WO2019146977A1 - 다층 액정 필름, 편광판 및 편광판의 제조방법 - Google Patents

다층 액정 필름, 편광판 및 편광판의 제조방법 Download PDF

Info

Publication number
WO2019146977A1
WO2019146977A1 PCT/KR2019/000838 KR2019000838W WO2019146977A1 WO 2019146977 A1 WO2019146977 A1 WO 2019146977A1 KR 2019000838 W KR2019000838 W KR 2019000838W WO 2019146977 A1 WO2019146977 A1 WO 2019146977A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
crystal film
alignment
group
Prior art date
Application number
PCT/KR2019/000838
Other languages
English (en)
French (fr)
Inventor
김지영
김영진
박균도
이대희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020523707A priority Critical patent/JP6995426B2/ja
Priority to US16/756,068 priority patent/US11347109B2/en
Publication of WO2019146977A1 publication Critical patent/WO2019146977A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Definitions

  • the present application relates to a multilayer liquid crystal film, a polarizing plate, and a method of manufacturing a polarizing plate.
  • Retardation films can be used for a variety of applications.
  • the retardation film can be disposed on one side or both sides of the liquid crystal cell, for example, to improve viewing angle characteristics of the display device.
  • the retardation film is also used for prevention of reflection and securing visibility in reflective LCD or OLED (Organic Light Emitting Device).
  • the retardation film can be produced through a liquid crystal material.
  • a liquid crystal material As a retardation film, it may be necessary to properly orient a liquid crystal material so as to exhibit a desired retardation.
  • a method of laminating each oriented liquid crystal film through a pressure-sensitive adhesive In order to produce a multi-layer liquid crystal film in which two or more oriented liquid crystal films are laminated, generally, there is a method of laminating each oriented liquid crystal film through a pressure-sensitive adhesive. However, this method has a problem in that the process is cumbersome, time-consuming and expensive, and the thickness of the final device becomes thick.
  • Patent Document 1 of a method of producing a multilayer liquid crystal film without using an adhesive discloses a technique of coating a vertically aligned liquid crystal material by controlling the degree of curing of a horizontally oriented liquid crystal film after coating a horizontally aligned liquid crystal on a rubbed base material have.
  • the orientation of the vertically aligned liquid crystal is improved, there is a problem that the adhesion between the liquid crystal films is lowered and the liquid crystal coating property is lowered, and the orientation property of the vertically aligned liquid crystal is lowered when the liquid crystal coating property is improved .
  • Patent Document 1 Korean Patent Application Publication No. 2004-0002793
  • the present application provides a polarizing plate having a thinned multilayer liquid crystal film and a low haze value and capable of obtaining a thinned polarizing plate and a polarizing plate produced using such a process.
  • One embodiment of the present invention is a substrate comprising: a substrate; A first alignment layer provided on the substrate; A first liquid crystal film provided on the first alignment film; A second alignment layer provided on the first liquid crystal film and including a polyfunctional acrylate; And a second liquid crystal film provided on the second alignment film.
  • a polarizer comprising: a polarizer; And a multilayer liquid crystal film provided on at least one side of the polarizer, wherein the second liquid crystal film comprises a multilayer liquid crystal film disposed adjacent to the polarizer.
  • a polarizer comprising: a polarizer; A first alignment layer provided on at least one surface of the polarizer; A first liquid crystal film provided on the first alignment film; A second alignment layer provided on the first liquid crystal film and including a polyfunctional acrylate; And a second liquid crystal film provided on the second alignment film.
  • one embodiment of the present invention provides a method of manufacturing a liquid crystal display, comprising: forming a first alignment layer on a substrate; Forming a first liquid crystal film on the first alignment film; Coating a second alignment composition including polyfunctional acrylate on the first liquid crystal film to form a second alignment layer; And forming a second liquid crystal film on the second alignment film.
  • the multilayer liquid crystal film of the present invention does not form a pressure-sensitive adhesive between the liquid crystal film and the alignment film, thereby realizing the thinness of the liquid crystal film and improving the coating property of the liquid crystal.
  • the present invention can realize the thinning of the polarizing plate by peeling the substrate after laminating the multilayer liquid crystal film to the polarizer, and by adjusting the flatness of the substrate to 10 nm or less, a low haze value Can be obtained.
  • FIG. 1 is a view showing a laminated structure of a multilayer liquid crystal film according to an embodiment of the present invention.
  • FIGS. 2 and 3 are schematic views illustrating a manufacturing process of a polarizing plate according to an embodiment of the present invention.
  • FIG. 4 is a view showing the surface of the polarizing plate produced in Example 2.
  • FIG. 5 is a view showing the surface of the polarizing plate produced in Comparative Example 3. Fig.
  • a multilayer liquid crystal film includes a substrate; A first alignment layer provided on the substrate; A first liquid crystal film provided on the first alignment film; A second alignment layer provided on the first liquid crystal film and including a polyfunctional acrylate; And a second liquid crystal film provided on the second alignment film.
  • the thickness of the multilayer liquid crystal film excluding the substrate may be 0.1 to 5 ⁇ ⁇ .
  • the first alignment film may be a vertical alignment film
  • the first liquid crystal film may be a vertically aligned liquid crystal film
  • the second alignment film may be a horizontal alignment film
  • the second liquid crystal film may be a horizontally aligned liquid crystal film.
  • the first alignment film may be a horizontal alignment film
  • the first liquid crystal film may be a horizontally aligned liquid crystal film
  • the second alignment film may be a vertical alignment film
  • the second liquid crystal film may be a vertically aligned liquid crystal film.
  • the horizontally aligned liquid crystal film may include a horizontally aligned liquid crystal material.
  • the vertically aligned liquid crystal film may include a vertically aligned liquid crystal material.
  • the liquid crystal material may mean a material exhibiting liquid crystallinity.
  • the liquid crystal material may include a moiety capable of exhibiting liquid crystallinity, for example, a mesogen skeleton.
  • a horizontally aligned liquid crystal material may mean a liquid crystal material capable of horizontal alignment
  • a vertically aligned liquid crystal material may mean a liquid crystal material capable of vertically aligning
  • the horizontal orientation may mean an alignment state in which the director of the liquid crystal material is aligned with an inclination angle of about 0 [deg.] To 5 [deg.] With respect to the plane of the liquid crystal film.
  • the vertical orientation may mean an alignment state in which the director of the liquid crystal material is aligned with a tilt angle of about 90 to 85 relative to the plane of the liquid crystal film.
  • the director may mean the optical axis of the liquid crystal material.
  • the optical axis may mean the slow axis of the liquid crystal material.
  • the optical axis may mean the long axis of the liquid crystal material, and in other cases, when the liquid crystal material has a discotic shape, it may mean an axis in the normal direction of the original plate.
  • the horizontal orientation herein may include planar orientation, twist orientation, or cholesteric orientation.
  • the plane orientation may mean a state in which the liquid crystal material in the liquid crystal film is horizontally aligned and the orientation of the liquid crystal material is parallel to each other.
  • the planar orientation can be said to have a uniform horizontal orientation.
  • the twist orientation or the cholesteric orientation in this specification may mean a spiral orientation state in which the liquid crystal material in the liquid crystal film is horizontally aligned and the director of the liquid crystal materials is layered and twisted along the helical axis.
  • the thickness of the liquid crystal film may be less than the above-mentioned twist orientation when the distance from the direction of the liquid crystal material to the completion of 360 ° rotation is referred to as a pitch. That is, in the liquid crystal film having the twist orientation, the director of the liquid crystal material may not be rotated by 360 °. In a liquid crystal film having a cholesteric orientation, the director of the liquid crystal material may be rotated by 360 °.
  • the cholesteric orientation has a helical structure in which the director of the liquid crystal compound twists along the helical axis and forms a layer, and the liquid crystal compound may be rotating 360 degrees at the pitch.
  • the horizontally aligned liquid crystal material and / or the vertically aligned liquid crystal material may be a polymerizable liquid crystal material. That is, the horizontally aligned liquid crystal material and / or the vertically aligned liquid crystal material may include a mesogen skeleton and at least one polymerizable functional group.
  • the polymerizable liquid crystal material may include, for example, one, two, three, or four or more of the functional groups.
  • the polymerizable functional group may be an alkenyl group, an epoxy group, an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group.
  • the horizontally aligned liquid crystal film may include the horizontally aligned liquid crystal material in a polymerized state.
  • the vertically aligned liquid crystal film may include the vertically aligned liquid crystal material in a polymerized state.
  • the liquid crystal material is contained in a polymerized state, which means that the liquid crystal material is polymerized to form a skeleton such as a main chain or a side chain of the liquid crystal polymer in the liquid crystal film.
  • the horizontally aligned liquid crystal material or the vertically aligned liquid crystal material can be used without limitation as the polymerizable liquid crystal material mainly used in the art.
  • the polymerizable liquid crystal material may be a compound represented by the following formula (1).
  • A is a single bond, -COO- or -OCO-
  • R 1 to R 10 are the same or different and each independently represents a hydrogen, a halogen, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, Nitro group, -UQP, or a substituent of the following general formula (2), or two adjacent substituents of R 1 to R 5 or two adjacent substituents of R 6 to R 10 are connected to each other to form benzene substituted with -QQP
  • at least one of R 1 to R 10 is -UQP or a substituent of the following formula 2 or at least one of two adjacent substituents of R 1 to R 5 or two adjacent substituents of R 6 to R 10
  • U is -O-, -COO- or -OCO-
  • Q is an alkylene group or an alkylidene group
  • P is an alkenyl group, an epoxy group, an acryloyl group
  • B is a single bond, -COO- or -OCO-
  • R 11 to R 15 are the same or different and each independently represents a hydrogen, a halogen, an alkyl group, a cycloalkyl group, an alkoxy group, a cyano group, Or -UQP, at least one of R 11 to R 15 is -UQP, U is -O-, -COO-, or -OCO-, Q is an alkylene group or an alkylidene group, P is an alkenyl group, An epoxy group, an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group.
  • the single bond may mean that there is no separate atom or atomic group at the site.
  • A is a single bond in the formula (1), benzene is directly bonded to both sides of A to form a biphenyl structure.
  • the number of carbon atoms of the alkylene group or alkylidene group may be 1 to 20, and may be 1 to 16, and according to another example, 1 to 12 carbon atoms, 1 to 8 carbon atoms, 1 to 4 carbon atoms, An alkylene group or an alkylidene group having 4 to 10 carbon atoms or 6 to 9 carbon atoms may be exemplified.
  • the alkylene group or alkylidene group may be linear, branched or cyclic.
  • the alkylene or alkylidene group may be optionally substituted with one or more substituents.
  • the alkenyl group may have 2 to 20 carbon atoms and may have 2 to 16 carbon atoms. According to another embodiment, the alkenyl group may have 2 to 12 carbon atoms, 2 to 8 carbon atoms, 2 to 4 carbon atoms, 4 to 10 carbon atoms, An alkenyl group having 6 to 9 carbon atoms may be exemplified.
  • the alkenyl group may be linear, branched or cyclic.
  • alkenyl group examples include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group, a cyclohexenyl group, and an octenyl group.
  • any compound or substituent which may be substituted for a substituent includes a halogen, a hydroxy group, an alkyl group, an alkoxy group, an alkenyl group, an epoxy group, a cyano group, a carboxyl group, an isocyanate group, a mercapto group, , An acryloyloxy group, a methacryloyloxy group, or an aryl group, but the present invention is not limited thereto.
  • the aryl group may have a benzene ring or may be a monovalent residue derived from a compound or a derivative thereof having a structure in which two or more benzene rings are condensed. Further, it may be a concept including an aralkyl group and the like.
  • the carbon number of the aryl group may be 6 to 22, and may be 6 to 16 according to an example.
  • aryl group examples include a phenyl group, a phenylethyl group, a phenylpropyl group, a benzyl group, a tolyl group, a xylyl group, and a naphthyl group, and may be substituted by an additional substituent.
  • P in the general formulas (1) and (2) may independently be an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group.
  • each of P in the formulas (1) and (2) may independently be an acryloyloxy group or a methacryloyloxy group.
  • the substituent which is not substituted with -UQP or the formula (2) in the general formulas (1) and (2) is hydrogen, halogen, a straight or branched alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms , A cyano group, an alkoxy group having 1 to 4 carbon atoms, or a nitro group.
  • the substituent which is not substituted with -UQP or the formula (2) in the formulas (1) and (2) is chlorine, a straight or branched alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, An alkoxy group having 1 to 4 carbon atoms or a cyano group.
  • a horizontally aligned material may be a compound with less or equal polarity differences at both ends.
  • a compound having a small difference in polarity or having the same functional group as any one of R 7 to R 9 and R 2 to R 4 in Formula 1 may be used.
  • either one of R 7 to R 9 and any of R 2 to R 4 may be -UQP or Formula 2, or two adjacent substituents of R 7 to R 9 and adjacent two of R 2 to R 4 The two substituents may be linked to form a benzene substituted with -UQP.
  • U is -O-, -COO- or -OCO-
  • Q is an alkylene group or an alkylidene group
  • P is an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group .
  • R 7 to R 9 and R 2 to R 4 in the formula (1) are selected as described above as the horizontally aligned liquid crystal material
  • other substituents may be hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • the horizontally aligned liquid crystal material is not limited thereto and can be appropriately selected according to the use of the present invention.
  • any one of R 7 to R 9 in the above formula (1) may be -UQP or formula 2, or two adjacent substituents of R 7 to R 9 may be connected to each other to be substituted with UQP Benzene. ≪ / RTI >
  • U is -O-, -COO- or -OCO-
  • Q is an alkylene group or an alkylidene group
  • P is an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group .
  • the other substituent may be hydrogen or an alkyl group.
  • the vertically aligned liquid crystal material is not limited thereto, and any liquid crystal compound having a different polarity at both ends can be selected without limitation.
  • the horizontally aligned liquid crystal film may have a normal wavelength dispersion, a flat wavelength dispersion, or a reverse wavelength dispersion.
  • the normal wavelength dispersion characteristic may mean a characteristic that satisfies the following expression (1)
  • the flat wavelength dispersion characteristic may mean a characteristic that satisfies the following expression (2)
  • the reverse wavelength dispersion characteristic satisfies the following expression Can be characterized.
  • the wavelength dispersion property of the horizontally aligned liquid crystal film may have a value of R (450) / R (550) of 0.8 to 1.2.
  • R (?) May mean the phase difference of the liquid crystal film with respect to light having a wavelength of? Nm.
  • the phase difference is a value calculated as (Nx - Ny) xd.
  • Nx is the refractive index in the x-axis direction of the liquid crystal film
  • Ny is the refractive index in the y-axis direction of the liquid crystal film
  • d is the thickness of the liquid crystal film.
  • the x-axis means one direction on the plane of the liquid crystal film
  • the y-axis means the plane direction perpendicular to the x-axis.
  • the x-axis may be parallel to the slow axis of the liquid crystal film, and the y-axis may be parallel to the fast axis of the liquid crystal film.
  • the slow axis may be parallel to the director of the liquid crystal material described below.
  • the horizontally aligned liquid crystal film can be produced by applying and polymerizing the horizontally aligned liquid crystal material on a substrate having a horizontally oriented film formed thereon.
  • the application or coating of B on A may mean to perform an appropriate surface treatment on A and to apply or coat B, unless otherwise specified.
  • the surface treatment include corona treatment, plasma treatment, and the like. The surface treatment can improve the adhesion between the A structure and the B structure.
  • an inorganic film or plastic film such as a glass film, a crystalline or amorphous silicon film, a quartz film, or an ITO (Indium Tin Oxide) film can be used.
  • an ITO (Indium Tin Oxide) film can be used as the base material.
  • optically isotropic base material or optically anisotropic base material such as retardation layer can be used.
  • plastic film examples include TAC (triacetyl cellulose); A cycloolefin copolymer (COP) such as a norbornene derivative; PMMA (poly (methyl methacrylate)); PC (polycarbonate); PE (polyethylene); PP (polypropylene); PVA (polyvinylalcohol); DAC (diacetyl cellulose); PAC (polyacrylate); PES (polyethersulfone); PEEK (polysteretherketone); PPS (polyphenylsulfone); PEI (polytherimide); PEN (polyethylenemaphthatlate); PET (polyehtyleneterephtalate); PI (polyimide); PSF (polysulfone); (Polyarylate) or an amorphous fluororesin or the like may be used, but the present invention is not limited thereto.
  • COP cycloolefin copolymer
  • PMMA poly (methyl methacryl
  • the substrate may have a flatness (Ra) of 10 nm or less. More specifically from 1 nm to 5 nm.
  • Ra flatness
  • the haze of the polarizing plate produced by laminating the multilayer liquid crystal film of the present invention to a polarizer and peeling the substrate may be increased to lower the optical characteristics of the polarizing plate.
  • the flatness can be measured using an optical profiler (Nanoview E-1000 manufactured by Nanosystems).
  • the haze value of the polarizer may be 0.1% to 1.0%, and may be, for example, 0.1% to 0.5%.
  • the transmittance of the polarization degree is lowered to deteriorate the optical characteristics. If the haze value is within the above range, the transmittance of the degree of polarization is not lowered, and the optical characteristics are not deteriorated.
  • the thickness of the substrate may be 40 [mu] m to 100 [mu] m.
  • the first alignment layer provided on the substrate may be a vertical alignment layer or a horizontal alignment layer, and the vertical or horizontal alignment layer may be a photo alignment layer.
  • the photo alignment layer may be formed of a first alignment composition including a photo alignment layer material.
  • the photo-alignment film material may mean a material which has been exposed to light irradiation, specifically a polarized ultraviolet ray, more specifically a liquid crystal aligning property by irradiation of linearly polarized ultraviolet rays.
  • the photo alignment layer can be formed by applying the photo alignment layer material on the substrate and irradiating polarized ultraviolet rays, specifically, linearly polarized ultraviolet rays.
  • the photo alignment layer material may include at least one of polycinnamate, polyamide, polyimide, polyvinyl alcohol, and polyamic acid, but is not limited thereto. More specifically 4-benzyloxy-cinnamate-propyl-acrylate.
  • the first orientation composition may further comprise a solvent.
  • the polymerization of the first alignment composition may be performed by irradiating ultraviolet light.
  • the ultraviolet ray irradiation is performed at room temperature or at a temperature of 40 DEG C or lower, and may be performed by irradiating ultraviolet rays for 1 second to 10 seconds at a dose of 200 mJ to 1500 mJ.
  • the thickness of the first alignment layer may be 0.1 ⁇ to 3 ⁇ .
  • the first liquid crystal film provided on the first alignment film may be a vertical or horizontal alignment liquid crystal film, and may be formed by applying a first liquid crystal composition including a vertical or horizontal alignment liquid crystal material on a first alignment film and irradiating ultraviolet rays thereto .
  • the application of the first liquid crystal composition on the first alignment layer can be performed by a conventional coating method. Examples of the coating method include, but are not limited to, roll coating, bar coating, comma coating, ink jet coating, spin coating and the like.
  • the first liquid crystal composition may further include a solvent.
  • the polymerization of the liquid crystal material contained in the first liquid crystal composition can be performed by irradiating ultraviolet rays.
  • the ultraviolet ray irradiation is performed at room temperature or 40 ° C or lower, and can be performed by irradiating ultraviolet rays for 1 second to 10 seconds at a dose of 200 mJ to 1000 mJ.
  • the second alignment layer provided on the first liquid crystal film may be a horizontal or vertical alignment layer, and includes a polyfunctional acrylate.
  • the polyfunctional acrylate may mean a material having two or more acrylate groups. Examples of the polyfunctional acrylate include PETA (pentaerythritol triacrylate), DCP-A (dimethylene tricycle decane dimethacrylate), TMPTA (trimethylolpropane triacrylate), DPHA (Dipentaerythritol penta- / hexa-acrylate)
  • the second alignment layer contains a polyfunctional acrylate
  • a polarizing plate having a low haze value can be produced, and there is no unevenness on the surface of the multilayer liquid crystal film.
  • the second alignment layer may be prepared by applying and polymerizing a second alignment composition containing polyfunctional acrylate on the first liquid crystal film.
  • the second orientation composition may further comprise a photoinitiator.
  • the second orientation composition may further comprise a solvent.
  • the second orientation composition may comprise from 2 wt% to 15 wt% of polyfunctional acrylate, from 0.2 wt% to 2 wt% of photoinitiator, and from 83 wt% to 97.5 wt% of solvent. If the content of the polyfunctional acrylate is less than 2% by weight in the second alignment film composition, the film strength may decrease and scratch may occur in the additional coating. If it is more than 15% by weight, the alignment property of the liquid crystal may be deteriorated.
  • the photoinitiator may be any photoinitiator known in the art without limitation, and examples thereof include alpha aminoketones, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones , Thioxanthones, azo compounds, peroxides, 2,3-dialkyl diaion compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, ropin dimers, onium salts, borate salts, active esters , Active rosins, inorganic complexes, coumarins and the like.
  • the application of the second orientation composition onto the first liquid crystal film can be carried out by a conventional coating method.
  • the coating method include, but are not limited to, roll coating, bar coating, comma coating, ink jet coating, spin coating and the like.
  • the polymerization of the second alignment composition can be carried out by irradiating ultraviolet rays.
  • the ultraviolet ray irradiation is performed at room temperature or at a temperature of 40 DEG C or lower, and may be performed by irradiating ultraviolet rays for 1 second to 10 seconds at a dose of 200 mJ to 1500 mJ.
  • the thickness of the second alignment layer may be 0.1 ⁇ to 5 ⁇ .
  • the second liquid crystal film may be formed by applying a second liquid crystal composition including a vertically or horizontally aligned liquid crystal material to a second alignment film and irradiating ultraviolet rays to the second liquid crystal film.
  • the application of the second liquid crystal composition onto the second alignment film can be performed by a conventional coating method. Examples of the coating method include, but are not limited to, roll coating, bar coating, comma coating, ink jet coating, spin coating and the like.
  • the second liquid crystal composition may further include a solvent.
  • the polymerization of the liquid crystal material contained in the second liquid crystal composition can be performed by irradiating ultraviolet rays.
  • the ultraviolet ray irradiation is performed at room temperature or at a temperature of 50 DEG C or lower, and can be performed by irradiating ultraviolet rays for 1 second to 10 seconds at a dose of 300 mJ to 1500 mJ.
  • the solvent used in the present invention may be toluene, xylene, butyl cellosolve, diethylene glycol dimethyl ether, and the like, but is not limited thereto.
  • the thickness of the first liquid crystal film or the second liquid crystal film can be appropriately adjusted according to the use of the multilayer liquid crystal film.
  • the first liquid crystal film and the second liquid crystal film may each have a thickness of 1 ⁇ to 10 ⁇ , and in another example, 1 ⁇ to 5 ⁇ , but the present invention is not limited thereto.
  • the multilayer liquid crystal film of the present invention may not form an adhesive between the first liquid crystal film and the second alignment film or between the second liquid crystal film and the second alignment film.
  • the multilayer liquid crystal film has an advantage that it can be made thinner than a multilayer liquid crystal film laminated via a pressure-sensitive adhesive.
  • the multilayer liquid crystal film is formed in the order of the substrate 1, the first alignment film 2, the first liquid crystal film 3, the second alignment film 4 and the second liquid crystal film 5
  • the structure of the multilayer liquid crystal film according to one example of the present invention is shown in Fig.
  • a polarizing plate includes a polarizer; The above-mentioned multilayer liquid crystal film provided on at least one surface of the polarizer, wherein the second liquid crystal film includes a multilayer liquid crystal film disposed adjacent to the polarizer.
  • the polarizer comprises a polarizer; A first alignment layer provided on at least one surface of the polarizer; A first liquid crystal film provided on the first alignment film; A second alignment layer provided on the first liquid crystal film and including a polyfunctional acrylate; And a second liquid crystal film provided on the second alignment film, wherein the first alignment film, the first liquid crystal film, the second alignment film, and the second liquid crystal film are the same as those described in the multilayer liquid crystal film The same can be applied.
  • a polarizer comprises the above-described polarizer; And a second liquid crystal film of the multi-layer liquid crystal film described above on at least one surface of the polarizer can be produced by peeling the substrate in a polarizing plate disposed adjacent to the polarizer.
  • a method of manufacturing a semiconductor device comprising: forming a first encapsulating film (2) on a substrate (1); Forming a first liquid crystal film (3) on the first alignment film (2); Coating a second alignment composition comprising polyfunctional acrylate on the first liquid crystal film (3) to form a second alignment layer (4); And forming a second liquid crystal film (5) on the second alignment film (4).
  • a method of manufacturing a liquid crystal display comprising: forming a first alignment layer (2) on a substrate (1); Forming a first liquid crystal film (3) on the first alignment film (2); Coating a second alignment composition comprising polyfunctional acrylate on the first liquid crystal film (3) to form a second alignment layer (4); Forming a second liquid crystal film (5) on the second alignment film; Joining the second liquid crystal film (5) to the polarizer (6); And a step of peeling the base material (1).
  • the description of the multilayer liquid crystal film described above is applied to the substrate 1, the first alignment film 2, the first liquid crystal film 3, the second alignment film 4 and the second liquid crystal film 5 The same can be applied.
  • FIG. 2 is a cross-sectional view of the polarizing plate of the present invention, showing the steps of forming a first alignment layer 2 on a substrate 1; Forming a first liquid crystal film (3) on the first alignment film (2); Coating a second alignment composition comprising polyfunctional acrylate on the first liquid crystal film (3) to form a second alignment layer (4); And forming a second liquid crystal film 5 on the second alignment film.
  • FIG. 3 illustrates a step of bonding the second liquid crystal film 5 to the polarizer 6. And peeling the base material (1).
  • an adhesive may not be formed between the first liquid crystal film and the second alignment film or between the second liquid crystal film and the second alignment film.
  • the multi-layer liquid crystal film thus manufactured has an advantage that it can be made thinner than a multi-layer liquid crystal film laminated via a pressure-sensitive adhesive.
  • polarizer those known in the art can be used.
  • a polarizer in which iodine or a dichroic dye is adsorbed and aligned on a polyvinyl alcohol-based (hereinafter referred to as PVA) polymer film may be used.
  • the polarizer and the second liquid crystal film may be laminated using an adhesive or a pressure-sensitive adhesive.
  • an adhesive or a pressure-sensitive adhesive those known in the art can be used.
  • a pressure sensitive adhesive (PSA) or a UV adhesive (UVA) can be used.
  • a triacetate cellulose (TAC) film a polynorbornene-based film produced by an acrylic film ring opening metathesis polymerization (ROMP)
  • a ring opening metathesis polymerization followed by hydrogenation (ROMP) polymer film obtained by re-hydrogenating the cyclic olefin based polymer, a polyester film, or a polynorbornene-based film produced by addition polymerization may be used.
  • a protective film or the like made of a transparent polymer material may be used, but is not limited thereto.
  • a liquid crystal display device including the above-mentioned polarizing plate.
  • the above-described polarizer of the polarizing plate or the multilayer liquid crystal film may be disposed close to the liquid crystal panel.
  • the substrate of the multilayer liquid crystal film may be peeled off after the above-mentioned polarizer is attached to the liquid crystal panel or before it is attached.
  • the polarizing plate may be attached to the liquid crystal panel through a pressure sensitive adhesive (PSA), and those known in the art may be used as the pressure sensitive adhesive.
  • PSA pressure sensitive adhesive
  • the liquid crystal display device may include a backlight unit.
  • the backlight unit may include an optical film such as a light source, a light guide plate, a light converging film or a brightness enhancement film, and may have a configuration known in the art.
  • the above-described polarizing plate may be used for the upper polarizer or the lower polarizer.
  • a vertically aligned liquid crystal composition (a vertically aligned liquid crystal material (RMM460, Merck) was diluted with toluene and diethylene glycol dimethyl dimethyl ether to a concentration of 23%) was applied to the surface of the photo alignment layer.
  • UV light was irradiated with 1000 mJ light To form a vertically aligned liquid crystal film having a thickness of 1.5 mu m.
  • the surface of the vertically aligned liquid crystal film was coated with a horizontal alignment film composition (5 wt% of pentaerythritol triacrylate (PETA), 0.5 wt% of photoinitiator (Irg184, manufactured by Ciba) And irradiated at a light amount of 700 mJ and polymerized to form a horizontal alignment film.
  • a horizontal alignment film composition 5 wt% of pentaerythritol triacrylate (PETA), 0.5 wt% of photoinitiator (Irg184, manufactured by Ciba) And irradiated at a light amount of 700 mJ and polymerized to form a horizontal alignment film.
  • PETA pentaerythritol triacrylate
  • Irg184 photoinitiator
  • horizontally oriented liquid crystal composition (RMM1290, Merck) was diluted with toluene and butyl cellosolve solvent to a concentration of 25% by weight, the surface of the horizontal alignment film was subjected to corona treatment and irradiated with ultraviolet rays at 700 mJ light amount To form a horizontally aligned liquid crystal film having a thickness of 1.5 mu m to prepare a multilayer liquid crystal film.
  • the total thickness of the multilayer liquid crystal film is 43 mu m.
  • a multilayer liquid crystal film was prepared in the same manner as in Example 1, except that the horizontal alignment liquid crystal film was directly formed on the vertically aligned liquid crystal film without forming the horizontal alignment film.
  • the polarizers were orthogonal to each other, and the coating properties were compared between the polarizing plates in a large area.
  • the size of the dewetting was evaluated using a polarizing microscope (NIKON, ECLIPSE LV100 POL). As a result of the evaluation of the coating property, it is confirmed that the coating property is improved because the deweting is reduced in Example 1 compared with Comparative Example 1.
  • a polarizing plate was prepared by peeling a base material (Ra, 1.5 nm) after aligning the horizontally aligned liquid crystal film of the multilayer liquid crystal film prepared in Example 1 with a polarizer (PVA) using a pressure sensitive adhesive (PSA)
  • PVA polarizer
  • PSA pressure sensitive adhesive
  • a polarizing plate was produced in the same manner as in Example 2 except that the PET substrate (Ra, 40 nm) was used instead of the PET substrate (Ra, 1.5 nm).
  • a polarizing plate was prepared in the same manner as in Example 2 except that polyvinyl alcohol was used instead of polyfunctional acrylate as the material of the second alignment film in Example 2.
  • the surface of the polarizing plate thus produced was shown in FIG. . 4 and 5, it can be confirmed that when polyvinyl alcohol is used as the material of the second alignment film, the surface of the polarizing plate is smudged.
  • the prepared multi-layer liquid crystal film was measured with a haze meter (HM-150 manufactured by Murakami cola Research Laboratory).
  • the polarizing plates prepared in the above Examples and Comparative Examples were cut into a size of 40 mm x 40 mm and the specimens were fixed in a measurement holder and then subjected to initial optical measurement using an ultraviolet ray spectrophotometer (V-7100, manufactured by JASCO)
  • V-7100 ultraviolet ray spectrophotometer
  • the physical properties, i.e., the unit permeability (Ts), the orthogonal permeability (Tc) and the polarization degree (DOP,%) were measured.
  • the cross-sectional transmittance (Ts) is a measurement value for one polarizing plate, and the orthogonal transmittance (Tc) is measured after orthogonally crossing two cut polarizing plates so that the absorption axis becomes 90 deg.
  • the polarizability (DOP,%) is calculated by the orthogonal transmittance (Tc) obtained after orthogonally crossing the two polarizers so that the absorption axis is parallel to the absorption axis and the parallel transmittance (Tp) .
  • Polarization degree [(Tp - Tc) / (Tp + Tc)] x 1/2
  • Example 2 The haze, Ts, Tc, and degree of polarization (DOP) of Example 2 and Comparative Examples 2 and 3 were measured, and the results are shown in Table 1 below.
  • Example 2 has a lower haze value than Comparative Examples 2 and 3 and has excellent optical properties of the polarizing plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

본 명세서는 기재; 상기 기재 상에 구비된 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름을 포함하는 다층 액정 필름 및 상기 다층 액정 필름을 편광자에 합지하고, 상기 기재를 박리하는 단계를 포함하는 편광판의 제조방법을 제공한다.

Description

다층 액정 필름, 편광판 및 편광판의 제조방법
본 명세서는 2018년 1월 25일 한국 특허청에 제출된 한국 특허 출원 제10-2018-0009403호의 출원일 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 다층 액정 필름, 편광판 및 편광판의 제조방법에 관한 것이다.
위상차 필름(retardation film)은 다양한 용도에 사용될 수 있다. 위상차 필름은, 예를 들면, 표시 장치의 시야각 특성을 향상시키기 위하여 액정셀의 일측 또는 양측에 배치될 수 있다. 위상차 필름은, 또한 반사형 LCD나 OLED(Organic Light Emitting Device) 등에서 반사 방지 및 시인성의 확보 등을 위하여 사용되기도 한다.
위상차 필름은 액정 물질을 통해 제조될 수 있다. 액정 물질을 위상차 필름으로 사용하기 위해서는 원하는 위상차를 나타내도록 하기 위하여 액정 물질을 적절히 배향시키는 것이 필요한 경우가 있다. 예를 들어, 배향된 액정 필름이 2장 이상 적층된 다층 액정 필름을 제조하기 위해서는 일반적으로 각각 배향된 액정 필름을 점착제를 통하여 적층하는 방법이 있다. 그러나 이러한 방법은 공정이 번거롭고 시간 및 비용이 많이 들며 최종 소자의 두께가 두꺼워지는 문제점이 있다.
점착제를 사용하지 않고 다층 액정 필름을 제조하는 방법에 관한 특허문헌 1은 러빙 처리된 기재 위에 수평 배향 액정을 코팅한 후 수평 배향 액정 필름의 경화도를 조절하여 수직 배향 액정 물질을 코팅하는 기술을 개시하고 있다. 그러나 특허문헌 1의 제조방법은 수직 배향 액정의 배향을 향상시키면 액정 필름 간의 접착력이 저하되고 액정 코팅성이 저하되는 문제점이 있으며, 액정 코팅성을 향상시키면 수직 배향 액정의 배향성이 저하되는 문제점이 있다.
(특허문헌 1) 한국 특허출원 공개 제2004-0002793호
본 출원은 박형화된 다층 액정 필름, 및 낮은 헤이즈(Haze) 값을 가지며, 박형화된 편광판을 얻을 수 있는 편광판의 제조 방법과 이와 같은 공정을 이용하여 제조된 편광판을 제공한다.
본 발명의 일 실시상태는 기재; 상기 기재 상에 구비된 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름을 포함하는 다층 액정 필름을 제공한다.
본 발명의 또 하나의 실시상태는 편광자; 및 상기 편광자의 적어도 일면에 구비된 전술한 다층 액정 필름으로서, 상기 제2 액정 필름이 상기 편광자에 인접하여 배치된 다층 액정 필름을 포함하는 편광판을 제공한다.
본 발명의 또 다른 실시상태는 편광자; 상기 편광자의 적어도 일면에 구비된 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름을 포함하는 편광판을 제공한다.
마지막으로, 본 발명의 일 실시상태는 기재 상에 제1 배향막을 형성하는 단계; 상기 제1 배향막 상에 제1 액정 필름을 형성하는 단계; 상기 제1 액정 필름 상에 다관능 아크릴레이트를 포함하는 제2 배향 조성물을 코팅하여 제2 배향막을 형성하는 단계; 및 상기 제2 배향막 상에 제2 액정 필름을 형성하는 단계를 포함하는 편광판의 제조방법을 제공한다.
본 발명의 다층 액정 필름은 액정 필름과 배향막 사이에 점착제를 형성하지 않음으로써, 액정 필름의 박형화를 구현할 뿐만 아니라, 액정의 코팅성을 향상시킬 수 있다.
또한, 본 발명은 다층 액정 필름을 편광자에 합지한 후 기재를 박리함으로써, 편광판의 박형화를 구현할 수 있으며, 상기 기재의 평탄도를 10nm 이하로 조절함으로써, 기재의 박리 후 낮은 헤이즈(Haze) 값을 갖는 편광판을 얻을 수 있다.
도 1은 본 발명의 일 실시상태에 따른 다층 액정 필름의 적층 구조를 나타낸 도이다.
도 2 및 3은 본 발명의 일 실시상태에 따른 편광판의 제조 공정 모식도이다.
도 4는 실시예 2에서 제조된 편광판의 표면을 나타낸 도이다.
도 5는 비교예 3에서 제조된 편광판의 표면을 나타낸 도이다.
1: 기재
2: 제1 배향막
3: 제1 액정 필름
4: 제2 배향막
5: 제2 액정 필름
6: 편광자
이하, 본 발명의 실시상태들에 대하여 보다 상세히 설명한다.
본 출원의 일 실시상태에 따른 다층 액정 필름은 기재; 상기 기재 상에 구비된 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름을 포함한다.
상기 다층 액정 필름에서 기재를 제외한 두께는 0.1 ㎛ 내지 5 ㎛일 수 있다.
상기 제1 배향막은 수직 배향막이고, 상기 제1 액정 필름은 수직 배향 액정 필름이며, 상기 제2 배향막은 수평 배향막이고, 상기 제2 액정 필름은 수평 배향 액정 필름일 수 있다.
또한, 상기 제1 배향막은 수평 배향막이고, 상기 제1 액정 필름은 수평 배향 액정 필름이며, 상기 제2 배향막은 수직 배향막이고, 상기 제2 액정 필름은 수직 배향 액정 필름일 수 있다.
상기 수평 배향 액정 필름은 수평 배향 액정 물질을 포함할 수 있다. 상기 수직 배향 액정 필름은 수직 배향 액정 물질을 포함할 수 있다.
본 명세서에서 액정 물질은 액정성을 나타내는 물질을 의미할 수 있다. 상기 액정 물질은 액정성을 나타낼 수 있는 부위, 예를 들면, 메소겐(mesogen) 골격을 포함할 수 있다.
본 명세서에서 수평 배향 액정 물질은 수평 배향할 수 있는 액정 물질을 의미할 수 있고, 수직 배향 액정 물질은 수직 배향할 수 있는 액정 물질을 의미할 수 있다.
본 명세서에서 수평 배향은 액정 물질의 방향자(director)가 액정 필름의 평면에 대하여 약 0° 내지 5°의 경사각을 가지는 상태로 정렬된 배향 상태를 의미할 수 있다.
본 명세서에서 수직 배향은 액정 물질의 방향자(director)가 액정 필름의 평면에 대하여 약 90° 내지 85°의 경사각을 가지는 상태로 정렬된 배향 상태를 의미할 수 있다.
본 명세서에서 방향자는 액정 물질의 광축을 의미할 수 있다. 본 명세서에서 광축은 액정 물질의 지상축(Slow axis)을 의미할 수 있다. 하나의 예로, 액정 물질이 막대(Rod) 모양인 경우 광축은 액정 물질의 장축을 의미할 수 있고, 다른 예로, 액정 물질이 원판(Discotic) 모양인 경우 원판의 법선 방향의 축을 의미할 수 있다.
본 명세서에서 수평 배향은 평면 배향, 트위스트 배향 또는 콜레스테릭 배향을 포함할 수 있다.
본 명세서에서 평면 배향은 액정 필름 내의 액정 물질이 수평 배향되고, 상기 액정 물질의 방향자가 서로 평행인 상태로 층을 이루는 배향 상태를 의미할 수 있다. 평면 배향은 균일한 수평 배향을 가진다고 칭할 수 있다.
본 명세서에서 트위스트 배향 또는 콜레스테릭 배향은 액정 필름 내의 액정 물질이 수평 배향되고, 액정 물질들의 방향자가 나선축을 따라 꼬이면서 층을 이루며 배향한 나선형의 배향 상태를 의미할 수 있다.
상기 액정 물질의 방향자가 360° 회전을 완성하기까지의 거리를 피치(Pitch)라고 할 때에 트위스트 배향은 액정 필름의 두께가 상기 피치 미만일 수 있다. 즉, 트위스트 배향을 갖는 액정 필름에서 액정 물질의 방향자는 360° 회전하고 있지 않을 수 있다. 콜레스테릭 배향을 갖는 액정 필름에서는 액정 물질의 방향자가 360° 회전하고 있을 수 있다. 콜레스테릭 배향은 액정 화합물의 방향자가 나선축을 따라 꼬이면서 층을 이루며 배향하는 나선형의 구조를 가지며, 피치에서 액정 화합물이 360° 회전하고 있을 수 있다.
상기 수평 배향 액정 물질 및/또는 상기 수직 배향 액정 물질은 중합성 액정 물질일 수 있다. 즉, 상기 수평 배향 액정 물질 및/또는 상기 수직 배향 액정 물질은 메소겐 골격 및 하나 이상의 중합성 관능기를 포함할 수 있다. 상기 중합성 액정 물질은 예를 들면, 상기 관능기를 1개, 2개, 3개 또는 4개 이상 포함할 수 있다. 상기 중합성 관능기는 알케닐기, 에폭시기, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다.
상기 수평 배향 액정 필름은 상기 수평 배향 액정 물질을 중합된 상태로 포함할 수 있다. 상기 수직 배향 액정 필름은 상기 수직 배향 액정 물질을 중합된 상태로 포함할 수 있다. 본 명세서에서 액정 물질이 중합된 상태로 포함되어 있다는 것은 상기 액정 물질이 중합되어 액정 필름 내에서 액정 고분자의 주쇄 또는 측쇄와 같은 골격을 형성하고 있는 상태를 의미할 수 있다.
상기 수평 배향 액정 물질 또는 수직 배향 액정 물질은 당 업계에서 주로 사용되는 중합성 액정 물질을 제한 없이 사용하는 것이 가능하다.
하나의 예시에서 상기 중합성 액정 물질은 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2019000838-appb-I000001
상기 화학식 1에서 A는 단일 결합, -COO- 또는 -OCO-이고, R1 내지 R10은 서로 같거나 상이하며, 각각 독립적으로 수소, 할로겐, 알킬기, 사이클로알킬기, 알콕시기, 알콕시카보닐기, 시아노기, 니트로기, -U-Q-P 또는 하기 화학식 2의 치환기이거나, R1 내지 R5 중 인접하는 2개의 치환기 또는 R6 내지 R10 중 인접하는 2개의 치환기는 서로 연결되어 -U-Q-P로 치환된 벤젠을 형성하되, R1 내지 R10 중 적어도 하나는 -U-Q-P로 또는 하기 화학식 2의 치환기이거나, R1 내지 R5 중 인접하는 2개의 치환기 또는 R6 내지 R10 중 인접하는 2개의 치환기 중 적어도 하나의 쌍은 서로 연결되어 -U-Q-P로 치환된 벤젠을 형성하고, 상기에서 U는 -O-, -COO- 또는 -OCO-이며, Q는 알킬렌기 또는 알킬리덴기이고, P는 알케닐기, 에폭시기, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다.
[화학식 2]
Figure PCTKR2019000838-appb-I000002
상기 화학식 2에서 B는 단일 결합, -COO- 또는 -OCO-이고, R11 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소, 할로겐, 알킬기, 사이클로알킬기, 알콕시기, 시아노기, 니트로기 또는 -U-Q-P이되, R11 내지 R15 중 적어도 하나는 -U-Q-P이고, 상기 U는 -O-, -COO-, 또는 -OCO-이며, Q는 알킬렌기 또는 알킬리덴기이고, P는 알케닐기, 에폭시기, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기이다.
상기 화학식 2에서 "
Figure PCTKR2019000838-appb-I000003
"는 그 부위가 모 화합물(mother compoun)에 연결되는 것을 의미할 수 있다. 예를 들어, 상기 화학식 2에서 B의 좌측에
Figure PCTKR2019000838-appb-I000004
는 B가 화학식 1의 벤젠에 직접 연결되는 것을 의미할 수 있다.
상기 단일 결합은, 해당 부위에 별도의 원자 또는 원자단이 존재하지 않는 것을 의미할 수 있다. 예를 들어, 상기 화학식 1 및 2에서 A 또는 B로 표시되는 부분에 별도의 원자가 존재하지 않는 경우를 의미한다. 보다 구체적으로, 화학식 1에서 A가 단일 결합인 경우 A의 양측에 벤젠이 직접 연결되어 비페닐(biphenyl) 구조를 형성할 수 있다.
상기 알킬렌기 또는 알킬리덴기의 탄소수는 1 내지 20일 수 있고, 일 예에 따르면 탄소수 1 내지 16일 수 있으며, 또 다른 예에 따르면 탄소수 1 내지 12, 탄소수 1 내지 8, 탄소수 1 내지 4, 탄소수 4 내지 10 또는 탄소수 6 내지 9의 알킬렌기 또는 알킬리덴기가 예시될 수 있다. 상기 알킬렌기 또는 알킬리덴기는 직쇄, 분지쇄 또는 고리형일 수 있다.
상기 알킬렌기 또는 알킬리덴기는 임의적으로 하나 이상의 치환기에 의해 치환될 수 있다.
상기 알케닐기는 탄소수 2 내지 20일 수 있고, 일 예에 따르면 탄소수 2 내지 16일 수 있으며, 또 다른 예에 따르면 탄소수 2 내지 12, 탄소수 2 내지 8, 탄소수 2 내지 4, 탄소수 4 내지 10 또는 탄소수 6 내지 9의 알케닐기가 예시될 수 있다. 상기 알케닐기는 직쇄, 분지쇄 또는 고리형일 수 있다.
상기 알케닐기의 예로는 비닐기, 알릴기, 프로페닐기, 이소프로페닐기, 부테닐기, 헥세닐기, 시클로헥세닐기 또는 옥테닐기 등이 예시될 수 있으며, 추가의 치환기에 의해 치환될 수 있다.
본 명세서에서 임의의 화합물 또는 치환기에 치환될 수 있는 치환기로는 할로겐, 히드록시기, 알킬기, 알콕시기, 알케닐기, 에폭시기, 시아노기, 카복실기, 이소시아네이트기, 머캅토기, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기, 메타크릴로일옥시기 또는 아릴기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 아릴기는 벤젠 고리를 가지거나, 2개 이상의 벤젠 고리가 축합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 또한, 아르알킬기(aralkyl group) 등을 포함하는 개념일 수 있다. 상기 아릴기의 탄소수는 6 내지 22일 수 있으며, 일 예에 따르면 6 내지 16일 수 있다.
상기 아릴기의 예로는 페닐기, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있으며, 추가의 치환기에 의해 치환될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 및 2에서 P는 각각 독립적으로 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다. 또한 다른 예시에서 상기 화학식 1 및 2의 P는 각각 독립적으로 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다.
상기 화학식 1 및 2에서 적어도 하나 이상 존재할 수 있는 -U-Q-P 또는 화학식 2는 R3, R8 및 R13 중 1 이상의 위치에 결합될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1 및 화학식 2에서 -U-Q-P 또는 화학식 2로 치환되지 않는 치환기는 수소, 할로겐, 탄소수 1 내지 4의 직쇄 또는 분지쇄의 알킬기, 탄소수 4 내지 12의 사이클로알킬기, 시아노기, 탄소수 1 내지 4의 알콕시기 또는 니트로기일 수 있다.
또 하나의 일 실시상태에 있어서, 상기 화학식 1 및 화학식 2에서 -U-Q-P 또는 화학식 2로 치환되지 않는 치환기는 염소, 탄소수 1 내지 4의 직쇄 또는 분지쇄의 알킬기, 탄소수 4 내지 12의 사이클로알킬기, 탄소수 1 내지 4의 알콕시기 또는 시아노기일 수 있다.
하나의 예시에서 수평 배향 물질로는 양 말단에서의 극성 차이가 적거나 동일한 화합물을 사용할 수 있다. 일 예에 따르면 수평 배향 액정 화합물로는 상기 화학식 1에서 R7 내지 R9 중 어느 하나 및 R2 내지 R4 중 어느 하나에 극성 차이가 적거나 또는 동일한 관능기를 가지는 화합물을 사용할 수 있다. 구체적으로, R7 내지 R9 중 어느 하나와 R2 내지 R4 중 어느 하나는 -U-Q-P 또는 화학식 2일 수 있거나, R7 내지 R9 중 인접하는 2개의 치환기 및 R2 내지 R4 중 인접하는 2개의 치환기는 서로 연결되어 -U-Q-P로 치환된 벤젠을 형성하는 화합물일 수 있다.
상기 U는 -O-, -COO- 또는 -OCO-이며, Q는 알킬렌기 또는 알킬리덴기이고, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다.
또한, 수평 배향 액정 물질로 화학식 1의 R7 내지 R9 중 어느 하나 및 R2 내지 R4 중 어느 하나가 상기와 같이 선택된 경우 그 외의 치환기는 수소 또는 탄소수 1 내지 6의 알킬기일 수 있다. 그러나 수평 배향 액정 물질은 이에 한정되는 것은 아니고 본 발명의 용도에 따라 적절하게 선택될 수 있다.
또한, 수직 배향 액정 물질로는 양 말단에서의 극성이 다른 화합물을 사용할 수 있다. 일 예에 따르면 수직 배향 액정 물질로는 상기 화학식 1에서 R7 내지 R9 중 어느 하나가 -U-Q-P 또는 화학식 2이거나, R7 내지 R9 중 인접하는 2개의 치환기는 서로 연결되어 -U-Q-P로 치환된 벤젠을 형성하는 화합물일 수 있다.
상기 U는 -O-, -COO- 또는 -OCO-이며, Q는 알킬렌기 또는 알킬리덴기이고, P는 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다.
또한, 수직 배향 액정 물질로 화학식 1의 R7 내지 R9 중 어느 하나가 상기와 같이 선택된 경우 그 외의 치환기는 수소 또는 알킬기일 수 있다. 그러나 수직 배향 액정 물질은 이에 한정되는 것은 아니고, 양 말단의 극성이 상이한 액정 화합물이라면 제한 없이 선택될 수 있다.
상기 수평 배향 액정 필름은 정상 파장 분산 특성(normal wavelength dispersion), 플랫 파장 분산 특성(flat wavelength dispersion) 또는 역 파장 분산 특성(reverse wavelength dispersion)을 가질 수 있다. 본 명세서에서 정상 파장 분산 특성은 하기 수식 1을 만족하는 특성을 의미할 수 있고, 플랫 파장 분산 특성은 하기 수식 2를 만족하는 특성을 의미할 수 있으며, 역 파장 분산 특성은 하기 수식 3을 만족하는 특성을 의미할 수 있다. 본 발명의 일 예에 따르면, 상기 수평 배향 액정 필름의 파장 분산성은 R(450)/R(550)의 값은 0.8 내지 1.2일 수 있다.
[수식 1]
R(450)/R(550) > 1
[수식 2]
R(450)/R(550) ≒ 1
[수식 3]
R(450)/R(550) < 1
상기 수식 1 내지 3에서 R(λ)는 λ nm의 파장의 광에 대한 액정 필름의 면상 위상차를 의미할 수 있다. 상기 면상 위상차는 (Nx - Ny) x d 로 계산되는 수치이다. 상기에서 Nx는 액정 필름의 x축 방향의 굴절률이고, Ny는 액정 필름의 y축 방향의 굴절률이며, d는 액정 필름의 두께이다. 상기에서 x축은 액정 필름의 면상의 어느 일 방향을 의미하고, y 축은 상기 x축에 수직한 면상 방향을 의미한다. 하나의 예시에서 상기 x축은 액정 필름의 지상축(slow axis)과 평행한 방향이고, y축은 액정 필름의 진상축(fast axis)과 평행한 방향일 수 있다. 일 예에 따르면 상기 지상축은 하기 액정 물질의 방향자와 평행할 수 있다.
상기 수평 배향 액정 필름은 수평 배향막이 형성된 기재 상에 상기 수평 배향 액정 물질을 도포하고 중합함으로써 제조할 수 있다.
본 명세서에서 A 상에 B를 도포 또는 코팅하는 것에 대하여 기술할 때 특별한 언급이 없는 한, A에 적절한 표면처리를 수행하고 B를 도포 또는 코팅하는 것을 의미할 수 있다. 상기 표면 처리로는 예를 들어, 코로나 처리, 플라즈마 처리 등을 예시할 수 있다. 상기 표면 처리는 A 구성과 B 구성의 부착력을 향상시킬 수 있다.
상기 기재로는 유리 필름, 결정성 또는 비결정성 실리콘 필름, 석영 필름 또는 ITO(Indium Tin Oxide) 필름 등의 무기계 필름 또는 플라스틱 필름 등을 사용할 수 있다. 상기 기재로는 광학적으로 등방성인 기재나, 위상차층과 같이 광학적으로 이방성인 기재 등을 사용할 수 있다.
상기 플라스틱 필름으로는 TAC(triacetyl cellulose); 노르보르넨 유도체 등의 COP(cyclo olefin copolymer); PMMA(poly(methyl methacrylate)); PC(polycarbonate); PE(polyethylene); PP(polypropylene); PVA(polyvinylalcohol); DAC(diacetyl cellulose); PAC(polyacrylate); PES(polyethersulfone); PEEK(polystheretherketon); PPS(polyphenylsulfone); PEI(polytherimide); PEN(polyethylenemaphthatlate); PET(polyehtyleneterephtalate); PI(polyimide); PSF(polysulfone); PAR(polyarylate) 또는 비정질 불소 수지 등을 포함하는 기재층을 사용할 수 있지만 이에 제한되는 것은 아니다.
본 발명의 일 실시상태에 따르면, 상기 기재는 평탄도(Ra, Roughness)가 10nm 이하일 수 있다. 보다 구체적으로 1nm 내지 5nm일 수 있다. 기재의 평탄도가 상기 범위를 만족하는 경우, 본 발명의 다층 액정 필름을 편광자에 합지하고, 기재를 박리하여 제조된 편광판의 헤이즈(Haze)가 증가하여 편광판의 광학 특성을 저하시킬 수 있다. 상기 평탄도는 옵티컬 프로파일러(Optical profiler, 나노시스템 社의 Nanoview E-1000)를 이용하여 측정할 수 있다.
상기 편광판의 헤이즈(Haze) 값은 0.1% 내지 1.0%일 수 있으며, 일 예에 따르면 0.1% 내지 0.5%일 수 있다. 헤이즈(Haze) 값이 상기 범위를 벗어나는 경우에는 편광도의 투과도를 떨어져 광학특성이 저하되며, 상기 범위를 만족하는 경우 편광도의 투과도가 떨어지지 않으므로 광학특성이 저하되지 않는 이점이 있다.
상기 기재의 두께는 40 ㎛ 내지 100 ㎛일 수 있다.
상기 기재 상에 구비되는 제1 배향막은 수직 배향막 또는 수평 배향막일 수 있으며, 상기 수직 또는 수평 배향막은 광 배향막일 수 있다. 상기 광 배향막은 광 배향막 물질을 포함하는 제1 배향 조성물로 형성될 수 있다. 본 명세서에서 광 배향막 물질은 광 조사, 구체적으로 편광 자외선, 보다 구체적으로 직선 편광 자외선의 조사에 의해 액정 배향성을 나타내게 된 물질을 의미할 수 있다. 상기 광 배향막은 상기 기재 상에 상기 광 배향막 물질을 도포하고 편광 자외선, 구체적으로 직선 편광 자외선을 조사함으로써 형성할 수 있다. 상기 광 배향막 물질로는 폴리신나메이트, 폴리아미드, 폴리이미드, 폴리비닐알코올 및 폴리아믹산 중 적어도 1 이상을 포함할 수 있으며, 이에 한정되지 않는다. 보다 구체적으로 4-벤질옥시-신나메이트-프로필-아크릴레이트일 수 있다.
상기 제1 배향 조성물은 용매를 더 포함할 수 있다.
상기 제1 배향 조성물의 중합은 자외선을 조사함으로써 수행될 수 있다. 상기 자외선 조사는 상온 또는 40 ℃ 이하의 온도에서 수행되며, 200mJ 내지 1500mJ 광량으로 1 초 내지 10초 동안 자외선을 조사함으로써 수행될 수 있다.
상기 제1 배향막의 두께는 0.1 ㎛ 내지 3 ㎛일 수 있다.
상기 제1 배향막 상에 구비되는 제1 액정 필름은 수직 또는 수평 배향 액정 필름일 수 있으며, 제1 배향막 상에 수직 또는 수평 배향 액정 물질을 포함하는 제1 액정 조성물을 도포하고 자외선을 조사함으로써 형성할 수 있다. 상기 제1 배향막 상에 제1 액정 조성물을 도포하는 것은 통상적인 코팅 방법을 통해 수행될 수 있다. 상기 코팅 방법은 롤 코팅, 바 코팅, 콤마 코팅, 잉크젯 코팅 또는 스핀 코팅 등을 예시할 수 있으며, 이에 한정되지 않는다.
상기 제1 액정 조성물은 용매를 더 포함할 수 있다.
상기 제1 액정 조성물에 포함되는 액정 물질의 중합은 자외선을 조사함으로써 수행될 수 있다. 상기 자외선 조사는 상온 또는 40 ℃ 이하의 온도에서 수행되며, 200mJ 내지 1000mJ 광량으로 1 초 내지 10초 동안 자외선을 조사함으로써 수행될 수 있다.
상기 제1 액정 필름 상에 구비되는 제2 배향막은 수평 또는 수직 배향막일 수 있으며, 다관능 아크릴레이트를 포함한다. 상기 다관능 아크릴레이트는 2개 이상의 아크릴레이트기를 가지는 물질을 의미할 수 있다. 상기 다관능 아크릴레이트로는 PETA(pentaerythritol triacrylate), DCP-A(Dimethylol tricycle decane dimethacrylate), TMPTA(Trimethylolpropane triacrylate), DPHA(Dipentaerythritol penta-/hexa-acrylate) 등을 사용할 수 있다.
상기 제2 배향막이 다관능 아크릴레이트를 포함하는 경우, 헤이즈(Haze) 값이 낮은 편광판을 제조할 수 있으며, 다층 액정 필름의 표면에 얼룩이 발생하지 않는 이점이 있다.
상기 제2 배향막은 상기 제1 액정 필름 상에 다관능 아크릴레이트를 포함하는 제2 배향 조성물을 도포하고 중합함으로써 제조될 수 있다.
상기 제2 배향 조성물은 광 개시제를 더 포함할 수 있다.
상기 제2 배향 조성물은 용매를 더 포함할 수 있다.
또한, 상기 제2 배향 조성물은 다관능 아크릴레이트 2 중량% 내지 15 중량%, 광 개시제 0.2 중량% 내지 2 중량% 및 용매 83 중량% 내지 97.5 중량%를 포함할 수 있다. 제2 배향막 조성물 내에 다관능 아크릴레이트의 함량이 2 중량% 미만일 경우, 막강도가 감소하여 추가 코팅 시 스크래치가 발생할 수 있으며, 15 중량% 보다 많을 경우에는 액정의 배향성을 떨어뜨릴 수 있다.
상기 광 개시제는 본 발명의 기술분야에 널리 알려진 광 개시제를 제한없이 사용할 수 있으며, 예를 들면 알파아미노 케톤류, 아세토페논류, 벤조인류, 벤조페논류, 포스핀옥사이드류, 케탈류, 안트라퀴논류, 싸이옥산톤류, 아조 화합물, 과산화물류, 2,3-다이알킬다이온 화합물류, 다이설파이드 화합물류, 플루오로아민 화합물류, 방향족 설포늄류, 로핀 다이머류, 오늄염류, 보레이트염류, 활성 에스터류, 활성 할로젠류, 무기 착제, 쿠마린류 등을 들 수 있다.
상기 제1 액정 필름 상에 제2 배향 조성물을 도포하는 것은 통상적인 코팅 방법을 통해 수행될 수 있다. 상기 코팅 방법은 롤 코팅, 바 코팅, 콤마 코팅, 잉크젯 코팅 또는 스핀 코팅 등을 예시할 수 있으며, 이에 한정되지 않는다.
상기 제2 배향 조성물의 중합은 자외선을 조사함으로써 수행될 수 있다. 상기 자외선 조사는 상온 또는 40 ℃ 이하의 온도에서 수행되며, 200mJ 내지 1500mJ 광량으로 1 초 내지 10초 동안 자외선을 조사함으로써 수행될 수 있다.
상기 제2 배향막의 두께는 0.1㎛ 내지 5㎛일 수 있다.
상기 제2 액정 필름은 제2 배향막에 수직 또는 수평 배향 액정 물질을 포함하는 제2 액정 조성물을 도포하고 자외선을 조사하여 중합함으로써 형성할 수 있다. 상기 제2 배향막 상에 제2 액정 조성물을 도포하는 것은 통상적인 코팅 방법을 통해 수행될 수 있다. 상기 코팅 방법은 롤 코팅, 바 코팅, 콤마 코팅, 잉크젯 코팅 또는 스핀 코팅 등을 예시할 수 있으며, 이에 한정되지 않는다.
상기 제2 액정 조성물은 용매를 더 포함할 수 있다.
상기 제2 액정 조성물에 포함되는 액정 물질의 중합은 자외선을 조사함으로써 수행될 수 있다. 상기 자외선 조사는 상온 또는 50 ℃ 이하의 온도에서 수행되며, 300mJ 내지 1500mJ 광량으로 1 초 내지 10초 동안 자외선을 조사함으로써 수행될 수 있다.
본 발명에서 사용되는 용매는 톨루엔, 자일렌, 부틸셀로솔브, 다이에틸렌글라이콜다이메틸이서 등일 수 있으나, 이에 한정되지 않는다.
상기 제1 액정 필름 또는 제2 액정 필름의 두께는 다층 액정 필름의 용도에 따라 적절히 조절할 수 있다. 일 실시예에 따르면, 상기 제1 액정 필름 및 제2 액정 필름의 두께는 각각 1㎛ 내지 10㎛, 또 다른 예에 따르면, 1㎛ 내지 5㎛의 두께를 가질 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다층 액정 필름은 제1 액정 필름과 제2 배향막 사이 또는 제2 액정 필름과 제2 배향막 사이에 점착제를 형성하지 않을 수 있다. 상기 다층 액정 필름은 점착제를 매개로 적층된 다층 액정 필름에 비해 두께를 박형화할 수 있다는 장점이 있다.
본 발명의 일 실시상태에 따르면, 상기 다층 액정 필름은 기재(1), 제1 배향막(2), 제1 액정 필름(3), 제2 배향막(4) 및 제2 액정 필름(5) 순으로 적층될 수 있으며, 본 발명의 일 예에 따른 다층 액정 필름의 구조를 도 1에 도시하였다.
본 발명의 일 실시상태에 따른 편광판은 편광자; 상기 편광자의 적어도 일면에 구비된 전술한 다층 액정 필름으로서, 상기 제2 액정 필름이 편광자에 인접하게 배치된 다층 액정 필름을 포함한다.
또 다른 일 실시상태에 따른 편광판은 편광자; 상기 편광자의 적어도 일면에 구비된 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름을 포함하며, 상기 제1 배향막, 제1 액정 필름, 제2 배향막 및 제2 액정 필름은 특별한 언급이 없는 한 상기 다층 액정 필름에서 기술한 내용이 동일하게 적용될 수 있다. 이와 같은 편광판은 전술한 편광자; 상기 편광자의 적어도 일면에 전술한 다층 액정 필름의 제2 액정 필름이 편광자에 인접하게 배치된 편광판에서 기재를 박리함으로써 제조될 수 있다.
본 발명의 일 실시상태에 따르면, 기재(1) 상에 제1 배항막(2)을 형성하는 단계; 상기 제1 배향막(2) 상에 제1 액정 필름(3)을 형성하는 단계; 상기 제1 액정 필름(3) 상에 다관능 아크릴레이트를 포함하는 제2 배향 조성물을 코팅하여 제2 배향막(4)을 형성하는 단계; 및 상기 제2 배향막(4) 상에 제2 액정 필름(5)을 형성하는 단계를 포함하는 편광판의 제조방법을 제공한다.
또 하나의 일 실시상태에 따르면, 상기 기재(1) 상에 제1 배향막(2)을 형성하는 단계; 상기 제1 배향막(2) 상에 제1 액정 필름(3)을 형성하는 단계; 상기 제1 액정 필름(3) 상에 다관능 아크릴레이트를 포함하는 제2 배향 조성물을 코팅하여 제2 배향막(4)을 형성하는 단계; 상기 제2 배향막 상에 제2 액정 필름(5)을 형성하는 단계; 상기 제2 액정 필름(5)을 편광자(6)에 합지하는 단계; 및 상기 기재(1)를 박리하는 단계를 포함하는 편광판의 제조방법을 제공한다. 상기 기재(1), 제1 배향막(2), 제1 액정 필름(3), 제2 배향막(4) 및 제2 액정 필름(5)은 특별한 언급이 없는 한 상기 다층 액정 필름에서 기술한 내용이 동일하게 적용될 수 있다.
상기 편광판의 제조방법에서 기재(1)를 박리하는 단계를 포함함으로써, 편광판의 박형화를 구현할 수 있다.
본 발명의 편광판의 제조방법을 도 2 및 도 3에 도시하였으며, 도 2는 기재(1) 상에 제1 배향막(2)을 형성하는 단계; 상기 제1 배향막(2) 상에 제1 액정 필름(3)을 형성하는 단계; 상기 제1 액정 필름(3) 상에 다관능 아크릴레이트를 포함하는 제2 배향 조성물을 코팅하여 제2 배향막(4)을 형성하는 단계; 및 상기 제2 배향막 상에 제2 액정 필름(5)을 형성하는 단계를 도시하였으며, 도 3은 상기 제2 액정 필름(5)을 편광자(6)에 합지하는 단계; 및 상기 기재(1)를 박리하는 단계를 도시하였다.
본 발명의 편광판 제조방법에서 제1 액정 필름과 제2 배향막 사이 또는 제2 액정 필름과 제2 배향막 사이에 점착제를 형성하지 않을 수 있다. 이렇게 제조된 다층 액정 필름은 점착제를 매개로 적층된 다층 액정 필름에 비해 두께를 박형화할 수 있다는 장점이 있다.
상기 편광자로는 당 기술분야에 알려져 있는 것들이 사용될 수 있다. 예컨대 폴리비닐알코올계(이하, PVA라 함) 폴리머 필름에 요오드 또는 이색성 염료를 흡착 배향시킨 편광자가 사용될 수 있다.
상기 편광자와 상기 제2 액정 필름은 접착 또는 점착제를 이용하여 합지될 수 있다. 상기 접착 또는 점착제로는 당 기술분야에 알려진 것들이 사용될 수 있다. 예를 들면, 감압접착제(PSA) 또는 UV 접착제(UVA)를 사용할 수 있다.
상기 편광자의 일면에 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름 순으로 적층된 다층 액정 필름이 형성되는 경우, 편광자의 타면에 추가의 필름이 구비될 수 있다.
상기 추가의 필름으로는 당 기술분야에 알려진 것을 사용할 수 있으며, 예컨대, 트리아세테이트 셀룰로오스(TAC) 필름, 아크릴계 필름 개환 상호교환 중합(ring opening metathesis polymerization; ROMP)으로 제조된 폴리노보넨계 필름, 개환 중합된 고리형 올레핀계 중합체를 다시 수소 첨가하여 얻어진 ROMP(ring opening metathesis polymerization followed by hydrogenation) 중합체 필름, 폴리에스터 필름, 또는 부가중합(addition polymerization)으로 제조된 폴리노보넨계 필름 등이 사용될 수 있다. 이외에도 투명한 고분자 재료로 제조된 필름이 보호 필름 등이 사용될 수 있으나, 이들에만 한정되는 것은 아니다.
본 발명의 일 실시상태에 따르면, 전술한 편광판을 포함하는 액정 디스플레이 장치를 제공한다. 액정 디스플레이 장치는 전술한 편광판의 편광자 또는 다층 액정 필름이 액정 패널에 가깝게 배치될 수 있다. 다층 액정 필름의 기재는 전술한 편광자가 액정 패널에 부착된 후, 또는 부착되기 전에 박리될 수 있다. 상기 편광판은 액정 패널에 감압접착제(PSA)를 통하여 부착될 수 있으며, 상기 감압접착제로는 당 기술분야에 알려진 것들이 사용될 수 있다.
상기 액정 디스플레이 장치는 백라이트 유닛을 포함할 수 있다. 백라이트 유닛은 광원, 도광판, 집광필름이나 휘도 향상 필름과 같은 광학 필름을 포함할 수 있으며, 당 기술분야에 알려진 구성을 가질 수 있다. 또한, 상기 액정 디스플레이 장치는 전술한 편광판을 상부 편광판 또는 하부 편광판에 사용될 수 있다.
이하, 실시예를 통하여 본 출원의 실시상태들을 예시한다. 이하의 실시예는 본 출원 발명을 예시하기 위한 것이며, 실시예들에 의하여 본 발명이 한정될 것을 의도한 것은 아니다.
<실험예 1>
실시예 1.
PET(polyehtyleneterephtalate) 기재 (Ra, 1.5nm)의 표면에 코로나 처리 후 광 배향막 물질(4-benzyloxy-cinnamate-propyl-acrylate)을 도포하고 편광 자외선을 조사함으로써 광 배향막을 형성하였다. 상기 광 배향막의 표면에 코로나 처리 후 수직 배향 액정 조성물(수직 배향 액정 물질(RMM460, Merck 社)를 톨루엔과 다이에틸렌글라이콜다이메틸이서 용매에 23% 농도로 희석)을 도포하고 자외선은 1000mJ 광량으로 조사함으로써 두께 1.5㎛의 수직 배향 액정 필름을 형성하였다. 상기 수직 배향 액정 필름의 표면에 코로나 처리 후 수평 배향막 조성물(다관능 아크릴레이트 PETA(pentaerythritol triacrylate) 5 중량%, 광 개시제 0.5 중량%(Irg184, Ciba 社) 및 잔부의 용매 포함)을 도포하고 자외선을 700mJ 광량으로 조사하여 중합함으로써 수평 배향막을 형성하였다. 상기 수평 배향막의 표면에 코로나 처리 후 수평 배향 액정 조성물(수평 배형 액정 물질(RMM1290, Merck 社)을 톨루엔과 부틸셀로솔브 용매에 25 중량% 농도로 희석)을 도포하여 자외선을 700 mJ 광량으로 조사하여 중합함으로써 두께 1.5㎛의 수평 배향 액정 필름을 형성하여 다층 액정 필름을 제조하였다. 다층 액정 필름의 총 두께는 43㎛이다.
비교예 1.
상기 실시예 1에 있어서 수평 배향막을 형성하지 않고 수직 배향 액정 필름 상에 수평 배향 액정 필름을 바로 형성한 것을 제외하고는 실시예 1과 동일한 방식으로 다층 액정 필름을 제조하였다.
코팅성 평가
편광판을 서로 직교 후 편광판 사이에서 대면적에서 코팅성을 비교하였고, 편광 현미경(NIKON 사, ECLIPSE LV100 POL)을 이용하여 디웨팅(dewetting)의 크기를 평가하였다. 코팅성 평가 결과 실시예 1이 비교예 1에 비하여 디웨팅이 감소되므로 코팅성이 향상됨을 확인할 수 있다.
<실험예 2>
실시예 2
상기 실시예 1에서 제조된 다층 액정 필름의 수평 배향 액정 필름을 편광자(PVA)에 감압접착제(PSA)를 이용하여 합지시킨 후, 기재(Ra, 1.5nm)를 박리하여 편광판을 제조하였으며, 제조된 편광판의 표면을 도 4에 나타내었다.
비교예 2
상기 실시예 2에 있어서, PET 기재(Ra, 1.5nm) 대신 PET 기재(Ra, 40nm)를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방식으로 편광판을 제조하였다.
비교예 3
상기 실시예 2에 있어서, 제2 배향막의 재료로 다관능 아크릴레이트 대신 폴리비닐알코올을 사용한 것을 제외하고는 상기 실시예 2와 동일한 방식으로 편광판을 제조하였으며, 제조된 편광판의 표면을 도 5에 나타내었다. 도 4 및 도 5로부터 제2 배향막의 재료로 폴리비닐알코올을 사용하는 경우, 편광판의 표면에 얼룩이 발생하는 것을 확인할 수 있다.
헤이즈(Haze) 값의 측정
상기 제조된 다층 액정필름을 헤이즈 미터기(Haze meter, Murakami coloe Research Laboratory社 HM-150)로 측정하였다.
Ts(%) 측정, Tc(%) 측정, DOP(%) 측정
상기 실시예 및 비교예에 의해 제조된 편광판을 40㎜×40㎜의 크기로 잘라, 이 시편을 측정홀더에 고정시킨 후 자외가시광선분광계(V-7100, JASCO사 제조)를 이용하여 초기광학 물성, 즉, 단체 투과도(Ts), 직교 투과도(Tc) 및 편광도(DOP, %)를 측정하였다. 상기, 단체 투과도(Ts)는 편광판 한 장에 대한 측정값이고, 직교 투과도(Tc)는 재단된 편광판 두 장을 흡수축이 90°가 되도록 서로 직교시킨 후 측정하여 표 1에 표시하였다. 편광도(DOP, %)는 두 장의 편광판을 흡수축이 평행한 상태로 배치하였을 경우 얻어지는 평행 투과율(Tp)과 흡수축이 90°가 되도록 서로 직교시킨 후 얻어지는 직교 투과율(Tc)에 의해 하기 수학식으로 정의된다.
편광도 = [(Tp - Tc) / (Tp + Tc)] x 1/2
상기 실시예 2와 비교예 2 및 3의 헤이즈, Ts, Tc 및 편광도(DOP: degree of polarization)를 측정하여 그 결과를 하기 표 1에 나타내었다.
헤이즈(Haze, %) Ts(%) Tc(%) DOP(%)
실시예 2 0.3 42.29 0.0019 99.9947
비교예 2 2.7 41.78 0.0029 99.9916
비교예 3 3.4 40.95 0.0043 99.9870
상기 표 1로부터, 본원 실시예 2가 비교예 2 및 3보다 헤이즈 값이 낮고, 편광판의 광학 물성이 우수한 것을 확인할 수 있다.

Claims (14)

  1. 기재; 상기 기재 상에 구비된 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름을 포함하는 다층 액정 필름.
  2. 청구항 1에 있어서,
    상기 제1 배향막은 수직 배향막이고, 상기 제1 액정 필름은 수직 배향 액정 필름이며, 상기 제2 배향막은 수평 배향막이고, 상기 제2 액정 필름은 수평 배향 액정 필름인 다층 액정 필름.
  3. 청구항 1에 있어서,
    상기 제1 배향막은 수평 배향막이고, 제1 액정 필름은 수평 배향 액정 필름이며, 제2 배향막은 수직 배향막이고, 제2 액정 필름은 수직 배향 액정 필름인 다층 액정 필름.
  4. 청구항 1에 있어서,
    상기 기재는 평탄도가 10nm 이하인 다층 액정 필름.
  5. 편광자; 및 상기 편광자의 적어도 일면에 구비된 청구항 1 내지 4 중 어느 한 항의 다층 액정 필름으로서, 상기 제2 액정 필름이 상기 편광자에 인접하여 배치된 다층 액정 필름을 포함하는 편광판.
  6. 편광자; 상기 편광자의 적어도 일면에 구비된 제1 배향막; 상기 제1 배향막 상에 구비된 제1 액정 필름; 상기 제1 액정 필름 상에 구비되고, 다관능 아크릴레이트를 포함하는 제2 배향막; 및 상기 제2 배향막 상에 구비되는 제2 액정 필름을 포함하는 편광판.
  7. 기재 상에 제1 배향막을 형성하는 단계;
    상기 제1 배향막 상에 제1 액정 필름을 형성하는 단계;
    상기 제1 액정 필름 상에 다관능 아크릴레이트를 포함하는 제2 배향 조성물을 코팅하여 제2 배향막을 형성하는 단계; 및
    상기 제2 배향막 상에 제2 액정 필름을 형성하는 단계를 포함하는 편광판의 제조방법.
  8. 청구항 7에 있어서,
    상기 제2 배향막 상에 제2 액정 필름을 형성하는 단계 후에 상기 제2 액정 필름을 편광자에 합지하는 단계; 및
    상기 기재를 박리하는 단계를 더 포함하는 편광판의 제조방법.
  9. 청구항 7에 있어서,
    상기 기재는 평탄도가 10nm 이하인 편광판의 제조방법.
  10. 청구항 7에 있어서,
    상기 제2 배향 조성물은 광 개시제를 더 포함하는 편광판의 제조방법.
  11. 청구항 7에 있어서,
    상기 제2 배향 조성물은 상기 다관능 아크릴레이트 2 중량% 내지 15 중량%, 광 개시제 0.2 중량% 내지 2 중량% 및 용매 83 중량% 내지 97.5 중량%를 포함하는 편광판의 제조방법.
  12. 청구항 7에 있어서,
    상기 제1 배향막은 수직 배향막이고, 제1 액정 필름은 수직 배향 액정 필름이며, 제2 배향막은 수평 배향막이고, 제2 액정 필름은 수평 배향 액정 필름인 편광판의 제조방법.
  13. 청구항 7에 있어서,
    상기 제1 배향막은 수평 배향막이고, 제1 액정 필름은 수평 배향 액정 필름이며, 제2 배향막은 수직 배향막이고, 제2 액정 필름은 수직 배향 액정 필름인 편광판의 제조방법.
  14. 청구항 7에 있어서,
    상기 제1 액정 필름과 제2 배향막 사이 또는 제2 액정 필름과 제2 배향막 사이에 점착제를 형성하지 않는 편광판의 제조방법.
PCT/KR2019/000838 2018-01-25 2019-01-21 다층 액정 필름, 편광판 및 편광판의 제조방법 WO2019146977A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020523707A JP6995426B2 (ja) 2018-01-25 2019-01-21 多層液晶フィルム、偏光板および偏光板の製造方法
US16/756,068 US11347109B2 (en) 2018-01-25 2019-01-21 Multilayer liquid crystal film, polarizing plate and method for preparing polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0009403 2018-01-25
KR1020180009403A KR102383293B1 (ko) 2018-01-25 2018-01-25 다층 액정 필름, 편광판 및 편광판의 제조방법

Publications (1)

Publication Number Publication Date
WO2019146977A1 true WO2019146977A1 (ko) 2019-08-01

Family

ID=67394704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000838 WO2019146977A1 (ko) 2018-01-25 2019-01-21 다층 액정 필름, 편광판 및 편광판의 제조방법

Country Status (5)

Country Link
US (1) US11347109B2 (ko)
JP (1) JP6995426B2 (ko)
KR (1) KR102383293B1 (ko)
TW (1) TWI778217B (ko)
WO (1) WO2019146977A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059518A1 (ja) * 2020-09-15 2022-03-24 住友化学株式会社 偏光板の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280864B1 (ko) * 2018-01-25 2021-07-22 주식회사 엘지화학 다층 액정 필름, 편광판 및 편광판의 제조방법
CN111367127B (zh) * 2020-03-16 2023-03-28 Tcl华星光电技术有限公司 一种液晶膜结构及其制备方法、液晶显示面板
WO2022138555A1 (ja) * 2020-12-21 2022-06-30 富士フイルム株式会社 光吸収異方性フィルム、視角制御システムおよび画像表示装置
CN114335263A (zh) * 2021-12-30 2022-04-12 深圳市思坦科技有限公司 Led器件及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467039B2 (ja) * 2003-07-25 2010-05-26 日東電工株式会社 液晶フィルム、液晶配向フィルムの製造方法および画像表示装置
KR20130011195A (ko) * 2011-07-20 2013-01-30 안철흥 광학필름, 그의 제조방법, 그를 포함하는 입체안경 및 입체표시장치
KR20150144590A (ko) * 2014-06-17 2015-12-28 주식회사 엘지화학 고리형 올레핀 화합물, 광반응성 중합체 및 이를 포함하는 배향막
JP2017058659A (ja) * 2015-09-16 2017-03-23 三星電子株式会社Samsung Electronics Co.,Ltd. 光学フィルム、その製造方法および表示装置
KR20170084638A (ko) * 2016-01-12 2017-07-20 주식회사 엘지화학 액정 필름의 제조 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262727A (ja) * 2002-03-11 2003-09-19 Fuji Photo Film Co Ltd 位相差板および円偏光板
EP1376163B1 (en) 2002-06-27 2011-08-17 Merck Patent GmbH Process of preparing films comprising polymerised liquid crystal material
JP4236001B2 (ja) 2003-10-24 2009-03-11 日東電工株式会社 垂直配向膜、その製造方法、液晶配向膜、光学フィルムおよび画像表示装置
KR100732325B1 (ko) * 2005-02-16 2007-06-25 주식회사 엘지화학 수직 배향 액정 필름을 포함하는 위상차 필름 및 그제조방법
US7671945B2 (en) * 2005-09-30 2010-03-02 Teledyne Scientific & Imaging, Llc UV curable alignment material for fabrication of monolithic compensators for liquid crystal displays
CN101918513B (zh) 2008-01-18 2013-05-08 Lg化学株式会社 液晶取向层组合物、使用该组合物制备液晶取向层的方法、以及包含该液晶取向层的光学膜
KR101042214B1 (ko) * 2009-04-09 2011-06-20 주식회사 엘지화학 배향막 조성물, 이로 제조된 배향막, 배향막 제조방법, 이를 포함하는 광학필름 및 광학필름을 포함하는 디스플레이 장치
KR101690553B1 (ko) * 2010-07-26 2016-12-28 삼성전자주식회사 무선통신시스템에서 소형 기지국의 식별정보를 제공하기 위한 장치 및 방법
KR101676894B1 (ko) 2011-01-25 2016-11-29 주식회사 엘지화학 액정 필름
US9151869B2 (en) 2011-01-25 2015-10-06 Lg Chem, Ltd. Liquid crystal film
KR101790489B1 (ko) * 2011-08-17 2017-10-26 엘지디스플레이 주식회사 액정표시장치의 제조방법
JP2014071190A (ja) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd 光学フィルム用転写体、光学フィルム及び画像表示装置
US9223177B2 (en) 2012-11-29 2015-12-29 Lg Chem, Ltd. Acrylate compound having photoreactive group, photoreactive acrylate polymer and photo-alignment layer comprising the same
KR101632060B1 (ko) * 2012-11-29 2016-06-20 주식회사 엘지화학 광반응기를 갖는 아크릴레이트계 화합물, 광반응성 아크릴레이트계 중합체 및 이를 포함하는 광배향막
WO2014189040A1 (ja) 2013-05-21 2014-11-27 富士フイルム株式会社 偏光板およびその製造方法ならびに転写材料
JP2015043073A (ja) * 2013-07-25 2015-03-05 富士フイルム株式会社 位相差フィルム、偏光板および液晶表示装置
WO2015046399A1 (ja) 2013-09-27 2015-04-02 富士フイルム株式会社 偏光板の製造方法
CN104820255B (zh) 2014-01-31 2020-04-07 住友化学株式会社 光学各向异性片材
JP6483486B2 (ja) 2015-03-16 2019-03-13 住友化学株式会社 偏光板及び円偏光板
US10216041B2 (en) 2015-09-16 2019-02-26 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof and display device
JP2017090585A (ja) 2015-11-06 2017-05-25 日本電信電話株式会社 広帯域波長板およびその作製方法
JP6753198B2 (ja) 2015-11-13 2020-09-09 大日本印刷株式会社 光学フィルム
KR102072883B1 (ko) 2016-06-17 2020-02-03 주식회사 엘지화학 광학 필름, 편광판 및 액정 디스플레이 장치 및 이들의 제조방법
US11169417B2 (en) * 2016-08-31 2021-11-09 Lg Chem, Ltd. Method for manufacturing of multi-layer liquid crystal film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467039B2 (ja) * 2003-07-25 2010-05-26 日東電工株式会社 液晶フィルム、液晶配向フィルムの製造方法および画像表示装置
KR20130011195A (ko) * 2011-07-20 2013-01-30 안철흥 광학필름, 그의 제조방법, 그를 포함하는 입체안경 및 입체표시장치
KR20150144590A (ko) * 2014-06-17 2015-12-28 주식회사 엘지화학 고리형 올레핀 화합물, 광반응성 중합체 및 이를 포함하는 배향막
JP2017058659A (ja) * 2015-09-16 2017-03-23 三星電子株式会社Samsung Electronics Co.,Ltd. 光学フィルム、その製造方法および表示装置
KR20170084638A (ko) * 2016-01-12 2017-07-20 주식회사 엘지화학 액정 필름의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059518A1 (ja) * 2020-09-15 2022-03-24 住友化学株式会社 偏光板の製造方法

Also Published As

Publication number Publication date
JP2021500632A (ja) 2021-01-07
TWI778217B (zh) 2022-09-21
US11347109B2 (en) 2022-05-31
TW201937214A (zh) 2019-09-16
KR102383293B1 (ko) 2022-04-05
JP6995426B2 (ja) 2022-01-14
KR20190090560A (ko) 2019-08-02
US20200319517A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2019146977A1 (ko) 다층 액정 필름, 편광판 및 편광판의 제조방법
WO2016175580A1 (ko) 명암비 개선 광학필름, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치
WO2019124961A1 (ko) 투과도 가변 필름 및 이의 용도
WO2017061768A1 (ko) 광학 필름
WO2018080017A1 (ko) 액정표시장치용 시인측 편광판 및 이를 포함하는 액정표시장치
WO2018043979A1 (ko) 다층 액정 필름의 제조 방법
WO2013115628A1 (ko) 액정 조성물
WO2018199614A1 (ko) 투과율 가변 장치
WO2019240414A1 (ko) 광학 디바이스
WO2018212528A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2019235809A1 (ko) 적층체 및 이를 포함하는 액정 표시 장치
WO2019083160A1 (ko) 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2019235807A1 (ko) 액정 표시 장치
WO2020036322A1 (ko) 광학 디바이스
WO2020145672A1 (ko) 광학 이방성 필름의 제조 방법
WO2022010185A1 (ko) 광학 디바이스
WO2016052813A1 (ko) 광학 필름 및 그 제조방법
WO2019146994A1 (ko) 다층 액정 필름, 편광판 및 편광판의 제조방법
WO2020171458A1 (ko) 편광판의 제조 방법
WO2019107709A1 (ko) 광학 디바이스
WO2014081260A1 (ko) 광학 필름
WO2019112163A1 (ko) 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2024043682A1 (ko) 편광판 및 광학표시장치
WO2023055021A1 (ko) 편광판의 제조 방법
WO2023191547A1 (ko) 광학 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743507

Country of ref document: EP

Kind code of ref document: A1