WO2020036322A1 - 광학 디바이스 - Google Patents

광학 디바이스 Download PDF

Info

Publication number
WO2020036322A1
WO2020036322A1 PCT/KR2019/008865 KR2019008865W WO2020036322A1 WO 2020036322 A1 WO2020036322 A1 WO 2020036322A1 KR 2019008865 W KR2019008865 W KR 2019008865W WO 2020036322 A1 WO2020036322 A1 WO 2020036322A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
optical device
substrate
film
Prior art date
Application number
PCT/KR2019/008865
Other languages
English (en)
French (fr)
Inventor
김남훈
전병건
허두영
유수영
이성민
김정운
이영신
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980036538.9A priority Critical patent/CN112204462B/zh
Priority to US15/734,059 priority patent/US11429005B2/en
Priority to JP2020564074A priority patent/JP2021524058A/ja
Priority to EP19850081.1A priority patent/EP3839618B1/en
Publication of WO2020036322A1 publication Critical patent/WO2020036322A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/20Accessories, e.g. wind deflectors, blinds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • G02F1/13737Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition in liquid crystals doped with a pleochroic dye
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present application relates to an optical device.
  • a device having a variable transmittance using a so-called GH cell to which a mixture of a host material and a dichroic dye guest is applied is known, and a liquid crystal compound is mainly used as a host material in the device. This is used.
  • variable transmittance device is applied to various applications including eyewear such as sunglasses and glasses, exterior walls of buildings, or sunroofs of vehicles.
  • An object of the present application is to provide an optical device capable of varying the transmittance and improved appearance defects such as wrinkles that may occur due to the bonding of the liquid crystal element and the outer substrate.
  • the present application relates to an optical device.
  • the optical device includes a liquid crystal element having a structure in which a first base layer, a liquid crystal layer, and a second base layer are sequentially stacked.
  • the liquid crystal device 10 may have a structure in which the first base layer 11a, the liquid crystal layer 12, and the second base layer 11b are sequentially stacked.
  • the said 1st and 2nd expression does not prescribe
  • At least one of the first base layer 11a and the second base layer 11b constituting the liquid crystal element 10 may have a bending strength (D) of the following Equation 1 about 2.2 * 10 ⁇ 4 N Can be more than m.
  • Equation 1 D is the flexural rigidity of the base layer, E is the Young's modulus of the base layer, h e is the thickness of the base layer, ⁇ is the Poisson's ratio of the base layer. to be.
  • the bending strength (D) of the above formula 1 is about 2.2 * 10 -4 N ⁇ m or more, 4 * 10 -4 N ⁇ m or more, 6 * 10 -4 N ⁇ m or more, 8 * 10 -4 N or more as another example M or more, 10 * 10 -4 Nm or more, 20 * 10 -4 Nm or more, 30 * 10 -4 Nm or more, 40 * 10 -4 Nm or more or about 50 * 10 -4 It may be Nm or more, the upper limit is not particularly limited, but about 1 Nm or less, 5 * 10 -1 Nm or less, 1 * 10 -1 Nm or less, 5 * 10 -1 Nm or less or About 1 * 10 ⁇ 2 N ⁇ m or less.
  • the first substrate layer and the second substrate layer may each have a bending strength (D) of Equation 1 of about 2.2 * 10 ⁇ 4 N ⁇ m or more.
  • D bending strength
  • each of the first substrate layer and the second substrate layer may have a Young's modulus (E) of about 1 * 10 9 N / m 2 to about 1 * 10 10 N / m 2 .
  • the Young's modulus (E) of the base layer is about 1.2 * 10 9 N / m 2 or more, 1.4 * 10 9 N / m 2 or more, 1.6 * 10 9 N / m 2 or more or about 1.8 * 10 9 N / m 2 or more, about 9 * 10 9 N / m 2 or less, 8 * 10 9 N / m 2 or less, 7 * 10 9 N / m 2 or less, 6 * 10 9 N / m 2 or less, 5 * 10 9 N / m 2 or less, 4 * 10 9 N / m 2 or less, or about 3 * 10 9 N / m 2 or less.
  • the Young's modulus (E), for example, can be measured in the manner specified in ASTM D882, the film can be cut in the form provided by the standard, and the equipment for measuring the stress-strain curve (force and length Can be measured at the same time), for example using a universal testing machine (UTM).
  • UPM universal testing machine
  • the bending strength D of Equation 1 is advantageous to have a range of 2.2 * 10 ⁇ 4 N ⁇ m or more. Therefore, when the liquid crystal device is bonded to the outer substrate to be described later to manufacture the optical device, appearance defects such as wrinkles may be reduced.
  • each of the first substrate layer and the second substrate layer may have a thickness h e of about 10 ⁇ m to about 1,000 ⁇ m.
  • the base layer has a thickness h e of about 20 ⁇ m, 40 ⁇ m, 60 ⁇ m, 80 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 160 ⁇ m, or about 180 ⁇ m, respectively.
  • the bending strength D of Equation 1 is advantageous to have a range of 2.2 * 10 ⁇ 4 N ⁇ m or more, and thus the base layer
  • appearance defects such as wrinkles can be reduced.
  • the first substrate layer and the second substrate layer may each have a Poisson's ratio ( ⁇ ) of about 0.25 to about 0.45. As another example, it may be about 0.25 or more, 0.26 or more, 0.27 or more, 0.28 or more, 0.29 or more, or about 0.30 or more, and about 0.44 or less, 0.43 or less, 0.42 or less, 0.41 or less, or about 0.40 or less.
  • Poisson's ratio can be measured by various well-known methods. For example, measurements can be made using standard size specimens in the manner specified in ASTM-D638. That is, it can measure by performing a tension test with respect to the test piece provided with two extensometers. One drawing system is aligned parallel to the applied tensile stress, while the second drawing system is aligned perpendicular to the tensile stress, where the tensile stress is applied in the x direction.
  • the bending strength (D) of Equation 1 is advantageous to have a range of 2.2 * 10 -4 N ⁇ or more.
  • the first base layer and the second base layer is not particularly limited as long as the bending strength (D) of Equation 1 satisfies 2.2 * 10 ⁇ 4 N ⁇ m or more, and may be used as the base layer of the present application. Can be.
  • the first base layer and the second base layer are each independently a polyethylene-naphthalate (PEN) film, a polyimide (PI) film, a cyclo-olefin polymer (COP) film, a tri-acetyl-cellulose (TAC) film, PET (polyethyleneterephtalate) film or PC (polycarbonate) film may be used, but is not limited thereto.
  • PEN polyethylene-naphthalate
  • PI polyimide
  • COP cyclo-olefin polymer
  • TAC tri-acetyl-cellulose
  • PET polyethyleneterephtalate
  • PC polycarbonate
  • the liquid crystal device may include a liquid crystal layer including at least a liquid crystal compound.
  • the liquid crystal layer is a so-called guest host liquid crystal layer, and may be a liquid crystal layer including a liquid crystal compound and a dichroic dye guest.
  • the liquid crystal layer is a liquid crystal layer using a so-called guest host effect, and is a liquid crystal layer in which the dichroic dye guests are aligned according to an alignment direction of the liquid crystal compound (hereinafter, may be referred to as a liquid crystal host).
  • the orientation refers to the orientation of the optical axis, which may mean, for example, the long axis direction when the liquid crystal compound is rod-shaped, and the normal direction of the disc plane when the discotic shape is discotic. Can mean.
  • the optical axis may be defined as an average optical axis, in which case the average optical axis may mean a vector sum of the optical axes of the liquid crystal compounds.
  • the orientation direction can be adjusted by the application of energy described below.
  • the type of liquid crystal host used in the liquid crystal layer is not particularly limited, and a general kind of liquid crystal compound applied for realizing the guest host effect may be used.
  • a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal host.
  • a nematic liquid crystal compound may be used.
  • the term nematic liquid crystal compound has no regularity with respect to the position of the liquid crystal molecules, but all refers to liquid crystal compounds that can be arranged in order in the direction of the molecular axis, and such liquid crystal compounds may be in rod form or discotic form. Can be.
  • Such nematic liquid crystal compounds have a clearing point of, for example, about 40 ° C. or more, 50 ° C. or more, 60 ° C. or more, 70 ° C. or more, 80 ° C. or more, 90 ° C. or more, 100 ° C. or more, or about 110 ° C. or more. It may be selected to have a phase transition point in the above range, that is, a phase transition point from the nematic phase to the isotropic phase. In one example, the clearing point or phase transition point may be about 160 ° C. or less, 150 ° C. or less or about 140 ° C. or less.
  • the liquid crystal compound may have negative or positive dielectric anisotropy.
  • the absolute value of the dielectric anisotropy may be appropriately selected in consideration of the purpose.
  • the dielectric anisotropy may be greater than about 3 or greater than about 7, or less than about ⁇ 2 or less than about ⁇ 3.
  • the liquid crystal compound may also have optical anisotropy ( ⁇ n) of about 0.01 or more or about 0.04 or more.
  • the optical anisotropy of the liquid crystal compound may be about 0.3 or less or about 0.27 or less in another example.
  • Liquid crystal compounds that can be used as the liquid crystal host of the guest host liquid crystal layer are known to those skilled in the art and can be freely selected from them.
  • the liquid crystal layer contains a dichroic dye guest together with the liquid crystal host.
  • the term dye may mean a material capable of intensively absorbing and / or modifying light in the visible region, for example, in the wavelength range from 380 nm to 780 nm, at least in part or in full, and the term dichroic dye guest It may mean a material capable of absorbing light in at least part or the entire range of the visible light region.
  • the dichroic dye guest for example, a known dye known to have a property that can be aligned according to the alignment state of the liquid crystal host can be selected and used.
  • an azo dye or an anthraquinone dye may be used as the dichroic dye guest, and the liquid crystal layer may include one or two or more dyes in order to achieve light absorption in a wide wavelength range.
  • the dichroic ratio of the dichroic dye guest may be appropriately selected in consideration of the purpose of use of the dichroic dye guest.
  • the dichroic dye guest may have a dichroic ratio of about 5 or more to about 20 or less.
  • the term dichroic ratio for example, in the case of a p-type dye, may mean a value obtained by dividing the absorption of the polarization parallel to the long axis direction of the dye by the absorption of the polarization parallel to the direction perpendicular to the long axis direction.
  • the dichroic dye guest is at least one wavelength, some range of wavelengths, or full range within the wavelength range of the visible region, for example within the wavelength range of about 380 nm to about 780 nm, or about 400 nm to about 700 nm. It may have the dichroic ratio at the wavelength.
  • the content of the dichroic dye guest in the liquid crystal layer may be appropriately selected in consideration of the purpose of use of the dichroic dye guest.
  • the content of the dichroic dye guest based on the total weight of the liquid crystal host and the dichroic dye guest may be selected within the range of about 0.1 wt% to about 10 wt%.
  • the ratio of the dichroic dye guest can be changed in consideration of the transmittance of the liquid crystal element described later, the solubility of the dichroic dye guest in the liquid crystal host, and the like.
  • the liquid crystal layer basically includes the liquid crystal host and the dichroic dye guest, and if necessary, may further include other optional additives according to known forms.
  • the additive may include, but are not limited to, chiral dopants or stabilizers and the like.
  • the liquid crystal device may include a spacer for maintaining a gap of the base layer between the first base layer and a second base layer, and / or the first base layer and the first base layer in a state where the gap between the first base layer and the second base layer is maintained.
  • 2 may further include a sealant capable of attaching the base layer.
  • the material of the spacer and / or sealant may be a known material without particular limitation.
  • the liquid crystal device may further include a conductive layer and / or an alignment layer.
  • 2 exemplarily illustrates a liquid crystal device according to an exemplary embodiment including a conductive layer and an alignment layer.
  • the liquid crystal element 10 includes a first base layer 11a, a conductive layer 13, an alignment layer 14, a liquid crystal layer 12, an alignment layer 14, and a conductive layer 13.
  • the second base layer 11b are sequentially stacked.
  • the conductive layer 13 may be formed on the first base layer and the second base layer 11a and 11b, respectively. In addition, the conductive layer 13 may be formed on a surface facing the liquid crystal layer 12.
  • the conductive layer 13 present on the surface of the base layer is configured to apply a voltage to the liquid crystal layer 12, and a known conductive layer may be applied without particular limitation.
  • a conductive layer for example, a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as indium tin oxide (ITO) may be applied. Examples of the conductive layer that can be applied in the present application are not limited to the above, and any kind of conductive layer known in the art to be applied to the liquid crystal device may be used.
  • the alignment layer 14 may be present on the surfaces of the first and second base layers 11a and 11b.
  • the conductive layer 13 may first be formed on one surface of the substrate layer, and the alignment layer 14 may be formed on the conductive layer 13.
  • the alignment layer 14 is configured to control the alignment of the liquid crystal host included in the liquid crystal layer 12, and a known alignment layer may be applied without particular limitation.
  • a known alignment layer may be applied without particular limitation.
  • the alignment film known in the art include a rubbing alignment film, a photoalignment film, and the like, and the alignment film that can be used in the present application is the above known alignment film, which is not particularly limited.
  • the alignment direction of the alignment layer 14 may be controlled.
  • the alignment directions of the two alignment films formed on the respective surfaces of the first substrate layer and the second substrate layer that are disposed opposite each other are at an angle within the range of about -10 degrees to about 10 degrees, and about -7 degrees to about 7 degrees.
  • the alignment directions of the two alignment layers may be at an angle within a range of about 80 degrees to about 100 degrees, an angle within a range of about 83 degrees to about 97 degrees, an angle within a range of about 85 degrees to about 95 degrees, or about 87 degrees to about 92 degrees. It may be at an angle within the range of the figures or approximately perpendicular to each other.
  • the said orientation direction can be known by confirming the direction of the optical axis of a liquid crystal layer.
  • the method of confirming which direction the optical axis of a liquid crystal layer is formed is well-known.
  • the direction of the optical axis of the liquid crystal layer can be measured using another polarizing plate that knows the direction of the optical axis, which can be measured using a known measuring device, for example, a polarimeter such as Jasco's P-2000. have.
  • the form of the liquid crystal element having the above configuration is not particularly limited and may be determined according to the application of the optical device, and is generally in the form of a film or sheet.
  • the liquid crystal device may switch between at least two alignment states of optical axes, for example, first and second alignment states.
  • the alignment state can be changed by application of energy, for example, by application of voltage. That is, the liquid crystal device may have any one of the first and second alignment states in a state where no voltage is applied, and then switch to another alignment state when a voltage is applied. Meanwhile, transmittance may be adjusted according to the alignment state of the liquid crystal device.
  • the blocking mode may be implemented in one of the first or second alignment states, and the transmission mode may be implemented in the other alignment states.
  • the transmission mode is a state in which the liquid crystal element exhibits a relatively high transmittance
  • the blocking mode is a state in which the liquid crystal element exhibits a relatively low transmittance
  • the liquid crystal device may have a transmittance of about 20%, 25%, 30%, 35%, 40%, 45%, or about 50% or more in the transmission mode.
  • the liquid crystal device may have a transmittance of less than about 20%, less than 15%, or less than about 10% in the blocking mode.
  • the upper limit of the transmittance in the transmission mode may be about 100%, 95%, 90%, 85%, 80%, 75%, 70%, 65% or about 60%.
  • the lower limit of transmittance in the blocking mode may be about 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or about 10%.
  • the transmittance may be a linear light transmittance.
  • the term linear light transmittance may be a ratio of light (direct light) transmitted through the liquid crystal device in the same direction as the incident direction to light incident on the liquid crystal device in a predetermined direction.
  • the transmittance may be a result (normal light transmittance) measured with respect to light incident in a direction parallel to the surface normal of the liquid crystal device.
  • the light whose transmittance is controlled in the liquid crystal device of the present application may be ultraviolet rays, visible light or near infrared rays in the UV-A region.
  • ultraviolet rays in the UV-A region are used to mean radiation having a wavelength in the range of 320 nm to 380 nm
  • visible light means radiation having a wavelength in the range of 380 nm to 780 nm
  • Near infrared is used to mean radiation having a wavelength in the range of 780 nm to 2000 nm.
  • the liquid crystal device may be designed to implement other modes in addition to the transmission mode and the blocking mode.
  • it can be designed such that a third mode can also be implemented which can exhibit any transmittance between the transmission modes of the transmission mode and the blocking mode.
  • the optical device of the present application may comprise a first and a second outer substrate.
  • the above first and second expressions do not define the relationship between the top and bottom.
  • the liquid crystal device may be positioned between the first and second outer substrates.
  • the liquid crystal device 10 may be positioned between the first and second outer substrates 20 disposed to face each other.
  • inorganic substrates such as glass or plastic substrates may be used independently.
  • plastic substrate include cellulose films such as triacetyl cellulose (TAC) or diacetyl cellulose (DAC); COP (cyclo olefin copolymer) films, such as norbornene derivatives; Acrylic films such as polyacrylate (PAR) or poly (methyl methacrylate), polycarbonate (PC) films, polyolefin films such as polyethylene (PE) or polypropylene (PP), polyvinyl alcohol (PVA) films, and polyimide (PI) films; Polysulfone (PSF) film; polyphenylsulfone (PPS) film; polyethersulfone (PES) film; polyetheretherketon (PEEK) film; polyetherimide (PEI) film; polyethylenenaphthatlate (PEN) film; polyethyleneterephtalate (PET) film; or fluorine resin film
  • PES polyacetyl cellulose
  • DAC diacet
  • the thickness of the first and second outer substrates 20 as described above is not particularly limited, and may be, for example, about 0.3 mm or more. In another example the thickness may be at least about 0.5 mm, at least 1 mm, at least 1.5 mm or at least about 2 mm, and at most about 10 mm, at most 9 mm, at most 8 mm, at most 7 mm, at most 6 mm, at most 5 mm. 4 mm or less, or about 3 mm or less.
  • the first and second outer substrates 20 may be flat substrates or curved substrates.
  • the first and second outer substrates may be simultaneously flat substrates, simultaneously curved surfaces, or one may be a flat substrate and the other may be a curved substrate.
  • each curvature or radius of curvature may be the same or different.
  • the curvature or radius of curvature herein can be measured in a manner known in the art, for example, a non-contact type such as a 2D Profile Laser Sensor, a Chromatic confocal line sensor, or a 3D Measuring Conforcal Microscopy. Can be measured with the instrument. Methods of measuring the curvature or radius of curvature using such equipment are well known.
  • the curvature or the radius of curvature at the surface and the rear surface are different, respectively, the curvature or the radius of curvature of the opposing surfaces, that is, the second outer substrate, the second In the case of the curvature or curvature radius of the surface facing the outer substrate and the second outer substrate, the curvature or curvature radius of the surface facing the first outer substrate may be a reference.
  • the largest curvature or radius of curvature may be the reference, or the smallest curvature or radius of curvature may be the reference, or the average curvature or average The radius of curvature may be a reference.
  • the first and second outer substrates have a difference in curvature or radius of curvature of about 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%. Within 2% or within about 1%.
  • the difference between the curvature or the radius of curvature is a numerical value calculated as 100 ⁇ (C L -C S ) / C S when a large curvature or a radius of curvature is referred to as C L and a small curvature or radius of curvature is referred to as C S.
  • the lower limit of the difference between the curvature or the radius of curvature is not particularly limited. Since the difference in curvature or radius of curvature of the first and second outer substrates may be the same, the difference in curvature or radius of curvature may be at least about 0% or greater than about 0%.
  • both the first and second outer substrates are curved, the curvature of both may be the same.
  • both the first and second outer substrates may be curved in the same direction. That is, in this case, the center of curvature of the first outer substrate and the center of curvature of the second outer substrate are both present at the same portion among upper and lower portions of the first and second outer substrates.
  • each curvature or radius of curvature of the first and second outer substrates is not particularly limited.
  • the first and second outer substrates each have a radius of curvature of about 100R or more, 200R or more, 300R or more, 400R or more, 500R or more, 600R or more, 700R or more, 800R or more, or about 900R or more, or about 10,000R or less.
  • R means the degree of bending of a circle having a radius of 1 mm.
  • 100R is the degree of curvature of a circle with a radius of 100 mm or the radius of curvature for that circle.
  • the curvature is zero and the radius of curvature is infinite.
  • the first and second outer substrates may have the same or different radius of curvature in the above range.
  • the radius of curvature of the substrate having the larger curvature may be within the above range.
  • a substrate having a large curvature may be a substrate disposed in a gravity direction when the optical device is used.
  • the net force that is the sum of the restoring force and the gravity can act to prevent the gap, and autoclave It can withstand process pressures such as
  • the optical device of the present application may further include a polarizer and / or an adhesive film.
  • 4 exemplarily shows an optical device according to an embodiment including a polarizer and an adhesive film.
  • the optical device 100 includes a first outer substrate 20, an adhesive film 40, a liquid crystal element 10, an adhesive film 40, a polarizer 30, and an adhesive film 40. And a second outer substrate 20 sequentially stacked.
  • an absorption type linear polarizer that is, a polarizer having a light absorption axis formed in one direction and a light transmission axis formed substantially perpendicular thereto may be used.
  • the average optical axis (vector sum of the optical axes) of the first alignment state and the light absorption axis of the polarizer An angle of about 80 degrees to about 100 degrees or about 85 degrees to about 95 degrees, or disposed in the optical device to be approximately perpendicular, or about 35 degrees to about 55 degrees or about 40 degrees to about 50 degrees May be disposed in the optical device to be approximately 45 degrees.
  • the alignment directions of the alignment films formed on the respective surfaces of the first and second substrate layers are each in the range of about -10 degrees to about 10 degrees, about -7 degrees to about Orientation direction of any one of the two alignment films when the angle is in the range of 7 degrees, the angle is in the range of about -5 degrees to about 5 degrees, or the angle is in the range of about -3 degrees to about 3 degrees or is substantially parallel to each other.
  • an angle formed by the light absorption axis of the polarizer may be about 80 degrees to about 100 degrees or about 85 degrees to about 95 degrees, or may be approximately vertical.
  • the alignment direction of the two alignment layers may be at an angle within a range of about 80 degrees to about 100 degrees, an angle within a range of about 83 degrees to about 97 degrees, an angle within a range of about 85 degrees to about 95 degrees, or about 87 degrees to about 92 degrees.
  • the angle between the alignment direction of the alignment layer disposed closer to the polarizer and the light absorption axis of the polarizer, among the two alignment layers is about 80 degrees to about 100 degrees or about 85 degrees. To about 95 degrees, or approximately vertical.
  • the polarizer may be a conventional material used in conventional LCDs, for example, a PVA (poly (vinyl alcohol)) polarizer, a lyotropic liquid crystal (LLC), or a reactive liquid crystal (RM).
  • a polarizer implemented by a coating method such as a polarizing coating layer including a mesogen and a dichroic dye, may be used.
  • the polarizer implemented as a coating method as described above may be referred to as a polarizing coating layer.
  • a known liquid crystal may be used without particular limitation.
  • a breast liquid crystal capable of forming a breast liquid crystal layer having a dichroic ratio of about 30 to about 40 may be used.
  • the polarizing coating layer includes a reactive liquid crystal (RM) and a dichroic dye
  • RM reactive liquid crystal
  • a linear dye or a discotic dye may be used as the dichroic dye. It may be.
  • the optical device of the present application may include only one liquid crystal element and one polarizer, respectively.
  • the optical device may include only one liquid crystal element and only one polarizer.
  • the adhesive film 40 may be disposed between the outer substrate 20 and the liquid crystal element 10, between the liquid crystal element 10 and the polarizer 30, and the polarizer 30 as shown in FIG. 4. It may be present between the outer substrate 20, and may exist on the sides of the liquid crystal element 10 and the polarizer 30, and preferably on all sides.
  • the adhesive film positioned on the side of the polarizer 30 may be the same or different adhesive film.
  • the adhesive film 40 bonds the outer substrate 20 and the liquid crystal element 10, the liquid crystal element 10, the polarizer 30, and the polarizer 30 and the outer substrate 20 to each other.
  • 10 and the polarizer 30 may be encapsulated.
  • the term encapsulation may mean covering the entire surface of the liquid crystal device and / or polarizer with an adhesive film.
  • the structure can be implemented by laminating the outer substrate, the liquid crystal device, the polarizer, and the adhesive film and then compressing the same in a vacuum state.
  • thermoplastic polyurethane adhesive film TPU: Thermoplastic Polyurethane
  • TPS Thermoplastic Starch
  • polyamide adhesive film polyester It may be selected from an adhesive film, an EVA (Ethylene Vinyl Acetate) adhesive film, a polyolefin adhesive film such as polyethylene or polypropylene, or a polyolefin elastomer film (POE film).
  • EVA Ethylene Vinyl Acetate
  • POE film polyolefin elastomer film
  • the thickness of the adhesive film as described above is not particularly limited, and may be, for example, in a range of about 200 ⁇ m to about 600 ⁇ m.
  • the thickness of the adhesive film is the thickness of the adhesive film between the outer substrate 20 and the liquid crystal element 10, for example, the gap between the two; Thickness of the adhesive film between the liquid crystal element 10 and the polarizer 30, for example, the gap between the two; And a thickness of the adhesive film between the polarizer 30 and the outer substrate 20, for example, the gap between the polarizer 30 and the outer substrate 20.
  • the optical device may further include any necessary configuration, and may include, for example, a known configuration such as a buffer layer, a retardation layer, an optical compensation layer, an antireflection layer, or a hard coating layer at an appropriate position.
  • a known configuration such as a buffer layer, a retardation layer, an optical compensation layer, an antireflection layer, or a hard coating layer at an appropriate position.
  • the method for manufacturing the optical device of the present application is not particularly limited.
  • the optical device may be manufactured through an autoclave process for the encapsulation described above.
  • the method of manufacturing the optical device may include encapsulating the liquid crystal element and / or polarizer between the first and second outer substrates disposed oppositely through an autoclave process using an adhesive film. have.
  • the autoclave process may be performed by heating / pressing the adhesive film, the liquid crystal element, and / or the polarizer according to the desired encapsulation structure between the outer substrates.
  • the outer substrate 20, the adhesive film 40, the liquid crystal element 10, the adhesive film 40, the polarizer 30, the adhesive film 40, and the outer substrate 20 are disposed in the above order.
  • an optical device as shown in FIG. 5 may be formed.
  • the conditions of the autoclave process is not particularly limited, and may be performed under appropriate temperature and pressure, for example, depending on the type of adhesive film applied.
  • the temperature of a typical autoclave process is at least about 80 ° C., at least 90 ° C. or at least about 100 ° C., and the pressure is at least 2 atmospheres, but is not limited thereto.
  • the upper limit of the process temperature may be about 200 ° C or less, 190 ° C or less, 180 ° C or less or about 170 ° C or less, and the upper limit of the process pressure may be about 10 atmospheres or less, 9 atmospheres or less, 8 atmospheres or less, 7 It may be about atmospheric pressure or less, or about 6 atmospheres or less.
  • Such an optical device may be used for various purposes, for example, sunglasses, eyewear such as AR (Argumented Reality) or VR (Virtual Reality) eyewear, building exterior walls, vehicle sunroofs, etc. Can be used.
  • sunglasses eyewear such as AR (Argumented Reality) or VR (Virtual Reality) eyewear, building exterior walls, vehicle sunroofs, etc.
  • AR Aral Reality
  • VR Virtual Reality
  • the optical device may itself be a sunroof for a vehicle.
  • the optical device or the vehicle sunroof mounted in the opening may be used.
  • the present application can provide an optical device having a variable transmittance and improved appearance defects such as wrinkles that may occur due to the bonding of the liquid crystal device and the outer substrate.
  • Such an optical device may be used for various applications such as sunglasses or eyewear such as AR (Argumented Reality) or VR (Virtual Reality) eyewear, an exterior wall of a building, or a sunroof for a vehicle.
  • 1 to 2 are exemplary cross-sectional views of liquid crystal elements that can be used in the optical device of the present application.
  • 3-5 are exemplary cross-sectional views illustrating exemplary optical devices of the present application.
  • 6 to 8 are images taken by using a digital camera after the optical device manufactured according to Example 1, Example 2 and Comparative Example is subjected to a high temperature long-term durability test.
  • the appearance defects were measured in the state in which the liquid crystal devices manufactured in Examples 1, 2 and Comparative Example were encapsulated between the first and second outer substrates after the autoclave process.
  • the liquid crystal element encapsulated between the first and second outer substrates is subjected to a high temperature long-term durability test (maintaining about 168 hours at a temperature of 100 ° C.), and wrinkles appear on the appearance of the optical device when left at room temperature for 24 hours or more. Poor appearance of the device was measured.
  • a polycarbonate film (thickness: 300 ⁇ m, manufactured by Keiwa Corporation) having a bending strength (D) of about 5.73 * 10 ⁇ 3 N ⁇ m was used as the first and second substrate layers, and the first substrate layer and the second substrate were used.
  • Indium-tin-oxide (ITO) was deposited to a thickness of 200 nm on each layer to form a conductive layer.
  • a horizontal alignment layer (SE-7492, Nissan Chemical Co., Ltd.) was coated and cured to a thickness of 100 to 300 nm on the conductive layer to form first and second alignment layers.
  • a sealant was applied to the outer circumference of the first alignment film, a liquid crystal (MDA 14-4145, manufactured by Merck) was applied to the inner region of the sealant, and the second alignment film was laminated to manufacture a liquid crystal device.
  • the area of the prepared liquid crystal device is 600 mm ⁇ 300 mm, and the cell gap is 12 ⁇ m.
  • the first outer substrate, the adhesive film, the liquid crystal element, the adhesive film, the polarizing plate, the adhesive film and the second outer substrate were laminated in this order, and the adhesive film was also disposed on all sides of the liquid crystal element to prepare a laminate.
  • the second outer substrate is disposed in the direction of gravity as compared to the first outer substrate)
  • a glass substrate having a thickness of about 3 mm was used as the first and second outer substrates, and a substrate having a radius of curvature of about 2,470R (first outer substrate) and a substrate having a radius of curvature of about 2,400R (second outer substrate) ) was used. Meanwhile, a thermoplastic polyurethane adhesive film (thickness: about 0.38 mm, manufacturer: Argotec, product name: ArgoFlex) was used as the adhesive film.
  • the laminate was subjected to an autoclave process at a temperature of about 105 ° C. and a pressure of about 2 atmospheres to prepare an optical device.
  • FIG. 6 to 8 are photographs of the optical device after the durability test
  • FIG. 6 is a device photograph of Example 1
  • FIG. 7 is a device photograph of Example 2
  • FIG. 8 is a device photograph of Comparative Example.
  • the optical devices of Examples 1 and 2 can be confirmed that the optical device is stably produced without appearance defects such as wrinkles, and in contrast, the device of the comparative example can confirm that appearance defects such as wrinkles are generated. have.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

본 출원은 광학 디바이스에 대한 것이다. 본 출원의 광학 디바이스는 투과율 가변이 가능하고, 액정 소자와 외곽 기판의 합착에 따라 발생 할 수 있는 주름 등의 외관 불량을 개선할 수 있다. 이러한 광학 디바이스는, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등의 다양한 용도에 사용될 수 있다.

Description

광학 디바이스
본 출원은 2018년 08월 14일자 제출된 대한민국 특허출원 제10- 2018-0094738호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은 광학 디바이스에 관한 것이다.
액정 화합물을 이용하여 투과율을 가변 할 수 있도록 설계된 광학 디바이스는 다양하게 알려져 있다.
예를 들면, 호스트 물질(host material)과 이색성 염료 게스트(dichroic dye guest)의 혼합물을 적용한 소위 GH셀(Guest host cell)을 사용한 투과율 가변 장치가 알려져 있고, 상기 장치에서 호스트 물질로 주로 액정 화합물이 사용된다.
이러한 투과율 가변 장치는 선글라스나 안경 등의 아이웨어(eyewear), 건물 외벽 또는 차량의 선루프 등을 포함한 다양한 용도에 적용되고 있다.
본 출원의 과제는 투과율 가변이 가능하고, 액정 소자와 외곽 기판의 합착에 따라 발생 할 수 있는 주름 등의 외관 불량이 개선된 광학 디바이스를 제공하는 것이다.
본 출원은 광학 디바이스에 관한 것이다. 상기 광학 디바이스는 제 1 기재층, 액정층 및 제 2 기재층이 순차로 적층되는 구조를 가지는 액정 소자를 포함한다.
도 1은 본 출원의 일 실시예에 따른 액정 소자를 예시적으로 나타낸다. 도 1 에 나타낸 바와 같이, 상기 액정 소자(10)는 제 1 기재층(11a), 액정층(12) 및 제 2 기재층(11b)이 순차로 적층되는 구조를 가질 수 있다. 한편, 상기 제 1 및 제 2 의 표현이 기재층의 선후 내지는 상하 관계를 규정하는 것은 아니다.
하나의 예로서, 상기 액정 소자(10)를 구성하는 제 1 기재층(11a) 및 제 2 기재층(11b) 중 하나 이상은 하기 수식 1의 굽힘 강도(D)가 약 2.2*10-4 N·m 이상 일 수 있다.
[수식 1]
Figure PCTKR2019008865-appb-I000001
상기 수식 1에서 D는 기재층의 굽힘 강도(flexural rigidity)이고, E는 기재층의 영률(Young’s modulus)이며, he는 기재층의 두께이고, υ은 기재층의 푸아송 비(Poisson’s ratio)이다.
상기 수식 1의 굽힘 강도(D)는, 다른 예로 약 2.2*10-4 N·m 이상, 4*10-4 N·m 이상, 6*10-4 N·m 이상, 8*10-4 N·m 이상, 10*10-4 N·m 이상, 20*10-4 N·m 이상, 30*10-4 N·m 이상, 40*10-4 N·m 이상 또는 약 50*10-4 N·m 이상일 수 있으며, 상한은 특별히 제한되지 않으나 약 1 N·m 이하, 5*10-1 N·m 이하, 1*10-1 N·m 이하, 5*10-1 N·m 이하 또는 약 1*10-2 N·m 이하일 수 있다.
기재층이 상기 범위의 굽힘 강도(D)를 만족하는 경우, 상기 기재층을 포함하는 액정 소자가 후술하는 외곽 기판과 합착하여 광학 디바이스를 제조할 때, 주름 등의 외관 불량이 감소될 수 있다.
하나의 예로서, 제 1 기재층 및 제 2 기재층은 각각 상기 수식 1의 굽힘 강도 (D)가 약 2.2*10-4 N·m 이상일 수 있다. 제 1 및 제 2 기재층의 굽힘 강도가 상기 범위를 만족하는 경우, 광학 디바이스의 외관 불량 발생이 보다 효율적으로 감소될 수 있다.
하나의 예시에서, 제 1 기재층 및 제 2 기재층은 각각 영률(Young's modulus, E)이 약 1*109 N/m2 내지 약 1*1010 N/m2 일 수 있다. 다른 예로, 상기 기재층의 영률(E)은 약 1.2*109 N/m2 이상, 1.4*109 N/m2 이상, 1.6*109 N/m2 이상 또는 약 1.8*109 N/m2 이상일 수 있으며, 약 9*109 N/m2 이하, 8*109 N/m2 이하, 7*109 N/m2 이하, 6*109 N/m2 이하, 5*109 N/m2 이하, 4*109 N/m2 이하 또는 약 3*109 N/m2 이하일 수 있다.
상기 영률(E)은, 예를 들면, ASTM D882에 규정된 방식으로 측정할 수 있고, 해당 규격에서 제공하는 형태로 필름을 재단하고, Stress-Strain curve를 측정할 수 있는 장비(힘과 길이를 동시에 측정할 수 있는), 일예로 UTM(Universal testing machine)을 이용하여 측정할 수 있다.
기재층의 영률(E)이 상기 범위를 만족하는 경우, 상기 수식 1의 굽힘 강도(D)가 2.2*10-4 N·m 이상의 범위를 가지는데 유리하다. 따라서 액정 소자가 후술하는 외곽 기판과 합착하여 광학 디바이스를 제조할 때, 주름 등의 외관 불량이 감소될 수 있다
하나의 예로서, 제 1 기재층 및 제 2 기재층은 각각 두께(he)가 약 10 ㎛ 내지 약 1,000 ㎛ 일 수 있다. 다른 예로, 상기 기재층은 두께(he)가 각각 약 20 ㎛ 이상, 40 ㎛ 이상, 60 ㎛ 이상, 80 ㎛ 이상, 100 ㎛ 이상, 120 ㎛ 이상, 140 ㎛ 이상, 160 ㎛ 이상 또는 약 180 ㎛ 이상일 수 있으며, 약 900 ㎛ 이하, 800 ㎛ 이하, 700 ㎛ 이하, 600 ㎛ 이하, 500 ㎛ 이하 또는 약 400 ㎛ 이하일 수 있다.
기재층의 두께(he)가 약 100 ㎛ 내지 약 1,000 ㎛ 에 해당되는 경우 상기 수식 1의 굽힘 강도(D)가 2.2*10-4 N·m 이상의 범위를 가지는데 유리하고, 따라서 상기 기재층을 포함하는 액정 소자가 후술하는 외곽 기판과 합착하여 광학 디바이스를 제조할 때, 주름 등의 외관 불량이 감소될 수 있다.
하나의 예시에서, 제 1 기재층 및 제 2 기재층은 각각 푸아송 비(Poisson’s ratio, υ)가 약 0.25 내지 약 0.45 일 수 있다. 다른 예로 약 0.25 이상, 0.26 이상, 0.27 이상, 0.28 이상, 0.29 이상 또는 약 0.30 이상 일 수 있으며, 약 0.44 이하, 0.43 이하, 0.42 이하, 0.41 이하 또는 약 0.40 이하일 수 있다.
상기 푸아송 비(υ)는 축방향 변형률(x 방향, εx)에 대한 측방향 변형률(y 방향, εy)의 음의 비이고, ' 푸아송 비 = -εy /εx '의 수식으로 표시 될 수 있다. 푸아송 비는 공지의 다양한 방법으로 측정할 수 있다. 예를 들면, ASTM-D638에 규정된 방식에 따라 표준 크기의 시편을 이용하여 측정할 수 있다. 즉, 2 개의 연신계가 설치된 시편에 대해 인장 시험을 행함으로써 측정할 수 있다. 하나의 연신계는 적용된 인장 응력에 대해 평행하게 정렬되고, 한편 제 2의 연신계는 인장 응력에 대해 수직으로 정렬되며, 여기서 인장 응력은 x 방향으로 적용된다.
상기 범위의 푸아송 비(υ)를 만족하는 경우, 상기 수식 1의 굽힘 강도(D)가 2.2*10-4 N븁 이상의 범위를 가지는데 유리하다.
하나의 예로서, 제 1 기재층 및 제 2 기재층으로는 상기 수식 1의 굽힘 강도(D)가 2.2*10-4 N·m 이상을 만족하는 것이라면 특별히 제한되지 않고 본 출원의 기재층으로 이용할 수 있다. 일 구체예로서 제 1 기재층 및 제 2 기재층은 각각 독립적으로 PEN(polyethylene-naphthalate) 필름, PI(polyimide) 필름, COP(cyclo-olefin polymer) 필름, TAC(tri-acetyl-cellulose) 필름, PET(polyethyleneterephtalate) 필름 또는 PC(polycarbonate) 필름 등이 이용될 수 있으나 이에 제한되는 것은 아니다.
상기 액정 소자는 적어도 액정 화합물을 포함하는 액정층을 포함할 수 있다. 일예에서 상기 액정층은 소위 게스트 호스트 액정층으로서, 액정 화합물과 이색성 염료 게스트를 포함하는 액정층일 수 있다.
상기 액정층은 소위 게스트 호스트 효과를 이용한 액정층으로서, 상기 액정 화합물(이하, 액정 호스트라 칭할 수 있다)의 배향 방향에 따라 상기 이색성 염료 게스트가 정렬되는 액정층이다.
상기 배향은 광축의 배향을 의미하며, 상기 광축은 예를 들어 액정 화합물이 막대(rod)형인 경우에는 그 장축 방향을 의미할 수 있고, 원반(discotic) 형태인 경우에는 상기 원반 평면의 법선 방향을 의미할 수 있다. 한편, 임의의 배향 상태에서 서로 광축 방향이 다른 복수의 액정 화합물들을 포함하는 경우에 광축은 평균 광축으로 정의될 수 있고, 이 경우 평균 광축은 상기 액정 화합물들의 광축의 백터합을 의미할 수 있다. 배향 방향은 후술하는 에너지의 인가에 의해 조절 될 수 있다.
액정층에 사용되는 액정 호스트의 종류는 특별히 제한되지 않고, 게스트 호스트 효과의 구현을 위해 적용되는 일반적인 종류의 액정 화합물이 사용될 수 있다.
예를 들면, 상기 액정 호스트로는 스멕틱 액정 화합물, 네마틱 액정 화합물 또는 콜레스테릭 액정 화합물이 사용될 수 있다. 일반적으로는 네마틱 액정 화합물이 사용될 수 있다. 용어 네마틱 액정 화합물은 액정 분자의 위치에 대한 규칙성은 없지만, 모두 분자축 방향으로 질서를 가지고 배열할 수 있는 액정 화합물을 의미하고, 이러한 액정 화합물은 막대(rod) 형태이거나 원반(discotic) 형태일 수 있다.
이러한 네마틱 액정 화합물은 예를 들면, 약 40℃ 이상, 50℃ 이상, 60℃ 이상, 70℃ 이상, 80℃ 이상, 90℃ 이상, 100℃ 이상 또는 약 110℃ 이상의 등명점(clearing point)를 가지거나, 상기 범위의 상전이점, 즉 네마틱상에서 등방상으로의 상전이점을 가지는 것이 선택될 수 있다. 일 예시에서 상기 등명점 또는 상전이점은 약 160℃ 이하, 150℃ 이하 또는 약 140℃ 이하일 수 있다.
상기 액정 화합물은 유전율 이방성이 음수 또는 양수일 수 있다. 상기 유전율 이방성의 절대값은 목적을 고려하여 적절히 선택될 수 있다. 예를 들면, 상기 유전율 이방성은 약 3 초과 또는 약 7 초과이거나, 약 -2 미만 또는 약 -3 미만일 수 있다.
액정 화합물은 또한 약 0.01 이상 또는 약 0.04 이상의 광학 이방성(△n)을 가질 수 있다. 액정 화합물의 광학 이방성은 다른 예시에서 약 0.3 이하 또는 약 0.27 이하일 수 있다.
게스트 호스트 액정층의 액정 호스트로 사용될 수 있는 액정 화합물은 본 기술 분야의 전문가들에게 공지되어 있으며, 그들로부터 자유롭게 선택될 수 있다.
액정층은 상기 액정 호스트와 함께 이색성 염료 게스트를 포함한다. 용어 염료는 가시광 영역, 예를 들면, 380 nm 내지 780 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 이색성 염료 게스트는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광 흡수가 가능한 물질을 의미할 수 있다.
이색성 염료 게스트로는, 예를 들면 액정 호스트의 배향 상태에 따라 정렬될 수 있는 특성을 가지는 것으로 알려진 공지의 염료를 선택하여 사용할 수 있다. 일 구체예로 이색성 염료 게스트로는 아조 염료 또는 안트라퀴논 염료 등을 사용할 수 있고, 넓은 파장 범위에서의 광 흡수를 달성하기 위해서 액정층은 1종 또는 2종 이상의 염료를 포함할 수도 있다.
이색성 염료 게스트의 이색비(dichroic ratio)는 이색성 염료 게스트의 사용 목적을 고려하여 적절히 선택될 수 있다. 예를 들어, 상기 이색성 염료 게스트는 이색비가 약 5 이상 내지 약 20 이하일 수 있다. 용어 이색비는, 예를 들어, p형 염료인 경우, 염료의 장축 방향에 평행한 편광의 흡수를 상기 장축 방향에 수직하는 방향에 평행한 편광의 흡수로 나눈 값을 의미할 수 있다. 이색성 염료 게스트는 가시광 영역의 파장 범위 내, 예를 들면, 약 380 nm 내지 약 780 nm, 또는 약 400 nm 내지 약 700 nm의 파장 범위 내에서 적어도 어느 한 파장, 일부 범위의 파장 또는 전 범위의 파장에서 상기 이색비를 가질 수 있다.
액정층 내에서의 이색성 염료 게스트의 함량은 이색성 염료 게스트의 사용 목적을 고려하여 적절히 선택될 수 있다. 예를 들어, 액정 호스트와 이색성 염료 게스트의 합계 중량을 기준으로 상기 이색성 염료 게스트의 함량은 약 0.1 중량% 내지 약 10 중량% 범위 내에서 선택될 수 있다. 이색성 염료 게스트의 비율은 후술하는 액정 소자의 투과율과 액정 호스트에 대한 이색성 염료 게스트의 용해도 등을 고려하여 변경할 수 있다.
액정층은 상기 액정 호스트와 이색성 염료 게스트를 기본적으로 포함하고, 필요한 경우에 다른 임의의 첨가제를 공지의 형태에 따라 추가로 포함할 수 있다. 첨가제의 예로는 키랄 도펀트 또는 안정화제 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
상기 액정 소자는 상기 제 1 기재층 및 제 2 기재층 사이에서 기재층의 간격을 유지하는 스페이서 및/또는 제 1 기재층 및 제 2 기재층의 간격이 유지된 상태로 상기 제 1 기재층 및 제 2 기재층을 부착시킬 수 있는 실런트를 추가로 포함할 수 있다. 상기 스페이서 및/또는 실런트의 재료는 특별한 제한 없이 공지의 소재가 사용될 수 있다.
상기 액정 소자는 도전층 및/또는 배향막을 추가로 포함할 수 있다. 도 2는 도전층 및 배향막이 포함된 일 실시예에 따른 액정 소자를 예시적으로 나타낸다. 도 2에 나타낸 바와 같이, 상기 액정 소자(10)는 제 1 기재층((11a), 도전층(13), 배향막(14), 액정층(12), 배향막(14), 도전층(13) 및 제 2 기재층(11b)이 순차로 적층되는 구조를 가질 수 있다.
상기 도전층(13)은 제 1 기재층 및 제 2 기재층(11a, 11b) 상에 각각 형성될 수 있다. 또한 상기 도전층(13)은 액정층(12)을 향하는 면상에 형성될 수 있다. 기재층의 면상에 존재하는 도전층(13)은 액정층(12)에 전압을 인가하기 위한 구성으로 특별한 제한 없이 공지의 도전층이 적용될 수 있다. 도전층으로는, 예를 들면, 전도성 고분자, 전도성 금속, 전도성 나노와이어 또는 ITO(Indium Tin Oxide) 등의 금속 산화물 등이 적용될 수 있다. 본 출원에서 적용될 수 있는 도전층의 예는 상기에 제한되지 않으며, 이 분야에서 액정 소자에 적용될 수 있는 것으로 알려진 모든 종류의 도전층이 사용될 수 있다.
상기 배향막(14)은 제 1 기재층 및 제 2 기재층(11a, 11b)의 면상에 존재할 수 있다. 예를 들면, 기재층의 일면에 우선 도전층(13)이 형성되고 그 상부에 배향막(14)이 형성될 수 있다.
상기 배향막(14)은 액정층(12)에 포함되는 액정 호스트의 배향을 제어하기 위한 구성이고, 특별한 제한 없이 공지의 배향막을 적용할 수 있다. 업계에서 공지된 배향막으로는, 러빙 배향막이나 광배향막 등이 있고, 본 출원에서 사용될 수 있는 배향막은 상기 공지의 배향막이고, 이는 특별히 제한되지 않는다.
전술한 광축의 배향을 달성하기 위해서 상기 배향막(14)의 배향 방향이 제어될 수 있다. 예를 들면, 대향 배치되어 있는 제 1 기재층 및 제 2 기재층의 각 면에 형성된 2개의 배향막의 배향 방향은 서로 약 -10도 내지 약 10도의 범위 내의 각도, 약 -7도 내지 약 7도의 범위 내의 각도, 약 -5도 내지 약 5도의 범위 내의 각도 또는 약 -3도 내지 약 3도의 범위 내의 각도를 이루거나 서로 대략 평행할 수 있다. 다른 예시에서 상기 2개의 배향막의 배향 방향은 약 80도 내지 약 100도의 범위 내의 각도, 약 83도 내지 약 97도의 범위 내의 각도, 약 85도 내지 약 95도의 범위 내의 각도 또는 약 87도 내지 약 92도의 범위 내의 각도를 이루거나 서로 대략 수직일 수 있다.
이와 같은 배향 방향에 따라서 액정층의 광축의 방향이 결정되기 때문에, 상기 배향 방향은 액정층의 광축의 방향을 확인하여 알 수 있다. 액정층의 광축이 어떤 방향으로 형성되어 있는 것인지를 확인하는 방식은 공지이다. 예를 들면, 액정층의 광축의 방향은 광축 방향을 알고 있는 다른 편광판을 이용하여 측정할 수 있으며, 이는 공지의 측정 기기, 예를 들면, Jasco사의 P-2000 등의 polarimeter를 사용하여 측정할 수 있다.
상기와 같은 구성을 가지는 액정 소자의 형태는 특별히 제한되지 않고, 광학 디바이스의 적용 용도에 따라서 정해질 수 있으며, 일반적으로는 필름 또는 시트 형태이다.
상기 액정 소자는 적어도 2개 이상의 광축의 배향 상태, 예를 들면, 제 1 및 제 2 배향 상태의 사이를 스위칭할 수 있다. 상기와 같은 액정 소자에서 배향 상태는 에너지의 인가, 예를 들면 전압의 인가에 의해 변경할 수 있다. 즉 상기 액정 소자는 전압의 인가가 없는 상태에서 상기 제 1 및 제 2 배향 상태 중에서 어느 한 배향 상태를 가지고 있다가 전압이 인가되면 다른 배향 상태로 스위칭 될 수 있다. 한편, 액정 소자의 배향 상태에 따라 투과율이 조절 될 수 있다. 일예로 제 1 또는 제 2 배향 상태 중 어느 한 배향 상태에서 차단 모드가 구현되고, 다른 배향 상태에서 투과 모드가 구현될 수 있다.
상기 투과 모드는 액정 소자가 상대적으로 높은 투과율을 나타내는 상태이고, 차단 모드는 액정 소자가 상대적으로 낮은 투과율을 나타내는 상태이다.
일 예시에서 상기 액정 소자는 상기 투과 모드에서의 투과율이 약 20%, 25%, 30% 이상, 35% 이상, 40% 이상, 45% 이상 또는 약 50% 이상일 수 있다. 또한, 상기 액정 소자는 상기 차단 모드에서의 투과율이 약 20% 미만, 15% 미만 또는 약 10% 미만일 수 있다.
상기 투과 모드에서의 투과율은 수치가 높을수록 유리하고, 차단 모드에서의 투과율은 낮을수록 유리하기 때문에 각각의 상한과 하한은 특별히 제한되지 않는다. 일 예시에서 상기 투과 모드에서의 투과율의 상한은 약 100%, 95%, 90%, 85%, 80%, 75%, 70%, 65% 또는 약 60%일 수 있다. 상기 차단 모드에서의 투과율의 하한은 약 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% 또는 약 10%일 수 있다.
상기 투과율은 직진광 투과율일 수 있다. 용어 직진광 투과율은 소정 방향으로 액정 소자를 입사한 광 대비 상기 입사 방향과 동일한 방향으로 상기 액정 소자를 투과한 광(직진광)의 비율일 수 있다. 일 예시에서 상기 투과율은 상기 액정 소자의 표면 법선과 평행한 방향으로 입사한 광에 대하여 측정한 결과(법선광 투과율)일 수 있다.
본 출원의 액정 소자에서 투과율이 조절되는 광은, UV-A 영역의 자외선, 가시광 또는 근적외선일 수 있다. 일반적으로 사용되는 정의에 따르면, UV-A 영역의 자외선은 320 nm 내지 380 nm의 범위 내의 파장을 가지는 방사선을 의미하는 것으로 사용되고, 가시광은 380 nm 내지 780 nm의 범위 내의 파장을 가지는 방사선을 의미하는 것으로 사용되며, 근적외선은 780 nm 내지 2000 nm의 범위 내의 파장을 가지는 방사선을 의미하는 것으로 사용된다.
필요한 경우에 액정 소자는 상기 투과 모드 및 차단 모드 외에 다른 모드도 구현할 수 있도록 설계될 수 있다. 예를 들면, 상기 투과 모드 및 차단 모드의 투과율 사이에서 임의의 투과율을 나타낼 수 있는 제 3의 모드도 구현될 수 있도록 설계될 수 있다.
본 출원의 광학 디바이스는 제 1 및 제 2 외곽 기판을 포함할 수 있다. 상기 제 1 및 제 2의 표현은 선후 내지는 상하 관계를 규정한 것은 아니다. 일 예시에서 상기 액정 소자는 상기 제 1 및 제 2 외곽 기판의 사이에서 위치할 수 있다. 예를 들면, 도 3에 나타난 바와 같이 대향 배치된 제 1 및 제 2 외곽 기판(20) 사이에 액정 소자(10)가 위치할 수 있다.
상기 제 1 및 제 2 외곽 기판(20)으로는, 예를 들면, 각각 독립적으로 글라스 등의 무기 기판 또는 플라스틱 기판이 사용될 수 있다. 플라스틱 기판으로는 TAC(triacetyl cellulose) 또는 DAC(diacetyl cellulose) 등과 같은 셀룰로오스 필름; 노르보르넨 유도체 등의 COP(cyclo olefin copolymer) 필름; PAR(Polyacrylate) 또는 PMMA(poly(methyl methacrylate) 등의 아크릴 필름; PC(polycarbonate) 필름; PE(polyethylene) 또는 PP(polypropylene) 등의 폴리올레핀 필름; PVA(polyvinyl alcohol) 필름; PI(polyimide) 필름; PSF(polysulfone) 필름; PPS(polyphenylsulfone) 필름; PES(polyethersulfone) 필름; PEEK(polyetheretherketon) 필름; PEI(polyetherimide) 필름; PEN(polyethylenenaphthatlate) 필름; PET(polyethyleneterephtalate) 필름; 또는 불소 수지 필름 등이 사용될 수 있지만, 이에 제한되는 것은 아니다. 제 1 및 제 2 외곽 기판(20)에는, 필요에 따라서 금; 은; 또는 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 기능층이 존재할 수도 있다.
상기와 같은 제 1 및 제 2 외곽 기판(20)의 두께는 특별히 제한되지 않으며, 예를 들면 각각 약 0.3 mm 이상일 수 있다. 다른 예시에서 상기 두께는 약 0.5 mm 이상, 1 mm 이상, 1.5 mm 이상 또는 약 2 mm 이상일 수 있고, 약 10 mm 이하, 9 mm 이하, 8 mm 이하, 7 mm 이하, 6 mm 이하, 5 mm 이하, 4 mm 이하 또는 약 3 mm 이하일 수도 있다.
상기 제 1 및 제 2 외곽 기판(20)은 평편(flat)한 기판이거나 혹은 곡면 형상을 가지는 기판일 수 있다. 예를 들면, 상기 제 1 및 제 2 외곽 기판은 동시에 평편한 기판이거나, 동시에 곡면 형상을 가지거나, 혹은 어느 하나는 평편한 기판이고 다른 하나는 곡면 형상의 기판일 수 있다.
또한, 상기에서 동시에 곡면 형상을 가지는 경우에는 각각의 곡률 또는 곡률 반경은 동일하거나 상이할 수 있다.
본 명세서에서 곡률 또는 곡률 반경은, 업계에서 공지된 방식으로 측정할 수 있으며, 예를 들면, 2D Profile Laser Sensor (레이저 센서), Chromatic confocal line sensor (공초점 센서) 또는 3D Measuring Conforcal Microscopy 등의 비접촉식 장비를 이용하여 측정할 수 있다. 이러한 장비를 사용하여 곡률 또는 곡률 반경을 측정하는 방식은 공지이다.
또한, 상기 제 1 및 제 2 외곽 기판과 관련해서 예를 들어, 표면과 이면에서의 곡률 또는 곡률 반경이 다른 경우에는 각각 마주보는 면의 곡률 또는 곡률 반경, 즉 제 1 외곽 기판의 경우, 제 2 외곽 기판과 대향하는 면의 곡률 또는 곡률 반경과 제 2 외곽 기판의 경우, 제 1 외곽 기판과 대향하는 면의 곡률 또는 곡률 반경이 기준이 될 수 있다. 또한, 해당 면에서의 곡률 또는 곡률 반경이 일정하지 않고, 상이한 부분이 존재하는 경우에는 가장 큰 곡률 또는 곡률 반경이 기준이 되거나, 가장 작은 곡률 또는 곡률 반경이 기준일 될 수 있고, 또는 평균 곡률 또는 평균 곡률 반경이 기준이 될 수 있다.
상기 제 1 및 제 2 외곽 기판은, 양자가 곡률 또는 곡률 반경의 차이가 약 10% 이내, 9% 이내, 8% 이내, 7% 이내, 6% 이내, 5% 이내, 4% 이내, 3% 이내, 2% 이내 또는 약 1% 이내일 수 있다. 상기 곡률 또는 곡률 반경의 차이는 큰 곡률 또는 곡률 반경을 CL이라고 하고, 작은 곡률 또는 곡률 반경을 CS라고 할 때에 100×(CL-CS)/CS로 계산되는 수치이다. 또한, 상기 곡률 또는 곡률 반경의 차이의 하한은 특별히 제한되지 않는다. 제 1 및 제 2 외곽 기판의 곡률 또는 곡률 반경의 차이는 동일할 수 있기 때문에, 상기 곡률 또는 곡률 반경의 차이는 약 0% 이상이거나, 약 0% 초과일 수 있다.
제 1 및 제 2 외곽 기판이 모두 곡면인 경우에 양자의 곡률은 동일 부호일 수 있다. 다시 말하면, 상기 제 1 및 제 2 외곽 기판은 모두 동일한 방향으로 굴곡되어 있을 수 있다. 즉, 상기 경우는 제 1 외곽 기판의 곡률 중심과 제 2 외곽 기판의 곡률 중심이 모두 제 1 및 제 2 외곽 기판의 상부 및 하부 중에서 같은 부분에 존재하는 경우이다.
제 1 및 제 2 외곽 기판의 각각의 곡률 또는 곡률 반경의 구체적인 범위는 특별히 제한되지 않는다. 일 예시에서 상기 제 1 및 제 2 외곽 기판은 각각 곡률 반경이 약 100R 이상, 200R 이상, 300R 이상, 400R 이상, 500R 이상, 600R 이상, 700R 이상, 800R 이상 또는 약 900R 이상이거나, 약 10,000R 이하, 9,000R 이하, 8,000R 이하, 7,000R 이하, 6,000R 이하, 5,000R 이하, 4,000R 이하, 3,000R 이하, 2,000R 이하, 1,900R 이하, 1,800R 이하, 1,700R 이하, 1,600R 이하, 1,500R 이하, 1,400R 이하, 1,300R 이하, 1,200R 이하, 1,100R 이하 또는 약 1,050R 이하일 수 있다. 상기에서 R은 반지름이 1 mm인 원의 휘어진 정도를 의미한다. 따라서, 상기에서 예를 들어, 100R은 반지름이 100mm인 원의 휘어진 정도 또는 그러한 원에 대한 곡률 반경이다. 물론 기판이 평편한 경우에 곡률은 0이고, 곡률 반경은 무한대이다.
제 1 및 제 2 외곽 기판은 상기 범위에서 동일하거나 상이한 곡률 반경을 가질 수 있다. 일 예시에서 제 1 및 제 2 외곽 기판의 곡률이 서로 다른 경우에, 그 중에서 곡률이 큰 기판의 곡률 반경이 상기 범위 내일 수 있다.
일 예시에서 제 1 및 제 2 외곽 기판의 곡률이 서로 다른 경우에는 그 중에서 곡률이 큰 기판이 광학 디바이스의 사용 시에 보다 중력 방향으로 배치되는 기판일 수 있다.
제 1 및 제 2 기판의 곡률 또는 곡률 반경을 위와 같이 제어하게 되면, 후술하는 접착 필름에 의한 합착력이 떨어지게 되어도 복원력과 중력의 합인 알짜힘이 작용하여 벌어짐을 막아줄 수 있고, 오토클레이브(Autoclave)와 같은 공정 압력에도 잘 견딜 수 있다.
본 출원의 광학 다비이스는 편광자 및/또는 접착 필름을 추가로 포함할 수 있다. 도 4는 편광자 및 접착 필름을 포함된 일 실시예에 따른 광학 디바이스를 예시적으로 나타낸다. 도 4에 나타낸 바와 같이, 상기 광학 디바이스(100)는 제 1 외곽 기판(20), 접착 필름(40), 액정 소자(10), 접착 필름(40), 편광자(30), 접착 필름(40) 및 제 2 외곽 기판(20)이 순차로 적층되는 구조를 가질 수 있다.
상기 편광자(30)로는, 예를 들면 흡수형 선형 편광자, 즉 일방향으로 형성된 광흡수축과 그와는 대략 수직하게 형성된 광투과축을 가지는 편광자를 사용할 수 있다.
상기 편광자(30)는 상기 액정 소자(10)의 제 1 배향 상태에서 상기 차단 상태가 구현된다고 가정하는 경우에 상기 제 1 배향 상태의 평균 광축(광축의 벡터합)과 상기 편광자의 광흡수축이 이루는 각도가 약 80도 내지 약 100도 또는 약 85도 내지 약 95도를 이루거나, 대략 수직이 되도록 광학 디바이스에 배치되어 있거나, 혹은 약 35도 내지 약 55도 또는 약 40도 내지 약 50도가 되거나 대략 45도가 되도록 광학 디바이스에 배치되어 있을 수 있다.
배향막의 배향 방향을 기준으로 할 때에, 전술한 것과 같이 제 1 및 제 2 기재층의 각 면상에 형성된 배향막의 배향 방향이 서로 약 -10도 내지 약 10도의 범위 내의 각도, 약 -7도 내지 약 7도의 범위 내의 각도, 약 -5도 내지 약 5도의 범위 내의 각도 또는 약 -3도 내지 약 3도의 범위 내의 각도를 이루거나 서로 대략 평행한 경우에 상기 2개의 배향막 중에서 어느 하나의 배향막의 배향 방향과 상기 편광자의 광흡수축이 이루는 각도가 약 80도 내지 약 100도 또는 약 85도 내지 약 95도를 이루거나, 대략 수직이 될 수 있다.
다른 예시에서 상기 2개의 배향막의 배향 방향이 약 80도 내지 약 100도의 범위 내의 각도, 약 83도 내지 약 97도의 범위 내의 각도, 약 85도 내지 약 95도의 범위 내의 각도 또는 약 87도 내지 약 92도의 범위 내의 각도를 이루거나 서로 대략 수직인 경우에는 2장의 배향막 중에서 상기 편광자에 보다 가깝게 배치된 배향막의 배향 방향과 상기 편광자의 광흡수축이 이루는 각도가 약 80도 내지 약 100도 또는 약 85도 내지 약 95도를 이루거나, 대략 수직이 될 수 있다.
본 출원의 광학 디바이스에서 적용될 수 있는 상기 편광자의 종류는 특별히 제한되지 않는다. 예를 들면, 편광자로는 기존 LCD 등에서 사용되는 통상의 소재, 예를 들면, PVA(poly(vinyl alcohol)) 편광자 등이나, 유방성 액정(LLC: Lyotropic Liquid Cystal)이나, 반응성 액정(RM: Reactive Mesogen)과 이색성 색소(dichroic dye)를 포함하는 편광 코팅층과 같이 코팅 방식으로 구현한 편광자을 사용할 수 있다. 본 명세서에서 상기와 같이 코팅 방식으로 구현된 편광자는 편광 코팅층으로 호칭될 수 있다. 상기 유방성 액정으로는 특별한 제한 없이 공지의 액정을 사용할 수 있으며, 예를 들면, 이색비(dichroic ratio)가 약 30 내지 약 40 정도인 유방성 액정층을 형성할 수 있는 유방성 액정을 사용할 수 있다. 한편, 편광 코팅층이 반응성 액정(RM: Reactive Mesogen)과 이색성 염료(dichroic dye)를 포함하는 경우에 상기 이색성 염료로는 선형의 염료를 사용하거나, 혹은 디스코틱형의 염료(discotic dye)가 사용될 수도 있다.
본 출원의 광학 디바이스는 상기와 같은 액정 소자와 편광자를 각각 하나씩만 포함할 수 있다. 따라서, 상기 광학 디바이스는 오직 하나의 상기 액정 소자만을 포함하고, 오직 하나의 편광자만을 포함할 수 있다.
상기 접착 필름(40)은, 예를 들면, 도 4에 나타난 바와 같이 외곽 기판(20)과 액정 소자(10)의 사이, 액정 소자(10)과 편광자(30)의 사이 및 편광자(30)와 외곽 기판(20)의 사이에 존재할 수 있고, 상기 액정 소자(10)와 편광자(30)의 측면, 적절하게는 모든 측면에 존재할 수 있다.
한편, 상기 외곽 기판(20)과 액정 소자(10)의 사이, 액정 소자(10)과 편광자(30)의 사이, 편광자(30)와 외곽 기판(20)의 사이 및/또는 상기 액정 소자(10)와 편광자(30)의 측면에 위치하는 접착 필름은 동일하거나 상이한 접착 필름일 수 있다.
상기 접착 필름(40)은, 상기 외곽 기판(20)과 액정 소자(10), 액정 소자 (10)와 편광자(30) 및 편광자(30)와 외곽 기판(20)들을 서로 접착시키면서, 상기 액정 소자(10)와 편광자(30)를 봉지화하고 있을 수 있다. 본 출원에서 용어 봉지(또는 캡슐화(encapsulation))는 접착 필름으로 액정 소자 및/또는 편광자의 전면을 피복하는 것을 의미할 수 있다. 예를 들면, 목적하는 구조에 따라서 외곽 기판, 액정 소자, 편광자 및 접착 필름을 적층한 후에 진공 상태에서 압착하는 방식으로 상기 구조를 구현할 수 있다.
상기 접착 필름(40)으로는 특별한 제한 없이 공지의 소재가 사용될 수 있고, 예를 들면, 공지된 열가소성 폴리우레탄 접착 필름(TPU: Thermoplastic Polyurethane), TPS(Thermoplastic Starch), 폴리아마이드 접착 필름, 폴리에스테르 접착 필름, EVA(Ethylene Vinyl Acetate) 접착 필름, 폴리에틸렌 또는 폴리프로필렌 등의 폴리올레핀 접착 필름 또는 폴리올레핀 엘라스토머 필름(POE 필름) 등 중에서 선택될 수 있다.
상기와 같은 접착 필름의 두께는 특별히 제한되지 않으며, 예를 들면 약 200 ㎛ 내지 약 600 ㎛ 정도의 범위 내일 수 있다. 상기에서 접착 필름의 두께는 상기 외곽 기판(20)과 액정 소자(10)의 사이의 접착 필름의 두께, 예를 들면 상기 양자간의 간격; 액정 소자(10)와 편광자(30)의 사이의 접착 필름의 두께, 예를 들면 상기 양자간의 간격; 및 편광자(30)와 외곽 기판(20)의 사이의 접착 필름의 두께, 예를 들면 상기 양자간의 간격일 수 있다.
광학 디바이스는 상기 구성 외에도 필요한 임의 구성을 추가로 포함할 수 있고, 예를 들면, 버퍼층, 위상차층, 광학 보상층, 반사 방지층 또는 하드코팅층 등의 공지의 구성을 적절한 위치에 포함할 수 있다.
본 출원의 상기 광학 디바이스를 제조하는 방법은 특별히 제한되지 않는다. 일 예시에서 상기 광학 디바이스는, 전술한 봉지화를 위해서 오토클레이브 공정을 거쳐 제조될 수 있다.
예를 들면, 상기 광학 디바이스의 제조 방법은 대향 배치되어 있는 제 1 및 제 2 외곽 기판의 사이에 있는 액정 소자 및/또는 편광자를 접착 필름을 사용한 오토클레이브 공정을 통해 봉지화하는 단계를 포함할 수 있다.
상기 오토클레이브 공정은 외곽 기판의 사이에 목적하는 봉지화 구조에 따라서 접착 필름과 액정 소자 및/또는 편광자를 배치하고, 가열/가압에 의해 수행할 수 있다.
예를 들어, 외곽 기판(20), 접착 필름(40), 액정 소자(10), 접착 필름(40), 편광자(30), 접착 필름(40) 및 외곽 기판(20)을 상기 순서로 배치하고, 액정 소자(10)와 편광자(30)의 측면에도 접착 필름(40)을 배치한 적층체를 오토클레이브 공정으로 가열/가압 처리하면, 도 5에 나타난 것과 같은 광학 디바이스가 형성될 수 있다.
상기 오토클레이브 공정의 조건은 특별한 제한이 없고, 예를 들면, 적용된 접착 필름의 종류에 따라 적절한 온도 및 압력 하에서 수행할 수 있다. 통상의 오토클레이트 공정의 온도는 약 80°C 이상, 90°C 이상 또는 약 100°C 이상이며, 압력은 2기압 이상이나, 이에 제한되는 것은 아니다. 상기 공정 온도의 상한은 약 200°C 이하, 190°C 이하, 180°C 이하 또는 약 170°C 이하 정도일 수 있고, 공정 압력의 상한은 약 10기압 이하, 9기압 이하, 8기압 이하, 7기압 이하 또는 약 6기압 이하 정도일 수 있다.
상기와 같은 광학 디바이스는 다양한 용도로 사용될 수 있으며, 예를 들면, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등에 사용될 수 있다.
하나의 예시에서 상기 광학 디바이스는, 그 자체로서 차량용 선루프일 수 있다.
예를 들면, 적어도 하나 이상의 개구부가 형성되어 있는 차체를 포함하는 자동차에 있어서 상기 개구부에 장착된 상기 광학 디바이스 또는 차량용 선루프를 장착하여 사용될 수 있다.
본 출원은 투과율 가변이 가능하고, 액정 소자와 외곽 기판의 합착에 따라 발생 할 수 있는 주름 등의 외관 불량이 개선된 광학 디바이스를 제공할 수 있다. 이러한 광학 디바이스는, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등의 다양한 용도에 사용될 수 있다.
도 1 내지 2는 본 출원의 광학 디바이스에 사용될 수 있는 액정 소자의 예시적인 단면도 이다.
도 3 내지 5는 본 출원의 예시적인 광학 디바이스를 나타내는 예시적인 단면도이다.
도 6 내지 도 8은 실시예 1, 실시예 2 및 비교예에 따라 제조된 광학 디바이스를 고온 장기 내구성 테스트에 적용한 후에 디지털 카메라를 이용하여 촬영한 이미지이다.
이하 실시예 및 비교예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
외관 불량 측정 방법
외관 불량은 실시예 1, 실시예 2 및 비교예에서 제조된 액정 소자가 Autoclave 공정 이후에 제 1 및 제 2 외곽 기판 사이에 캡슐화 되어 있는 상태에서 측정하였다. 제 1 및 제 2 외곽 기판 사이에 캡슐화 되어 있는 액정 소자를 고온 장기 내구성 테스트(100℃의 온도에서 약 168 시간 유지)에 적용하고, 상온에서 24시간 이상 방치하였을 때 광학 디바이스의 외관에 주름 발생 광학 디바이스의 외관 불량을 측정 하였다.
실시예 1
액정 소자
제 1 및 제 2 기재층으로 굽힘 강도(D)가 약 5.73*10-3 N·m인 폴리카보네이트 필름(두께: 300 ㎛, 제조사: Keiwa 社)을 사용하였으며, 제 1 기재층 및 제 2 기재층 상에 각각 ITO(indium-tin-oxide)를 200 nm 두께로 증착하여 도전층을 형성하였다. 상기 도전층 상에 수평 배향막(SE-7492, Nissan chemical 社)을 100~300 nm 두께로 코팅 및 경화하여 제 1 및 제 2 배향막을 형성하였다.
제 1 배향막의 외주에 실란트를 도포하고, 상기 실란트의 내부 영역에 액정(MDA 14-4145, Merck사제)을 도포하고, 제 2 배향막을 합지하여 액정 소자를 제조하였다. 제조된 액정 소자의 면적은 600 mmХ300 mm이고, 셀 갭은 12 ㎛이다.
광학 디바이스
제 1 외곽 기판, 접착 필름, 상기 액정 소자, 접착 필름, 편광판, 접착 필름 및 제 2 외곽 기판을 상기 순서로 적층하고, 상기 액정 소자의 모든 측면에도 접착 필름을 배치하여 적층체를 제조하였다.(제 1 외곽 기판에 비해서 제 2 외곽 기판이 중력 방향으로 배치)
상기 제 1 및 제 2 외곽 기판으로는 두께가 약 3mm 정도인 글라스 기판을 사용하였으며, 곡률 반경이 약 2,470R인 기판(제 1 외곽 기판)과 곡률 반경이 약 2,400R인 기판(제 2 외곽 기판)을 사용하였다. 한편, 접착 필름으로는 열가소성 폴리우레탄 접착필름(두께: 약 0.38 mm, 제조사: Argotec사, 제품명: ArgoFlex)을 사용하였다.
상기 적층체를 약 105℃의 온도 및 2기압 정도의 압력으로 오토클레이브 (Autoclave) 공정을 수행하여 광학 디바이스를 제조하였다.
실시예 2
액정 소자의 제 1 및 제 2 기재층으로 굽힘 강도(D)가 약 8.17*10-4 N·m 정도인 폴리에틸렌 테레프탈레이트(두께: 145 ㎛, 제조사: SKC 社) 필름을 사용한 것을 제외하고는 실시예 1과 동일하게 액정 소자 및 광학 디바이스를 제조하였다.
비교예
액정 소자의 제 1 및 제 2 기재층으로 굽힘 강도(D)가 약 2.12*10-4 N·m인 폴리카보네이트 필름(두께: 100 ㎛, 제조사: Keiwa 社)을 사용한 것을 제외하고는 실시예와 동일하게 액정 소자 및 광학 디바이스를 제조하였다.
도 6 내지 도 8은, 상기 내구성 테스트 후의 광학 디바이스의 사진으로, 도 6은 실시예 1의 디바이스 사진이고, 도 7은 실시예 2의 디바이스 사진이며, 도 8은 비교예의 디바이스 사진이다. 실시예 1 및 실시예 2의 광학 디바이스는 주름 등의 외관불량이 발생됨이 없이 안정적으로 광학 디바이스가 제조된 것을 확인할 수 있고, 이와 대조적으로 비교예의 디바이스는 주름 등의 외관불량이 발생된 것을 확인할 수 있다.

Claims (12)

  1. 제 1 및 제 2 외곽 기판;
    상기 제 1 및 제 2 외곽 기판 사이에 위치하고, 제 1 기재층, 액정층 및 제 2 기재층이 순차로 적층되는 구조를 가지는 액정 소자; 및
    제1 외곽 기판과 액정소자 사이 및 제 2 외곽 기판과 액정 소자 사이에 위치하는 접착필름을 포함하고,
    상기 제 1 기재층 및 제 2 기재층 중 하나 이상은 하기 수식 1의 굽힘강도(D)가 2.2*10-4 N·m 이상인 광학 디바이스.
    [수식 1]
    Figure PCTKR2019008865-appb-I000002
    상기 수식 1에서 D는 기재층의 굽힘 강도(flexural rigidity)이고, E는 기재층의 영률(Young’s modulus)이며, he는 기재층의 두께이고, υ은 기재층의 푸아송 비(Poisson’s ratio)이다.
  2. 제 1 항에 있어서, 제 1 기재층 및 제 2 기재층은 각각 상기 수식 1의 굽힘 강도(D)가 2.2*10-4 N·m 이상인 광학 디바이스.
  3. 제 1 항에 있어서, 제 1 기재층 및 제 2 기재층은 각각 영률(Young’s modulus)이 1*109 N/m2 내지 1*1010 N/m2인 광학 디바이스.
  4. 제 1 항에 있어서, 제 1 기재층 및 제 2 기재층은 각각 두께(he)가 10 ㎛ 내지 1,000 ㎛ 인 광학 디바이스.
  5. 제 1 항에 있어서, 제 1 기재층 및 제 2 기재층은 각각 독립적으로 PEN(polyethylene-naphthalate) 필름, PI(polyimide) 필름, COP(cyclo-olefin polymer) 필름, TAC(tri-acetyl-cellulose), PET(polyethyleneterephtalate) 필름 또는 PC(polycarbonate) 필름인 광학 디바이스.
  6. 제 1 항에 있어서, 상기 액정층은 이색성 염료 게스트를 포함하는 광학 디바이스.
  7. 제 1 항에 있어서, 액정 소자는 상기 제 1 기재층 및 제 2 기재층 상에 각각 형성되는 도전층을 포함하는 광학 디바이스.
  8. 제 7 항에 있어서, 액정 소자는 상기 도전층 상에 형성되는 배향막을 포함하는 광학 디바이스.
  9. 제 1 항에 있어서, 상기 액정 소자는 제 1 및 제 2 배향 상태를 스위칭할 수 있는 광학 디바이스.
  10. 제 1 항에 있어서, 제 1 및 제 2 외곽 기판 사이에 위치하는 편광자를 추가로 포함하는 광학 디바이스.
  11. 제 10 항에 있어서, 접착필름은 제 1 외곽 기판과 액정 소자 사이, 액정 소자와 편광자 사이 및 제 2 외곽 기판과 편광자 사이에 위치하는 광학 디바이스.
  12. 하나 이상의 개구부가 형성되어 있는 차체; 및 상기 개구부에 장착된 제 1 항 내지 제 11 항의 광학 디바이스를 포함하는 자동차.
PCT/KR2019/008865 2018-08-14 2019-07-18 광학 디바이스 WO2020036322A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980036538.9A CN112204462B (zh) 2018-08-14 2019-07-18 光学装置
US15/734,059 US11429005B2 (en) 2018-08-14 2019-07-18 Optical device
JP2020564074A JP2021524058A (ja) 2018-08-14 2019-07-18 光学デバイス
EP19850081.1A EP3839618B1 (en) 2018-08-14 2019-07-18 Optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180094738 2018-08-14
KR10-2018-0094738 2018-08-14

Publications (1)

Publication Number Publication Date
WO2020036322A1 true WO2020036322A1 (ko) 2020-02-20

Family

ID=69525557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008865 WO2020036322A1 (ko) 2018-08-14 2019-07-18 광학 디바이스

Country Status (7)

Country Link
US (1) US11429005B2 (ko)
EP (1) EP3839618B1 (ko)
JP (1) JP2021524058A (ko)
KR (1) KR102183706B1 (ko)
CN (1) CN112204462B (ko)
TW (1) TWI743524B (ko)
WO (1) WO2020036322A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230229050A1 (en) * 2020-07-09 2023-07-20 Lg Chem, Ltd. Optical Device
KR20230029240A (ko) * 2021-08-24 2023-03-03 동우 화인켐 주식회사 광학 적층체 및 이의 제조방법과, 이를 포함하는 스마트 윈도우 및 이를 적용한 자동차 또는 건물용 창호

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087600A (ko) * 2003-09-26 2006-08-02 프리멀 페르난도 조절식 불투명 창
JP2017062361A (ja) * 2015-09-25 2017-03-30 大日本印刷株式会社 調光フィルム及び調光フィルムの製造方法
KR20170064744A (ko) * 2015-12-02 2017-06-12 주식회사 엘지화학 광학 소자
KR20180059370A (ko) * 2016-11-25 2018-06-04 주식회사 엘지화학 액정필름셀 및 이의 용도
US20180224689A1 (en) * 2017-02-08 2018-08-09 Cardinal Ig Company Film-to-glass switchable glazing
KR20180094738A (ko) 2017-02-16 2018-08-24 성균관대학교산학협력단 감정 수치화 및 이를 이용한 클라이맥스 예측 장치 및 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269125A (ja) * 1985-05-24 1986-11-28 Sumitomo Bakelite Co Ltd 偏光子付透明導電性フイルム
JP2881509B2 (ja) * 1991-01-31 1999-04-12 タキロン株式会社 調光液晶パネルの製造方法
JPH0719717A (ja) * 1993-06-30 1995-01-20 Sanyo Electric Co Ltd 薬用保冷庫
US6737154B2 (en) * 1995-06-26 2004-05-18 3M Innovative Properties Company Multilayer polymer film with additional coatings or layers
JP4032216B2 (ja) * 2001-07-12 2008-01-16 ソニー株式会社 光学多層構造体およびその製造方法、並びに光スイッチング素子および画像表示装置
JP3949535B2 (ja) 2002-08-06 2007-07-25 日本板硝子株式会社 調光体、合わせガラス、及び調光体の製造方法
JP2004131335A (ja) * 2002-10-10 2004-04-30 Asahi Glass Co Ltd 調光窓
JP2005017860A (ja) * 2003-06-27 2005-01-20 Asahi Glass Co Ltd 液晶調光素子の製造方法
CN102004393B (zh) 2004-04-27 2013-05-01 伊利诺伊大学评议会 用于软光刻法的复合构图设备
WO2009000521A1 (en) * 2007-06-25 2008-12-31 Vlyte Innovations Limited Polymer-dispersed liquid crystal structures
JP2009036967A (ja) 2007-08-01 2009-02-19 Asahi Glass Co Ltd 調光窓材
KR101636442B1 (ko) * 2009-11-10 2016-07-21 삼성전자주식회사 촉매합금을 이용한 그라핀의 제조방법
KR20130128439A (ko) * 2010-12-21 2013-11-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광학 접착제를 갖는 물품 및 그 제조 방법
JP5935471B2 (ja) 2011-04-25 2016-06-15 日本電気硝子株式会社 液晶レンズ
TWI547369B (zh) 2011-05-27 2016-09-01 康寧公司 玻璃塑膠積層之裝置、處理線、及方法
WO2017052338A1 (ko) * 2015-09-25 2017-03-30 주식회사 엘지화학 유리 도광판
KR102056595B1 (ko) 2015-12-17 2019-12-17 주식회사 엘지화학 액정 윈도우 및 이를 포함하는 광학 소자
EP3444646B1 (en) * 2016-04-14 2023-09-27 LG Chem, Ltd. Eyewear comprising transmittance-variable film
JP2018025764A (ja) 2016-07-29 2018-02-15 住友化学株式会社 光学積層体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087600A (ko) * 2003-09-26 2006-08-02 프리멀 페르난도 조절식 불투명 창
JP2017062361A (ja) * 2015-09-25 2017-03-30 大日本印刷株式会社 調光フィルム及び調光フィルムの製造方法
KR20170064744A (ko) * 2015-12-02 2017-06-12 주식회사 엘지화학 광학 소자
KR20180059370A (ko) * 2016-11-25 2018-06-04 주식회사 엘지화학 액정필름셀 및 이의 용도
US20180224689A1 (en) * 2017-02-08 2018-08-09 Cardinal Ig Company Film-to-glass switchable glazing
KR20180094738A (ko) 2017-02-16 2018-08-24 성균관대학교산학협력단 감정 수치화 및 이를 이용한 클라이맥스 예측 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3839618A4

Also Published As

Publication number Publication date
EP3839618A4 (en) 2021-09-01
CN112204462B (zh) 2023-03-24
US20210223602A1 (en) 2021-07-22
JP2021524058A (ja) 2021-09-09
TW202009524A (zh) 2020-03-01
TWI743524B (zh) 2021-10-21
EP3839618B1 (en) 2023-03-15
CN112204462A (zh) 2021-01-08
EP3839618A1 (en) 2021-06-23
KR20200019563A (ko) 2020-02-24
US11429005B2 (en) 2022-08-30
KR102183706B1 (ko) 2020-11-27

Similar Documents

Publication Publication Date Title
KR101758432B1 (ko) 편광판 및 이를 포함하는 액정표시장치
KR102078398B1 (ko) 광학 디바이스
WO2017061768A1 (ko) 광학 필름
US20190235301A1 (en) Optical Device
US11561428B2 (en) Optical device
WO2019240414A1 (ko) 광학 디바이스
WO2018199618A1 (ko) 광학 디바이스
WO2020036322A1 (ko) 광학 디바이스
US11448934B2 (en) Optical device
WO2020175793A1 (ko) 광학 디바이스
KR102382553B1 (ko) 광학 디바이스
WO2019221529A1 (ko) 광학 디바이스의 제조 방법
WO2020197282A1 (ko) 광학 디바이스
US11372290B2 (en) Optical device
KR102411602B1 (ko) 광학 디바이스의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019850081

Country of ref document: EP

Effective date: 20210315