultaneously stretching the unstretched film or partially oriented film and the entire coating film for the first phase layer.
  • a laminate of the first phase difference layer and the second phase difference layer can be manufactured.
  • the stretching may be preferably MD uniaxial stretching or oblique stretching, but is not limited thereto.
  • the composition for a third phase difference layer on the lower surface of the second phase difference layer and drying and/or curing the composition, the above-described three-layered laminate may be manufactured.
  • the polarizer 140 may convert incident natural light or polarized light into linearly polarized light in a specific direction.
  • the polarizer 140 has an absorption axis and a transmission axis substantially orthogonal to the absorption axis.
  • the absorption axis and transmission axis are formed in one direction, respectively.
  • the polarizer may be prepared by dyeing the polymer film with iodine or a dichroic dye and stretching it in MD. Specifically, it can be prepared through a swelling process, a dyeing step, a stretching step, and a crosslinking step.
  • the polarizer 140 may have a total light transmittance of about 42% or more, for example, about 42% to 50%, and a polarization degree of about 99% or more, for example, about 99% to 100%. In the above range, when combined with the first phase difference layer, the second phase difference layer, and the third phase difference layer, the antireflection performance can be improved.
  • the polarizer 140 may have a thickness of about 0.1 ⁇ m to 30 ⁇ m, specifically about 1 ⁇ m to 25 ⁇ m, and may be used for a polarizing plate within the above range.
  • a protective film may be further laminated on the upper surface of the polarizer 140.
  • the protective film may be formed on the upper surface of the polarizer, thereby protecting the polarizer from the external environment and increasing the mechanical strength of the polarizer.
  • the protective film protects the polarizer from the external environment.
  • an optically transparent film for example, a cellulose type including triacetylcellulose (TAC), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PET), poly Polyester-based, cyclic polyolefin-based, polycarbonate-based, polyethersulfone-based, polysulfone-based, polyamide-based, polyimide-based, polyolefin-based, polyarylate-based, polyvinyl alcohol-based, poly-containing butylene naphthalate, etc. It may be a film made of at least one of vinyl chloride-based and polyvinylidene chloride-based resins. Specifically, TAC and PET films may be used.
  • the protective film may have a thickness of about 5 ⁇ m to 70 ⁇ m, specifically about 15 ⁇ m to 45 ⁇ m, and may be used for a polarizing plate within the above range.
  • a functional coating layer is formed on the upper surface of the protective film to provide additional functions to the polarizing plate.
  • the functional coating layer may be a hard coating layer, an anti-fingerprint layer, an antireflection layer, etc., and these may be stacked alone or in two or more types Can be formed.
  • the protective film may be adhered to the polarizer through an adhesive layer.
  • the adhesive layer may be formed of a water-based or UV-curable adhesive, but is not limited thereto.
  • the polarizing plate is an embodiment of the present invention except that a polarizer 140, a second phase difference layer 120, a first phase difference layer 110, and a third phase difference layer 130 are sequentially stacked. It is substantially the same as the polarizing plate of FIG. 1 which is an example. Detailed descriptions of the polarizer, the first phase difference layer, the second phase difference layer, and the third phase difference layer described in FIG. 1 may be employed as they are.
  • optical display device of the present invention will be described.
  • the optical display device of the present invention includes the polarizing plate of the embodiment of the present invention.
  • the optical display device may include a light emitting display device or a liquid crystal display device including an organic light emitting display device or the like.
  • the first phase difference layer may be disposed closer to the display panel than the polarizer.
  • a polyvinyl alcohol film (PS60, Kuraray, Japan, thickness before stretching: 60 ⁇ m) was stretched to about 6 times in an aqueous solution of iodine at 55° C. to prepare a polarizer (thickness: 12 ⁇ m) having a light transmittance of about 45%.
  • a resin for forming the second phase difference layer As a resin for forming the second phase difference layer, a cyclic olefin polymer (COP) (JSR) was used, and the film was extruded and stretched.
  • a laminate of the first phase difference layer and the second phase difference layer was prepared by coating a composition for forming a first phase difference layer on the upper surface of the obtained stretched film [containing a cellulose type] to a predetermined thickness, drying, and then simultaneously stretching. At this time, by adjusting the stretching ratio and the stretching direction, the angle between the slow axis of the first phase difference layer and the slow axis of the second phase difference layer, and the physical properties of each of the first and second phase difference layers can be adjusted.
  • a composition for forming a third phase difference layer (Eastman, cellulose-based) was coated on the lower surface of the second phase difference layer and dried to form a third phase difference layer on the lower surface of the second phase difference layer.
  • a laminate of a phase difference layer, a second phase difference layer, and a third phase difference layer was prepared.
  • a polarizing plate was manufactured by sequentially stacking the prepared first phase difference layer, second phase difference layer, and third phase difference layer on the lower surface of the prepared polarizer through an adhesive layer.
  • Example 1 a polarizing plate was manufactured in the same manner as in Example 1, except that the physical properties and angles of the first phase difference layer, the second phase difference layer, and the third phase difference layer were changed.
  • a positive C plate a retardation of -50 nm in a thickness direction at a wavelength of 550 nm
  • Example 1 a polarizing plate was manufactured in the same manner as in Example 1, except that the physical properties and angles of the first phase difference layer, the second phase difference layer, and the third phase difference layer were changed.
  • the reflectance was evaluated by comparing the average value of the azimuth at an angle of 60 degrees using DMS, and the ellipticity was evaluated by comparing the lowest value at the azimuth angle using AXOSCAN.
  • the reflectance should be about 1.3% or less, and the ellipticity should be about 75% or more.
  • Example One 2 3 4 5 Angle ⁇ +45 -45 +45 +45 +45 Angle ⁇ +90 -90 +90 +90 +90 +90 First floor Dispersibility Static wavelength Static wavelength Static wavelength Static wavelength Static wavelength Re 60 60 60 50 60 NZ -0.2 -0.2 -0.2 -0.2 -0.2 Property -A -A -A -A Second floor Dispersibility flat flat Static wavelength flat flat Re 200 200 200 180 NZ 1.2 1.2 1.0 1.2 1.2 1.2 Property 1.2 1.2 Property 1.2 1.2 Property 1.2 1.2 Property 1.2 1.2 Property -B -B +A -B -B 3rd floor Rth -50 -50 -50 -50 -50 Property +C +C +C +C +C Re of the first layer and the second layer laminate 140 140 140 150 120 Rth of the first and second layer laminates 98 98 58 105 84 NZ of the first and second layer laminates 1.2 1.2 0.9 1.2 1.2 Side reflectance (%) 1.2 1.2 1.3 1.3
  • Angle ⁇ is the angle between the absorption axis of the polarizer (0°) and the slow axis of the first phase difference layer (unit:°)
  • Angle ⁇ is the angle between the slow axis of the first phase difference layer and the slow axis of the second phase difference layer (unit: °)
  • the polarizing plate of the present invention has a remarkably low reflectance and a remarkably high ellipticity.
  • Comparative Example 1 which did not employ the polarizing plate structure of the present invention, had poor reflectance and ellipticity compared to the Example.
  • Comparative Example 1 when manufacturing a polarizing plate by roll-to-roll lamination of a polarizer, a first phase difference layer, and a third phase difference layer, lamination is difficult and the strength as a protective film under the polarizer is weak.
  • the polarizing plates of Comparative Examples 2 to 11, which deviate from the angle ⁇ , the angle ⁇ , the wavelength dispersion and the in-plane retardation of the first phase difference layer, the wavelength dispersion of the second phase difference layer, and the in-plane phase difference of the present invention have reflectance and ellipticity in the examples The contrast was remarkably poor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

편광자 및 상기 편광자의 하부면에 순차적으로 적층된, 제1위상차층과 제2위상차층의 적층체 및 제3위상차층을 포함하고, 상기 편광자의 흡수축 또는 투과축을 기준으로 상기 제1위상차층의 지상축은 약 +40° 내지 +50° 또는 약 -50° 내지 -40°의 각도를 이루고, 상기 제1위상차층의 지상축과 상기 제2위상차층의 지상축은 약 +80° 내지 +100° 또는 약 -100° 내지 -80°의 각도를 이루고, 상기 제1위상차층은 정파장 분산성이고 파장 약 550nm에서 면내 위상차가 약 50nm 내지 100nm이고, 상기 제2위상차층은 정파장 분산성 또는 플랫 파장 분산성이고 파장 약 550nm에서 면내 위상차가 약 180nm 내지 240nm인 것인, 편광판 및 이를 포함하는 광학표시장치가 제공된다.

Description

편광판 및 이를 포함하는 광학표시장치
본 발명은 편광판 및 이를 포함하는 광학표시장치에 관한 것이다. 보다 상세하게는, 본 발명은 측면을 포함하는 전방위에서의 반사율을 현저하게 낮추고 타원율을 현저하게 높일 수 있는 편광판 및 이를 포함하는 광학표시장치에 관한 것이다.
OLED 디스플레이는 전극 반사를 막아 화면 품질을 향상시키기 위해 편광판이 필요하다. 반사 방지 기능을 수행하기 위해서는 편광판에 원편광판 기능이 반드시 필요하다. 원편광판을 구현하는 방식으로는 정파장 분산성 재료를 이용하는 방식과 역파장 분산성 재료를 이용하는 2가지 방식이 대표적이다.
종래 원편광판을 구현하는 방식으로서, 편광자의 하부면에, 역파장 분산성 1/4 위상차층과 포지티브 C 플레이트를 순서대로 적층하는 방법이 있다. 이것은 편광자와 롤 투 롤(Roll to Roll) 합지가 어려워 제조 공정성이 좋지 않고, 편광자의 하부 보호필름으로서의 강도가 약하고, 반사율과 타원율을 개선하는데 한계가 있다는 문제점이 있었다. 다른 방법으로, 편광자의 하부면에 1/2 위상차층과 1/4 위상차층을 순서대로 적층하는 방법이 있다. 이것은 측면을 포함하는 전방위에서 반사율이 높다는 문제점이 있었다. 한편, 원편광판에 있어서 1/4 위상차층, 1/2 위상차층 또는 포지티브 C 플레이트를 액정층으로 하는 방법이 있으나, 이것은 배향막이 필수적으로 필요하고, 각각의 층에 도공한 후 편광자에 순서대로 전사해야 하는 부가 공정이 필요하다는 문제점이 있을 수 있다.
본 발명의 배경기술은 한국공개특허 2007-0052254호 등에 개시되어 있다.
본 발명의 목적은 측면을 포함하는 전방위에서의 반사율이 현저하게 낮은 편광판을 제공하는 것이다.
본 발명의 다른 목적은 측면을 포함하는 전방위에서의 타원율이 현저하게 높은 편광판을 제공하는 것이다.
본 발명의 또 다른 목적은 두께 박형화 효과, 제조 공정성이 우수하고 기계적 강도가 우수한 편광자 보호 필름을 구비한 편광판을 제공하는 것이다.
본 발명의 일 관점은 편광판이다.
1.편광판은 편광자 및 상기 편광자의 하부면에 순차적으로 적층된, 제1위상차층과 제2위상차층의 적층체 및 제3위상차층을 포함하고,
상기 편광자의 흡수축 또는 투과축을 기준으로 상기 제1위상차층의 지상축(slow axis)은 약 +40° 내지 +50° 또는 약 -50° 내지 -40°의 각도를 이루고,
상기 제1위상차층의 지상축과 상기 제2위상차층의 지상축은 약 +80° 내지 +100° 또는 약 -100° 내지 -80°의 각도를 이루고,
상기 제1위상차층은 정파장 분산성이고 파장 약 550nm에서 면내 위상차가 약 50nm 내지 100nm이고,
상기 제2위상차층은 정파장 분산성 또는 플랫 파장 분산성이고 파장 약 550nm에서 면내 위상차가 약 180nm 내지 240nm이다.
2.1에서, 상기 편광판은 상기 편광자로부터 제1위상차층, 제2위상차층, 제3위상차층의 순서로 적층된 것일 수 있다.
3.1-2에서, 상기 편광판은 상기 편광자로부터 제2위상차층, 제1위상차층, 제3위상차층의 순서로 적층된 것일 수 있다.
4.1-3에서, 상기 제3위상차층은 포지티브 C 플레이트이고, 파장 약 550nm에서 두께 방향 위상차가 약 -100nm 내지 -10nm일 수 있다.
5.1-4에서, 상기 제1위상차층은 네가티브 A 플레이트일 수 있다.
6.1-5에서, 상기 제2위상차층은 포지티브 A 플레이트 또는 네가티브 B 플레이트일 수 있다.
7.1-6에서, 상기 제1위상차층은 하기 식 1을 만족할 수 있다:
[식 1]
Re(450)/Re(550) ≥ 약 1.1
(상기 식 1에서, Re(450), Re(550)은 각각 상기 제1위상차층의 파장 약450nm, 550nm에서의 면내 위상차이다).
8.1-7에서, 상기 제1위상차층은 파장 약 550nm에서 이축성 정도가 약 -0.5 내지 0일 수 있다.
9.1-8에서, 상기 제2위상차층은 하기 식 3을 만족할 수 있다:
[식 3]
약 0.95 ≤ Re(450)/Re(550) ≤ 약 1.03
(상기 식 3에서, Re(450), Re(550)은 각각 상기 제2위상차층의 파장 약450nm, 550nm에서의 면내 위상차이다).
10.1-9에서, 상기 제2위상차층은 파장 약 550nm에서 이축성 정도가 약 1.0 내지 1.4일 수 있다.
11.1-10에서, 상기 제2위상차층은 상기 편광자의 흡수축 또는 투과축을 기준으로 지상축이 약 +40° 내지 +50°, 약 -50° 내지 -40°, 약 +130°내지 +140° 또는 약 -140°내지 -130°일 수 있다.
12.1-11에서, 상기 편광자의 흡수축을 0°라고 할 때, 상기 제1위상차층의 지상축이 이루는 각도는 약 +40° 내지 +50°이고, 상기 제1위상차층의 지상축과 상기 제2위상차층의 지상축이 이루는 각도는 약 +80° 내지 +100°일 수 있다.
13.1-12에서, 상기 제1위상차층과 상기 제2위상차층의 적층체는 파장 약550nm에서 면내 위상차가 약 100nm 내지 180nm일 수 있다.
14.1-13에서, 상기 제1위상차층과 상기 제2위상차층의 적층체는 파장 약 550nm에서 이축성 정도가 약 -0.2 내지 1.4일 수 있다.
15.1-14에서, 상기 제1위상차층, 상기 제3위상차층은 각각 비 액정층일 수 있다.
16.1-15에서, 상기 제1위상차층, 상기 제3위상차층은 각각 치환 또는 비치환된, 스티렌계, (메타)아크릴로니트릴계, 메틸(메타)아크릴레이트 등을 포함하는 알킬 (메타)아크릴레이트계, 셀룰로스계 중 1종 이상을 포함하는 조성물로 형성된 코팅층을 포함할 수 있다.
17.16에서, 상기 조성물은 방향족기를 갖는 첨가제를 더 포함할 수 있다.
18.1-17에서, 상기 제2위상차층은 MD 1축 연신 또는 경사 연신된 필름을 포함할 수 있다.
19.1-18에서, 상기 제1위상차층, 상기 제2위상차층, 상기 제3위상차층은 각각 적어도 일면에 프라이머층이 더 형성될 수 있다.
본 발명의 광학표시장치는 본 발명의 편광판을 포함한다.
본 발명은 측면을 포함하는 전방위에서의 반사율이 현저하게 낮은 편광판을 제공하였다.
본 발명은 측면을 포함하는 전방위에서의 타원율이 현저하게 높은 편광판을 제공하였다.
본 발명은 두께 박형화 효과, 제조 공정성이 우수하고 기계적 강도가 우수한 편광자 보호 필름을 구비한 편광판을 제공하였다.
도 1은 본 발명 일 실시예의 편광판의 단면도이다.
도 2는 도 1의 편광판 중 편광자의 흡수축, 제1층의 지상축, 제2층의 지상축이 이루는 각도를 나타낸 모식도이다.
도 3은 본 발명 다른 실시예의 편광판의 단면도이다.
첨부한 도면을 참고하여 실시예에 의해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 명칭을 사용하였다. 도면에서 각 구성 요소의 길이, 크기는 본 발명을 설명하기 위한 것으로 본 발명이 도면에 기재된 각 구성 요소의 길이, 크기에 제한되는 것은 아니다.
본 명세서에서 '상부'와 '하부'는 도면을 기준으로 정의한 것이고, 보는 시각에 따라 '상부'가 '하부'로 '하부'가 '상부'로 변경될 수 있다.
본 명세서에서 '면내 위상차(Re)'는 하기 식 A로 표시되고, '두께 방향 위상차(Rth)'는 하기 식 B로 표시되고, '이축성 정도(NZ)'는 하기 식 C로 표시된다:
[식 A]
Re = (nx - ny) x d
[식 B]
Rth = ((nx + ny)/2 - nz) x d
[식 C]
NZ = (nx - nz)/(nx - ny)
(상기 식 A 내지 식 C에서, nx, ny, nz는 측정 파장에서 각각 광학 소자의 지상축(slow axis) 방향, 진상축(fast axis) 방향, 두께 방향의 굴절률이고, d는 광학 소자의 두께(단위:nm)이다). 상기 식 A 내지 식 C에서 측정 파장은 약 450nm, 약 550nm 또는 약 650nm가 될 수 있다.
본 명세서에서 각도 기재시 '+'는 기준을 0°라고 하였을 때 반시계 방향의 각도를 표시하고, '-'는 기준을 0°라고 하였을 때 시계 방향의 각도를 표시한다.
본 명세서에서 수치 범위를 나타낼 때 'X 내지 Y'는 X 이상 Y 이하(X≤ 그리고 ≤Y)를 의미한다.
본 발명의 발명자는 편광자의 일면 구체적으로 편광자와 표시장치용 패널 쪽면에 제1위상차층과 제2위상차층의 적층체 및 제3위상차층을 순차적으로 적층하고, 제1위상차층과 제2위상차층 각각의 파장 분산성 및 면내 위상차, 편광자의 흡수축과 제1위상차층의 지상축 간의 각도, 제1위상차층의 지상축과 제2위상차층의 지상축 간의 각도를 본 발명의 특정 범위로 제어함으로써 측면을 포함하는 전방위 특히 측면에서의 반사율을 현저하게 낮추고 타원율을 현저하게 높일 수 있음을 확인하고 본 발명을 완성하였다. 또한, 본 발명의 편광판은 제1위상차층, 제2위상차층, 제3위상차층을 편광자의 일면에 구비함으로써 롤 투 롤 접합에 의한 제조가 가능하여 제조 공정성이 우수하고 편광자 보호 필름으로서의 기계적 강도가 우수하였다.
일 구체예에서, 편광판은 편광자 및 편광자의 하부면에 편광자로부터 순차적으로 적층된 제1위상차층, 제2위상차층 및 제3위상차층을 포함할 수 있다.
다른 구체예에서, 편광판은 편광자 및 편광자의 하부면에 편광자로부터 순차적으로 적층된 제2위상차층, 제1위상차층 및 제3위상차층을 포함할 수 있다.
이하, 본 발명 일 실시예의 편광판을 도 1을 참고하여 설명한다.
도 1을 참고하면, 편광판은 편광자(140) 및 편광자(140)의 하부면에 편광자(140)로부터 순차적으로 적층된 제1위상차층(110), 제2위상차층(120), 제3위상차층(130)을 포함한다.
도 1에서 도시되지 않았지만, 제3위상차층(130)의 하부면에는 점착층 및/또는 접착층이 형성되어 편광판을 피착체(예: 발광표시장치의 패널 등을 포함하는 광학표시장치용 패널)에 적층시킬 수 있다.
편광판에서 편광자의 흡수축(absorbation axis) 또는 투과축(transmission axis), 제1위상차층의 지상축, 제2위상차층의 지상축은 서로 특정 각도 관계를 만족해야 한다. 이에 관하여, 도 2를 참조하여 설명한다.
도 2를 참조하면, 편광자(140)의 흡수축(140a)을 기준으로 제1위상차층(110)의 지상축(slow axis)(110a)이 이루는 각도(α)는 약 +40° 내지 +50°(예를 들면, +40, +41, +42, +43, +44, +45, +46, +47, +48, +49 또는 +50°) 또는 약-50° 내지 -40°(예를 들면, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41 또는 -40°)이고, 제1위상차층(110)의 지상축(110a)과 제2위상차층(120)의 지상축(120a)이 이루는 각도(β)는 약 +80° 내지 +100°(예를 들면, +80, +81, +82, +83, +84, +85, +86, +87, +88, +89, +90, +91, +92, +93, +94, +95, +96, +97, +98, +99 또는 +100°) 또는 약 -100° 내지 -80°(-100, -99, -98, -97, -96, -95, -94, -93, -92, -91, -90, -89, -88, -87, -86, -85, -84, -83, -82, -81 또는 -80°) 의 각도를 이룬다. 본 발명의 편광판과 같이 제1위상차층, 제2위상차층, 제3위상차층을 모두 구비한 편광판에서, 상기 각도 α와 β가 상기 범위를 모두 만족할 때 측면을 포함하는 전방위에서의 반사율과 타원율이 현저하게 개선되는데 용이할 수 있다.
일 구체예에서, 상기 각도(α)는 약 +42° 내지 +48°, 약 +43° 내지 +47°, 바람직하게는 약 +45°가 될 수 있다. 다른 구체예에서, 상기 각도(α)는 약-48° 내지 -42°, 약 -47° 내지 -43°, 바람직하게는 약-45°가 될 수 있다.
일 구체예에서, 상기 각도(β)는 약 +83° 내지 +97°, 약 +85° 내지 +95°, 바람직하게는 약 +90°가 될 수 있다. 다른 구체예에서, 상기 각도(β)는 약 -97° 내지 -83°, 약 -95° 내지 -85°, 바람직하게는 약 -90°가 될 수 있다.
도 2는 편광자의 흡수축을 기준으로 제1위상차층의 지상축이 이루는 각도를 나타낸 것이다. 그러나, 편광자의 투과축을 기준으로 제1위상차층의 지상축이 이루는 각도를 정할 수도 있다. 바람직하게는, 편광자의 흡수축을 기준으로 제1위상차층의 지상축이 이루는 각도를 정할 수 있다.
일 구체예에서, 상기 편광자의 흡수축을 0°라고 할 때, 제1위상차층의 지상축이 이루는 각도(α)는 약 +40° 내지 +50°이고, 제1위상차층의 지상축과 제2위상차층의 지상축이 이루는 각도(β)는 약+80° 내지 +100°일 수 있다.
다른 구체예에서, 상기 편광자의 흡수축을 0°라고 할 때, 제1위상차층의 지상축이 이루는 각도(α)는 약 -40° 내지 -50°이고, 제1위상차층의 지상축과 제2위상차층의 지상축이 이루는 각도(β)는 약-80° 내지 -100°일 수 있다.
한편, 본 발명의 발명자는 상술한 각도 3종을 제어하는 것만으로는 광학표시장치에 적용시 반사율과 타원율을 모두 개선할 수 없음을 확인하였다. 이에, 제1위상차층, 제2위상차층 각각의 파장 분산성과 파장 약 550nm에서의 면내 위상차를 제어하였다. 특히, 본 발명의 편광판에서는, 종래 파장 약 550nm에서 알려져 있는 1/2 면내 위상차, 1/4 면내 위상차 대비 현저하게 다른 범위의 면내 위상차를 갖는 제1위상차층, 제2위상차층을 채용하고 제1위상차층, 제2위상차층 각각의 파장 분산성을 제어함으로써 반사율과 타원율을 모두 현저하게 개선할 수 있음을 확인하였다.
이하, 편광판 중 제1위상차층, 제2위상차층, 제3위상차층, 편광자에 대해 상세히 설명한다.
제1위상차층
제1위상차층(110)은 정파장 분산성이고, 파장 약 550nm에서 면내 위상차 약 50nm 내지 100nm를 갖는다(예를 들면, 50, 60, 70, 80, 90, 또는 100nm). 상기 '정파장 분산성'은 파장 450nm 내지 650nm에서 파장이 증가할 수록 면내 위상차가 감소하는 것을 의미한다.
일 구체예에서, 제1위상차층은 파장 약 450nm 내지 550nm에서 정파장 분산성일 수 있다.
일 구체예에서, 제1위상차층은 파장 약 550nm 내지 650nm에서 정파장 분산성 또는 플랫 파장 분산성일 수 있다.
제1위상차층은 본 발명의 편광판이 측면에서의 반사율과 타원율을 개선하도록 할 수 있다. 특히, 제1위상차층(110)은 종래 파장 약 550nm에서 알려진 1/4 면내 위상차와는 상이한 범위의 면내 위상차를 가지며 정파장 분산성을 가짐으로써 본 발명의 편광판에서 반사율과 타원율 개선 효과를 얻었다. 예를 들면, 제1위상차층(110)은 파장 550nm에서 면내 위상차가 약 50nm 내지 90nm, 약 50nm 내지 80nm, 약 50nm 내지 70nm가 될 수 있다.
일 구체예에서, 제1위상차층(110)은 하기 식 1을 만족할 수 있다: 하기 식 1을 만족할 때, 편광판 적용시 측면에서의 반사율과 타원율을 개선하는데 도움을 줄 수 있다.
[식 1]
Re(450)/Re(550) ≥ 약 1.1
약 0.9 ≤ Re(650)/Re(550) < 약 1.0 또는 Re(650)/Re(550) = 약 1.0
(상기 식 1에서, Re(450), Re(550), Re(650)은 각각 제1위상차층의 파장 약 450nm, 550nm, 650nm에서의 면내 위상차이다).
일 구체예에서, Re(450)/Re(550)은 약 1.1 내지 1.4, 바람직하게는 약 1.2 내지 1.3이 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
일 구체예에서, Re(650)/Re(550)은 약 0.9 내지 1.0, 바람직하게는 약 0.93 이상 1.0 미만이 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
예를 들면, 제1위상차층은 Re(450)은 약 60 내지 90nm, 구체적으로 약 70nm 내지 80nm가 될 수 있고, Re(650)은 약 40nm 내지 70nm, 구체적으로 약 50nm 내지 60nm가 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
제1위상차층(110)은 네가티브 A 플레이트(-A 플레이트)로서 하기 식 2의 굴절률 관계를 만족할 수 있다.
제1위상차층으로 -A 플레이트를 사용함으로써 반사 방지 효과가 더 있을 수 있다.
[식 2]
nx ≒ nz >ny
(상기 식 2에서, nx는 제1위상차층의 지상축 방향의 굴절률, ny는 제1위상차층의 진상축 방향의 굴절률, nz는 제1위상차층의 두께 방향 굴절률이다). 상기 굴절률은 모두 파장 약 550nm에서의 값이다.
제1위상차층(110)은 파장 약 550nm에서 두께 방향 위상차가 약 -100nm 내지 0nm, 구체적으로 약 -80nm 내지 -20nm, 바람직하게는 약-60nm 내지 -30nm가 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
제1위상차층(110)은 파장 약 550nm에서 이축성 정도가 약 -0.5 내지 0(예를 들면 -0.5, -0.4, -0.3, -0.2, -0.1 또는 0), 구체적으로 약 -0.4 내지 0이 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
제1위상차층(110)은 필름 또는 코팅층이 될 수 있다. 상기 '코팅층'은 제1위상차층용 조성물을 제2위상차층 또는 기재 필름에 코팅하고 경화시켜 형성되는 층임을 의미한다. 바람직하게는, 제1위상차층은 코팅층이 됨으로써 편광판의 박형화 효과를 제공할 수 있다. 제1위상차층(110)은 두께가 약 30㎛ 이하, 예를 들면 약 0㎛ 초과 10㎛ 이하가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고, 박형화 효과를 얻을 수 있다.
제1위상차층(110)이 필름일 경우, 제1위상차층(110)은 광학적으로 투명한 미연신 수지 필름을 상술한 면내 위상차 등의 물성을 갖도록 연신하여 제조될 수 있다. 상기 연신은 1축, 2축 또는 경사 연신을 포함할 수 있다. 예를 들면, 수지 필름은 폴리카보네이트, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 등을 포함하는 폴리에스테르, 폴리아미드, 폴리아릴레이트, 폴리이미드, 폴리에틸렌, 폴리프로필렌 등을 포함하는 폴리올레핀, 환형 올레핀폴리머(COP) 중 1종 이상을 포함하는 수지 필름을 포함할 수 있다.
제1위상차층(110)이 코팅층일 경우, 제1위상차층(110)은 코팅층용 모노머, 올리고머 또는 수지를 포함하는 조성물로부터 형성된 코팅층을 포함할 수 있다.
일 구체예에서, 제1위상차층(110)은 비-액정층이 될 수 있다. 제1위상차층을 액정으로 형성할 경우 액정을 일정 각도로 배향하기 위해 배향막이 필수적으로 포함되어야 하고, 이물이 발생할 수도 있다.
상기 코팅층용 모노머, 올리고머 또는 수지는 치환 또는 비치환된, 스티렌계, (메타)아크릴로니트릴계, 메틸(메타)아크릴레이트 등을 포함하는 알킬 (메타)아크릴레이트계, 셀룰로스계 중 1종 이상을 포함할 수 있고, 바람직하게는 치환 또는 비치환된, 셀룰로스계, 예를 들면 셀룰로스 에스테르계를 포함할 수 있다. 셀룰로스 에스테르계는 본 발명의 제1위상차층 구현이 용이하고, 하기 상술되겠지만 제2위상차층용 필름에 상기 조성물을 코팅 후 동시 연신시켜 제1위상차층과 제2위상차층의 적층체가 용이하도록 할 수 있다. 상기 치환은 해당 수소 원자 중 1종 이상이 할로겐, C1 내지 C20의 직쇄 또는 분지쇄의 알킬기, C6 내지 C20의 아릴기, C1 내지 C20의 직쇄 또는 분지쇄의 알킬 함유 아실기, C6 내지 C20의 아릴기 함유 아실기로 치환되는 것을 의미하지만, 이에 제한되지 않는다.
일 구체예에서, 제1위상차층은 셀룰로스 에스테르계 화합물을 포함하는 조성물로 형성될 수 있다.
다른 구체예에서, 제1위상차층은 셀룰로스 에스테르계 화합물과 방향족 융합 고리를 갖는 화합물을 포함하는 조성물로 형성될 수 있다.
셀룰로스 에스테르계 화합물은 셀룰로스 에스테르계 수지, 셀룰로스 에스테르계 올리고머, 셀룰로스 에스테르계 모노머 중 1종 이상을 포함할 수 있다.
셀룰로스 에스테르계 화합물은 셀룰로스 상의 하이드록실기와 카복실산의 카복신산 기의 반응으로부터의 축합 반응 생성물을 지칭한다. 셀룰로스 에스테르계 화합물은 위치 선택적으로 또는 랜덤(random)하게 치환될 수 있다. 위치 선택성은 탄소 13 NMR에 의해 셀룰로스 에스테르 상의 C6, C3, C2에서의 상대적인 치환도를 결정함으로써 측정할 수 있다.
셀룰로스 에스테르계 화합물은 원하는 치환도 및 중합도를 가진 셀룰로스 에스테르를 제공하기에 충분한 접촉 시간 동안 셀룰로스 용액과 하나 이상의 C1 내지 C20의 아실화제를 접촉시킴으로써 통상적인 방법에 의해 제조될 수 있다. 바람직한 아실화제는 하나 이상의 C1 내지 C20의 직쇄 또는 분지쇄 알킬 또는 아릴 카르복실산 무수물, 카르복실산 할라이드, 다이케톤, 또는 아세토아세트산 에스테르이다. 카복실산의 무수물의 예는 아세트산 무수물, 프로피온산 무수물, 부티르산 무수물, 이소브티르산 무수물, 발레르산 무수물, 헥사노산 무수물, 2-에틸헥사노산 무수물, 노나노산 무수물, 라우르산 무수물, 팔미트산 무수물, 스테아르산 무수물, 벤조산 무수물, 치환된 벤조산 무수물, 프탈산 무수물, 이소프탈산 무수물을 포함할 수 있다. 카르복실산 할라이드의 예는 아세틸, 프로피오닐, 부티릴, 헥사노일, 2-에틸헥사노일, 라우로일, 팔미토일, 벤조일, 치환된 벤조일, 및 스테아로일 클로라이드를 포함한다. 아세토아세트산 에스테르의 예는 메틸아세토아세테이트, 에틸아세토아세테이트, 프로필아세토아세테이트, 부틸아세토아세테이트, 3급부틸아세토아세테이트를 포함할 수 있다. 가장 바람직한 아실화제는 아세트산 무수물, 프로피온산 무수물, 부티르산 무수물, 2-에틸헥사노산 무수물, 노나노산 무수물, 스테아르산 무수물 등의 C2 내지 C9 직쇄 또는 분지쇄 알킬 카르복실산 무수물이다.
셀룰로스 에스테르계 화합물의 바람직한 예는 셀룰로스 아세테이트(CA), 셀룰로스 아세테이트 프로피오네이트(CAP), 셀룰로스 아세테이트 부티레이트(CAB)를 포함할 수 있지만, 이에 제한되지 않는다.
일 구체예에서, 셀룰로스 에스테르계 화합물은 2개의 서로 다른 아실기의 치환기를 가질 수 있다. 상기 아실기 중 적어도 1개 이상은 방향족 치환기를 포함하고, 셀룰로스 에스테르계 화합물은 상대적 치환도(RDS, relative degree of substitution)가 C6>C2>C3이 될 수 있다. C6은 셀룰로스 에스테르 중 탄소 6번에서의 치환도, C2는 셀룰로스 에스테르 중 탄소 2번에서 치환도, C3은 셀룰로스 에스테르 중 탄소 3번에서 치환도를 의미한다. 상기 방향족계 화합물은 벤조에이트, 또는 치환된 벤조에이트를 포함할 수 있다.
다른 구체예에서, 셀룰로스 에스테르계 화합물은 하기 (a), (b)를 갖는 위치 선택적으로(regioselective) 치환된 셀룰로스 에스테르 화합물을 포함하고,
(a)복수 개의 크로모포어-아실 치환기,
(b)복수개의 피발로일 치환기,
상기 셀룰로스 에스테르계 화합물은 약 0.1 내지 약 1.2의 수산기 치환도를 가지고, 상기 셀룰로스 에스테르계 화합물은 약 0.4 내지 약 1.6의 크로모포어 아실 치환도를 가지고, 셀룰로스 에스테르계 화합물 중 탄소 2번에서의 크로모포어 아실 치환도와 탄소 3번에서의 크로모포어 아실 치환도의 총 합과 탄소 6번에서의 크로모포어 아실 치환도의 차이는 약 0.1 내지 약 1.6이고, 상기 크로모포어-아실은 하기 (i), (ii), (iii), (iv)으로부터 선택될 수 있다:
(i)(C6-20)아릴-아실, 이때, 아릴은 비치환되거나 또는 1개 내지 5의 R1으로 치환된 아릴이고,
(ii)헤테로 아릴, 이때 헤테로 아릴은 N, O, S로부터 선택되는 1개 내지 4개의 헤테로 원자를 갖는 5원 내지 10원의 고리이고, 상기 헤테로 아릴은 비치환되거나 또는 1개 내지 5개의 R1으로 치환되고
(iii)
Figure PCTKR2020010768-appb-I000001
상기 아릴은 C1-6 아릴,
상기 아릴은 비치환되거나 또는 1개 내지 5개의 R1으로 치환되고,
(iv)
Figure PCTKR2020010768-appb-I000002
상기 헤테로아릴은 N, O, S로부터 선택되는 1개 내지 4개의 헤테로원자를 갖는 5원 내지 10원의 고리고, 상기 헤테로아릴은 비치환되거나 또는 1개 내지 5개의 R1으로 치환되고,
상기 각각의 R1은 독립적으로, 니트로, 시아노, (C1-6)알킬, 할로(C1-6)알킬, (C6-20)아릴-CO2-, (C6-20)아릴, (C1-6)알콕시, 할로(C1-6)알콕시, 할로, N,O,S로부터 선택되는 1개 내지 4개의 헤테로원자를 갖는 5원 내지 10원의 헤테로아릴, 또는
Figure PCTKR2020010768-appb-I000003
이다.
일 실시예에서, 상기 크로모포어-아실은 비치환 또는 치환된 벤조일, 비치환 또는 치환된 나프틸일 수 있다.
일 실시예에서, 상기 크로모포어-아실은 하기의 군으로부터 선택될 수 있다:
Figure PCTKR2020010768-appb-I000004
Figure PCTKR2020010768-appb-I000005
Figure PCTKR2020010768-appb-I000006
Figure PCTKR2020010768-appb-I000007
또는
Figure PCTKR2020010768-appb-I000008
이때, *은 셀룰로스 에스테르의 산소에 대한 크로모포어-아실 치환기의 결합 부위를 나타낸다.
제1위상차층은 방향족 융합 고리를 갖는 첨가제를 더 포함할 수 있다.
상기 방향족 융합 고리를 갖는 첨가제는 제1위상차층의 위상차 발현율과 파장 분산성을 조절하는 역할을 수행한다.
상기 방향족 융합 고리를 갖는 첨가제는 나프탈렌, 안트라센, 페난트렌, 피렌, 하기 구조 1 또는 하기 구조 2를 포함할 수 있다. 상기 방향족 융합 고리를 갖는 첨가제로는 2-나프틸 벤조에이트, 하기 구조 3의 2,6-나프탈렌 다이카르복실산 다이에스테르, 나프탈렌, 하기 구조 4의 아비에트산 에스테르 등을 포함할 수 있지만, 이에 제한되지 않는다:
[구조 1]
Figure PCTKR2020010768-appb-I000009
[구조 2]
Figure PCTKR2020010768-appb-I000010
[구조 3]
Figure PCTKR2020010768-appb-I000011
(상기 구조 3에서, R은 C1 내지 C20의 알킬 또는 C6 내지 C20의 아릴, n은 0 내지 6의 정수)
[구조 4]
Figure PCTKR2020010768-appb-I000012
(상기 구조 4에서, R은 C1 내지 C20의 알킬 또는 C6 내지 C20의 아릴)
바람직하게는 상기 방향족 융합 고리를 갖는 첨가제는 방향족 고리를 갖는 첨가제, 예를 들면 나프탈렌, 안트라센, 페난트렌, 피렌, 2-나프틸 벤조에이트, 상기 구조 3의 2,6-나프탈렌 다이카르복실산 다이에스테르 중 1종 이상을 포함할 수 있다.
방향족 융합 고리를 갖는 첨가제는 제1위상차층 중 약 0.1중량% 내지 30중량%, 바람직하게는 약 10중량% 내지 30중량%로 포함될 수 있다. 상기 범위에서, 열안정성을 높이고, 두께당 위상차 발현율을 높이고 파장 분산성을 조절하는 효과가 있을 수 있다.
제1위상차층(110)은 당업자에게 알려진 통상의 첨가제 예를 들면 UV 흡수제, 파장 분산 조절제, 중합 금지제, 산화 방지제, 열 안정제, 가소제, 블록 방지제, 슬립제, 윤활제, 지연 개선제 중 1종 이상을 더 포함할 수 있지만, 이에 제한되지 않는다.
제1위상차층(110)은 단일층이 될 수도 있고, 2층 이상의 다중층일 수도 있다.
도 1에서 도시되지 않았지만, 제1위상차층(110)의 적어도 일면에는 프라이머층이 존재할 수 있다. 프라이머층은 제1위상차층과 편광자 또는 제1위상차층과 제2위상차층 간의 점착력 또는 접착력을 개선할 수 있다. 프라이머층은 당업자에게 알려진 통상의 수지로 형성될 수 있고, 예를 들면, 아크릴계 수지, 우레탄계 수지, 아크릴 우레탄계 수지, 에스테르계 수지, 에틸렌 이민계 수지 등을 포함할 수 있지만, 이에 제한되지 않는다. 프라이머층의 두께는 편광판의 박형화 효과, 점착력 개선 효과에 영향을 주지 않는 범위 내에서 조절할 수 있는데, 예를 들면 약 10nm 내지 500nm, 구체적으로 약 50nm 내지 300nm가 될 수 있다.
제1위상차층(110)은 제2위상차층(120)에 점착층 또는 접착층 없이 직접적으로 형성될 수도 있고, 점착층(예: PSA(pressure sensitive adhesive) 또는 접착층을 매개로 제2위상차층에 적층될 수도 있다. 상기 "직접적으로 형성"은 제1위상차층과 제2위상차층 사이에 임의의 점착층 또는 접착층이 존재하지 않음을 의미한다.
제2위상차층
제2위상차층(120)은 정파장 분산성 또는 플랫 파장 분산성이고 파장 약 550nm에서 면내 위상차 약 180nm 내지 240nm(예를 들면, 180, 190, 200, 210, 220, 230, 또는 240nm)를 갖는다. 상기 '정파장 분산성'은 상기에서 상술한 바와 같다. 상기 '플랫 파장 분산성'은 파장 약 450nm 내지 650nm에서 파장이 증가할수록 면내 위상차가 실질적으로 증가 또는 감소하지 않음을 의미한다.
제2위상차층(120)은 본 발명의 편광판이 측면에서의 반사율과 타원율을 개선하도록 할 수 있다. 특히, 제2위상차층(120)은 종래 파장 약 550nm에서 알려진 1/2 면내 위상차와는 상이한 범위의 면내 위상차를 가지며 정파장 분산성 또는 플랫 파장 분산성을 가짐으로써 본 발명의 편광판에서 반사율과 타원율 개선 효과를 얻었다. 예를 들면, 제2위상차층(120)은 파장 약 550nm에서 면내 위상차가 약 180nm 내지 230nm, 180nm 내지 220nm가 될 수 있다.
일 구체예에서, 제2위상차층(120)은 하기 식 3을 만족할 수 있다: 하기 식 3을 만족할 때, 편광판 적용시 측면에서의 반사율과 타원율을 개선하는데 도움을 줄 수 있다.
[식 3]
약 0.95 ≤ Re(450)/Re(550) ≤ 약 1.03
약 0.95 ≤ Re(650)/Re(550) ≤ 약 1.03
(상기 식 3에서, Re(450), Re(550), Re(650)은 각각 제2위상차층의 파장 약 450nm, 550nm, 650nm에서의 면내 위상차이다).
일 구체예에서, Re(450)/Re(550)은 약 0.95 내지 1.03, 바람직하게는 약 0.97 내지 1.03이 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
일 구체예에서, Re(650)/Re(550)은 약 0.95 내지 1.03, 바람직하게는 약 0.97 내지 1.03이 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
예를 들면, 제2위상차층은 Re(450)은 약 180nm 내지 240nm, 구체적으로 약 200nm 내지 230nm가 될 수 있고, Re(650)은 약 180nm 내지 240nm, 구체적으로 약 190nm 내지 230nm가 될 수 있다.
제2위상차층(110)은 포지티브 A 플레이트(+A 플레이트) 또는 네가티브 B 플레이트(-B 플레이트)로서 하기 식 4 또는 하기 식 5의 굴절률 관계를 만족할 수 있다: 제2위상차층으로 +A 플레이트 또는 -B 플레이트를 사용함으로써, 우수한 반사 방지 효과가 더 있을 수 있다.
[식 4]
nx > ny ≒ nz
[식 5]
nx > ny > nz
(상기 식 4, 식 5에서, nx는 제2위상차층의 지상축 방향의 굴절률, ny는 제2위상차층의 진상축 방향의 굴절률, nz는 제2위상차층의 두께 방향 굴절률이다). 상기 굴절률은 모두 파장 약 550nm에서의 값이다.
제2위상차층(120)은 파장 약 550nm에서 두께 방향 위상차가 약 50nm 내지 250nm, 구체적으로 약 80nm 내지 200nm, 바람직하게는 약 100nm 내지 180nm가 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
제2위상차층(120)은 약 파장 550nm에서 이축성 정도가 약 1.0 내지 1.4, 구체적으로 약 1.0 초과 1.4 이하(예를 들면 1.1, 1.2, 1.3 또는 1.4)가 될 수 있다. 상기 범위에서, 우수한 반사 방지 효과가 있을 수 있다.
제2위상차층(120)은 편광자의 흡수축 또는 투과축을 기준으로 지상축이 약 +40° 내지 +50°(예를 들면, +40, +41, +42, +43, +44, +45, +46, +47, +48, +49, 또는 +50°), 약 -50° 내지 -40°(예를 들면, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41, 또는 -40°), 약 +130° 내지 +140°(예를 들면 +130, +131, +132, +133, +134, +135, +136, +137, +138, +139, 또는 +140°) 또는 약 -140° 내지 -130°(예를 들면, -140, -139, -138, -137, -136, -135, -134, -133, -132, -131 또는 -130°)가 될 수 있다.
제2위상차층(120)은 필름 또는 코팅층이 될 수 있다. 바람직하게는, 제2위상차층은 필름이 됨으로써 편광판 중 제1위상차층, 제3위상차층의 형성을 용이하게 할 수 있다. 제2위상차층(120)은 두께가 약 60㎛ 이하, 예를 들면 약 0㎛ 초과 50㎛ 이하가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고, 편광판의 하부 보호필름으로서의 효과를 동시에 얻을 수 있다.
제2위상차층(120)이 필름일 경우, 제2위상차층(120)은 상기에서 상술한 광학적으로 투명한 미연신 수지 필름을 상술한 면내 위상차 등의 물성을 갖도록 연신하여 제조될 수 있다. 상기 연신은 1축, 2축 또는 경사 연신을 포함할 수 있다. 바람직하게는, 수지 필름은 환형 올레핀폴리머(COP)를 포함하는 수지 필름을 포함할 수 있다. 바람직하게는, 제2위상차층은 MD 1축 연신 필름 또는 경사 연신 필름이 될 수 있다.
일 구체예에서, 제2위상차층(120)은 위상차 발현율(제2위상차층의 두께 변화에 따른 제2위상차층의 면내 위상차의 변화에 대한 비율)이 약 5nm/㎛ 이상, 바람직하게는 약 5nm/㎛ 초과, 예를 들면 약 5nm/㎛ 내지 20nm/㎛가 될 수 있다. 상기 범위에서, 박형의 제2위상차층을 사용함으로써 편광판을 박형화시킬 수 있다.
제2위상차층(120)은 당업자에게 알려진 통상의 첨가제 예를 들면 UV 흡수제, 파장 분산 조절제, 중합 금지제, 산화 방지제, 열 안정제, 가소제 중 1종 이상을 더 포함할 수 있지만, 이에 제한되지 않는다.
제2위상차층(120)은 단일층이 될 수도 있고, 2층 이상의 다중층일 수도 있다.
제1위상차층(110)과 제2위상차층(120)의 적층체는 파장 약 550nm에서 면내 위상차가 약 100nm 내지 180nm(예를 들면, 100, 110, 120, 130, 140, 150, 160, 170, 또는 180nm), 구체적으로 약 120nm 내지 160nm가 될 수 있다. 상기 범위에서, 본 발명의 효과가 더 잘 구현될 수 있다.
제1위상차층(110)과 제2위상차층(120)의 적층체는 파장 약 550nm에서 두께 방향 위상차가 약 50nm 내지 120nm, 구체적으로 약 50nm 내지 110nm가 될 수 있다. 상기 범위에서, 본 발명의 효과가 더 잘 구현될 수 있다.
제1위상차층(110)과 제2위상차층(120)의 적층체는 파장 약 550nm에서 이축성 정도가 약 -0.2 내지 1.4(예를 들면, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 또는 1.4) 구체적으로 약 -0.1 내지 1.3이 될 수 있다. 상기 범위에서, 본 발명의 효과가 더 잘 구현될 수 있다.
도 1에서 도시되지 않았지만, 제2위상차층(120)의 적어도 일면에는 프라이머층이 존재할 수 있다. 프라이머층에 대한 내용은 상기에서 상술한 바와 같다.
제2위상차층(120)은 제3위상차층(130)에 점착층 또는 접착층 없이 직접적으로 형성될 수도 있고, 점착층(예: PSA(pressure sensitive adhesive) 또는 접착층을 매개로 제3위상차층에 적층될 수도 있다. 상기 "직접적으로 형성"은 제2위상차층과 제3위상차층 사이에 임의의 점착층 또는 접착층이 존재하지 않음을 의미한다.
제3위상차층
제3위상차층(130)은 제1위상차층(110), 제2위상차층(120) 대비 파장 약 550nm에서 면내 위상차 및/또는 두께 방향 위상차가 다르다.
제2위상차층(120)의 하부면에 제3위상차층(130)을 구비함으로써 측면에서의 반사율이 현저하게 낮아지고 타원율도 개선된다. 도 1의 편광판 구조에서 제3위상차층이 없는 경우 반사율과 타원율 모두에서 효과가 좋지 않았음을 확인하였다.
제3위상차층(130)은 파장 약 550nm에서 두께 방향 위상차가 약 -100nm 내지 -10nm(예를 들면, -100, -90, -80, -70, -60, -50, -40, -30, -20, 또는 -10nm)가 될 수 있다. 상기 범위에서, 제1위상차층, 제2위상차층과 함께 측면에서의 반사율과 타원율을 개선할 수 있다. 바람직하게는, 파장 약 550nm에서 두께 방향 위상차는 약 -90nm 내지 -30nm, 더 바람직하게는 약 -80nm 내지 -40nm가 될 수 있다.
제3위상차층(130)은 포지티브 C 플레이트(+C 플레이트)로서 하기 식 6의 굴절률 관계를 만족할 수 있다: 제3위상차층으로 +C 플레이트를 사용함으로써, 측면에서 우수한 반사 방지 효과를 더 얻을 수 있다.
[식 6]
nz > nx ≒ ny
(상기 식 6에서, nx, ny, nz는 각각 nx는 제3위상차층의 지상축 방향의 굴절률, ny는 제3위상차층의 진상축 방향의 굴절률, nz는 제3위상차층의 두께 방향 굴절률이다). 상기 굴절률은 모두 파장 약 550nm에서의 값이다.
제3위상차층(130)은 파장 550nm에서 면내 위상차가 10nm 이하, 예를 들면 약 0nm 내지 10nm가 될 수 있다.
제3위상차층(130)은 정파장 분산성, 역파장 분산성 또는 플랫 파장 분산성 특성을 가질 수 있다.
제3위상차층(130)은 필름 또는 코팅층이 될 수 있다. 바람직하게는, 제3위상차층은 코팅층이 됨으로써 편광판의 박형화 효과를 제공할 수 있다. 제3위상차층(130)은 두께가 약 30㎛ 이하, 예를 들면 약 0㎛ 초과 10㎛ 이하가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고, 박형화 효과를 얻을 수 있다.
제3위상차층(130)이 필름일 경우 상술한 광학적으로 투명한 미연신 수지 필름을 상술한 면내 위상차 등의 물성을 갖도록 연신하여 제조될 수 있다. 상기 연신은 1축, 2축 또는 경사 연신을 포함할 수 있다.
제3위상차층(130)이 코팅층일 경우, 제3위상차층(130)은 비-액정층이 될 수 있다. 제3위상차층을 액정으로 형성할 경우 액정을 일정 각도로 배향하기 위해 배향막이 필수적으로 포함되어야 하고, 이물이 발생할 수도 있다.
상기 코팅층은 상술한 두께 방향 위상차 및 포지티브 C 플레이트를 구현할 수 있다면, 종류에 제한을 두지 않는다. 예를 들면, 상기 코팅층은 치환 또는 비치환된, 스티렌계, (메타)아크릴로니트릴계, 메틸(메타)아크릴레이트 등을 포함하는 알킬 (메타)아크릴레이트계, 셀룰로스계 중 1종 이상을 포함할 수 있고, 바람직하게는 치환 또는 비치환된, 셀룰로스계 수지, 예를 들면 셀룰로스 에스테르계 수지를 포함할 수 있다. 셀룰로스 에스테르계 수지는 본 발명의 제3위상차층 구현이 용이할 수 있다.
일 구체예에서, 제1위상차층, 제2위상차층, 제3위상차층은 일체화될 수 있다. 상기 '일체화'는 제1위상차층, 제3위상차층이 점착층 또는 접착층 없이 제2위상차층에 적층된 3층 구조의 적층체를 의미한다.
상기 3층 구조의 적층체의 제조에 대해 설명한다.
제2위상차층을 위한 미연신 필름 또는 일부 연신 필름의 상부면에 제1위상차층용 조성물을 소정의 두께로 코팅하고, 상기 미연신 필름 또는 일부 연신 필름과 상기 제1위상층용 도막 전체를 동시에 연신시킴으로서 제1위상차층과 제2위상차층의 적층체를 제조할 수 있다. 상기 연신은 MD 1축 연신 또는 경사 연신이 바람직할 수 있지만, 이에 제한되지 않는다. 그런 다음, 제2위상차층의 하부면에 제3위상차층용 조성물을 코팅하고 건조 및/또는 경화시킴으로써, 상술 3층 구조의 적층체를 제조할 수 있다.
편광자
편광자(140)는 입사된 자연광 또는 편광을 중 특정 방향의 직선 편광으로 변환시킬 수 있다. 편광자(140)는 흡수축 및 흡수축과 실질적으로 직교하는 투과축을 구비한다. 흡수축, 투과축은 각각 일 방향으로 형성되어 있다.
폴리비닐알코올계 수지를 주성분으로 하는 고분자 필름으로부터 제조될 수 있다. 구체적으로, 편광자는 상기 고분자 필름을 요오드나 이색성 염료를 염색시키고, 이를 MD로 연신시켜 제조될 수 있다. 구체적으로, 팽윤 과정, 염색 단계, 연신 단계, 가교 단계를 거쳐 제조될 수 있다.
편광자(140)는 전광선 투과율이 약 42% 이상, 예를 들면 약42% 내지 50%, 편광도가 약 99% 이상, 예를 들면 약 99% 내지 100%가 될 수 있다. 상기 범위에서, 제1위상차층, 제2위상차층, 제3위상차층과 조합시 반사 방지 성능을 높일 수 있다.
편광자(140)는 두께가 약 0.1㎛ 내지 30㎛, 구체적으로 약 1㎛ 내지 25㎛가 될 수 있고, 상기 범위에서 편광판에 사용될 수 있다.
도 1에서 도시되지 않았지만, 편광자(140)의 상부면에는 보호 필름이 더 적층될 수 있다.
보호 필름은 편광자의 상부면에 형성됨으로써, 편광자를 외부 환경으로부터 보호하고, 편광판의 기계적 강도를 높이는 효과가 더 있을 수 있다. 보호 필름은 편광자를 외부 환경으로부터 보호하는데, 광학적 투명 필름으로서, 예를 들면 트리아세틸셀룰로스(TAC) 등을 포함하는 셀룰로오스계, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트(PET), 폴리부틸렌나프탈레이트 등을 포함하는 폴리에스테르계, 고리형 폴리올레핀계, 폴리카보네이트계, 폴리에테르술폰계, 폴리술폰계, 폴리아미드계, 폴리이미드계, 폴리올레핀계, 폴리아릴레이트계, 폴리비닐알코올계, 폴리염화비닐계, 폴리염화비닐리덴계 중 하나 이상의 수지로 된 필름이 될 수 있다. 구체적으로, TAC, PET 필름을 사용할 수 있다.
보호 필름은 두께가 약 5㎛ 내지 70㎛, 구체적으로 약 15㎛ 내지 45㎛가 될 수 있고, 상기 범위에서 편광판에 사용할 수 있다.
보호 필름의 상부면에는 기능성 코팅층이 형성되어 편광판에 추가 기능을 제공할 수 있는데, 예를 들면 기능성 코팅층은 하드코팅층, 내지문성층, 반사방지층 등이 될 수 있고, 이들은 단독 또는 2종 이상으로 적층되어 형성될 수 있다. 보호 필름은 편광자에 접착층을 통해 접착될 수 있다. 접착층은 수계 또는 UV 경화계 접착제로 형성될 수 있지만, 이에 제한되지 않는다.
이하, 도 3을 참고하여, 본 발명의 다른 실시예의 편광판을 설명한다.
도 3을 참조하면, 편광판은 편광자(140), 제2위상차층(120), 제1위상차층(110), 제3위상차층(130)이 순차적으로 적층된 점을 제외하고는 본 발명 일 실시예인 도 1의 편광판과 실질적으로 동일하다. 도 1에서 설명된 편광자, 제1위상차층, 제2위상차층, 제3위상차층에 대한 상세 설명은 그대로 채용될 수 있다.
이하, 본 발명의 광학표시장치를 설명한다.
본 발명의 광학표시장치는 본 발명 실시예의 편광판을 포함한다. 예를 들면, 광학표시장치는 유기발광표시장치 등을 포함하는, 발광표시장치 또는 액정표시장치를 포함할 수 있다. 일 구체예에서, 본 발명의 편광판에서 제1위상차층이 편광자에 비하여 표시장치용 패널에 더 인접하게 배치될 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예 1
폴리비닐알코올 필름(PS60, 일본 Kuraray사, 연신 전 두께: 60㎛)을 55℃요오드 수용액에서 약 6배로 연신하여 광 투과율 약 45%의 편광자(두께:12㎛)를 제조하였다.
제2위상차층을 형성하기 위한 수지로서 환형 올레핀 폴리머(COP)[JSR社]를 사용하여 압출 제막 후 연신하였다. 얻은 연신 필름의 상부면에 제1위상차층을 형성하기 위한 조성물[셀룰로즈계 함유]을 소정의 두께로 코팅하고 건조시킨 다음 동시 연신시킴으로써 제1위상차층과 제2위상차층의 적층체를 제조하였다. 이때 연신비와 연신 방향을 조절함으로써, 제1위상차층의 지상축과 제2위상차층의 지상축 간의 각도, 제1위상차층과 제2위상차층 각각의 물성을 조절할 수 있다.
상기 제2위상차층의 하부면에 제3위상차층을 형성하기 위한 조성물[Eastman社, 셀룰로스계 함유]을 코팅하고 건조시켜, 제2위상차층의 하부면에 제3위상차층을 형성함으로써, 제1위상차층, 제2위상차층, 제3위상차층의 적층체를 제조하였다.
상기 제조한 편광자의 하부면에, 점착층을 매개로 상기 제조한 제1위상차층, 제2위상차층, 제3위상차층이 순차적으로 적층되도록 함으로써 편광판을 제조하였다.
최종 제조된 편광판 중 구체적인 사양을 하기 표 1에 나타내었다.
실시예 2 내지 실시예 5
실시예 1에서, 제1위상차층, 제2위상차층, 제3위상차층의 물성, 각도를 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조하였다.
비교예 1
실시예 1과 동일한 방법으로 제조한 편광자의 하부면에, 역파장 분산성 필름(+A 플레이트, 편광자의 흡수축에 대해 지상축이 이루는 각도는 약 +45°, 파장 550nm에서 면내 위상차는 135nm)과 포지티브 C 플레이트(파장 550nm에서 두께 방향 위상차가 -50nm)을 순차적으로 적층시켜 편광판을 제조하였다.
비교예 2 내지 비교예 11
실시예 1에서, 제1위상차층, 제2위상차층, 제3위상차층의 물성, 각도를 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조하였다.
실시예와 비교예의 편광판을 가지고 측면(@60°)에서의 반사율과 타원율을 평가하고 하기 표 1, 하기 표 2, 하기 표 3에 나타내었다.
측면에서의 반사율과 타원율을 평가하기 위하여, 반사율은 DMS를 이용하여 60도 각도에서의 방위각 평균값을 비교하였고 타원율은 AXOSCAN을 사용하여 방위각에서의 최저치를 비교하는 방법으로 평가하였다.
반사율이 낮을수록 타원율이 높을수록 디스플레이 장치에 적용시 화면 품질이 우수하고, 반사율은 약 1.3% 이하, 타원율은 약 75% 이상이 되어야 한다.
실시예
1 2 3 4 5
각도 α +45 -45 +45 +45 +45
각도 β +90 -90 +90 +90 +90
제1층 분산성 정파장 정파장 정파장 정파장 정파장
Re 60 60 60 50 60
NZ -0.2 -0.2 -0.2 -0.2 -0.2
성질 -A -A -A -A -A
제2층 분산성 플랫 플랫 정파장 플랫 플랫
Re 200 200 200 200 180
NZ 1.2 1.2 1.0 1.2 1.2
성질 -B -B +A -B -B
제3층 Rth -50 -50 -50 -50 -50
성질 +C +C +C +C +C
제1층과 제2층 적층체의 Re 140 140 140 150 120
제1층과 제2층 적층체의 Rth 98 98 58 105 84
제1층과 제2층 적층체의 NZ 1.2 1.2 0.9 1.2 1.2
측면 반사율(%) 1.2 1.2 1.3 1.3 1.2
측면 타원율(%) 76 76 75 75 75
비교예
1 2 3 4 5 6
각도 α +45 +45 +45 +35 +55 +45
각도 β - +90 +90 +90 +90 +75
제1층 분산성 역파장 역파장 정파장 정파장 정파장 정파장
Re 135 60 60 60 60 60
성질 - -A -A -A -A -A
제2층 분산성 - 플랫 역파장 플랫 플랫 플랫
Re - 200 200 200 200 200
성질 - -B -B -B -B -B
제3층 Rth -50 -50 -50 -50 -50 -50
성질 +C +C +C +C +C +C
측면 반사율(%) 1.5 1.8 1.7 2.1 2.2 2.4
측면 타원율(%) 74 71 72 70 69 68
비교예
7 8 9 10 11
각도 α +45 +45 +45 +45 +45
각도 β +105 +90 +90 +90 +90
제1층 분산성 정파장 정파장 정파장 정파장 정파장
Re 60 45 105 60 60
성질 -A -A -A -A -A
제2층 분산성 플랫 플랫 플랫 플랫 플랫
Re 200 200 200 175 245
성질 -B -B -B -B -B
제3층 Rth -50 -50 -50 -50 -50
성질 +C +C +C +C +C
측면 반사율(%) 2.5 2.7 3.0 3.2 3.3
측면 타원율(%) 67 66 64 63 62
*표 1, 표 2, 표 3에서
각도 α는 편광자의 흡수축(0°)과 제1위상차층의 지상축이 이루는 각도(단위:°)
각도 β는 제1위상차층의 지상축과 제2위상차층의 지상축이 이루는 각도(단위:°)
상기 표 1에서와 같이, 본 발명의 편광판은 반사율이 현저하게 낮고 타원율이 현저하게 높았다.
반면에, 본 발명의 편광판 구조를 채용하지 않은 비교예 1은 반사율과 타원율이 실시예 대비 좋지 않았다. 또한, 상기 표 1에서 도시되지 않았지만 편광자와, 제1위상차층과 제3위상차층을 롤 투 롤 합지하여 편광판을 제조할 경우 합지가 어려우며 편광자 하부 보호필름으로서의 강도가 약하다는 문제점이 있었다.
또한, 본 발명의 각도 α, 각도 β, 제1위상차층의 파장 분산성과 면내 위상차, 제2위상차층의 파장 분산성과 면내 위상차를 벗어나는 비교예 2 내지 비교예 11의 편광판은 반사율과 타원율이 실시예 대비 현저하게 좋지 못하였다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (20)

  1. 편광자 및 상기 편광자의 하부면에 순차적으로 적층된, 제1위상차층과 제2위상차층의 적층체 및 제3위상차층을 포함하고,
    상기 편광자의 흡수축 또는 투과축을 기준으로 상기 제1위상차층의 지상축(slow axis)은 약 +40° 내지 +50° 또는 약 -50° 내지 -40°의 각도를 이루고,
    상기 제1위상차층의 지상축과 상기 제2위상차층의 지상축은 약 +80° 내지 +100° 또는 약 -100° 내지 -80°의 각도를 이루고,
    상기 제1위상차층은 정파장 분산성이고 파장 약 550nm에서 면내 위상차가 약 50nm 내지 100nm이고,
    상기 제2위상차층은 정파장 분산성 또는 플랫 파장 분산성이고 파장 약 550nm에서 면내 위상차가 약 180nm 내지 240nm인 것인, 편광판.
  2. 제1항에 있어서, 상기 편광판은 상기 편광자로부터 제1위상차층, 제2위상차층, 제3위상차층의 순서로 적층된 것인, 편광판.
  3. 제1항에 있어서, 상기 편광판은 상기 편광자로부터 제2위상차층, 제1위상차층, 제3위상차층의 순서로 적층된 것인, 편광판.
  4. 제1항에 있어서, 상기 제3위상차층은 포지티브 C 플레이트이고, 파장 약 550nm에서 두께 방향 위상차가 약 -100nm 내지 -10nm인 것인, 편광판.
  5. 제1항에 있어서, 상기 제1위상차층은 네가티브 A 플레이트인 것인, 편광판.
  6. 제1항에 있어서, 상기 제2위상차층은 포지티브 A 플레이트 또는 네가티브 B 플레이트인 것인, 편광판.
  7. 제1항에 있어서, 상기 제1위상차층은 하기 식 1을 만족하는 것인, 편광판:
    [식 1]
    Re(450)/Re(550) ≥ 약 1.1
    (상기 식 1에서, Re(450), Re(550)은 각각 상기 제1위상차층의 파장 약 450nm, 550nm에서의 면내 위상차이다).
  8. 제1항에 있어서, 상기 제1위상차층은 파장 약 550nm에서 이축성 정도가 약 -0.5 내지 0인 것인, 편광판.
  9. 제1항에 있어서, 상기 제2위상차층은 하기 식 3을 만족하는 것인, 편광판:
    [식 3]
    약 0.95 ≤ Re(450)/Re(550) ≤ 약 1.03
    (상기 식 3에서, Re(450), Re(550)은 각각 상기 제2위상차층의 파장 약 450nm, 550nm에서의 면내 위상차이다).
  10. 제1항에 있어서, 상기 제2위상차층은 파장 약 550nm에서 이축성 정도가 약 1.0 내지 1.4인 것인, 편광판.
  11. 제1항에 있어서, 상기 제2위상차층은 상기 편광자의 흡수축 또는 투과축을 기준으로 지상축이 약 +40° 내지 +50°, 약 -50° 내지 -40°, 약 +130° 내지 +140° 또는 약 -140° 내지 -130°인 것인, 편광판.
  12. 제1항에 있어서, 상기 편광자의 흡수축을 0°라고 할 때, 상기 제1위상차층의 지상축이 이루는 각도는 약 +40° 내지 +50°이고, 상기 제1위상차층의 지상축과 상기 제2위상차층의 지상축이 이루는 각도는 약 +80° 내지 +100°인 것인, 편광판.
  13. 제1항에 있어서, 상기 제1위상차층과 상기 제2위상차층의 적층체는 파장 약 550nm에서 면내 위상차가 약 100nm 내지 180nm인 것인, 편광판.
  14. 제1항에 있어서, 상기 제1위상차층과 상기 제2위상차층의 적층체는 파장 약 550nm에서 이축성 정도가 약 -0.2 내지 1.4인 것인, 편광판.
  15. 제1항에 있어서, 상기 제1위상차층, 상기 제3위상차층은 각각 비 액정층인 것인, 편광판.
  16. 제1항에 있어서, 상기 제1위상차층, 상기 제3위상차층은 각각 치환 또는 비치환된, 스티렌계, (메타)아크릴로니트릴계, 메틸(메타)아크릴레이트 등을 포함하는 알킬 (메타)아크릴레이트계, 셀룰로스계 중 1종 이상을 포함하는 조성물로 형성된 코팅층을 포함하는 것인, 편광판.
  17. 제16항에 있어서, 상기 조성물은 방향족기를 갖는 첨가제를 더 포함하는 것인, 편광판.
  18. 제1항에 있어서, 상기 제2위상차층은 MD 1축 연신 또는 경사 연신된 필름을 포함하는 것인, 편광판.
  19. 제1항에 있어서, 상기 제1위상차층, 상기 제2위상차층, 상기 제3위상차층은 각각 적어도 일면에 프라이머층이 더 형성된 것인, 편광판.
  20. 제1항 내지 제19항 중 어느 한 항의 편광판을 포함하는 광학표시장치.
PCT/KR2020/010768 2019-08-21 2020-08-13 편광판 및 이를 포함하는 광학표시장치 WO2021034012A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080058165.8A CN114270232A (zh) 2019-08-21 2020-08-13 偏振板和包括其的光学显示设备
US17/634,220 US20220299691A1 (en) 2019-08-21 2020-08-13 Polarizing plate and optical display device including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0102529 2019-08-21
KR1020190102529A KR102506192B1 (ko) 2019-08-21 2019-08-21 편광판 및 이를 포함하는 광학표시장치

Publications (1)

Publication Number Publication Date
WO2021034012A1 true WO2021034012A1 (ko) 2021-02-25

Family

ID=74660085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010768 WO2021034012A1 (ko) 2019-08-21 2020-08-13 편광판 및 이를 포함하는 광학표시장치

Country Status (5)

Country Link
US (1) US20220299691A1 (ko)
KR (1) KR102506192B1 (ko)
CN (1) CN114270232A (ko)
TW (1) TWI750774B (ko)
WO (1) WO2021034012A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024057839A (ja) * 2022-10-13 2024-04-25 日東電工株式会社 光学積層体
KR20240085462A (ko) * 2022-12-08 2024-06-17 삼성에스디아이 주식회사 편광판 및 광학표시장치
CN116184554B (zh) * 2023-03-01 2024-02-20 浙江怡钛积科技有限公司 一种光学板件、光学应用件及该光学板件的模拟生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080096753A (ko) * 2006-01-25 2008-11-03 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤) 액정표시장치
KR20160109525A (ko) * 2015-03-11 2016-09-21 동우 화인켐 주식회사 위상차 필름, 편광판 및 이를 포함하는 화상 표시 장치
KR20170079651A (ko) * 2015-12-30 2017-07-10 엘지디스플레이 주식회사 유기발광다이오드 표시장치
JP2017181735A (ja) * 2016-03-30 2017-10-05 日東電工株式会社 光学補償層付偏光板およびそれを用いた有機elパネル
KR20180039649A (ko) * 2015-08-31 2018-04-18 닛토덴코 가부시키가이샤 장척상의 광학 보상층 부착 편광판 및 이를 이용한 유기 el 패널

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345368B (zh) * 2013-08-09 2018-10-16 住友化学株式会社 椭圆偏振板
US9309362B2 (en) * 2013-12-17 2016-04-12 Eastman Chemical Company Optical films containing optical retardation-enhancing additive
KR102435573B1 (ko) * 2018-06-20 2022-08-23 삼성에스디아이 주식회사 광학필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080096753A (ko) * 2006-01-25 2008-11-03 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤) 액정표시장치
KR20160109525A (ko) * 2015-03-11 2016-09-21 동우 화인켐 주식회사 위상차 필름, 편광판 및 이를 포함하는 화상 표시 장치
KR20180039649A (ko) * 2015-08-31 2018-04-18 닛토덴코 가부시키가이샤 장척상의 광학 보상층 부착 편광판 및 이를 이용한 유기 el 패널
KR20170079651A (ko) * 2015-12-30 2017-07-10 엘지디스플레이 주식회사 유기발광다이오드 표시장치
JP2017181735A (ja) * 2016-03-30 2017-10-05 日東電工株式会社 光学補償層付偏光板およびそれを用いた有機elパネル

Also Published As

Publication number Publication date
CN114270232A (zh) 2022-04-01
TWI750774B (zh) 2021-12-21
KR102506192B1 (ko) 2023-03-03
US20220299691A1 (en) 2022-09-22
TW202109087A (zh) 2021-03-01
KR20210023002A (ko) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2021034012A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020138878A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020153639A1 (ko) 액정표시장치
WO2018199619A1 (ko) 광학 디바이스
WO2017209473A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
WO2018199615A1 (ko) 광학 디바이스
WO2018199616A1 (ko) 광학 디바이스
WO2020256337A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2014178517A1 (ko) 폴리에스테르계 프라이머 조성물, 이를 이용한 광학 필름 및 이를 포함하는 편광판
WO2021029626A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2016105017A1 (ko) 광학필름 및 이를 구비한 oled 표시장치
WO2019245145A1 (ko) 광학필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2014204205A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2019083160A1 (ko) 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2014204150A1 (ko) 연신 적층체, 박형 편광자의 제조 방법, 이를 이용하여 제조되는 박형 편광자 및 이를 포함하는 편광판
WO2022098016A1 (ko) 광학표시장치용 모듈 및 이를 포함하는 광학표시장치
WO2020130462A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2022203329A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020138879A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2016104976A1 (ko) 광학시트, 이를 포함하는 편광판 및 액정표시장치
WO2020184862A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020204411A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2021040312A1 (ko) 편광판 적층체 및 이를 포함하는 디스플레이 장치
WO2023018080A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2024053962A1 (ko) 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854130

Country of ref document: EP

Kind code of ref document: A1