WO2022010185A1 - 광학 디바이스 - Google Patents

광학 디바이스 Download PDF

Info

Publication number
WO2022010185A1
WO2022010185A1 PCT/KR2021/008393 KR2021008393W WO2022010185A1 WO 2022010185 A1 WO2022010185 A1 WO 2022010185A1 KR 2021008393 W KR2021008393 W KR 2021008393W WO 2022010185 A1 WO2022010185 A1 WO 2022010185A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
film
optical device
polarizer
Prior art date
Application number
PCT/KR2021/008393
Other languages
English (en)
French (fr)
Inventor
김정운
오동현
유정선
김진홍
김민준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200084734A external-priority patent/KR20220006830A/ko
Priority claimed from KR1020200142095A external-priority patent/KR20220057151A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180042060.8A priority Critical patent/CN115769136A/zh
Priority to JP2022575240A priority patent/JP2023528511A/ja
Priority to US18/007,820 priority patent/US20230229050A1/en
Priority to EP21838025.1A priority patent/EP4180864A4/en
Publication of WO2022010185A1 publication Critical patent/WO2022010185A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • This application relates to an optical device.
  • the first base layer (or referred to as 'upper base layer') and the second base layer (or referred to as 'lower base layer') It is important to maintain the cell gap and to provide adhesion between the first and second substrate layers.
  • Non-Patent Document 1 discloses a technique for forming an organic film pattern in the form of a column or wall having a cell gap height on one substrate layer and fixing it to the opposite substrate layer using an adhesive.
  • the adhesive must be located only on the column or wall surface, and the technology of micro-stamping the adhesive on the column surface or wall has a high process difficulty, it is difficult to control the thickness and area of the adhesive, and when the upper and lower substrate layers are joined, the adhesive is highly likely to be pushed out, and there is a risk that the adhesive may be contaminated into the alignment layer or liquid crystal.
  • Non-Patent Literature “Tight Bonding of Two Plastic Substrates for Flexible LCDs” SID Symposium Digest, 38, pp. 653-656 (2007)
  • a spacer and an alignment film are formed on the second base layer, and an adhesive having both liquid crystal orientation and adhesion to the first base layer After forming the layers, cementation may be considered.
  • this structure is vulnerable to external pressure due to the very low modulus of the pressure-sensitive adhesive layer, so it is difficult to obtain good quality in a high-temperature and high-pressure autoclave process. Specifically, when the structural stability of the liquid crystal cell is not ensured in the autoclave process, cell gap collapse or liquid crystal flow/crowding failure occurs, which causes a decrease in the electro-optical properties and appearance uniformity of the liquid crystal cell.
  • the purpose of the present application is to ensure that the cell gap of the liquid crystal cell is properly maintained, the first base layer and the second base layer are maintained with excellent adhesion, and defects such as pressing or rolling are minimized to ensure structural stability and good quality uniformity It is to provide an optical device that can do this.
  • the corresponding physical property is a physical property measured at room temperature.
  • ambient temperature is the natural temperature, whether heated or not reduced, usually at a temperature in the range of about 10°C to 30°C, or on the order of about 23°C or about 25°C.
  • the unit of temperature is °C.
  • atmospheric pressure refers to a natural pressure that is not pressurized or depressurized, and usually about 1 atmosphere is referred to as atmospheric pressure.
  • the optical device includes a liquid crystal element film.
  • the liquid crystal element film 10 included in the optical device includes a first base layer (or, referred to as an 'upper base layer') 11a, and a second base layer disposed opposite to the first base layer. (or, referred to as a 'lower substrate layer') 11b, and the liquid crystal layer 16 positioned between the first and second substrate layers.
  • a first base layer or, referred to as an 'upper base layer'
  • a second base layer disposed opposite to the first base layer.
  • the liquid crystal layer 16 positioned between the first and second substrate layers.
  • first base layer 11a and the second base layer 11b for example, an inorganic film or a plastic film made of glass or the like may be used, respectively.
  • plastic film polyethylene-naphthalate (PEN), polyimide (PI), cyclo-olefin polymer (COP), tri-acetyl-cellulose (TAC), polyethyleneterephtalate (PET), or polycarbonate (PC) film may be used.
  • PEN polyethylene-naphthalate
  • PI polyimide
  • COP cyclo-olefin polymer
  • TAC tri-acetyl-cellulose
  • PET polyethyleneterephtalate
  • PC polycarbonate
  • Gold silver
  • a coating layer of a silicon compound such as silicon dioxide or silicon monoxide or a functional layer such as an antireflection layer may be present.
  • each of the first and second base layers may have a thickness of about 10 ⁇ m to about 1,000 ⁇ m.
  • the base layer may have a thickness of about 20 ⁇ m or more, 40 ⁇ m or more, 60 ⁇ m or more, 80 ⁇ m or more, 100 ⁇ m or more, 120 ⁇ m or more, 140 ⁇ m or more, 160 ⁇ m or more, or about 180 ⁇ m or more, It may be about 900 ⁇ m or less, 800 ⁇ m or less, 700 ⁇ m or less, 600 ⁇ m or less, 500 ⁇ m or less, or about 400 ⁇ m or less.
  • the liquid crystal device film includes a liquid crystal layer including at least a liquid crystal compound.
  • the liquid crystal compound a liquid crystal compound whose alignment direction can be changed by application of an external action may be used.
  • the term “external action” may mean any external factor that may affect the behavior of a material included in the liquid crystal layer, for example, an external voltage. Accordingly, the state in which there is no external action may mean a state in which there is no application of an external voltage or the like.
  • the type and physical properties of the liquid crystal compound may be appropriately selected in consideration of the purpose of the present application.
  • the liquid crystal compound may be a nematic liquid crystal or a smectic liquid crystal.
  • Nematic liquid crystal may refer to a liquid crystal in which rod-shaped liquid crystal molecules are arranged in parallel in the long axis direction of the liquid crystal molecules although there is no regularity in their positions. It may refer to liquid crystals that form a structure and are arranged in parallel with regularity in the major axis direction.
  • the liquid crystal compound may be a nematic liquid crystal compound.
  • the nematic liquid crystal compound has, for example, a clearing point of about 40°C or higher, 50°C or higher, 60°C or higher, 70°C or higher, 80°C or higher, 90°C or higher, 100°C or higher, or about 110°C or higher.
  • a phase transition point within the above range that is, a phase transition point from a nematic phase to an isotropic phase may be selected.
  • the clearing point or the phase transition point may be about 160 °C or less, 150 °C or less, or about 140 °C or less.
  • the liquid crystal compound may be a non-reactive liquid crystal compound.
  • the non-reactive liquid crystal compound may mean a liquid crystal compound having no polymerizable group.
  • the polymerizable group include an acryloyl group, an acryloyloxy group, a methacryloyl group, a methacryloyloxy group, a carboxyl group, a hydroxy group, a vinyl group, or an epoxy group, but is not limited thereto.
  • a functional group may be included.
  • the liquid crystal compound may have a positive or negative dielectric anisotropy.
  • the absolute value of the dielectric anisotropy of the liquid crystal compound may be appropriately selected in consideration of the purpose of the present application.
  • the term “dielectric anisotropy ( ⁇ ”) may mean the difference ( ⁇ //- ⁇ ) between the horizontal dielectric constant ( ⁇ //) and the vertical dielectric constant ( ⁇ ) of the liquid crystal.
  • the term horizontal dielectric constant ( ⁇ //) /) denotes a dielectric constant value measured along the direction of the electric field in a state in which a voltage is applied so that the direction of the electric field by the applied voltage and the direction of the liquid crystal compound is substantially horizontal
  • the vertical permittivity ( ⁇ ) is the liquid crystal compound It means a dielectric constant value measured along the direction of the electric field in a state in which a voltage is applied so that the direction of the electric field by the applied voltage is substantially perpendicular to the director of the liquid crystal molecule.
  • the refractive index anisotropy of the liquid crystal compound may be appropriately selected in consideration of the purpose of the present application.
  • the term “refractive index anisotropy” may mean a difference between an extraordinary refractive index and an ordinary refractive index of a liquid crystal compound.
  • the refractive index anisotropy of the liquid crystal compound may be, for example, 0.01 to 0.3.
  • the refractive index anisotropy may be 0.01 or more, 0.05 or more, or 0.07 or more, and may be 0.3 or less, 0.2 or less, 0.15 or less, or 0.13 or less.
  • the liquid crystal layer may further include a dichroic dye.
  • a dichroic dye even if the liquid crystal device film includes an adhesive layer, it is less affected by cell gap fluctuations during the bonding process of the outer substrate, thereby securing structural stability and uniformity of quality of the liquid crystal device film There is an advantage in that the thickness of the intermediate layer can be made relatively thin.
  • the dichroic dye may control the light transmittance variable property of the liquid crystal layer.
  • dichroic dye may mean a material capable of intensively absorbing and/or transforming light within the visible light region, for example, at least a portion or the entire range within a wavelength range of 400 nm to 700 nm, and the term The “dichroic dye” may refer to a material capable of anisotropic absorption of light in at least a part or the entire range of the visible light region.
  • the liquid crystal layer including the liquid crystal compound and the dichroic dye may be a guest host liquid crystal layer (GHLC).
  • GHLC layer Guest host liquid crystal layer
  • a dichroic dye is a material whose absorption rate of light varies depending on the polarization direction.
  • the absorption rate of light polarized in the long-axis direction is large, it is called a p-type dye, and if the absorption rate of light polarized in the short-axis direction is large, it is called an n-type dye.
  • a p-type dye polarized light vibrating in the long axis direction of the dye is absorbed, and polarized light vibrating in the short axis direction of the dye is absorbed and transmitted therethrough.
  • the dichroic dye is a p-type dye, unless otherwise specified.
  • the dichroic dye for example, a known dye known to have a property of being aligned according to the alignment state of the liquid crystal compound by the so-called guest host effect may be selected and used.
  • dichroic dyes include azo dyes, anthraquinone dyes, methine dyes, azomethine dyes, merocyanine dyes, naphthoquinone dyes, tetrazine dyes, phenylene dyes, quinerylene dyes, benzothiadiazole dyes, poly There are iketopyrrolopyrrole dyes, squaraine dyes or pyromethene dyes, but the dyes applicable in the present application are not limited thereto.
  • the dichroic dye has a dichroic ratio, that is, a value obtained by dividing the absorption of polarized light parallel to the major axis direction of the dichroic dye by the absorption of polarized light parallel to the direction perpendicular to the major axis direction is 5 or more, 6 or more, or 7 or more Dyes may be used.
  • the dye may satisfy the dichroic ratio at at least some wavelengths or any one wavelength within the wavelength range of the visible light region, for example, about 380 nm to 700 nm or about 400 nm to 700 nm.
  • the upper limit of the dichroic ratio may be, for example, about 20 or less, 18 or less, 16 or less, or 14 or less.
  • the content of the dichroic dye in the liquid crystal layer may be appropriately selected in consideration of the purpose of the present application.
  • the content of the dichroic dye in the liquid crystal layer may be 0.2 wt% or more.
  • the content of the dichroic dye may be specifically 0.5 wt% or more, 1 wt% or more, 2 wt% or more, or 3 wt% or more.
  • the upper limit of the content of the dichroic dye may be, for example, 10 wt% or less, 9 wt% or less, 8 wt% or less, 6 wt% or less, or 5 wt% or less.
  • the content of the dichroic dye in the liquid crystal layer is too small, it may be difficult to express the desired transmittance variable characteristic, and it may not be sufficient to reduce the thickness of the intermediate layer to reduce cell gap fluctuations that may occur during the bonding process of the outer substrate. have.
  • the content of the dichroic dye in the liquid crystal layer is too large, there is a risk of precipitation. Therefore, it may be advantageous that the content of the dichroic dye is within the above range.
  • the thickness of the liquid crystal layer is not particularly limited, for example, the thickness of the liquid crystal layer is about 0.01 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 1.5 ⁇ m or more, 2 ⁇ m or more, 2.5 ⁇ m or more, 3 ⁇ m or more, 3.5 ⁇ m or more, 4 ⁇ m or more, 4.5 ⁇ m or more, 5 ⁇ m or more, 5.5 ⁇ m or more, 6 ⁇ m or more, 6.5 ⁇ m or more, 7 ⁇ m or more, 7.5 ⁇ m or more, 8 ⁇ m or more, 8.5 ⁇ m or more, 9 ⁇ m or more, or 9.5 ⁇ m or more .
  • the upper limit of the thickness of the liquid crystal layer is not particularly limited, and may generally be about 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the liquid crystal layer may switch between a first alignment state and a second alignment state different from the first alignment state.
  • the switching may be controlled, for example, through application of external energy such as a voltage.
  • the liquid crystal layer may maintain any one of the first and second alignment states in a state in which no voltage is applied, and may be switched to another alignment state by applying a voltage.
  • the first orientation state may be a twist orientation state. That is, the liquid crystal layer may switch between a twisted orientation and an orientation state different from the twisted orientation through the application of external energy.
  • the liquid crystal layer may switch between a twisted alignment and a vertical alignment state.
  • the liquid crystal layer may be in a vertical alignment state in a state where no voltage is applied, and may be in a twist alignment state in a state in which a voltage is applied.
  • vertical alignment state is a state in which the director of the liquid crystal compound in the liquid crystal layer is arranged substantially perpendicular to the plane of the liquid crystal layer.
  • the angle formed by the director of the liquid crystal compound with respect to the plane of the liquid crystal layer is, For example, it may be in the range of about 80 degrees to 100 degrees or 85 degrees to 95 degrees, or about 90 degrees.
  • the "twisted alignment state” may refer to a spiral structure in which the directors of liquid crystal compounds are oriented in layers while twisting along an imaginary spiral axis in the liquid crystal layer.
  • the twist orientation state may be implemented in a vertical, horizontal or oblique orientation state. That is, the vertical twist alignment mode is a state in which individual liquid crystal compounds are vertically aligned and twisted along the spiral axis to form a layer, and in the horizontal twist alignment mode, individual liquid crystal compounds are horizontally aligned and twisted along the spiral axis to form layers.
  • the oblique twist alignment mode is a state in which individual liquid crystal compounds are twisted along a helical axis in an obliquely aligned state to form a layer.
  • the twist orientation state may be a twist orientation state of the horizontal orientation state.
  • the ratio (d/p) of the thickness (d) and the pitch (p) of the liquid crystal layer in the twisted alignment state may be 20 or less, and the lower limit may be 0.5 or more.
  • the optical device may exhibit excellent light transmittance variable characteristics even in a state without a polarizer.
  • the ratio d/p is 0.7 or more and less than 2.5, it can be called a STN (Super Twisted Nematic) mode, and when the ratio d/p is 2.5 or more, it can be called a HTN (Highly Twisted Nematic) driving mode.
  • the pitch (p) of the liquid crystal layer can be measured by a measurement method using a wedge cell, and specifically, D. Podolskyy et al.'s Simple method for accurate measurements of the cholesteric pitch using a "stripe-wedge Grandjean-Cano cell (Liquid Crystals) , Vol. 35, No. 7, July 2008, 789-791)
  • the ratio (d/p) can be achieved by introducing an appropriate amount of a chiral dopant into the liquid crystal layer. have.
  • the liquid crystal layer may further include a chiral dopant.
  • a twisted alignment state may be implemented.
  • the chiral agent or chiral dopant that may be included in the liquid crystal layer is not particularly limited as long as it can induce a desired twisting without impairing liquid crystallinity, for example, nematic regularity. can be used
  • the chiral agent for inducing rotation in the liquid crystal compound needs to contain at least chirality in its molecular structure.
  • the chiral agent includes, for example, a compound having one or two or more asymmetric carbons, a compound having an asymmetric point on a heteroatom such as a chiral amine or a chiral sulfoxide, or cumulene ) or a compound having an axially asymmetric, optically active site having an axial agent such as binaphthol may be exemplified.
  • the chiral agent may be, for example, a low molecular weight compound having a molecular weight of 1,500 or less.
  • a commercially available chiral nematic liquid crystal for example, a chiral dopant liquid crystal S-811 commercially available from Merck or LC756 from BASF may be used.
  • the rate of application of the chiral dopant is chosen so as to achieve the desired ratio (d/p).
  • the content (wt%) of the chiral dopant may be calculated by the formula of 100/HTP (Helixcal Twisting power) ⁇ pitch (p) (nm).
  • the HTP indicates the strength of the twist of the chiral dopant, and the content of the chiral dopant may be determined in consideration of a desired pitch with reference to the above method.
  • the liquid crystal device film 10 may include a spacer 14 for maintaining a gap between the first and second base layers.
  • the spacer 14 may maintain a gap between the first base layer and the second base layer.
  • a liquid crystal layer may exist in a region where a spacer does not exist between the first base layer and the second base layer.
  • the spacer may be a patterned spacer.
  • the spacer may have a column shape or a partition wall shape.
  • the barrier rib may partition the space between the second base layer and the first base layer into two or more spaces.
  • another film or other layer present in the second base layer may be exposed.
  • the conductive layer may be exposed in the region where the spacer does not exist.
  • the alignment layer may cover the spacer and the conductive layer exposed in the region where the spacer is not present.
  • the alignment layer present on the spacer of the second base layer and the pressure-sensitive adhesive layer of the first base layer may be in contact with each other.
  • a liquid crystal compound and the above-mentioned additives for example, a dichroic dye, a chiral agent, etc. may be present in the region where the spacer between the first base layer and the second base layer does not exist.
  • the shape of the spacer is not particularly limited, and for example, it can be applied without limitation so as to have a polygonal shape such as a circle, an ellipse, or the like.
  • the spacer may include a curable resin.
  • curable resin The kind in particular of curable resin is not restrict
  • a thermosetting resin or photocurable resin for example, an ultraviolet curable resin can be used.
  • the thermosetting resin may be, for example, a silicone resin, a silicon resin, a fran resin, a polyurethane resin, an epoxy resin, an amino resin, a phenol resin, a urea resin, a polyester resin, or a melamine resin, but is not limited thereto. .
  • the ultraviolet curable resin is typically an acrylic polymer, for example, a polyester acrylate polymer, a polystyrene acrylate polymer, an epoxy acrylate polymer, a polyurethane acrylate polymer or a polybutadiene acrylate polymer, a silicone acrylate polymer or an alkyl acrylate.
  • a polymer or the like may be used, but is not limited thereto.
  • the spacer may be formed by a patterning process.
  • the spacer may be formed by a photolithography process.
  • the photolithography process may include a process of applying a curable resin composition on a base layer or a conductive layer and then irradiating ultraviolet rays through a pattern mask.
  • the pattern mask may be patterned into an ultraviolet transmitting region and an ultraviolet blocking region.
  • the photolithography process may further include a process of washing the curable resin composition irradiated with ultraviolet rays. Since the area irradiated with UV light is cured, and the area not irradiated with UV light remains in a liquid phase, it can be removed through a washing process to form a partition wall pattern.
  • a release treatment may be performed on the pattern mask to easily separate the resin composition and the pattern mask, or a release paper may be placed between the layer of the resin composition and the pattern mask.
  • the width (line width), spacing (pitch), thickness, and area of the spacer may be appropriately selected within a range that does not impair the purpose of the present application.
  • the width (line width) of the spacer may be in the range of 10 ⁇ m to 500 ⁇ m or in the range of 10 ⁇ m to 50 ⁇ m.
  • the spacing (pitch) of the spacers may be in the range of 10 ⁇ m to 1000 ⁇ m or in the range of 100 ⁇ m to 1000 ⁇ m.
  • the area of the spacer may be about 5% or more and 50% or less with respect to 100% of the total area of the second base layer.
  • the thickness of the spacer may range, for example, from 1 ⁇ m to 30 ⁇ m or from 3 ⁇ m to 20 ⁇ m.
  • the spacer may be a spacer whose optical density is measured within a range of 1,1 to 4.
  • the method for measuring the transmittance to the spacer is not particularly limited, and may be measured by a known method.
  • the transmittance of the spacer may be measured using 341C of x-rite.
  • the region where the spacer exists becomes an optically inactive region. , and uniform optical performance can be ensured.
  • the liquid crystal device film 10 may further include a conductive layer 12 .
  • the conductive layer may be formed on the first and second base layers 11a and 11b, respectively.
  • the conductive layer may be formed on the surface of the base layer facing the liquid crystal layer 16 .
  • the conductive layer 12 is a configuration for applying a voltage to the liquid crystal layer, and a known conductive layer may be applied without particular limitation.
  • a conductive layer for example, a conductive polymer, a conductive metal, a conductive nanowire, a metal oxide such as indium tin oxide (ITO), carbon nanotubes, graphene, or the like may be applied.
  • ITO indium tin oxide
  • Examples of the conductive layer that can be applied in the present application are not limited to the above, and all kinds of conductive layers known to be applicable to the liquid crystal device film in this field may be used.
  • the liquid crystal device film may further include a pressure-sensitive adhesive layer positioned between the conductive layer 12 and the liquid crystal layer 16 positioned on the surface of the first base layer 11a facing the liquid crystal layer. .
  • the pressure-sensitive adhesive layer may be optically transparent.
  • the pressure-sensitive adhesive layer may have an average transmittance of about 80% or more, 85% or more, 90% or more, or 95% or more in a visible light region, for example, a wavelength of 380 nm to 780 nm.
  • the pressure-sensitive adhesive layer may be a liquid crystal aligning pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer may be, for example, a vertically-oriented pressure-sensitive adhesive layer or a horizontally-oriented pressure-sensitive adhesive layer.
  • vertically oriented pressure-sensitive adhesive may refer to an adhesive having an adhesive force capable of adhering a first base layer and a second base layer while providing a vertical alignment force to an adjacent liquid crystal compound.
  • horizontal alignment adhesive may refer to an adhesive having an adhesive force capable of adhering the first base layer and the second base layer while imparting a horizontal orientation force to an adjacent liquid crystal compound.
  • the pretilt angle of the adjacent liquid crystal compound with respect to the vertical alignment adhesive may be in the range of 80 degrees to 90 degrees, 85 degrees to 90 degrees, or about 87 degrees to 90 degrees, and the pretilt angle of the adjacent liquid crystal compound with respect to the horizontal alignment adhesive This can be in the range of 0 degrees to 10 degrees, 0 degrees to 5 degrees or 0 degrees to 3 degrees.
  • the pretilt angle may mean an angle formed by the director of the liquid crystal compound with respect to a plane horizontal to the liquid crystal aligning adhesive or the alignment layer in a state where no voltage is applied.
  • the director of the liquid crystal compound may refer to an optical axis or a slow axis of the liquid crystal layer.
  • the director of the liquid crystal compound may mean a long axis direction when the liquid crystal compound has a rod shape, and may mean an axis parallel to the normal direction of the plane of the disk when the liquid crystal compound has a discotic shape.
  • the thickness of the pressure-sensitive adhesive layer may be, for example, in the range of 3 ⁇ m to 15 ⁇ m. When the thickness of the pressure-sensitive adhesive layer is within the above range, it may be advantageous to minimize defects such as pressing or rolling of the pressure-sensitive adhesive when used in the manufacture of a liquid crystal device film while securing adhesion between the first and second base layers.
  • the pressure-sensitive adhesive layer various types of pressure-sensitive adhesives known in the industry as so-called Optically Clear Adhesive (OCA) can be appropriately used.
  • OCA Optically Clear Adhesive
  • the pressure-sensitive adhesive may be different from an optically clear resin (OCR) type adhesive that is cured after the object to be attached is cured in that it is cured before the object to be attached is cemented.
  • OCR optically clear resin
  • the adhesive for example, an acrylic, silicone, epoxy or urethane adhesive may be applied.
  • the pressure-sensitive adhesive layer may include a cured product of the pressure-sensitive adhesive resin.
  • the pressure-sensitive adhesive layer may include a silicone-based pressure-sensitive adhesive.
  • the silicone pressure-sensitive adhesive may include a cured product of a curable silicone compound as an adhesive resin.
  • the type of the curable silicone compound is not particularly limited, and, for example, a heat-curable silicone compound or an ultraviolet-curable silicone compound may be used.
  • the curable silicone compound may be referred to as an adhesive resin.
  • the curable silicone compound may be an addition curable silicone compound.
  • the addition-curable silicone compound may be exemplified by (1) an organopolysiloxane containing two or more alkenyl groups in a molecule and (2) an organopolysiloxane containing two or more silicon-bonded hydrogen atoms in a molecule.
  • the present invention is not limited thereto.
  • the silicone compound as described above can form a cured product by addition reaction in the presence of a catalyst to be described later, for example.
  • R1 is a hydrocarbon group other than the alkenyl group, specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a heptyl group; an aryl group such as a phenyl group, a tolyl group, a xylyl group or a naphthyl group; an aralkyl group such as a benzyl group or a phenentyl group; It may be a halogen-substituted alkyl group such as a chloromethyl group, a 3-chloropropyl group, or a 3,3,3-trifluoropropyl group.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group
  • R2 is an alkenyl group, and specifically, may be a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, or a heptenyl group.
  • organopolysiloxane (2) that can be used in the present application include methylhydrogenpolysiloxane blocking trimethylsiloxane groups at both ends of the molecular chain, dimethylsiloxane-methylhydrogen copolymer blocking both ends of the molecular chain, and trimethylsiloxane groups.
  • R1 is a hydrocarbon group other than the alkenyl group, specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or a heptyl group; an aryl group such as a phenyl group, a tolyl group, a xylyl group or a naphthyl group; an aralkyl group such as a benzyl group or a phenentyl group; It may be a halogen-substituted alkyl group such as a chloromethyl group, a 3-chloropropyl group, or a 3,3,3-trifluoropropyl group.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group
  • the surface energy When the pressure-sensitive adhesive layer is a vertically oriented pressure-sensitive adhesive layer, the surface energy may be 16 mN/m or less. The lower limit of the surface energy may be, for example, 5 mN/m or more. When the pressure-sensitive adhesive layer is a horizontally oriented pressure-sensitive adhesive layer, the surface energy may be greater than 16 mN/m. The upper limit of the surface energy may be, for example, 50 mN/m or less.
  • Surface energy can be measured using a drop shape analyzer (Drop Shape Analyzer, KRUSS's DSA100 product). Specifically, drop deionized water with a known surface tension on the surface of the pressure-sensitive adhesive and repeat the process of obtaining the contact angle 5 times to obtain the average value of the obtained five contact angle values.
  • a drop shape analyzer Drop Shape Analyzer, KRUSS's DSA100 product
  • the surface tension is known Drop the diiodomethane and repeat the process of finding the contact angle 5 times to find the average of the five contact angle values. Then, the surface energy was obtained by substituting the numerical value (Strom value) for the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the obtained average value of the contact angles for deionized water and diiodomethane.
  • the first base layer and the second base layer of the liquid crystal device film may be attached to each other by an adhesive layer.
  • the pressure-sensitive adhesive layer of the first base layer and the spacer of the second base layer may be attached to each other.
  • a region corresponding to the spacer of the alignment layer may be attached to the pressure-sensitive adhesive layer of the first substrate layer.
  • the pressure-sensitive adhesive layer may have a storage modulus of 10 MPa or less. In another example, it may be about 9.5 MPa or less, 9 MPa or less, 8.5 MPa or less, or about 2 MPa or less, and about 0.005 MPa or more, 0.006 MPa or more, 0.007 MPa or more, 0.008 MPa or more, 0.009 MPa or more, 0.01 MPa or more, 0.05 MPa or more. or about 0.1 MPa or more.
  • the outer substrate can be bonded through an intermediate layer on both sides of the liquid crystal device film. Defects such as liquid crystal flow or crowding may occur. According to the present invention, as will be described later, by controlling the thickness of the intermediate layer included in the optical device, the defect can be minimized and the structural stability of the optical device and uniformity of quality can be secured.
  • the liquid crystal device film may further include an alignment layer 15 .
  • the alignment layer may be a vertical alignment layer or a horizontal alignment layer.
  • the “horizontal alignment layer” may refer to a layer including an alignment material that imparts horizontal alignment force to a liquid crystal compound present in an adjacent liquid crystal layer.
  • the “vertical alignment layer” may refer to a layer including an alignment material that provides a vertical alignment force to a liquid crystal compound present in an adjacent liquid crystal layer.
  • the pretilt angle of the adjacent liquid crystal compound with respect to the vertical alignment layer may be in the range of 80 degrees to 90 degrees, 85 degrees to 90 degrees, or about 87 degrees to 90 degrees, and the pretilt angle of the adjacent liquid crystal compound with respect to the horizontal alignment layer is 0 It can be in the range of degrees to 10 degrees, 0 degrees to 5 degrees or 0 degrees to 3 degrees.
  • the alignment layer may not have an adhesive force for bonding the first base layer and the second base layer.
  • the peeling force of the alignment layer with respect to the first base layer in the state of the liquid crystal device film of FIG. 1 may be close to zero.
  • the alignment layer may be a rubbing alignment layer or a photo-alignment layer.
  • the alignment direction of the alignment layer may be a rubbing direction in the case of a rubbing alignment layer and a direction of irradiated polarization in the case of a photo-alignment layer.
  • This alignment direction can be confirmed by a detection method using an absorption-type linear polarizer. Specifically, the alignment direction can be confirmed by disposing an absorption-type linear polarizer on one surface of the liquid crystal layer in a state in which the liquid crystal compound included in the liquid crystal layer is horizontally aligned, and measuring transmittance while rotating the polarizer 360 degrees.
  • the transmittance tends to be low
  • the orientation direction can be confirmed through simulation reflecting the refractive index anisotropy of the applied liquid crystal compound.
  • a method of confirming the alignment direction according to the mode of the liquid crystal layer is known, and in the present application, the alignment direction of the alignment layer may be confirmed by such a known method.
  • a polyimide compound, a poly(vinyl alcohol) compound, a poly(amic acid) compound, a polystyrene compound, a polyamide compound, and a polyoxyethylene compound A material known to exhibit alignment ability by rubbing alignment, such as a polyoxyethylene compound, or a polyimide compound, a polyamic acid compound, a polynorbornene compound, or a phenylmaleimide copolymer ) compound, polyvinylcinnamate compound, polyazobenzene compound, polyethyleneimide compound, polyvinylalcohol compound, polyamide compound, polyethylene compound, polystyrene ( polystylene) compound, polyphenylenephthalamide compound, polyester compound, CMPI (chloromethylated polyimide) compound, PVCI (polyvinylcinnamate) compound and polymethyl methacrylate compound by light irradiation It may include one or more selected from the group consisting of materials known to exhibit orientation ability, but is not limited there
  • the alignment layer 15 may be positioned on the conductive layer 12 positioned on the surface of the second base layer 11b facing the liquid crystal layer.
  • the alignment layer is a conductive layer positioned on the face of the second base layer 11b. (12) can be located on.
  • the aforementioned spacers 14 are formed in a patterned structure on the conductive layer 12 positioned on the surface of the second base layer 11b, and the alignment layer is positioned on the conductive layer on which the patterned spacers are formed.
  • the liquid crystal device film 10 having the structure shown in FIG.
  • the pressure-sensitive adhesive layer positioned between the conductive layer 12 and the liquid crystal layer positioned on the surface of the first base layer 11a may have liquid crystal alignment, an alignment film on the surface of the first base layer toward the liquid crystal layer may not be included.
  • the structure in which the conductive layer formed on the first base layer is in contact with the spacer formed on the second base layer via the pressure-sensitive adhesive layer as described above can improve the adhesive force between the elements constituting the liquid crystal device film, and thus the liquid crystal device film Structural stability can be improved by preventing separation between the elements constituting it.
  • a sealant 17 capable of attaching the first base layer and the second base layer to the first base layer and the second base layer in a state in which the distance between the base layer is maintained may be further included.
  • the material of the sealant is not particularly limited, and a known material may be used.
  • the optical device of the present application includes the liquid crystal element film described above.
  • 2 is a cross-sectional view of an optical device according to an example of the present application.
  • an exemplary optical device of the present application includes a first outer substrate 20a, a second outer substrate 20b disposed to face the first outer substrate, and positioned between the first and second outer substrates. and the liquid crystal device film 10, and an intermediate layer 30 positioned between the first outer substrate and the liquid crystal element film and between the liquid crystal element film and the second outer substrate, respectively.
  • the first and second expressions do not prescribe a front-to-back or up-and-down relationship of the outer substrate.
  • first and second outer substrates for example, an inorganic substrate or a plastic substrate may be independently used.
  • the inorganic substrate is not particularly limited, and a known inorganic substrate can be used.
  • a glass substrate having excellent light transmittance may be used as the inorganic substrate.
  • the glass substrate may include, for example, a soda lime glass substrate, a general tempered glass substrate, a borosilicate glass substrate, or an alkali-free glass substrate, but is not limited thereto.
  • plastic substrate examples include a cellulose film such as triacetyl cellulose (TAC) or diacetyl cellulose (DAC); COP (cyclo olefin copolymer) films such as norbornene derivatives; Acrylic film such as PAR (Polyacrylate) or PMMA (poly(methyl methacrylate); PC (polycarbonate) film; PE (polyethylene) or PP (polypropylene), etc.
  • TAC triacetyl cellulose
  • DAC diacetyl cellulose
  • COP cyclo olefin copolymer
  • Acrylic film such as PAR (Polyacrylate) or PMMA (poly(methyl methacrylate); PC (polycarbonate) film; PE (polyethylene) or PP (polypropylene), etc.
  • Polyolefin film PVA (polyvinyl alcohol) film; PI (polyimide) film; Sulfone-based films such as PSF (polysulfone) film, PPS (polyphenylsulfone) film, or PES (polyethersulfone) film; PEEK (polyetheretherketon) film; PEI (polyetherimide) film; PEN (polyethylenenaphthatlate) film or polyester such as PET (polyethyleneterephtalate) film
  • a film-based film or a fluororesin film may be used, but is not limited thereto.
  • a coating layer of a silicon compound such as silicon dioxide or silicon monoxide or a functional layer such as an antireflection layer may be present.
  • the thickness of the first and second outer substrates 20a and 20b is not particularly limited, and may be, for example, about 0.3 mm or more, respectively. In another example, the thickness may be about 0.5 mm or more, 1 mm or more, 1.5 mm or more, or about 2 mm or more, and about 10 mm or less, 9 mm or less, 8 mm or less, 7 mm or less, 6 mm or less, 5 mm or less , 4 mm or less or about 3 mm or less.
  • first and second outer substrates 20a and 20b may be flat or curved substrates.
  • first and second outer substrates may be flat substrates at the same time, have a curved surface at the same time, or one may be a flat substrate and the other may be a curved substrate.
  • each curvature or radius of curvature may be the same or different.
  • the curvature or radius of curvature may be measured in a manner known in the industry, for example, a 2D Profile Laser Sensor (laser sensor), a Chromatic confocal line sensor (confocal sensor), or a non-contact equipment such as 3D Measuring Confocal Microscopy can be measured using Methods for measuring curvature or radius of curvature using such equipment are known.
  • laser sensor 2D Profile Laser Sensor
  • confocal sensor Chromatic confocal line sensor
  • 3D Measuring Confocal Microscopy can be measured using Methods for measuring curvature or radius of curvature using such equipment are known.
  • the curvature or radius of curvature of the opposite surfaces that is, in the case of the first outer substrate, the second outer surface
  • the curvature or radius of curvature of the surface opposite to the substrate and, in the case of the second outer substrate, the curvature or radius of curvature of the surface opposite to the first outer substrate may be a reference.
  • the largest curvature or radius of curvature may be the criterion, or the smallest curvature or radius of curvature may be the criterion, or the average curvature or average A radius of curvature may be a criterion.
  • the first and second outer substrates 20a and 20b have a difference in curvature or radius of curvature within about 10%, within 9%, within 8%, within 7%, within 6%, within 5%, and within 4%. or less, less than 3%, less than 2%, or less than about 1%.
  • Difference between the curvature or radius of curvature is a value calculated as 100 ⁇ (C L -C S) / C S to a large curvature or radius of curvature and as C L, the small curvature or the radius of curvature when said C S.
  • the lower limit of the difference in the curvature or the radius of curvature is not particularly limited. Since the difference between the curvature or the radius of curvature of the first and second outer substrates may be the same, the difference between the curvature or the radius of curvature may be greater than or equal to about 0% or greater than about 0%.
  • the control of the curvature or radius of curvature as described above is useful in a structure in which a liquid crystal element film and/or a polarizer to be described later contacts the intermediate layer, such as the optical device of the present application. That is, when the curvature or radius of curvature exceeds 10%, when the outer substrate and the liquid crystal device film and/or the polarizer are in contact with an intermediate layer to be described later, a problem in which the bonded outer substrate is spread due to a decrease in adhesion may occur. However, if it is controlled within 10%, it is possible to effectively prevent the problem of the bonding outer substrates due to a decrease in bonding force.
  • the first and second outer substrates may have the same sign of curvature.
  • both the first and second outer substrates may be curved in the same direction. That is, in this case, both the center of curvature of the first outer substrate and the center of curvature of the second outer substrate exist in the same portion among the upper and lower portions of the first and second outer substrates.
  • the first and second outer substrates When the first and second outer substrates are bent in the same direction, the first and second outer substrates can be more efficiently bonded as an intermediate layer, and after bonding, the first and second outer substrates and the liquid crystal device film and/or A decrease in the adhesion strength of the polarizer can be prevented more effectively.
  • each of the first and second outer substrates 20a and 20b has a radius of curvature of about 100R or more, 200R or more, 300R or more, 400R or more, 500R or more, 600R or more, 700R or more, 800R or more, or about 900R or more, or about 10,000R or less.
  • R means the degree of curvature of a circle having a radius of 1 mm.
  • 100R is the degree of curvature of a circle having a radius of 100 mm or the radius of curvature for such a circle.
  • the first and second outer substrates may have the same or different radii of curvature within the above range.
  • the radius of curvature of the substrate having the greater curvature may be within the above range.
  • a substrate having a greater curvature among them may be a substrate disposed in a direction of gravity rather than when an optical device is used.
  • the liquid crystal element film 10 is positioned between the first and second outer substrates 20a and 20b, between the first outer substrate and the liquid crystal element film, and the liquid crystal element film and an intermediate layer 30 positioned between the and the second outer substrate, respectively.
  • the sum of the total thickness of the intermediate layer is 1,600 ⁇ m or more.
  • the total thickness of the intermediate layer is about 1,650 ⁇ m or more, 1,700 ⁇ m or more, 1,750 ⁇ m or more, 1800 ⁇ m or more, 1,850 ⁇ m or more, 1900 ⁇ m or more, 1,950 ⁇ m or more, 2,000 ⁇ m or more, 2,100 ⁇ m or more, 2,150 ⁇ m or more or about 2,200 ⁇ m or less, about 6,000 ⁇ m or less, 5,900 ⁇ m or less, 5,800 ⁇ m or less, 5,700 ⁇ m or less, 5,600 ⁇ m or less, 5,500 ⁇ m or less, 5,400 ⁇ m or less, 5,300 ⁇ m or less, 5,200 ⁇ m or less, 5,100 ⁇ m or less, or about 5,000 ⁇ m or less.
  • Each of the intermediate layers may have a single-layer structure of one intermediate layer or may be a laminate of two or more sub-intermediate layers.
  • the thickness and number of sub intermediate layers may be controlled in consideration of a desired thickness of the intermediate layer.
  • the sum of the total thicknesses of the intermediate layers means the sum of the thicknesses of the intermediate layers existing between the first outer substrate and the liquid crystal element film and between the second outer substrate and the liquid crystal element film.
  • the thickness of the sub-intermediate layer laminate positioned between the first outer substrate and the liquid crystal element film and the thickness of the sub-intermediate layer laminate positioned between the second outer substrate and the liquid crystal element film are The sum totals over 1,600 ⁇ m.
  • the sum of the thickness of the single intermediate layer between the first outer substrate and the liquid crystal device film and the thickness of the single intermediate layer between the second outer substrate and the liquid crystal device film is 1,600 ⁇ m or more.
  • the outer substrate can be bonded through an intermediate layer on both sides of the liquid crystal device film. Defects such as liquid crystal flow or crowding may occur. By controlling the thickness of the intermediate layers included in the optical device within the above range, the defect may be minimized, and structural stability and uniform appearance characteristics of the optical device may be secured.
  • the total thickness (Ta) of the intermediate layer positioned between the first outer substrate and the liquid crystal element film and the total thickness (Tb) of the intermediate layer positioned between the second outer substrate and the liquid crystal element film are 200 to It may be in the range of 3,000 ⁇ m.
  • each of Ta and Tb is about 210 ⁇ m or more, 220 ⁇ m or more, 230 ⁇ m or more, 240 ⁇ m or more, 250 ⁇ m or more, 260 ⁇ m or more, 270 ⁇ m or more, 280 ⁇ m or more, 290 ⁇ m or more, 300 ⁇ m or more, 310 ⁇ m or more, 320 ⁇ m or more, 330 ⁇ m or more, 340 ⁇ m or more.
  • the sum of the total thicknesses (Ta) of the intermediate layers positioned between the first outer substrate and the liquid crystal device film means the sum of the thicknesses of all intermediate layers present between the first outer substrate and the liquid crystal device film.
  • the sum of the total thickness (Tb) of the intermediate layer positioned between the second outer substrate and the liquid crystal element film means the sum of the thicknesses of all intermediate layers present between the second outer substrate and the liquid crystal element film.
  • a first polarizer positioned between the first outer substrate and the liquid crystal device film, which will be described later; and a second polarizer positioned between the second outer substrate and the liquid crystal element film, and when an intermediate layer is included between the first polarizer and the liquid crystal element film and between the second polarizer and the liquid crystal element film, the first outer
  • the sum of the total thickness (Ta) of the intermediate layer positioned between the substrate and the liquid crystal element film is the thickness of the intermediate layer positioned between the first outer substrate and the first polarizer, and the intermediate layer positioned between the first polarizer and the liquid crystal element film means the sum
  • the sum of the total thickness (Ta) of the intermediate layer positioned between the second outer substrate and the liquid crystal element film is the intermediate layer positioned between the second outer substrate and the second polarizer, and the second polarizer and the liquid crystal element film It means the sum of the thicknesses of the intermediate layers located between them.
  • the total thickness (Ta) of the intermediate layer positioned between the first outer substrate and the liquid crystal element film and the total thickness (Tb) of the intermediate layer positioned between the second outer substrate and the liquid crystal element film satisfy a range of 200 to 3,000 ⁇ m, respectively. In this case, it may be more advantageous to improve the appearance defect of the liquid crystal device film.
  • the second outer substrate 20b and the liquid crystal element film 10 compared to the total thickness Ta of the intermediate layer 30 positioned between the first outer substrate 20a and the liquid crystal element film 10 The thickness ratio (Ta/Tb) of the total thickness (Tb) of the intermediate layer 30 positioned therebetween may be in the range of 0.1 to 10.
  • the thickness ratio (Ta/Tb) may be about 0.12 or more, about 0.13 or more, or about 0.14 or more, and may be about 9.5 or less, 9.0 or less, 8.5 or less, 8.0 or less, 7.5 or less, or about 7.0 or less. When the thickness ratio is within the range of 0.1 to 10, it is possible to more effectively improve the appearance of the liquid crystal device film.
  • the intermediate layer 30 may have a Young's modulus (E) in the range of 0.1 MPa to 100 MPa.
  • the Young's modulus (E) of the intermediate layer may be about 0.2 MPa or more, 0.4 MPa or more, 0.6 MPa or more, 0.8 MPa or more, 1 MPa or more, 5 MPa or more, or about 10 MPa or more, and about 95 MPa or less, 80 MPa or less , 75 MPa or less, 70 MPa or less, 65 MPa or less, 60 MPa or less, 55 MPa or less, or about 50 MPa or less.
  • the Young's modulus (E), for example, can be measured in the manner prescribed in ASTM D882, cut the film in the form provided by the standard, and equipment (force and length to measure the stress-strain curve) can be simultaneously measured), for example, it can be measured using a UTM (Universal testing machine).
  • UTM Universal testing machine
  • the intermediate layer 30 may have a coefficient of thermal expansion of 2,000 ppm/K or less.
  • the coefficient of thermal expansion is, in another example, about 1,900 ppm / K or less, 1,700 ppm / K or less, 1,600 ppm / K or less, or about 1.500 ppm / K or less, or about 10 ppm / K or more, 20 ppm / K or more, 30 ppm /K or more, 40 ppm/K or more, 50 ppm/K or more, 60 ppm/K or more, 70 ppm/K or more, 80 ppm/K or more, 90 ppm/K or more, 100 ppm/K or more, 200 ppm/K or more or more, 300 ppm/K or more, 400 ppm/K or more, 500 ppm/K or more, 60 ppm/K or more, 700 ppm/K or more, or about 800 ppm/K or more.
  • the thermal expansion coefficient of the intermediate layer for example, can be measured according to the regulations of ASTM D696, cut in the form provided by the standard, and the thermal expansion coefficient can be calculated by measuring the change in length per unit temperature, TMA (ThermoMechanic Analysis) can be measured by a known method.
  • TMA ThermoMechanic Analysis
  • the intermediate layer is not particularly limited, and a known adhesive layer satisfying the above-described physical properties, for example, Young's modulus and coefficient of thermal expansion, may be used.
  • a thermoplastic polyurethane adhesive layer, a polyamide adhesive layer, a polyester adhesive layer, an EVA (Ethylene Vinyl Acetate) adhesive layer, an acrylic adhesive layer, a silicone adhesive layer, or a polyolefin adhesive layer satisfy the above-described physical properties. You can choose to use it.
  • the optical device includes a first polarizer positioned between the first outer substrate and the liquid crystal element film; and a second polarizer positioned between the second outer substrate and the liquid crystal device film.
  • the term polarizer refers to a film, sheet, or device having a polarization function.
  • a polarizer is a functional element capable of extracting light vibrating in one direction from incident light vibrating in multiple directions.
  • the first polarizer and the second polarizer may be an absorption type polarizer or a reflection type polarizer, respectively.
  • the absorption-type polarizer refers to a device that selectively transmits and absorbs incident light.
  • the polarizer may transmit, for example, light vibrating in one direction from incident light vibrating in multiple directions, and may absorb light vibrating in the other direction.
  • the reflective polarizer refers to a device exhibiting selective transmission and reflection characteristics with respect to incident light.
  • the polarizer may transmit light vibrating in one direction from incident light vibrating in multiple directions, and may reflect light vibrating in the other direction.
  • the polarizer may be an absorption type polarizer.
  • Each of the first polarizer and the second polarizer may be a linear polarizer.
  • the linear polarizer refers to a case in which selectively transmitted light is linearly polarized light vibrating in one direction, and selectively absorbed or reflected light is linearly polarized light vibrating in a direction perpendicular to the vibration direction of the linearly polarized light.
  • the light transmission axis and the light absorption axis may be perpendicular to each other.
  • the light transmission axis and the light reflection axis may be perpendicular to each other.
  • each of the first polarizer and the second polarizer may be a stretched polymer film dyed with iodine or anisotropic dye.
  • a stretched polymer film a poly(vinyl alcohol) (PVA) stretched film may be exemplified.
  • each of the first polarizer and the second polarizer may be a guest-host type polarizer in which a liquid crystal polymerized in an aligned state is a host, and an anisotropic dye arranged according to the alignment of the liquid crystal is a guest.
  • the first polarizer and the second polarizer may each be a thermotropic liquid crystal film or a lyotropic liquid crystal film.
  • a protective film, an antireflection film, a retardation film, an adhesive layer, an adhesive layer, a surface treatment layer, etc. may be additionally formed on one or both surfaces of the first polarizer and the second polarizer, respectively.
  • the retardation film may be, for example, a 1/4 wave plate or a 1/2 wave plate.
  • the quarter wave plate may have an in-plane retardation value of about 100 nm to 180 nm, 100 nm, or 150 nm for light having a wavelength of 550 nm.
  • the 1/2 wave plate may have an in-plane retardation value of about 200 nm to 300 nm or 250 nm to 300 nm for light having a wavelength of 550 nm.
  • the retardation film may be, for example, a polymer stretched film or a liquid crystal polymerization film.
  • the transmittance of the first polarizer and the second polarizer with respect to light having a wavelength of 550 nm may be in the range of 40% to 50%, respectively.
  • the transmittance may mean a single transmittance of the polarizer with respect to light having a wavelength of 550 nm.
  • the single transmittance of the polarizer can be measured using, for example, a spectrometer (V7100, manufactured by Jasco). For example, with the polarizer sample (not including the upper and lower protective films) mounted on the device, air is set as the base line, and the transmittance of each transmittance is measured with the axis of the polarizer sample aligned vertically and horizontally with the axis of the reference polarizer. After the measurement, the single transmittance can be calculated.
  • the light transmission axis of the first polarizer and the light transmission axis of the second polarizer may be perpendicular to each other. Specifically, the angle between the light transmission axis of the first polarizer and the light transmission axis of the second polarizer may be in the range of 80 degrees to 100 degrees or 85 degrees to 95 degrees. When the light transmission axis of the first polarizer is perpendicular to the light transmission axis of the second polarizer, light leakage may occur depending on the separation distance between the first polarizer and the second polarizer.
  • the intermediate layer is positioned between the first polarizer and the liquid crystal device film and between the second polarizer and the liquid crystal device film, respectively, and may include an intermediate layer having a thickness of 380 ⁇ m or less. That is, the thickness of the intermediate layer present between the first polarizer and the liquid crystal element film and the intermediate layer present between the second polarizer and the liquid crystal element film may be 380 ⁇ m or less, respectively. Through this, it is possible to minimize the separation distance between the first polarizer and the second polarizer to reduce light leakage and secure structural safety of the liquid crystal device film.
  • the lower limit of the thickness of the intermediate layer present between the first polarizer and the liquid crystal element film and the intermediate layer present between the second polarizer and the liquid crystal element film may be 10 ⁇ m or more, respectively.
  • the thickness of the intermediate layer positioned between the first outer substrate and the first polarizer and the intermediate layer positioned between the second outer substrate and the second polarizer may be in a range of 400 ⁇ m to 3,000 ⁇ m, respectively.
  • the thickness of the intermediate layer positioned between the first outer substrate and the first polarizer and the intermediate layer positioned between the second outer substrate and the second polarizer is about 400 ⁇ m or more, 500 ⁇ m or more, 600 ⁇ m or more, 700 ⁇ m or more, respectively.
  • the outer substrate does not impair the electro-optical properties of the optical device. It can be advantageous to secure structural stability and uniform appearance characteristics without appearance defects in the cementation process.
  • An optical device includes: a first outer substrate; a second outer substrate facing the first outer substrate; a liquid crystal device film positioned between the first and second outer substrates; and intermediate layers positioned between the first outer substrate and the liquid crystal element film, between the liquid crystal element film and the second outer substrate, and at an outer portion of the liquid crystal element film, respectively, between the first outer substrate and the liquid crystal element film , and an intermediate layer positioned between the liquid crystal device film and the second outer substrate has a total thickness of 1,600 ⁇ m or more, and the liquid crystal device film is disposed between the first outer substrate and the second outer substrate between the first outer substrate and the liquid crystal
  • the structure may be encapsulated by an intermediate layer positioned between the device films, between the liquid crystal device film and the second outer substrate, and in the outer portion of the liquid crystal device film, respectively.
  • An optical device includes: a first outer substrate; a second outer substrate facing the first outer substrate; a liquid crystal device film positioned between the first and second outer substrates; a first polarizer positioned between the first outer substrate and the liquid crystal device film; a second polarizer positioned between the second outer substrate and the liquid crystal device film; and between the first outer substrate and the first polarizer, between the first polarizer and the liquid crystal element film, between the liquid crystal element film and the second polarizer, between the second polarizer and the second outer substrate, and in the outer portion of the liquid crystal element film, respectively an intermediate layer positioned between the first outer substrate and the first polarizer, between the first polarizer and the liquid crystal element film, between the liquid crystal element film and the second polarizer, and between the second polarizer and the second outer substrate,
  • the sum of the total thickness is 1,600 ⁇ m or more, and the liquid crystal element film is formed between the first outer substrate and the second outer substrate, between the first outer substrate and the first polarizer, between the
  • the term "outer part" of the liquid crystal device film may mean a side portion surrounding the liquid crystal device film.
  • the term encapsulation may mean covering the entire surface of the liquid crystal device film and/or the polarizer with an intermediate layer.
  • the structure is implemented by stacking an outer substrate, an intermediate layer, a liquid crystal element film, an intermediate layer, and an outer substrate according to the desired structure, placing the intermediate layer on the outer portion of the liquid crystal element film, and then compressing it in a vacuum state.
  • the durability and weather resistance of the optical device are greatly improved by such an encapsulation structure, and as a result, it can be stably applied to outdoor uses such as a sunroof.
  • the method of manufacturing the optical device of the present application is not particularly limited.
  • the optical device may be manufactured through an autoclave process for the above-described encapsulation.
  • the method of manufacturing the optical device may include encapsulating a liquid crystal device film and/or a polarizer between the first outer substrate and the second substrate through an autoclave process using an intermediate layer.
  • the autoclave process may be performed by disposing an intermediate layer, a liquid crystal device film and/or a polarizer between the outer substrates according to a desired encapsulation structure, and heating/pressurizing.
  • the first outer substrate 20a, the intermediate layer 30, the liquid crystal device film 10, the intermediate layer 30, and the second outer substrate 20b are disposed in the above order, and the intermediate layer is also located on the outer portion of the liquid crystal device film.
  • the laminate on which (30) is disposed is heated/pressurized in an autoclave process, an optical device as shown in FIG. 2 can be formed.
  • the first outer substrate 20a, the intermediate layer 30, the first polarizer 40, the intermediate layer 30, the liquid crystal device film 10, the intermediate layer 30, the second polarizer 40, the intermediate layer ( 30) and the second outer substrate 20b are disposed in the above order, and the laminate in which the intermediate layer 30 is also disposed on the outer portion of the liquid crystal device film and the polarizer is heated/pressurized through an autoclave process, FIGS. 6 and FIG. An optical device such as that shown in 7 or FIG. 8 may be formed.
  • the conditions of the autoclave process are not particularly limited, and, for example, may be performed under an appropriate temperature and combined force according to the type of the applied intermediate layer.
  • the temperature of a typical autoclave process is about 80 °C or more, 90 °C or more, or 100 °C or more, and the pressure is 2 atmospheres or more, but is not limited thereto.
  • the upper limit of the process temperature may be about 200 °C or less, 190 °C or less, 180 °C or less, or 170 °C or less, and the upper limit of the process pressure is about 10 atmospheres or less, 9 atmospheres or less, 8 atmospheres or less, 7 atmospheres It may be less than or about 6 atmospheres or less.
  • optical device as described above can be used for various purposes, and for example, eyewear such as sunglasses or eyewear for AR (Argumented Reality) or VR (Virtual Reality), exterior walls of buildings, sunroofs for vehicles, etc. can be used
  • the optical device may itself be a vehicle sunroof.
  • the optical device or a vehicle sunroof mounted in the opening may be mounted and used.
  • the optical device of the present application maintains the cell gap of the liquid crystal element film properly, has excellent adhesion between the upper substrate and the lower substrate, and minimizes defects such as pressing or rolling in the bonding process of the outer substrate, resulting in structural stability and good quality uniformity.
  • FIG. 1 is a cross-sectional view of an exemplary liquid crystal device film of the present application.
  • FIG. 2 is a cross-sectional view of an exemplary optical device of the present application.
  • FIG. 3 is an image of an optical device in which a press defect is generated in a liquid crystal element film by external pressure.
  • FIG. 4 is an image of an optical device in which a liquid crystal element film has a defect in the liquid crystal element film due to external pressure.
  • FIG. 5 is an image of an optical device in which the liquid crystal element film is not strongly driven by external pressure.
  • Example 6 is a cross-sectional view of the optical device manufactured in Example 1 of the present application.
  • Example 7 is a cross-sectional view of the optical device manufactured in Example 2 of the present application.
  • Example 8 is a cross-sectional view of the optical device manufactured in Example 3 of the present application.
  • FIG. 9 is a cross-sectional view of an optical device manufactured in Comparative Example 1 or Comparative Example 2 of the present application.
  • the storage modulus was measured using DMA Q800 from TA. Specifically, the storage modulus value was recorded under the conditions of a temperature of 25 °C, Force 0.01N and a ramp rate of 3 °/min in Multi-Frequency-Strain mode.
  • ITO indium-tin-oxide
  • a pressure-sensitive adhesive composition KR-3700, Shin-Etsu was bar coated on the conductive layer, and then dried at about 150° C. for about 5 minutes to form a pressure-sensitive adhesive layer having a thickness of about 10 ⁇ m.
  • the storage modulus of the pressure-sensitive adhesive layer was about 0.1 MPa.
  • the combination of the first base layer, the conductive layer, and the pressure-sensitive adhesive layer is called an upper laminate.
  • a polycarbonate film (Keiwa) having a thickness of about 100 ⁇ m and a width x height area of 600 mm x 300 mm was prepared.
  • ITO indium-tin-oxide
  • a honeycomb-type spacer was formed by a photolithography method.
  • the pitch of the regular hexagons (closed figure) constituting the honeycomb is about 450 ⁇ m, the height is about 12 ⁇ m, and the line width is about 30 ⁇ m.
  • the area of the closed figure (regular hexagon) formed by the spacer was approximately 2.14 mm 2 .
  • a vertical alignment layer (Nissan, SE-5661) was coated on the spacer to a thickness of about 300 nm, and then rubbed in one direction.
  • the combination of the second base layer, the conductive layer, the spacer, and the horizontal alignment layer is referred to as a lower laminate.
  • the liquid crystal composition includes a liquid crystal compound (Merck, MAT-16-568) and a chiral dopant (HCCH, S811), and the pitch (p) of the liquid crystal layer formed as described above was about 20 ⁇ m.
  • a laminate was prepared by disposing an intermediate layer on all the outer parts. Compared to the first outer substrate, the second outer substrate was disposed in the direction of gravity.
  • the first polarizer and the second polarizer are PVA-based polarizers, respectively, and the light transmission axis of the first polarizer and the light transmission axis of the second polarizer are arranged to form about 90 degrees.
  • the second intermediate layer and the third intermediate layer are each a single layer of a TPU layer (Argotec) having a thickness of about 380 ⁇ m.
  • Each of the first intermediate layer and the fourth intermediate layer is a laminate of three TPU layers (Argotec) having a thickness of about 380 ⁇ m.
  • the TPU layer (Argotec) has a coefficient of thermal expansion of 307 ppm/K and a storage modulus of 8 to 15 MPa.
  • the intermediate layer disposed on the outer portion of the liquid crystal device film was also formed of the same material as the first to fourth intermediate layers.
  • An autoclave process was performed on the laminate at a temperature of about 110° C. and a pressure of about 2 atm to prepare an optical device having the structure of FIG. 6 .
  • the thickness of the second intermediate layer and the third intermediate layer were about 380 ⁇ m, respectively, and the total thickness of the intermediate layer was about 3,040 ⁇ m.
  • the first intermediate layer and the fourth intermediate layer are each changed to a single TPU layer (Argotec) having a thickness of about 380 ⁇ m, and the second intermediate layer and the third intermediate layer are each three layers of a TPU layer (Argotec) having a thickness of about 380 ⁇ m.
  • An optical device having the structure of FIG. 7 was manufactured in the same manner as in Example 1 except that the laminate was changed.
  • the total thickness of the intermediate layer in the optical device of Example 2 was about 3,040 ⁇ m.
  • the first intermediate layer and the fourth intermediate layer are each changed to a single TPU layer (Argotec) having a thickness of about 380 ⁇ m, and the second intermediate layer and the third intermediate layer are each two layers of a TPU layer (Argotec) having a thickness of about 380 ⁇ m.
  • An optical device having the structure of FIG. 8 was manufactured in the same manner as in Example 1, except that the laminate was changed.
  • the total thickness of the intermediate layer in the optical device of Example 3 was about 2,280 ⁇ m.
  • Example 2 The process was performed in the same manner as in Example 1 except that the first intermediate layer, the second intermediate layer, the third intermediate layer, and the fourth intermediate layer were each changed to a TPU layer (Argotec) single layer having a thickness of about 380 ⁇ m.
  • An optical device of the structure was fabricated. In the optical device of Comparative Example 1, the total thickness of the intermediate layer was about 1520 ⁇ m.
  • the first intermediate layer and the fourth intermediate layer were each changed to a TPU layer (Argotec) single layer having a thickness of about 150 ⁇ m, and the second and third intermediate layers were each changed to a TPU layer (Argotec company) having a thickness of about 380 ⁇ m as a single layer.
  • An optical device having the structure of FIG. 9 was manufactured in the same manner as in Example 1 except for changes. In the optical device of Comparative Example 2, the total thickness of the intermediate layer was about 1,060 ⁇ m.
  • Appearance defects were measured using an optical microscope (Olympus, BX51-N33MB) whether appearance defects as shown in FIGS. 3 to 5 were observed in the optical devices manufactured in Examples and Comparative Examples.
  • appearance defects such as poor pressing, weak driving, and strong driving were not observed as shown in FIGS. 3 to 5 .
  • appearance defects such as poor pressing, weak driving, or strong driving were observed on the liquid crystal element film by external pressure.
  • 10 is a photograph (Olympus, BX51-N33MB) of the optical devices manufactured in Examples 1 and 2 in a state in which no voltage is applied.
  • 10 (a) and (b) are images of Examples 1 and 2 in a state in which no voltage is applied, respectively, and FIGS. 10 (c) and (d) are each in a state in which a 50V voltage is applied. of Example 1 and Example 2. From (a) and (b) of FIG. 10 , it can be observed that Example 1 has less light leakage than Example 2 in a state in which no voltage is applied.
  • transmittance in all directions was measured at a polar angle of 60°, and the results are shown in FIG. 11 .
  • Transmittance was measured using a haze meter (CA-2500, manufactured by Konica Minolta) in a state in which no voltage was applied to the optical device.
  • the transmittance is an average transmittance for light having a wavelength of 380 nm to 780 nm, and the lower the transmittance, the smaller the light leakage.
  • relative transmittance means relative transmittance when the amount of backlight light is 100%.
  • the azimuth angle of 0° is parallel to the rubbing axis of the alignment layer of the liquid crystal element film.
  • Examples 1 and 2 each showed the maximum transmittance at 110° of azimuth, Example 1 had a transmittance of 5.51% at 110° of azimuth, and Example 2 had a transmittance of 6.03% at 110° of azimuth.
  • Examples 1 and 2 showed the greatest difference in transmittance at an azimuth angle of 60°, Example 1 had a transmittance of 3.17% at an azimuth angle of 60°, and Example 2 had a transmittance of 4.04% at an azimuth angle of 60° .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Optical Communication System (AREA)

Abstract

본 출원은 광학 디바이스에 관한 것이다. 본 출원의 광학 디바이스는 액정 소자 필름의 셀갭이 적절히 유지되고 상부 기판과 하부 기판의 우수한 부착력을 가지며, 외곽 기판의 합착 공정에서 눌림이나 몰림 등의 불량을 최소화하여, 구조적 안정성과 양호한 품질의 균일도를 확보할 수 있다.

Description

광학 디바이스
본 출원은 2020년 07월 09일자 제출된 대한민국 특허출원 제10-2020-0084734 호, 및 2020년 10월 29일자 제출된 대한민국 특허출원 제10-2020-0142095호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은 광학 디바이스에 관한 것이다.
플렉서블 기판을 사용하는 액정필름셀의 장기 안정성, 대면적 확장성을 위해서는 제 1 기재층(또는, '상부 기재층'이라 함)과 제 2 기재층(또는, '하부 기재층'이라 함)의 셀갭의 유지와 제 1 기재층과 제 2 기재층 간의 접착력을 부여하는 것이 중요하다.
비특허문헌 1은 한쪽 기재층에 셀 갭 높이의 기둥 또는 벽 형태의 유기막 패턴을 형성하고 접착제를 이용하여 반대편 기재층에 고정시키는 기술을 개시하고 있다. 그러나, 이러한 기술은 접착제가 기둥면 또는 벽면에만 위치해야 하는데 기둥면 또는 벽면에 접착제를 마이크로 스탬핑(Micro Stamping)하는 기술은 공정 난이도가 높으며, 접착제의 두께 및 면적의 컨트롤이 어렵고, 상하 기재층 합착 시 접착제가 밖으로 밀려나올 가능성이 높으며, 접착제가 배향막 또는 액정 내로 오염될 우려가 있다.
비특허문헌: “Tight Bonding of Two Plastic Substrates for Flexible LCDs”SID Symposium Digest, 38, pp. 653-656 (2007)
액정셀의 셀갭을 유지하고, 제 1 기재층과 제 2 기재층의 부착력을 확보하기 위해, 제 2 기재층에 스페이서와 배향막을 형성하고, 제 1 기재층에 액정 배향력과 부착력을 모두 갖는 점착제층을 형성한 후 합착하는 것을 고려할 수 있다. 그러나, 이러한 구조는 점착제층의 매우 낮은 모듈러스로 인해 외부 압력에 취약하여 고온고압의 오토클레이브(autoclave) 공정에서 양호한 품위를 얻기 힘들다. 구체적으로, 오토클레이브 공정에서 액정셀의 구조적 안정성이 확보되지 않는 경우, 셀갭의 무너짐이나 액정의 유동/몰림의 불량이 발생하고, 이는 액정셀의 전기 광학 특성과 외관 균일성의 저하를 야기한다.
본 출원의 목적은 액정셀의 셀갭이 적절히 유지되고, 제 1 기재층 및 제 2 기재층이 우수한 부착력으로 유지되며, 눌림이나 몰림 등의 불량을 최소하하여, 구조적 안정성과 양호한 품질의 균일도를 확보할 수 있는 광학 디바이스를 제공하는 것이다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 그 결과에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 해당 물성은 상온에서 측정한 물성이다. 용어 상온은 가온되거나 감온되지 않은 자연 그대로의 온도로서 통상 약 10°C 내지 30°C의 범위 내의 한 온도 또는 약 23°C 또는 약 25°C 정도이다. 또한, 본 명세서에서 특별히 달리 언급하지 않는 한, 온도의 단위는 ℃이다.
본 명세서에서 언급하는 물성 중에서 측정 압력이 그 결과에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 해당 물성은 상압에서 측정한 물성이다. 용어 상압은 가압되거나 감압되지 않은 자연 그대로의 압력으로서 통상 약 1 기압 정도를 상압으로 지칭한다.
본 출원은 광학 디바이스에 관한 것이다. 상기 광학 디바이스는 액정 소자 필름을 포함한다.
도 1은 본 출원의 광학 디바이스에 포함되는 예시적인 액정 소자 필름의 단면도이다. 도 1 에 나타난 바와 같이 광학 디바이스에 포함되는 액정 소자 필름(10)은 제 1 기재층(또는, '상부 기재층'이라 함)(11a), 상기 제 1 기재층과 대향 배치되는 제 2 기재층(또는, '하부 기재층'이라 함)(11b), 및 상기 제 1 및 제 2 기재층 사이에 위치하는 상기 액정층(16)을 포함한다.
상기 제 1 기재층(11a) 및 제 2 기재층(11b)으로는, 예를 들면, 각각 유리 등으로 되는 무기 필름 또는 플라스틱 필름이 사용될 수 있다. 플라스틱 필름으로는 PEN(polyethylene-naphthalate), PI(polyimide), COP(cyclo-olefin polymer), TAC(tri-acetyl-cellulose), PET(polyethyleneterephtalate) 또는 PC(polycarbonate) 필름 등이 사용될 수 있지만, 이에 제한되는 것은 아니다. 기재층에는 필요에 따라서 금; 은; 또는 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 기능층이 존재할 수도 있다.
하나의 예로서, 상기 제 1 및 제 2 기재층은 두께가 각각 약 10 ㎛ 내지 약 1,000 ㎛ 일 수 있다. 다른 예로, 상기 기재층은 두께가 각각 약 20 ㎛ 이상, 40 ㎛ 이상, 60 ㎛ 이상, 80 ㎛ 이상, 100 ㎛ 이상, 120 ㎛ 이상, 140 ㎛ 이상, 160 ㎛ 이상 또는 약 180 ㎛ 이상일 수 있으며, 약 900 ㎛ 이하, 800 ㎛ 이하, 700 ㎛ 이하, 600 ㎛ 이하, 500 ㎛ 이하 또는 약 400 ㎛ 이하일 수 있다. 기재층의 두께가 상기 범위를 만족하는 경우, 기재층을 포함하는 액정 소자 필름이 후술하는 외곽 기판과 합착하여 광학 디바이스를 제조할 때, 주름 등의 외관 불량을 감소 시킬 수 있다.
상기 액정 소자 필름은 적어도 액정 화합물을 포함하는 액정층을 포함한다.
액정 화합물로는 외부 작용의 인가에 의하여 그 배향 방향이 변경될 수 있는 액정 화합물을 사용할 수 있다. 본 명세서에서 용어 『외부 작용』이란, 액정층 내 포함되는 물질의 거동에 영향을 줄 수 있는 외부에 모든 요인, 예를 들면 외부 전압 등을 의미할 수 있다. 따라서, 외부 작용이 없는 상태란, 외부 전압 등의 인가가 없는 상태를 의미할 수 있다.
액정 화합물의 종류 및 물성은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 하나의 예시에서, 액정 화합물은 네마틱(nematic) 액정 또는 스멕틱(smectic) 액정일 수 있다. 네마틱 액정은 막대 모양의 액정 분자가 위치에 대한 규칙성은 없으나 액정 분자의 장축 방향으로 평행하게 배열되어 있는 액정을 의미할 수 있고, 스멕틱 액정은 막대 모양의 액정 분자가 규칙적으로 배열하여 층을 이룬 구조를 형성하며 장축 방향으로 규칙성을 가지고 평행하게 배열되어 있는 액정을 의미할 수 있다. 본 출원의 일 실시예에 의하면 상기 액정 화합물은 네마틱 액정 화합물일 수 있다.
네마틱 액정 화합물은 예를 들면, 약 40℃이상, 50℃이상, 60℃ 이상, 70℃이상, 80℃이상, 90℃이상, 100℃이상 또는 약 110℃이상의 등명점(clearing point)를 가지거나, 상기 범위의 상전이점, 즉 네마틱상에서 등방상으로의 상전이점을 가지는 것이 선택될 수 있다. 일 예시에서 상기 등명점 또는 상전이점은 약 160℃이하, 150℃이하 또는 약 140℃이하일 수 있다.
액정 화합물은 비반응성 액정 화합물일 수 있다. 비반응성 액정 화합물은, 중합성기를 갖지 않는 액정 화합물을 의미할 수 있다. 중합성기로는 아크릴로일기, 아크릴로일옥시기, 메타크릴로일기, 메타크릴로일옥시기, 카복실기, 히드록시기, 비닐기 또는 에폭시기 등이 예시될 수 있으나 이에 제한되지 않고, 중합성기로서 알려진 공지의 관능기가 포함될 수 있다.
액정 화합물은 유전율 이방성이 양수 또는 음수일 수 있다. 액정 화합물의 유전율 이방성의 절대값은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 용어 「유전율 이방성(△ε」은 액정의 수평 유전율(ε//)과 수직 유전율(ε⊥)의 차이(ε//- ε⊥)를 의미할 수 있다. 본 명세서에서 용어 수평 유전율(ε//)은 액정 화합물의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수평하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미하고, 수직 유전율(ε⊥)은 액정 화합물의 방향자와 인가 전압에 의한 전기장의 방향이 실질적으로 수직하도록 전압을 인가한 상태에서 상기 전기장의 방향을 따라 측정한 유전율 값을 의미한다. 액정 분자의 유전율 이방성은 5 내지 25 범위 내일 수 있다.
액정 화합물의 굴절률 이방성은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 본 명세서에서 용어 「굴절률 이방성」은 액정 화합물의 이상 굴절률(extraordinary refractive index)과 정상 굴절률(ordinary refractive index)의 차이를 의미할 수 있다. 액정 화합물의 굴절률 이방성은 예를 들어 0.01 내지 0.3일 수 있다. 상기 굴절률 이방성은 0.01 이상, 0.05 이상 또는 0.07 이상일 수 있고, 0.3 이하, 0.2 이하, 0.15 이하 또는 0.13 이하일 수 있다.
액정층은 이색성 염료를 더 포함할 수 있다. 액정층이 이색성 염료를 포함하는 경우, 액정 소자 필름이 점착제층을 포함하더라도 외곽 기판의 합착 공정 시에 셀갭의 변동에 영향을 덜 받으므로, 액정 소자 필름의 구조적 안정성 및 품질의 균일성을 확보하기 위한 중간층의 두께를 상대적으로 얇게 할 수 있는 이점이 있다.
이색성 염료는 액정층의 광 투과도 가변 특성을 제어할 수 있다. 본 명세서에서 『염료』는, 가시광 영역, 예를 들면, 400 nm 내지 700 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 『이색성 염료』는 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 이방성 흡수가 가능한 물질을 의미할 수 있다.
액정 화합물 및 이색성 염료를 포함하는 액정층은 GHLC층(Guest host liquid crystal layer)일 수 있다. 본 명세서에서 『GHLC층(Guest host liquid crystal layer)』은, 액정 화합물의 배열에 따라 이색성 염료가 함께 배열되어, 이색성 염료의 정렬 방향과 상기 정렬 방향의 수직한 방향에 대하여 각각 비등방성 광 흡수 특성을 나타내는 기능성 층을 의미할 수 있다. 예를 들어, 이색성 염료는 빛의 흡수율이 편광 방향에 따라서 달라지는 물질로서, 장축 방향으로 편광된 빛의 흡수율이 크면 p형 염료로 호칭하고 단축 방향으로 편광된 빛의 흡수율이 크면 n형 염료라고 호칭할 수 있다. 하나의 예시에서, p형 염료가 사용되는 경우, 염료의 장축 방향으로 진동하는 편광은 흡수되고 염료의 단축 방향으로 진동하는 편광은 흡수가 적어 투과시킬 수 있다. 이하 특별한 언급이 없는 한 이색성 염료는 p형 염료인 것으로 가정한다.
이색성 염료로는 예를 들면, 소위 게스트 호스트 효과에 의해 액정 화합물의 정렬 상태에 따라 정렬될 수 있는 특성을 가지는 것으로 알려진 공지의 염료를 선택하여 사용할 수 있다. 이러한 이색성 염료의 예로는 아조 염료, 안트라퀴논 염료, 메틴 염료, 아조메틴 염료, 메로시아닌 염료, 나프토퀴논 염료, 테트라진 염료, 페닐렌 염료, 퀴터릴렌 염료, 벤조티아다이아졸 염료, 다이케토피롤로피롤 염료, 스쿠아레인 염료 또는 파이로메텐 염료 등이 있으나, 본 출원에서 적용 가능한 염료가 상기에 제한되는 것은 아니다.
이색성 염료는 이색비(dichroic ratio), 즉 이색성 염료의 장축 방향에 평행한 편광의 흡수를 상기 장축 방향에 수직하는 방향에 평행한 편광의 흡수로 나눈 값이 5 이상, 6 이상 또는 7 이상인 염료를 사용할 수 있다. 상기 염료는 가시광 영역의 파장 범위 내 예를 들면 약 380 nm 내지 700 nm 또는 약 400 nm 내지 700 nm의 파장 범위 내에서 적어도 일부의 파장 또는 어느 한 파장에서 상기 이색비를 만족할 수 있다. 상기 이색비의 상한은 예를 들면 20 이하, 18 이하, 16 이하 또는 14 이하 정도일 수 있다.
액정층의 이색성 염료의 함량은 본 출원의 목적을 고려하여 적절히 선택될 수 있다. 예를 들어, 액정층의 이색성 염료의 함량은 0.2 중량% 이상일 수 있다. 상기 이색성 염료의 함량은 구체적으로 0.5 중량% 이상, 1 중량% 이상, 2 중량% 이상 또는 3 중량 이상일 수 있다. 상기 이색성 염료의 함량의 상한은 예를 들어 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 6 중량% 이하 또는 5 중량% 이하일 수 있다. 액정층의 이색성 염료의 함량이 지나치게 적은 경우 목적하는 투과도 가변 특성을 발현하기 어려울 수 있고, 외곽 기판의 합착 공정 시에 발생할 수 있는 셀갭의 변동을 저감하기 위한 중간층의 두께를 감소시키는데 불충분할 수 있다. 한편, 액정층의 이색성 염료의 함량이 지나치게 많은 경우 석출의 우려가 있다. 따라서, 이색성 염료의 함량은 상기 범위 내인 것이 유리할 수 있다.
액정층의 두께는 특별히 제한되지 않으며, 예를 들면 액정층의 두께는, 약 0.01μm 이상, 0.05μm 이상, 0.1μm 이상, 0.5μm 이상, 1μm 이상, 1.5μm 이상, 2μm 이상, 2.5μm 이상, 3μm 이상, 3.5μm 이상, 4μm 이상, 4.5μm 이상, 5μm 이상, 5.5μm 이상, 6μm 이상, 6.5μm 이상, 7μm 이상, 7.5μm 이상, 8μm 이상, 8.5μm 이상, 9μm 이상 또는 9.5μm 이상일 수 있다. 상기 액정층의 두께의 상한은 특별히 제한되는 것은 아니며, 일반적으로 약 30 μm 이하, 25 μm 이하, 20 μm 이하 또는 15 μm 이하일 수 있다.
액정층은 제 1 배향 상태와 상기 제 1 배향 상태와는 다른 제 2 배향 상태의 사이를 스위칭할 수 있다. 상기 스위칭은, 예를 들면, 전압과 같은 외부 에너지의 인가를 통해 조절할 수 있다. 예를 들면, 액정층은 전압 무인가 상태에서 상기 제 1 및 제 2 배향 상태 중에서 어느 한 상태가 유지되다가, 전압 인가에 의해 다른 배향 상태로 스위칭될 수 있다.
하나의 예시에서, 제 1 배향 상태는 트위스트 배향 상태일 수 있다. 즉, 액정층은 외부 에너지 인가를 통해 트위스트 배향 및 상기 트위스트 배향과 다른 배향 상태의 사이를 스위칭할 수 있다.
하나의 예시에서, 액정층은 트위스트 배향 및 수직 배향 상태의 사이를 스위칭할 수 있다. 하나의 예시에서, 액정층은 전압이 인가되지 않은 상태에서 수직 배향 상태일 수 있고, 전압이 인가된 상태에서 트위스트 배향 상태일 수 있다.
본 명세서에서 『수직 배향 상태』는 액정층 내의 액정 화합물의 방향자가 액정층의 평면에 대하여 대략 수직하게 배열된 상태이고, 예를 들면, 액정층의 평면에 대하여 액정 화합물의 방향자가 이루는 각도는, 예를 들어, 약 80도 내지 100도 또는 85도 내지 95도의 범위 내이거나, 대략 약 90도를 이룰 수 있다.
본 명세서에서 『트위스트 배향 상태』는 액정층 내에서 액정 화합물들의 방향자가 가상의 나선축을 따라서 꼬이면서 층을 이루며 배향한 나선형의 구조를 의미할 수 있다. 트위스트 배향 상태는, 수직, 수평 또는 경사 배향 상태에서 구현될 수 있다. 즉, 수직 트위스트 배향 모드는 개개의 액정 화합물이 수직 배향된 상태로 나선축을 따라 꼬이면서 층을 이루는 상태이고, 수평 트위스트 배향 모드는 개개의 액정 화합물이 수평 배향된 상태로 나선축을 따라 꼬이면서 층을 이루는 상태이며, 경사 트위스트 배향 모드는 개개의 액정 화합물이 경사 배향된 상태로 나선축을 따라 꼬이면서 층을 이루는 상태이다. 본 출원에 따르면 트위스트 배향 상태는 수평 배향 상태의 트위스트 배향 상태일 수 있다.
트위스트 배향 상태에서 액정층의 두께(d)와 피치(p)의 비율(d/p)은 20 이하일 수 있고, 하한은 0.5 이상일 수 있다. 트위스트 배향 상태에서 두께(d)와 피치(p)의 비율(d/p)이 상기 범위 내인 경우, 광학 디바이스는 편광자를 포함하지 않은 상태에서도 우수한 광 투과도 가변 특성을 나타낼 수 있다. 통상적으로 상기 비율 d/p가 0.7 이상이고, 2.5 미만인 경우, STN(Super Twisted Nematic) 모드로 호칭할 수 있고, 상기 비율 d/p가 2.5 이상인 경우, HTN(Highly Twisted Nematic) 구동 모드로 호칭할 수 있다.
액정층의 피치(p)는 Wedge cell을 이용한 계측 방법으로 측정할 수 있고, 구체적으로는 D. Podolskyy 등의 Simple method for accurate measurements of the cholesteric pitch using a "stripe-wedge Grandjean-Cano cell (Liquid Crystals, Vol. 35, No. 7, July 2008, 789-791)에 기재된 방식으로 측정할 수 있다. 상기 비율(d/p)은, 액정층 내에 키랄 도펀트(chiral dopant)를 적정량 도입함으로써 달성할 수 있다.
액정층은 키랄 도펀트를 더 포함할 수 있다. 액정층이 키랄제를 포함하는 경우 트위스트 배향 상태를 구현할 수 있다. 액정층에 포함될 수 있는 키랄제(chiral agent 혹은 chiral dopant)로는, 액정성, 예를 들면, 네마틱 규칙성을 손상시키지 않고, 목적하는 회전(twisting)을 유도할 수 있는 것이라면, 특별히 제한되지 않고 사용될 수 있다. 액정 화합물에 회전을 유도하기 위한 키랄제는 분자 구조 중에 키랄리티(chirality)를 적어도 포함할 필요가 있다. 키랄제로는, 예를 들면, 1개 또는 2개 이상의 비대칭 탄소(asymmetric carbon)를 가지는 화합물, 키랄 아민 또는 키랄 술폭시드 등의 헤테로원자 상에 비대칭점(asymmetric point)이 있는 화합물 또는 크물렌(cumulene) 또는 비나프톨(binaphthol) 등의 축부제를 가지는 광학 활성인 부위(axially asymmetric, optically active site)를 가지는 화합물이 예시될 수 있다. 키랄제는 예를 들면 분자량이 1,500 이하인 저분자 화합물일 수 있다. 키랄제로는, 시판되는 키랄 네마틱 액정, 예를 들면, Merck사에서 시판되는 키랄 도판트 액정 S-811 또는 BASF사의 LC756 등을 사용할 수도 있다.
키랄 도펀트의 적용 비율은, 목적하는 상기 비율(d/p)을 달성할 수 있도록 선택된다. 일반적으로 키랄 도펀트의 함량(중량%)은 100/ HTP (Helixcal Twisting power) × 피치(p)(nm)의 수식으로 계산될 수 있다. 상기 HTP는 키랄 도펀트의 꼬임의 세기를 나타내며, 상기 방식을 참조하여 목적하는 피치를 고려하여 키랄 도펀트의 함량이 결정될 수 있다.
상기 액정 소자 필름(10)은 상기 제 1 및 제 2 기재층 사이에서 간격을 유지하는 스페이서(14)를 포함할 수 있다. 스페이서(14)에 의해 제 1 기재층과 제 2 기재층의 사이의 간격을 유지할 수 있다. 제 1 기재층과 제 2 기재층의 사이에 스페이서가 존재하지 않는 영역에는 액정층이 존재할 수 있다.
스페이서는 패턴화된 스페이서일 수 있다. 스페이서는 기둥 형상(column) 또는 격벽 형상(partition wall)을 가질 수 있다. 격벽은 제 2 기재층과 제 1 기재층 사이의 공간을 2개 이상의 공간으로 구획할 수 있다. 스페이서가 존재하지 않는 영역에는 제 2 기재층에 존재하는 다른 필름이나 다른 층이 노출되어 있을 수 있다. 예를 들어, 스페이서가 존재하지 않는 영역에는 도전층이 노출되어 있을 수 있다. 배향막은 스페이서 및 스페이서가 존재하지 않는 영역에 노출된 도전층을 덮고 있을 수 있다. 제 1 기재층과 제 2 기재층이 합착된 액정 소자 필름에 있어서, 제 2 기재층의 스페이서 상부에 존재하는 배향막과 제 1 기재층의 점착제층이 서로 접하고 있을 수 있다.
제 1 기재층과 제 2 기재층 사이의 스페이서가 존재하지 않는 영역에는 액정 화합물 및 전술한 첨가제, 예를 들어 이색성 염료, 키랄제 등이 존재할 수 있다. 스페이서의 형상은 특별히 제한되지 않고, 예를 들어, 원, 타원 그 밖의 다각형 형상 다면을 가지도록 제한없이 적용될 수 있다.
스페이서는 경화성 수지를 포함할 수 있다. 경화성 수지의 종류는 특별히 제한되지 않고, 예를 들어 열 경화성 수지 또는 광 경화성 수지, 예를 들어 자외선 경화성 수지를 사용할 수 있다. 열 경화성 수지로는, 예를 들어 실리콘 수지, 규소 수지, 프란 수지, 폴리우레탄 수지, 에폭시 수지, 아미노 수지, 페놀 수지, 요소 수지, 폴리에스테르 수지 또는 멜라민 수지 등을 사용할 수 있으나 이에 제한되는 것은 아니다. 자외선 경화성 수지로는 대표적으로 아크릴 중합체, 예를 들어, 폴리에스테르 아크릴레이트 중합체, 폴리스티렌 아크릴레이트 중합체, 에폭시 아크릴레이트 중합체, 폴리우레탄 아크릴레이트 중합체 또는 폴리부타디엔 아크릴레이트 중합체, 실리콘 아크릴레이트 중합체 또는 알킬 아크릴레이트 중합체 등을 사용할 수 있으나 이에 제한되는 것은 아니다.
스페이서는 패터닝 공정에 의해 형성될 수 있다. 예를 들어, 스페이서는 포토리소그래피 공정에 의해 형성될 수 있다. 포토리소그래피 공정은 경화성 수지 조성물을 기재층 또는 도전층 상에 도포한 후 패턴 마스크를 매개로 자외선을 조사하는 공정을 포함할 수 있다. 패턴 마스크는 자외선 투과 영역과 자외선 차단 영역으로 패터닝되어 있을 수 있다. 포토리소그래피 공정은 자외선이 조사된 경화성 수지 조성물을 워싱(washing) 하는 공정을 더 포함할 수 있다. 자외선이 조사된 영역은 경화되고, 자외선이 조사되지 않은 영역은 액상으로 남아 있으므로 워싱 공정을 통하여 제거함으로써, 격벽 형상으로 패터닝할 수 있다. 포토리소그래피 공정에 있어서, 자외선 조사 후, 수지 조성물과 패턴 마스크를 용이하게 분리 하기 위하여 패턴 마스크에 이형 처리를 수행하거나 또는 이형지를 수지 조성물의 층과 패턴 마스크 사이에 위치시킬 수도 있다.
스페이서의 너비(선폭), 간격(피치), 두께, 면적은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 예를 들어, 스페이서의 너비(선폭)는 10㎛ 내지 500㎛ 범위 또는 10㎛ 내지 50㎛ 범위 내일 수 있다. 스페이서의 간격(피치)은 10㎛ 내지 1000㎛ 범위 또는 100㎛ 내지 1000㎛ 범위 내일 수 있다. 스페이서의 면적은 제 2 기재층의 전체 면적 100%에 대하여, 약 5% 이상일 수 있고, 50% 이하일 수 있다. 스페이서의 면적이 상기 범위 내인 경우, 제 1 기재층과 제 2 기재층의 부착력을 적절히 확보하면서 우수한 전기 광학 특성을 확보하는데 유리할 수 있다. 스페이서의 두께는 예를 들어, 1㎛ 내지 30㎛ 또는 3㎛ 내지 20㎛ 범위일 수 있다.
상기 스페이서는 광학 밀도(Optical Density)가 1,1 내지 4의 범위내로 측정되는 스페이서일 수 있다. 상기 광학 밀도는 상기 스페이서에 대한 투과율(transmittance, 단위:%)을 측정한 후에 이를 광학 밀도의 수식(광학 밀도= -log10(T), T는 상기 투과율)에 대입하여 구할 수 있다. 한편, 스페이서에 대한 투과율을 측정하는 방법은 특별히 제한되지 않으며, 공지의 방법으로 측정할 수 있다. 일예로 x-rite사의 341C를 이용하여 스페이서의 투과율을 측정할 수 있다.
광의 투과율, 색상 및/또는 반사도를 조절할 수 있는 광학 디바이스에서 스페이서가 존재하는 영역은 광학적으로 비활성 영역이 되는데, 본 출원에서는 상기 언급된 광학 밀도의 스페이서의 적용을 통해 디바이스 구동 시에 빛샘 등의 발생을 방지하고, 균일한 광학 성능을 확보할 수 있다.
하나의 예로서, 상기 액정 소자 필름(10)은 도전층(12)을 추가로 포함할 수 있다. 상기 도전층은 제 1 및 제 2 기재층(11a, 11b) 상에 각각 형성될 수 있다. 또한, 상기 도전층은 기재층의 액정층(16)을 향하는 면상에 형성될 수 있다.
상기 도전층(12)은 액정층에 전압을 인가하기 위한 구성으로 특별히 제한 없이 공지의 도전층이 적용될 수 있다. 도전층으로는 예를 들면, 도전성 고분자, 도전성 금속, 도전성 나노와이어, ITO(Indium Tin Oxide) 등의 금속 산화물, 탄소나노튜브 또는 그래핀 등이 적용될 수 있다. 본 출원에서 적용될 수 있는 도전층의 예는 상기에 제한되지 않으며, 이 분야에서 액정 소자 필름에 적용될 수 있는 것으로 알려진 모든 종류의 도전층이 사용될 수 있다.
하나의 예로서 상기 액정 소자 필름은 제 1 기재층(11a)의 액정층을 향하는 면상에 위치하는 도전층(12)과 상기 액정층(16) 사이에 위치하는 점착제층을 추가로 포함할 수 있다.
점착제층은 광학적으로 투명할 수 있다. 상기 점착제층은 가시광 영역, 예를 들어, 380 nm 내지 780 nm 파장에 대한 평균 투과도가 약 80% 이상, 85% 이상, 90% 이상 또는 95% 이상일 수 있다.
점착제층은 액정 배향성 점착제층일 수 있다. 점착제층은, 예를 들어, 수직 배향성 점착제층이거나 또는 수평 배향성 점착제층일 수 있다. 본 명세서에서 『수직 배향성 점착제』는 인접하는 액정 화합물에 대해 수직 배향력을 부여함과 동시에 제 1 기재층과 제 2 기재층을 접착시킬 수 있는 부착력을 갖는 점착제를 의미할 수 있다. 본 명세서에서 『수평 배향성 점착제』는 인접하는 액정 화합물에 대해 수평 배향력을 부여함과 동시에 제 1 기재층과 제 2 기재층을 접착시킬 수 있는 부착력을 가지고 있는 점착제를 의미할 수 있다. 수직 배향성 점착제에 대한 인접하는 액정 화합물의 프리틸트 각이 80도 내지 90도, 85도 내지 90도 또는 약 87도 내지 90도 범위 내일 수 있고, 수평 배향성 점착제에 대한 인접하는 액정 화합물의 프리틸트 각이 0도 내지 10도, 0도 내지 5도 또는 0도 내지 3도 범위 내일 수 있다.
본 명세서에서 프리틸트 각도는 전압이 인가되지 않은 상태에서 액정 화합물의 방향자가 액정 배향성 점착제 또는 배향막과 수평한 면에 대하여 이루는 각도를 의미할 수 있다. 본 명세서에서 액정 화합물의 방향자는 액정층의 광축(Optical axis) 또는 지상축(Slow axis)을 의미할 수 있다. 또는 액정 화합물의 방향자는 액정 화합물이 막대(rod) 모양인 경우 장축 방향을 의미할 수 있고, 액정 화합물이 원판(discotic) 모양인 경우 원판 평면의 법선 방향과 평행한 축을 의미할 수 있다.
점착제층의 두께는 예를 들어 3㎛ 내지 15㎛ 범위 내일 수 있다. 점착제층의 두께가 상기 범위 내인 경우 제 1 기재층과 제 2 기재층의 부착력을 확보하면서 액정 소자 필름의 제조에 사용될 때, 점착제의 눌림이나 몰림 등의 불량을 최소화하는데 유리할 수 있다.
점착제층으로는 업계에서 소위 OCA(Optically Clear Adhesive)로 공지된 다양한 유형의 점착제를 적절히 사용할 수 있다. 상기 점착제는 부착 대상이 합착되기 전에 경화된다는 점에서 부착 대상이 합착된 후에 경화되는 OCR(Optically Clear Resin) 유형의 접착제와 다를 수 있다. 상기 점착제로는 예를 들면, 아크릴계, 실리콘계, 에폭시계 또는 우레탄계의 점착제가 적용될 수 있다.
점착제층은 점착성 수지의 경화물을 포함할 수 있다. 하나의 예시에서, 점착제층은 실리콘계 점착제를 포함할 수 있다. 실리콘계 점착제는 점착성 수지로서 경화성 실리콘 화합물의 경화물을 포함할 수 있다.
경화성 실리콘 화합물의 종류는 특별히 제한되지 않으며, 예를 들어 가열 경화성 실리콘 화합물 또는 자외선 경화형 실리콘 화합물을 사용할 수 있다. 상기 경화성 실리콘 화합물은 점착성 수지로 호칭될 수 있다.
하나의 예시에서, 경화성 실리콘 화합물은 부가 경화형 실리콘 화합물일 수 있다.
구체적으로, 상기 부가 경화형 실리콘 화합물은 (1) 분자 중에 2개 이상의 알케닐기를 함유하는 오르가노폴리실록산 및 (2) 분자 중에 2개 이상의 규소결합 수소원자를 함유하는 오르가노폴리실록산 등이 예시될 수 있으나 이에 제한되는 것은 아니다. 상기와 같은 실리콘 화합물은, 예를 들면, 후술하는 촉매의 존재 하에서, 부가 반응에 의하여 경화물을 형성할 수 있다.
본 출원에서 사용할 수 있는 상기 (1) 오르가노폴리실록산의 보다 구체적인 예로는, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸비닐실록산 공중합체, 분자쇄 양말단 트리메틸실록산기 봉쇄 메틸비닐폴리실록산, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸비닐실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸폴리실록산, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 메틸비닐폴리실록산, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸실록산-메틸비닐실록산 공중합체, 분자쇄 양말단 디메틸비닐실록산기 봉쇄 디메틸실록산-메틸비닐실록산-메틸페닐실록산 공중합체, R12SiO1/2로 표시되는 실록산 단위와 R12R2SiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R12R2SiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R1R2SiO2/2로 표시되는 실록산 단위와 R1SiO3/2로 표시되는 실록산 단위 또는 R2SiO3/2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체 및 상기 중 2 이상의 혼합물을 들 수 있으나, 이에 제한되는 것은 아니다. 상기에서, R1은 알케닐기 외의 탄화수소기로서, 구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등일 수 있다. 또한, 상기에서 R2는 알케닐기로서, 구체적으로는 비닐기, 알릴기, 부테닐기, 펜테닐기, 헥세닐기 또는 헵테닐기 등일 수 있다.
본 출원에서 사용할 수 있는 상기 (2) 오르가노폴리실록산의 보다 구체적인 예로는, 분자쇄 양말단 트리메틸실록산기 봉쇄 메틸하이드로젠폴리실록산, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸하이드로젠 공중합체, 분자쇄 양말단 트리메틸실록산기 봉쇄 디메틸실록산-메틸하이드로젠실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 디메틸폴리실록산, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 디메틸실록산-메틸페닐실록산 공중합체, 분자쇄 양말단 디메틸하이드로젠실록산기 봉쇄 메틸페닐폴리실록산, R13SiO1/2로 표시되는 실록산 단위와 R12HSiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R12HSiO1/2로 표시되는 실록산 단위와 SiO4/2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체, R1HSiO2/2로 표시되는 실록산 단위와 R1SiO3/2로 표시되는 실록산 단위 또는 HSiO3/2로 표시되는 실록산 단위를 포함하는 오르가노폴리실록산 공중합체 및 상기 중 2 이상의 혼합물을 들 수 있으나, 이에 제한되는 것은 아니다. 상기에서, R1은 알케닐기 외의 탄화수소기로서, 구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 또는 헵틸기 등의 알킬기; 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등의 아릴기; 벤질기 또는 페넨틸기 등의 아랄킬기; 클로로메틸기, 3-클로로프로필기 또는 3,3,3-트리플루오로프로필기 등의 할로겐 치환 알킬기 등일 수 있다.
점착제층이 수직 배향성 점착제층인 경우 표면 에너지는 16 mN/m 이하일 수 있다. 상기 표면 에너지의 하한은 예를 들어 5 mN/m 이상일 수 있다. 점착제층이 수평 배향성 점착제층인 경우 표면 에너지는 16 mN/m 초과일 수 있다. 상기 표면 에너지의 상한은 예를 들어 50 mN/m 이하일 수 있다. 표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정할 수 있다. 구체적으로 점착제의 표면에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구하였다. 샘플의 표면 에너지(γsurface)는 무극성 분자간의 분산힘과 극성 분자간의 상호 작용힘이 고려되어(γsurface = γdispersion + γpolar) 계산될 수 있는데, 상기 표면 에너지 γsurface에서 polar term(γpolar)의 비율을 그 표면의 극성도(polarity)로 정의할 수 있다.
액정 소자 필름의 제 1 기재층과 제 2 기재층은 점착제층에 의해 부착되어 있을 수 있다. 구체적으로, 제 1 기재층의 점착제층과 제 2 기재층의 스페이서가 부착되어 있을 수 있다. 제 2 기재층의 스페이서 상에 배향막이 형성되어 있는 경우, 배향막의 스페이서에 대응하는 영역이 제 1 기재층의 점착제층과 부착되어 있을 수 있다.
하나의 예로서, 상기 점착제층은 저장 탄성률(storage modulus)이 10 MPa 이하일 수 있다. 다른 예로 약 9.5 MPa 이하, 9 MPa 이하, 8.5 MPa 이하 또는 약 2 MPa 이하일 수 있으며, 약 0.005 MPa 이상, 0.006 MPa 이상, 0.007 MPa 이상, 0.008 MPa 이상, 0.009 MPa 이상, 0.01 MPa 이상, 0.05 MPa 이상 또는 약 0.1 MPa 이상 일 수 있다. 액정 소자 필름의 물성적 한계를 극복하고자 액정 소자 필름의 양면에 중간층을 매개로 외곽 기판을 합착할 수 있는데, 점착제층의 낮은 모듈러스로 인해, 외부 압력에 취약하여, 상기 합착 과정에서 셀갭의 무너짐이나 액정의 유동, 몰림 등과 같은 불량이 발생할 수 있다. 본 발명에 따르면 후술하는 바와 같이 광학 디바이스에 포함되는 중간층의 두께를 제어함으로써 상기 불량을 최소화할 수 있고 광학 디바이스의 구조적 안정성 및 품질의 균일도를 확보할 수 있다.
하나의 예로서, 상기 액정 소자 필름은 배향막(15)을 추가로 포함할 수 있다. 배향막은 수직 배향막 또는 수평 배향막일 수 있다. 본 명세서에서 『수평 배향막』은 인접하는 액정층 내에 존재하는 액정 화합물에 대한 수평 배향력을 부여하는 배향성 물질을 포함하는 층을 의미할 수 있다. 본 명세서에서 『수직 배향막』은 인접하는 액정층 내에 존재하는 액정 화합물에 대한 수직 배향력을 부여하는 배향성 물질을 포함하는 층을 의미할 수 있다. 수직 배향막에 대한 인접하는 액정 화합물의 프리틸트 각이 80도 내지 90도, 85도 내지 90도 또는 약 87도 내지 90도 범위 내일 수 있고, 수평 배향막에 대한 인접하는 액정 화합물의 프리틸트 각이 0도 내지 10도, 0도 내지 5도 또는 0도 내지 3도 범위 내일 수 있다. 배향막은 점착제층과 달리 제 1 기재층과 제 2 기재층을 접착시키는 접착력을 갖지 않을 수 있다. 하나의 예시에서, 배향막은 도 1의 액정 소자 필름의 상태에서 제 1 기재층에 대한 박리력이 0에 가까울 수 있다.
배향막은 러빙 배향막 또는 광배향막일 수 있다. 배향막의 배향 방향은 러빙 배향막의 경우는 러빙 방향, 광배향막인 경우는 조사되는 편광의 방향일 수 있는데, 이러한 배향 방향은, 흡수형 선형 편광자를 사용한 검출 방식으로 확인할 수 있다. 구체적으로 액정층에 포함되는 액정 화합물을 수평 배향시킨 상태에서 상기 액정층의 일면에 흡수형 선형 편광자를 배치하고, 상기 편광자를 360도 회전시키면서 투과율을 측정함으로써 배향 방향을 확인할 수 있다. 상기 상태에서 액정층 또는 흡수형 선형 편광자 측으로 광을 조사하면서 다른 측에서 휘도(투과율)를 측정하는 경우, 상기 흡수축 또는 투과축과 액정 배향막의 배향 방향이 일치하는 경우에 투과율이 낮게 되는 경향을 보이는데, 적용된 액정 화합물의 굴절률 이방성 등을 반영한 모사(simulation)를 통해 배향 방향을 확인할 수 있다. 액정층의 모드에 따라서 배향 방향을 확인하는 방식은 공지이며, 본 출원에서는 이러한 공지의 방식으로 배향막의 배향 방향을 확인할 수 있다.
배향막으로는 폴리이미드(polyimide) 화합물, 폴리비닐알코올(poly(vinyl alcohol)) 화합물, 폴리아믹산(poly(amic acid)) 화합물, 폴리스티렌(polystylene) 화합물, 폴리아미드(polyamide) 화합물 및 폴리옥시에틸렌(polyoxyethylene) 화합물 등과 같이 러빙 배향에 의해 배향능을 나타내는 것으로 공지된 물질이나, 폴리이미드(polyimide) 화합물, 폴리아믹산(polyamic acid) 화합물, 폴리노르보넨(polynorbornene) 화합물, 페닐말레이미드 공중합체(phenylmaleimide copolymer) 화합물, 폴리비닐신나메이트(polyvinylcinamate) 화합물, 폴리아조벤젠(polyazobenzene) 화합물, 폴리에틸렌이민(polyethyleneimide) 화합물, 폴리비닐알콜(polyvinylalcohol) 화합물, 폴리아미드(polyimide) 화합물, 폴리에틸렌(polyethylene) 화합물, 폴리스타일렌(polystylene) 화합물, 폴리페닐렌프탈아미드(polyphenylenephthalamide) 화합물, 폴리에스테르(polyester) 화합물, CMPI(chloromethylated polyimide) 화합물, PVCI(polyvinylcinnamate) 화합물 및 폴리메틸 메타크릴레이트(polymethyl methacrylate) 화합물 등과 같이 광조사에 의해 배향능을 나타낼 수 있는 것으로 공지된 물질로 이루어진 군에서 선택된 하나 이상을 포함할 수 있으나, 이에 제한되지는 않는다.
하나의 예로서, 상기 배향막(15)은 제 2 기재층(11b)의 액정층을 향하는 면상에 위치하는 도전층(12) 상에 위치할 수 있다. 구체적으로 제 1 기재층(11a)의 면상에 위치하는 도전층(12) 및 액정층 사이에 점착제층(13)이 위치하는 경우, 배향막은 제 2 기재층(11b)의 면상에 위치하는 도전층(12) 상에 위치할 수 있다. 이때 전술한 스페이서(14)는 제 2 기재층(11b)의 면상에 위치하는 도전층(12)상에 패턴화된 구조로 형성되고, 상기 패턴화된 스페이서가 형성된 도전층 상에 배향막이 위치할 수 있다. 도전층 상에 점착제층이 형성된 기재층과, 도전층 상에 스페이서 및 배향막이 형성된 기재층을 합작하여 도 1과 같은 구조를 가지는 액정 소자 필름(10)을 제조할 수 있다. 한편, 제 1 기재층(11a)의 면상에 위치하는 도전층(12) 및 액정층 사이에 위치하는 점착제층은 액정 배향성을 가질 수 있기 때문에, 제 1 기재층의 액정층을 향하는 면상에는 배향막을 포함하지 않을 수 있다.
상기와 같이 제 1 기재층 상에 형성된 도전층이 점착제층을 매개로 제 2 기재층 상에 형성된 스페이서와 접하는 구조는, 액정 소자 필름을 구성하는 요소간의 접착력을 향상시킬 수 있고, 따라서 액정 소자 필름을 구성하는 요소간의 박리를 방지하여 구조적 안정성을 향상 시킬 수 있다.
하나의 예로서 상기 제 1 기재층 및 제 2 기재층의 간격이 유지된 상태로 상기 제 1 기재층 및 제 2 기재층을 부착시킬 수 있는 실런트(17)를 추가로 포함할 수 있다. 상기 실런트의 재료는 특별히 제한 없이 공지의 소재가 사용될 수 있다.
본 출원의 광학 디바이스는 전술한 액정 소자 필름을 포함한다. 도 2는 본 출원의 일예시에 따른 광학 디바이스의 단면도이다. 도 2에 나타난 바와 같이, 본 출원의 예시적인 광학 디바이스는 제 1 외곽 기판(20a), 제 1 외곽 기판과 대향 배치되는 제 2 외곽 기판(20b), 상기 제 1 및 제 2 외곽 기판 사이에 위치하는 상기 액정 소자 필름(10), 및 상기 제 1외곽 기판과 액정 소자 필름 사이, 상기 액정 소자 필름과 제 2 외곽기판 사이에 각각 위치하는 중간층(30)을 포함하다. 상기 제 1 및 제 2의 표현은 외곽 기판의 선후 내지는 상하 관계를 규정하는 것은 아니다.
하나의 예로서, 상기 제 1 및 제 2 외곽 기판으로는 예를 들면, 각각 독립적으로 무기 기판 또는 플라스틱 기판이 사용될 수 있다.
상기 무기 기판으로는 특별히 제한되지 않고 공지의 무기 기판을 이용할 수 있다. 일예로 무기 기판으로는 광투과성이 우수한 유리 기판을 이용할 수 있다. 상기 유리 기판으로는 예로서, 소다라임 유리 기판, 일반 강화 유리 기판, 붕규산 유리 기판 또는 무알칼리 유리 기판 등이 사용될 수 있지만, 이에 제한되는 것은 아니다.
상기 플라스틱 기판으로는 TAC(triacetyl cellulose) 또는 DAC(diacetyl cellulose) 등과 같은 셀룰로오스 필름; 노르보르넨 유도체 등의 COP(cyclo olefin copolymer) 필름; PAR(Polyacrylate) 또는 PMMA(poly(methyl methacrylate) 등의 아크릴 필름; PC(polycarbonate) 필름; PE(polyethylene) 또는 PP(polypropylene) 등의 폴리올레핀 필름; PVA(polyvinyl alcohol) 필름; PI(polyimide) 필름; PSF(polysulfone) 필름, PPS(polyphenylsulfone) 필름 또는 PES(polyethersulfone) 필름 등의 설폰계 필름; PEEK(polyetheretherketon) 필름; PEI(polyetherimide) 필름; PEN(polyethylenenaphthatlate) 필름 또는 PET(polyethyleneterephtalate) 필름 등의 폴리에스테르계 필름; 또는 불소 수지 필름 등이 사용될 수 있지만, 이에 제한되는 것은 아니다.
제 1 및 제 2 외곽 기판(20a, 20b)에는 필요에 따라서 금; 은; 또는 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 기능층이 존재할 수도 있다.
상기 제 1 및 제 2 외곽 기판(20a, 20b)의 두께는 특별히 제한되지 않으며, 예를 들면 각각 약 0.3mm 이상일 수 있다. 다른 예시에서 상기 두께는 약 0.5 mm 이상, 1 mm 이상, 1.5 mm 이상 또는 약 2 mm 이상일 수 있고, 약 10 mm 이하, 9 mm 이하, 8 mm 이하, 7 mm 이하, 6 mm 이하, 5 mm 이하, 4 mm 이하 또는 약 3 mm 이하일 수도 있다.
하나의 예로서 상기 제 1 및 제 2 외곽 기판(20a, 20b)은 평평(flat)한 기판이거나 혹은 곡면 형상을 가지는 기판일 수 있다. 예를 들면, 상기 제 1 및 제 2 외곽 기판은 동시에 평편한 기판이거나, 동시에 곡면 형성을 가지거나, 혹은 어느 하나는 평편한 기판이고 다른 하나는 곡면 형상의 기판일 수 있다.
또한, 상기에서 동시에 곡면 형상을 가지는 경우에는 각각의 곡률 또는 곡률 반경은 동일하거나 상이할 수 있다.
본 명세서에서 곡률 또는 곡률 반경은 업계에서 공지된 방식으로 측정할 수 있으며, 예를 들면, 2D Profile Laser Sensor (레이저 센서), Chromatic confocal line sensor (공초점 센서) 또는 3D Measuring Confocal Microscopy 등의 비접촉식 장비를 이용하여 측정할 수 있다. 이러한 장비를 사용하여 곡률 또는 곡률 반경을 측정하는 방식은 공지이다.
또한, 상기 제 1 및 제 2 외곽 기판과 관련해서 예를 들어, 표면과 이면에서의 곡률 또는 곡률 반경이 다른 경우에는 각각 마주보는 면의 곡률 또는 곡률 반경, 즉 제 1 외곽 기판의 경우 제 2 외곽 기판과 대향하는 면의 곡률 또는 곡률 반경과, 제 2 외곽 기판의 경우 제 1 외곽 기판과 대향하는 면의 곡률 또는 곡률 반경이 기준이 될 수 있다. 또한, 해당 면에서의 곡률 또는 곡률 반경이 일정하지 않고, 상이한 부분이 존재하는 경우에는 가장 큰 곡률 또는 곡률 반경이 기준이 되거나, 가장 작은 곡률 또는 곡률 반경이 기준일 될 수 있고, 또는 평균 곡률 또는 평균 곡률 반경이 기준이 될 수 있다.
상기 제 1 및 제 2 외곽 기판(20a, 20b)은 양자가 곡률 또는 곡률 반경의 차이가 약 10% 이내, 9% 이내, 8% 이내, 7% 이내, 6% 이내, 5% 이내, 4% 이내, 3% 이내, 2% 이내 또는 약 1% 이내일 수 있다. 상기 곡률 또는 곡률 반경의 차이는 큰 곡률 또는 곡률 반경을 CL이라고 하고, 작은 곡률 또는 곡률 반경을 CS라고 할 때에 100×(CL-CS)/CS로 계산되는 수치이다. 또한, 상기 곡률 또는 곡률 반경의 차이의 하한은 특별히 제한되지 않는다. 제 1 및 제 2 외곽 기판의 곡률 또는 곡률 반경의 차이는 동일할 수 있기 때문에, 상기 곡률 또는 곡률 반경의 차이는 약 0 % 이상이거나, 약 0 % 초과일 수 있다.
상기와 같은 곡률 또는 곡률 반경의 제어는 본 출원의 광학 디바이스와 같이 액정 소자 필름 및/또는 후술하는 편광자가 중간층과 접하는 구조에 있어서 유용하다. 즉 곡률 또는 곡률 반경이 10% 초과하는 경우에는 후술하는 중간층으로 외곽 기판과 액정 소자 필름 및/또는 편광자를 접하는 경우, 합착한 외곽 기판이 합착력 저하로 벌어지는 문제가 발생될 수 있다. 그러나 10% 이내로 제어하는 경우, 합착한 외곽 기판이 합착력 저하로 인해 벌어지는 문제를 효율적으로 방지할 수 있다.
제 1 및 제 2 외곽 기판은 양자의 곡률이 동일 부호일 수 있다. 다시 말하면, 상기 제 1 및 제 2 외곽 기판은 모두 동일한 방향으로 굴곡되어 있을 수 있다. 즉, 상기 경우는 제 1 외곽 기판의 곡률 중심과 제 2 외곽 기판의 곡률 중심이 모두 제 1 및 제 2 외곽 기판의 상부 및 하부 중에서 같은 부분에 존재하는 경우이다.
제 1 및 제 2 외곽 기판이 동일한 방향으로 굴곡되어 있는 경우, 제 1 및 제 2 외곽 기판을 중간층으로 보다 효율적으로 접착 시킬 수 있으며, 접착 후 제 1 및 제 2 외곽기판과 액정 소자 필름 및/또는 편광자의 합착력 저하를 보다 효율적으로 방지할 수 있다.
제 1 및 제 2 외곽 기판(20a, 20b)은 각각의 곡률 또는 곡률 반경의 구체적인 범위가 특별히 제한되지 않는다. 일 예시에서 상기 제 1 및 제 2 외곽 기판은 각각 곡률 반경이 약 100R 이상, 200R 이상, 300R 이상, 400R 이상, 500R 이상, 600R 이상, 700R 이상, 800R 이상 또는 약 900R 이상이거나, 약 10,000R 이하, 9,000R 이하, 8,000R 이하, 7,000R 이하, 6,000R 이하, 5,000R 이하, 4,000R 이하, 3,000R 이하, 2,000R 이하, 1,900R 이하, 1,800R 이하, 1,700R 이하, 1,600R 이하, 1,500R 이하, 1,400R 이하, 1,300R 이하, 1,200R 이하, 1,100R 이하 또는 약 1,050R 이하일 수 있다. 상기에서 R은 반지름이 1 mm인 원의 휘어진 정도를 의미한다. 따라서, 상기에서 예를 들어, 100R은 반지름이 100mm인 원의 휘어진 정도 또는 그러한 원에 대한 곡률 반경이다.
제 1 및 제 2 외곽 기판은 상기 범위에서 동일하거나 상이한 곡률 반경을 가질 수 있다. 일 예시에서 제 1 및 제 2 외곽 기판의 곡률이 서로 다른 경우에, 그 중에서 곡률이 큰 기판의 곡률 반경이 상기 범위 내일 수 있다.
일 예시에서 제 1 및 제 2 외곽 기판의 곡률이 서로 다른 경우에는 그 중에서 곡률이 큰 기판이 광학 디바이스의 사용 시에 보다 중력 방향으로 배치되는 기판일 수 있다.
제 1 및 제 2 기판의 곡률 또는 곡률 반경을 위와 같이 제어하게 되면, 후술하는 중간층에 의한 합착력이 떨어지게 되어도 복원력과 중력의 합인 알짜힘이 작용하여 벌어짐을 막아줄 수 있다.
본 출원의 일예에 따른 광학 디바이스는, 상기 제 1 및 제 2 외곽 기판(20a, 20b) 사이에는 액정 소자 필름(10)이 위치하고, 상기 제 1 외곽 기판과 액정 소자 필름 사이, 및 상기 액정 소자 필름과 제 2 외곽 기판 사이에 각각 위치하는 중간층(30)을 포함한다.
하나의 예로서, 상기 중간층은 총 두께의 합이 1,600 μm 이상이다. 다른예로 중간층은 총 두께의 합이 약 1,650 μm 이상, 1,700 μm 이상, 1,750 μm 이상, 1,800 μm 이상, 1,850 μm 이상, 1,900 μm 이상, 1,950 μm 이상, 2,000 μm 이상, 2,100 μm 이상, 2,150 μm 이상 또는 약 2,200 μm 이상일 수 있으며, 약 6,000 μm 이하, 5,900 μm 이하, 5,800 μm 이하, 5,700 μm 이하, 5,600 μm 이하, 5,500 μm 이하, 5,400 μm 이하, 5,300 μm 이하, 5,200 μm 이하, 5,100 μm 이하 또는 약 5,000 μm 이하일 수 있다.
상기 중간층은 각각 중간층 1장의 단층 구조를 갖거나 또는 2장 이상의 서브 중간층의 적층체일 수 있다. 서브 중간층의 두께 및 개수는 목적하는 중간층의 두께를 고려하여 제어될 수 있다.
상기 중간층의 총 두께의 합은, 제 1 외곽 기판과 액정 소자 필름 사이 및 제 2 외곽 기판과 액정 소자 필름 사이에 존재하는 중간층의 두께의 합을 의미한다.
일구체예로 도 2와 같이, 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 서브 중간층의 적층체의 두께와, 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 서브 중간층의 적층체의 두께는 그 합이 총 1,600 μm 이상이다. 다른 구체예로 제 1 외곽 기판과 액정 소자 필름 사이에 단층인 중간층의 두께와, 제 2 외곽 기판과 액정 소자 필름 사이에 단층인 중간층의 두께는, 그 합이 총 1,600 μm 이상이다.
액정 소자 필름의 물성적 한계를 극복하고자 액정 소자 필름의 양면에 중간층을 매개로 외곽 기판을 합착할 수 있는데, 점착제층의 낮은 모듈러스로 인해, 외부 압력에 취약하여, 상기 합착 과정에서 셀갭의 무너짐이나 액정의 유동, 몰림 등과 같은 불량이 발생할 수 있다. 광학 디바이스에 포함되는 중간층들의 두께를 상기 범위로 제어함으로써 상기 불량을 최소화할 수 있고, 광학 디바이스의 구조적 안정성 및 균일한 외관 특성을 확보할 수 있다.
중간층의 총 두께의 합이 1,600 μm 미만의 경우, 광학 디바이스의 액정 소자 필름에 도 3과 같은 눌림 불량이 발생하거나, 도 4와 같은 약 몰림 불량이 발생하거나, 또는 도 5와 같은 강 몰림 불량이 발생되는 등 외관 불량이 발생되어 광학 디바이스의 품질을 저하시킬 수 있다. 한편, 중간층의 총 두께의 합이 6,000 μm 을 초과하는 경우에는 광학 디바이스의 투과율 특성 등 전기 광학적 특성이 저하될 수 있다.
하나의 예로서, 상기 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Ta) 및 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Tb)는 각각 200 내지 3,000 μm의 범위내 일 수 있다. 다른예로 상기 Ta 및 Tb는 각각 약 210μm 이상, 220μm 이상, 230μm 이상, 240μm 이상, 250μm 이상, 260μm 이상, 270μm 이상, 280μm 이상, 290μm 이상, 300μm 이상, 310μm 이상, 320μm 이상, 330μm 이상, 340μm 이상, 350μm 이상 또는 약 300μm 이상일 수 있으며, 약 2,950μm 이하, 2,900μm 이하, 2,850μm 이하, 2,800μm 이하, 2,750μm 이하, 2,700μm 이하, 2,650μm 이하, 또는 약 2,600μm 이하일 수 있다.
상기 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Ta)의 합은, 제 1 외곽 기판과 액정 소자 필름 사이에 존재하는 모든 중간층의 두께의 합을 의미한다. 또한, 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Tb)의 합은 제 2 외곽 기판과 액정 소자 필름 사이에 존재하는 모든 중간층의 두께의 합을 의미한다. 따라서, 후술하는 상기 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 제 1 편광자; 및 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 제 2 편광자를 포함하고, 제 1 편광자와 액정 소자 필름 사이, 및 상기 제 2 편광자와 액정 소자 필름 사이에 중간층이 포함되는 경우, 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Ta)의 합은, 제 1 외곽 기판과 제1 편광자 사이에 위치하는 중간층, 및 제 1편광자와 액정 소자 필름 사이에 위치하는 중간층의 두께의 합을 의미하고, 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Ta)의 합은, 제 2 외곽 기판과 제2 편광자 사이에 위치하는 중간층, 및 제 2 편광자와 액정 소자 필름 사이에 위치하는 중간층의 두께의 합을 의미한다.
제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Ta) 및 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Tb)가 각각 200 내지 3,000 μm의 범위를 만족하는 경우 액정 소자 필름의 외관 불량을 개선하는데 보다 유리할 수 있다.
하나의 예로서, 상기 제 1 외곽 기판(20a)과 액정 소자 필름(10) 사이에 위치하는 중간층(30)의 총 두께(Ta) 대비 상기 제 2 외곽 기판(20b)과 액정 소자 필름(10) 사이에 위치하는 중간층(30)의 총 두께(Tb)의 두께 비율(Ta/Tb)은 0.1 내지 10의 범위내일 수 있다. 다른 예로 상기 두께 비율(Ta/Tb)은 약 0.12 이상, 약 0.13 이상 또는 약 0.14 이상 일 수 있으며 약 9.5 이하, 9.0 이하, 8.5 이하, 8.0 이하, 7.5 이하 또는 약 7.0 이하일 수 있다. 상기 두께 비율이 0.1 내지 10의 범위 내인 경우, 보다 효과적으로 액정 소자 필름의 외관 불량을 개선할 수 있다.
하나의 예로서, 상기 중간층(30)은 영률(Young's modulus, E)이 0.1 MPa 내지 100 MPa 범위 내일 수 있다. 다른예로 중간층의 영률(E)은 약 0.2 MPa 이상, 0.4 MPa 이상, 0.6 MPa 이상, 0.8 MPa 이상, 1 MPa 이상, 5 MPa 이상 또는 약 10 MPa 이상일 수 있으며, 약 95 MPa 이하, 80 MPa 이하, 75 MPa 이하, 70 MPa 이하, 65 MPa 이하, 60 MPa 이하, 55 MPa 이하 또는 약 50 MPa 이하일 수 있다.
상기 영률(E)은, 예를 들면, ASTM D882에 규정된 방식으로 측정할 수 있고, 해당 규격에서 제공하는 형태로 필름을 재단하고, Stress-Strain curve를 측정할 수 있는 장비(힘과 길이를 동시에 측정할 수 있는), 일예로 UTM(Universal testing machine)을 이용하여 측정할 수 있다. 중간층이 상기와 같은 영률을 가지도록 선택되는 것에 의해 보다 우수한 내구성의 광학 디바이스가 제공될 수 있다.
하나의 예로서, 본 출원에서 중간층(30)은 열팽창 계수가 2,000 ppm/K 이하일 수 있다. 상기 열팽창 계수는, 다른 예시에서 약 1,900ppm/K 이하, 1,700ppm/K 이하, 1,600ppm/K 이하 또는 약 1.500ppm/K 이하이거나, 약 10 ppm/K 이상, 20 ppm/K 이상, 30 ppm/K 이상, 40 ppm/K 이상, 50 ppm/K 이상, 60 ppm/K 이상, 70 ppm/K 이상, 80 ppm/K 이상, 90 ppm/K 이상, 100 ppm/K 이상, 200 ppm/K 이상, 300 ppm/K 이상, 400 ppm/K 이상, 500 ppm/K 이상, 60 ppm/K 이상, 700 ppm/K 이상 또는 약 800 ppm/K 이상일 수 있다. 중간층의 열팽창 계수는, 예를 들면, ASTM D696의 규정에 따라 측정할 수 있고, 해당 규격에서 제공하는 형태로 재단하고, 단위 온도당 길이의 변화를 측정하여 열팽창 계수를 계산할 수 있으며, TMA(ThermoMechanic Analysis) 등의 공지의 방식으로 측정할 수 있다. 중간층이 상기와 같은 열팽창 계수를 가지도록 선택되는 것에 의해 보다 우수한 내구성의 광학 디바이스가 제공될 수 있다.
중간층으로는 특별히 제한되지 않고, 전술한 물성, 예를 들면 영률 및 열팽창 계수 등을 만족하는 공지의 접착제층을 사용할 수 있다. 예를 들면, 상기 중간으로는 열가소성 폴리우레탄 접착제층, 폴리아마이드 접착제층, 폴리에스테르 접착제층, EVA(Ethylene Vinyl Acetate) 접착제층, 아크릴 접착제층, 실리콘 접착제층 또는 폴리올레핀 접착제층으로서 전술한 물성을 만족하는 것을 선택하여 사용할 수 있다.
하나의 예로서, 본 출원에 따른 광학 디바이스는 상기 제1외곽 기판과 액정 소자 필름 사이에 위치하는 제1편광자; 및 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 제 2 편광자를 포함할 수 있다. 본 명세서에서 용어 편광자는 편광 기능을 가지는 필름, 시트 또는 소자를 의미한다. 편광자는 여러 방향으로 진동하는 입사광으로부터 한쪽 방향으로 진동하는 광을 추출할 수 있는 기능성 소자이다.
제 1 편광자 및 제 2 편광자는 각각 흡수형 편광자 또는 반사형 편광자일 수 있다. 본 명세서에서 흡수형 편광자는 입사 광에 대하여 선택적 투과 및 흡수 특성을 나타내는 소자를 의미한다. 편광자는 예를 들어, 여러 방향으로 진동하는 입사 광으로부터 어느 한쪽 방향으로 진동하는 광은 투과하고, 나머지 방향으로 진동하는 광은 흡수할 수 있다. 본 명세서에서 반사형 편광자는 입사 광에 대하여 선택적 투과 및 반사 특성을 나타내는 소자를 의미한다. 편광자는 예를 들어, 여러 방향으로 진동하는 입사 광으로부터 어느 한쪽 방향으로 진동하는 광은 투과하고, 나머지 방향으로 진동하는 광은 반사할 수 있다. 본 출원의 일 실시예에 따르면 상기 편광자는 흡수형 편광자일 수 있다.
제 1 편광자 및 제 2 편광자는 각각 선 편광자일 수 있다. 본 명세서에서 선 편광자는 선택적으로 투과하는 광이 어느 하나의 방향으로 진동하는 선 편광이고 선택적으로 흡수 또는 반사하는 광이 상기 선편광의 진동 방향과 수직하는 방향으로 진동하는 선편광인 경우를 의미한다. 흡수형 선 편광자인 경우 광 투과축과 광 흡수축은 서로 수직할 수 있다. 반사형 선 편광자인 경우 광 투과축과 광 반사축은 서로 수직할 수 있다.
하나의 예시에서, 제 1 편광자 및 제 2 편광자는 각각 요오드 또는 이방성 염료를 염착한 고분자 연신 필름일 수 있다. 상기 고분자 연신 필름으로는 PVA(poly(vinyl alcohol)) 연신 필름을 예시할 수 있다. 다른 하나의 예시에서, 제 1 편광자 및 제 2 편광자는 각각 배향된 상태로 중합된 액정을 호스트로 하고, 상기 액정의 배향에 따라 배열된 이방성 염료를 게스트로 하는 게스트-호스트형 편광자일 수 있다. 다른 하나의 예시에서, 제 1 편광자 및 제 2 편광자는 각각 열방성(Thermotropic) 액정 필름 또는 유방성(Lyotropic) 액정 필름일 수 있다.
제 1 편광자 및 제 2 편광자의 일면 또는 양면에는 각각 보호필름, 반사방지필름, 위상차필름, 점착제층, 접착제층, 표면처리층 등이 추가로 형성되어 있을 수 있다. 상기 위상차필름은 예를 들어 1/4 파장판 또는 1/2 파장판일 수 있다. 1/4 파장판은 550 nm 파장의 광에 대한 면내 위상차 값이 약 100 nm 내지 180nm, 100nm 또는 150nm 범위 내일 수 있다. 1/2 파장판은 550 nm 파장의 광에 대한 면내 위상차 값이 약 200nm 내지 300 nm 또는 250nm 내지 300 nm 범위 내일 수 있다. 위상차필름은 예를 들어 고분자 연신 필름 또는 액정 중합 필름일 수 있다.
제 1 편광자 및 제 2 편광자의 550nm 파장의 광에 대한 투과율은 각각 40% 내지 50% 범위 내일 수 있다. 투과율은 550nm 파장의 광에 대한 편광자의 단체(Single) 투과율을 의미할 수 있다. 상기 편광자의 단체 투과율은, 예를 들면, 스펙트러미터(V7100, Jasco社제)를 사용하여 측정할 수 있다. 예를 들면, 편광자 시료(상부 및 하부 보호 필름 불포함)를 기기에 거치한 상태에서 air를 base line으로 설정하고, 편광자 시료의 축을 기준 편광자의 축과 수직 및 수평으로 정렬한 상태에서 각각의 투과율을 측정한 후에 단체 투과율을 계산할 수 있다.
제 1 편광자의 광 투과축과 제 2 편광자의 광 투과축은 서로 수직할 수 있다. 구체적으로 제 1 편광자의 광 투과축과 제 2 편광자의 광 투과축이 이루는 각도는 80도 내지 100도 또는 85도 내지 95도 범위 내일 수 있다. 제 1 편광자의 광 투과축과 제 2 편광자의 광 투과축이 수직하는 경우, 제 1 편광자와 제 2 편광자의 이격 거리에 따라 빛 누설 등이 발생할 수 있다.
본 출원에 따르면, 상기 중간층은 상기 제 1 편광자와 액정 소자 필름 사이, 및 상기 제 2 편광자와 액정 소자 필름 사이에 각각 위치하며, 두께가 380㎛ 이하인 중간층을 포함할 수 있다. 즉, 제 1 편광자와 액정 소자 필름 사이에 존재하는 중간층 및 제 2 편광자와 액정 소자 필름 사이에 존재하는 중간층의 두께는 각각 380㎛ 이하일 수 있다. 이를 통해, 제 1 편광자와 제 2 편광자의 이격 거리를 최소화하여 빛 누설을 감소시킴과 동시에 액정 소자 필름의 구조적 안전성을 확보할 수 있다. 제 1 편광자와 액정 소자 필름 사이에 존재하는 중간층 및 제 2 편광자와 액정 소자 필름 사이에 존재하는 중간층의 두께의 하한은 각각 10㎛ 이상일 수 있다.
하나의 예시에서, 제 1 외곽 기판과 제 1 편광자 사이에 위치하는 중간층 및 제 2 외곽 기판과 제 2 편광자 사이에 위치하는 중간층의 두께는 각각 400μm 내지 3,000 μm의 범위 내 일 수 있다. 다른 예로 하나의 예시에서, 제 1 외곽 기판과 제 1 편광자 사이에 위치하는 중간층 및 제 2 외곽 기판과 제 2 편광자 사이에 위치하는 중간층의 두께는 각각 약 400μm 이상, 500μm 이상, 600μm 이상, 700μm 이상, 800μm 이상, 900μm 이상, 1000μm 이상 또는 1100μm 이상일 수 있으며, 약 3,000μm 이하, 2,800μm 이하, 2,600μm 이하, 2,400μm 이하, 약 2,200μm 이하, 약 2,000μm 이하, 약 1,800μm 이하, 약 1,600μm 이하 또는 약 1,400μm 이하일 수 있다. 제 1 외곽 기판과 제 1 편광자 사이에 위치하는 중간층 및 제 2 외곽 기판과 제 2 편광자 사이에 위치하는 중간층의 두께가 각각 상기 범위 내인 경우, 광학 디바이스의 전기 광학적 특성을 저해하지 않으면서, 외곽 기판의 합착 과정에서의 외관 불량 없이 구조적 안정성 및 균일한 외관 특성을 확보하는데 유리할 수 있다.
본 출원의 다른 실시예에 따른 광학 디바이스는 제 1 외곽 기판; 상기 제 1 외곽 기판과 대향 배치되는 제 2 외곽 기판; 상기 제 1 및 제 2 외곽 기판 사이에 위치하는 액정 소자 필름; 및 상기 제 1 외곽 기판과 액정 소자 필름 사이, 상기 액정 소자 필름과 제 2 외곽 기판 사이, 및 상기 액정 소자 필름의 외곽부에 각각 위치하는 중간층을 포함하고, 상기 제 1 외곽 기판과 액정 소자 필름 사이, 및 상기 액정 소자 필름과 제 2 외곽 기판 사이에 위치하는 중간층은 총 두께의 합이 1,600 μm 이상이며, 상기 액정 소자 필름이 제 1 외곽 기판 및 제 2 외곽 기판 사이에서 상기 제 1 외곽 기판과 액정 소자 필름 사이, 액정 소자 필름과 제 2 외곽 기판 사이, 및 액정 소자 필름의 외곽부에 각각 위치하는 중간층에 의해 캡슐화 되어 있는 구조일 수 있다.
본 출원의 또 다른 실시예에 따른 광학 디바이스는 제 1 외곽 기판; 상기 제 1 외곽 기판과 대향 배치되는 제 2 외곽 기판; 상기 제 1 및 제 2 외곽 기판 사이에 위치하는 액정 소자 필름; 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 제 1 편광자; 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 제 2 편광자; 및 상기 제 1 외곽 기판과 제1편광자 사이, 제 1 편광자와 액정 소자 필름 사이, 액정 소자 필름과 제 2 편광자 사이, 제 2 편광자와 제 2 외곽 기판 사이, 및 상기 액정 소자 필름의 외곽부에 각각 위치하는 중간층을 포함하고, 상기 제 1 외곽 기판과 제1편광자 사이, 제 1 편광자와 액정 소자 필름 사이, 액정 소자 필름과 제 2 편광자 사이, 제 2 편광자와 제 2 외곽 기판 사이에 위치하는 중간층은 총 두께의 합이 1,600 μm 이상이며, 상기 액정 소자 필름이 제 1 외곽 기판 및 제 2 외곽 기판 사이에서 상기 제 1 외곽 기판과 제1편광자 사이, 제 1 편광자와 액정 소자 필름 사이, 액정 소자 필름과 제 2 편광자 사이, 제 2 편광자와 제 2 외곽 기판 사이, 및 액정 소자 필름의 외곽부에 각각 위치하는 중간층에 의해 캡슐화 되어 있는 구조일 수 있다.
본 출원에서 용어 액정 소자 필름의 외곽부는 액정 소자 필름을 둘러싸는 측면 부위를 의미할 수 있다. 또한, 본 출원에서 용어 캡슐화(encapsulation)는 중간층으로 액정 소자 필름 및/또는 편광자의 전면을 피복하는 것을 의미할 수 있다. 예를 들면, 목적하는 구조에 따라서 외곽 기판, 중간층, 액정 소자 필름, 중간층 및 외곽기판을 적층하고, 액정 소자 필름의 외곽부에도 중간층을 위치시킨 후, 진공 상태에서 압착하는 방식으로 상기 구조를 구현할 수 있다. 이러한 캡슐화 구조에 의해서 광학 디바이스의 내구성이나 내후성이 크게 향상되고, 그 결과 선루프 등 야외에서 사용되는 용도에도 안정적으로 적용될 수 있다.
본 출원의 상기 광학 디바이스를 제조하는 방법은 특별히 제한되지 않는다. 일 예시에서 상기 광학 디바이스는, 전술한 캡슐화를 위해서 오토클레이브 공정을 거쳐 제조될 수 있다.
예를 들면, 상기 광학 디바이스의 제조 방법은, 제 1 외곽 기판 및 제 2 기판의 사이에 있는 액정 소자 필름 및/ 편광자를, 중간층을 사용한 오토클레이브 공정을 통해 캡슐화하는 단계를 포함할 수 있다.
상기 오토클레이브 공정은, 외곽 기판의 사이에 목적하는 캡슐화 구조에 따라서 중간층과 액정 소자 필름 및/또는 편광자를 배치하고, 가열/가압에 의해 수행할 수 있다.
일예로, 제 1 외곽 기판(20a), 중간층(30), 액정 소자 필름(10), 중간층(30) 및 제 2 외곽 기판(20b)을 상기 순서로 배치하고, 액정 소자 필름의 외곽부에도 중간층(30)을 배치한 적층체를 오토클레이브 공정으로 가열/가압 처리하면, 도 2에 나타난 것과 같은 광학 디바이스가 형성될 수 있다. 다른예로, 제 1 외곽 기판(20a), 중간층(30), 제 1 편광자(40), 중간층(30), 액정 소자 필름(10), 중간층(30), 제 2 편광자(40), 중간층(30) 및 제 2 외곽 기판(20b)을 상기 순서로 배치하고, 액정 소자 필름 및 편광자의 외곽부에도 중간층(30)을 배치한 적층체를 오토클레이브 공정으로 가열/가압 처리하면, 도 6, 도 7 또는 도 8에 나타난 것과 같은 광학 디바이스가 형성될 수 있다.
상기 오토클레이브 공정의 조건은 특별히 제한이 없고, 예를 들면, 적용된 중간층의 종류에 따라 적절한 온도 및 합력 하에서 수행할 수 있다. 통상의 오토클레이브 공정의 온도는 약 80°C 이상, 90°C 이상 또는 100°C 이상이며, 압력은 2기압 이상이나, 이에 제한되는 것은 아니다. 상기 공정 온도의 상한은 약 200°C 이하, 190°C 이하, 180°C 이하 또는 170°C 이하 정도일 수 있고, 공정 압력의 상한은 약 10기압 이하, 9기압 이하, 8기압 이하, 7기압 이하 또는 6기압 이하 정도일 수 있다.
상기와 같은 광학 디바이스는 다양한 용도로 사용될 수 있으며, 예를 들면, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등에 사용될 수 있다.
하나의 예시에서 상기 광학 디바이스는, 그 자체로서 차량용 선루프일 수 있다.
예를 들면, 적어도 하나 이상의 개구부가 형성되어 있는 차체를 포함하는 자동차에 있어서 상기 개구부에 장착된 상기 광학 디바이스 또는 차량용 선루프를 장착하여 사용될 수 있다.
본 출원의 광학 디바이스는 액정 소자 필름의 셀갭이 적절히 유지되고 상부 기판과 하부 기판의 우수한 부착력을 가지며, 외곽 기판의 합착 공정에서 눌림이나 몰림 등의 불량을 최소화하여, 구조적 안정성과 양호한 품질의 균일도를 확보할 수 있다.
도 1은 본 출원의 예시적인 액정 소자 필름의 단면도이다.
도 2는 본 출원의 예시적인 광학 디바이스의 단면도이다.
도 3은 외부 압력에 의해 액정 소자 필름에 눌림 불량이 발생된 광학 디바이스를 촬영한 이미지 이다.
도 4는 외부 압력에 의해 액정 소자 필름에 약 몰림 불량이 발생된 광학 디바이스를 촬영한 이미지 이다.
도 5는 외부 압력에 의해 액정 소자 필름에 강 몰림 불량이 발생된 광학 디바이스를 촬영한 이미지 이다.
도 6은 본 출원의 실시예 1에서 제조된 광학 디바이스의 단면도이다.
도 7은 본 출원의 실시예 2에서 제조된 광학 디바이스의 단면도이다.
도 8은 본 출원의 실시예 3에서 제조된 광학 디바이스의 단면도이다.
도 9는 본 출원의 비교예 1 또는 비교예 2에서 제조된 광학 디바이스의 단면도이다.
도 10은 실시예 1 및 실시예 2에서 제조된 광학 디바이스를 촬영한 이미지이다.
도 11은 실시예 1 및 실시예 2에서 제조된 광학 디바이스에 대하여 투과도를 측정한 결과이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
측정예 1. 저장 탄성률 측정
저장 탄성률은 TA사의 DMA Q800를 사용하여 측정하였다. 구체적으로, Multi-Frequency-Strain mode로 온도 25℃Force 0.01N 및 Ramp rate 3 °/min의 조건으로 저장 탄성률 값을 기록하였다.
액정 소자 필름 제조
제 1 기재층으로 두께가 약 100μm이고, 가로x세로 면적이 600mmx300mm인 폴리카보네이트 필름(Keiwa社)을 준비하였다. 제 1 기재층 상에 ITO(indium-tin-oxide)를 50nm 두께로 증착하여 도전층을 형성하였다. 도전층 상에 점착제 조성물(KR-3700, 신에츠社)을 바 코팅한 후, 약 150℃에서 약 5분 동안 건조하여, 두께가 약 10 μm인 점착제층을 형성하였다. 점착제층의 저장 탄성률은 약 0.1 MPa 였다. 제 1 기재층, 도전층 및 점착제층의 조합을 상부 적층체로 호칭한다.
제 2 기재층으로 두께가 약 100μm이고, 가로x세로 면적이 600mmx300mm인 폴리카보네이트 필름(Keiwa社)을 준비하였다. 제 2 기재층 상에 ITO(indium-tin-oxide)를 50nm 두께로 증착하여 도전층을 형성하였다. 도전층 상에 아크릴계 수지 조성물(KAD-03, 미뉴타텍社)을 코팅한 후, 포토리소그래피 방법으로 허니콤형 스페이서를 형성하였다. 허니콤을 구성하는 정육각형(폐도형)의 피치는 약 450 ㎛이고, 높이는 약 12 ㎛이며, 선폭은 약 30 ㎛이다. 상기 스페이서에 의해서 형성되는 폐도형(정육각형)의 면적은 대략 2.14 mm2였다. 상기 스페이서 상에 수직 배향막(Nissan社, SE-5661)을 약 300 nm의 두께로 코팅한 후, 일 방향으로 러빙 처리하였다. 제 2 기재층, 도전층, 스페이서 및 수평 배향막의 조합을 하부 적층체로 호칭한다.
하부 적층체의 수직 배향막 상에 액정 조성물을 코팅하여 액정층을 형성한 후, 상부 적층체의 점착제층을 상기 액정 조성물의 코팅된 면과 마주보도록 하여 합지하여 액정 소자 필름을 제조하였다. 상기 액정 조성물은 액정 화합물(Merck社, MAT-16-568) 및 키랄 도펀트(HCCH社, S811) 를 포함하며, 상기와 같이 형성된 액정층의 피치(p)는 약 20㎛였다.
광학 디바이스 제조
실시예 1
제 1 외곽 기판, 제 1 중간층, 제 1 편광자, 제 2 중간층, 상기 제조된 액정 소자 필름, 제 3 중간층, 제 2 편광자, 제 4 중간층 및 제 2 외곽 기판을 순차로 포함하고, 액정 소자 필름의 모든 외곽부에도 중간층을 배치하여 적층체를 제조하였다. 제 1 외곽 기판에 비하여 제 2 외곽 기판이 중력 방향으로 배치하였다.
제 1 편광자 및 제 2 편광자는 각각 PVA계 편광자이며, 제 1 편광자의 광 투과축과 제 2 편광자의 광 투과축은 약 90도를 이루도록 배치하였다. 제 1 외곽 기판으로는 두께가 약 3mm이고, 면적이 가로x세로=300mm×300mm이며, 곡률 반경이 약 2,470R인 유리 기판을 사용하였다. 제 2 외곽 기판으로는 두께가 약 3mm이고, 면적이 가로x세로=300mm×300mm이며, 곡률 반경이 약 2,400R인 유리 기판을 사용하였다.
제 2 중간층 및 제 3 중간층은 각각 두께가 약 380μm인 TPU층(Argotec社) 단층이다. 제 1 중간층과 제 4 중간층은 각각 1층의 두께가 약 380μm인 TPU층(Argotec社) 3층의 적층체이다. 상기 TPU층(Argotec社)의 열팽창 계수는 307 ppm/K이고, 저장 탄성률은 8 내지 15 MPa이다. 액정 소자 필름의 외곽부에 배치되는 중간층도 상기 제1 내지 4의 중간층과 동일한 재료로 형성하였다.
상기 적층체에 약 110℃의 온도 및 약 2 기압의 압력으로 오토클레이브 공정을 수행하여 도 6의 구조의 광학 디바이스를 제작하였다. 실시예 1의 광학 디바이스에서 제 2 중간층 및 3 중간층의 두께는 각각 약 380μm였고, 중간층의 총 두께는 약 3,040μm였다.
실시예 2
제 1 중간층 및 제 4 중간층을 각각 두께가 약 380μm인 TPU층(Argotec社) 단층으로 변경하고, 제 2 중간층과 제 3 중간층을 각각 1층의 두께가 약 380μm인 TPU층(Argotec社) 3층의 적층체로 변경한 것을 제외하고는 실시예 1과 동일하게 공정을 수행하여 도 7의 구조의 광학 디바이스를 제작하였다. 실시예 2의 광학 디바이스에서 중간층의 총 두께는 약 3,040μm였다.
실시예 3
제 1 중간층 및 제 4 중간층을 각각 두께가 약 380μm인 TPU층(Argotec社) 단층으로 변경하고, 제 2 중간층과 제 3 중간층을 각각 1층의 두께가 약 380μm인 TPU층(Argotec社) 2층의 적층체로 변경한 것을 제외하고는 실시예 1과 동일하게 공정을 수행하여 도 8의 구조의 광학 디바이스를 제작하였다. 실시예 3의 광학 디바이스에서 중간층의 총 두께는 약 2,280μm였다.
비교예 1
제 1 중간층, 제 2 중간층, 제 3 중간층, 및 제 4 중간층을 각각 두께가 약 380μm인 TPU층(Argotec社) 단층으로 변경한 것을 제외하고는 실시예 1과 동일하게 공정을 수행하여 도 9의 구조의 광학 디바이스를 제작하였다. 비교예 1의 광학 디바이스에서 중간층의 총 두께는 약 1,520μm였다.
비교예 2
제 1 중간층 및 제 4 중간층을 각각 두께가 약 150μm인 TPU층(Argotec社) 단층으로 변경하고, 제 2 중간층과 제 3 중간층을 각각 1층의 두께가 약 380μm인 TPU층(Argotec社) 단층으로 변경한 것을 제외하고는 실시예 1과 동일하게 공정을 수행하여 도 9의 구조의 광학 디바이스를 제작하였다. 비교예 2의 광학 디바이스에서 중간층의 총 두께는 약 1,060μm였다.
평가예 1: 외관 불량 평가 방법
외관 불량은 실시예 및 비교예에서 제조된 광학 디바이스에 도 3 내지 도 5와 같은 외관 불량이 관찰되는지 광학 현미경(올림푸스社, BX51-N33MB)을 이용하여 측정 하였다. 실시예 1, 실시예 2 및 실시예 3에 따라 제조된 광학 디바이스는 도 3 내지 도 5와 같은 눌림 불량, 약 몰림 불량 및 강 몰림 불량 등 외관 불량이 관찰 되지 않았다. 이와 비교하면 비교예 1 및 비교예 2에 따라 제조된 광학 디바이스는 외부 압력에 의해 액정 소자 필름에 눌림 불량, 약몰림 불량 또는 강 몰림 불량과 같은 외관 불량이 관찰되었다. 따라서 중간층의 두께의 총 합이 1,600μm 이상을 만족하는 실시예 1, 실시예 2 및 실시예 3에 따라 제조된 광학 디바이스가, 중간층의 두께의 총 합이 1,600μm에 미치지 못하는 비교예 1 및 비교예 2에 따라 제조된 광학 디바이스에 비하여 고온고압의 오토클레이브(autoclave) 공정으로 제조되는 경우에도 외관이 우수한 것을 확인할 수 있다.
평가예 2: 빛 누설 관찰
도 10은 실시예 1 및 실시예 2에서 제조된 광학 디바이스를 전압이 인가되지 않은 상태에서 촬영한 사진(올림푸스社, BX51-N33MB)이다. 도 10의 (a) 및 (b)는 각각 전압이 인가되지 않은 상태에서의 실시예 1 및 실시예 2의 이미지이고, 도 10의 (c) 및 (d)는 각각 50V 전압이 인가된 상태에서의 실시예 1 및 실시예 2의 이미지이다. 도 10의 (a) 및 (b)로부터, 실시예 1이 실시예 2에 비하여 전압이 인가되지 않은 상태에서 빛 누설이 적은 것을 관찰할 수 있다.
평가예 3. 전기광학특성 평가
실시예 1 및 실시예 2에서 제조된 광학 디바이스에 대하여, 편각(polar angle) 60°에서 전방위(방위각 0° 내지 360°) 투과도를 측정하고, 그 결과를 도 11에 나타내었다. 투과도는 헤이즈미터(CA-2500, 코니카미놀타사제)를 이용하여 광학 디바이스에 전압이 인가되지 상태에서 측정되었다. 투과도는 380nm 내지 780nm 파장의 광에 대한 평균 투과도이며, 상기 투과도가 낮을수록 빛 누설이 적은 것을 의미한다. 도 11에서 relative transmittance는 백라이트 광량을 100%로 보았을 때의 상대적인 투과도를 의미한다. 방위각 0°는 액정 소자 필름의 배향막의 러빙축과 평행한다. 실시예 1 및 실시예 2는 각각 방위각 110°에서 최대 투과도를 나타내었으며, 실시예 1은 방위각 110°에서 투과도가 5.51%이고, 실시예 2는 방위각 110°에서 투과도가 6.03%였다. 또한, 실시예 1 및 실시예 2는 방위각 60°에서 투과도 차이가 가장 크게 나타났으며, 실시예 1은 방위각 60°에서 투과도가 3.17%였고, 실시예 2는 방위각 60°에서 투과도가 4.04%였다.

Claims (19)

  1. 제 1 외곽 기판;
    상기 제 1 외곽 기판과 대향 배치되는 제 2 외곽 기판;
    상기 제 1 및 제 2 외곽 기판 사이에 위치하는 액정 소자 필름; 및
    상기 제 1 외곽 기판과 액정 소자 필름 사이, 및 상기 액정 소자 필름과 제 2 외곽 기판 사이에 각각 위치하는 중간층을 포함하고,
    상기 중간층은 총 두께의 합이 1,600 μm 이상인 광학 디바이스.
  2. 제 1 항에 있어서, 상기 액정 소자 필름은 제 1 기재층; 상기 제 1 기재층과 대향 배치되는 제 2 기재층; 상기 제 1 및 제 2 기재층 사이에 위치하는 액정층; 및 상기 제 1 및 제 2 기재층 사이에서 간격을 유지하는 패턴화된 스페이서를 포함하는 광학 디바이스.
  3. 제 2 항에 있어서, 상기 액정 소자 필름은 제 1 및 제 2 기재층이 각각 독립적으로 PEN(polyethylene-naphthalate) 필름, PI(polyimide) 필름, COP(cyclo-olefin polymer) 필름, TAC(tri-acetyl-cellulose), PET(polyethyleneterephtalate) 필름 또는 PC(polycarbonate) 필름인 광학 디바이스.
  4. 제 2 항에 있어서, 상기 액정 소자 필름은 제 1 및 제 2 기재층의 액정층을 향하는 면상에 위치하는 도전층을 추가로 포함하는 광학 디바이스.
  5. 제 4 항에 있어서, 상기 액정 소자 필름은 제 1 기재층의 액정층을 향하는 면상에 위치하는 도전층과 상기 액정층 사이에 위치하는 점착제층을 추가로 포함하는 광학 디바이스.
  6. 제 5 항에 있어서, 상기 점착제층은 저장 탄성률(storage modulus)이 10 MPa 이하인 광학 디바이스.
  7. 제 4 항에 있어서, 상기 액정 소자 필름은 상기 제 2 기재층의 액정층을 향하는 면상에 위치하는 도전층상에 위치하는 배향막을 추가로 포함하는 광학 디바이스.
  8. 제 7 항에 있어서, 스페이서는 도전층 상에서 형성되고, 배향막은 상기 스페이서가 형성된 도전층 상에 위치하는 광학 디바이스.
  9. 제 2 항에 있어서, 상기 액정 소자 필름은 액정층이 이색성 염료 게스트를 포함하는 광학 디바이스.
  10. 제 1 항에 있어서, 상기 액정 소자 필름은 제 1 및 제 2 배향 상태를 스위칭 할 수 있는 광학 디바이스.
  11. 제 1 항에 있어서, 제 1 및 제 2 외곽 기판은 유리 기판인 광학 디바이스.
  12. 제 1 항에 있어서, 상기 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Ta) 및 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Tb)는 각각 200 내지 3,000 μm의 범위내인 광학 디바이스.
  13. 제 1 항에 있어서, 상기 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Ta) 대비 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 중간층의 총 두께(Tb)의 두께 비율(Ta/Tb)은 0.1 내지 10의 범위내인 광학 디바이스.
  14. 제 1 항에 있어서, 상기 중간층은 영률(Young's modulus)이 0.1 MPa 내지 100 MPa 범위내인 광학 디바이스.
  15. 제 1 항에 있어서, 상기 중간층은 열팽창계수가 2,000 ppm/K 이하인 광학 디바이스.
  16. 제 1 항에 있어서, 상기 중간층은 열가소성 폴리우레탄 접착제층, 폴리아마이드 접착제층, 폴리에스테르 접착제층, EVA(Ethylene Vinyl Acetate) 접착제층, 아크릴 접착제층, 실리콘 접착제층 또는 폴리올레핀 접착제층인 광학 디바이스.
  17. 제 1 항에 있어서, 상기 제 1 외곽 기판과 액정 소자 필름 사이에 위치하는 제 1 편광자; 및 상기 제 2 외곽 기판과 액정 소자 필름 사이에 위치하는 제 2 편광자를 추가로 포함하며,
    상기 중간층은 상기 제 1 편광자와 액정 소자 필름 사이, 및 상기 제 2 편광자와 액정 소자 필름 사이에 각각 위치하고, 두께가 각각 380㎛ 이하인 중간층을 포함하는 광학 디바이스.
  18. 제 17 항에 있어서, 제 1 편광자의 광 투과축과 제 2 편광자의 광 투과축은 서로 수직하는 광학 디바이스.
  19. 하나 이상의 개구부가 형성되어 있는 차체; 및 상기 개구부에 장착된 제 1 항 내지 제 18 항 중 어느 하나의 광학 디바이스를 포함하는 자동차.
PCT/KR2021/008393 2020-07-09 2021-07-02 광학 디바이스 WO2022010185A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180042060.8A CN115769136A (zh) 2020-07-09 2021-07-02 光学装置
JP2022575240A JP2023528511A (ja) 2020-07-09 2021-07-02 光学デバイス
US18/007,820 US20230229050A1 (en) 2020-07-09 2021-07-02 Optical Device
EP21838025.1A EP4180864A4 (en) 2020-07-09 2021-07-02 OPTICAL DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0084734 2020-07-09
KR1020200084734A KR20220006830A (ko) 2020-07-09 2020-07-09 광학 디바이스
KR1020200142095A KR20220057151A (ko) 2020-10-29 2020-10-29 광학 디바이스
KR10-2020-0142095 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022010185A1 true WO2022010185A1 (ko) 2022-01-13

Family

ID=79553296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008393 WO2022010185A1 (ko) 2020-07-09 2021-07-02 광학 디바이스

Country Status (6)

Country Link
US (1) US20230229050A1 (ko)
EP (1) EP4180864A4 (ko)
JP (1) JP2023528511A (ko)
CN (1) CN115769136A (ko)
TW (1) TWI792398B (ko)
WO (1) WO2022010185A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092843A1 (ko) * 2020-10-29 2022-05-05 주식회사 엘지화학 광학 디바이스

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140030245A (ko) * 2011-06-14 2014-03-11 스미또모 가가꾸 가부시키가이샤 광 확산성 점착제 조성물, 광 확산성 점착 시트, 편광판 및 액정 표시 패널
US20160091743A1 (en) * 2014-09-30 2016-03-31 Samsung Display Co., Ltd. Curved liquid crystal display
KR20190140743A (ko) * 2018-06-12 2019-12-20 주식회사 엘지화학 광학 디바이스
KR20200019350A (ko) * 2018-08-14 2020-02-24 주식회사 엘지화학 광학 디바이스
KR20200019563A (ko) * 2018-08-14 2020-02-24 주식회사 엘지화학 광학 디바이스
KR20200084734A (ko) 2019-01-03 2020-07-13 삼성전자주식회사 디스플레이 장치
KR20200142095A (ko) 2018-05-08 2020-12-21 베이리스 메디컬 컴퍼니 아이엔씨. 조직을 천공하기 위한 방법 및 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2035886A4 (en) * 2006-03-03 2010-11-03 Gentex Corp IMPROVED THIN FILM COATINGS, ELECTROOPTICAL ELEMENTS AND ASSEMBLIES INCLUDING THESE ELEMENTS
JP4936321B2 (ja) * 2007-02-27 2012-05-23 日東電工株式会社 液晶パネルおよび液晶表示装置
KR102255379B1 (ko) * 2014-08-12 2021-05-26 삼성디스플레이 주식회사 표시 장치 및 이를 제조하는 방법
JP2017003947A (ja) * 2015-06-16 2017-01-05 株式会社フジクラ 光学素子パッケージ、光スイッチ、及び光学素子パッケージの製造方法
WO2018199616A1 (ko) * 2017-04-25 2018-11-01 주식회사 엘지화학 광학 디바이스
KR102118359B1 (ko) * 2017-04-25 2020-06-04 주식회사 엘지화학 광학 디바이스
KR102184388B1 (ko) * 2017-11-28 2020-11-30 주식회사 엘지화학 투과도 가변 장치 및 그 용도
JP7312528B2 (ja) * 2018-02-16 2023-07-21 東洋インキScホールディングス株式会社 タッチパネルデバイス、及びタッチパネル
KR102097815B1 (ko) * 2019-08-07 2020-04-07 주식회사 엘지화학 광학 소자
WO2022092843A1 (ko) * 2020-10-29 2022-05-05 주식회사 엘지화학 광학 디바이스

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140030245A (ko) * 2011-06-14 2014-03-11 스미또모 가가꾸 가부시키가이샤 광 확산성 점착제 조성물, 광 확산성 점착 시트, 편광판 및 액정 표시 패널
US20160091743A1 (en) * 2014-09-30 2016-03-31 Samsung Display Co., Ltd. Curved liquid crystal display
KR20200142095A (ko) 2018-05-08 2020-12-21 베이리스 메디컬 컴퍼니 아이엔씨. 조직을 천공하기 위한 방법 및 장치
KR20190140743A (ko) * 2018-06-12 2019-12-20 주식회사 엘지화학 광학 디바이스
KR20200019350A (ko) * 2018-08-14 2020-02-24 주식회사 엘지화학 광학 디바이스
KR20200019563A (ko) * 2018-08-14 2020-02-24 주식회사 엘지화학 광학 디바이스
KR20200084734A (ko) 2019-01-03 2020-07-13 삼성전자주식회사 디스플레이 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Tight Bonding of Two Plastic Substrates for Flexible LCDs", SID SYMPOSIUM DIGEST, vol. 38, 2007, pages 653 - 656
D. PODOLSKYY ET AL.: "Simple method for accurate measurements of the cholesteric pitch using a ''stripe-wedge Grandjean-Cano cell", LIQUID CRYSTALS, vol. 35, 7 July 2008 (2008-07-07), pages 789 - 791
See also references of EP4180864A4

Also Published As

Publication number Publication date
EP4180864A1 (en) 2023-05-17
TWI792398B (zh) 2023-02-11
CN115769136A (zh) 2023-03-07
JP2023528511A (ja) 2023-07-04
TW202206916A (zh) 2022-02-16
US20230229050A1 (en) 2023-07-20
EP4180864A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2017061768A1 (ko) 광학 필름
WO2019124961A1 (ko) 투과도 가변 필름 및 이의 용도
US20190235301A1 (en) Optical Device
KR20170064744A (ko) 광학 소자
US10996387B2 (en) Optical device
US20230037017A1 (en) Viewing angle control system and image display device
WO2021091207A1 (ko) 광변조 디바이스의 제조 방법
WO2019146977A1 (ko) 다층 액정 필름, 편광판 및 편광판의 제조방법
WO2022010185A1 (ko) 광학 디바이스
WO2022092843A1 (ko) 광학 디바이스
WO2021071263A1 (ko) 광변조 디바이스
WO2022005236A1 (ko) 광변조 디바이스
WO2022092842A1 (ko) 광학 디바이스
WO2022005244A1 (ko) 점착제 및 액정셀
WO2023191548A1 (ko) 액정셀 및 광학 디바이스
WO2023191547A1 (ko) 광학 디바이스
WO2017146546A1 (ko) 미러 디스플레이
WO2020175793A1 (ko) 광학 디바이스
WO2023239177A1 (ko) 광학 디바이스
WO2023153848A1 (ko) 광학 디바이스
KR20220006830A (ko) 광학 디바이스
WO2022060085A1 (ko) 광변조 디바이스의 제조 방법
KR20220057151A (ko) 광학 디바이스
TWI841875B (zh) 光學元件以及包括其的汽車
WO2020213943A1 (ko) 편광 가변 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575240

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021838025

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE