WO2019221529A1 - 광학 디바이스의 제조 방법 - Google Patents

광학 디바이스의 제조 방법 Download PDF

Info

Publication number
WO2019221529A1
WO2019221529A1 PCT/KR2019/005875 KR2019005875W WO2019221529A1 WO 2019221529 A1 WO2019221529 A1 WO 2019221529A1 KR 2019005875 W KR2019005875 W KR 2019005875W WO 2019221529 A1 WO2019221529 A1 WO 2019221529A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
liquid crystal
optical device
substrate
curvature
Prior art date
Application number
PCT/KR2019/005875
Other languages
English (en)
French (fr)
Inventor
문인주
서금석
이범진
전병건
이성민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020548714A priority Critical patent/JP7039819B2/ja
Priority to US17/041,895 priority patent/US11513381B2/en
Priority to EP19803127.0A priority patent/EP3796078A4/en
Priority to CN201980022697.3A priority patent/CN111919167B/zh
Publication of WO2019221529A1 publication Critical patent/WO2019221529A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133325Assembling processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present application relates to an optical device.
  • variable transmittance variable devices designed to vary transmittance using a liquid crystal compound are known in various ways.
  • a variable transmittance device using a so-called GH cell (Guest host cell) to which a mixture of a host material and a dichroic dye guest is applied is known.
  • the variable transmittance device is applied to various applications including eyewear such as sunglasses or glasses, outer walls of buildings, or sunroofs of vehicles.
  • the present application provides a method of manufacturing an optical device.
  • Encapsulation of the variable transmittance device between outer substrates may be considered for application to specific applications, including sunroofs and the like, which encapsulation can usually be performed by an autoclave process using an adhesive film.
  • the encapsulation process is not properly performed, or even if the encapsulation process is performed, an effective encapsulation structure is not achieved.
  • defects such as waves or wrinkles occur in the encapsulated device, and such defects lower the appearance quality of the device.
  • one object of the present application is to provide a method for producing an optical device efficiently and stably even when a curved substrate is applied as an encapsulation substrate, that is, an outer substrate.
  • the optical device manufactured in this application is an optical device which can adjust the transmittance
  • optical device manufactured by the method of this application is demonstrated first.
  • the transmission mode of the optical device is a state in which the optical device exhibits a relatively high transmittance
  • the blocking mode is a state in which the optical device has a relatively low transmittance
  • the optical device may have a transmission in the transmission mode of about 30% or more, 35% or more, 40% or more, 45% or more or about 50% or more.
  • the optical device may have a transmittance of about 20% or less, 15% or less, or about 10% or less in the blocking mode.
  • the upper limit of the transmittance in the transmission mode may be about 100, 95%, 90%, 85%, 80%, 75%, 70%, 65% or about 60%.
  • the lower limit of transmittance in the blocking mode may be about 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or about 10%.
  • the transmittance may be a linear light transmittance.
  • the term linear light transmittance may be a ratio of light (direct light) transmitted through the optical device in the same direction as the incident direction to light incident on the optical device in the predetermined direction.
  • the transmittance may be a result (normal light transmittance) measured with respect to light incident in a direction parallel to the surface normal of the optical device.
  • the light whose transmittance is controlled in the optical device of the present application may be ultraviolet light, visible light or near infrared ray in the UV-A region.
  • ultraviolet rays in the UV-A region are used to mean radiation having a wavelength in the range of 320 nm to 380 nm
  • visible light means radiation having a wavelength in the range of 380 nm to 780 nm
  • Near-ultraviolet is used to mean radiation having a wavelength in the range of 780 nm to 2000 nm.
  • the optical device manufactured by the method of the present application is designed to be able to switch at least between the transmission mode and the blocking mode.
  • the optical device may be designed to implement other modes in addition to the transmission mode and the blocking mode.
  • it can be designed such that a third mode can be implemented that can exhibit any transmittance between the transmission modes of the transmission mode and the blocking mode.
  • the active liquid crystal device is a liquid crystal device capable of switching between an alignment state of at least two or more optical axes, for example, first and second alignment states.
  • the optical axis may mean a long axis direction when the liquid crystal compound included in the liquid crystal device has a rod shape, and may mean a normal direction of the disc plane when the discotic shape has a discotic shape.
  • the optical axis of the liquid crystal device may be defined as an average optical axis, in which case the average optical axis may be defined as the optical axis of the liquid crystal compounds. It can mean a vector sum.
  • the alignment state can be changed by application of energy, for example, application of voltage.
  • the liquid crystal device may have one of the first and second alignment states in a state where no voltage is applied, and then switch to another alignment state when a voltage is applied.
  • the blocking mode may be implemented in one of the first and second alignment states, and the transmission mode may be implemented in another alignment state.
  • the specification describes that the blocking mode is implemented in the first state.
  • the liquid crystal device may include a liquid crystal layer containing at least a liquid crystal compound.
  • the liquid crystal layer is a so-called guest host liquid crystal layer, and may be a liquid crystal layer including a liquid crystal compound and a dichroic dye guest.
  • the liquid crystal layer is a liquid crystal layer using a so-called guest host effect, and is a liquid crystal layer in which the dichroic dye guests are aligned according to an alignment direction of the liquid crystal compound (hereinafter, may be referred to as a liquid crystal host).
  • the alignment direction of the liquid crystal host may be adjusted depending on whether the external energy is applied.
  • the type of liquid crystal host used in the liquid crystal layer is not particularly limited, and a general kind of liquid crystal compound applied for realizing the guest host effect may be used.
  • a smectic liquid crystal compound, a nematic liquid crystal compound, or a cholesteric liquid crystal compound may be used as the liquid crystal host.
  • a nematic liquid crystal compound may be used.
  • the term nematic liquid crystal compound refers to a liquid crystal compound that can be arranged in order in the direction of the molecular axis, although there is no regularity with respect to the position of the liquid crystal molecules, such liquid crystal compounds are in the form of rods or discoids Can be.
  • Such nematic liquid crystal compounds have, for example, a clearing point of at least about 40 ° C, at least 50 ° C, at least 60 ° C, at least 70 ° C, at least 80 ° C, at least 90 ° C, at least 100 ° C, or at least about 110 ° C.
  • a phase transition point in the above range that is, a phase transition point from the nematic phase to the isotropic phase may be selected.
  • the clearing point or phase transition point may be about 160 ° C. or less, 150 ° C. or less or about 140 ° C. or less.
  • the liquid crystal compound may have negative or positive dielectric anisotropy.
  • the absolute value of the dielectric anisotropy may be appropriately selected in consideration of the purpose.
  • the dielectric anisotropy may be greater than about 3 or greater than about 7, or less than about ⁇ 2 or less than about ⁇ 3.
  • the liquid crystal compound may also have optical anisotropy ( ⁇ n) of about 0.01 or more or about 0.04 or more.
  • the optical anisotropy of the liquid crystal compound may be about 0.3 or less or about 0.27 or less in another example.
  • Liquid crystal compounds that can be used as the liquid crystal host of the guest host liquid crystal layer are known to those skilled in the art and can be freely selected from them.
  • the liquid crystal layer contains a dichroic dye guest together with the liquid crystal host.
  • the term “dye” may mean a material capable of intensively absorbing and / or modifying light in at least part or the entire range within the visible light region, for example, in the wavelength range from 380 nm to 780 nm, and the term “dichroic" Sex dye guest ”may mean a material capable of absorbing light in at least part or the entire range of the visible light region.
  • a known dye known to have a property that can be aligned according to the alignment state of the liquid crystal host can be selected and used.
  • an azo dye, an anthraquinone dye, etc. can be used as a dichroic dye guest, and in order to achieve light absorption in a wide wavelength range, a liquid crystal layer may contain 1 type, or 2 or more types of dyes.
  • the dichroic ratio of the dichroic dye guest may be appropriately selected in consideration of the purpose of use of the dichroic dye guest.
  • the dichroic dye guest may have a dichroic ratio of about 5 or more to about 20 or less.
  • the term “dichroic ratio”, for example, in the case of a p-type dye, may mean a value obtained by dividing absorption of polarized light parallel to the long axis direction of the dye by absorption of polarized light parallel to the direction perpendicular to the long axis direction.
  • the dichroic dyes may be at least one wavelength, some range of wavelengths, or the entire range of wavelengths within the wavelength range of the visible region, for example within a wavelength range of about 380 nm to about 780 nm or about 400 nm to about 700 nm. It may have the dichroic ratio.
  • the content of the dichroic dye guest in the liquid crystal layer may be appropriately selected in consideration of the purpose of use of the dichroic dye guest.
  • the content of the dichroic dye based on the total weight of the liquid crystal host and the dichroic dye guest may be selected within the range of 0.1 to 10% by weight.
  • the ratio of the dichroic dye may be changed in consideration of the desired transmittance and the solubility of the dichroic dye guest in the liquid crystal host.
  • the liquid crystal layer basically includes the liquid crystal host and the dichroic dye guest, and if necessary, may further include other optional additives according to known forms.
  • the additive may include, but are not limited to, chiral dopants or stabilizers and the like.
  • the liquid crystal layer may have an anisotropy (R) of about 0.5 or more.
  • the anisotropy (R) is the absorbance (E (p)) of the light polarized in parallel to the alignment direction of the liquid crystal host and the absorbance (E (s)) of the light polarized perpendicular to the alignment direction of the liquid crystal host It is measured according to the following equation.
  • the criterion used above is another identical device which does not contain dye in the liquid crystal layer.
  • the anisotropy (R) is measured from the value (E (p)) of the absorbance of the liquid crystal layer in which the dye molecules are horizontally oriented and from the value (E (s)) of the absorbance of the same liquid crystal layer in which the dye molecules are vertically aligned.
  • the absorbance is measured in comparison with the liquid crystal layer which does not contain any dye but has the same constitution. This measurement is carried out using polarized light rays which oscillate in one direction in the direction parallel to the orientation direction (E (p)) and in subsequent measurements in the direction perpendicular to the orientation direction (E (s)). Can be.
  • the liquid crystal layer is not switched or rotated during the measurement, so that the measurement of E (p) and E (s) can be performed by rotating the oscillating plane of polarized incident light.
  • Spectra for the measurement of E (p) and E (s) can be recorded using a spectrometer such as a Perkin Elmer Lambda 1050 UV spectrometer.
  • the spectrometer is equipped with a Glan-Thompson polariser for a wavelength range of 250 nm to 2500 nm in both the measuring beam and the reference beam.
  • the two polarizers are controlled by a stepping motor and are oriented in the same direction.
  • a change in the polarizer direction of the polarizer for example a transition of 0 degrees to 90 degrees, is always performed synchronously and in the same direction with respect to the measuring beam and the reference beam.
  • the orientation of the individual polarizers is the tee of the University of Wurzburg. It can be measured using the method described in T. Karstens's 1973 dissertation.
  • the polarizer is rotated in steps of 5 degrees for the oriented dichroic sample, and the absorbance is recorded at a fixed wavelength, for example in the maximum absorption region.
  • a new baseline zero line is implemented for each polarizer position.
  • E (p) and E (s) an antiparallel-rubbed test cell coated with polyimide AL-1054 from JSR was placed in both the measuring beam and the reference beam.
  • the two test cells can be selected with the same layer thickness.
  • the test cell containing the pure host (liquid crystal compound) is placed in the reference beam.
  • a test cell containing a solution of dye in the liquid crystal is placed in the measuring beam.
  • Two test cells for the measuring beam and the reference beam are installed in the sound path in the same orientation direction.
  • E (p) may necessarily be in its maximum absorption wavelength range, for example in the wavelength range of about 0.5 to about 1.5. This corresponds to a transmission of about 30% to about 5%. This is set by correspondingly adjusting the layer thickness and / or dye concentration.
  • the anisotropy R may be about 0.55 or more, 0.6 or more, or 0.65 or more.
  • the anisotropy R may be, for example, about 0.9 or less, 0.85 or less, 0.8 or less, 0.75 or less, or about 0.7 or less.
  • Such anisotropy (R) can be achieved by controlling the kind of liquid crystal layer, for example, the kind of liquid crystal compound (host), the kind and ratio of a dichroic dye guest, the thickness of a liquid crystal layer, etc.
  • the anisotropy (R) within the above range can be used to provide an optical device in which the contrast ratio is increased due to the difference in transmittance between the transmission mode and the blocking mode, while using lower energy.
  • the thickness of the liquid crystal layer may be appropriately selected in consideration of the purpose, for example, the desired anisotropy.
  • the thickness of the liquid crystal layer may be about 0.01 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 1.5 ⁇ m or more, 2 ⁇ m or more, 2.5 ⁇ m or more, 3 ⁇ m or more, 3.5 ⁇ m or more, 4 ⁇ m or more , At least 4.5 ⁇ m, at least 5 ⁇ m, at least 5.5 ⁇ m, at least 6 ⁇ m, at least 6.5 ⁇ m, at least 7 ⁇ m, at least 7.5 ⁇ m, at least 8 ⁇ m, at least 8.5 ⁇ m, at least 9 ⁇ m, or at least about 9.5 ⁇ m.
  • the thickness By controlling the thickness in this way, it is possible to implement an optical device having a large difference between the transmittance in the transmission mode and the transmittance in the blocking mode, that is, a device having a large contrast ratio.
  • the first and second alignment states may, in one example, be selected from a horizontal orientation, a vertical orientation, a twisted nematic orientation or a cholesteric orientation state, respectively.
  • the liquid crystal element or liquid crystal layer in the blocking mode is at least in a horizontal orientation, twisted nematic orientation or cholesteric orientation
  • the liquid crystal element or liquid crystal layer in the transmission mode is in a vertical orientation or in a direction different from the horizontal orientation of the blocking mode.
  • the liquid crystal device may be a device in a normally black mode in which the blocking mode is implemented in a voltage-free state, or may implement a normally transparent mode in which the transmission mode is implemented in a voltage-free state.
  • the method of confirming which direction the optical axis of the said liquid crystal layer is formed in the orientation state of a liquid crystal layer is well-known.
  • the direction of the optical axis of the liquid crystal layer can be measured using another polarizing plate that knows the direction of the optical axis, which can be measured using a known measuring device, for example, a polarimeter such as Jasco's P-2000. Can be.
  • the liquid crystal element may include the active liquid crystal layer existing between two substrate films disposed opposite to each other and the two substrate films.
  • the said liquid crystal element is a sealant which affixes the said base film in the state in which the space
  • the spacer and / or sealant known materials may be used without particular limitation.
  • the base film for example, an inorganic film or a plastic film made of glass or the like can be used.
  • plastic film examples include a triacetyl cellulose (TAC) film; COP (cyclo olefin copolymer) films, such as norbornene derivatives; Acrylic films such as PMMA (poly (methyl methacrylate); PC (polycarbonate) film; PE (polyethylene) film; PP (polypropylene) film; PVA (polyvinyl alcohol) film; DAC (diacetyl cellulose) film; Pac (Polyacrylate) film; Polyether sulfone (PES) film; polyetheretherketon (PEEK) film; polyphenylsulfone (PPS) film; polyetherimide (PEI) film; polyethylenenaphthatlate (PEN) film; polyethyleneterephtalate (PET) film; polyimide (PI) film; polysulfone (PSF) film; A PAR (polyarylate) film or a fluororesin film may be used, but the present invention is not limited thereto, and the base
  • the base film a film having a phase difference in a predetermined range can be used.
  • the base film may have a front retardation of about 100 nm or less.
  • the front phase difference is about 95 nm or less, 90 nm or less, 85 nm or less, 80 nm or less, 75 nm or less, 70 nm or less, 65 nm or less, 60 nm or less, 55 nm or less, 50 nm or less, 45 nm or less, 40 nm or less, 35 nm or less, 30 nm or less, 25 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, 1 nm or less, or about 0.5 nm or less.
  • the front phase difference may be about 0 nm or more, 1 nm or more, 2 nm or more, 3 nm or more, 4 nm or more, 5 nm or more, 6 nm or more, 7 nm or more, 8 nm or more, 9 nm or more, or about 9.5 nm or more.
  • the absolute value of the thickness direction retardation of a base film may be about 200 nm or less, for example.
  • the absolute value of the thickness direction retardation is about 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, 110 nm or less, 100 nm or less, 90 nm or less, 85 nm or less, in another example.
  • the thickness direction phase difference may be negative or positive if the absolute value is within the range, for example, may be negative.
  • the front phase difference Rin is a value calculated by Equation 1 below
  • the thickness direction phase difference Rth is a value calculated by Equation 2 below, and unless otherwise specified, reference wavelengths of the front and thickness direction phase differences Is about 550 nm.
  • Thickness Direction Retardation (Rth) d ⁇ (nz-ny)
  • d is the thickness of the base film
  • nx is the refractive index in the slow axis direction of the base film
  • ny is the refractive index in the fast axis direction of the base film
  • nz is the refractive index in the thickness direction of the base film.
  • angles formed by the slow axes of the base films arranged oppositely are, for example, in the range of about -10 degrees to about 10 degrees, in the range of about -7 degrees to about 7 degrees, about- It may be in the range of 5 degrees to about 5 degrees or in the range of about ⁇ 3 degrees to about 3 degrees or approximately parallel.
  • the angle which the slow axis of the said base film and the light absorption axis of the polarizer mentioned later make for example in the range of about -10 degree to about 10 degree, in the range of about -7 degree to about 7 degree, about -5 In the range of degrees to about 5 degrees or in the range of about -3 degrees to about 3 degrees or approximately parallel, or in the range of about 80 degrees to about 100 degrees, in the range of about 83 degrees to about 97 degrees, about 85 degrees to about It may be in the range of about 95 degrees or in the range of about 87 degrees to about 92 degrees or approximately vertical.
  • phase difference adjustment or the arrangement of the slow axis as described above it is possible to implement an optically excellent and uniform transmission mode and blocking mode.
  • the base film may have a coefficient of thermal expansion of 100 ppm / K or less.
  • the thermal expansion coefficient is, in another example, about 95 ppm / K or less, 90 ppm / K or less, 85 ppm / K or less, 80 ppm / K or less, 75 ppm / K or less, 70 ppm / K or less, or about 65 ppm / K or less, or 10 ppm / K, 20 ppm / K or more, 30 ppm / K or more, 40 ppm / K or more, 50 ppm / K or more, or about 55 ppm / K or more.
  • the coefficient of thermal expansion of the base film can be measured, for example, according to the provisions of ASTM D696, the film can be cut in the form provided by the standard, the coefficient of thermal expansion can be calculated by measuring the change in length per unit temperature, It can measure by a well-known method, such as TMA (ThermoMechanic Analysis).
  • a base film having a break elongation of about 90% or more can be used as the base film.
  • the elongation at break is about 95% or more, 100% or more, 105% or more, 110% or more, 115% or more, 120% or more, 125% or more, 130% or more, 135% or more, 140% or more, 145% or more, 150 At least%, at least 155%, at least 160%, at least 165%, at least 170%, or at least about 175%, at most about 1,000%, at most 900%, at most 800%, at most 700%, at most 600%, at most 500%. , Up to 400%, up to 300% or up to about 200%.
  • the elongation at break of the base film can be measured according to ASTM D882 standard, and the equipment (to measure the strength and length at the same time) can cut the film in the form provided by the standard and measure the stress-strain curve. Can be measured.
  • a more durable optical device can be provided by the base film being selected to have such a coefficient of thermal expansion and / or elongation at break.
  • the thickness of the base film as described above is not particularly limited, and may be, for example, in a range of about 50 ⁇ m to about 200 ⁇ m.
  • a conductive layer and / or an alignment layer may exist on one surface of the base film, for example, on the surface facing the active liquid crystal layer.
  • the conductive layer which exists on the surface of a base film is a structure for applying a voltage to an active liquid crystal layer, and a well-known conductive layer can be applied without a restriction
  • a conductive layer for example, a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as indium tin oxide (ITO) may be applied.
  • ITO indium tin oxide
  • Examples of the conductive layer that can be applied in the present application are not limited to the above, and any kind of conductive layer known in the art to be applied to the liquid crystal device may be used.
  • an alignment layer is present on the surface of the base film.
  • a conductive layer may first be formed on one surface of a base film, and an alignment layer may be formed thereon.
  • the alignment film is a configuration for controlling the alignment of the liquid crystal host included in the active liquid crystal layer, and a known alignment film can be applied without particular limitation.
  • a known alignment film can be applied without particular limitation.
  • the alignment film known in the art include a rubbing alignment film, a photoalignment film, and the like, and the alignment film that can be used in the present application is the above known alignment film, which is not particularly limited.
  • the alignment direction of the alignment layer may be controlled.
  • the alignment directions of the two alignment films formed on each surface of the two base films arranged to face each other may be at an angle within a range of about -10 degrees to about 10 degrees, an angle within a range of about -7 degrees to about 7 degrees, and about Angles in the range of -5 degrees to about 5 degrees or angles in the range of about -3 degrees to about 3 degrees or approximately parallel to each other.
  • the alignment direction of the two alignment layers is in an angle in the range of about 80 degrees to about 100 degrees, in an angle in the range of about 83 degrees to about 97 degrees, in an angle in the range of about 85 degrees to about 95 degrees, or in a range of about 87 degrees to about 95 degrees. It may be at an angle within the range of 92 degrees or may be approximately perpendicular to each other.
  • the alignment direction can be confirmed by confirming the direction of the optical axis of the active liquid crystal layer.
  • the form of the liquid crystal element having the above configuration is not particularly limited and may be determined according to the application of the optical device, and is generally in the form of a film or sheet.
  • the liquid crystal device may have a folded shape.
  • the curvature is about 0.009 or less, 0.008 or less, 0.007 or less, 0.006 or less, 0.005 or less, 0.004 or less, 0.003 or less, 0.002 or less, 0.001 or less, 0.0009 or less, 0.0008 or less, 0.0007 or less, 0.0006 or less, 0.0005 or less, 0.0004 Or less, 0.0003 or less, 0.0002 or less, 0.0001 or less, 0.00009 or less, 0.00008 or less, 0.00007 or less, 0.00006 or less, or about 0.00005 or less.
  • the optical device of the present application has a structure manufactured by placing the active liquid crystal element and / or the polarizer described later in two outer substrates and vacuum bonding in a state where adhesive films are placed at respective interfaces.
  • FIG. 1 is a diagram schematically showing a cross section of the active liquid crystal element 10 of the folded structure.
  • a cross section of the active liquid crystal device 10 may have a cross section in which a first line 101, a folded region B, and a second line 102 are connected.
  • the first line 101 may be an active area, that is, an area that modulates light in order to substantially adjust a transmission state of light.
  • the first line 101 may be a planar form having a curvature of 0, or a convex form or a concave form.
  • the liquid crystal device 10 has a folded structure based on the folded region A, and thus a second line 102 is formed.
  • the degree of folding of the second line 102 is not particularly limited as long as it is controlled to such an extent that no defect such as wrinkles of the liquid crystal element 10 occurs in the optical device.
  • the folding degree is an angle between the tangent T of the first line 101 or the first line 101 and the second line 102 is greater than about 0 degrees in a clockwise or counterclockwise direction.
  • the angle may be about 180 degrees or less, 170 degrees or less, 160 degrees or less, 150 degrees or less, 140 degrees or less, 130 degrees or less, or about 120 degrees or less.
  • the tangent line at which the angle with the second line 102 is measured is the tangent line at the point D which roughly divides the first line 101 into two parts.
  • the second line measuring the angle with respect to the tangent T may be a line 1022 connecting the folding area A and the end point of the second line 102 as shown in FIG. 1.
  • the ratio L1 / L2 of the length L1 of the first line 101 to the length L2 of the second line 102 may be in the range of about 500 to about 4,000.
  • the ratio L1 / L2 is in another example about 550 or more, 600 or more, 650 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, 1200 or more, 1500 or more, 2000 or more, 2500 or more, 3000 or more Or 3500 or more, 3500 or less, 3000 or less, 2900 or less, 2800 or less, 2700 or less, 2600 or less, 2500 or less, 2400 or less, 2300 or less, 2200 or less, 2100 or less, 2000 or less, 1,900 or less, 1,800 or less, 1,700 or less , 1,600 or less, 1,500 or less, 1,400 or less, 1,300 or less, 1,200 or less, 1,100 or less, 1,000 or less, 900 or less, or about 800 or less.
  • the absolute lengths of the first line 101 and the second line 102 are not particularly limited and may be determined according to the purpose of the desired optical device and the like.
  • the length of the first line 101 may be adjusted to be about 100 to about 1,000 mm.
  • the length of the first line 101 may be about 150 mm or more, 200 mm or more, or about 250 mm or more.
  • the length of the first line 101 may be about 900 mm or less, 800 mm or less, 700 mm or less, 600 mm or less, or about 500 mm or less.
  • the folded structure as described above may be formed at both ends in the cross section of the liquid crystal device. Accordingly, as illustrated in FIG. 1, the folded region A and the second line 102 may be formed at both ends of the first line 101 in the active liquid crystal device cross section.
  • the second line may be additionally folded.
  • the second folded area AA is present on the second line 102, and the folded line AA is formed in the second line 102.
  • a cross section of the second line 102 may be additionally folded.
  • the formation position of the folded region AA which is additionally formed, is not particularly limited, and for example, from the folded region A formed at the connection portion between the first line 101 and the second line 102.
  • the position may be adjusted so that the distance to the folded region AA formed on the second line 102 may be L2 satisfying the ratio L1 / L2 described above.
  • the cross section of the liquid crystal element in which the cross section as described above is observed is the cross section observed when the liquid crystal element is observed from any side. That is, the said cross section should just be observed also in any one side surface among the liquid crystal elements.
  • the cross section in which the folded structure is observed may be a cross section of a legal plane formed including a long axis or a short axis of the liquid crystal device.
  • the long axis may be, for example, when the liquid crystal device 10 is viewed from the top, in the case of a rectangular shape as shown in FIG. 3, the long axis LA may be a long side LA, and the short axis SA may be a short side SA. have.
  • the cross-sectional structure may be implemented by folding a portion indicated by a dotted line in the liquid crystal device 10 having the structure as shown in FIG. 3.
  • any one of the horizontal axis and the vertical axis may be regarded as a long axis, and the other may be regarded as a short axis.
  • a line formed by the folded portion when the liquid crystal device is observed from above (for example, a dotted line in FIG. 3).
  • the line perpendicular to the line) may be one of the short axis and the long axis, and the line perpendicular to the line may be the other of the short axis and the long axis.
  • all four sides of the liquid crystal device may be folded to form the cross section, and in this case, the cross section may be observed in both the legal plane including the long axis and the minor plane including the short axis of the liquid crystal device. have.
  • the position of the sealant described above in the liquid crystal device of the folded structure as described above is not particularly limited, but in general, a first line in the folded region (A of FIGS. 1 and 2) or the folded region (A of FIGS. 1 and 2). There may be a sealant adhering the two base films in the area directed to 101.
  • the optical device further includes a polarizer together with the active liquid crystal element.
  • a polarizer for example, an absorption type linear polarizer, that is, a polarizer having a light absorption axis formed in one direction and a light transmission axis formed substantially perpendicular thereto may be used.
  • the polarizer may have an angle between an average optical axis (vectorness of the optical axis) of the first alignment state and a light absorption axis of the polarizer when the blocking state is implemented in the first alignment state of the active liquid crystal layer. 80 degrees to about 100 degrees or about 85 degrees to about 95 degrees, or disposed in the optical device to be approximately vertical, or about 35 degrees to about 55 degrees or about 40 degrees to about 50 degrees or about 45 degrees May be disposed in the optical device.
  • the alignment directions of the alignment films formed on the respective surfaces of the two base films of the liquid crystal elements disposed opposite to each other are in the range of about -10 degrees to about 10 degrees, and about -7 degrees. Any one of the two alignment films when the angle is in the range of FIGS. From about 7 degrees, the angle is in the range of about -5 degrees to about 5 degrees, or the angle is in the range of about -3 degrees to about 3 degrees or is approximately parallel to each other.
  • the angle between the alignment direction of the polarizer and the light absorption axis of the polarizer may be about 80 degrees to about 100 degrees or about 85 degrees to about 95 degrees, or may be substantially perpendicular.
  • the alignment direction of the two alignment layers is in an angle in the range of about 80 degrees to about 100 degrees, an angle in the range of about 83 degrees to about 97 degrees, in an angle in the range of about 85 degrees to about 95 degrees, or in a range of about 87 degrees to about 95 degrees.
  • the angle between the alignment direction of the alignment layer disposed closer to the polarizer and the light absorption axis of the polarizer, among the two alignment layers is about 80 degrees to about 100 degrees or about 85 degrees. Or from about 95 degrees, or approximately vertical.
  • the liquid crystal element 10 and the polarizer 20 are stacked with each other in an optical axis (average optical axis) and the polarizer 20 in a first alignment direction of the liquid crystal element 10. ) May be arranged such that the light absorption axis is in the above relationship.
  • a structure in which the polarizing coating layer is present inside the liquid crystal device may be implemented.
  • a structure in which the polarization coating layer 201 is present between any one of the base film 110 and the active liquid crystal layer 120 of the base film 110 of the liquid crystal device may be implemented.
  • the above-described conductive layer, the polarizing coating layer 201, and the alignment layer may be sequentially formed on the base film 110.
  • the polarizer may be a conventional material used in conventional LCDs, for example, a PVA (poly (vinyl alcohol)) polarizer, a Lyotropic Liquid Cystal (LLC), or a Reactive Mesogen (RM). ) And a polarizer implemented by a coating method, such as a polarizing coating layer including a dichroic dye.
  • a polarizing coating layer including a dichroic dye.
  • the polarizer implemented as a coating method as described above may be referred to as a polarizing coating layer.
  • a known liquid crystal may be used without particular limitation.
  • a breast liquid crystal capable of forming a breast liquid crystal layer having a dichroic ratio of about 30 to about 40 may be used.
  • the polarizing coating layer includes a reactive liquid crystal (RM) and a dichroic dye
  • a linear dye may be used as the dichroic dye, or a discotic dye may be used. It may be.
  • the optical device of the present application may include only one active liquid crystal device and one polarizer, respectively.
  • the optical device may include only one active liquid crystal element and may include only one polarizer.
  • the optical device may further include two outer substrates disposed to face each other.
  • one of the two outer substrates may be referred to as a first outer substrate, and the other may be referred to as a second outer substrate.
  • the expressions of the first and the second may refer to the top and bottom relationships of the outer substrate. It is not prescribed.
  • the polarizer included with the active liquid crystal device may be encapsulated between the two outer substrates. Such encapsulation can be accomplished using an adhesive film.
  • the active liquid crystal device 10 and the polarizer 20 may exist between the two outer substrates 30 arranged oppositely.
  • an inorganic substrate or a plastic substrate made of glass or the like may be used.
  • the plastic substrate include a triacetyl cellulose (TAC) film; COP (cyclo olefin copolymer) films, such as norbornene derivatives; Acrylic films such as PMMA (poly (methyl methacrylate); PC (polycarbonate) film; PE (polyethylene) film; PP (polypropylene) film; PVA (polyvinyl alcohol) film; DAC (diacetyl cellulose) film; Pac (Polyacrylate) film; Poly ether sulfone (PES) film; polyetheretherketon (PEEK) film; polyphenylsulfone (PPS) film, polyetherimide (PEI) film; polyethylenemaphthatlate (PEN) film; polyethyleneterephtalate (PET) film; polyimide (PI) film; polysulfone (PSF) film; A PAR (polyarylate), PMMA (poly (
  • the outer substrate may have a front phase difference of about 100 nm or less.
  • the front phase difference is about 95 nm or less, 90 nm or less, 85 nm or less, 80 nm or less, 75 nm or less, 70 nm or less, 65 nm or less, 60 nm or less, 55 nm or less, 50 nm or less, 45 nm or less, 40 nm or less, 35 nm or less, 30 nm or less, 25 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, 9 nm or less, 8 nm or less, 7 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, or about 1 nm or less.
  • the front phase difference may be about 0 nm or more, 1 nm or more, 2 nm or more, 3 nm or more, 4 nm or more, 5 nm or more, 6 nm or more, 7 nm or more, 8 nm or more, 9 nm or more, or about 9.5 nm or more.
  • the absolute value of the thickness direction retardation of the outer substrate may be, for example, about 200 nm or less.
  • the absolute value of the thickness direction retardation is about 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, 110 nm or less, 100 nm or less, 90 nm or less, 85 nm or less, in another example.
  • the thickness direction phase difference may be negative or positive if the absolute value is within the range, for example, may be negative.
  • the front phase difference (Rin) and the thickness direction phase difference (Rth) of the outer substrate are the thickness (d), the slow axis refractive index (nx), the fast axis direction refractive index (ny), and the thickness direction of the base film in Equations 1 and 2, respectively.
  • the refractive index (nz) of the outer substrate can be calculated in the same manner except by substituting the thickness (d) of the outer substrate, the slow axis refractive index (nx), the fast axis refractive index (ny), and the refractive index (nz) in the thickness direction. have.
  • angles formed by the slow axes of the outer substrates arranged oppositely are, for example, in the range of about -10 degrees to about 10 degrees, in the range of about -7 degrees to about 7 degrees, about- It may be in the range of 5 degrees to about 5 degrees or in the range of about ⁇ 3 degrees to about 3 degrees or approximately parallel.
  • the angle formed by the slow axis of the base film is about -7 degree to about 10 degree to about 10 degree, for example. In the range of about 7 degrees, in the range of about -5 degrees to about 5 degrees or in the range of about -3 degrees to about 3 degrees, or approximately parallel, or in the range of about 80 degrees to about 100 degrees, about 83 degrees to about It may be in the range of 97 degrees, in the range of about 85 degrees to about 95 degrees, or in the range of about 87 degrees to about 92 degrees, or approximately perpendicular.
  • phase difference adjustment or the arrangement of the slow axis as described above it may be possible to implement an optically excellent and uniform transmission and blocking mode.
  • thermal expansion coefficient of about 100 ppm / K or less
  • the thermal expansion coefficient is, in another example, about 95 ppm / K or less, 90 ppm / K or less, 85 ppm / K or less, 80 ppm / K or less, 75 ppm / K or less, 70 ppm / K or less, 65 ppm / K or less, 60 ppm / K Or less, 50 ppm / K or less, 40 ppm / K or less, 30 ppm / K or less, 20 ppm / K or less, or about 15 ppm / K or less, about 1 ppm / K or more, 2 ppm / K or more, 3 ppm / K K or more, 4 ppm / K or more, 5 ppm / K or more, 6 ppm / K or more, 7 ppm / K or more, 8 ppm / K or more, 9 ppm / K or less
  • the measuring method of the thermal expansion coefficient and the breaking elongation of the outer substrate is the same as the measuring method of the thermal expansion coefficient and the breaking elongation of the base film described above, respectively.
  • a more durable optical device can be provided by the outer substrate being selected to have such a coefficient of thermal expansion and / or elongation at break.
  • the thickness of the outer substrate is not particularly limited, and may be, for example, about 0.3 mm or more.
  • the thickness may, in another example, be at least about 0.5 mm, at least 1 mm, at least 1.5 mm, or at least about 2 mm, about 10 mm or less, 9 mm or less, 8 mm or less, 7 mm or less, 6 mm or less, 5 mm. 4 mm or less or about 3 mm or less may be sufficient.
  • the thickness may be about 0.3 mm or more, 0.5 mm or more, or about 0.7 mm or more while being about 1 mm or less.
  • the outer substrate may be a flat substrate or a substrate having a curved shape.
  • the two outer substrates may be simultaneously flat substrates, simultaneously curved surfaces, or one may be a flat substrate, and the other may be a curved substrate.
  • each curvature or radius of curvature may be the same or different.
  • Curvature or radius of curvature herein can be measured in a manner known in the art, for example, a non-contact type, such as a 2D Profile Laser Sensor, a Chromatic confocal line sensor, or a 3D Measuring Conforcal Microscopy. Can be measured with the instrument. It is known to measure the curvature or radius of curvature using such equipment.
  • a non-contact type such as a 2D Profile Laser Sensor, a Chromatic confocal line sensor, or a 3D Measuring Conforcal Microscopy.
  • the curvature or curvature radius of the facing surface that is, in the case of the first outer substrate, the surface facing the second outer substrate
  • the curvature or radius of curvature of the second outer substrate and the curvature or radius of curvature of the surface facing the first outer substrate may be a reference.
  • the curvature or curvature radius on the surface is not constant, and different parts exist, the largest curvature or curvature radius or the smallest curvature or curvature radius or average curvature or average curvature radius may be the reference.
  • the substrate may have a difference in curvature or radius of curvature within about 10%, within 9%, within 8%, within 7%, within 6%, within 5%, within 4%, within 3%, within 2%, or It may be within about 1%.
  • the difference between the curvature or the radius of curvature is a numerical value calculated by 100 ⁇ (C L -C S ) / C S when a large curvature or a radius of curvature is referred to as C L and a small curvature or radius of curvature is referred to as C S.
  • the lower limit of the difference between the curvature or the radius of curvature is not particularly limited. Since the difference in curvature or radius of curvature of the two outer substrates may be the same, the difference in curvature or radius of curvature may be greater than about 0% or greater than about 0%.
  • Such control of curvature or radius of curvature is useful in a structure in which an active liquid crystal element and / or polarizer is encapsulated with an adhesive film as in the optical device of the present application.
  • both the first and second outer substrates are curved, the curvature of both may be the same.
  • the two outer substrates may be curved in the same direction. That is, in this case, the center of curvature of the first outer substrate and the center of curvature of the second outer substrate are both present at the same portion among the upper and lower portions of the first and second outer substrates.
  • FIG. 7 illustrates an example in which an encapsulation portion 400 including an active liquid crystal device and the like exists between the first and second outer substrates 30, in which case both the first and second outer substrates 30 are present.
  • the center of curvature of is in the lower case in the figure.
  • each curvature or radius of curvature of the first and second outer substrates is not particularly limited.
  • the radius of curvature of each substrate is about 100R or more, 200R or more, 300R or more, 400R or more, 500R or more, 600R or more, 700R or more, 800R or more, or about 900R or more, or about 10,000R or less, 9,000R or less , 8,000R or less, 7,000R or less, 6,000R or less, 5,000R or less, 4,000R or less, 3,000R or less, 2,000R or less, 1,900R or less, 1,800R or less, 1,700R or less, 1,600R or less, 1,500R or less, 1,400 R may be 1,300 R or less, 1,200 R or less, 1,100 R or less, or about 1,050 R or less.
  • R means the bending hardness of a circle having a radius of 1 mm.
  • 100R is the degree of curvature of a circle having a radius of 100 mm or the radius of curvature for such a circle.
  • the curvature is zero and the radius of curvature is infinite.
  • the first and second outer substrates may have the same or different radius of curvature in the above range.
  • the radius of curvature of the substrate having the larger curvature may be within the above range.
  • a substrate having a large curvature may be a substrate disposed in a gravity direction when the optical device is used.
  • an autoclave process using an adhesive film may be performed as described below, in which high temperature and high pressure are usually applied.
  • the adhesive film applied to the encapsulation after the autoclave process is stored for a long time at a high temperature, some re-melting, etc. may occur, the problem that the outer substrate can be opened.
  • a force may act on the encapsulated active liquid crystal device and / or the polarizer, and bubbles may be formed therein.
  • the curvature or curvature radius between the substrate is controlled as described above, even if the bonding force by the adhesive film is reduced, the net force acting as the sum of the restoring force and gravity acts to prevent the gap and can withstand the process pressure such as the autoclave. Can be.
  • the optical device may further comprise an adhesive film encapsulating the active liquid crystal element and / or polarizer in the outer substrate.
  • an adhesive film 40 is, for example, as shown in FIG. 8, between the outer substrate 30 and the active liquid crystal layer 10, between the active liquid crystal layer 10 and the polarizer 20 and / or the polarizer. It may be present between the 20 and the outer substrate 30, and may exist on the sides of the active liquid crystal layer 10 and the polarizer 20, suitably on all sides.
  • the adhesive film may be formed by bonding the outer substrate 30 and the active liquid crystal layer 10, the active liquid crystal layer 10, the polarizer 20, and the polarizer 20 and the outer substrate 30 to each other. 10) and the polarizer 20 may be encapsulated.
  • the above structure may be implemented by stacking an outer substrate, an active liquid crystal device, a polarizer, and an adhesive film according to a desired structure and then compressing the same in a vacuum state.
  • thermoplastic polyurethane adhesive film TPU: Thermoplastic Polyurethane
  • TPS Thermoplastic Starch
  • polyamide adhesive film acrylic adhesive film
  • poly Among an ester adhesive film an EVA (Ethylene Vinyl Acetate) adhesive film, a polyolefin adhesive film such as polyethylene or polypropylene, or a polyolefin elastomer film (POE film), etc., may satisfy the following physical properties.
  • the adhesive film may have a front retardation of about 100 nm or less.
  • the front phase difference is about 95 nm or less, 90 nm or less, 85 nm or less, 80 nm or less, 75 nm or less, 70 nm or less, 65 nm or less, 60 nm or less, 55 nm or less, 50 nm or less, 45 nm or less, 40 nm or less, 35 nm or less, 0 nm or less, 25 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, 9 nm or less, 8 nm or less, 7 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, or about 1 nm or less.
  • the front phase difference may be about 0 nm or more, 1 nm or more, 2 nm or more, 3 nm or more, 4 nm or more, 5 nm or more, 6 nm or more, 7 nm or more, 8 nm or more, 9 nm or more, or about 9.5 nm or more.
  • the absolute value of the thickness direction retardation of an adhesive film may be about 200 nm or less, for example. In another example, the absolute value may be about 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, or about 115 nm or less, or about 0 nm or more, 10 nm or more, 20 nm or more, At least 30 nm, at least 40 nm, at least 50 nm, at least 60 nm, at least 70 nm, at least 80 nm or at least about 90 nm.
  • the thickness direction phase difference may be negative or positive if the absolute value is within the range, for example, may be negative.
  • the front phase retardation (Rin) and the thickness direction retardation (Rth) of the adhesive film are the thickness d, the slow axis refractive index (nx), the fast axis direction refractive index (ny), and the thickness direction of the base film in Equations 1 and 2, respectively.
  • the refractive index (nz) of the adhesive film can be calculated in the same manner except by substituting the thickness (d) of the adhesive film, the slow axis refractive index (nx), the fast axis refractive index (ny), and the refractive index (nz) in the thickness direction. have.
  • the adhesive film those having a Young's modulus in the range of 0.1 to 100 MPa can be used.
  • the Young's modulus can be measured, for example, in the manner specified in ASTM D882, and can be used to cut the film in the form provided by the standard and to measure the stress-strain curve (the strength and length can be measured simultaneously. Can be measured).
  • the adhesive film By selecting the adhesive film to have such a Young's modulus, a more durable optical device can be provided.
  • the thickness of the adhesive film as described above is not particularly limited, and may be, for example, in a range of about 200 ⁇ m to 600 ⁇ m.
  • the thickness of the adhesive film is the thickness of the adhesive film between the outer substrate 30 and the active liquid crystal layer 10, for example, the gap between the two, the active liquid crystal layer 10 and the polarizer 20.
  • the optical device may further include a buffer layer.
  • the buffer layer may be present on one side or both sides of the liquid crystal device. 9 illustrates a structure in which the buffer layer 50 exists on both sides of the active liquid crystal device 10, but the buffer layer 50 may exist only on one side of the liquid crystal device 10.
  • the buffer layer as described above, in the structure in which the active liquid crystal device is encapsulated by the adhesive film can alleviate the sound pressure caused by the difference in the coefficient of thermal expansion between the layers, etc., it is possible to implement a more durable device.
  • a layer having a Young's modulus of 1 MPa or less may be used as the buffer layer.
  • the Young's modulus of the buffer layer may be about 0.9 MPa or less, 0.8 MPa or less, 0.7 MPa or less, 0.6 MPa or less, 0.6 MPa or less, 0.1 MPa or less, 0.09 MPa or less, 0.08 MPa or less, 0.07 MPa or less, or about 0.06 MPa or less. have.
  • the Young's modulus is at least about 0.001 MPa, at least 0.002 MPa, at least 0.003 MPa, at least 0.004 MPa, at least 0.005 MPa, at least 0.006 MPa, at least 0.007 MPa, at least 0.008 MPa, at least 0.009 MPa, at least 0.01 MPa, at least 0.02 MPa. , At least 0.03 MPa, at least 0.04 MPa, or at least about 0.045 MPa.
  • the measuring method of the Young's modulus in the above is the same as the measuring method of the above-mentioned adhesive film.
  • a transparent material exhibiting the above-described Young's modulus may be used without particular limitation, and for example, an acrylate-based, urethane-based, rubber-based, or silicon-based oligomer or polymer material may be used.
  • the thickness of the buffer layer is not particularly limited, and may be selected in a range in which the Young's modulus in the above range is exhibited so as to effectively alleviate the sound pressure generated inside the device.
  • the optical device may further include any configuration necessary in addition to the above configuration, and may include, for example, a known configuration such as a retardation layer, an optical compensation layer, an antireflection layer, a hard coating layer, and the like in an appropriate position.
  • a known configuration such as a retardation layer, an optical compensation layer, an antireflection layer, a hard coating layer, and the like in an appropriate position.
  • the present application relates to a method of manufacturing such an optical device. Therefore, in the following description, the specific matters about the structure, design, its components, etc. of an optical device are based on the content mentioned above.
  • the manufacturing method of the present application is particularly effective when the first and / or second outer substrate is a curved substrate in the structure of the optical device.
  • the manufacturing method of this application relates to the manufacturing method of the optical device whose at least 1 outer board
  • substrate is a curved substrate in the structure of the optical device mentioned above.
  • the manufacturing method of this application is the 1st outer substrate which is a curved substrate; A second outer substrate disposed to face the first outer substrate; It is a manufacturing method of the optical device containing the said active liquid crystal element or the said polarizer encapsulated by the encapsulating agent (the said adhesive film) between the said 1st and 2nd outer substrate.
  • the manufacturing method of the present application may include a first step of sucking or pressing the first outer substrate, which is the curved substrate, to maintain it in a planar state.
  • the planar state is a state in which the curvature of the first outer substrate is kept smaller than the initial state, and thus the planar state includes not only an ideal planar state but also a state in which the curvature is reduced to approach the planar state.
  • the manner in which the first outer substrate is sucked or pressed to maintain a planar state is not particularly limited.
  • the suction may be performed by placing the curved substrate 301 on a suction stage 302 as shown in FIG. 10.
  • the surface opposite to the surface on which the convex portion of the curved substrate is formed may be sucked.
  • the pressure at the time of suction can be set suitably in consideration of the desired planar state, curvature, thickness, area, etc. of a curved board
  • the aspiration may be carried out at pressures of the pressure level, typically at or below about -760 mmHg or more, and in other examples may be at a pressure within the range of about -700 mmHg to about -760 mmHg.
  • the present invention is not limited thereto.
  • the method of performing the pressurization process in the first step is also not particularly limited.
  • the pressing may be performed by pressing the curved substrate with a conventional pressing roll.
  • the pressing may be performed on the convex surface of the curved substrate.
  • the pressure at the time of pressurization can also be set suitably in consideration of the desired planar state, curvature of a curved board
  • the pressurization may be performed at a pressure in the range of about 0.6 Kg / cm 2 to about 1.2 Kg / cm 2 .
  • the pressing may be performed by placing the flexible film 200 on a surface on which the convex portion of the curved substrate 301 is formed, and pressing the flexible film with a pressure roll. Through this process, more efficient pressurization can be performed.
  • the plane state can be maintained by applying an appropriate tensile force to the flexible film at the same time as pressing.
  • the method of performing pressurization in the above is not specifically limited, For example, what is necessary is just to use the press means 2001, such as ramie roll, as shown in FIG.
  • the type of flexible film applied in the above process is not particularly limited as long as it has flexible characteristics, and examples thereof include, for example, a silicon film, a thermoplastic polyurethane (TPU) film, and a triacetyl cellulose (TAC) film; COP (cyclo olefin copolymer) films, such as norbornene derivatives; Acrylic films such as PMMA (poly (methyl methacrylate); PC (polycarbonate) film; PE (polyethylene) film; PP (polypropylene) film; PVA (polyvinyl alcohol) film; DAC (diacetyl cellulose) film; Pac (Polyacrylate) film; Poly ether sulfone (PES) film; polyetheretherketon (PEEK) film; polyphenylsulfone (PPS) film, polyetherimide (PEI) film; polyethylenemaphthatlate (PEN) film; polyethyleneterephtalate (PET) film; polyimide (PI) film; poly
  • the maintenance of the curved substrate in the planar state may be performed by at least one of the above suction and pressurization, and may be performed by a process including at least a suction process to maintain the planar state. Proceed with all pressurization.
  • a second step of attaching the active liquid crystal device or the polarizer to the one surface of the first outer substrate held in the planar state after the first step may be further performed.
  • the above-described adhesive film may be used as the encapsulating agent.
  • the structure of the attached active liquid crystal element and / or polarizer is not particularly limited and is determined according to the structure of the desired optical device.
  • a laminated structure of the adhesive film / active liquid crystal element 10 / adhesive film / polarizer 20 may be attached.
  • the method of performing the second step is not particularly limited, and for example, may be performed by applying a known lamination technique.
  • the optical device may be manufactured by attaching a second outer substrate on the attached active liquid crystal device or polarizer through the encapsulant.
  • the second outer substrate is a planar substrate
  • the second outer substrate is attached while maintaining the planar state of the first outer substrate
  • the second outer substrate is attached after releasing the planar state of the outer substrate as shown in FIG. 12. can do. That is, FIG. 12 releases the planar state in a state in which an active liquid crystal element and / or an element 1203 such as a polarizer is attached to the first outer substrate 1201 in which the planar state is maintained by the adhesive film 1202.
  • Attaching the second outer substrate may be performed by the encapsulating agent, that is, the adhesive film, wherein the adhesive film is first attached to the second outer substrate and then attached on top of the active liquid crystal device, or the like. After forming an adhesive film on the upper portion of the device 1203, the second outer substrate may be attached.
  • Attaching the second outer substrate may also be performed by applying a known lamination technique.
  • the method of manufacturing the optical device includes a third step of releasing the suction or pressing state of the curved substrate to which the active liquid crystal element or the polarizer is attached to return the first outer substrate to the curved state; And a fourth step of attaching the second outer substrate through an encapsulant on an active liquid crystal device or polarizer attached to one surface of the first outer substrate.
  • the attaching of the fourth step may be performed by placing the first outer substrate on which the curved state is released on a curved surface having a curvature.
  • FIG. 13 schematically shows a case where the attachment is performed with the first outer substrate 1201 positioned on the curved surface 1301.
  • the curvature of the curved surface where the first outer substrate is located is preferably similar to the curvature of the first outer substrate.
  • the difference between the curvature or the radius of curvature of the first outer substrate and the curved surface is about 10. It can be within%, within 9%, within 8%, within 7%, within 6%, within 5%, within 4%, within 3%, within 2%, or within about 1%.
  • the difference between the curvature or the radius of curvature is a numerical value calculated by 100 ⁇ (C L -C S ) / C S when a large curvature or a radius of curvature is referred to as C L and a small curvature or radius of curvature is referred to as C S.
  • the lower limit of the difference between the curvature or the radius of curvature is not particularly limited. Since the curvature or radius of curvature of the first outer substrate and the curved surface may be the same, the difference in curvature or radius of curvature may be about 0% or more, or greater than about 0%.
  • the encapsulation can be completed following such a step via an appropriate bonding process, for example an autoclave process.
  • the conditions of the autoclave process is not particularly limited, and may be performed under appropriate temperature and pressure, for example, depending on the type of adhesive film applied.
  • the temperature of a typical autoclave process is at least about 80 ° C, at least 90 ° C or at least about 100 ° C, and the pressure is at least 2 atmospheres, but is not limited thereto.
  • the upper limit of the process temperature may be about 200 ° C. or less, 190 ° C. or less, 180 ° C. or less or about 170 ° C. or less, and the upper limit of the process pressure may be about 10 atmospheres or less, 9 atmospheres or less, 8 atmospheres or less, 7 atmospheres or less or about It may be about 6 atm or less.
  • Such an optical device may be used for various purposes, for example, sunglasses or eyewear such as AR (Argumented Reality) or VR (Virtual Reality) eyewear, building exterior walls or vehicle sunroofs. Can be used.
  • sunglasses or eyewear such as AR (Argumented Reality) or VR (Virtual Reality) eyewear, building exterior walls or vehicle sunroofs. Can be used.
  • the optical device may itself be a sunroof for a vehicle.
  • the optical device or the vehicle sunroof mounted in the opening may be used.
  • a substrate having a smaller radius of curvature that is, a substrate having a larger curvature, may be disposed in the direction of gravity.
  • the present application provides an optical device capable of varying the transmittance, such an optical device, such as sunglasses, eyewear, such as AR (Argumented Reality) or VR (Virtual Reality) eyewear, exterior walls of buildings or lines for vehicles It can be used for various uses such as a loop.
  • an optical device such as sunglasses, eyewear, such as AR (Argumented Reality) or VR (Virtual Reality) eyewear, exterior walls of buildings or lines for vehicles It can be used for various uses such as a loop.
  • 1 to 3 are diagrams for explaining the folded structure of the liquid crystal element of the present application.
  • 4 to 9 are exemplary diagrams for explaining the optical device of the present application.
  • a guest-host liquid crystal device (cell gap: about 12 ⁇ m, base film type: PET (poly (ethylene terephthalate) film), liquid crystal / dye mixture type: Merck's MAT-16-969 liquid crystal and dichroic dye ( The optical device was encapsulated with a mixture of BASF, X12) and a PVA (polyvinylalcohol) polarizer with a thermoplastic polyurethane adhesive film (thickness: about 0.38 mm, manufactured by Argotec, product name: ArgoFlex) between two outer substrates. Prepared.
  • a glass substrate having a thickness of about 3 mm was used, and a substrate having a radius of curvature of about 1030 R (first outer substrate) and a substrate having a radius of curvature of 1000 R (second outer substrate) were used.
  • the first outer substrate is positioned on the suction stage 100 so that the surface on which the convex portion is formed is facing upward, and then the silicon film is disposed on the upper portion thereof as shown in FIG.
  • the suction shown in FIG. 10 and the pressing shown in FIG. 11 were simultaneously performed to planarize the first outer substrate.
  • the pressure during suction was in the range of about -0.09 MPa to -0.1 MPa, and the pressure was maintained at about 0.8 Kg / cm 2 level.
  • an autoclave process was performed at a temperature of about 100 ° C. and a pressure of about 2 atmospheres to prepare an optical device.
  • the first outer substrate 1201 is performed on a curved surface 1301 having the same curvature, except that the autoclave is performed.
  • An optical device was manufactured in the same manner as in Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

본 출원은 광학 디바이스에 대한 것이다. 본 출원은 투과율의 가변이 가능한 광학 디바이스를 제공하고, 이러한 광학 디바이스는, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등의 다양한 용도에 사용될 수 있다.

Description

광학 디바이스의 제조 방법
본 출원은 2018년 05월 17일자 제출된 대한민국 특허출원 제10-2018-0056286호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은, 광학 디바이스에 관한 것이다.
액정 화합물을 이용하여 투과율을 가변할 수 있도록 설계된 투과율 가변 장치는 다양하게 알려져 있다. 예를 들면, 호스트 물질(host material)과 이색성 염료 게스트(dichroic dye guest)의 혼합물을 적용한 소위 GH셀(Guest host cell)을 사용한 투과율 가변 장치가 알려져 있다. 이러한 투과율 가변 장치는 선글라스나 안경 등의 아이웨어(eyewear), 건물 외벽 또는 차량의 선루프 등을 포함한 다양한 용도에 적용되고 있다.
본 출원은, 광학 디바이스의 제조 방법을 제공한다. 선루프 등을 포함한 특정 용도로의 적용을 위해서 상기 투과율 가변 장치를 외곽 기판의 사이에서 캡슐화하는 것이 고려될 수 있으며, 이러한 캡슐화는 통상 접착 필름을 사용한 오토클레이브 공정에 의해 수행될 수 있다. 그런데, 용도에 따라서 상기 외곽 기판으로서 곡면 형상으로 형성된 기판을 사용하는 경우에는 상기 캡슐화 공정이 적절하게 수행되지 않거나, 수행되었다고 해도 효과적인 캡슐화 구조가 달성되지 않는다. 예를 곡면 형상의 기판이 적용된 상태에서 오토클레이브 공정이 진행되는 경우에 캡슐화되는 장치에 웨이프(wave)나 주름(wrinkle) 등의 불량이 발생하고, 이러한 불량은 디바이스의 외관 품질을 저하시킨다. 따라서, 본 출원의 하나의 목적은 캡슐화 기판, 즉 외곽 기판으로서 곡면 기판이 적용되는 경우에도 효율적이고 안정적으로 광학 디바이스를 제조하는 방법을 제공하는 것이다.
본 출원에서 제조되는 광학 디바이스는, 투과율의 조절이 가능한 광학 디바이스로서, 예를 들면, 적어도 투과 모드와 차단 모드 사이를 스위칭할 수 있는 광학 디바이스이다.
이하, 본 출원의 방법에 의해서 제조되는 광학 디바이스에 대해서 우선 기술한다.
상기 광학 디바이스의 투과 모드는 광학 디바이스가 상대적으로 높은 투과율을 나타내는 상태이고, 차단 모드는 광학 디바이스가 상대적으로 낮은 투과율의 상태이다.
일 예시에서 상기 광학 디바이스는, 상기 투과 모드에서의 투과율이 약 30% 이상, 35% 이상, 40% 이상, 45% 이상 또는 약 50% 이상일 수 있다. 또한, 상기 광학 디바이스는, 상기 차단 모드에서의 투과율이 약 20% 이하, 15% 이하 또는 약 10% 이하일 수 있다.
투과 모드에서의 투과율은 수치가 높을수록 유리하고, 차단 모드에서의 투과율은 낮을수록 유리하기 때문에 각각의 상한과 하한은 특별히 제한되지 않는다. 일 예시에서 상기 투과 모드에서의 투과율의 상한은 약 100, 95%, 90%, 85%, 80%, 75%, 70%, 65% 또는 약 60%일 수 있다. 상기 차단 모드에서의 투과율의 하한은 약 0%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% 또는 약 10%일 수 있다.
상기 투과율은 직진광 투과율일 수 있다. 용어 직진광 투과율은 소정 방향으로 광학 디바이스를 입사한 광 대비 상기 입사 방향과 동일한 방향으로 상기 광학 디바이스를 투과한 광(직진광)의 비율일 수 있다. 일 예시에서 상기 투과율은, 상기 광학 디바이스의 표면 법선과 평행한 방향으로 입사한 광에 대하여 측정한 결과(법선광 투과율)일 수 있다.
본 출원의 광학 디바이스에서 투과율이 조절되는 광은, UV-A 영역의 자외선, 가시광 또는 근적외선일 수 있다. 일반적으로 사용되는 정의에 따르면, UV-A 영역의 자외선은 320 nm 내지 380 nm의 범위 내의 파장을 갖는 방사선을 의미하는 것으로 사용되고, 가시광은 380 nm 내지 780 nm의 범위 내의 파장을 갖는 방사선을 의미하는 것으로 사용되며, 근저외선은 780 nm 내지 2000 nm의 범위 내의 파장을 갖는 방사선을 의미하는 것으로 사용된다.
본 출원의 방법에 의해서 제조되는 광학 디바이스는, 적어도 상기 투과 모드와 차단 모드의 사이를 스위칭할 수 있도록 설계된다. 필요한 경우에 광학 디바이스는, 상기 투과 모드 및 차단 모드 외에 다른 모드도 구현할 수 있도록 설계될 수 있다. 예를 들면, 상기 투과 모드 및 차단 모드의 투과율 사이에서 임의의 투과율을 나타낼 수 있는 제 3의 모드도 구현될 수 있도록 설계될 수 있다.
이와 같은 모드간의 스위칭은 광학 디바이스가 능동 액정 소자를 포함함으로써 달성될 수 있다. 상기에서 능동 액정 소자는, 적어도 2개 이상의 광축의 배향 상태, 예를 들면, 제 1 및 제 2 배향 상태의 사이를 스위칭할 수 있는 액정 소자다. 상기에서 광축은 액정 소자에 포함되어 있는 액정 화합물이 막대(rod)형인 경우에는 그 장축 방향을 의미할 수 있고, 원반(discotic) 형태인 경우에는 상기 원반 평면의 법선 방향을 의미할 수 있다. 예를 들어, 액정 소자가 어느 배향 상태에서 서로 광축이 방향이 다른 복수의 액정 화합물들을 포함하는 경우에 액정 소자의 광축은 평균 광축으로 정의될 수 있고, 이 경우 평균 광축은 상기 액정 화합물들의 광축의 벡터합을 의미할 수 있다.
상기와 같은 액정 소자에서 배향 상태는 에너지의 인가, 예를 들면, 전압의 인가에 의해 변경할 수 있다. 예를 들면, 상기 액정 소자는 전압의 인가가 없는 상태에서 상기 제 1 및 제 2 배향 상태 중에서 어느 한 배향 상태를 가지고 있다가 전압이 인가되면 다른 배향 상태로 스위칭될 수 있다.
상기 제 1 및 제 2 배향 상태 중 어느 한 배향 상태에서 상기 차단 모드가 구현되고, 다른 배향 상태에서 상기 투과 모드가 구현될 수 있다. 편의상 본 명세서에서는 상기 제 1 상태에서 차단 모드가 구현되는 것으로 기술한다.
상기 액정 소자는, 적어도 액정 화합물을 포함하는 액정층을 포함할 수 있다. 일 예시에서 상기 액정층은, 소위 게스트 호스트 액정층으로서, 액정 화합물과 이색성 염료 게스트를 포함하는 액정층일 수 있다.
상기 액정층은, 소위 게스트 호스트 효과를 이용한 액정층으로서, 상기 액정 화합물(이하, 액정 호스트라 칭할 수 있다)의 배향 방향에 따라 상기 이색성 염료 게스트가 정렬되는 액정층이다. 상기 액정 호스트의 배향 방향은 전술한 외부 에너지의 인가 여부에 따라 조절할 수 있다.
액정층에 사용되는 액정 호스트의 종류는 특별히 제한되지 않고, 게스트 호스트 효과의 구현을 위해 적용되는 일반적인 종류의 액정 화합물이 사용될 수 있다.
예를 들면, 상기 액정 호스트로는, 스멕틱 액정 화합물, 네마틱 액정 화합물 또는 콜레스테릭 액정 화합물이 사용될 수 있다. 일반적으로는 네마틱 액정 화합물이 사용될 수 있다. 용어 네마틱 액정 화합물은, 액정 분자의 위치에 대한 규칙성은 없지만, 모두 분자축 방향으로 질서를 가지고 배열할 수 있는 액정 화합물을 의미하고, 이러한 액정 화합물은 막대(rod) 형태이거나 원반(discotic) 형태일 수 있다.
이러한 네마틱 액정 화합물은 예를 들면, 약 40℃ 이상, 50℃ 이상, 60℃ 이상, 70℃ 이상, 80℃ 이상, 90℃ 이상, 100℃ 이상 또는 약 110℃ 이상 이상의 등명점(clearing point)를 가지거나, 상기 범위의 상전이점, 즉 네마틱상에서 등방상으로의 상전이점을 가지는 것이 선택될 수 있다. 일 예시에서 상기 등명점 또는 상전이점은 약 160℃ 이하, 150℃ 이하 또는 약 140℃ 이하일 수 있다.
상기 액정 화합물은, 유전율 이방성이 음수 또는 양수일 수 있다. 상기 유전율 이방성의 절대값은 목적을 고려하여 적절히 선택될 수 있다. 예를 들면, 상기 유전율 이방성은 약 3 초과 또는 약 7 초과이거나, 약 -2 미만 또는 약 -3 미만일 수 있다.
액정 화합물은 또한 약 0.01 이상 또는 약 0.04 이상의 광학 이방성(△n)을 가질 수 있다. 액정 화합물의 광학 이방성은 다른 예시에서 약 0.3 이하 또는 약 0.27 이하일 수 있다.
게스트 호스트 액정층의 액정 호스트로 사용될 수 있는 액정 화합물은 본 기술 분야의 전문가들에게 공지되어 있으며, 그들로부터 자유롭게 선택될 수 있다.
액정층은 상기 액정 호스트와 함께 이색성 염료 게스트를 포함한다. 용어 「염료」는, 가시광 영역, 예를 들면, 380 nm 내지 780 nm 파장 범위 내에서 적어도 일부 또는 전체 범위 내의 광을 집중적으로 흡수 및/또는 변형시킬 수 있는 물질을 의미할 수 있고, 용어 「이색성 염료 게스트」는 상기 가시광 영역의 적어도 일부 또는 전체 범위에서 광의 흡수가 가능한 물질을 의미할 수 있다.
이색성 염료 게스트로는, 예를 들면, 액정 호스트의 정렬 상태에 따라 정렬될 수 있는 특성을 가지는 것으로 알려진 공지의 염료를 선택하여 사용할 수 있다. 예를 들면, 이색성 염료 게스트로는, 아조 염료 또는 안트라퀴논 염료 등을 사용할 수 있고, 넓은 파장 범위에서의 광 흡수를 달성하기 위해서 액정층은 1종 또는 2종 이상의 염료를 포함할 수도 있다.
이색성 염료 게스트의 이색비(dichroic ratio)는 이색성 염료 게스트의 사용 목적을 고려하여 적절히 선택될 수 있다. 예를 들어, 상기 이색성 염료 게스트는 이색비가 약 5 이상 내지 약 20 이하일 수 있다. 용어「이색비」는, 예를 들어, p형 염료인 경우, 염료의 장축 방향에 평행한 편광의 흡수를 상기 장축 방향에 수직하는 방향에 평행한 편광의 흡수로 나눈 값을 의미할 수 있다. 이색성 염료는 가시광 영역의 파장 범위 내, 예를 들면, 약 380 nm 내지 약 780 nm 또는 약 400 nm 내지 약 700 nm의 파장 범위 내에서 적어도 어느 한 파장, 일부 범위의 파장 또는 전 범위의 파장에서 상기 이색비를 가질 수 있다.
액정층 내에서의 이색성 염료 게스트의 함량은 이색성 염료 게스트의 사용 목적을 고려하여 적절히 선택될 수 있다. 예를 들어, 액정 호스트와 이색성 염료 게스트의 합계 중량을 기준으로 상기 이색성 염료의 함량은 0.1 내지 10 중량% 범위 내에서 선택될 수 있다. 이색성 염료의 비율은 목적하는 투과율과 액정 호스트에 대한 이색성 염료 게스트의 용해도 등을 고려하여 변경할 수 있다.
액정층은 상기 액정 호스트와 이색성 염료 게스트를 기본적으로 포함하고, 필요한 경우에 다른 임의의 첨가제를 공지의 형태에 따라 추가로 포함할 수 있다. 첨가제의 예로는 키랄 도펀트 또는 안정화제 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
상기 액정층은, 약 0.5 이상의 이방성도(R)를 가질 수 있다. 상기 이방성도(R)는 액정 호스트의 배향 방향(alignment direction)에 평행하게 편광된 광선의 흡광도(E(p)) 및 액정 호스트의 배향 방향에 수직으로 편광된 광선의 흡광도(E(s))로부터 하기 수학식에 따라 측정한다.
<이방성도 수식>
이방성도(R) = [E(p)-E(s)] / [E(p) + 2*E(s)].
상기에서 사용되는 기준은 액정층 내에 염료를 함유하지 않는 다른 동일한 장치이다.
구체적으로 이방성도(R)는 염료 분자가 수평 배향된 액정층의 흡광도에 대한 값(E(p)) 및 염료 분자가 수직 배향된 동일한 액정층의 흡광도에 대한 값(E(s))으로부터 측정될 수 있다. 상기 흡광도는 염료를 전혀 함유하지 않지만 그 밖에는 동일한 구성을 갖는 액정층과 비교하여 측정한다. 이러한 측정은, 진동면이 하나의 경우에는 배향 방향과 평행한 방향으로 진동(E(p))하고 후속 측정에서는 배향 방향과 수직인 방향으로 진동(E(s))하는 편광된 광선을 이용하여 수행될 수 있다. 액정층은, 측정 도중에 스위칭되거나 회전되지 않고, 따라서, 상기 E(p) 및 E(s)의 측정은 편광된 입사광의 진동면을 회전시킴으로써 수행될 수 있다.
상세한 절차의 일 예시는 하기에 기술된 바와 같다. E(p) 및 E(s)의 측정을 위한 스펙트럼은 퍼킨 엘머 람다 1050 UV 분광계(Perkin Elmer Lambda 1050 UV spectrometer) 등과 같은 분광계를 이용하여 기록할 수 있다. 분광계에는 측정용 빔 및 기준 빔 모두에서 250 nm 내지 2500 nm의 파장 범위용의 글랜-톰슨 편광자(Glan-Thompson polariser)가 장착되어 있다. 2개의 편광자는 스테핑 모터(stepping motor)에 의해 제어되며, 동일한 방향으로 배향된다. 편광자의 편광자 방향에 있어서의 변화, 예를 들면 0도내지 90도의 전환은 측정용 빔 및 기준 빔에 대하여 항상 동기적으로 및 동일한 방향으로 수행된다. 개별 편광자의 배향은 뷔르츠부르크 대학교(University of Wurzburg)의 티. 카르스텐스(T. Karstens)의 1973년 학위 논문에 기술되어 있는 방법을 이용하여 측정할 수 있다.
이 방법에서, 편광자는 배향된 이색성 샘플에 대해 5도씩 단계적으로 회전되며, 흡광도는 예를 들면 최대 흡수 영역에서 고정된 파장에서 기록된다. 각각의 편광자 위치에 대해 새로운 기준선 영점(zero line)이 실행된다. 2개의 이색성 스펙트럼 E(p) 및 E(s)의 측정을 위하여, JSR 사의 폴리이미드 AL-1054 로 코팅된 역평행-러빙된 테스트 셀은 측정용 빔 및 기준 빔 모두 내에 위치된다. 2개의 테스트 셀은 동일한 층 두께로 선택될 수 있다. 순수한 호스트(액정 화합물)을 함유하는 테스트 셀은 기준 빔 내에 위치된다. 액정 중에 염료의 용액을 함유하는 테스트 셀은 측정용 빔 내에 위치된다. 측정용 빔 및 기준 빔에 대한 2개의 테스트 셀은 동일한 배향 방향에서 음파 경로(ray path)내에 설치된다. 분광계의 최대로 가능한 정밀도를 보장하기 위하여, E(p)는 반드시 그의 최대 흡수 파장 범위, 예를 들면, 약 0.5 내지 약 1.5의 파장 범위 내에 있을 수 있다. 이는 약 30% 내지 약 5%의 투과도에 상응한다. 이는 층 두께 및/또는 염료 농도를 상응하게 조정함으로써 설정된다.
이방성도(R)는 문헌[참조: "Polarized Light in Optics and Spectroscopy", D. S. Kliger et al., Academic Press, 1990]에 나타나 있는 바와 같은 상기 수학식에 따라 E(p) 및 E(s)에 대한 측정값으로부터 계산될 수 있다.
상기 이방성도(R)는 다른 예시에서 약 0.55 이상, 0.6 이상 또는 0.65 이상일 수 있다. 상기 이방성도(R)는 예를 들면, 약 0.9 이하, 0.85 이하, 0.8 이하, 0.75 이하 또는 약 0.7 이하일 수 있다.
이러한 이방성도(R)는 액정층의 종류, 예를 들면, 액정 화합물(호스트)의 종류, 이색성 염료 게스트의 종류 및 비율, 액정층의 두께 등을 제어하여 달성할 수 있다.
상기 범위 내의 이방성도(R)를 통해 보다 저에너지를 사용하면서도, 투과 모드와 차단 모드에서의 투과율의 차이가 커져서 콘트라스트 비율이 높아지는 광학 디바이스의 제공이 가능할 수 있다.
상기 액정층의 두께는 목적, 예를 들면, 목적하는 이방성도 등을 고려하여 적절히 선택될 수 있다. 일 예시에서 상기 액정층의 두께는, 약 0.01μm 이상, 0.05μm 이상, 0.1μm 이상, 0.5μm 이상, 1μm 이상, 1.5μm 이상, 2μm 이상, 2.5μm 이상, 3μm 이상, 3.5μm 이상, 4μm 이상, 4.5μm 이상, 5μm 이상, 5.5μm 이상, 6μm 이상, 6.5μm 이상, 7μm 이상, 7.5μm 이상, 8μm 이상, 8.5μm 이상, 9μm 이상 또는 약 9.5μm 이상일 수 있다. 이와 같이 두께를 제어함으로써, 투과 모드에서의 투과율과 차단 모드에서의 투과율의 차이가 큰 광학 디바이스, 즉 콘트라스트 비율이 큰 디바이스를 구현할 수 있다. 상기 두께는 두꺼울수록 높은 콘트라스트 비율의 구현이 가능하여 특별히 제한되는 것은 아니지만, 일반적으로 약 30 μm 이하, 25 μm 이하, 20 μm 이하 또는 약 15 μm 이하일 수 있다
상기 제 1 및 제 2 배향 상태는, 일 예시에서, 각각 수평 배향, 수직 배향, 트위스트 네마틱 배향 또는 콜레스테릭 배향 상태에서 선택될 수 있다. 예를 들면, 차단 모드에서 액정 소자 또는 액정층은 적어도 수평 배향, 트위스트 네마틱 배향 또는 콜레스테릭 배향이고, 투과 모드에서 액정 소자 또는 액정층은 수직 배향 또는 상기 차단 모드의 수평 배향과는 다른 방향의 광축을 가지는 수평 배향 상태일 있다. 액정 소자는, 전압 무인가 상태에서 상기 차단 모드가 구현되는 통상 차단 모드(Normally Black Mode)의 소자이거나, 전압 무인가 상태에서 상기 투과 모드가 구현되는 통상 투과 모드(Normally Transparent Mode)를 구현할 수 있다.
액정층의 배향 상태에서 해당 액정층의 광축이 어떤 방향으로 형성되어 있는 것인지를 확인하는 방식은 공지이다. 예를 들면, 액정층의 광축의 방향은, 광축 방향을 알고 있는 다른 편광판을 이용하여 측정할 수 있으며, 이는 공지의 측정 기기, 예를 들면, Jasco사의 P-2000 등의 polarimeter를 사용하여 측정할 수 있다.
액정 호스트의 유전율 이방성 또는 액정 호스트를 배향시키는 배향막의 배향 방향 등을 조절하여, 상기와 같은 통상 투과 모드 또는 차단 모드의 액정 소자를 구현하는 방식은 공지이다.
상기 액정 소자는 대향 배치되어 있는 2장의 기재 필름과 상기 2장의 기재 필름의 사이에 존재하는 상기 능동 액정층을 포함할 수 있다.
또한, 상기 액정 소자는 상기 2장의 기재 필름의 사이에서 상기 2장의 기재 필름의 간격을 유지하는 스페이서 및/또는 대향 배치된 2장의 기재 필름의 간격이 유지된 상태로 상기 기재 필름을 부착시키고 있는 실런트를 추가로 포함할 수 있다. 상기 스페이서 및/또는 실런트로는, 특별한 제한 없이 공지의 소재가 사용될 수 있다.
기재 필름으로는, 예를 들면, 유리 등으로 되는 무기 필름 또는 플라스틱 필름이 사용될 수 있다.
플라스틱 필름으로는, TAC(triacetyl cellulose) 필름; 노르보르넨 유도체 등의 COP(cyclo olefin copolymer) 필름; PMMA(poly(methyl methacrylate) 등의 아크릴 필름; PC(polycarbonate) 필름; PE(polyethylene) 필름; PP(polypropylene) 필름; PVA(polyvinyl alcohol) 필름; DAC(diacetyl cellulose) 필름; Pac(Polyacrylate) 필름; PES(poly ether sulfone) 필름; PEEK(polyetheretherketon) 필름; PPS(polyphenylsulfone) 필름; PEI(polyetherimide) 필름; PEN(polyethylenenaphthatlate) 필름; PET(polyethyleneterephtalate) 필름; PI(polyimide) 필름; PSF(polysulfone) 필름; PAR(polyarylate) 필름; 또는 불소 수지 필름 등이 사용될 수 있지만, 이에 제한되는 것은 아니다. 기재 필름에는 필요에 따라서 금; 은; 또는 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 기능층이 존재할 수도 있다.
기재 필름으로는, 소정 범위의 위상차를 가지는 필름이 사용될 수 있다. 일 예시에서 상기 기재 필름은 정면 위상차가 약 100 nm 이하일 수 있다. 상기 정면 위상차는 다른 예시에서 약 95nm 이하, 90nm 이하, 85nm 이하, 80nm 이하, 75nm 이하, 70nm 이하, 65nm 이하, 60nm 이하, 55nm 이하, 50nm 이하, 45nm 이하, 40nm 이하, 35nm 이하, 30nm 이하, 25nm 이하, 20 nm 이하, 15 nm 이하, 10nm 이하, 5nm 이하, 4nm 이하, 3nm 이하, 2nm 이하, 1nm 이하 또는 약 0.5nm 이하일 수 있다. 상기 정면 위상차는 다른 예시에서 약 0nm 이상, 1nm 이상, 2nm 이상, 3nm 이상, 4nm 이상, 5nm 이상, 6nm 이상, 7nm 이상, 8nm 이상, 9nm 이상, 또는 약 9.5nm 이상일 수 있다.
기재 필름의 두께 방향 위상차의 절대값은, 예를 들면, 약 200 nm 이하일 수 있다. 상기 두께 방향 위상차의 절대값은 다른 예시에서 약 190nm 이하, 180nm 이하, 170nm 이하, 160nm 이하, 150nm 이하, 140nm 이하, 130nm 이하, 120nm 이하, 110nm 이하, 100nm 이하, 90nm 이하, 85 nm 이하, 80nm 이하, 70nm 이하, 60nm 이하, 50nm 이하, 40nm 이하, 30nm 이하, 20nm 이하, 10nm 이하, 5nm 이하, 4nm 이하, 3nm 이하, 2nm 이하, 1nm 이하 또는 0.5nm 이하일 수 있고, 0nm 이상, 10nm 이상, 20nm 이상, 30nm 이상, 40nm 이상, 50nm 이상, 60nm 이상, 70 nm 이상 또는 약 75 nm 이상일 수 있다. 상기 두께 방향 위상차는 절대값이 상기 범위 내라면 음수이거나, 양수일 수 있으며, 예를 들면, 음수일 수 있다.
본 명세서에서 정면 위상차(Rin)는 하기 수식 1로 계산되는 수치이고, 두께 방향 위상차(Rth)는 하기 수식 2로 계산되는 수치이며, 특별히 달리 규정하지 않는 한, 상기 정면 및 두께 방향 위상차의 기준 파장은 약 550 nm이다.
[수식 1]
정면 위상차(Rin) = d × (nx - ny)
[수식 2]
두께 방향 위상차(Rth) = d × (nz - ny)
수식 1 및 2에서 d는 기재 필름의 두께이고, nx는 기재 필름의 지상축 방향의 굴절률이며, ny는 기재 필름의 진상축 방향의 굴절률이고, nz는 기재 필름의 두께 방향의 굴절률이다.
기재 필름이 광학 이방성인 경우에 대향 배치되어 있는 기재 필름들의 지상축들이 이루는 각도는, 예를 들면, 약 -10도 내지 약 10도의 범위 내, 약 -7도 내지 약 7도의 범위 내, 약 -5도 내지 약 5도의 범위 내 또는 약 -3도 내지 약 3도의 범위 내이거나 대략 평행할 수 있다.
또한, 상기 기재 필름의 지상축과 후술하는 편광자의 광 흡수축이 이루는 각도는, 예를 들면, 약 -10도 내지 약 10도의 범위 내, 약 -7도 내지 약 7도의 범위 내, 약 -5도 내지 약 5도의 범위 내 또는 약 -3도 내지 약 3도의 범위 내이거나 대략 평행할 수 있거나, 혹은 약 80도 내지 약 100도의 범위 내, 약 83도 내지 약 97도의 범위 내, 약 85도 내지 약 95도의 범위 내 또는 약 87도 내지 약 92도의 범위 내이거나 대략 수직일 수 있다.
상기와 같은 위상차 조절 또는 지상축의 배치를 통해서 광학적으로 우수하고 균일한 투과 모드 및 차단 모드의 구현이 가능할 수 있다.
기재 필름은 열팽창 계수가 100 ppm/K 이하일 수 있다. 상기 열팽창 계수는, 다른 예시에서 약 95ppm/K 이하, 90ppm/K 이하, 85ppm/K 이하, 80ppm/K 이하, 75ppm/K 이하, 70 ppm/K 이하 또는 약 65 ppm/K 이하이거나, 10 ppm/K 이상, 20 ppm/K 이상, 30 ppm/K 이상, 40 ppm/K 이상, 50 ppm/K 이상 또는 약 55 ppm/K 이상일 수 있다. 기재 필름의 열팽창 계수는, 예를 들면, ASTM D696의 규정에 따르 측정할 수 있고, 해당 규격에서 제공하는 형태로 필름을 재단하고, 단위 온도당 길이의 변화를 측정하여 열팽창 계수를 계산할 수 있으며, TMA(ThermoMechanic Analysis) 등의 공지의 방식으로 측정할 수 있다.
기재 필름으로는, 파단 신율이 약 90% 이상인 기재 필름을 사용할 수 있다. 상기 파단 신율은 약 95% 이상, 100% 이상, 105% 이상, 110% 이상, 115% 이상, 120% 이상, 125% 이상, 130% 이상, 135% 이상, 140% 이상, 145% 이상, 150% 이상, 155% 이상, 160% 이상, 165% 이상, 170% 이상 또는 약 175% 이상일 수 있고, 약 1,000% 이하, 900% 이하, 800% 이하, 700% 이하, 600% 이하, 500% 이하, 400% 이하, 300% 이하 또는 약 200% 이하일 수 있다. 기재 필름의 파단 신율은 ASTM D882 규격에 따라 측정할 수 있고, 해당 규격에서 제공하는 형태로 필름을 재단하고, Stress-Strain curve를 측정할 수 있는 장비(힘과 길이를 동시에 측정할 수 있는)를 이용하여 측정할 수 있다.
기재 필름이 상기와 같은 열팽창 계수 및/또는 파단 신율을 가지도록 선택되는 것에 의해 보다 우수한 내구성의 광학 디바이스가 제공될 수 있다.
상기와 같은 기재 필름의 두께는 특별히 제한되지 않으며, 예를 들면 약 50 μm 내지 약 200μm 정도의 범위 내일 수 있다.
액정 소자에서 상기 기재 필름의 일면, 예를 들면, 상기 능동 액정층을 향하는 면상에는 도전층 및/또는 배향막이 존재할 수 있다.
기재 필름의 면상에 존재하는 도전층은, 능동 액정층에 전압을 인가하기 위한 구성으로서, 특별한 제한 없이 공지의 도전층이 적용될 수 있다. 도전층으로는, 예를 들면, 전도성 고분자, 전도성 금속, 전도성 나노와이어 또는 ITO(Indium Tin Oxide) 등의 금속 산화물 등이 적용될 수 있다. 본 출원에서 적용될 수 있는 도전층의 예는 상기에 제한되지 않으며, 이 분야에서 액정 소자에 적용될 수 있는 것으로 알려진 모든 종류의 도전층이 사용될 수 있다.
일 예시에서 상기 기재 필름의 면상에는 배향막이 존재한다. 예를 들면, 기재 필름의 일면에 우선 도전층이 형성되고, 그 상부에 배향막이 형성될 수 있다.
배향막은 능동 액정층에 포함되는 액정 호스트의 배향을 제어하기 위한 구성이고, 특별한 제한 없이 공지의 배향막을 적용할 수 있다. 업계에서 공지된 배향막으로는, 러빙 배향막이나 광배향막 등이 있고, 본 출원에서 사용될 수 있는 배향막은 상기 공지의 배향막이고, 이는 특별히 제한되지 않는다.
전술한 광축의 배향을 달성하기 위해서 상기 배향막의 배향 방향이 제어될 수 있다. 예를 들면, 대향 배치되어 있는 2장의 기재 필름의 각 면에 형성된 2개의 배향막의 배향 방향은 서로 약 -10도 내지 약 10도의 범위 내의 각도, 약 -7도 내지 약 7도의 범위 내의 각도, 약 -5도 내지 약 5도의 범위 내의 각도 또는 약 -3도 내지 약 3도의 범위 내의 각도를 이루거나 서로 대략 평행할 수 있다. 다른 예시에서 상기 2개의 배향막의 배향 방향은 약 80도 내지 약 100도의 범위 내의 각도, 약 83도 내지 약 97도의 범위 내의 각도, 약 85도 내지 약 95도의 범위의 각도 내 또는 약 87도 내지 약 92도의 범위 내의 각도를 이루거나 서로 대략 수직일 수 있다.
이와 같은 배향 방향에 따라서 능동 액정층의 광축의 방향이 결정되기 때문에, 상기 배향 방향은 능동 액정층의 광축의 방향을 확인하여 확인할 수 있다.
상기와 같은 구성을 가지는 액정 소자의 형태는 특별히 제한되지 않고, 광학 디바이스의 적용 용도에 따라서 정해질 수 있으며, 일반적으로는 필름 또는 시트 형태이다.
하나의 예시에서 상기 액정 소자는, 접힌 형태를 가질 수 있다. 예를 들면, 단면 관찰 시에 상기 능동 액정 소자는 곡률(=1/곡률반경)이 0 내지 0.01의 범위 내인 제 1 라인; 상기 제 1 라인 말단의 접힘 영역 및 상기 접힘 영역에 연결되어 있는 제 2 라인을 포함하는 단면을 가질 수 있다. 즉, 상기 능동 액정 소자는, 상기 접힘 영역에서 접힌 형태로 광학 디바이스에 포함되어 있을 수 있다. 상기 곡률은 다른 예시에서 약 0.009 이하, 0.008 이하, 0.007 이하, 0.006 이하, 0.005 이하, 0.004 이하, 0.003 이하, 0.002 이하, 0.001 이하, 0.0009 이하, 0.0008 이하, 0.0007 이하, 0.0006 이하, 0.0005 이하, 0.0004 이하, 0.0003 이하, 0.0002 이하, 0.0001 이하, 0.00009 이하, 0.00008 이하, 0.00007 이하, 0.00006 이하 또는 약 0.00005 이하일 수 있다.
후술하는 바와 같이 본 출원의 광학 디바이스는, 2장의 외곽 기판의 내부에 상기 능동 액정 소자 및/또는 후술하는 편광자를 위치시키고, 각각의 계면에 접착 필름을 위치시킨 상태에서 진공 압착하여 제조된 구조를 가질 수 있다.
이러한 광학 디바이스가 고온, 고습 조건 등에 노출되게 되는 경우 혹은 상기 공정 과정에서 액정 소자의 기재 필름과 그에 압착되는 접착 필름의 열팽창 계수의 차이 등에 의해서 액정 소자에 주름 등의 결점(defect)이 형성되게 되고, 이러한 결점이 광학 디바이스의 성능에 나쁜 영향을 줄 수 있다.
이에 본 출원에서는 상기 접힌 구조로 능동 액정 소자를 구현하는 경우에 상기 문제점의 해결이 가능한 것을 확인하였다.
도 1은 상기 접힌 구조의 능동 액정 소자(10)의 단면을 모식적으로 나타낸 도면이다.
도 1과 같이 상기 능동 액정 소자(10)의 단면은, 제 1 라인(101), 접힘 영역(B) 및 제 2 라인(102)이 연결된 형태의 단면을 가질 수 있다.
상기에서 제 1 라인(101)은 활성 영역(active area), 즉 실질적으로 광의 투과 상태를 조절하기 위해 광을 변조하는 역할을 하는 영역일 수 있다. 이러한 제 1 라인(101)은 평면 형성으로서 곡률이 0인 형태이거나, 혹은 볼록한 형태 또는 오목한 형태로 만곡된 형태일 수도 있다.
도 1과 같이 접힘 영역(A)을 기준으로 액정 소자(10)는 접힌 구조를 가지고, 이에 따라 제 2 라인(102)이 형성된다. 이 때 제 2 라인(102)이 접히는 정도는 광학 디바이스에서 액정 소자(10)의 주름 등의 결점이 발생하지 않을 정도로 제어되면 특별히 제한되지 않는다. 일 예시에서 상기 접히는 정도는 상기 제 1 라인(101) 또는 상기 제 1 라인(101)의 접선(T)과 상기 제 2 라인(102)이 이루는 각도가 시계 또는 반시계 방향으로 약 0도 초과, 5도 이상, 10도 이상, 15도 이상, 20도 이상, 25도 이상, 30도 이상, 35도 이상, 40도 이상, 45도 이상, 50도 이상, 55도 이상 또는 약 60도 이상 정도가 되도록 설정될 수 있다. 상기 각도는 다른 예시에서 약 180도 이하, 170 도 이하, 160 도 이하, 150 도 이하, 140 도 이하, 130 도 이하 또는 약 120도 이하 정도일 수 있다. 상기에서 제 2 라인(102)과의 각도가 측정되는 접선은 상기 제 1 라인(101)을 대략 2등분하는 지점(D)에서의 접선이다. 또한, 상기 접선(T)에 대한 각도를 측정하는 제 2 라인은, 도 1과 같이 접힘 영역(A)과 제 2 라인(102)이 종료되는 지점을 연결하는 라인(1022)일 수 있다.
상기와 같은 형태에서 제 1 라인(101)의 길이(L1)와 제 2 라인(102)의 길이(L2)의 비율(L1/L2)은 약 500 내지 약 4,000의 범위 내일 수 있다. 상기 비율(L1/L2)은 다른 예시에서 약 550 이상, 600 이상, 650 이상, 700 이상, 800 이상, 900 이상, 1000 이상, 1100 이상, 1200 이상, 1500 이상, 2000 이상, 2500 이상, 3000 이상 또는 3500 이상일 수 있고, 3500 이하, 3000 이하, 2900 이하, 2800 이하, 2700 이하, 2600 이하, 2500 이하, 2400 이하, 2300 이하, 2200 이하, 2100 이하, 2000 이하, 1,900 이하, 1,800 이하, 1,700 이하, 1,600 이하, 1,500 이하, 1,400 이하, 1,300 이하, 1,200 이하, 1,100 이하, 1,000 이하, 900 이하 또는 약 800 이하일 수 있다.
상기와 같은 관계에서 제 1 라인(101)과 제 2 라인(102)의 절대적인 길이는 특별히 제한되지 않고, 목적하는 광학 디바이스의 용도 등에 따라서 결정될 수 있다. 예를 들면, 상기 제 1 라인(101)의 길이가 약 100 내지 약 1,000 mm 정도가 되도록 조절될 수 있다. 상기 제 1 라인(101)의 길이는 다른 예시에서 약 150 mm 이상, 200 mm 이상 또는 약 250 mm 이상일 수 있다. 상기 제 1 라인(101)의 길이는 다른 예시에서 약 900mm 이하, 800 mm 이하, 700 mm 이하, 600 mm 이하 또는 약 500 mm 이하일 수 있다.
상기와 같은 접힌 구조는 액정 소자의 단면에서 양 말단 모두에 형성되어 있을 수 있다. 따라서, 도 1과 같이 능동 액정 소자 단면에서 상기 제 1 라인(101)의 양 말단에 상기 접힘 영역(A)과 제 2 라인(102)이 형성되어 있을 수 있다.
상기와 같은 구조에서 제 2 라인이 추가로 접혀 있을 수 있는데, 예를 들면, 도 2와 같이 제 2 라인(102)상에는 제 2 접힘 영역(AA)이 존재하고, 상기 접힘 영역(AA)에서 상기 제 2 라인(102)이 추가적으로 접힌 형태의 단면이 구현될 수 있다.
이 경우, 추가적으로 형성되는 접힘 영역(AA)의 형성 위치 등은 특별히 제한되지 않고, 예를 들면, 상기 제 1 라인(101)과 제 2 라인(102)의 연결부에 형성되는 접힌 영역(A)부터 상기 제 2 라인(102)상에 형성되는 접힌 영역(AA)까지의 거리가 전술한 비율(L1/L2)을 만족하는 L2가 될 수 있도록 상기 위치가 조절될 수 있다.
상기와 같은 단면이 관찰되는 액정 소자의 단면은 상기 액정 소자를 임의의 측면에서 관찰하였을 때 관찰되는 단면이다. 즉, 액정 소자의 측면 중에서 어느 하나의 측면에서라도 상기 단면이 관찰되면 된다.
일 예시에서 상기 접힌 구조가 관찰되는 단면은, 액정 소자의 장축 또는 단축을 포함하여 형성되는 법평면상의 단면일 수 있다. 상기에서 장축은, 예를 들어, 액정 소자(10)를 상부에서 관찰하는 경우에 도 3과 같이 직사각형 형태인 경우에는 가로 및 세로 중에서 긴 쪽(LA)이고, 단축은 짧은 쪽(SA)일 수 있다.
예를 들면, 도 3과 같은 구조의 액정 소자(10)에서 점선으로 표시된 부분을 접어서 상기 단면 구조를 구현할 수 있다.
상기 액정 소자가 정사각형 형태인 경우에는 가로축 및 세로축 중에서 임의로 어느 하나가 장축으로 간주되고, 다른 하나는 단축으로 간주될 수 있다.
또한, 사각 형태가 아닌 다른 형태인 경우에는, 예를 들면, 타원형, 원형 또는 무정형 등인 경우에 상기 액정 소자를 상부에서 관찰하는 경우에 접힌 부분에 의해서 형성되는 라인(예를 들면, 도 3에서 점선 라인)에 수직한 라인이 단축 내지 장축 중 어느 하나가 되고, 그 라인에 다시 수직하는 라인이 단축 및 장축 중 다른 하나가 될 수 있다.
일 예시에서 도 3에 나타난 바와 같이 액정 소자의 4면을 모두 접어서 상기 단면을 형성할 수 있으며, 이러한 경우에 상기 단면은 액정 소자의 장축을 포함하는 법평면과 단축을 포함하는 법평면 모두에서 관찰될 수 있다.
상기와 같이 접힌 구조의 액정 소자에서 전술한 실런트의 위치는 특별히 제한되지 않지만, 일반적으로는 상기 접힘 영역(도 1 및 2의 A) 또는 상기 접힘 영역(도 1 및 2의 A)에서 제 1 라인(101)으로 향하는 영역에서 상기 2장의 기재 필름을 부착하고 있는 실런트가 존재할 수 있다.
광학 디바이스는, 상기 능동 액정 소자와 함께 편광자를 추가로 포함한다. 상기 편광자로는, 예를 들면, 흡수형 선형 편광자, 즉 일방향으로 형성된 광흡수축과 그와는 대략 수직하게 형성된 광투과축을 가지는 편광자를 사용할 수 있다.
상기 편광자는, 상기 능동 액정층의 제 1 배향 상태에서 상기 차단 상태가 구현된다고 가정하는 경우에 상기 제 1 배향 상태의 평균 광축(광축의 벡터함)과 상기 편광자의 광흡수축이 이루는 각도가 약 80도 내지 약 100도 또는 약 85도 내지 약 95도를 이루거나, 대략 수직이 되도록 광학 디바이스에 배치되어 있거나, 혹은 약 35도 내지 약 55도 또는 약 40도 내지 약 50도가 되거나 대략 약 45도가 되도록 광학 디바이스에 배치되어 있을 수 있다.
배향막의 배향 방향을 기준으로 할 때에, 전술한 것과 같이 대향 배치된 액정 소자의 2장의 기재 필름의 각 면상에 형성된 배향막의 배향 방향이 서로 약 -10도 내지 약 10도의 범위 내의 각도, 약 -7도 내지 약 7도의 범위 내의 각도, 약 -5도 내지 약 5도의 범위 내의 각도 또는 약 -3도 내지 약 3도의 범위 내의 각도를 이루거나 서로 대략 평행한 경우에 상기 2개의 배향막 중에서 어느 하나의 배향막의 배향 방향과 상기 편광자의 광흡수축이 이루는 각도가 약 80도 내지 약 100도 또는 약 85도 내지 약 95도를 이루거나, 대략 수직이 될 수 있다.
다른 예시에서 상기 2개의 배향막의 배향 방향이 약 80도 내지 약 100도의 범위 내의 각도, 약 83도 내지 약 97도의 범위 내의 각도, 약 85도 내지 약 95도의 범위의 각도 내 또는 약 87도 내지 약 92도의 범위 내의 각도를 이루거나 서로 대략 수직인 경우에는 2장의 배향막 중에서 상기 편광자에 보다 가깝게 배치된 배향막의 배향 방향과 상기 편광자의 광흡수축이 이루는 각도가 약 80도 내지 약 100도 또는 약 85도 내지 약 95도를 이루거나, 대략 수직이 될 수 있다.
예를 들면, 도 4에 나타난 바와 같이 상기 액정 소자(10)와 상기 편광자(20)는 서로 적층된 상태에서 상기 액정 소자(10)의 제 1 배향 방향의 광축(평균 광축)과 상기 편광자(20)의 광 흡수축이 상기 관계가 되도록 배치될 수 있다.
일 예시에서 상기 편광자(20)가 후술하는 편광 코팅층인 경우에는 상기 편광 코팅층이 상기 액정 소자의 내부에 존재하는 구조가 구현될 수 있다. 예를 들면 도 5에 나타난 바와 같이 상기 액정 소자의 기재 필름(110) 중 어느 하나의 기재 필름(110)과 능동 액정층(120)의 사이에 상기 편광 코팅층(201)이 존재하는 구조가 구현될 수 있다. 예를 들면, 기재 필름(110)상에 전술한 도전층, 상기 편광 코팅층(201) 및 상기 배향막이 순차 형성되어 있을 수 있다.
본 출원의 광학 디바이스에서 적용될 수 있는 상기 편광자의 종류는 특별히 제한되지 않는다. 예를 들면, 편광자로는 기존 LCD 등에서 사용되는 통상의 소재, 예를 들면 PVA(poly(vinyl alcohol)) 편광자 등이나, 유방성 액정(LLC: Lyotropic Liquid Cystal)이나, 반응성 액정(RM: Reactive Mesogen)과 이색성 염료(dichroic dye)를 포함하는 편광 코팅층과 같이 코팅 방식으로 구현한 편광자을 사용할 수 있다. 본 명세서에서 상기와 같이 코팅 방식으로 구현된 편광자는 편광 코팅층으로 호칭될 수 있다. 상기 유방성 액정으로는 특별한 제한 없이 공지의 액정을 사용할 수 있으며, 예를 들면, 이색성비(dichroic ratio)가 약 30 내지 약 40 정도인 유방성 액정층을 형성할 수 있는 유방성 액정을 사용할 수 있다. 한편, 편광 코팅층이 반응성 액정(RM: Reactive Mesogen)과 이색성 염료(dichroic dye)를 포함하는 경우에 상기 이색성 염료로는 선형의 염료를 사용하거나, 혹은 디스코팅상의 염료(discotic dye)가 사용될 수도 있다.
본 출원의 광학 디바이스는 상기와 같은 능동 액정 소자와 편광자를 각각 하나씩만 포함할 수 있다. 따라서, 상기 광학 디바이스는 오직 하나의 상기 능동 액정 소자만을 포함하고, 오직 하나의 편광자만을 포함할 수 있다.
광학 디바이스는, 대향 배치되어 있는 2장의 외곽 기판을 추가로 포함할 수 있다. 본 명세서에서는 편의상 상기 2장의 외곽 기판 중에서 어느 하나를 제 1 외곽 기판으로 호칭하고, 다른 하나를 제 2 외곽 기판으로 호칭할 수 있으나, 상기 제 1 및 2의 표현이 외곽 기판의 선후 내지는 상하 관계를 규정하는 것은 아니다. 일 예시에서 상기 능동 액정 소자와 함께 포함되는 편광자는 상기 2장의 외곽 기판의 사이에서 캡슐화되어 있을 수 있다. 이러한 캡슐화는 접착 필름을 사용하여 이루어질 수 있다. 예를 들면, 도 6에 나타난 바와 같이 상기 대향 배치된 2장의 외곽 기판(30)의 사이에 상기 능동 액정 소자(10)와 편광자(20)가 존재할 수 있다.
상기 외곽 기판으로는, 예를 들면, 글라스 등으로 되는 무기 기판 또는 플라스틱 기판이 사용될 수 있다. 플라스틱 기판으로는, TAC(triacetyl cellulose) 필름; 노르보르넨 유도체 등의 COP(cyclo olefin copolymer) 필름; PMMA(poly(methyl methacrylate) 등의 아크릴 필름; PC(polycarbonate) 필름; PE(polyethylene) 필름; PP(polypropylene) 필름; PVA(polyvinyl alcohol) 필름; DAC(diacetyl cellulose) 필름; Pac(Polyacrylate) 필름; PES(poly ether sulfone) 필름; PEEK(polyetheretherketon) 필름; PPS(polyphenylsulfone) 필름, PEI(polyetherimide) 필름; PEN(polyethylenemaphthatlate) 필름; PET(polyethyleneterephtalate) 필름; PI(polyimide) 필름; PSF(polysulfone) 필름; PAR(polyarylate) 필름 또는 불소 수지 필름 등이 사용될 수 있지만, 이에 제한되는 것은 아니다. 외곽 기판에는, 필요에 따라서 금; 은; 또는 이산화 규소 또는 일산화 규소 등의 규소 화합물의 코팅층이나, 반사 방지층 등의 기능층이 존재할 수도 있다.
외곽 기판으로는, 소정 범위의 위상차를 가지는 기판이 사용될 수 있다. 일 예시에서 상기 외곽 기판은 정면 위상차가 약 100 nm 이하일 수 있다. 상기 정면 위상차는 다른 예시에서 약 95nm 이하, 90nm 이하, 85nm 이하, 80nm 이하, 75nm 이하, 70nm 이하, 65nm 이하, 60nm 이하, 55nm 이하, 50nm 이하, 45nm 이하, 40nm 이하, 35nm 이하, 30nm 이하, 25nm 이하, 20 nm 이하, 15 nm 이하, 10nm 이하, 9nm 이하, 8nm 이하, 7nm 이하, 6nm 이하, 5nm 이하, 4nm 이하, 3nm 이하, 2nm 이하 또는 약 1nm 이하일 수 있다. 상기 정면 위상차는 다른 예시에서 약 0nm 이상, 1nm 이상, 2nm 이상, 3nm 이상, 4nm 이상, 5nm 이상, 6nm 이상, 7nm 이상, 8nm 이상, 9nm 이상, 또는 약 9.5nm 이상일 수 있다.
외곽 기판의 두께 방향 위상차의 절대값은, 예를 들면, 약 200 nm 이하일 수 있다. 상기 두께 방향 위상차의 절대값은 다른 예시에서 약 190nm 이하, 180nm 이하, 170nm 이하, 160nm 이하, 150nm 이하, 140nm 이하, 130nm 이하, 120nm 이하, 110nm 이하, 100nm 이하, 90nm 이하, 85 nm 이하, 80 nm 이하, 70 nm 이하, 60 nm 이하, 50 nm 이하, 40 nm 이하, 30 nm 이하, 20 nm 이하, 15 nm 이하, 10nm 이하, 9nm 이하, 8nm 이하, 7nm 이하, 6nm 이하, 5nm 이하, 4nm 이하, 3nm 이하, 2nm 이하 또는 약 1nm 이하일 수 있고, 약 0nm 이상, 5nm 이상, 10nm 이상, 20nm 이상, 30nm 이상, 40nm 이상, 50nm 이상, 60nm 이상, 70 nm 이상 또는 약 75 nm 이상일 수 있다. 상기 두께 방향 위상차는 절대값이 상기 범위 내라면 음수이거나, 양수일 수 있으며, 예를 들면, 음수일 수 있다.
상기 외곽 기판의 정면 위상차(Rin) 및 두께 방향 위상차(Rth)는 각각 상기 수식 1 및 2에서 기재 필름의 두께(d), 지상축 방향 굴절률(nx), 진상축 방향 굴절률(ny) 및 두께 방향의 굴절률(nz)을, 외곽 기판의 두께(d), 지상축 방향 굴절률(nx), 진상축 방향 굴절률(ny) 및 두께 방향의 굴절률(nz)로 대체하여 계산하는 것 외에는 동일하게 계산될 수 있다.
외곽 기판이 광학 이방성인 경우에 대향 배치되어 있는 외곽 기판들의 지상축들이 이루는 각도는, 예를 들면, 약 -10도 내지 약 10도의 범위 내, 약 -7도 내지 약 7도의 범위 내, 약 -5도 내지 약 5도의 범위 내 또는 약 -3도 내지 약 3도의 범위 내이거나 대략 평행할 수 있다.
또한, 상기 외곽 기판의 지상축과 전술한 기재 필름이 광학 이방성인 경우에 그 기재 필름의 지상축이 이루는 각도는, 예를 들면, 약 -10도 내지 약 10도의 범위 내, 약 -7도 내지 약 7도의 범위 내, 약 -5도 내지 약 5도의 범위 내 또는 약 -3도 내지 약 3도의 범위 내이거나 대략 평행할 수 있거나, 혹은 약 80도 내지 약 100도의 범위 내, 약 83도 내지 약 97도의 범위 내, 약 85도 내지 약 95도의 범위 내 또는 약 87도 내지 약 92도의 범위 내이거나 대략 수직일 수 있다.
상기와 같은 위상차 조절 또는 지상축의 배치를 통해서 광학적으로 우수하고 균일한 투과 및 차단 모드의 구현이 가능할 수 있다.
외곽 기판으로는, 열팽창 계수가 약 100 ppm/K 이하인 것을 사용할 수 있다. 상기 열팽창 계수는, 다른 예시에서 약 95ppm/K 이하, 90ppm/K 이하, 85ppm/K 이하, 80ppm/K 이하, 75ppm/K 이하, 70 ppm/K 이하, 65 ppm/K 이하, 60 ppm/K 이하, 50 ppm/K 이하, 40 ppm/K 이하, 30 ppm/K 이하, 20 ppm/K 이하 또는 약 15 ppm/K 이하이거나, 약 1 ppm/K 이상, 2 ppm/K 이상, 3 ppm/K 이상, 4 ppm/K 이상, 5 ppm/K 이상, 6 ppm/K 이상, 7 ppm/K 이상, 8 ppm/K 이상, 9 ppm/K 이상 또는 약 10 ppm/K 이상일 수 있다.
상기 외곽 기판의 열팽창 계수 및 파단 신율의 측정 방식은 각각 전술한 기재 필름의 열팽창 계수 및 파단 신율의 측정 방식과 동일하다.
외곽 기판이 상기와 같은 열팽창 계수 및/또는 파단 신율을 가지도록 선택되는 것에 의해 보다 우수한 내구성의 광학 디바이스가 제공될 수 있다.
상기와 같은 외곽 기판의 두께는 특별히 제한되지 않으며, 예를 들면 약 0.3 mm 이상일 수 있다. 상기 두께는 다른 예시에서 약 0.5 mm 이상, 1 mm 이상, 1.5 mm 이상 또는 약 2 mm 이상 정도일 수 있고, 약 10 mm 이하, 9 mm 이하, 8 mm 이하, 7 mm 이하, 6 mm 이하, 5 mm 이하, 4 mm 이하 또는 약 3 mm 이하 정도일 수도 있다.
다른 예시에서 상기 외곽 기판이 후술하는 곡면 기판이고, 후술하는 흡인 또는 가압 공정에 적용되는 것이라면, 그 두께는 약 1 mm 이하이면서, 약 0.3 mm 이상, 0.5 mm 이상 또는 약 0.7 mm 이상일 수 있다.
상기 외곽 기판은, 평편(flat)한 기판이거나, 혹은 곡면 형상을 가지는 기판일 수 있다. 예를 들면, 상기 2장의 외곽 기판은 동시에 평편한 기판이거나, 동시에 곡면 형상을 가지거나, 혹은 어느 하나는 평편한 기판이고, 다른 하나는 곡면 형상의 기판일 수 있다.
또한, 상기에서 동시에 곡면 형상을 가지는 경우에는 각각의 곡률 또는 곡률 반경은 동일하거나 상이할 수 있다.
본 명세서에서 곡률 또는 곡률 반경은, 업계에서 공지된 방식으로 측정할 수 있으며, 예를 들면, 2D Profile Laser Sensor (레이저 센서), Chromatic confocal line sensor (공초점 센서) 또는 3D Measuring Conforcal Microscopy 등의 비접촉식 장비를 이용하여 측정할 수 있다. 이러한 장비를 사용하여 곡률 또는 곡률 반경을 측정하는 방식은 공지이다.
또한, 상기 기판과 관련해서 예를 들어, 표면과 이면에서의 곡률 또는 곡률 반경이 다른 경우에는 각각 마주보는 면의 곡률 또는 곡률 반경, 즉 제 1 외곽 기판의 경우, 제 2 외곽 기판과 대향하는 면의 곡률 또는 곡률 반경과 제 2 외곽 기판의 경우 제 1 외곽 기판과 대향하는 면의 곡률 또는 곡률 반경이 기준이 될 수 있다. 또한, 해당 면에서의 곡률 또는 곡률 반경이 일정하지 않고, 상이한 부분이 존재하는 경우에는 가장 큰 곡률 또는 곡률 반경 또는 가장 작은 곡률 또는 곡률 반경 또는 평균 곡률 또는 평균 곡률 반경이 기준이 될 수 있다.
상기 기판은, 양자가 곡률 또는 곡률 반경의 차이가 약 10% 이내, 9% 이내, 8% 이내, 7% 이내, 6% 이내, 5% 이내, 4% 이내, 3% 이내, 2% 이내 또는 약 1% 이내일 수 있다. 상기 곡률 또는 곡률 반경의 차이는, 큰 곡률 또는 곡률 반경을 CL이라고 하고, 작은 곡률 또는 곡률 반경을 CS라고 할 때에 100×(CL-CS)/CS로 계산되는 수치이다. 또한, 상기 곡률 또는 곡률 반경의 차이의 하한은 특별히 제한되지 않는다. 2장의 외곽 기판의 곡률 또는 곡률 반경의 차이는 동일할 수 있기 때문에, 상기 곡률 또는 곡률 반경의 차이는 약 0% 이상이거나, 약 0% 초과일 수 있다.
상기와 같은 곡률 또는 곡률 반경의 제어는, 본 출원의 광학 디바이스와 같이 능동 액정 소자 및/또는 편광자가 접착 필름으로 캡슐화된 구조에 있어서 유용하다.
제 1 및 제 2 외곽 기판이 모두 곡면인 경우에 양자의 곡률은 동일 부호일 수 있다. 다시 말하면, 상기 2개의 외곽 기판은 모두 동일한 방향으로 굴곡되어 있을 수 있다. 즉, 상기 경우는, 제 1 외곽 기판의 곡률 중심과 제 2 외곽 기판의 곡률 중심이 모두 제 1 및 제 2 외곽 기판의 상부 및 하부 중에서 같은 부분에 존재하는 경우이다.
도 7은, 제 1 및 제 2 외곽 기판(30)의 사이에 능동 액정 소자 등을 포함하는 캡슐화 부위(400)가 존재하는 측면 예시인데, 이 경우는 제 1 및 제 2 외곽 기판(30) 모두의 곡률 중심은 도면에서 하부에 존재하는 경우이다.
제 1 및 제 2 외곽 기판의 각각의 곡률 또는 곡률 반경의 구체적인 범위는 특별히 제한되지 않는다. 일 예시에서 상기 각각의 기판의 곡률 반경은, 약 100R 이상, 200R 이상, 300R 이상, 400R 이상, 500R 이상, 600R 이상, 700R 이상, 800R 이상 또는 약 900R 이상이거나, 약 10,000R 이하, 9,000R 이하, 8,000R 이하, 7,000R 이하, 6,000R 이하, 5,000R 이하, 4,000R 이하, 3,000R 이하, 2,000R 이하, 1,900R 이하, 1,800R 이하, 1,700R 이하, 1,600R 이하, 1,500R 이하, 1,400R 이하, 1,300R 이하, 1,200R 이하, 1,100R 이하 또는 약 1,050R 이하일 수 있다. 상기에서 R은 반지름이 1 mm인 원의 휘어진 경도를 의미한다. 따라서, 상기에서 예를 들어, 100R은 반지름이 100mm인 원의 휘어진 정도 또는 그러한 원에 대한 곡률 반경이다. 물론 기판이 평편한 경우에 곡률은 0이고, 곡률 반경은 무한대이다.
제 1 및 제 2 외곽 기판은 상기 범위에서 동일하거나 상이한 곡률 반경을 가질 수 있다. 일 예시에서 제 1 및 제 2 외곽 기판의 곡률이 서로 다른 경우에, 그 중에서 곡률이 큰 기판의 곡률 반경이 상기 범위 내일 수 있다.
일 예시에서 제 1 및 제 2 외곽 기판의 곡률이 서로 다른 경우에는 그 중에서 곡률이 큰 기판이 광학 디바이스의 사용 시에 보다 중력 방향으로 배치되는 기판일 수 있다.
즉, 상기 캡슐화를 위해서는, 후술하는 바와 같이 접착 필름을 사용한 오토클레이브(Autoclave) 공정이 수행될 수 있고, 이 과정에서는 통상 고온 및 고압이 적용된다. 그런데, 이와 같은 오토클레이브 공정 후에 캡슐화에 적용된 접착 필름이 고온에서 장시간 보관되는 등의 일부 경우에는 일부 재융해 등이 일어나서, 외곽 기판이 벌어지는 문제가 발생할 수 있다. 이와 같은 현상이 일어나게 되면, 캡슐화된 능동 액정 소자 및/또는 편광자에 힘이 작용하고, 내부에 기포가 형성될 수 있다.
그렇지만, 기판간의 곡률 또는 곡률 반경을 위와 같이 제어하게 되면, 접착 필름에 의한 합착력이 떨어지게 되어도 복원력과 중력의 합인 알짜힘이 작용하여 벌어짐을 막아줄 수 있고, 오토클레이브와 같은 공정 압력에도 잘 견딜 수 있다.
광학 디바이스는 상기 능동 액정 소자 및/또는 편광자를 상기 외곽 기판 내에서 캡슐화하고 있는 접착 필름을 추가로 포함할 수 있다. 이러한 접착 필름(40)은, 예를 들면, 도 8에 나타난 바와 같이 외곽 기판(30)과 능동 액정층(10)의 사이, 능동 액정층(10)과 편광자(20)의 사이 및/또는 편광자(20)와 외곽 기판(30)의 사이에 존재할 수 있고, 상기 능동 액정층(10)과 편광자(20)의 측면, 적절하게는 모든 측면에 존재할 수 있다.
접착 필름은, 상기 외곽 기판(30)과 능동 액정층(10), 능동 액정층(10)과 편광자(20) 및 편광자(20)와 외곽 기판(30)들을 서로 접착시키면서, 상기 능동 액정층(10)과 편광자(20)를 캡슐화하고 있을 수 있다.
예를 들면, 목적하는 구조에 따라서 외곽 기판, 능동 액정 소자, 편광자 및 접착 필름을 적층한 후에 진공 상태에서 압착하는 방식으로 상기 구조를 구현할 수 있다.
상기 접착 필름으로는 특별한 제한 없이 공지의 소재가 사용될 수 있고, 예를 들면, 공지된 열가소성 폴리우레탄 접착 필름(TPU: Thermoplastic Polyurethane), TPS(Thermoplastic Starch), 폴리아마이드 접착 필름, 아크릴계 접착 필름, 폴리에스테르 접착 필름, EVA(Ethylene Vinyl Acetate) 접착 필름, 폴리에틸렌 또는 폴리프로필렌 등의 폴리올레핀 접착 필름 또는 폴리올레핀 엘라스토머 필름(POE 필름) 등 중에서 후술하는 물성을 만족하는 것이 선택될 수 있다.
접착 필름으로는, 소정 범위의 위상차를 가지는 필름이 사용될 수 있다. 일 예시에서 상기 접착 필름은 정면 위상차가 약 100 nm 이하일 수 있다. 상기 정면 위상차는 다른 예시에서 약 95nm 이하, 90nm 이하, 85nm 이하, 80nm 이하, 75nm 이하, 70nm 이하, 65nm 이하, 60nm 이하, 55nm 이하, 50nm 이하, 45nm 이하, 40nm 이하, 35nm 이하, 0nm 이하, 25nm 이하, 20 nm 이하, 15 nm 이하, 10nm 이하, 9nm 이하, 8nm 이하, 7nm 이하, 6nm 이하, 5nm 이하, 4nm 이하, 3nm 이하, 2nm 이하 또는 약 1nm 이하일 수 있다. 상기 정면 위상차는 다른 예시에서 약 0nm 이상, 1nm 이상, 2nm 이상, 3nm 이상, 4nm 이상, 5nm 이상, 6nm 이상, 7nm 이상, 8nm 이상, 9nm 이상 또는 약 9.5nm 이상일 수 있다.
접착 필름의 두께 방향 위상차의 절대값은, 예를 들면, 약 200 nm 이하일 수 있다. 상기 절대값은 다른 예시에서 약 190nm 이하, 180nm 이하, 170nm 이하, 160nm 이하, 150nm 이하, 140nm 이하, 130nm 이하, 120 nm 이하 또는 약 115 nm 이하일 수 있거나, 약 0nm 이상, 10nm 이상, 20nm 이상, 30nm 이상, 40nm 이상, 50nm 이상, 60nm 이상, 70nm 이상, 80 nm 이상 또는 약 90 nm 이상일 수 있다. 상기 두께 방향 위상차는 절대값이 상기 범위 내라면 음수이거나, 양수일 수 있으며, 예를 들면, 음수일 수 있다.
상기 접착 필름의 정면 위상차(Rin) 및 두께 방향 위상차(Rth)는 각각 상기 수식 1 및 2에서 기재 필름의 두께(d), 지상축 방향 굴절률(nx), 진상축 방향 굴절률(ny) 및 두께 방향의 굴절률(nz)을, 접착 필름의 두께(d), 지상축 방향 굴절률(nx), 진상축 방향 굴절률(ny) 및 두께 방향의 굴절률(nz)로 대체하여 계산하는 것 외에는 동일하게 계산될 수 있다.
접착 필름으로는, 영률(Young's modulus)이 0.1 내지 100 MPa의 범위 내에 있는 것을 사용할 수 있다. 상기 영률은, 예를 들면, ASTM D882에 규정된 방식으로 측정할 수 있고, 해당 규격에서 제공하는 형태로 필름을 재단하고, Stress-Strain curve를 측정할 수 있는 장비(힘과 길이를 동시에 측정할 수 있는)를 이용하여 측정할 수 있다.
접착 필름이 상기와 같은 영률을 가지도록 선택되는 것에 의해 보다 우수한 내구성의 광학 디바이스가 제공될 수 있다.
상기와 같은 접착 필름의 두께는 특별히 제한되지 않으며, 예를 들면 약 200 μm 내지 600μm 정도의 범위 내일 수 있다. 다른 예로, 상기에서 접착 필름의 두께는 상기 외곽 기판(30)과 능동 액정층(10)의 사이의 접착 필름의 두께, 예를 들면 상기 양자간의 간격, 능동 액정층(10)과 편광자(20)의 사이의 접착 필름의 두께, 예를 들면 상기 양자간의 간격 및 편광자(20)와 외곽 기판(30)의 사이의 접착 필름의 두께, 예를 들면 상기 양자간의 간격일 수 있다.
광학 디바이스는 또한, 버퍼층을 추가로 포함할 수 있다. 이러한 버퍼층은 상기 액정 소자의 일면 또는 양면에 존재할 수 있다. 도 9는, 능동 액정 소자(10)의 양측에 버퍼층(50)이 존재하는 구조를 나타내지만, 상기 버퍼층(50)은 액정 소자(10)의 일측에만 존재할 수도 있다.
상기와 같은 버퍼층은, 능동 액정 소자가 접착 필름에 의해 캡슐화되어 있는 구조에서 층간 열팽창 계수의 차이 등에 의해 발생하는 음압을 완화하고, 보다 내구성이 있는 디바이스가 구현될 수 있도록 할 수 있다.
하나의 예시에서 상기 버퍼층으로는, 영률(Young's modulus)이 1 MPa 이하인 층을 사용할 수 있다. 상기 버퍼층의 영률은 다른 예시에서 약 0.9 MPa 이하, 0.8 MPa 이하, 0.7 MPa 이하, 0.6 MPa 이하, 0.6 MPa 이하, 0.1 MPa 이하, 0.09 MPa 이하, 0.08 MPa 이하, 0.07 MPa 이하 또는 약 0.06 MPa 이하일 수 있다. 상기 영률은 다른 예시에서 약 0.001 MPa 이상, 0.002 MPa 이상, 0.003 MPa 이상, 0.004 MPa 이상, 0.005 MPa 이상, 0.006 MPa 이상, 0.007 MPa 이상, 0.008 MPa 이상, 0.009 MPa 이상, 0.01 MPa 이상, 0.02 MPa 이상, 0.03 MPa 이상, 0.04 MPa 이상, 또는 약 0.045 MPa 이상일 수 있다. 상기에서 영률의 측정 방식은 전술한 접착 필름의 측정 방식과 같다.
버퍼층의 구체적인 종류로는, 특별한 제한 없이 전술한 영률을 나타내는 투명 소재가 사용될 수 있는데, 예를 들면, 아크릴레이트계, 우레탄계, 러버계 또는 규소계의 올리고머 또는 고분자 재료 등을 사용할 수 있다.
버퍼층의 두께는 특별히 제한되지 않고, 상기 범위의 영률을 나타내어 디바이스의 내부에서 발생하는 음압 등을 효과적으로 완화할 수 있는 범위에서 선택될 수 있다.
광학 디바이스는 상기 구성 외에도 필요한 임의 구성을 추가로 포함할 수 있고, 예를 들면, 위상차층, 광학 보상층, 반사 방지층, 하드코팅층 등의 공지의 구성을 적절한 위치에 포함할 수 있다.
본 출원은 상기와 같은 광학 디바이스의 제조 방법에 대한 것이다. 따라서, 이하의 기술에서 광학 디바이스의 구조나 설계, 그 부품 등에 대한 구체적인 사항은 상기 기술한 내용에 따른다.
본 출원의 제조 방법은, 특히 상기 광학 디바이스의 구조에서 제 1 및/또는 제 2 외곽 기판이 곡면 기판인 경우에 효과적으로 적용된다.
즉, 본 출원의 제조 방법은, 상기 기술한 광학 디바이스의 구조에서 적어도 하나의 외곽 기판이 곡면 기판인 광학 디바이스의 제조 방법에 대한 것이다.
예를 들면, 본 출원의 제조 방법은, 곡면 기판인 제 1 외곽 기판; 상기 제 1 외곽 기판과 대향 배치되어 있는 제 2 외곽 기판; 상기 제 1 및 제 2 외곽 기판의 사이에서 캡슐화제(상기 접착 필름)에 의해 캡슐화된 상기 능동 액정 소자 또는 상기 편광자를 포함하는 광학 디바이스의 제조 방법이다.
본 출원의 제조 방법은, 상기 곡면 기판인 제 1 외곽 기판을 흡인(suction) 또는 가압하여 평면 상태로 유지하는 제 1 단계를 포함할 수 있다. 상기에서 평면 상태는 제 1 외곽 기판의 곡률이 최초 상태에 비해서 작아지도록 유지된 상태이고, 따라서 이상적인 평면 상태는 물론 곡률이 평면 상태에 근접하도록 줄어든 상태도 평면 상태에 포함된다.
상기에서 제 1 외곽 기판을 흡인 또는 가압하여 평면 상태를 유지하는 방식은 특별히 제한되지 않는다. 예를 들면, 상기 흡인(suction)은, 도 10에 나타난 바와 같이 곡면 기판(301)을 흡인 장치(ex. Suction stage)(302)상에 배치하고, 흡인하여 수행할 수 있다.
도면에 나타난 바와 같이, 상기 흡인 공정에서는 상기 곡면 기판의 볼록부가 형성된 면의 반대측 면을 흡인할 수 있다.
흡인 시의 압력은, 목적하는 평면 상태, 곡면 기판의 곡률, 두께 및 면적 등을 고려하여 적정하게 설정할 수 있는 것으로 그 구체적인 범위는 특별히 제한되지 않는다. 예를 들면, 상기 흡인은, 통상 약 -760 mmHg 이하 또는 그 이상이나 상기 압력 수준의 압력으로 수행할 수 있고, 다른 예시에서는 약 -700 mmHg 내지 약 -760 mmHg의 범위 내의 압력으로 수행할 수 있지만, 이에 제한되는 것은 아니다.
상기 제 1 단계에서 가압 공정을 수행하는 방법도 특별히 제한되지 않는다. 예를 들면, 상기 가압은 통상의 가압롤로 상기 곡면 기판을 가압하여 수행할 수 있다. 상기 가압은, 곡면 기판의 볼록한 면에 대해서 수행할 수 있다. 가압 시의 압력도 목적하는 평면 상태, 곡면 기판의 곡률, 두께 및 면적 등을 고려하여 적정하게 설정할 수 있는 것으로 그 구체적인 범위는 특별히 제한되지 않는다. 예를 들면, 상기 가압은, 약 0.6 Kg/cm2 내지 약 1.2 Kg/cm2의 범위 내의 압력으로 수행할 수 있다.
일 예시에서 도 11에 나타난 바와 같이 상기 가압은, 곡면 기판(301)의 볼록부가 형성된 면상에 플렉서블 필름(200)을 배치하고, 상기 플렉서블 필름을 가압롤로 가압하여 수행할 수 있다. 이러한 공정을 통해 보다 효율적인 가압을 수행할 수 있다. 가압과 동시에 플렉서블 필름에 적절한 인장력을 부여함으로써 평면 상태를 유지할 수 있다. 상기에서 가압을 수행하는 방법은 특별히 제한되지 않고, 예를 들면, 도 11에 있는 것처럼 라미롤 등의 가압 수단(2001) 등을 사용하여 수행하면 된다.
상기 과정에서 적용되는 플렉서블 필름의 종류는 플렉서블한 특성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면, 실리콘 필름, TPU(thermoplastic polyurethane) 필름, TAC(triacetyl cellulose) 필름; 노르보르넨 유도체 등의 COP(cyclo olefin copolymer) 필름; PMMA(poly(methyl methacrylate) 등의 아크릴 필름; PC(polycarbonate) 필름; PE(polyethylene) 필름; PP(polypropylene) 필름; PVA(polyvinyl alcohol) 필름; DAC(diacetyl cellulose) 필름; Pac(Polyacrylate) 필름; PES(poly ether sulfone) 필름; PEEK(polyetheretherketon) 필름; PPS(polyphenylsulfone) 필름, PEI(polyetherimide) 필름; PEN(polyethylenemaphthatlate) 필름; PET(polyethyleneterephtalate) 필름; PI(polyimide) 필름; PSF(polysulfone) 필름; PAR(polyarylate) 필름 또는 불소 수지 필름 등이 사용될 수 있지만, 이에 제한되는 것은 아니다.
곡면 기판의 평면 상태로의 유지는 상기 흡인 및 가압 중 적어도 하나의 공정을 통해 수행할 수 있고, 평면 상태의 유지를 위해서 적어도 흡인 공정을 포함하는 공정으로 수행할 수 있으며, 일 예시에서 상기 흡인과 가압을 모두 수행하여 진행할 수 있다.
상기 제조 방법에서는 상기 제 1 단계에 이어서 상기 평면 상태로 유지된 제 1 외곽 기판의 일면에 캡슐화제를 매개로 상기 능동 액정 소자 또는 편광자를 부착하는 제 2 단계를 추가로 수행할 수 있다.
상기에서 캡슐화제로는 상기 기술한 접착 필름이 사용될 수 있다. 또한, 부착되는 능동 액정 소자 및/또는 편광자의 구조는 특별히 제한되지 않고, 목적하는 광학 디바이스의 구조에 따라 결정된다.
예를 들어, 도 8에 나타난 바와 같은 구조의 광학 디바이스가 목적이라면, 접착 필름/능동 액정 소자(10)/접착 필름/편광자(20)의 적층 구조가 부착될 수 있다.
상기 제 2 단계를 수행하는 방법은, 특별히 제한되지 않으며, 예를 들면, 공지의 라미네이션 기법을 적용하여 수행할 수 있다.
상기 제 2 단계를 수행한 후에 부착된 능동 액정 소자 또는 편광자상에 역시 캡슐화제를 매개로 제 2 외곽 기판을 부착하여 광학 디바이스를 제조할 수 있다. 이 때 상기 제 2 외곽 기판이 평면 기판인 경우에는 제 1 외곽 기판의 평면 상태를 유지한 상태에서 부착하고, 곡면 기판인 경우에는 도 12에 나타난 것과 같이 상기 외곽 기판의 평면 상태를 해제한 후에 부착할 수 있다. 즉, 도 12는 평면 상태가 유지된 제 1 외곽 기판(1201)상에 접착 필름(1202)을 매개로 능동 액정 소자 및/또는 편광자 등의 소자(1203)를 부착한 상태에서 평면 상태를 해제하고, 그 표면에 접착 필름(1202)을 매개로 제 2 외곽 기판(1204)을 부착하는 경우를 모식적으로 보여준다. 제 2 외곽 기판의 부착은 상기 캡슐화제, 즉 접착 필름으로 수행할 수 있는데, 이 때 접착 필름을 제 2 외곽 기판에 먼저 부착한 후에 능동 액정 소자 등의 상부에 부착하거나, 혹은 능동 액정 소자 등의 소자(1203)의 상부에 접착 필름을 형성한 후에 제 2 외곽 기판을 부착할 수 있다.
상기 제 2 외곽 기판의 부착 역시 공지의 라미네이션 기법을 적용하여 수행할 수 있다.
따라서, 상기 광학 디바이스의 제조 방법은, 상기 능동 액정 소자 또는 편광자가 부착된 곡면 기판의 흡인 또는 가압 상태를 해제하여 제 1 외곽 기판을 곡면 상태로 되돌리는 제 3 단계; 및 상기 제 1 외곽 기판의 일면에 부착된 능동 액정 소자 또는 편광자의 상부에 캡슐화제를 통해 제 2 외곽 기판을 부착하는 제 4 단계를 포함할 수 있다.
일 예시에서 상기 제 4 단계의 부착은, 상기 곡면 상태가 해제된 제 1 외곽 기판을 곡률을 가지는 곡면상에 위치시킨 상태로 수행할 수 있다. 도 13은 제 1 외곽 기판(1201)을 상기 곡면(1301)상에 위치시킨 상태에서 부착을 수행하는 경우를 모식적으로 보여준다.
상기에서 제 1 외곽 기판이 위치되는 곡면의 곡률은, 가급적 상기 제 1 외곽 기판의 곡률과 유사한 것이 적절하고, 예를 들면, 상기 제 1 외곽 기판과 상기 곡면의 곡률 또는 곡률 반경의 차이는 약 10% 이내, 9% 이내, 8% 이내, 7% 이내, 6% 이내, 5% 이내, 4% 이내, 3% 이내, 2% 이내 또는 약 1% 이내일 수 있다. 상기 곡률 또는 곡률 반경의 차이는, 큰 곡률 또는 곡률 반경을 CL이라고 하고, 작은 곡률 또는 곡률 반경을 CS라고 할 때에 100×(CL-CS)/CS로 계산되는 수치이다. 또한, 상기 곡률 또는 곡률 반경의 차이의 하한은 특별히 제한되지 않는다. 제 1 외곽 기판과 곡면의 곡률 또는 곡률 반경은 동일할 수 있기 때문에, 상기 곡률 또는 곡률 반경의 차이는 약 0% 이상이거나, 약 0% 초과일 수 있다.
상기와 같은 단계에 이어서 적절한 합착 공정, 예를 들면, 오토클레이브 공정을 통해 상기 캡슐화를 완료할 수 있다.
상기 오토클레이브 공정의 조건은 특별한 제한이 없고, 예를 들면, 적용된 접착 필름의 종류에 따라 적절한 온도 및 압력 하에서 수행할 수 있다. 통상의 오토클레이트 공정의 온도는 약 80℃ 이상, 90℃ 이상 또는 약 100℃ 이상이며, 압력은 2기압 이상이나, 이에 제한되는 것은 아니다. 상기 공정 온도의 상한은 약 200℃ 이하, 190℃ 이하, 180℃ 이하 또는 약 170℃ 이하 정도일 수 있고, 공정 압력의 상한은 약 10기압 이하, 9기압 이하, 8기압 이하, 7기압 이하 또는 약 6기압 이하 정도일 수 있다.
상기와 같은 광학 디바이스는 다양한 용도로 사용될 수 있으며, 예를 들면, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등에 사용될 수 있다.
하나의 예시에서 상기 광학 디바이스는, 그 자체로서 차량용 선루프일 수 있다.
예를 들면, 적어도 하나 이상의 개구부가 형성되어 있는 차체를 포함하는 자동차에 있어서 상기 개구부에 장착된 상기 광학 디바이스 또는 차량용 선루프를 장착하여 사용될 수 있다.
이 때 외곽 기판의 곡률 또는 곡률 반경이 서로 상이한 경우에는 그 중에서 곡률 반경이 더 작은 기판, 즉 곡률이 더 큰 기판이 보다 중력 방향으로 배치될 수 있다.
본 출원은 투과율의 가변이 가능한 광학 디바이스를 제공하고, 이러한 광학 디바이스는, 선글라스나 AR(Argumented Reality) 또는 VR(Virtual Reality)용 아이웨어(eyewear) 등의 아이웨어류, 건물의 외벽이나 차량용 선루프 등의 다양한 용도에 사용될 수 있다.
도 1 내지 3은, 본 출원의 액정 소자의 접힌 구조를 설명하기 위한 도면이다.
도 4 내지 9은 본 출원의 광학 디바이스를 설명하기 위한 예시적인 도면이다.
도 10 내지 13은, 본 출원의 제조 방법을 예시적으로 보여주는 도면이다.
이하 실시예 및 비교예를 통해 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 제한되는 것은 아니다.
실시예 1.
능동 액정 소자로서 게스트-호스트 액정 소자(셀갭: 약 12㎛, 기재 필름 종류: PET(poly(ethylene terephthalate) 필름), 액정/염료 혼합물 종류: Merck社의 MAT-16-969 액정과 이색성 염료(BASF社, X12)의 혼합물)와 PVA(polyvinylalcohol)계 편광자를 2장의 외곽 가판의 사이에서 열가소성 폴리우레탄 접착 필름(두께: 약 0.38 mm, 제조사: Argotec사, 제품명: ArgoFlex)으로 캡슐화하여 광학 디바이스를 제조하였다.
상기에서 외곽 기판으로는 두께가 약 3mm 정도인 글라스 기판을 사용하였으며, 곡률 반경이 약 1030R인 기판(제 1 외곽 기판)과 곡률 반경이 1000R인 기판(제 2 외곽 기판)을 사용하였다.
우선, 도 10에 나타난 바와 같이 흡인 장치(suction stage, 100)상에 제 1 외곽 기판을 볼록부가 형성된 면이 상부를 향하도록 위치시킨 후에 도 11에 나타난 바와 같이 그 상부에 실리콘 필름을 배치하고, 도 10에 나타난 흡인과 도 11에 나타난 가압을 동시에 수행하여 제 1 외곽 기판을 평면화하였다. 상기 과정에서 흡인 시의 압력은 약 -0.09MPa 내지 -0.1MPa의 범위 내 정도로 하였고, 가압 압력은 약 0.8 Kg/cm2 수준 정도로 유지하였다.
그 후 상기 평면화된 제 1 외곽 기판상에 상기 접착 필름, 상기 능동 액정 소자, 상기 접착 필름 및 상기 편광자가 순차 적층된 적층체를 능동 액정 소자가 편광자에 비해서 제 1 외곽 기판에 가깝게 위치하도록 라미네이션하였다. 이어서 흡인 압력을 해제하여 도 12에 나타난 바와 같이 평면 상태를 해제하였다. 그 후 제 2 외곽 기판의 볼록한 면과는 반대측면에 상기 접착 필름을 사전에 부착시킨 적층체를 상기 접착 필름을 매개로 상기 편광자상에 부착하였다.
그 후 약 100℃의 온도 및 2기압 정도의 압력으로 오토클레이브 공정을 수행하여 광학 디바이스를 제조하였다.
그 후 제조된 광학 디바이스에 대하여, Dark Spot, 주름(Wrinkle), 딤플(dimple) 및 곱슬거림(waviness)의 발생 여부를 평가하였고, 그 결과 Dark Spot, 주름(Wrinkle), 딤플(dimple) 및 곱슬거림(waviness)이 관찰되지 않고, 안정적인 품질의 광학 디바이스가 제조된 것을 확인할 수 있다.
실시예 2.
제 2 외곽 기판을 부착할 때에 도 13에 나타난 바와 같이 제 1 외곽 기판(1201)을 그와 동일한 곡률을 가지는 곡면(1301)상에 위치시킨 상태에서 수행하고, 오토클레이브를 진행한 것을 제외하면, 실시예 1과 동일하게 광학 디바이스를 제조하였다.
그 후 제조된 광학 디바이스에 대하여, Dark Spot, 주름(Wrinkle), 딤플(dimple) 및 곱슬거림(waviness)의 발생 여부를 평가하였고, 그 결과 Dark Spot, 주름(Wrinkle), 딤플(dimple) 및 곱슬거림(waviness)이 관찰되지 않고, 안정적인 품질의 광학 디바이스가 제조된 것을 확인할 수 있다.

Claims (19)

  1. 곡면 기판인 제 1 외곽 기판; 상기 제 1 외곽 기판과 대향 배치되어 있는 제 2 외곽 기판; 상기 제 1 및 제 2 외곽 기판의 사이에서 캡슐화제에 의해 캡슐화된 능동 액정 소자 또는 편광자를 포함하는 광학 디바이스의 제조 방법으로서,
    상기 제 1 외곽 기판을 흡인(suction) 또는 가압하여 평면 상태로 유지하는 제 1 단계; 및
    상기 평면 상태로 유지된 제 1 외곽 기판의 일면에 캡슐화제를 매개로 상기 능동 액정 소자 또는 편광자를 부착하는 제 2 단계를 포함하는 광학 디바이스의 제조 방법.
  2. 제 1 항에 있어서, 능동 액정 소자 또는 편광자가 부착된 곡면 기판의 흡인 또는 가압 상태를 해제하여 제 1 외곽 기판을 곡면 상태로 되돌리는 제 3 단계; 및 상기 제 1 외곽 기판의 일면에 부착된 능동 액정 소자 또는 편광자의 상부에 캡슐화제를 통해 제 2 외곽 기판을 부착하는 제 4 단계를 포함하는 광학 디바이스의 제조 방법.
  3. 제 1 항에 있어서, 제 1 및 제 2 외곽 기판의 곡률의 차이가 10% 이내인 광학 디바이스의 제조 방법.
  4. 제 1 항에 있어서, 제 1 및 제 2 외곽 기판은 글라스 기판인 광학 디바이스의 제조 방법.
  5. 제 1 항에 있어서, 제 2 외곽 기판은 곡면 기판인 광학 디바이스의 제조 방법.
  6. 제 1 항에 있어서, 제 1 및 제 2 외곽 기판의 곡률은 서로 상이한 광학 디바이스의 제조 방법.
  7. 제 5 항에 있어서, 제 1 및 제 2 외곽 기판 중에서 곡률이 큰 기판의 곡률 반경이 100R 내지 10,000R의 범위 내인 광학 디바이스의 제조 방법.
  8. 제 5 항에 있어서, 광학 디바이스에서 제 1 및 제 2 외곽 기판의 곡률 중심은 제 1 및 제 2 외곽 기판의 상부 또는 하부 중에서 같은 부분에 존재하는 광학 디바이스의 제조 방법.
  9. 제 1 항에 있어서, 능동 액정 소자는 액정 호스트와 이색성 염료 게스트를 포함하고, 제 1 배향 상태와 제 2 배향 상태의 사이를 스위칭할 수 있는 능동 액정층을 가지는 광학 디바이스의 제조 방법.
  10. 제 1 항에 있어서, 광학 디바이스에서 능동 액정 소자 및 편광자가 제 1 및 제 2 외곽 기판의 사이에서 캡슐화되어 있는 광학 디바이스의 제조 방법.
  11. 제 10 항에 있어서, 광학 디바이스에서 능동 액정 소자 및 편광자는, 외곽 기판과 능동 액정 소자의 사이, 능동 액정 소자와 편광자의 사이, 편광자와 외곽 기판의 사이 및 능동 액정 소자와 편광자의 측면에 존재하는 접착 필름으로 캡슐화되어 있는 광학 디바이스의 제조 방법.
  12. 제 11 항에 있어서, 접착 필름은 열가소성 폴리우레탄 접착 필름, 폴리아마이드 접착 필름, 아크릴 접착 필름, 폴리에스테르 접착 필름, EVA(Ethylene Vinyl Acetate) 접착 필름, 폴리올레핀 접착 필름 또는 열가소성 전분(TPS: Thermoplastic Starch)인 광학 디바이스의 제조 방법.
  13. 제 1 항에 있어서, 제 1 단계의 흡인 공정에서, 곡면 기판의 볼록부가 형성된 면의 반대측 면이 흡인되는 광학 디바이스의 제조 방법.
  14. 제 1 항에 있어서, 제 1 단계의 흡인은 -760 mmHg 이하의 압력으로 수행하는 광학 디바이스의 제조 방법.
  15. 제 1 항에 있어서, 제 1 단계의 가압은 0.6 Kg/cm2 내지 1.2 Kg/cm2의 범위 내의 압력으로 수행하는 광학 디바이스의 제조 방법.
  16. 제 1 항에 있어서, 제 1 단계의 가압은, 곡면 기판의 볼록부가 형성된 면상에 플렉서블 필름을 배치하고, 상기 플렉서블 필름을 가압롤로 가압하여 수행하는 광학 디바이스의 제조 방법.
  17. 제 1 항에 있어서, 제 1 단계에서 가압 및 흡인을 동시에 수행하여 곡면 기판의 평면 상태를 유지하는 광학 디바이스의 제조 방법.
  18. 제 2 항에 있어서, 제 4 단계는, 제 1 외곽 기판을 곡률을 가지는 곡면상에 위치시킨 상태로 수행하는 광학 디바이스의 제조 방법.
  19. 제 18 항에 있어서, 제 1 외곽 기판의 곡률과 곡면의 곡률의 차이가 10% 이하인 광학 디바이스의 제조 방법.
PCT/KR2019/005875 2018-05-17 2019-05-16 광학 디바이스의 제조 방법 WO2019221529A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020548714A JP7039819B2 (ja) 2018-05-17 2019-05-16 光学デバイスの製造方法
US17/041,895 US11513381B2 (en) 2018-05-17 2019-05-16 Method for manufacturing optical device
EP19803127.0A EP3796078A4 (en) 2018-05-17 2019-05-16 MANUFACTURING PROCESS OF AN OPTICAL DEVICE
CN201980022697.3A CN111919167B (zh) 2018-05-17 2019-05-16 用于制造光学装置的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0056286 2018-05-17
KR1020180056286A KR102183673B1 (ko) 2018-05-17 2018-05-17 광학 디바이스의 제조 방법

Publications (1)

Publication Number Publication Date
WO2019221529A1 true WO2019221529A1 (ko) 2019-11-21

Family

ID=68540442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005875 WO2019221529A1 (ko) 2018-05-17 2019-05-16 광학 디바이스의 제조 방법

Country Status (6)

Country Link
US (1) US11513381B2 (ko)
EP (1) EP3796078A4 (ko)
JP (1) JP7039819B2 (ko)
KR (1) KR102183673B1 (ko)
CN (1) CN111919167B (ko)
WO (1) WO2019221529A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797010B (zh) * 2022-04-28 2023-03-21 大陸商業成科技(成都)有限公司 曲面光學結構及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092884A (ja) * 2007-10-05 2009-04-30 Sharp Corp 液晶表示装置、およびその製造方法
JP2012204419A (ja) * 2011-03-24 2012-10-22 Kyocera Corp 吸着用部材の製造方法
KR20130026285A (ko) * 2011-09-05 2013-03-13 주식회사 토비스 곡면 디스플레이 패널 제조 방법
KR101378913B1 (ko) * 2012-09-27 2014-03-28 신화인터텍 주식회사 광학 필름 및 그 제조 방법
KR101449363B1 (ko) * 2014-02-10 2014-10-10 (주)육일씨엔에쓰 스마트폰의 터치 윈도우 글래스 인쇄방법 및 인쇄장치
KR20180056286A (ko) 2016-11-18 2018-05-28 주식회사 큐비스 기업 내 특허관리시스템 및 그 관리방법

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105614A (ja) * 1982-12-10 1984-06-19 Asahi Glass Co Ltd 曲面セルの製法
JP2701629B2 (ja) * 1991-11-01 1998-01-21 カシオ計算機株式会社 液晶表示装置およびその製造方法
JPH0618856A (ja) 1992-06-30 1994-01-28 Toyota Motor Corp 3次曲面用液晶調光素子
JP2003043458A (ja) * 2001-07-31 2003-02-13 Matsushita Electric Ind Co Ltd 液晶表示素子基板の吸着方法及び液晶表示素子基板の吸着装置
JP2003045946A (ja) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd 液晶表示素子基板の吸着方法及び液晶表示素子基板の吸着装置
US7811482B2 (en) * 2001-09-18 2010-10-12 Alphamicron, Inc. Curved optical device and method for making the same
US6953735B2 (en) 2001-12-28 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by transferring a layer to a support with curvature
JP3757956B2 (ja) * 2002-05-17 2006-03-22 セイコーエプソン株式会社 液晶表示装置及びその製造方法、並びに電子機器
JP2007004085A (ja) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd 調光装置及びその製造方法
EP2053583A4 (en) * 2006-07-27 2010-06-02 Sharp Kk DISPLAY DEVICE
JP2009086560A (ja) 2007-10-03 2009-04-23 Hitachi Displays Ltd 液晶表示装置
TWI379261B (en) * 2008-05-16 2012-12-11 Au Optronics Corp Curved display panel and manufacturing method thereof
JP2010014901A (ja) * 2008-07-02 2010-01-21 Sharp Corp 液晶表示装置の製造装置及び製造方法
JP4973783B2 (ja) * 2008-08-13 2012-07-11 富士通株式会社 フィルム貼着装置及びフィルム貼着方法及び電子ペーパの製造方法
DE112010001807T5 (de) 2009-04-30 2012-06-21 Mitsubishi Electric Corporation Anzeigevorrichtung und Verfahren zu deren Herstellung
JP5871455B2 (ja) * 2010-02-23 2016-03-01 山本光学株式会社 円偏光板および円偏光レンズ、および円偏光眼鏡
CN102116958B (zh) * 2011-03-03 2012-09-05 福耀玻璃工业集团股份有限公司 一种汽车调光夹层玻璃的制作方法
KR20130109648A (ko) * 2012-03-28 2013-10-08 주식회사 글로벌스탠다드테크놀로지 판재용 평탄 유지 장치
JP6070394B2 (ja) 2013-05-07 2017-02-01 三菱電機株式会社 液晶表示装置及びその製造方法
US9470919B2 (en) * 2013-05-14 2016-10-18 Microsoft Technology Licensing, Llc Methods for producing a glass-based non planar digital display
KR101701247B1 (ko) * 2013-05-27 2017-02-02 삼성디스플레이 주식회사 라미네이션 장치 및 이를 이용한 라미네이션 방법
TWI514564B (zh) * 2013-12-10 2015-12-21 Au Optronics Corp 顯示面板及其製作方法
KR20150069078A (ko) 2013-12-12 2015-06-23 한국전자통신연구원 플렉서블 디스플레이 제조방법
KR102235720B1 (ko) * 2013-12-17 2021-04-05 삼성디스플레이 주식회사 곡면 표시 패널
KR101746650B1 (ko) * 2014-09-02 2017-06-14 주식회사 토비스 곡면형 디스플레이 제조장치 및 곡면형 디스플레이 제조방법
KR102242439B1 (ko) * 2014-09-30 2021-04-20 삼성디스플레이 주식회사 곡면형 액정 표시 장치
CN104570419B (zh) * 2014-12-26 2018-01-30 深圳市华星光电技术有限公司 吸附式载台及其吸附方法
JP2017083595A (ja) * 2015-10-27 2017-05-18 三菱電機株式会社 湾曲型液晶表示装置、および液晶パネルの製造方法
CN105511127B (zh) * 2016-01-26 2020-11-06 深圳市华星光电技术有限公司 曲面显示屏贴合设备
US10712850B2 (en) * 2017-01-03 2020-07-14 Corning Incorporated Vehicle interior systems having a curved cover glass and a display or touch panel and methods for forming the same
KR102118359B1 (ko) * 2017-04-25 2020-06-04 주식회사 엘지화학 광학 디바이스
DE102017113987A1 (de) * 2017-06-23 2018-12-27 Webasto SE Fahrzeugscheibe mit Flüssigkristallanordnung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092884A (ja) * 2007-10-05 2009-04-30 Sharp Corp 液晶表示装置、およびその製造方法
JP2012204419A (ja) * 2011-03-24 2012-10-22 Kyocera Corp 吸着用部材の製造方法
KR20130026285A (ko) * 2011-09-05 2013-03-13 주식회사 토비스 곡면 디스플레이 패널 제조 방법
KR101378913B1 (ko) * 2012-09-27 2014-03-28 신화인터텍 주식회사 광학 필름 및 그 제조 방법
KR101449363B1 (ko) * 2014-02-10 2014-10-10 (주)육일씨엔에쓰 스마트폰의 터치 윈도우 글래스 인쇄방법 및 인쇄장치
KR20180056286A (ko) 2016-11-18 2018-05-28 주식회사 큐비스 기업 내 특허관리시스템 및 그 관리방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. S. KLIGER ET AL.: "Polarized Light in Optics and Spectroscopy", 1990, ACADEMIC PRESS
See also references of EP3796078A4

Also Published As

Publication number Publication date
KR102183673B1 (ko) 2020-11-27
US20210132430A1 (en) 2021-05-06
JP7039819B2 (ja) 2022-03-23
US11513381B2 (en) 2022-11-29
EP3796078A4 (en) 2021-06-23
KR20190131657A (ko) 2019-11-27
EP3796078A1 (en) 2021-03-24
JP2021517271A (ja) 2021-07-15
CN111919167A (zh) 2020-11-10
CN111919167B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2018199619A1 (ko) 광학 디바이스
WO2018199615A1 (ko) 광학 디바이스
WO2018199618A1 (ko) 광학 디바이스
WO2018199616A1 (ko) 광학 디바이스
WO2019240414A1 (ko) 광학 디바이스
WO2019124961A1 (ko) 투과도 가변 필름 및 이의 용도
KR102166469B1 (ko) 광학 디바이스
WO2019190187A1 (ko) 광학 디바이스
WO2019221529A1 (ko) 광학 디바이스의 제조 방법
WO2020036322A1 (ko) 광학 디바이스
WO2019107709A1 (ko) 광학 디바이스
WO2020175793A1 (ko) 광학 디바이스
WO2022010185A1 (ko) 광학 디바이스
WO2019066456A1 (ko) 광학 소자의 구동 방법
WO2020050572A1 (ko) 광학 디바이스
KR102354934B1 (ko) 광학 디바이스
WO2023239177A1 (ko) 광학 디바이스
WO2023191547A1 (ko) 광학 디바이스
WO2022220442A1 (ko) 액정표시소자
KR20200103445A (ko) 광학 디바이스의 제조방법 및 광학 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019803127

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019803127

Country of ref document: EP

Effective date: 20201217