WO2019083160A1 - 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치 - Google Patents

액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치

Info

Publication number
WO2019083160A1
WO2019083160A1 PCT/KR2018/010579 KR2018010579W WO2019083160A1 WO 2019083160 A1 WO2019083160 A1 WO 2019083160A1 KR 2018010579 W KR2018010579 W KR 2018010579W WO 2019083160 A1 WO2019083160 A1 WO 2019083160A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
retardation
retardation layer
phase difference
Prior art date
Application number
PCT/KR2018/010579
Other languages
English (en)
French (fr)
Inventor
최진희
김진숙
유정훈
박선홍
이상흠
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US16/756,438 priority Critical patent/US11809044B2/en
Priority to CN201880068756.6A priority patent/CN111263904B/zh
Publication of WO2019083160A1 publication Critical patent/WO2019083160A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3075Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state for use in the UV
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/086UV absorbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/38Anti-reflection arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Definitions

  • the present invention relates to a liquid crystal phase difference film, a polarizing plate for a light emitting display including the same, and a light emitting display including the same.
  • the organic light emitting display device is a self light emitting display device and includes an organic light emitting element that emits red, green, and blue light.
  • an organic light emitting element that emits red, green, and blue light.
  • external light is reflected by a display element inside the organic light emitting element panel.
  • the reflected external light is mixed with the light emitted from the organic light emitting element, which deteriorates the visibility when viewed from the outside.
  • incident light is prevented from being emitted to the outside by making the external light incident into the organic light emitting element to be linearly polarized and circularly polarized by using the polarizing film and the retardation layer.
  • a polymer film can be used as the retardation layer
  • attempts have been made to form a retardation layer from a liquid crystal in view of thinning of a polarizing plate and an organic light emitting diode display.
  • a method of orienting a liquid crystal compound is to orient a liquid crystal by an orientation layer and immobilize it by heat or crosslinking reaction.
  • the alignment layer a photopolymerizable alignment film and an alignment film by rubbing treatment can be considered.
  • the thickness of the polarizing plate may become thicker by the thickness of the alignment layer, and the process of manufacturing the polarizing plate may become complicated.
  • the liquid crystal aligned without the orientation layer may be subjected to long-term exposure to UV, which may cause the orientation to collapse, thereby decreasing the retardation reliability.
  • An object of the present invention is to provide a liquid crystal phase difference film having excellent adhesion between a second liquid crystal layer and a first liquid crystal layer without an alignment film.
  • Another object of the present invention is to provide a liquid crystal retardation film which has a second liquid crystal layer and a first liquid crystal layer free of an alignment film and which is excellent in adhesion between the first liquid crystal layer and the second liquid crystal layer even after long- .
  • a first retardation layer free of an orientation film, a UV absorptive-containing primer layer and a second retardation layer are sequentially formed, and the first retardation layer and the second retardation layer may each be a liquid crystal layer.
  • the UV absorbing primer layer may comprise a UV absorber-containing primer layer.
  • the UV absorbing primer layer may be formed directly on the first retardation layer and the second retardation layer, respectively.
  • the liquid crystal layer of the first retardation layer may include a liquid crystal layer including a liquid crystal having a photosensitive reactor.
  • the liquid crystal layer of the second retardation layer may include a liquid crystal layer including a liquid crystal having a photosensitive reactor.
  • the second retardation layer may have a higher crosslinking ratio of the liquid crystal having the photosensitive layer than the first retardation layer.
  • the first retardation layer may have an in-plane retardation Re of about 90 nm to about 170 nm at a wavelength of 550 nm and an in-plane retardation Re of about 210 nm to about 280 nm at a wavelength of 550 nm.
  • the angle formed by the fast axis of the second retardation layer and the fast axis of the first retardation layer may be about 55 ° to about 80 °.
  • the liquid crystal of the first retardation layer may have a homeotropic orientation with a nematic liquid crystal.
  • the liquid crystal of the second retardation layer may have a homeotropic orientation with a discotic liquid crystal or a nematic liquid crystal.
  • the UV absorber may include at least one of benzotriazole-based, hydroxyphenyltriazine-based, triazine-based, and phenyltriazine based.
  • the UV absorbing primer layer may have a thickness of about 5 mu m or less.
  • the UV absorber may comprise from about 10% to about 30% by weight of the UV absorber-containing primer layer.
  • the liquid crystal layer of the first retardation layer and the liquid crystal layer of the second retardation layer each include a photosensitive group
  • the photosensitive group may be a nenamoyl group, a cinnamylidene group, a (meth) acryloyl group, a (meth) Containing group, a coumarin group, and a benzophenone group.
  • the liquid crystal phase difference film may have a retardation change rate according to the following formula (1) of about 3% or less.
  • Phase difference change rate
  • the UV absorbing primer layer may be non-sticky.
  • liquid crystal layer of the second retardation layer may include a liquid crystal in which the orientation of the liquid crystal is not changed by UV irradiation.
  • the polarizing plate for a light emitting display of the present invention may include a polarizing film and a liquid crystal retardation film of the present invention formed on one side of the polarizing film.
  • the light emitting display of the present invention may include the polarizing plate for the light emitting display of the present invention.
  • the present invention provides a liquid crystal phase difference film having excellent adhesion between a second liquid crystal layer and a first liquid crystal layer having no alignment film.
  • the present invention provides a liquid crystal phase difference film comprising a second liquid crystal layer and a first liquid crystal layer free of an alignment film and having excellent adhesion between the first liquid crystal layer and the second liquid crystal layer even after long-term UV irradiation, thereby improving light reliability.
  • the present invention provides a liquid crystal retardation film including a second liquid crystal layer and a first liquid crystal layer free of an alignment film and capable of improving light reliability by lowering the rate of change of retardation of the first liquid crystal layer even after long-term UV irradiation.
  • the present invention provides a liquid crystal phase difference film having excellent flatness.
  • the present invention provides a liquid crystal phase difference film capable of lowering the reflectance in both front and side surfaces.
  • the present invention provides a polarizing plate for a light emitting display comprising the liquid crystal phase difference film of the present invention.
  • the present invention provides a light-emitting display device including a polarizing plate for a light-emitting display device of the present invention.
  • FIG. 1 is a cross-sectional view of a liquid crystal phase difference film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a liquid crystal phase difference film according to another embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a polarizing plate for a light emitting display according to an embodiment of the present invention.
  • FIG. 4 shows the angle between the absorption axis of the polarizing film, the fast axis of the second retardation layer, and the fast axis of the first retardation layer in the polarizing plate for the light emitting display of FIG.
  • in-plane retardation (Re) is represented by the following formula A
  • Thickness direction retardation (Rth) is represented by the following formula B
  • biaxiality degree (NZ) is represented by the following formula
  • NZ (nx - nz) / (nx - ny)
  • nx, ny and nz are refractive indexes in the x-axis, y-axis and z-axis directions of the retardation layer at wavelengths of 550 nm and d is the thickness (unit: nm) of the retardation layer) .
  • front and side refer to the horizontal direction ( ⁇ , ⁇ ) by the spherical coordinate system, the front surface is (0 °, 0 °) (0 °, 90 °) and the right end point (0 °, 90 °), respectively.
  • the liquid crystal retardation film 10 may include a first retardation layer 100, a UV absorber-containing primer layer 300, and a second retardation layer 200. On the upper surface of the first retardation layer 100, a UV absorber-containing primer layer 300 and a second retardation layer 200 are sequentially formed.
  • a UV absorber-containing primer layer 300 is directly formed on one surface of the first retardation layer 100.
  • the " directly formed" means that no adhesive layer, adhesive layer, or adhesive layer is interposed between the first retardation layer and the UV absorber-containing primer layer.
  • the first retardation layer 100 can exhibit a predetermined range of retardation by alignment of the liquid crystal without an alignment film. As a result, the effect of thinning the polarizing plate can be obtained. However, since the first retardation layer 100 is formed without an alignment layer, the liquid crystal alignment may be changed by UV irradiation to change the retardation. However, as described below, the change in the liquid crystal orientation can be prevented by the UV absorber-containing primer layer 300, thereby enhancing the reliability.
  • the first retardation layer 100 may comprise a liquid crystal layer formed of a photoreactive liquid crystal having a photosensitive reactor.
  • the first retardation layer is composed of a crosslinked liquid crystal having a photosensitive reactor.
  • the liquid crystal may include a liquid crystal polymer composed of a unit composed of a mesogen former and a photosensitive group.
  • the liquid crystal polymer may have a unit composed of a mesogen-forming group and a photosensitive group on a main chain or side chain.
  • the liquid crystal polymer may include a unit having a mesogen-forming group and a photosensitive group in the side chain by polymerizing a monomer having a polymerizable group in the mesogen-forming group, the photosensitive group.
  • the polymerizable group may be an acryloyl group, a methacryloyl group, an epoxy group, a vinyl ether group or the like.
  • the mesogen-forming group is not particularly limited as long as it can impart liquid crystallinity to the liquid crystalline polymer.
  • the mesogen-forming group may include a mesogen group as well as a hydrogen bonding mesogen which does not exhibit liquid crystallinity but exhibits liquid crystallinity by hydrogen bonding between molecules.
  • the alignment positions of Ar1 and Ar2 are not particularly limited as long as they give liquid crystallinity. A para-configuration when Ar1 and Ar2 are phenylene groups, and a 2,6-configuration when Ar1 and Ar2 are naphthalene groups.
  • the photosensitive group is a functional group which can be crosslinked by light energy, and examples thereof include a cinnamoyl group, a cinnamylidene group, a (meth) acryloyl group, a (meth) acryloyl group-containing group, a coumarin group, have.
  • the (meth) acryloyl group-containing group may be a furyl (meth) acryloyl group, a biphenyl (meth) acryloyl group or a naphthyl (meth) acryloyl group.
  • the mesogen former and the photosensitive group may be directly bonded or may be bonded via a linking group.
  • the linking unit may be either alone or in combination with two or more of the units listed above.
  • the unit is bonded to the side chain of the liquid crystalline polymer and may be represented by the following Formula 1 or 2:
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, (Meth) acryloyl group, a (meth) acryloyl group-containing group (meth) acryloyl group, a , Coumarin group, benzophenone group).
  • the liquid crystalline polymer may further include a unit having no photosensitive group but having a mesogen forming group.
  • the unit may be represented by the following Formula 3:
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, An alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms or a halogen atom
  • T is a hydrogen atom, a hydroxyl group, a cyano group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, An alkynyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogen, and
  • the liquid crystal structure of the liquid crystalline polymer may be any one of nematic liquid crystal, smectic liquid crystal and cholesteric liquid crystal, but nematic liquid crystal is preferable.
  • the liquid crystalline polymer may be synthesized by a conventional method known to a person skilled in the art, or a commercially available product may be used.
  • the first retardation layer 100 is formed by applying a composition for a first retardation layer including a liquid crystal having a photosensitive reactor to a UV absorber-containing primer layer 300, drying the applied composition, irradiating the dried coating with linearly polarized light, And then heating and cooling the applied coating. After heating, the liquid crystal alignment may be further fixed.
  • the composition for the first retardation layer can be simply applied to the UV absorber-containing primer layer 300.
  • the surface of the UV absorber-containing primer layer 300 is subjected to plasma treatment or corona treatment to improve the wettability of the UV absorber-containing primer layer 300 to peel off the UV absorber-containing primer layer 300 and the first retardation layer 100 And the liquid crystal alignment property of the first retardation layer 100 can be more excellent.
  • the plasma treatment or corona treatment may be carried out by conventional methods known to those skilled in the art.
  • the plasma or corona treatment proceeds at a total dose of about 160 dose, and can be carried out at a total dose of about 10 to about 80 doses. In this range, the first retardation layer can be formed well without affecting the retardation of the second retardation layer 200.
  • the composition for the first retardation layer can be prepared by dissolving the liquid crystal in a solvent.
  • the solvent include aliphatic hydrocarbons such as hexane and the like; aromatic hydrocarbons such as toluene, xylene, benzene, monochlorobenzene and dichlorobenzene; halogenated hydrocarbons such as dichloromethane and dichloroethane; alicyclic hydrocarbons such as cyclo Hexane and the like, ketones such as acetone, methyl ethyl ketone, cyclohexanone, ethers such as dioxane and tetrahydrofuran, and amides such as dimethylformamide.
  • the composition for the first retardation layer can be applied by a conventional method such as a spin coater, a slit coater, a spray coater, a roll coater or the like.
  • composition for the first retardation layer is applied and dried.
  • the coating is dried at about 50 ⁇ to about 65 ⁇ .
  • the dried coating material is irradiated with linearly polarized light.
  • linearly polarized light By irradiating the linearly polarized light, only the photosensitive reactors of the units which are linearly polarized among the units included in the coating can be crosslinked.
  • the irradiation may be ultraviolet (UV) infrared, visible light or the like, but it is preferably capable of irradiating ultraviolet rays having a wavelength of about 200 nm to about 500 nm, more preferably about 250 nm to about 400 nm.
  • the irradiated coating is heated and cooled.
  • the mesogen former in the unit is oriented in the normal direction of the second retardation layer to form the first retardation layer in a homeotropic orientation.
  • the heating temperature may be performed at about 50 ⁇ to about 150 ⁇ , preferably about 60 ⁇ to about 140 ⁇ .
  • the cooling temperature can be cooled at a cooling rate of from about 1 to about 100 DEG C / min, preferably from about 1 to 20 DEG C / min.
  • the liquid crystal alignment can be fixed by irradiating ultraviolet rays having a wavelength of about 200 nm to about 500 nm, more preferably 250 to 400 nm.
  • the first retardation layer 100 is a retardation layer exhibiting a refractive index relationship of nx> nz> ny at a wavelength of 550 nm, wherein nx ranges from about 1.5 to about 1.6, ny ranges from about 1.4 to about 1.5, and nz ranges from about 1.5 to about 1.6 . Within the above range, an optical compensation effect can be obtained on the display device.
  • the first retardation layer 100 may have NZ of 0 ⁇ NZ ⁇ 1.0 at a wavelength of 550 nm, preferably NZ of about 0.3 to about 0.7. Within the above range, the effect of reducing the reflection color change depending on the viewing angle can be obtained.
  • the first retardation layer 100 may have a Re of about 90 nm to about 170 nm, preferably about 90 nm to about 150 nm, more preferably about 100 nm to about 140 nm at a wavelength of 550 nm.
  • the second retardation layer 200 may be provided with an anti-reflection effect by external light, thereby improving the visibility of the screen.
  • the first retardation layer 100 may have a Rth of about -30 nm to about 30 nm, preferably about -20 nm to about 20 nm, and more preferably about -20 nm to about 10 nm at a wavelength of 550 nm.
  • the second retardation layer 200 may be provided with an anti-reflection effect by external light, thereby improving the visibility of the screen.
  • the thickness of the first retardation layer 100 may be about 3 ⁇ or less, preferably about 2 ⁇ or less. Within the above range, the polarizing plate thinning effect can be achieved.
  • an adhesive layer may be further formed on the other surface of the first retardation layer 100 to laminate a liquid crystal retardation film on a panel of an optical display device or the like.
  • a UV absorber-containing primer layer 300 is directly formed on one surface of the second retardation layer 200.
  • the "directly formed” means that no adhesive layer, an adhesive layer, a point-adhesive layer, or the like is interposed between the second retardation layer and the UV absorber-containing primer layer.
  • the second retardation layer 200 may include a liquid crystal layer whose liquid crystal orientation is not changed by UV irradiation (for example, irradiation of about 200 nm to about 400 nm). Accordingly, when the polarizing plate is applied to the polarizing plate, it is possible to maintain the target retardation because there is no liquid crystal alignment even if UV is not blocked.
  • UV e.g., a wavelength of about 200 nm to about 400 nm
  • Q-sun weather resistance tester e.g.
  • the in-plane retardation change amount (absolute value of difference in in-plane retardation after exposure and before exposure) at a wavelength of 550 nm can be about 3 nm or less, about 0 nm to about 3 nm. At this time, the exposure time is not particularly limited, but can be about 500 hours.
  • the second retardation layer 200 may include a liquid crystal layer.
  • the liquid crystal layer may include a liquid crystal in which the orientation of the liquid crystal is not changed by UV irradiation (for example, irradiation of about 200 nm to about 400 nm).
  • the liquid crystal layer is not particularly limited, but a retardation is realized by an alignment film.
  • the first retardation layer is formed without an alignment layer. Even when the first retardation layer is formed after the UV absorber primer layer is formed on the second retardation layer, the liquid crystal alignment of the second retardation layer is prevented from being changed by the linearly polarized UV .
  • the alignment film may include, but is not limited to, an alignment film using a rubbing agent, light alignment, and the like.
  • the rubbing agent may be any conventionally known rubbing agent.
  • the second retardation layer 200 can be prepared by forming an orientation film on a base film, then applying the composition for the second retardation layer on the orientation film, and curing by heating and irradiating unpolarized UV.
  • the base film may include an optically transparent ordinary resin film.
  • the base film may include, but is not limited to, a cellulose resin including triacetyl cellulose and the like, a polyester, a polycarbonate film and the like.
  • the second retardation layer 200 is a retardation layer exhibiting a refractive index relationship of nx> nz> ny at a wavelength of 550 nm, wherein nx ranges from about 1.55 to about 1.65, ny ranges from about 1.45 to about 1.55, and nz ranges from about 1.55 to about 1.65 . Within the above range, an optical compensation effect can be obtained on the display device.
  • the second retardation layer 200 may have an NZ of 0 ⁇ NZ ⁇ 1.0 and preferably NZ of about 0 to about 0.5 at a wavelength of 550 nm. Within this range, a side reflective viewing angle can exert an excellent effect.
  • the second retardation layer 200 may have a Re at a wavelength of 550 nm of from about 210 nm to about 280 nm, preferably from about 210 nm to about 260 nm, more preferably from about 225 nm to about 255 nm, and more preferably from about 230 nm to about 250 nm have.
  • the first retardation layer 100 may be provided with an anti-reflection effect by external light to improve the visibility of the screen.
  • the second retardation layer 200 may have a Rth of about -90 nm to about -140 nm, preferably about -100 nm to about -130 nm, more preferably about -105 nm to about -125 nm, at a wavelength of 550 nm.
  • the first retardation layer 100 may be provided with an anti-reflection effect by external light to improve the visibility of the screen.
  • the liquid crystal layer may be a liquid crystal structure of homeotropic orientation or homogeneous orientation.
  • the liquid crystal layer may be any one of a nematic liquid crystal, a smectic liquid crystal and a discotic liquid crystal, and preferably a nematic liquid crystal or a discotic liquid crystal may be used.
  • the thickness of the second retardation layer 100 may be about 3 ⁇ or less, preferably about 2 ⁇ or less. Within the above range, the polarizing plate thinning effect can be achieved.
  • the angle formed by the fast axis of the second retardation layer 200 and the fast axis of the first retardation layer 100 is in the range of about 55 DEG to about 80 DEG, preferably about 60 DEG to about 75 DEG Deg.], More preferably from about 60 [deg.] To about 70 [deg.]. In the above range, antireflection characteristics can be excellent both in the front surface and the side surface.
  • the UV absorber-containing primer layer 300 is formed directly on the first retardation layer 100 and the second retardation layer 200, respectively.
  • the adhesion between the second retardation layer 200 and the first retardation layer 100 may be degraded because the second retardation layer 200 has a high crosslinking ratio of the liquid crystal having the photosensitive group as compared to the first retardation layer 100.
  • the UV absorber-containing primer layer 300 can increase adhesion between the first retardation layer 100 and the second retardation layer 200 to prevent separation therebetween.
  • the UV absorber-containing primer layer 300 can prevent the retardation of the first retardation layer 100 from being changed when the first retardation layer 100 is exposed to UV due to the inclusion of the UV absorber.
  • the first retardation layer 100 is formed without an orientation film, and is cured by linearly polarized UV, so that the liquid crystal alignment may be distorted or changed upon UV irradiation.
  • the UV absorber-containing primer layer 300 may have a transmittance of about 2% or less, preferably about 1.5% or less, more preferably about 1% or less for a wavelength of 380 nm light. Within this range, it is possible to prevent liquid crystal distortion or deformation of the first retardation layer by UV irradiation.
  • Fig. 1 shows a primer layer containing a UV absorber as an example of a UV absorbing primer layer.
  • a primer layer not containing a UV absorber may be included in the scope of the present invention.
  • the liquid crystal phase difference film may have a retardation change rate according to the following formula 1 of about 3% or less, preferably about 1% or less. Within the above range, the reliability of the liquid crystal retardation film due to UV can be improved and used in a light emitting display device:
  • Phase difference change rate
  • A represents the initial Re (unit: nm) of the liquid crystal retardation film at a wavelength of 550 nm
  • B is the Re (unit: nm) of the liquid crystal retardation film at a wavelength of 550 nm after irradiating UV in the range of 300 nm to 400 nm from the second retardation layer surface of the liquid crystal retardation film for 250 hours.
  • the UV irradiation can be performed by light irradiation using Q-sun (Q-Lab), which is a xenon lamp, but is not limited thereto.
  • Q-sun Q-Lab
  • the " initial Re” means Re at a wavelength of 550 nm of the liquid crystal phase difference film before UV irradiation.
  • the inventor of the present invention has found that the formation of the UV absorber-containing primer layer 300 between the first retardation layer 100 and the second retardation layer 200 significantly reduces the reflectance at the front and side surfaces, And the difference between the two.
  • the uniformity of the coating is improved and the uniformity of the reflectance is improved.
  • the reflectance at the front and side surfaces is lowered, thereby improving the screen quality.
  • the reflectance at the front surface of the polarizing plate including the liquid crystal retardation film of the present invention can be about 1% or less, preferably about 0.7% or less.
  • the reflectance at the side of the polarizing plate including the liquid crystal retardation film of the present invention can be about 1% or less, preferably about 0.9% or less.
  • the screen quality can be improved.
  • the difference between the front reflectivity and the lateral reflectance can be about 0.3% or less.
  • the difference in the visual perception between the front side and the side is lowered, so that the screen quality can be improved regardless of the place where the screen is viewed.
  • the UV absorber has a maximum absorption wavelength of about 400 nm or less, preferably about 360 nm To about 390 nm, and more preferably from about 360 nm to about 380 nm. Within the above range, it is possible to prevent the liquid crystal alignment deviation in the first retardation layer 100 and to improve the reliability.
  • the "max absorption wavelength" means a wavelength indicating the maximum absorption peak for the UV absorber, that is, a wavelength representing the maximum absorbance in the absorption curve according to the wavelength.
  • the 'absorbance' can be measured by a conventional method known to a person skilled in the art.
  • the UV absorber may include, but is not limited to, one or more of a triazole-based, a hydroxyphenyltriazine-based, a triazine-based, and a phenyltriazine-based system including a benzotriazole system and the like.
  • the UV absorber can be from about 10% to about 30% by weight of the UV absorber-containing primer layer. Within this range, UV transmission to the first retardation layer can be blocked. Preferably from about 15% to about 25% by weight. In this range, UV transmission to the first retardation layer can be blocked, and precipitation of the UV light outside the primer layer can be prevented.
  • the UV absorber-containing primer layer 300 may have a refractive index of from about 1.48 to about 1.65, preferably from about 1.55 to about 1.65. In the above range, even if the refractive index between the first retardation layer and the second retardation layer is matched to be formed between the first liquid crystal layer and the second liquid crystal layer, the decrease in transmittance and the scattering of light can be prevented.
  • the UV absorber-containing primer layer 300 may have a thickness of about 5 mu m or less, preferably about 3 mu m or less. Within this range, the polarizing plate can be thinned, and even if the UV absorber is included, the UV influence by the first retardation layer can be sufficiently suppressed.
  • the UV absorber-containing primer layer 300 is a non-sticky layer.
  • the UV absorber-containing primer layer 300 may be formed of an acrylic resin, a urethane-based resin, a urethane (meth) acrylate, a urethane (meth) acrylate or the like, in order to improve adhesion to both the first retardation layer 100 and the second retardation layer 200 having different crosslinking ratios.
  • Based resin and a UV absorber may further include a thermal initiator to further enhance the mechanical strength of the UV absorber-containing primer layer.
  • the liquid crystal phase difference film may have a thickness of about 1 ⁇ to about 5 ⁇ , preferably about 1 ⁇ to about 3 ⁇ . In the above range, it can be used for a polarizing plate for a light emitting display.
  • the liquid crystal retardation film may have a total light transmittance of about 90% or more and a haze of about 1% or less in the visible light region. In the above range, it can be used for a polarizing plate for a light emitting display.
  • FIG. 2 is a cross-sectional view of a liquid crystal phase difference film according to another embodiment of the present invention.
  • the liquid crystal phase difference film 20 includes a liquid crystal phase difference film 10 (FIG. 2) according to an embodiment of the present invention, except that a base film 350 is further formed on the other surface of the second phase difference layer 200. [ ).
  • the base film 350 is formed on the other surface of the second retardation layer 200 to facilitate the formation of an alignment film for forming the second retardation layer and protect the liquid crystal retardation film.
  • the base film may include a conventional polymer film.
  • it may be a polyester film such as a polyethylene terephthalate film, a polycarbonate film, or the like, but is not limited thereto.
  • the base film 350 is subjected to a releasing treatment to facilitate the release from the second retardation layer.
  • FIG. 3 is a cross-sectional view of a polarizer according to an embodiment of the present invention.
  • the polarizing plate 30 includes a polarizing film 400, a liquid crystal retardation film, and the liquid crystal retardation film may include a liquid crystal retardation film according to an embodiment of the present invention. Since the polarizing plate includes the liquid crystal retardation film of the present invention, the adhesion between the first liquid crystal layer and the second liquid crystal layer is excellent and the rate of change of retardation is low even in long-term UV irradiation, so that the light reliability can be improved and the reflectance on the side surface and the front surface can be lowered , And the polarization ellipticity can be increased.
  • the polarizing film 400 may be laminated on the other side of the second retardation layer 200 of the liquid crystal retardation film. Although not shown in FIG. 3, the polarizing film 400 may be laminated to the second retardation layer 200 by an adhesive layer or an adhesive layer.
  • the adhesive layer and the adhesive layer can be formed by a pressure sensitive adhesive (PSA), a photo-curable adhesive, a thermosetting adhesive or the like, but are not limited thereto.
  • the angle formed by the fast axis 100a of the first retardation layer 100 and the absorption axis 400a of the polarizing film 400 is about 70 ° to about 100 °, From about 75 [deg.] To about 95 [deg.], And more preferably from about 75 [deg.] To about 85 [deg.]. In the above range, antireflection characteristics can be excellent both in the front surface and the side surface.
  • the angle formed between the fast axis 200a of the second retardation layer 200 and the absorption axis 400a of the polarizing film 400 is about 10 to about 25 degrees, Lt; / RTI > In the above range, antireflection characteristics can be excellent both in the front surface and the side surface.
  • the polarizing film 400 may be formed on the other surface of the second retardation layer 200 to transmit the linearly polarized light to the second retardation layer 200 to provide an anti-reflection effect.
  • the reflectance at the front face of the polarizing plate 30 may be about 1% or less, preferably about 0.7% or less.
  • the reflectance at the side of the polarizing plate 30 can be about 1% or less, preferably about 0.9% or less. In the above range, the screen quality can be improved.
  • the polarizing film 400 may include a polyvinyl alcohol polarizer in which iodine or the like is stained on a polyvinyl alcohol film or a polyene polarizer by dehydration of a polyvinyl alcohol film.
  • the polarizer may have a thickness of about 5 ⁇ ⁇ to about 50 ⁇ ⁇ . And can be used for a display device in the above range.
  • the polarizing film may comprise the above-described polarizer and a protective layer formed on at least one side of the polarizer.
  • the protective layer may comprise one or more of an optically transparent, protective film or protective coating layer.
  • the protective film may include a protective film formed of an optically transparent resin.
  • the protective film may be formed by melting and extruding the resin. If necessary, a further stretching process may be added.
  • the resin includes a cyclic polyolefin-based resin including a cellulose ester-based resin including triacetyl cellulose and the like, an amorphous cyclic olefin polymer (COP), a polycarbonate-based resin, polyethylene terephthalate Based resin, a polyacrylate-based resin including a polyamide-based resin, a polyimide-based resin, a non-cyclic-polyolefin-based resin, and a polymethylmethacrylate resin, A polyvinyl alcohol-based resin, a polyvinyl chloride-based resin, and a polyvinylidene chloride-based resin.
  • COP amorphous cyclic olefin polymer
  • the protective coating layer can improve the good adhesion to the polarizer, transparency, mechanical strength, thermal stability, moisture barrier properties, and durability.
  • the protective coating layer can be formed of an active energy ray curable resin composition comprising an active energy ray-curable compound and a polymerization initiator.
  • the active energy ray-curable compound may include at least one of a cationic polymerizable curable compound, a radically polymerizable curable compound, a urethane resin, and a silicone resin.
  • the cationic polymerizable curable compound may be an epoxy compound having at least one epoxy group in the molecule, or an oxetane compound having at least one oxetane ring in the molecule.
  • the radical polymerizable curable compound may be a (meth) acrylic compound having at least one (meth) acryloyloxy group in the molecule.
  • the thickness of the protective layer may be from about 5 ⁇ to about 200 ⁇ , specifically from about 30 ⁇ to about 120 ⁇ , in the case of the protective film type, from about 50 ⁇ to about 100 ⁇ , Lt; / RTI > And can be used for a display device in the above range.
  • a functional coating layer for example, a hard coating layer, a translucent layer, an antireflection layer, or the like may be further formed on one side or both sides of the protective layer.
  • the light emitting display of the present invention may include the polarizing plate for the light emitting display of the present invention.
  • the light emitting display may be an apparatus including a light emitting element.
  • the light emitting device includes an organic or organic light emitting device and includes a light emitting diode such as a light emitting diode (OLED), an organic light emitting diode (OLED), a quantum dot light emitting diode (QLED) can do.
  • the light emitting display device may include an organic light emitting element display device.
  • the liquid crystal phase difference film (QLAA218) has a liquid crystal phase difference layer formed on one side of a TAC film (non-phase difference film).
  • the liquid crystal retardation layer has a Re of 240 nm, a Rth of -108 nm, and a NZ of 0.04 at a wavelength of 550 nm, and includes a discotic liquid crystal and a liquid crystal aligned in a homomorphic alignment.
  • the liquid crystal phase difference layer does not change the liquid crystal alignment due to UV irradiation (wavelength: 200 to 400 nm).
  • Urethane acrylate resin (UR5562, Electrolube) was used as a resin for the primer layer containing UV absorber.
  • Urethane acrylate resin (UR5562) was mixed with UV absorber of the following Table 1 as a UV absorber and UR5562-hardner at a time of opening to prepare a composition for a UV absorber-containing primer layer.
  • composition for a primer layer was coated on the other side of the liquid crystal retardation layer (the side not in contact with the TAC film) to a predetermined thickness, and dried and thermally cured to form a UV absorber-containing primer layer.
  • composition for the first retardation layer was applied to one surface of the primer layer containing the UV absorber.
  • the composition for the first retardation layer was prepared by dissolving liquid crystal polymer Hayashi telempu MHZC-100A in a solvent THF (tetrahydrofuran).
  • the resulting coating material was dried at 60 ° C. Then, the ultraviolet light from the LED lamp (600W) was passed through a WGP (wire grid polarizer) to be linearly polarized UV, and irradiated for 300mj. After irradiation, it was heated at 130 ⁇ and cooled. And a first retardation layer was formed by irradiating ultraviolet light from 3 kW high pressure mercury or the like to produce a liquid crystal retardation film.
  • WGP wire grid polarizer
  • the first retardation layer had a Re of 115 nm, a Rth of -17 nm, and NZ of 0.35 at a wavelength of 550 nm, a nematic liquid crystal and a liquid crystal oriented in a homomorphic alignment, and a thickness of 2.0 m.
  • the angle formed by the fast axis of the first retardation layer and the fast axis of the second retardation layer was 65 °.
  • the polyvinyl alcohol film was stretched three times at 60 ° C, adsorbed iodine, and then stretched 2.5 times in an aqueous boric acid solution at 40 ° C to prepare a polarizer.
  • a triacetyl cellulose film (ZRG40SL, manufactured by Fuji) as a first protective layer was bonded to one surface of the polarizer with an epoxy UV adhesive for polarizing plate.
  • a triacetyl cellulose film (ZRG40SL, Fuji) was adhered to the other side of the polarizer with an epoxy UV adhesive for polarizing plate to prepare a polarizing film.
  • One side of the polarizing film and the side of the TAC film of the second retardation layer were adhered using an adhesive layer to produce a polarizing plate.
  • a liquid crystal retardation film and a polarizing plate were prepared in the same manner as in Example 1, except that the resin and the UV absorber shown in Table 1 were used as the composition for the primer layer.
  • a liquid crystal retardation film and a polarizing plate were prepared by coating a first retardation layer on a second retardation film except that a primer layer containing a UV absorber was not formed between the first retardation layer and the second retardation layer in Example 1 .
  • a liquid crystal retardation film and a polarizing plate were prepared in the same manner as in Example 1, except that the UV absorber was not included in the primer layer.
  • Example 2 72 parts by weight of an acrylic resin, 8 parts by weight of an isocyanate crosslinking agent, and 20 parts by weight of benzotriazole 1 as a UV absorber were added to prepare a composition for a pressure-sensitive adhesive layer.
  • a liquid crystal retardation film and a polarizing plate were produced in the same manner as in Example 1, except that an adhesive layer (thickness: 25 mu m) was formed using the composition for a pressure-sensitive adhesive layer prepared above instead of the primer layer containing a UV absorber.
  • the angle formed by the absorption axis of the polarizer in the polarizing film and the fast axis of the second retardation layer was 18 °.
  • the angle formed between the absorption axis of the polarizer and the fast axis of the first retardation layer in the polarizing film was 78 °.
  • Adhesion force (crosscut evaluation): The adhesion between the first retardation layer, the UV absorber-containing primer layer and the second retardation layer was evaluated for the liquid crystal retardation film produced in Examples and Comparative Examples.
  • a liquid crystal phase difference film sample having a width of 10 cm x 10 cm and a length of 10 x 10 from the first retardation layer to the interface of the substrate and the second retardation layer, a total of 100 pieces were cut.
  • An adhesive tape was attached to one surface of the first retardation layer and peeled off. The number of pieces remaining without peeling was evaluated. The higher the number of remaining slices without peeling, the better the adhesion.
  • UV irradiation 1 Using a Q-sun (Q-Lab) facility, the sample was irradiated with UV of 300 to 400 nm (solar simulated) for 250 hours. UV irradiation was performed on the surface of the second retardation layer of the liquid crystal phase difference film. It was evaluated whether the first retardation layer was separated from the UV absorber-containing primer layer. (3).
  • Example 1 Example 2 Example 3 Example 4 Example 5 Primer layer Suzy Resin 1 Resin 2 Resin 2 Resin 3 Resin refractive index 1.48 1.5 1.5 1.5 1.6 UV absorber Benzotriazole 1 Benzotriazole 2 Hydroxyphenyltriazine Benzotriazole 1 + hydroxyphenyltriazine Benzotriazole 1 UV absorber content (wt%) 15 20 25 20 (10 each) 20 Thickness ( ⁇ m) 3 3 3 3 3 3 3 Transmittance @ 380 nm (%) 0.67 0.72 0.02 0.34 0.67 Transmittance @ 550 nm (%) 87.24 88.47 90.38 90.4 90.23 Adhesion 95/100 97/100 95/100 97/100 98/100 Reliability Assessment 1 98/100 97/100 95/100 100/100 99/100 Reliability Evaluation 2 (%) 0.7 0.5 0.6 0.3 0.8 reflectivity(%) face 0.64 0.62 0.6 0.61 0.61 side 0.81 0.8 0.82
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Primer layer Suzy - Resin 2 - Resin refractive index - 1.493 - UV absorber - - - Thickness ( ⁇ m) - 3 - Transmittance @ 380 nm (%) - 25.3 - Adhesive layer - - include The content of UV absorber (% by weight) - - 20 Transmittance @ 550 nm (%) 91.24 90.24 3.60 Adhesion 15/100 95/100 100/100 Reliability Assessment 1 0/100 94/100 100/100 Reliability Evaluation 2 (%) 18 16 10 reflectivity(%) face Not measurable 1.28 1.08 side Not measurable 1.75 1.57 Reflectance difference - 0.47 0.49 0.49
  • Benzotriazole 2 Tinuvin 900, manufactured by Basf, maximum absorption wavelength: 365 nm
  • the liquid crystal retardation film and the polarizing plate of the present invention are excellent in adhesion between the second liquid crystal layer and the first liquid crystal layer and excellent in adhesion between the first liquid crystal layer and the second liquid crystal layer even in long- It is possible to improve the reliability of light resistance by lowering the rate of change, to lower the reflectance at the front and side, and the reflectance difference at the front and side is low.
  • Comparative Example 1 and Comparative Example 2 which did not include the UV absorber-containing primer layer or contained the UV absorber-containing primer layer, had poor adhesion, poor reliability evaluation results, and high reflectance on the front and side surfaces .
  • Comparative Example 3 including the UV absorber-containing adhesive layer in place of the UV absorber-containing primer layer adhesion was secured even when UV was irradiated, but the rate of change in retardation was high and the reflectance at the front and side was higher than in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)

Abstract

배향막이 없는 제1위상차층, UV 흡수성 프라이머층, 및 제2위상차층이 순차적으로 형성되고, 상기 제1위상차층과 상기 제2위상차층은 각각 액정층인 액정 위상차 필름, 이를 포함하는 발광소자용 편광판 및 이를 포함하는 발광표시장치가 제공된다.

Description

액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
본 발명은 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치에 관한 것이다.
유기발광표시장치는 자 발광형 표시장치로서, 적색, 녹색, 청색을 발광하는 유기발광소자를 포함하고 있다. 유기발광표시장치는 외부광이 유기발광소자 패널 내부에 있는 표시 소자에 의해 반사된다. 반사된 외부광은 유기발광소자에서 나오는 빛과 혼합되어 외부에서 볼 경우 시인성을 저하시킨다는 문제점이 있다. 이를 해결하기 위해서, 편광 필름과 위상차층을 사용해서 유기발광소자 내부로 입사된 외부광을 선 편광 및 원 편광시킴으로써 입사된 빛이 외부로 나오지 않도록 하는 방법이 있다.
위상차층으로 고분자 필름을 사용할 수도 있으나 최근 편광판, 유기발광소자표시장치의 박형화 관점에서 위상차층을 액정으로 형성하는 시도가 계속되고 있다. 일반적으로, 액정 화합물을 배향시키는 방법은 배향층에 의해 액정을 배향시킨 다음 열 또는 가교 반응으로 고정화시키는 것이다. 배향층으로 광중합성 배향막, 러빙 처리에 의한 배향막이 고려될 수 있다. 그러나, 배향층을 형성할 경우 배향층 두께만큼 편광판의 두께가 두꺼워질 수 있고, 편광판 제조 공정이 복잡해질 수 있다. 최근 배향층 없이 액정을 배향시켜 위상차층을 형성하는 방법이 고려되고 있다. 그러나, 배향층 없이 배향된 액정은 UV에 장기간 노출될 경우 배향이 붕괴됨으로써 위상차 신뢰성이 저하될 수 있다.
본 발명의 배경기술은 일본공개특허 제2014-032270호에 기재되어 있다.
본 발명의 목적은 제2액정층과 배향막이 없는 제1액정층 간의 밀착력이 우수한 액정 위상차 필름을 제공하는 것이다.
본 발명의 다른 목적은 제2액정층과 배향막이 없는 제1액정층을 포함하고, 장기간 UV 조사에도 제1액정층과 제2액정층 간의 밀착력이 우수하여 내광 신뢰성을 높일 수 있는 액정 위상차 필름을 제공하는 것이다.
본 발명의 또 다른 목적은 제2액정층과 배향막이 없는 제1액정층을 포함하고, 장기간 UV 조사에도 제1액정층의 위상차 변화율이 낮아서 내광 신뢰성을 높일 수 있는 액정 위상차 필름을 제공하는 것이다.
본 발명의 또 다른 목적은 평탄성이 우수한 액정 위상차 필름을 제공하는 것이다.
본 발명의 또 다른 목적은 정면 및 측면 모두에서의 반사율을 낮출 수 있는 액정 위상차 필름을 제공하는 것이다.
본 발명의 또 다른 목적은 본 발명의 액정 위상차 필름을 포함하는 발광표시장치용 편광판을 제공하는 것이다.
본 발명의 또 다른 목적은 본 발명의 발광표시장치용 편광판을 포함하는 발광표시장치를 제공하는 것이다.
본 발명의 액정 위상차 필름은 배향막이 없는 제1위상차층, UV 흡수성 함유 프라이머층 및 제2위상차층이 순차적으로 형성되고, 상기 제1위상차층과 상기 제2위상차층은 각각 액정층일 수 있다.
상기 UV 흡수성 프라이머층은 UV 흡수제 함유 프라이머층을 포함할 수 있다.
상기 UV 흡수성 프라이머층은 상기 제1위상차층 및 상기 제2위상차층에 각각 직접적으로 형성될 수 있다.
상기 제1위상차층 중 상기 액정층은 감광성 반응기를 갖는 액정을 포함하는 액정층을 포함할 수 있다.
상기 제2위상차층 중 상기 액정층은 감광성 반응기를 갖는 액정을 포함하는 액정층을 포함할 수 있다.
상기 제2위상차층은 상기 제1위상차층 대비 감광성 반응기를 갖는 액정의 가교율이 더 높을 수 있다.
상기 제1위상차층은 파장 550nm에서 면내 위상차 Re가 약 90nm 내지 약 170nm이고, 상기 제2위상차층은 파장 550nm에서 면내 위상차 Re가 약 210nm 내지 약 280nm가 될 수 있다.
상기 제2위상차층의 진상축(fast axis)과 상기 제1위상차층의 진상축(fast axis)이 이루는 각도는 약 55° 내지 약 80°가 될 수 있다.
상기 제1위상차층의 액정은 네마틱 액정으로 호메오트로픽 배향을 가질 수 있다.
상기 제2위상차층의 액정은 디스코틱 액정 또는 네마틱 액정으로 호메오트로픽 배향을 가질 수 있다.
상기 UV 흡수제는 벤조트리아졸계, 히드록시페닐트리아진계, 트리아진계, 페닐트리아진계 중 하나 이상을 포함할 수 있다.
상기 UV 흡수성 프라이머층은 두께가 약 5㎛ 이하가 될 수 있다.
상기 UV 흡수제는 상기 UV 흡수제 함유 프라이머층 중 약 10중량% 내지 약 30중량%로 포함될 수 있다.
상기 제1위상차층의 상기 액정층 및 상기 제2위상차층의 상기 액정층은 각각 감광성기를 포함하고, 상기 감광성기는 신나모일기, 신나밀리덴기, (메트)아크릴로일기, (메트)아크릴로일기 함유기, 쿠마린기, 벤조페논기 중 하나 이상을 포함할 수 있다.
상기 액정 위상차 필름은 하기 식 1에 따른 위상차 변화율이 약 3% 이하가 될 수 있다.
<식 1>
위상차 변화율 = |B - A|/ A x 100
(상기 식 1에서, A, B는 하기 상세한 설명에서 정의한 바와 같다).
상기 UV 흡수성 프라이머층은 비-점착성일 수 있다.
상기 제2위상차층 중 상기 액정층은 UV 조사에 의해 액정의 배향이 변하지 않는 액정을 포함할 수 있다.
본 발명의 발광표시장치용 편광판은 편광 필름 및 상기 편광 필름의 일면에 형성된 본 발명의 액정 위상차 필름을 포함할 수 있다.
본 발명의 발광표시장치는 본 발명의 발광표시장치용 편광판을 포함할 수 있다.
본 발명은 제2액정층과 배향막이 없는 제1액정층 간의 밀착력이 우수한 액정 위상차 필름을 제공하였다.
본 발명은 제2액정층과 배향막이 없는 제1액정층을 포함하고, 장기간 UV 조사에도 제1액정층과 제2액정층 간의 밀착력이 우수하여 내광 신뢰성을 높일 수 있는 액정 위상차 필름을 제공하였다.
본 발명은 제2액정층과 배향막이 없는 제1액정층을 포함하고, 장기간 UV 조사에도 제1액정층의 위상차 변화율이 낮아서 내광 신뢰성을 높일 수 있는 액정 위상차 필름을 제공하였다.
본 발명은 평탄성이 우수한 액정 위상차 필름을 제공하였다.
본 발명은 정면 및 측면 모두에서의 반사율을 낮출 수 있는 액정 위상차 필름을 제공하였다.
본 발명은 본 발명의 액정 위상차 필름을 포함하는 발광표시장치용 편광판을 제공하였다.
본 발명은 본 발명의 발광표시장치용 편광판을 포함하는 발광표시장치를 제공하였다.
도 1은 본 발명의 일 실시예의 액정 위상차 필름의 단면도이다.
도 2는 본 발명의 다른 실시예의 액정 위상차 필름의 단면도이다.
도 3은 본 발명의 일 실시예의 발광표시장치용 편광판의 단면도이다.
도 4는 도 3의 발광표시장치용 편광판 중 편광필름의 흡수축, 제2위상차층의 진상축(fast axis), 제1위상차층의 진상축(fast axis) 간의 각도를 나타낸 것이다.
첨부한 도면을 참고하여 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다.
본 명세서에서 "상부", "하부"는 도면을 기준으로 한 것으로서, 반드시 상부와 하부로 고정되는 것은 아니고, 보는 시각에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있다.
본 명세서에서 "면내 위상차(Re)"는 하기 식 A로 표시되고, "두께 방향 위상차(Rth)"는 하기 식 B로 표시되고, "이축성 정도(NZ)"는 하기 식 C로 표시되고, 이들은 모두 파장 550nm에서 측정된 값이다:
<식 A>
Re = (nx - ny) x d
<식 B>
Rth = ((nx + ny)/2 - nz) x d
<식 C>
NZ = (nx - nz)/(nx - ny)
(상기 식 A, 식 B, 식 C에서, nx, ny, nz는 각각 파장 550nm에서 위상차층의 x축, y축 및 z축 방향의 굴절률이고, d는 위상차층의 두께(단위:nm)).
본 명세서에서 "정면", "측면"은 수평 방향을 기준으로, 구면 좌표계(spherical coordinate system)에 의한 (φ, θ)에 의할 때, 정면은 (0°, 0°)이고, 좌측 끝 지점을 (180°, 90°), 우측 끝 지점을 (0°, 90°)라고 할 때, 측면은 (0°, 60°)을 의미한다.
이하, 본 발명의 일 실시예에 따른 액정 위상차 필름을 도 1을 참고하여 설명한다.
도 1을 참고하면, 액정 위상차 필름(10)은 제1위상차층(100), UV 흡수제 함유 프라이머층(300), 제2위상차층(200)을 포함할 수 있다. 제1위상차층(100)의 상부면에, UV 흡수제 함유 프라이머층(300), 제2위상차층(200)이 순차적으로 형성되어 있다.
제1위상차층(100)의 일면에는 UV 흡수제 함유 프라이머층(300)이 직접적으로 형성되어 있다. 상기 "직접적으로 형성"은 제1위상차층과 UV 흡수제 함유 프라이머층 사이에 임의의 점착층, 접착층, 또는 점접착층 등이 개재되지 않음을 의미한다.
제1위상차층(100)은 배향막 없이 액정의 배향에 의해 소정 범위의 위상차를 나타낼 수 있다. 이를 통해, 편광판의 박형화 효과를 낼 수 있다. 다만, 제1위상차층(100)은 배향막 없이 형성되어 있으므로 UV 조사에 의해 액정 배향이 되어 변화되어 위상차가 변화될 수 있다. 그러나, 하기 상술되는 바와 같이 UV 흡수제 함유 프라이머층(300)에 의해 액정 배향의 변화를 막아서 신뢰성을 높일 수 있다.
제1위상차층(100)은 감광성 반응기를 갖는 광반응성 액정으로 형성된 액정층을 포함할 수 있다. 구체적으로, 제1위상차층은 감광성 반응기를 갖는 액정의 가교물로 구성된다. 이를 통해, 배향막 없이 액정 배향 후 광 반응에 의해 위상차를 나타낼 수 있다.
상기 액정은 메조겐 형성기와 감광성기로 구성되는 유닛으로 구성되는 액정 고분자를 포함할 수 있다. 액정 고분자는 메소겐 형성기와 감광성기로 구성된 유닛을 주쇄 또는 측쇄에 가질 수 있다. 바람직하게는, 액정 고분자는 메소겐 형성기, 감광성기에 중합성기를 갖는 단량체를 중합시킴으로써, 메소겐 형성기와 감광성기를 갖는 유닛을 측쇄에 포함할 수 있다. 상기 중합성기는 아크릴로일기, 메타아크릴로일기, 에폭시기, 비닐에테르기 등이 될 수 있다.
메소겐 형성기는 액정성 고분자에 대해 액정성을 부여할 수 있는 한 특별히 제한되지 않는다. 메소겐 형성기는 메소겐기 뿐만 아니라 액정성을 나타내지 않지만 분자 간의 수소 결합에 의해 액정성을 나타내는 수소 결합성 메소겐기도 포함할 수 있다.
메소겐기는 -Ar1-Y-Ar2-기(이때, Ar1, Ar2는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 또는 치환 또는 비치환된 탄소수 4 내지 20의 헤테로아릴렌기이고, Y는 단일 결합, 탄소수 1 내지 3의 알킬렌기, -CH=CH-, -C≡C-, -O-, -N=N-, -COO-, -OCO-, -CH=N- 또는 탄소수 6 내지 10의 아릴렌기)일 수 있다. Ar1와 Ar2의 배향 위치는 액정성을 부여하는 한 특별히 제한되지 않는다. Ar1와 Ar2가 페닐렌기인 경우 파라-배치, Ar1와 Ar2가 나프탈렌기인 경우 2,6-배치가 바람직하다.
감광성기는 광 에너지에 의해 가교될 수 있는 관능기로서, 예를 들면 신나모일기, 신나밀리덴기, (메트)아크릴로일기, (메트)아크릴로일기 함유기, 쿠마린기, 벤조페논기 등이 될 수 있다. 상기 (메트)아크릴로일기 함유기는 푸릴 (메트)아크릴로일기, 비페닐 (메트)아크릴로일기 또는 나프틸 (메트)아크릴로일기가 될 수 있다.
상기 유닛에서, 메소겐 형성기와 감광성기는 직접적으로 결합하여도 좋고, 연결기를 통해 결합할 수도 있다. 상기 연결기는 탄소수 1 내지 10의 알킬렌기, -O-, -S-, -SO-, -SO2-, -CH=CH-, -C≡C-, -N=N-, -COO- 또는 -OCO-가 될 수 있다. 상기 연결기는 상기 나열된 것들 중 단독으로 있어도 되고 2개 이상 서로 조합하여 포함될 수 있다.
일 구체예에서, 상기 유닛은 액정성 고분자의 측쇄에 결합되며, 하기 화학식 1 또는 하기 화학식 2로 표시될 수 있다:
<화학식 1>
Figure PCTKR2018010579-appb-I000001
(상기 화학식 1에서, p는 1 내지 12의 정수, q는 0 내지 12의 정수, X는 단일결합, 탄소수 1 내지 10의 알킬렌기, -O-, -S-, -SO-, -SO2-, -CH=CH-, -C≡C-, -N=N-, -COO- 또는 -OCO-, R1, R2는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 또는 할로겐 원자, W는 신나모일기, 신나밀리덴기, (메트)아크릴로일기, (메트)아크릴로일기 함유기, 쿠마린기, 벤조페논기).
<화학식 2>
Figure PCTKR2018010579-appb-I000002
(상기 화학식 2에서, r은 0 내지 12의 정수, s는 0 또는 1, m은 0 또는 1, n은 1 내지 3의 정수, X는 단일결합, 탄소수 1 내지 10의 알킬렌기, -O-, -S-, -SO-, -SO2-, -CH=CH-, -C≡C-, -N=N-, -COO- 또는 -OCO-, R5, R6는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 또는 할로겐 원자).
상기 액정성 고분자에는 감광성기를 갖지 않으나 메소겐 형성기를 갖는 유닛을 더 포함할 수도 있다. 구체적으로, 상기 유닛은 하기 화학식 3으로 표시될 수 있다:
<화학식 3>
Figure PCTKR2018010579-appb-I000003
(상기 화학식 3에서, p는 1 내지 12의 정수, q는 0 내지 12의 정수, Y는 단일결합, 탄소수 1 내지 10의 알킬렌기, -O-, -S-, -SO-, -SO2-, -CH=CH-, -C≡C-, -N=N-, -COO- 또는 -OCO-, R3, R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 또는 할로겐 원자, T는 수소 원자, 수산기, 시아노기, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 탄소수 1 내지 10의 알콕시기, 할로겐, 탄소수 1 내지 10의 할로알킬기).
상기 액정성 고분자의 액정 구조는 네마틱 액정, 스메틱 액정, 콜레스테릭 액정 중 어느 하나가 될 수 있으나, 네마틱 액정이 바람직하다. 상기 액정성 고분자는 당업자에게 알려진 통상의 방법으로 합성하거나 상업적으로 판매되는 제품을 사용할 수 있다.
제1위상차층(100)은 UV 흡수제 함유 프라이머층(300)에 감광성 반응기를 갖는 액정을 포함하는 제1위상차층용 조성물을 도포하고, 건조시킨 다음, 건조시킨 도포물에 직선 편광을 조사하고, 조사된 도포물을 가열 및 냉각하여 제조될 수 있다. 가열시킨 후 액정 배향을 더 고정시킬 수도 있다.
UV 흡수제 함유 프라이머층(300)에 상기 제1위상차층용 조성물을 그냥 도포할 수 있다. 그러나, UV 흡수제 함유 프라이머층(300) 표면을 플라즈마 처리 또는 코로나 처리함으로써 UV 흡수제 함유 프라이머층(300)의 웨팅성을 좋게 하여 UV 흡수제 함유 프라이머층(300)과 제1위상차층(100) 간에 박리를 막을 수 있고, 제1위상차층(100)의 액정 배향성이 더 우수할 수 있다. 플라즈마 처리 또는 코로나 처리는 당업자에게 알려진 통상의 방법으로 수행될 수 있다. 예를 들면 플라즈마 또는 코로나 처리는 총 선량 약 160dose 정도로 진행하였으며, 약 20 dose 내지 약 80dose 선량으로 총 1회 내지 10회 조건에서 수행될 수 있다. 상기 범위에서, 제2위상차층(200)의 위상차에 영향을 주지 않으면서 제1위상차층이 잘 형성되도록 할 수 있다.
상기 제1위상차층용 조성물은 상기 액정을 용매에 용해시켜 제조될 수 있다. 상기 용매는 지방족 탄화수소 예를 들면 헥산 등, 방향족 탄화수소 예를 들면 톨루엔, 자일렌, 벤젠, 모노클로로벤젠, 디클로로벤젠 등, 할로겐화 탄화수소 예를 들면 디클로로메탄, 디클로로에탄 등, 지환식 탄화수소 예를 들면 사이클로헥산 등, 케톤류 예를 들면 아세톤, 메틸에틸케톤, 사이클로헥사논, 에테르 예를 들면 디옥산, 테트라하이드로푸란 등, 아미드 예를 들면 디메틸포름아미드 등이 될 수 있다. 상기 제1위상차층용 조성물은 통상의 방법 예를 들면 스핀 코터, 슬릿 코터, 스프레이 코터, 롤 코터 등으로 도포될 수 있다.
상기 제1위상차층용 조성물을 도포하여 건조시킨다. 건조 공정에서는 도포물을 약 50℃ 내지 약 65℃에서 건조시킨다.
건조시킨 도포물을 직선 편광을 조사한다. 직선 편광을 조사함으로써, 도포물에 포함된 유닛 중 직선 편광을 맞는 유닛의 감광성 반응기들만 가교되도록 할 수 있다. 조사는 자외선(UV) 적외선, 가시광선 등이 될 수 있으나, 바람직하게는 약 200nm 내지 약 500nm, 더 바람직하게는 약 250nm 내지 약 400nm의 파장을 갖는 자외선을 조사할 수 있다.
조사된 도포물을 가열 및 냉각한다. 가열에 의해 유닛 중 메소겐 형성기는 제2위상차층의 법선 방향으로 배향되어 호메오트로픽 배향으로 제1위상차층을 형성한다. 가열 온도는 약 50℃ 내지 약 150℃, 바람직하게는 약 60℃ 내지 약 140℃에서 수행될 수 있다. 냉각 온도는 냉각 속도 약 1 내지 약 100℃/분, 바람직하게는 약 1 내지 20℃/분의 속도로 냉각될 수 있다.
액정 배향을 고정화시키기 위해, 가열 및 냉각 공정 이후에 다시 광 조사를 할 수도 있다. 예를 들면 약 200 nm 내지 약 500nm, 더 바람직하게는 250 내지 400nm의 파장을 갖는 자외선을 조사하여 액정 배향을 고정화시킬 수 있다.
제1위상차층(100)은 파장 550nm에서 nx > nz > ny 의 굴절률 관계를 나타내는 위상차층으로, nx는 약 1.5 내지 약 1.6, ny는 약 1.4 내지 약 1.5, nz는 약 1.5 내지 약 1.6가 될 수 있다. 상기 범위에서, 표시장치에 광학 보상 효과를 낼 수 있다.
제1위상차층(100)은 파장 550nm에서 NZ가 0 < NZ < 1.0, 바람직하게는 NZ는 약 0.3 내지 약 0.7이 될 수 있다. 상기 범위에서, 시야각에 따른 반사 색감변화 감소 효과를 낼 수 있다.
제1위상차층(100)은 파장 550nm에서 Re가 약 90nm 내지 약 170nm, 바람직하게는 약 90nm 내지 약 150nm, 더 바람직하게는 약 100nm 내지 약 140nm가 될 수 있다. 상기 범위에서, 제2위상차층(200)과 함께 외광에 의한 반사방지 효과를 내어 화면 시인성을 좋게 할 수 있다.
제1위상차층(100)은 파장 550nm에서 Rth가 약 -30nm 내지 약 30nm, 바람직하게는 약 -20nm 내지 약 20nm, 더 바람직하게는 약 -20nm 내지 약 10nm가 될 수 있다. 상기 범위에서, 제2위상차층(200)과 함께 외광에 의한 반사방지 효과를 내어 화면 시인성을 좋게 할 수 있다.
제1위상차층(100)은 두께가 약 3㎛ 이하, 바람직하게는 약 2㎛ 이하가 될 수 있다. 상기 범위에서, 편광판 박형화 효과를 달성할 수 있다.
도 1에서 도시되지 않았으나, 제1위상차층(100)의 다른 일면에는 점착층이 더 형성되어, 액정 위상차 필름을 광학표시장치의 패널 등에 적층시킬 수 있다.
제2위상차층(200)의 일면에는 UV 흡수제 함유 프라이머층(300)이 직접적으로 형성되어 있다. 상기 "직접적으로 형성"은 제2위상차층과 UV 흡수제 함유 프라이머층 사이에 임의의 점착층, 접착층, 또는 점접착층 등이 개재되지 않음을 의미한다.
제2위상차층(200)은 UV 조사(예: 약 200nm 내지 약 400nm의 조사)에 의해 액정 배향이 변화되지 않은 액정층을 포함할 수 있다. 이를 통해, 편광판에 적용시 UV를 차단하지 않더라도 액정 배향이 없어서 목표로 하는 위상차를 유지할 수 있다. 제2위상차층 또는 제2위상차층에 포함되는 액정층은 Q-sun 내후성 시험기(예: Q-Lab社)를 이용하여 UV(예: 파장 약 200nm 내지 약 400nm) 내지 가시광선 영역을 노광하였을 때 파장 550nm에서 면내 위상차 변화량(노광 후와 노광 전의 면내 위상차의 차이의 절대값)이 약 3nm 이하, 약 0nm 내지 약 3nm가 될 수 있다. 이때, 노광 시간은 특별히 제한되지 않으나, 약 500시간이 될 수 있다.
제2위상차층(200)은 액정층을 포함할 수 있다. 상기 액정층은 UV 조사(예: 약 200nm 내지 약 400nm의 조사)에 의해 액정의 배향이 변하지 않는 액정을 포함할 수 있다. 상기 액정층은 특별히 제한되지 않으나, 배향막에 의해 위상차를 구현하는 것이다. 제1위상차층은 배향막 없이 형성되는 것인데, 제2위상차층에 UV 흡수제 프라이머층을 형성한 후 제1위상차층을 형성할 경우에도 직선 편광 UV에 의해 제2위상차층의 액정 배향이 변경되는 것을 막을 수 있다. 제2위상차층(200)으로 액정층이 아닌 고분자 필름을 사용하는 경우 액정 위상차 필름의 두께가 두꺼워질 수 있고, 액정층의 두께만 약 10배 이상으로 증가하여 디스플레이 전체의 두께가 증가하는 문제점이 있을 수 있다. 배향막은 러빙제를 이용한 배향막, 광 배향 등을 포함할 수 있지만, 이에 제한되지 않는다. 러빙제는 통상적으로 알려진 러빙제를 사용할 수 있다.
제2위상차층(200)은 기재 필름 위에 배향막을 형성한 다음, 배향막 상에 상기 제2위상차층용 조성물을 도포하고 가열 및 비편광 UV를 조사하여 경화시켜 제조될 수 있다. 상기 기재 필름은 광학적으로 투명한 통상의 수지 필름을 포함할 수 있다. 예를 들면, 기재 필름은 트리아세틸셀룰로스 등을 포함하는 셀룰로스계 수지, 폴리에스테르, 폴리카보네이트 필름 등을 포함할 수 있지만, 이에 제한되지 않는다.
제2위상차층(200)은 파장 550nm에서 nx > nz > ny의 굴절률 관계를 나타내는 위상차층으로, nx는 약 1.55 내지 약 1.65, ny는 약 1.45 내지 약 1.55, nz는 약 1.55 내지 약 1.65가 될 수 있다. 상기 범위에서, 표시장치에 광학 보상 효과를 낼 수 있다.
제2위상차층(200)은 파장 550nm에서 NZ가 0 < NZ <1.0, 바람직하게는 NZ는 약 0 내지 약 0.5이 될 수 있다. 상기 범위에서, 측면반사 시야각이 우수한 효과를 낼 수 있다.
제2위상차층(200)은 파장 550nm에서 Re가 약 210nm 내지 약 280nm, 바람직하게는 약 210nm 내지 약 260nm, 더 바람직하게는 약 225nm 내지 약 255nm, 더 바람직하게는 약 230nm 내지 약 250nm가 될 수 있다. 상기 범위에서, 제1위상차층(100)과 함께 외광에 의한 반사방지 효과를 내어 화면 시인성을 좋게 할 수 있다.
제2위상차층(200)은 파장 550nm에서 Rth가 약 -90nm 내지 약 -140nm, 바람직하게는 약 -100nm 내지 약 -130nm, 더 바람직하게는 약 -105nm 내지 약 -125nm가 될 수 있다. 상기 범위에서, 제1위상차층(100)과 함께 외광에 의한 반사방지 효과를 내어 화면 시인성을 좋게 할 수 있다.
액정층은 호메오트로픽 배향 또는 호모지니어스 배향의 액정 구조일 수 있다. 액정층은 네마틱 액정, 스메틱 액정, 디스코틱 액정 중 어느 하나 일 수 있고, 바람직하게는 네마틱 액정 또는 디스코틱 액정을 사용할 수 있다.
제2위상차층(100)은 두께가 약 3㎛ 이하, 바람직하게는 약 2㎛ 이하가 될 수 있다. 상기 범위에서, 편광판 박형화 효과를 달성할 수 있다.
제2위상차층(200)의 진상축(fast axis)과 제1위상차층(100)의 진상축(fast axis)이 이루는 각도는 약 55° 내지 약 80°, 바람직하게는 약 60° 내지 약 75°, 더 바람직하게는 약 60° 내지 약 70°가 될 수 있다. 상기 범위에서, 정면과 측면 모두에서 반사 방지 특성이 우수할 수 있다.
UV 흡수제 함유 프라이머층(300)은 제1위상차층(100)과 제2위상차층(200)에 각각 직접적으로 형성되어 있다. 제2위상차층(200)은 제1위상차층(100) 대비 감광성기를 갖는 액정의 가교율이 높음으로써 제2위상차층(200)과 제1위상차층(100) 간의 밀착력이 저하될 수 있다. UV 흡수제 함유 프라이머층(300)은 제1위상차층(100)과 제2위상차층(200) 간의 밀착력을 높여 이들 간의 분리가 없도록 할 수 있다.
UV 흡수제 함유 프라이머층(300)은 UV 흡수제를 함유함으로써 제1위상차층(100)이 UV에 노출되는 경우 제1위상차층(100)의 액정 배향이 틀어져 위상차가 변경되는 것을 막을 수 있다. 제1위상차층(100)은 배향막 없이 형성되는 것이며 직선 편광 UV에 의해 경화되어 UV 조사시 액정 배향이 틀어지거나 변경될 수 있다. UV 흡수제 함유 프라이머층(300)은 파장 380nm 광에 대한 투과율이 약 2% 이하, 바람직하게는 약 1.5% 이하, 더 바람직하게는 약 1% 이하가 될 수 있다. 상기 범위에서, UV 조사에 의한 제1위상차층의 액정 틀어짐 또는 변형을 막을 수 있다.
도 1은 UV 흡수성 프라이머층의 일 예로서 UV 흡수제 함유 프라이머층을 나타낸 것이다. 그러나, UV 흡수성 기능이 있다면 UV 흡수제를 포함하지 않는 프라이머층도 본 발명의 범위에 포함될 수 있다.
일 구체예에서, 액정 위상차 필름은 하기 식 1에 따른 위상차 변화율이 약 3% 이하, 바람직하게는 약 1% 이하일 수 있다. 상기 범위에서, 액정 위상차 필름의 UV에 의한 신뢰성을 높여 발광표시장치에 사용할 수 있다:
<식 1>
위상차 변화율 = |B - A|/ A x 100
(상기 식 1에서, A는 파장 550nm에서 액정 위상차 필름의 초기 Re(단위:nm)
B는 상기 액정 위상차 필름의 제2위상차층면에서 300nm 내지 400nm 범위의 UV를 250시간 동안 조사한 후 파장 550nm에서 액정 위상차 필름의 Re(단위:nm)).
상기 UV 조사는 xenon lamp인 Q-sun(Q-Lab社)를 이용한 광 조사로 할 수 있지만, 이에 제한되지 않는다. 상기 "초기 Re"는 UV 조사 전의 액정 위상차 필름의 파장 550nm에서 Re를 의미한다.
한편, 본원 발명 발명자는 제1위상차층(100)과 제2위상차층(200) 사이에 UV 흡수제 함유 프라이머층(300)을 형성함으로써 정면 및 측면에서의 반사율이 현저하게 낮아지고 정면 반사율과 측면 반사율의 차이가 낮아짐을 확인하였다. 프라이머 층을 형성함으로써 코팅의 균일도가 향상되어 반사율의 균일도가 향상된다. 또한 정면 및 측면에서의 반사율이 낮아짐으로써 화면 품질을 개선할 수 있다. 본 발명의 액정 위상차 필름을 포함하는 편광판의 정면에서의 반사율은 약 1% 이하, 바람직하게는 약 0.7% 이하가 될 수 있다. 본 발명의 액정 위상차 필름을 포함하는 편광판의 측면에서의 반사율은 약 1% 이하, 바람직하게는 약 0.9% 이하가 될 수 있다. 상기 범위에서, 화면 품질을 개선할 수 있다. 정면 반사율과 측면 반사율의 차이는 약 0.3% 이하가 될 수 있다. 상기 범위에서, 정면과 측면에서의 시인 차이가 낮아져서 화면을 보는 장소에 관계없이 화면 품질을 좋게 할 수 있다.
UV 흡수제는 최대흡수파장 약 400nm 이하, 바람직하게는 약 360nm 내지 약 390nm, 더 바람직하게는 약 360nm 내지 약 380nm의 UV 흡수제를 포함할 수 있다. 상기 범위에서, 제1위상차층(100) 중 액정 배향의 틀어짐을 막아 신뢰성을 높일 수 있다. 상기 "최대흡수파장"은 UV 흡수제에 대해 최대 흡수 피크를 나타내는 파장, 즉, 파장에 따른 흡광도 곡선에서 최대 흡광도를 나타내는 파장을 의미한다. 상기 '흡광도'는 당업자에게 알려진 통상의 방법으로 측정될 수 있다. 예를 들면, UV 흡수제는 벤조트리아졸계 등을 포함하는 트리아졸계, 히드록시페닐트리아진계, 트리아진계, 페닐트리아진계 중 하나 이상을 포함할 수 있지만, 이에 제한되지 않는다.
UV 흡수제는 UV 흡수제 함유 프라이머층 중 약 10중량% 내지 약 30중량%가 될 수 있다. 상기 범위에서, 제1위상차층으로의 UV 투과를 차단할 수 있다. 바람직하게는 약 15중량% 내지 약 25중량%로 포함될 수 있다. 상기 범위에서, 제1위상차층으로의 UV 투과를 차단할 수 있고, 프라이머층 외부로 석출되는 것을 막을 수 있다.
UV 흡수제 함유 프라이머층(300)은 굴절률이 약 1.48 내지 약 1.65, 바람직하게는 약 1.55 내지 약 1.65가 될 수 있다. 상기 범위에서, 제1위상차층과 제2위상차층 간의 굴절률을 매칭시켜 제1액정층과 제2액정층 사이에 형성되더라도 투과율 저하 및 광 산란을 막을 수 있다.
UV 흡수제 함유 프라이머층(300)은 두께가 약 5㎛ 이하, 바람직하게는 약 3㎛ 이하가 될 수 있다. 상기 범위에서, 편광판을 박형화시킬 수 있고, 상기 UV 흡수제를 포함하더라도 제1위상차층에 의한 UV 영향을 충분히 억제할 수 있다.
UV 흡수제 함유 프라이머층(300)은 비-점착성층이다. 서로 다른 가교율을 갖는 제1위상차층(100)과 제2위상차층(200) 모두에 대한 밀착력을 좋게 하기 위해, UV 흡수제 함유 프라이머층(300)은 아크릴계 수지, 우레탄계 수지, 우레탄 (메트)아크릴레이트계 수지 중 하나 이상 및 UV 흡수제를 포함하는 조성물로 형성될 수 있다. 상기 조성물은 열개시제를 더 포함함으로써 UV 흡수제 함유 프라이머층의 기계적 강도를 더 높일 수 있다.
액정 위상차 필름은 두께가 약 1㎛ 내지 약 5㎛, 바람직하게는 약 1㎛ 내지 약 3㎛가 될 수 있다. 상기 범위에서, 발광표시장치용 편광판에 사용될 수 있다.
액정 위상차 필름은 가시광선 영역에서 전광선 투과율이 약 90% 이상, 헤이즈가 약 1% 이하가 될 수 있다. 상기 범위에서, 발광표시장치용 편광판에 사용될 수 있다.
이하, 도 2를 참고하여 본 발명의 다른 실시예에 따른 액정 위상차 필름을 설명한다. 도 2는 본 발명의 다른 실시예에 따른 액정 위상차 필름의 단면도이다.
도 2를 참조하면, 액정 위상차 필름(20)은 제2위상차층(200)의 다른 일면에 기재 필름(350)이 더 형성된 점을 제외하고는 본 발명의 일 실시예에 따른 액정 위상차 필름(10)과 실질적으로 동일하다.
기재 필름(350)은 제2위상차층(200)의 다른 일면에 형성되어 제2위상차층을 형성하기 위한 배향막 형성을 용이하게 하고, 액정 위상차 필름을 보호할 수 있다. 기재 필름은 통상의 고분자 필름을 포함할 수 있다. 예를 들면, 폴리에틸렌테레프탈레이트 필름 등의 폴리에스테르 필름, 폴리카보네이트 필름 등이 될 수 있으나, 이에 제한되지 않는다. 기재 필름(350)은 이형 처리됨으로써 제2위상차층과의 이형을 용이하게 할 수 있다.
이하, 도 3을 참고하여, 본 발명의 일 실시예에 따른 편광판을 설명한다. 도 3은 본 발명의 일 실시예에 따른 편광판의 단면도이다.
도 3을 참조하면, 편광판(30)은 편광 필름(400), 액정 위상차 필름을 포함하고, 액정 위상차 필름은 본 발명의 일 실시예에 따른 액정 위상차 필름을 포함할 수 있다. 편광판은 본 발명의 액정 위상차 필름을 포함함으로써 장기간 UV 조사에도 제1액정층과 제2액정층 간의 밀착력이 우수하고 위상차 변화율이 낮아서 내광 신뢰성을 높일 수 있고, 측면 및 정면에서의 반사율을 낮출 수 있으며, 편광 타원율(polarizance ellipticity)을 높일 수 있다.
편광 필름(400)은 액정 위상차 필름 중 제2위상차층(200)의 다른 일면에 적층될 수 있다. 도 3에서 도시되지 않았지만, 편광 필름(400)은 점착층 또는 접착층에 의해 제2위상차층(200)에 적층될 수 있다. 상기 점착층, 접착층은 당업자에게 알려진 통상의 점착제로 감압 접착제(PSA), 광경화형 접착제, 열경화형 접착제 등으로 형성될 수 있지만, 이에 제한되지 않는다.
도 4는 편광필름의 흡수축, 제2위상차층의 진상축(fast axis), 제1위상차층의 진상축(fast axis) 간의 각도를 나타낸 것이다. 도 4를 참조하면, 제1위상차층(100)의 진상축(fast axis)(100a)과 편광 필름(400)의 흡수축(400a)이 이루는 각도는 약 70° 내지 약 100°, 바람직하게는 약 75° 내지 약 95°, 더 바람직하게는 약 75° 내지 약 85°가 될 수 있다. 상기 범위에서, 정면과 측면 모두에서 반사 방지 특성이 우수할 수 있다. 제2위상차층(200)의 진상축(fast axis)(200a)과 편광 필름(400)의 흡수축(400a)이 이루는 각도는 약 10° 내지 약 25°, 바람직하게는 약 10° 내지 약 20°가 될 수 있다. 상기 범위에서, 정면과 측면 모두에서 반사 방지 특성이 우수할 수 있다.
편광 필름(400)은 제2위상차층(200)의 다른 일면에 형성되어 외광을 선편광시켜 제2위상차층(200)으로 투과시킴으로써 반사 방지 효과를 낼 수 있다.
편광판(30)은 정면에서의 반사율이 약 1% 이하, 바람직하게는 약 0.7% 이하가 될 수 있다. 편광판(30)은 측면에서의 반사율은 약 1% 이하, 바람직하게는 약 0.9% 이하가 될 수 있다. 상기 범위에서, 화면 품질을 개선할 수 있다.
일 구체예에서, 편광 필름(400)은 폴리비닐알콜계 필름에 요오드 등을 염색시킨 폴리비닐알콜계 편광자 또는 폴리비닐알콜계 필름의 탈수에 의한 폴리엔계 편광자를 포함할 수 있다. 편광자는 두께가 약 5㎛ 내지 약 50㎛가 될 수 있다. 상기 범위에서 표시장치에 사용할 수 있다.
다른 구체예에서, 편광 필름은 상술한 편광자 및 상기 편광자의 적어도 일면에 형성된 보호층을 포함할 수 있다. 보호층은 광학적으로 투명한, 보호 필름 또는 보호코팅층 중 하나 이상을 포함할 수 있다.
보호 필름은 광학적으로 투명한 수지로 형성된 보호 필름을 포함할 수 있다. 상기 보호 필름은 상기 수지를 용융 및 압출하여 형성될 수 있다. 필요할 경우에는 연신 공정을 더 추가할 수도 있다. 상기 수지는 트리아세틸셀룰로스 등을 포함하는 셀룰로스 에스테르계 수지, 비정성 환상 폴리올레핀(cyclic olefin polymer, COP) 등을 포함하는 고리형 폴리올레핀계 수지, 폴리카보네이트계 수지, 폴리에틸렌테레프탈레이트(PET) 등을 포함하는 폴리에스테르계 수지, 폴리에테르술폰계 수지, 폴리술폰계 수지, 폴리아미드계 수지, 폴리이미드계 수지, 비환형-폴리올레핀계 수지, 폴리메틸메타아크릴레이트 수지 등을 포함하는 폴리아크릴레이트계 수지, 폴리비닐알코올계 수지, 폴리염화비닐계 수지, 폴리염화비닐리덴계 수지 중 하나 이상을 포함할 수 있다.
보호코팅층은 편광자에 대한 양호한 밀착성, 투명성, 기계적 강도, 열안정성, 수분 차단성, 내구성을 높일 수 있다. 일 구체예에서, 보호코팅층은 활성 에너지선 경화성 화합물과 중합 개시제를 포함하는 활성 에너지선 경화성 수지 조성물로 형성될 수 있다. 활성 에너지선 경화성 화합물은 양이온 중합성의 경화성 화합물, 라디칼 중합성의 경화성 화합물, 우레탄 수지, 실리콘계 수지 중 하나 이상을 포함할 수 있다. 양이온 중합성 경화성 화합물은 분자 내에 적어도 하나의 에폭시기를 갖는 에폭시계 화합물, 분자 내에 적어도 하나의 옥세탄 고리를 갖는 옥세탄계 화합물이 될 수 있다. 라디칼 중합성의 경화성 화합물은 분자 내에 적어도 하나의 (메트)아크릴로일옥시기를 갖는 (메트)아크릴계 화합물이 될 수 있다. 보호층의 두께는 약 5㎛ 내지 약 200㎛, 구체적으로, 약 30㎛ 내지 약 120㎛, 보호 필름 타입의 경우 약 50㎛ 내지 약 100㎛가 될 수가 있고, 보호코팅층 타입의 경우 약 5㎛ 내지 약 50㎛가 될 수 있다. 상기 범위에서 표시장치에 사용할 수 있다. 보호층의 일면 또는 양면에는 기능성 코팅층 예를 들면 하드코팅층, 내지문성층, 반사방지층 등이 더 형성될 수 있다.
본 발명의 발광표시장치는 본 발명의 발광표시장치용 편광판을 포함할 수 있다. 발광표시장치는 발광소자를 포함하는 장치가 될 수 있다. 상기 발광소자는 유기 또는 유-무기 발광소자를 포함하고, LED(light emitting diode), OLED(organic light emitting diode), QLED(quantum dot light emitting diode), 형광체 등의 발광물질을 포함하는 소자를 의미할 수 있다. 예를 들면, 발광표시장치는 유기발광소자 표시장치를 포함할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예 1
제2위상차층으로 후지 필름사의 액정 위상차 필름(QLAA218)을 사용하였다. 액정 위상차 필름(QLAA218)은 TAC 필름(무 위상차 필름)의 일면에 액정 위상차층이 형성되어 있다. 상기 액정 위상차층은 파장 550nm에서 Re가 240nm, Rth가 -108nm, NZ가 0.04이고, 디스코틱 액정을 포함하며 호메트로픽 배향으로 액정이 배향되어 있다. 상기 액정 위상차층은 UV 조사(파장 200 내지 400nm)에 의해 액정 배향이 변화되지 않는다.
UV 흡수제 함유 프라이머층을 위해 수지로 우레탄 아크릴레이트계 수지(UR5562, Electrolube社)을 사용하였다. 우레탄 아크릴레이트 수지(UR5562)에 UV 흡수제로 하기 표 1의 UV 흡수제, 열개시제로 UR5562-hardner을 혼합하여 UV 흡수제 함유 프라이머층용 조성물을 제조하였다.
상기 액정 위상차층의 다른 일면(TAC 필름에 접하지 않은 면)에 상기 제조한 프라이머층용 조성물을 소정의 두께로 도포하고 건조 및 열경화시켜 UV 흡수제 함유 프라이머층을 형성하였다.
UV 흡수제 함유 프라이머층의 일면에 제1위상차층용 조성물을 도포하였다. 상기 제1위상차층용 조성물은 액정 고분자 Hayashi telempu사 MHZC-100A를 용매 THF(테트라히드로푸란)에 용해시켜 제조하였다.
이로부터 제조된 도포물을 60℃에서 건조시켰다. 그 다음에 LED lamp(600W) 으로부터의 자외선 광을 WGP(wire grid polarizer)를 통과시켜 직선 편광 UV로 하고 300mj 조사하였다. 조사한 다음, 130℃에서 가열하고 냉각시켰다. 3KW의 고압 수은 등으로부터의 자외선 광을 조사하여 제1위상차층을 형성하여 액정 위상차 필름을 제조하였다.
제1위상차층은 파장 550nm에서 Re가 115nm, Rth가 -17nm, NZ가 0.35이고, 네마틱 액정을 포함하며 호메트로픽 배향으로 액정이 배향되어 있으며, 두께는 2.0㎛이었다. 제1위상차층의 진상축과 제2위상차층의 진상축이 이루는 각도는 65°로 하였다.
폴리비닐알콜 필름을 60℃에서 3배 연신하고 요오드를 흡착시킨 후 40℃의 붕산 수용액에서 2.5배 연신하여 편광자를 제조하였다. 편광자의 일면에 제1보호층으로 트리아세틸셀룰로스 필름(ZRG40SL, Fuji사)을 편광판용 에폭시계 UV 접착제로 접착시켰다. 편광자의 다른 일면에 편광판용 에폭시계 UV 접착제로 트리아세틸셀룰로스 필름(ZRG40SL, Fuji)을 접착시켜 편광 필름을 제조하였다.
편광 필름의 일면과 제2위상차층의 TAC 필름 쪽을 점착층을 사용해서 점착시켜 편광판을 제조하였다.
실시예 2 내지 실시예 5
실시예 1에서 프라이머층용 조성물로 하기 표 1의 수지, UV 흡수제를 사용한 것을 제외하고는 동일한 방법으로 액정 위상차필름, 편광판을 제조하였다.
비교예 1
실시예 1에서 제1위상차층과 제2위상차층 사이에 UV 흡수제 함유 프라이머층을 형성하지 않은 것을 제외하고는 제2위상차 필름 위에 제1 위상차 층을 코팅하는 방법으로 액정 위상차필름, 편광판을 제조하였다.
비교예 2
실시예 1에서 프라이머층에 UV 흡수제를 포함시키지 않은 것을 제외하고는 동일한 방법으로 액정 위상차필름, 편광판을 제조하였다.
비교예 3
아크릴계 수지 72중량부, 이소시아네이트계 가교제 8중량부, UV 흡수제로 벤조트리아졸 1을 20중량부를 포함시켜 점착층용 조성물을 제조하였다. 실시예 1에서 UV 흡수제 함유 프라이머층 대신에 상기 제조한 점착층용 조성물을 이용해서 점착층(두께:25㎛)을 형성한 것을 제외하고는 동일한 방법으로 액정 위상차필름, 편광판을 제조하였다.
실시예와 비교예에서 제조한 편광판에 있어서, 편광 필름 중 편광자의 흡수축과 제2위상차층의 진상축이 이루는 각도는 18°로 하였다. 편광 필름 중 편광자의 흡수축과 제1위상차층의 진상축이 이루는 각도는 78°로 하였다.
실시예와 비교예에서 제조한 UV 흡수제 함유 프라이머층, 액정 위상차 필름, 편광판에 대해 하기 물성을 평가하고, 그 결과를 하기 표 1, 표 2에 나타내었다.
물성 평가
(1)UV 흡수제 함유 프라이머층의 투과율: 실시예와 비교예에서 제조한 UV 흡수제 함유 프라이머층에 대해 Perkin Elmer Lambda 1050 UV-VIS spectrometer 장치를 사용해서 파장 380nm에서 광 투과율을 측정하였다.
(2)광 투과율: Perkin Elmer Lambda 1050 UV-VIS spectrometer 장치를 사용해서 파장 550nm에서 액정 위상차 필름의 전광선 투과율을 측정하였다.
(3)밀착력(크로스 컷 평가): 실시예와 비교예에서 제조한 액정 위상차 필름에 대해 제1위상차층, UV 흡수제 함유 프라이머층, 제2위상차층 간의 밀착력을 평가하였다. 가로 x 세로 10cm x 10cm의 액정 위상차 필름 시편에 대해 제1위상차층부터 기재와 제2위상차층의 계면까지 가로 x 세로 10개 x 10개로 총 100개로 절편으로 절단하였다. 제1위상차층 일면에 점착 테이프를 붙이고 떼어내었다. 박리되지 않고 남아있는 절편의 개수를 평가하였다. 박리되지 않고 남아있는 절편의 개수가 높을수록 밀착력이 우수함을 의미한다.
(4)UV 조사시 신뢰성 평가 1: Q-sun(Q-Lab社)설비를 이용해서 파장 300~400nm(태양광 모사)의 UV로 250시간 동안 조사하였다. UV 조사는 액정 위상차 필름 중 제2위상차층 면에서 조사하였다. 제1위상차층이 UV 흡수제 함유 프라이머층으로부터 분리되는지 여부를 평가하였다. (3)과 동일한 방법으로 평가하였다.
(5)UV 조사시 신뢰성 평가 2: 실시에와 비교예에서 제조한 액정 위상차 필름에 대해 Q-sun(Q-Lab社)설비를 이용해서 파장 300~400nm(태양광 모사) UV로 250시간 동안 조사하였다. 조사는 액정 위상차 필름 중 제2위상차층 면에서 조사하였다. 조사 전 파장 550nm에서의 Re, 조사 후 파장 550nm에서의 Re를 평가하고 상기 식 1에 의해 위상차 변화율을 평가하였다.
(6)반사율: 실시예와 비교예에서 제조한 편광판의 제1위상차층 다른 일면에 점착층을 붙이고 상기 점착층을 매개로 반사 패널에 편광판을 적층시켜 시편을 제조하였다. 정면 반사율은 광원 D65, 수광부 10° 조건에서 분광 측색계 CM-3600d(Konica Minolta사)를 사용해서 측정하였다. 측면 반사율은 DMS(Instrument Systems사)를 이용해서 측정하였다.
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
프라이머층 수지 수지 1 수지 2 수지 2 수지 2 수지 3
수지 굴절률 1.48 1.5 1.5 1.5 1.6
UV 흡수제 벤조트리아졸1 벤조트리아졸2 히드록시페닐트리아진 벤조트리아졸 1+히드록시페닐트리아진 벤조트리아졸 1
UV 흡수제함량(중량%) 15 20 25 20(각각 10) 20
두께(㎛) 3 3 3 3 3
투과율 @380nm(%) 0.67 0.72 0.02 0.34 0.67
투과율@550nm(%) 87.24 88.47 90.38 90.4 90.23
밀착력 95/100 97/100 95/100 97/100 98/100
신뢰성 평가 1 98/100 97/100 95/100 100/100 99/100
신뢰성 평가 2(%) 0.7 0.5 0.6 0.3 0.8
반사율(%) 정면 0.64 0.62 0.6 0.61 0.61
측면 0.81 0.8 0.82 0.84 0.84
반사율 차이 0.17 0.18 0.22 0.23 0.23
비교예 1 비교예 2 비교예 3
프라이머층 수지 - 수지 2 -
수지 굴절률 - 1.493 -
UV 흡수제 - - -
두께(㎛) - 3 -
투과율 @380nm(%) - 25.3 -
점착층 - - 포함
점착층 중 UV 흡수제 함량(중량%) - - 20
투과율@550nm(%) 91.24 90.24 3.60
밀착력 15/100 95/100 100/100
신뢰성 평가 1 0/100 94/100 100/100
신뢰성 평가 2(%) 18 16 10
반사율(%) 정면 측정불가 1.28 1.08
측면 측정불가 1.75 1.57
반사율 차이 - 0.47 0.49
*수지 1: UR5562, Electrolube社*수지 2: CN 9006, sartomer社
*수지 3: MPV (Aromatic vinyl), sumitomoseik社
*벤조트리아졸 1: Tinuvin384-2, Basf社, 최대흡수파장: 365nm
*벤조트리아졸 2: Tinuvin900, Basf社, 최대흡수파장: 365nm
*히드록시페닐트리아진: Tinuvin477, Basf社, 최대흡수파장: 360nm
상기 표 1에서와 같이, 본 발명의 액정 위상차 필름과 편광판은 제2액정층과 제1액정층 간의 밀착력이 우수하고, 장기간 UV 조사에도 제1액정층과 제2액정층 간의 밀착력이 우수하고 위상차 변화율이 낮아서 내광 신뢰성을 높일 수 있으며, 정면 및 측면에서의 반사율을 낮출 수 있고, 정면과 측면에서의 반사율 차이가 낮았다.
반면에, UV 흡수제 함유 프라이머층을 포함하지 않거나 UV 흡수제를 함유하지 않는 프라이머층을 포함하는 비교예 1, 비교예 2는 밀착력이 좋지 않거나 신뢰성 평가 결과가 좋지 않았으며 정면 및 측면에서의 반사율이 높았다. 또한, UV 흡수제 함유 프라이머층 대신에 UV 흡수제 함유 점착층을 포함하는 비교예 3은 UV가 조사되더라도 밀착력을 확보할 수 있으나 위상차 변화율이 높았으며 정면 및 측면에서의 반사율이 본 발명 대비 높았다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (22)

  1. 배향막이 없는 제1위상차층, UV 흡수성 프라이머층, 및 제2위상차층이 순차적으로 형성되고,
    상기 제1위상차층과 상기 제2위상차층은 각각 액정층인, 액정 위상차 필름.
  2. 제1항에 있어서, 상기 UV 흡수성 프라이머층은 UV 흡수제 함유 프라이머층을 포함하는 것인, 액정 위상차 필름.
  3. 제1항에 있어서, 상기 UV 흡수성 프라이머층은 상기 제1위상차층 및 상기 제2위상차층에 각각 직접적으로 형성된 것인, 액정 위상차 필름.
  4. 제1항에 있어서, 상기 제1위상차층 중 상기 액정층은 감광성 반응기를 갖는 액정을 포함하는 액정층을 포함하는 것인, 액정 위상차 필름.
  5. 제1항에 있어서, 상기 제2위상차층 중 상기 액정층은 감광성 반응기를 갖는 액정을 포함하는 액정층을 포함하는 것인, 액정 위상차 필름.
  6. 제1항에 있어서, 상기 제2위상차층은 상기 제1위상차층 대비 감광성 반응기를 갖는 액정의 가교율이 더 높은 것인, 액정 위상차 필름.
  7. 제1항에 있어서, 상기 제1위상차층은 파장 550nm에서 면내 위상차 Re가 약 90nm 내지 약 170nm이고, 상기 제2위상차층은 파장 550nm에서 면내 위상차 Re가 약 210nm 내지 약 280nm인 것인, 액정 위상차 필름.
  8. 제1항에 있어서, 상기 제2위상차층의 진상축(fast axis)과 상기 제1위상차층의 진상축(fast axis)이 이루는 각도는 약 55° 내지 약 80°인 것인, 액정 위상차 필름.
  9. 제1항에 있어서, 상기 제1위상차층의 액정은 네마틱 액정으로 호메오트로픽 배향을 갖는 것인, 액정 위상차 필름.
  10. 제1항에 있어서, 상기 제2위상차층의 액정은 디스코틱 액정 또는 네마틱 액정으로 호메오트로픽 배향을 갖는 것인, 액정 위상차 필름.
  11. 제2항에 있어서, 상기 UV 흡수제는 벤조트리아졸계, 히드록시페닐트리아진계, 트리아진계, 페닐트리아진계 중 하나 이상을 포함하는 것인, 액정 위상차 필름.
  12. 제1항에 있어서, 상기 UV 흡수성 프라이머층은 두께가 약 5㎛ 이하인 것인, 액정 위상차 필름.
  13. 제2항에 있어서, 상기 UV 흡수제는 상기 UV 흡수제 함유 프라이머층 중 약 10중량% 내지 약 30중량%로 포함되는 것인, 액정 위상차 필름.
  14. 제1항에 있어서, 상기 제1위상차층의 상기 액정층 및 상기 제2위상차층의 상기 액정층은 각각 감광성기를 포함하고,
    상기 감광성기는 신나모일기, 신나밀리덴기, (메트)아크릴로일기, (메트)아크릴로일기 함유기, 쿠마린기, 벤조페논기 중 하나 이상을 포함하는 것인, 액정 위상차 필름.
  15. 제1항에 있어서, 상기 액정 위상차 필름은 하기 식 1에 따른 위상차 변화율이 약 3% 이하인 것인, 액정 위상차 필름:
    <식 1>
    위상차 변화율 = |B - A|/ A x 100
    (상기 식 1에서, A는 파장 550nm에서 액정 위상차 필름의 초기 Re(단위:nm)
    B는 상기 액정 위상차 필름의 제2위상차층면에서 300nm 내지 400nm 범위의 UV를 250시간 동안 조사한 후 파장 550nm에서 액정 위상차 필름의 Re(단위:nm)).
  16. 제2항에 있어서, 상기 UV 흡수성 프라이머층은 비-점착성인 것인, 액정 위상차 필름.
  17. 제1항에 있어서, 상기 제2위상차층 중 상기 액정층은 UV 조사에 의해 액정의 배향이 변하지 않는 액정을 포함하는 것인, 액정 위상차 필름.
  18. 편광 필름; 및 상기 편광 필름의 일면에 형성되는 제1항 내지 제17항 중 어느 한 항의 액정 위상차 필름을 포함하는 것인, 발광표시장치용 편광판.
  19. 제18항에 있어서, 상기 발광표시장치용 편광판은, 상기 편광 필름, 상기 제2위상차층, 상기 UV 흡수성 프라이머층, 상기 제1위상차층의 순서로 적층되는 것인, 발광표시장치용 편광판.
  20. 제18항에 있어서, 상기 제1위상차층의 진상축(fast axis)와 상기 편광 필름의 흡수축이 이루는 각도는 약 70° 내지 약 100°이고, 상기 제2위상차층의 진상축(fast axis)와 상기 편광 필름의 흡수축이 이루는 각도는 약 10° 내지 약 25°인 것인, 발광표시장치용 편광판.
  21. 제18항에 있어서, 상기 발광표시장치용 편광판은 상기 편광 필름에서 측정된 정면 반사율과 측면 반사율이 각각 약 1% 이하인 것인, 발광표시장치용 편광판.
  22. 제18항의 발광표시장치용 편광판을 포함하는 발광표시장치.
PCT/KR2018/010579 2017-10-23 2018-09-11 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치 WO2019083160A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/756,438 US11809044B2 (en) 2017-10-23 2018-09-11 Liquid crystal phase difference film, polarizing plate for light-emitting display device including same, and light-emitting display device including same
CN201880068756.6A CN111263904B (zh) 2017-10-23 2018-09-11 液晶位相差膜、偏光板以及发光显示器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0137783 2017-10-23
KR1020170137783A KR102126051B1 (ko) 2017-10-23 2017-10-23 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치

Publications (1)

Publication Number Publication Date
WO2019083160A1 true WO2019083160A1 (ko) 2019-05-02

Family

ID=66246607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010579 WO2019083160A1 (ko) 2017-10-23 2018-09-11 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치

Country Status (5)

Country Link
US (1) US11809044B2 (ko)
KR (1) KR102126051B1 (ko)
CN (1) CN111263904B (ko)
TW (1) TWI699566B (ko)
WO (1) WO2019083160A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576988B1 (ko) * 2019-08-02 2023-09-08 삼성에스디아이 주식회사 편광판 및 이를 포함하는 디스플레이 장치
KR20220031379A (ko) * 2020-09-04 2022-03-11 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR20220048382A (ko) * 2020-10-12 2022-04-19 삼성에스디아이 주식회사 광학표시장치용 모듈 및 이를 포함하는 광학표시장치
JP7348928B2 (ja) * 2021-06-02 2023-09-21 住友化学株式会社 積層体
JP2022185419A (ja) * 2021-06-02 2022-12-14 住友化学株式会社 積層体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009346A (ja) * 2006-06-30 2008-01-17 Dainippon Printing Co Ltd 位相差フィルム、および、位相差フィルムの製造方法
JP2011059663A (ja) * 2009-08-10 2011-03-24 Jx Nippon Oil & Energy Corp 液晶フィルムとそれを用いて得られる光学素子および楕円偏光板
KR20130018594A (ko) * 2011-08-09 2013-02-25 주식회사 엘지화학 액정 필름
KR20130071446A (ko) * 2013-04-25 2013-06-28 동우 화인켐 주식회사 위상차 필름
KR20150015158A (ko) * 2013-07-31 2015-02-10 동우 화인켐 주식회사 위상차 필름 및 이를 구비하는 화상 표시 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004019085A1 (ja) 2002-08-26 2004-03-04 Dai Nippon Printing Co., Ltd. 位相差光学素子、その製造方法及び液晶表示装置
WO2006100830A1 (ja) * 2005-03-23 2006-09-28 Nitto Denko Corporation 光学フィルムの製造方法、およびそのような製造方法により得られる光学フィルムを用いた画像表示装置
KR20120055129A (ko) * 2010-11-23 2012-05-31 동우 화인켐 주식회사 반사 방지용 편광판 및 이를 포함하는 화상표시장치
CN102243330B (zh) 2011-06-16 2013-02-06 华映视讯(吴江)有限公司 无配向层的微相位差膜的制作方法
CN103857751A (zh) 2011-10-07 2014-06-11 东友精细化工有限公司 用于制备取向层的组合物、由其制备的取向层和延迟膜
JP2014032270A (ja) 2012-08-02 2014-02-20 Sumitomo Chemical Co Ltd 位相差フィルム及びそれを用いた複合偏光板
WO2014073616A1 (ja) * 2012-11-07 2014-05-15 富士フイルム株式会社 位相差板、円偏光板、有機el表示装置
CN104345372B (zh) 2013-08-09 2018-04-10 住友化学株式会社 光学膜
KR101768270B1 (ko) * 2014-07-21 2017-08-16 삼성에스디아이 주식회사 편광판 및 이를 포함하는 액정표시장치
KR20170077817A (ko) * 2015-12-28 2017-07-06 스미또모 가가꾸 가부시끼가이샤 광학 적층체
WO2017142184A1 (ko) * 2016-02-19 2017-08-24 삼성에스디아이 주식회사 기능성 광학필름 및 이를 포함하는 투명 디스플레이 장치
WO2017168807A1 (ja) 2016-03-31 2017-10-05 コニカミノルタ株式会社 位相差フィルム、偏光板および液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009346A (ja) * 2006-06-30 2008-01-17 Dainippon Printing Co Ltd 位相差フィルム、および、位相差フィルムの製造方法
JP2011059663A (ja) * 2009-08-10 2011-03-24 Jx Nippon Oil & Energy Corp 液晶フィルムとそれを用いて得られる光学素子および楕円偏光板
KR20130018594A (ko) * 2011-08-09 2013-02-25 주식회사 엘지화학 액정 필름
KR20130071446A (ko) * 2013-04-25 2013-06-28 동우 화인켐 주식회사 위상차 필름
KR20150015158A (ko) * 2013-07-31 2015-02-10 동우 화인켐 주식회사 위상차 필름 및 이를 구비하는 화상 표시 장치

Also Published As

Publication number Publication date
CN111263904B (zh) 2022-11-29
KR20190045022A (ko) 2019-05-02
US11809044B2 (en) 2023-11-07
KR102126051B1 (ko) 2020-06-23
TW201930930A (zh) 2019-08-01
CN111263904A (zh) 2020-06-09
TWI699566B (zh) 2020-07-21
US20200285093A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2019083160A1 (ko) 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2019124961A1 (ko) 투과도 가변 필름 및 이의 용도
WO2018199615A1 (ko) 광학 디바이스
WO2016105017A1 (ko) 광학필름 및 이를 구비한 oled 표시장치
WO2019147011A1 (ko) 점착제 조성물 및 이의 용도
WO2019146977A1 (ko) 다층 액정 필름, 편광판 및 편광판의 제조방법
WO2014204205A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2019235832A1 (ko) 점착제 조성물
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2020138878A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020153639A1 (ko) 액정표시장치
WO2020080757A1 (ko) 편광판, 액정 패널 및 디스플레이 장치
WO2019112163A1 (ko) 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2016104976A1 (ko) 광학시트, 이를 포함하는 편광판 및 액정표시장치
WO2022098016A1 (ko) 광학표시장치용 모듈 및 이를 포함하는 광학표시장치
WO2020204411A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2012064141A2 (ko) 광학 소자
WO2020145672A1 (ko) 광학 이방성 필름의 제조 방법
WO2019245145A1 (ko) 광학필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2020071646A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020091552A1 (ko) 원편광판
WO2020153566A1 (ko) 편광자 및 이의 제조방법
WO2019107709A1 (ko) 광학 디바이스
WO2020184862A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2022203329A1 (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870079

Country of ref document: EP

Kind code of ref document: A1