WO2015108261A1 - 국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판 - Google Patents

국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판 Download PDF

Info

Publication number
WO2015108261A1
WO2015108261A1 PCT/KR2014/009022 KR2014009022W WO2015108261A1 WO 2015108261 A1 WO2015108261 A1 WO 2015108261A1 KR 2014009022 W KR2014009022 W KR 2014009022W WO 2015108261 A1 WO2015108261 A1 WO 2015108261A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
polarization
region
solution
iodine
Prior art date
Application number
PCT/KR2014/009022
Other languages
English (en)
French (fr)
Inventor
이병선
남성현
나균일
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140126248A external-priority patent/KR20150086159A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016531555A priority Critical patent/JP6434020B2/ja
Priority to CN201480027253.6A priority patent/CN105209944B/zh
Priority to US14/911,240 priority patent/US10436962B2/en
Publication of WO2015108261A1 publication Critical patent/WO2015108261A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to a polarizer manufacturing method, a polarizer and a polarizing plate manufactured by using the same, and more particularly, to a polarizing plate having a polarization canceling area locally to be suitable for mounting and color development of components such as a camera module.
  • Polarizers have been applied to various image display devices such as liquid crystal display devices and organic light emitting display devices.
  • polarizing plates are dyed iodine and / or dichroic dye on a polyvinyl alcohol (hereinafter, referred to as PVA) -based film, crosslinking the iodine and / or dichroic dye using boric acid, etc. It is used in the form which laminated
  • image display apparatuses are becoming more and more slim in recent years, and have evolved toward minimizing bezel portions and edge thicknesses on which a screen is not displayed to realize a large screen.
  • components such as a camera are mounted on a display device, and in consideration of design elements, attempts are made to assign or discolor various colors to a product logo or a border area.
  • the polarizing plate is dark black because it is dyed with iodine and / or dichroic dye in the entire area of the polarizing plate, and as a result, it is difficult to impart various colors to the image display device, and in particular, on a component such as a camera When the polarizing plate is located, a problem such as absorbing more than 50% of the amount of light in the polarizing plate is lowered the visibility of the camera lens.
  • the present invention is to solve the problems as described above, the polarizer and the manufacturing method of the polarization is removed from the partial region of the polarizing plate, as in the prior art without physically puncture, do not spoil the appearance, the polarization removal by a simple process only Its purpose is to make it possible.
  • the present invention comprises the steps of preparing a polyvinyl alcohol-based polarizer to which at least one of iodine and dichroic dyes are dyed; And locally contacting a decolorizing solution comprising 1% to 30% by weight of a decolorizing agent to a portion of the polarizer to form a polarization-resolving region having a single transmittance of 80% or more in the 400 nm to 800 nm wavelength band.
  • a polarizer manufacturing method are provided.
  • the bleaching agent is composed of sodium hydroxide (NaOH), sodium sulfate (NaSH), sodium azide (NaN 3 ), potassium hydroxide (KOH), potassium sulfate (KSH) and potassium thiosulfate (KS 2 O 3 ) It is preferable to include any one or more selected from the group.
  • the decoloring solution preferably has a pH of 11 to 14 and a viscosity of 1 cP to 55 cP.
  • the decolorizing solution further comprises a thickener
  • the thickener is polyvinyl alcohol-based resin, polyvinyl acetoacetate-based resin, acetoacetyl group-modified polyvinyl alcohol-based resin, butenediol vinyl alcohol-based, polyethylene glycol It is preferable to include any one or more selected from the group consisting of a col resin and a polyacrylamide resin.
  • the time (y) of contacting the decolorizing solution satisfies the following Equation 1 with respect to the content (x) of the decolorizing agent.
  • x is 1 to 30
  • a is 0.1 to 0.7
  • b is -1 to -20
  • c is 20 to 120
  • -b / 2a is 1 to 20.
  • the present invention is a polyvinyl alcohol polarizer prepared by the above-described method, in which any one or more of iodine and dichroic dyes are dyed, the polarization resolution of 80% or more in the unit transmittance in the wavelength range of 400nm to 800nm locally.
  • a polarizer having a region, wherein a step formed between the polarization elimination region and the region excluding the polarization elimination region is 0 ⁇ m to 10 ⁇ m.
  • the polarization cancellation area of the polarizer has a polarization degree of 20% or less, the region excluding the polarization cancellation area has a single transmittance of 40% to 45%, and preferably has a polarization degree of 99% or more.
  • the present invention provides a polarizing plate manufactured by laminating a polarizer protective film on at least one surface of the polarizer.
  • the present invention minimizes the occurrence of steps by contacting a decolorizing solution with a portion of the polyvinyl alcohol-based polarizer, thereby eliminating polarization of the region, and can form a polarization-resolving region close to completely transparent without damage such as holes or tears. It was made.
  • the polarizer of the present invention manufactured in this manner even if the polarizing plate is mounted on a component such as a camera does not cause a problem due to the brightness deterioration.
  • the manufacturing method of the present invention can be usefully applied to a narrow bezel design because by adjusting the viscosity of the decolorizing solution, it is possible to form a polarization resolution area of a fine size in a desired position.
  • Ts single transmittance
  • DOP polarization degree
  • FIG. 2 is a graph of the single transmittance (Ts) and the polarization degree (DOP) values in the visible region when 0.1 wt% of potassium hydroxide (KOH) aqueous solution is contacted with a polarizer according to Comparative Example 1.
  • Ts single transmittance
  • DOP polarization degree
  • FIG 3 is a graph showing a correlation between the content of potassium hydroxide (KOH) in the aqueous solution and the time at which decolorization is completed when forming a polarization elimination region using an aqueous potassium hydroxide (KOH) solution.
  • KOH potassium hydroxide
  • FIG. 4 illustrates the case of forming a polarization-resolving region using a solution containing a thickener (butenediol vinyl alcohol resin, 4 wt%) in an aqueous potassium hydroxide solution, at each temperature condition, and the content of potassium hydroxide (KOH) in the solution. It is a graph showing the correlation between the times when the decolorization is completed.
  • a thickener butenediol vinyl alcohol resin, 4 wt%) in an aqueous potassium hydroxide solution, at each temperature condition, and the content of potassium hydroxide (KOH) in the solution.
  • the present inventors selectively contact the decolorizing solution with a part of the polyvinyl alcohol-based polarizers in which iodine and / or dichroic dyes are dyed, thereby solving polarization having a single transmittance of 80% or more without applying a physical method such as punching. It was found that a polarizer having an area could be produced and completed the present invention.
  • the method of manufacturing a polarizer according to the present invention comprises the steps of 1 preparing a polyvinyl alcohol polarizer in which at least one of iodine and dichroic dye is dyed and 2 a 1% by weight to 30% by weight of a bleaching agent in a portion of the polarizer Contacting the decolorizing solution to form a polarization-resolving region having a single transmittance of 80% or more in the 400 nm to 800 nm wavelength band.
  • the step of locally contacting the decolorizing solution to a portion of the polarizer damage to the polarizer and the polarizing plate, and compared to the conventional methods of physical removal such as punching and cutting and Problems such as contamination of the camera lens can be overcome, and the polarization elimination area can be easily controlled, and there is an advantageous effect in that the polarization is removed by a simple process.
  • the polarization canceling region of the polarizer is formed through a process of selectively contacting a decolorizing solution with a partial region of a polyvinyl alcohol polarizer in which iodine and / or a dichroic dye is dyed.
  • the region excluding the polarization canceling region means a region having the optical properties of the present polarizer as it is the remaining region except for the polarization canceling region in the polarizer.
  • the polarization canceling region formed by the above-mentioned manufacturing method has a unitary transmittance of 80% or more, 90% or 92% or more in the wavelength band of about 400 nm to 800 nm, preferably 450 nm to 750 nm, which is a visible light region. desirable. Moreover, it is more preferable that the polarization cancellation area is 20% or less, and 5% or less. The higher the unitary transmittance of the polarization cancellation area and the lower the degree of polarization, the better the visibility, thereby further improving the performance and image quality of the camera lens to be located in the area, and in the case of color development, the visibility is excellent.
  • the region excluding the polarization cancellation region of the polarizer preferably has a single transmittance of 40% to 45%, more preferably 42% to 45%. Furthermore, it is preferable that the polarization degree of the area
  • a polyvinyl alcohol-based polarizer in which at least one of iodine and dichroic dyes are salted iodine and polyvinyl alcohol polymer film (Polyvinyl alcohol) And / or a dyeing step of dyeing with a dichroic dye, a crosslinking step of crosslinking the dye with the polyvinyl alcohol-based film, and a drawing step of stretching the polyvinyl alcohol-based film.
  • the dyeing step is to dye the iodine and / or dichroic dye having a dichroic dye on the polyvinyl alcohol-based film, the iodine and / or the dichroic dye absorbs light vibrating in the stretching direction of the polarizer, vertical The light vibrating in the direction can be passed to obtain polarized light having a specific vibration direction.
  • dyeing may be performed by impregnating the polyvinyl alcohol-based film in a treatment bath containing a solution containing a dichroic substance such as an iodine solution.
  • water is generally used as the solvent used in the solution of the dyeing step, but an appropriate amount of an organic solvent having compatibility with water may be added.
  • dichroic substances such as iodine may be used in an amount of 0.06 parts by weight to 0.25 parts by weight with respect to 100 parts by weight of the solvent. This is because, when the dichroic material such as iodine is in the above range, the transmittance of the polarizer produced after stretching may satisfy the range of 40.0% to 47.0%.
  • auxiliary agent such as an iodide compound in order to improve the dyeing efficiency
  • the auxiliary agent in a ratio of 0.3 parts by weight to 2.5 parts by weight with respect to 100 parts by weight of the solvent.
  • the reason for adding an auxiliary agent such as the iodide compound is to increase the solubility of iodine in water because the solubility in water is low in the case of iodine.
  • the mixing ratio of the iodine and the iodide compound is preferably 1: 5 to 1:10.
  • iodide compound that may be added in the present invention, potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, titanium iodide or these And mixtures thereof, but is not limited thereto.
  • the temperature of the treatment bath may be maintained at about 25 °C to 40 °C, the reason is that the dyeing efficiency may be lowered at a lower temperature of less than 25 °C, iodine sublimation at too high temperature above 40 °C This can increase the use of iodine.
  • the time for immersing the polyvinyl alcohol-based film in the treatment bath may be about 30 seconds to 120 seconds, because, when the immersion time is less than 30 seconds, the dyeing may not be uniformly made to the polyvinyl alcohol-based film. If it exceeds 120 seconds, the dyeing is saturated and there is no need for further dipping.
  • a deposition method performed by immersing a polyvinyl alcohol-based film in boric acid aqueous solution or the like is generally used, but may be performed by a coating method or a spraying method for spraying a solution on the film.
  • the immersion method when the iodine and / or dichroic dye is dyed to the polyvinyl alcohol-based film by the dyeing step, using the crosslinking agent to the polyvinyl iodine and / or dichroic dye It is made to adsorb
  • the solvent used in the solution of the cross-linking bath is generally used water, an appropriate amount of an organic solvent having compatibility with water may be added, the cross-linking agent is 0.5 to 5.0 parts by weight based on 100 parts by weight of the solvent May be added in portions.
  • the crosslinking agent when the crosslinking agent is contained in less than 0.5 parts by weight, the crosslinking in the polyvinyl alcohol-based film is insufficient, the strength of the polyvinyl alcohol-based film in water may fall, if exceeding 5.0 parts by weight, excessive crosslinking is formed It is possible to reduce the stretchability of the polyvinyl alcohol-based film.
  • boron compounds such as boric acid and borax, glyoxal, glutaraldehyde, etc. are mentioned, These can be used individually or in combination.
  • the temperature of the cross-linking bath depends on the amount and the stretching ratio of the cross-linking agent, but is not limited to this, it is generally preferred that the 45 °C to 60 °C.
  • the temperature of the crosslinking bath is controlled at high temperature conditions in order to improve the mobility of the polyvinyl alcohol-based film chains. Adjust the temperature.
  • the temperature of the crosslinking bath since the stretching process is 5 times or more, the temperature of the crosslinking bath must be maintained at 45 ° C. or higher to improve the stretchability of the polyvinyl alcohol-based film.
  • the time for immersing the polyvinyl alcohol-based film in the crosslinking bath is preferably about 30 seconds to 120 seconds.
  • the reason for this is that when the immersion time is less than 30 seconds, the crosslinking may not be uniformly performed on the polyvinyl alcohol-based film, and when the immersion time is longer than 120 seconds, the crosslinking is saturated and there is no need for further immersion. .
  • stretching in the stretching step refers to stretching the film uniaxially to orient the polymer of the film in a certain direction.
  • the stretching method can be divided into wet stretching method and dry stretching method, and dry stretching method is again an inter-roll stretching method, a heating roll stretching method, a compression stretching method, a tenter stretching method, or the like.
  • the wet stretching method is classified into a tenter stretching method, an inter-roll stretching method, and the like.
  • the stretching step it is preferable to stretch the polyvinyl alcohol-based film at a stretching ratio of 4 times to 10 times, and preferably at a stretching temperature of 45 ° C. to 60 ° C. Because, in order to impart polarization performance to the polyvinyl alcohol-based film, it is necessary to orient the chain of the polyvinyl alcohol-based film, the chain orientation may not sufficiently occur at a draw ratio of less than 4 times, polyvinyl at a draw ratio of more than 10 times This is because the alcohol-based film chain can be cut.
  • the stretching temperature may vary depending on the content of the cross-linking agent, at a temperature of less than 45 °C polyvinyl alcohol-based film chain fluidity of the lowering the stretching efficiency may be reduced, if the temperature exceeds 60 °C, polyvinyl alcohol This is because the system film may be softened and the strength may be weakened.
  • the stretching step may be carried out simultaneously or separately with the dyeing step or crosslinking step.
  • the deposition step is carried out in an iodine solution, and if it is carried out simultaneously with the crosslinking step, it is preferably carried out in an aqueous solution of boric acid.
  • the present invention (2) locally contacting a decolorizing solution containing 1% by weight to 30% by weight of a bleaching agent to a part of the polarizer, thereby providing a polarization solution area having a single transmittance of 80% or more in the 400 nm to 800 nm wavelength band. It characterized by comprising the step of forming.
  • the decolorizing solution when looking at each component in the step of forming the polarization cancellation area, the decolorizing solution essentially includes a bleaching agent and a solvent.
  • the bleaching agent is not particularly limited as long as it can decolor the iodine and / or the dichroic dye dye on the polarizer.
  • the solvent may additionally be mixed with the alcohol solvent.
  • the alcohol solvent it is not limited to this, For example, methanol, ethanol, butanol, isopropyl alcohol, etc. can also be mixed and used.
  • the content of the decolorant may vary depending on the contact time in the decolorizing process, preferably, the decolorizing solution contains about 1% to 30% by weight, more preferably about 5% to 15% by weight of the decolorizing agent. It is desirable to.
  • the content of the decolorant is less than 1% by weight, decolorization does not occur, or decolorization takes place over several ten minutes or more, and it is practically difficult to apply.
  • the decolorant is more than 30% by weight, the decolorant does not easily diffuse into the polarizer. It is hard to become effective discoloration.
  • Figure 2 when the content of the decolorant is less than 1% by weight, it can be seen that there is almost no change in polarization degree and single transmittance irrespective of the contact time.
  • the bleaching solution has a pH of about 11 to 14, more preferably about 13 to 14.
  • the bleaching agent of the present invention is a strong base compound, and should be strong enough to destroy boric acid, which forms crosslinks between polyvinyl alcohols, and discoloration does not occur when the pH is not satisfied.
  • boric acid which forms crosslinks between polyvinyl alcohols, and discoloration does not occur when the pH is not satisfied.
  • sodium thiosulfate (pH 7) may cause discoloration in general aqueous solutions of iodine compounds, but in actual polarizers (PVA) (10 hours) Discoloration does not occur.
  • PVA polarizers
  • the bleaching solution has a viscosity of about 1 cP to 55 cP, preferably about 5 cP to 20 cP, and more preferably about 10 cP to 15 cP.
  • the viscosity of the solution is too low, the flow and diffusion of the decolorizing solution occurs in the in-line process, it is difficult to make a decolorized part of the desired shape, if the viscosity is too high washing is not effective in the washing step There is a problem.
  • the method for producing a polarizer of the present invention is characterized in that the decolorizing solution is brought into contact with the polarizer to form a polarization canceling area, and an object thereof is to form a polarization canceling area having a desired size at a desired position.
  • the thickener improves the viscosity of the decolorizing solution, suppresses the diffusion of the decolorizing solution, and helps to form a polarization eliminating region at a desired size and location.
  • polarizer manufacturing is carried out in a roll to roll process, and there must be no diffusion or flow of the decolorizing solution in order to accurately create the desired decolorizing site in the moving polarizer.
  • the discoloring solution When a low viscosity solution is applied to a fast-moving polarizer, the discoloring solution is diffused to an undesired area due to the difference in the relative velocity of the liquid and the polarizer. Discoloration of undesired positions or sizes may occur by the flow of the applied solution during the process.
  • the thickener is not limited so long as it is low in reactivity and can increase the viscosity of the solution.
  • polyvinyl alcohol-based resin polyvinyl acetoacetate-based resin, acetoacetyl group-modified polyvinyl alcohol-based resin, butenediol vinyl It is more preferable to include any one or more selected from the group consisting of alcohols, polyacrylamides and polyethylene glycols. At this time, it is preferable that the viscosity of the said thickener is 10cP-15cP.
  • the thickener may be included in about 0.5% to 30% by weight, preferably 2.5% to 15% by weight relative to the decolorizing solution. If the content of the thickener exceeds the above range, the viscosity is too high to wash effectively, and if the content of the thickener is too low, the viscosity is low to realize the discoloration area of the desired shape and size by the diffusion and flow of the liquid. Hard.
  • composites of polyvinyl alcohols in which iodine and / or dichroic dyes are dyed can absorb light in the visible range of wavelengths such as 400 nm to 800 nm.
  • the decolorizing solution is in contact with the polarizer, the iodine or dichroic dye absorbing the light in the visible light wavelength band present in the polarizer is decomposed, thereby decolorizing the polarizer to increase the transmittance and lower the polarization degree.
  • I 5 which absorbs light in the visible light region - (620nm) I 3 - ( 340nm), by digesting the iodine and iodide ion complexes such as I 2 (460nm), I - to generate or salt (300nm or less)
  • the polarization function is eliminated in the region of about 400 to 800 nm, which is the visible light region of the polarizer, thereby increasing the overall transmittance and making the polarizer transparent.
  • the polarizing function can be resolved by decomposing the arranged iodine complex that absorbs visible light into a monomolecular form that does not absorb visible light in order to make polarized light.
  • the polarizer shows a polarization canceling area (Ds) of about 99% or more and a single transmittance (Ts) of about 40% in the visible light region, but forms a polarization canceling area by the manufacturing method.
  • Ds polarization canceling area
  • Ts single transmittance
  • the degree of polarization was 10% or less, the unit transmittance was confirmed to have a value of 80% or more.
  • the step of contacting the decolorizing solution to solve the polarization a contactless printing method such as a non-contact printing method or gravure printing using a dispenser or inkjet to apply the decolorizing agent in a desired local region or a desired shape pattern It is preferably carried out by the law.
  • the polarizer manufacturing method of the present invention preferably further comprises the step of washing with alcohol after the step of eliminating the polarization.
  • the step of eliminating the polarization if the remaining decolorization solution is not properly washed, the solution is diffused or remains on the polarizer, so that the polarization elimination region may be formed in an undesired size and shape, and the polarization elimination region having a fine size may be formed. This is because it is difficult to form.
  • the alcohol it is easy to dry and can be easily removed, and can be suitably used in polarizers other than the polarization elimination region because it does not affect the transmittance or the degree of polarization.
  • the alcohol is preferably, but not limited to, ethanol, methanol, propanol, butanol, isopropyl alcohol, or a mixture thereof.
  • the washing may be performed by immersing the polarizer in alcohol for 1 to 180 seconds, more preferably 3 to 30 seconds, or by dispensing or inkjet on a localized area which is in contact with a decolorizing solution, such as a decolorizing method. There is a method to apply to.
  • the iodine compound and the salt formed by the decoloring agent are washed away by washing with an alcohol using a bleaching agent, and the iodine and iodine ion complexes of the polarization canceling region are washed away.
  • the content of is minimized. Therefore, the absorption of the light of the residual iodine and the iodine ion complex in the polarization canceling region is reduced, resulting in a more transparent effect.
  • the time (y) for contacting the decolorizing solution refers to the time taken for the single transmittance of the polarization elimination area to be 90% or more, hereinafter referred to as 'decolorization completion time'.
  • X is 1 to 30, a is 0.1 to 0.7, b is -1 to -20, and c is 20 to 120.
  • x is 1 to 30, a is 0.2 to 0.7, b is -9 to -15, and c is 50 to 110 .
  • the solution includes a bleaching agent, a solvent and a thickener, x is 1 to 20, the a is 0.1 to 0.3, the b is -2 to -7, and the c is 30 to 70.
  • -b / 2a is 1-20.
  • the bleaching solution is composed only of a bleaching agent and a solvent, it is preferable that -b / 2a is about 13 to 19.
  • the -b / 2a is preferably about 8 to 12.
  • the -b / 2a is a numerical value representing the content of the decolorizing agent at the point where the decolorization time becomes the minimum when the specific decolorizing solution decolorizes the polarizer, that is, when the range of -b / 2a is 1 to 20, decolorization time is It means that it is a decolorizing solution which satisfies that the content of the decolorizing agent which becomes a minimum becomes 1 to 20 weight%.
  • the content of the bleaching agent that is, the concentration of the solution
  • the content range of the appropriate bleaching agent that can minimize the time to complete the decolorization through the drawing It can be seen that it exists. That is, from the viewpoint of the concentration of the decolorizing solution, if the content of the decolorizing agent is too high, the intermolecular attraction between the same species is increased, it is difficult to move the molecules of the decolorizing solution to the polarizer, the adverse effect occurs, so that the decolorizing solution of the appropriate concentration This is necessary.
  • the width of the second graph is narrower than that of FIG. 3, which increases the viscosity of the solution by adding the thickener.
  • the polarization eliminating region is formed by suppressing the diffusion of the decolorizing agent with a relatively low content of the decolorizing agent at a desired position.
  • a polarizer according to the present invention in a polyvinyl alcohol polarizer in which at least one of iodine and dichroic dye is salted, has a polarization canceling region having a single transmittance of 80% or more in a wavelength band of 400 nm to 800 nm, and the polarization It is characterized in that the step formed between the solution area and the area excluding the polarization solution area is 0 ⁇ m to 10 ⁇ m.
  • the polarization cancellation region may have a unitary transmittance of 80% or more, 90% or 92% or more in a wavelength band of about 400 nm to 800 nm, preferably 450 nm to 750 nm, which is a visible light region. desirable. Moreover, it is more preferable that the polarization cancellation area is 20% or less, and 5% or less. In addition, the region excluding the polarization cancellation region of the polarizer preferably has a single transmittance of 40% to 45%, more preferably 42% to 45%. Furthermore, it is preferable that the polarization degree of the area
  • the polarizer of the present invention preferably has a step formed between the polarization elimination region and the region excluding the polarization elimination region of about 0 ⁇ m to 10 ⁇ m, more preferably about 0 ⁇ m to 5 ⁇ m.
  • the step means a height difference between the boundary region between the polarization elimination region and the region excluding the polarization elimination region, which is the portion where the camera module or the color developing device is positioned in the polarizer / polarizer, and the highest height of the boundary region and the polarization elimination region. Says the difference between the lowest heights.
  • the step measures a boundary between the polarization elimination region and the region excluding the polarization elimination region, which is an optical profiler (Nanoview E1000, Nanosystem Co., Ltd.) or a three-dimensional microscope ( Confocal Laser Scanning Microscopy (CLSM) can be measured directly with a device such as, but is not particularly limited as long as the device can measure the height in addition to the above equipment.
  • a boundary portion between the polarization elimination region and the region excluding the polarization elimination region may be present more than 0 and 3 cm or less from the center of the polarization elimination region.
  • the polarization cancellation area is at least one of iodine and dichroic dye content of about 0.1% to 0.5% by weight, preferably about 0.1% to 0.35% by weight.
  • the iodine that was present in the complex form on the polarizer is washed away by the reaction between the decolorant and the iodine, so that the content of iodine and / or dichroic dye is greatly reduced.
  • the content of any one or more of the iodine and the dichroic dye in the region excluding the polarization canceling region is about 1% by weight to 4% by weight, and preferably 2% by weight to 4% by weight.
  • the content of the iodine and / or dichroic dye was measured using an optical X-ray analyzer (manufactured by Rigaku Electric Industries, Ltd., trade name "ZSX Primus II").
  • an optical X-ray analyzer manufactured by Rigaku Electric Industries, Ltd., trade name "ZSX Primus II”
  • the average weight percent per volume of 19.2 mm 3 was measured.
  • the polarization canceling region is formed by contacting the polarizer with a decolorizing solution, as will be explained below. At this time, the content of iodine and / or dichroic dye in the polarization canceling area is significantly reduced compared to the other areas, thereby, the transmittance is greatly improved.
  • the polarization cancellation area is not limited thereto, but the area is 0.005% to 40% of the entire polarizing plate according to the type of display and the use of the polarization removal area. It is desirable to occupy.
  • the polarization elimination region is not particularly limited in shape or position thereof, and may be formed in various forms and positions.
  • the polarization canceling area may be formed to correspond to the shape of the part at a location where a component such as a camera is mounted, or may be formed in the shape of a product logo in an area where a product logo is printed, and a polarizing member.
  • the color is to be given to the edge portion of the polarizing member may be formed in a frame shape.
  • the present invention provides a polarizing plate in which a polarizer protective film is laminated on one or both surfaces of the polarizer including the polarization canceling area.
  • the polarization is resolved only in a partial region of the polarizer, so that the light transmittance is high and the polarization degree is low, and unlike the conventional methods of removing physical polarization such as punching and cutting, the polarizing plate has no polarization elimination region. It is characterized by.
  • the protective film refers to a transparent film attached to both sides of the polarizer to protect the polarizer, acetate, acrylic, polyester, polyether sulfone, polycarbonate-based, such as triacetyl cellulose (TAC) , Polyamide-based, polyimide-based, polyolefin-based resin film and the like can be used, but is not limited thereto.
  • the protective film may be laminated using an adhesive, but the adhesive may be a polyvinyl alcohol-based water-based adhesive, but is not limited thereto.
  • the polarizing plate may additionally include a functional film such as a wide viewing angle compensation plate or a brightness enhancing film in addition to the protective film to further improve the function.
  • the polarizing plate including the polarizer of the present invention as described above may be attached to one side or both sides of the display panel and may be usefully applied to an image display device.
  • the display panel may be a liquid crystal panel, a plasma panel, and an organic light emitting panel.
  • the image display device may include a liquid crystal display (LCD), a plasma display panel (PDP), and an organic light emitting display device.
  • the display device may be an organic light emitting diode (OLED).
  • the image display device may be a liquid crystal display device including a liquid crystal panel and polarizing plates provided on both sides of the liquid crystal panel, wherein at least one of the polarizing plates is a polarizing plate including a polarizer according to the present invention.
  • the polarizing plate includes a polyvinyl alcohol-based polarizer in which at least one of iodine and dichroic dye is dyed, and has a polarization canceling area having a single transmittance of 80% or more.
  • the type of liquid crystal panel included in the liquid crystal display device is not particularly limited.
  • a panel of a passive matrix type such as, but not limited to, a twisted nematic (TN) type, a super twisted nematic (STN) type, a ferrolectic (F) type, or a polymer dispersed (PD) type; Active matrix panels such as two-terminal or three-terminal; All known panels, such as an In Plane Switching (IPS) panel and a Vertical Alignment (VA) panel, can be applied.
  • IPS In Plane Switching
  • VA Vertical Alignment
  • other configurations constituting the liquid crystal display device for example, types of upper and lower substrates (eg, color filter substrates or array substrates) are not particularly limited, and configurations known in the art may be employed without limitation. Can be.
  • the image display device of the present invention may include, but is not limited to, other components such as a camera module, and other components such as the camera module may be located in the polarization canceling area.
  • other components such as a camera module
  • the camera module may be located in the polarization canceling area.
  • a dyeing process was performed for 60 seconds in a 0.2 wt% concentration and a 25 ° C. iodine solution. Then, after 30 seconds in a 1 wt% boric acid, 45 °C solution, the washing process was carried out a 6-fold stretching process in a solution of boric acid 2.5wt%, 52 °C. After stretching, a polarizer having a thickness of 12 ⁇ m was prepared by performing a complementary color process in a 5 wt% KI solution and drying in an oven at 60 ° C. for 5 minutes.
  • a bleaching solution, a solvent and a thickener are prepared in the kind and content described in Table 1 below.
  • the decolorizing solution was applied to the prepared polarizer in a region of 3 cm 2 using a dispenser. After 35 seconds after immersion for 3 seconds using ethanol and ethanol was dried for 30 seconds in a 60 °C oven to prepare a polarizer including a polarization canceling region.
  • a bleaching solution, a solvent, and a thickener were prepared in a bleaching solution in the kind and content shown in the following [Table 1], and a polarizer was prepared in the same manner as in Example 1.
  • region of 3 cm ⁇ 2> was removed using the punching machine for polarizing plate cutting.
  • the polarizers prepared by the above Examples and Comparative Examples were cut to a size of 40 mm ⁇ 40 mm, and the specimens were fixed to the measuring holder, and then polarized light was removed using an ultraviolet visible spectrometer (V-7100, manufactured by JASCO). Initial optical properties of the region, that is, single transmittance and polarization degree were measured. In particular, the values at 550 nm are shown in Table 1.
  • the content of iodine and / or dichroic dye in the polarization elimination region was measured using an optical X-ray analyzer (manufactured by Rigaku Electric Industries, Ltd., trade name "ZSX Primus II").
  • optical X-ray analyzer manufactured by Rigaku Electric Industries, Ltd., trade name "ZSX Primus II”
  • the samples prepared in the form of a polarizer sheet having a thickness of 12 ⁇ m prepared by the above Examples and Comparative Examples were placed in a 20 mm holder, and the Iodine KA fluorescence intensity was measured.
  • the average of the weight percent per volume of 19.2mm 3 obtained by measuring a total of three times is shown in Table 1 below.
  • the decolorization proceeds when the content of the decolorizing agent satisfies the content range of the present invention, it was confirmed that the iodine content of the polarization elimination region is 0.3% by weight or less.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명은 편광자 제조 방법에 있어서, 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자를 준비하는 단계; 및 상기 편광자의 일부 영역에 탈색제를 1 중량% 내지 30 중량%로 포함하는 탈색 용액을 국지적으로 접촉시켜, 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 형성하는 단계를 포함하는 편광자 제조 방법 및 이를 이용하여 제조된 편광자에 관한 것이다.

Description

국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판
본 발명은 편광자 제조방법, 이를 이용하여 제조된 편광자 및 편광판에 관한 것으로, 보다 구체적으로는 카메라 모듈 등의 부품 장착 및 발색에 적합하도록 국지적으로 편광 해소 영역을 갖는 편광판 및 그 제조방법에 관한 것이다.
편광판은 액정표시장치, 유기전계발광장치 등과 같은 다양한 화상표시장치에 적용되고 있다. 현재 주로 사용되고 있는 편광판은 폴리비닐알코올(PolyVinyl Alcohol, 이하, PVA)계 필름에 요오드 및/또는 이색성 염료를 염착시킨 후, 붕산 등을 이용하여 상기 요오드 및/또는 이색성 염료를 가교하고, 연신하는 방법으로 배향시켜 제조된 PVA 편광자의 일면 또는 양면에 보호 필름을 적층한 형태로 사용되고 있다.
한편, 최근 화상표시장치는 점점 더 슬림화되어 가고 있는 추세이며, 대화면을 구현하기 위해 화면이 디스플레이 되지 않는 베젤(bezel)부 및 테두리 두께를 최소화하는 경향으로 발전하고 있다. 또한, 다양한 기능의 구현을 위해, 디스플레이 장치에 카메라 등과 같은 부품이 장착되고 있는 추세이며, 디자인적인 요소를 고려하여 제품 로고나 테두리 영역에 다양한 컬러를 부여하거나 탈색하는 시도들이 이루어지고 있다.
그런데 종래의 편광판의 경우, 편광판의 전 영역에 요오드 및/또는 이색성 염료로 염착되어 있어 편광판이 짙은 흑색을 나타내며, 그 결과 화상표시장치에 다양한 컬러를 부여하기 어렵고, 특히, 카메라와 같은 부품 위에 편광판이 위치할 경우, 편광판에서 광량의 50% 이상을 흡수하여 카메라 렌즈의 시인성이 저하되는 등의 문제점이 발생하였다.
이러한 문제점을 해결하기 위해, 펀칭 및 절삭 등의 방법으로 편광판의 일부에 구멍(천공)을 뚫어 카메라 렌즈를 덮는 부위의 편광판을 물리적으로 제거하는 방법이 상용화되어 왔다.
그러나, 상기와 같은 물리적 방법은 화상표시장치 외관을 저하시키며, 구멍을 뚫는 공정의 특성상 편광판을 손상시킬 수 있고, 경계부에 단차를 발생시킨다. 한편, 편광판의 찢어짐과 같은 손상을 막기 위해서는 편광판의 천공 부위가 모서리에서 충분히 떨어진 영역에 형성되어야 하며, 그 결과 이러한 편광판을 적용할 경우, 화상표시장치의 베젤부가 상대적으로 넓어지게 되어 최근 화상표시장치의 좁은 베젤 (NARROW BEZEL) 디자인 추세에도 벗어나는 문제점을 갖고 있다. 또한, 상기와 같이 편광판의 천공 부위에 카메라 모듈을 장착할 경우, 카메라 렌즈가 외부로 노출되기 때문에 장시간 사용시 카메라 렌즈의 오염 및 손상이 발생하기 쉽다는 문제점도 있다.
따라서, 상기의 문제점을 극복하고, 화상표시장치에 카메라 모듈 등의 부품 장착이 적합하도록 적절한 사이즈에 해당하는 편광판의 국부적인 편광해소 내지 편광제거를 위한 새로운 공정 개발이 필요한 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 편광판의 일부 영역의 편광이 제거된 편광자 및 그 제조 방법으로서, 종래와 같이 물리적으로 구멍을 뚫지 않고, 외관을 해치지 않으며, 단순한 공정만으로도 편광 제거를 가능하게 하는데 그 목적이 있다.
본 발명의 일 구현예에 다르면, 본 발명은 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자를 준비하는 단계; 및 상기 편광자의 일부 영역에 탈색제를 1 중량% 내지 30 중량%로 포함하는 탈색 용액을 국지적으로 접촉시켜, 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 형성하는 단계를 포함하는 편광자 제조 방법을 제공한다.
이때, 상기 탈색제는 수산화나트륨(NaOH), 황산화나트륨(NaSH), 아지트화나트륨(NaN3), 수산화칼륨(KOH), 황산화칼륨(KSH) 및 티오황산칼륨(KS2O3)로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것인 바람직하다.
상기 탈색 용액은 pH가 11 내지 14이고, 점도가 1cP 내지 55cP인 것이 바람직하다.
한편, 상기 탈색 용액은 증점제를 더 포함하는 것이 바람직하며, 상기 증점제는 폴리비닐알코올계 수지, 폴리비닐아세토아세테이트계 수지, 아세토아세틸기 변성 폴리비닐알코올계 수지, 부텐디올비닐알코올계, 폴리에틸렌 글라이콜계 수지 및 폴리아크릴아마이드계 수지로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것이 바람직하다.
이때, 상기 편광 해소 영역을 형성하는 단계 이후에 알코올을 이용하여 세척하는 단계를 추가로 포함하는 것이 바람직하다.
한편, 상기 탈색 용액을 접촉시키는 시간(y)은 탈색제의 함량(x)에 대하여 하기 수학식 1을 만족시키는 것이 바람직하다.
[수학식 1]
y = ax2 + bx + c
이때, 상기 x는 1 내지 30 이고, 상기 a는 0.1 내지 0.7이고, 상기 b는 -1 내지 -20이고, 상기 c는 20 내지 120이며, -b/2a는 1 내지 20이다.
또한, 본 발명은 상기 제조방법에 의해 제조된, 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자에 있어서, 국지적으로 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 갖고, 상기 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이에 형성된 단차가 0㎛ 내지 10㎛인 편광자를 제공한다.
이때, 상기 편광자의 편광 해소 영역은 편광도가 20% 이하이고, 상기 편광 해소 영역을 제외한 영역은 단체 투과도가 40% 내지 45% 이고, 편광도가 99% 이상인 것이 바람직하다.
또 다른 구현예에 따르면, 본 발명은 상기 편광자의 적어도 일면에 편광자 보호필름을 합지하여 제조된 편광판을 제공한다.
본 발명은 폴리비닐알코올계 편광자의 일부 영역에 탈색 용액을 접촉시켜, 해당 영역의 편광을 해소시킴으로써 단차의 발생을 최소화하고, 구멍이나 찢어짐과 같은 손상 없이 완전 투명에 가까운 편광 해소 영역을 형성할 수 있도록 하였다. 이와 같은 방법으로 제조된 본 발명의 편광자를 사용할 경우, 카메라 등의 부품 위에 편광판이 장착되어도 휘도 저하로 인한 문제점이 발생하지 않는다.
또한, 본 발명의 제조 방법은 탈색 용액의 점도를 조절함으로써, 원하는 위치에 미세한 크기의 편광 해소 영역을 형성할 수 있기 때문에 좁은 베젤 디자인에 유용하게 적용될 수 있다.
도 1은 실시예 2에 따라 편광자에 10 중량%의 수산화칼륨(KOH) 수용액을 접촉시켰을 때, 가시광선 영역에서의 단체 투과도(Ts) 및 편광도(DOP) 값의 그래프이다.
도 2는 비교예 1에 따라, 편광자에 0.1 중량%의 수산화칼륨(KOH) 수용액을 접촉시켰을 때, 가시광선 영역에서의 단체 투과도(Ts) 및 편광도(DOP) 값의 그래프이다.
도 3은 수산화칼륨(KOH) 수용액을 이용하여 편광 해소 영역을 형성하는 경우, 각 온도 조건에서, 상기 수용액의 수산화칼륨(KOH)의 함량과 탈색이 완료되는 시간 간의 상관관계를 나타낸 그래프이다.
도 4는 수산화칼륨 수용액에 증점제(부텐디올비닐알코올계 수지, 4 중량%)를 포함한 용액을 이용하여 편광 해소 영역을 형성하는 경우, 각 온도 조건에서, 상기 용액의 수산화칼륨(KOH)의 함량과 탈색이 완료되는 시간 간의 상관관계를 나타낸 그래프이다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 발명자들은, 요오드 및/또는 이색성 염료가 염착된 폴리비닐알코올계 편광자의 일부 영역에 탈색 용액을 선택적으로 접촉시킴으로써, 펀칭과 같은 물리적 방법을 적용하지 않고도 국지적으로 단체 투과도가 80% 이상인 편광 해소 영역을 갖는 편광자를 제조할 수 있음을 알아내고 본 발명을 완성하였다.
본 발명에 따른 편광자의 제조 방법은 ① 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자를 준비하는 단계 및 ② 상기 편광자의 일부 영역에 탈색제를 1 중량% 내지 30 중량%로 포함하는 탈색 용액을 국지적으로 접촉시켜, 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 형성하는 단계를 포함하는 것을 특징으로 한다.
본 발명자들의 연구에 따르면, 본 발명과 같이, 상기 편광자의 일부 영역에 탈색 용액을 국지적으로 접촉시키는 단계를 실시할 경우, 기존의 펀칭 및 절삭 등의 물리적 제거 방법에 비해서, 편광자 및 편광판의 손상 및 카메라 렌즈의 오염 등의 문제점이 극복가능하고, 편광 해소 영역의 제어가 용이하며, 단순한 공정만으로 편광을 제거한다는 점에서 유리한 효과가 있다.
이때, 본 발명에 있어서, 상기 편광자의 편광 해소 영역이란 아래에서 살펴볼 바와 같이, 요오드 및/또는 이색성 염료가 염착된 폴리비닐알코올계 편광자의 일부 영역에 탈색 용액을 선택적으로 접촉시키는 과정을 거쳐 형성된 영역을 말한다. 한편, 상기 편광 해소 영역을 제외한 영역이란, 편광자에 있어서 상기 편광 해소 영역을 제외한 나머지 영역으로써, 본 편광자의 광학적 물성을 그대로 가지는 영역을 의미한다.
이때, 상기 제조방법에 의해 형성된 편광 해소 영역은, 가시광선 영역인 400nm 내지 800nm정도, 바람직하게는 450nm 내지 750nm 정도의 파장 대역에서의 단체 투과도가 80% 이상이고, 90% 또는 92% 이상인 것이 더욱 바람직하다. 또한 상기 편광 해소 영역은 편광도가 20% 이하이고, 5% 이하인 것이 더욱 바람직하다. 상기 편광 해소 영역의 단체 투과도가 높고 편광도가 낮을수록 시인성이 향상되어, 상기 영역에 위치하게 될 카메라 렌즈의 성능 및 화질을 더욱 향상시킬 수 있고, 발색의 경우 시인성이 우수하다.
또한, 상기 편광자의 편광 해소 영역을 제외한 영역은 단체 투과도가 40% 내지 45% 인 것이 바람직하며, 42% 내지 45% 인 것이 더욱 바람직하다. 나아가, 상기 편광자의 편광 해소 영역을 제외한 영역은 편광도가 99% 이상인 것이 바람직하다. 이는 편광 해소 영역을 제외한 나머지 영역은, 본래의 편광자 기능을 함으로써, 상기 범위와 같은 우수한 광학 물성을 나타내야 하기 때문이다.
보다 구체적으로, 본 발명의 제조방법을 살펴보면, 먼저, ① 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자를 준비하는 단계는 폴리비닐알코올계(Polyvinyl alcohol) 폴리머 필름을 요오드 및/또는 이색성 염료로 염착하는 염착단계, 상기 폴리비닐알코올계 필름과 염료를 가교시키는 가교단계 및 상기 폴리비닐알코올계 필름을 연신하는 연신단계를 통하여 수행될 수 있다.
먼저, 상기 염착단계는 이색성을 갖는 요오드 및/또는 이색성 염료를 폴리비닐 알코올계 필름에 염착시키기 위한 것으로, 요오드 및/또는 이색성 염료는 편광자의 연신 방향으로 진동하는 빛은 흡수하고, 수직 방향으로 진동하는 빛은 통과시킴으로써, 특정한 진동 방향을 갖는 편광을 얻을 수 있도록 해줄 수 있다. 이때, 일반적으로 염착은 폴리비닐알코올계 필름을 요오드 용액 등의 이색성 물질을 함유하는 용액이 담긴 처리욕에 함침시킴으로써 이루어질 수 있다.
이때, 상기 염착단계의 용액에 사용되는 용매는 물이 일반적으로 사용되지만, 물과 상용성을 갖는 유기 용매가 적당량 첨가되어 있어도 된다. 한편, 요오드 등의 이색성 물질은 용매 100 중량부에 대해서, 0.06 중량부 내지 0.25 중량부로 사용될 수 있다. 왜냐하면, 상기 요오드 등의 이색성 물질이 상기 범위 내일 경우, 연신 이후에 제조된 편광자의 투과도가 40.0% 내지 47.0%의 범위를 만족할 수 있기 때문이다.
한편, 이색성 물질로서 요오드를 이용하는 경우에는, 염착 효율의 개선을 위해 요오드화 화합물 등의 보조제를 추가로 함유하는 것이 바람직하며, 상기 보조제는 용매 100 중량부에 대하여 0.3 중량부 내지 2.5 중량부의 비율로 사용될 수 있다. 이때, 상기 요오드화 화합물 등의 보조제를 첨가하는 이유는, 요오드의 경우, 물에 대한 용해도가 낮기 때문에 물에 대한 요오드의 용해도를 높이기 위해서이다. 한편, 상기 요오드와 요오드화 화합물의 배합 비율은 1:5 내지 1:10 정도가 바람직하다.
이때, 본 발명에서 추가될 수 있는 요오드화 화합물의 구체적인 예로는, 요오드화 칼륨, 요오드화 리튬, 요오드화 나트륨, 요오드화 아연, 요오드화 알루미늄, 요오드화 납, 요오드화 구리, 요오드화 바륨, 요오드화 칼슘, 요오드화 주석, 요오드화 티탄 또는 이들의 혼합물 등을 들 수 있으나 이에 한정하는 것은 아니다.
한편, 처리욕의 온도로는 25℃ 내지 40℃ 정도로 유지될 수 있으며, 그 이유는 25℃ 미만의 낮은 온도에서는 염착 효율이 떨어질 수 있으며, 40℃를 초과하는 너무 높은 온도에서는 요오드의 승화가 많이 일어나 요오드의 사용량이 늘어날 수 있기 때문이다. 또한, 폴리비닐알코올계 필름을 처리욕에 침지하는 시간은 30초 내지 120초 정도일 수 있으며, 그 이유는, 침지시간이 30초 미만일 경우 폴리비닐알코올계 필름에 염착이 균일하게 이루어지지 않을 수 있으며, 120초를 초과할 경우에는 염착이 포화(saturation)되어 더 이상의 침지할 필요가 없기 때문이다.
한편, 가교단계로는 폴리비닐알코올계 필름을 붕산 수용액 등에 침적시켜 수행하는 침적법이 일반적으로 사용되지만, 필름에 용액을 분사하는 도포법이나 분무법에 의해 수행될 수도 있다.
이때, 가교단계의 일 예로써, 침적법은, 상기 염착단계에 의해 요오드 및/또는 이색성 염료가 폴리비닐알코올계 필름에 염착되면, 가교제를 이용하여 상기 요오드 및/또는 이색성 염료를 폴리비닐알코올계 필름의 고분자 매트릭스 위에 흡착되도록 하며, 가교제를 함유하는 용액이 있는 가교욕에 폴리비닐알코올계 필름을 침지함으로써 실시한다. 왜냐하면, 요오드 및/또는 이색성 염료가 고분자 매트릭스 위에 제대로 흡착되지 않으면 편광도가 떨어져 편광자 및 편광판이 제 역할을 수행할 수 없기 때문이다.
이때, 상기 가교욕의 용액에 사용되는 용매는 물이 일반적으로 사용되지만, 물과 상용성을 갖는 유기 용매가 적당량 첨가되어 있을 수 있으며, 상기 가교제는 용매 100 중량부에 대해 0.5 중량부 내지 5.0 중량부로 첨가될 수 있다. 이때, 상기 가교제가 0.5 중량부 미만으로 함유될 경우, 폴리비닐알코올계 필름 내에서 가교가 부족하여 수중에서 폴리비닐알코올계 필름의 강도가 떨어질 수 있으며, 5.0 중량부를 초과할 경우, 과도한 가교가 형성되어 폴리비닐알코올계 필름의 연신성을 저하시킬 수 있다.
또한, 상기 가교제의 구체적인 예로서, 붕산, 붕사 등의 붕소 화합물, 글리옥살, 글루타르알데히드 등을 들 수 있으며, 이들을 단독으로 또는 조합하여 사용할 수 있다.
한편, 상기 가교욕의 온도는 가교제의 양과 연신비에 따라 다르며, 이에 한정하는 것은 아니나, 일반적으로 45℃ 내지 60℃인 것이 바람직하다. 일반적으로 가교제의 양이 늘어나면 폴리비닐알코올계 필름 사슬의 유동성(mobility)을 향상시키기 위해 높은 온도조건으로 가교욕의 온도를 조절하며, 가교제의 양이 적으면 상대적으로 낮은 온도조건으로 가교욕의 온도를 조절한다. 그러나, 본 발명은 5배 이상의 연신이 이루어지는 과정이기 때문에 폴리비닐알코올계 필름의 연신성 향상을 위해 가교욕의 온도를 45℃ 이상으로 유지하여야 한다.
한편, 가교욕에 폴리비닐알코올계 필름을 침지시키는 시간은 30초 내지 120초 정도인 것이 바람직하다. 그 이유는, 침지시간이 30초 미만일 경우 폴리비닐알코올계 필름에 가교가 균일하게 이루어지지 않을 수 있으며, 120초를 초과할 경우에는 가교가 포화(saturation)되어 더 이상의 침지할 필요가 없기 때문이다.
한편, 연신단계에서 연신이란 필름의 고분자들을 일정 방향으로 배향하기 위하여, 필름을 일축으로 잡아늘이는 것을 말한다. 연신 방법은 습식 연신법과 건식 연신법으로 구분할 수 있으며, 건식 연신법은 다시 롤간(inter-roll)연신 방법, 가열 롤(heating roll) 연신 방법, 압축 연신 방법, 텐터(tenter) 연신 방법 등으로, 습식 연신 방법은 텐터 연신 방법, 롤간 연신 방법 등으로 구분된다.
이때, 연신단계는 상기 폴리비닐알코올계 필름을 4배 내지 10배의 연신비로 연신하는 것이 바람직하며, 45℃ 내지 60℃의 연신온도로 연신하는 것이 바람직하다. 왜냐하면, 폴리비닐알코올계 필름에 편광성능을 부여하기 위해서는 폴리비닐알코올계 필름의 사슬을 배향시켜야 하는데, 4배 미만의 연신비에서는 사슬의 배향이 충분히 일어나지 않을 수 있고, 10배 초과의 연신비에서는 폴리비닐알코올계 필름 사슬이 절단될 수 있기 때문이다. 또한, 상기 연신온도는 가교제의 함량에 따라 달라질 수 있는데, 45℃ 미만의 온도에서는 폴리비닐알코올계 필름 사슬의 유동성이 저하되어 연신 효율이 감소될 수 있으며, 60℃를 초과하는 경우, 폴리비닐알코올계 필름이 연화되어 강도가 약해질 수 있기 때문이다.
한편, 연신단계는 상기 염착단계 또는 가교단계와 동시에 또는 별도로 진행될 수 있다. 연신단계가 염착단계와 동시에 진행될 경우, 상기 연착단계는 요오드 용액 내에서 수행되는 것이 바람직하며, 가교단계와 동시에 진행되는 경우라면 붕산 수용액 내에서 수행되는 것이 바람직하다.
다음으로, 본 발명은 ② 상기 편광자의 일부 영역에 탈색제를 1 중량% 내지 30 중량%로 포함하는 탈색 용액을 국지적으로 접촉시켜, 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 형성하는 단계를 포함하는 것을 특징으로 한다.
먼저, 상기 편광 해소 영역을 형성하는 단계에 있어서 각 구성요소를 살펴보면, 탈색 용액은 필수적으로 탈색제 및 용매를 포함한다.
상기 탈색제는, 편광자에 염착된 요오드 및/또는 이색성 염료를 탈색시킬 수 있는 것이라면 특별히 제한되지 않으나, 예를 들면, 수산화나트륨(NaOH), 황산화나트륨(NaSH), 아지트화나트륨(NaN3), 수산화칼륨(KOH), 황산화칼륨(KSH) 및 티오황산칼륨(KS2O3)로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것이 바람직하다.
상기 용매로는 물(증류수)을 사용하는 것이 바람직하다. 또한, 상기 용매는 추가적으로 알코올류 용매를 혼합하여 사용할 수 있다. 이에 한정되는 것은 아니나, 예를 들면, 메탄올, 에탄올, 부탄올, 이소프로필알코올 등을 혼합하여 사용할 수도 있다.
이때, 탈색제의 함량은 탈색 과정에서의 접촉 시간에 따라 달리할 수 있으나, 바람직하게는 상기 탈색 용액은 탈색제를 1 중량% 내지 30 중량% 정도, 더욱 바람직하게는 5 중량% 내지 15 중량% 정도로 포함하는 것이 바람직하다.
탈색제의 함량이 1 중량% 미만일 경우, 탈색이 이루어지지 않거나, 수십분 이상의 시간이 걸려 탈색이 진행되어, 실질적으로 적용이 힘들며, 30 중량% 초과일 경우, 탈색제가 편광자로의 확산이 쉽게 이루어지지 않아 효과적인 탈색이 되기 어렵다. 한편, 도 2를 살펴보면 탈색제의 함량이 1 중량% 미만인 경우, 접촉시간에 상관없이 편광도 및 단체투과도의 변화가 거의 없음을 확인할 수 있다.
또한, 상기 탈색 용액은 pH가 11 내지 14 정도이고, 13 내지 14 정도인 것이 더욱 바람직하다. 본 발명의 탈색제는 강염기 화합물로서, 폴리비닐알코올 사이에 가교결합을 형성하고 있는 붕산을 파괴할 정도의 강염기성을 띄고 있어야 하며, pH가 만족하지 않을 경우 탈색은 발생하지 않는다. 예를 들어, 요오드를 분해(탈색)하여 투명하게 만드는 용액으로서 (iodine clock reaction) 티오황산나트륨은(pH 7), 일반적인 요오드 화합물 수용액에서는 탈색을 일으킬 수 있지만, 실제 편광자(PVA)에서는 장시간 접촉하여도(10시간) 탈색이 일어나지 않는다. 즉, 이는 요오드를 분해하기 이전에 강염기로 인한 붕산의 가교결합의 파괴를 발생시켜야 함을 말해준다.
또한, 상기 탈색 용액은 점도가 1cP 내지 55cP 정도이고, 바람직하게는 5cP 내지 20cP 정도, 더욱 바람직하게는 10cP 내지 15cP 정도이다. 상기 용액의 점도가 너무 낮을 경우, 인라인(in-line) 공정에 있어서 탈색 용액의 유동 및 확산이 일어나게 되어 원하는 모양의 탈색부위를 만들기 힘들고, 점도가 너무 높을 경우 세척단계에서 세척이 효과적으로 이루어지지 않는 문제점이 있다.
본 발명의 편광자 제조 방법은 탈색 용액을 편광자에 접촉시켜, 편광 해소 영역을 형성하는 것을 특징으로 하는바, 원하는 위치에 원하는 크기의 편광 해소 영역을 형성하는 것에 그 목적이 있다. 일반적으로, 편광자 위에 탈색 용액을 사용하여 편광을 해소하는 단계를 거치는 경우, 용액이 확산하거나 흘러내리기 때문에 원하는 위치에, 원하는 크기 및 모양으로 편광을 해소하기 어려우며, 탈색 부위 이외의 영역의 투과도나 편광도에 영향을 미치기 쉽다. 그러나, 상기와 같이, 점도가 충분한 탈색 용액을 사용하는 경우, 상기의 문제점을 해결할 수 있고, 불필요한 추가적인 확산을 감소시켜 원하는 위치에 미세한 편광 해소 영역을 형성할 수 있다.
한편, 탈색 용액의 점도가 상기 범위를 만족하기 위해서, 증점제를 추가로 첨가하는 방법을 이용하는 것이 바람직하다. 이때, 상기 증점제는 탈색 용액의 점도를 향상시켜, 탈색 용액의 확산을 억제하고, 원하는 크기 및 위치에 편광 해소 영역을 형성할 수 있도록 도와준다. 뿐만 아니라, 편광자 제조는 롤투롤(roll to roll process)로 방식으로 행해지며, 움직이는 편광자에 원하는 탈색 부위를 정확히 만들기 위해서는 탈색 용액의 확산 혹은 유동이 없어야 한다. 빠르게 이동하는 편광자에 점도가 낮은 용액을 도포하게 되면, 도포 시 생기는 액체와 편광자의 상대속도 차이에 의해 원하지 않는 부위로 탈색 용액이 확산이 되어 실용도가 낮으며, 도포 후 세척 전까지 탈색이 이루어지는 시간 동안 도포된 용액의 유동에 의해 원하지 않는 위치 또는 크기의 탈색이 발생될 수 있다.
상기 증점제는 반응성이 낮고, 용액의 점도를 높일 수 있는 것이라면, 제한되지 않으나, 예를 들면, 폴리비닐알코올계 수지, 폴리비닐아세토아세테이트계 수지, 아세토아세틸기 변성 폴리비닐알코올계 수지, 부텐디올비닐알코올계, 폴리아크릴아마이드계 및 폴리에틸렌글라이콜계로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것이 더욱 바람직하다. 이때, 상기 증점제의 점도가 10cP 내지 15cP인 것이 바람직하다.
한편, 상기 증점제는 상기 탈색 용액에 대하여 0.5 중량% 내지 30 중량% 정도, 바람직하게는 2.5 중량% 내지 15 중량% 정도로 포함될 수 있다. 증점제의 함량이 상기 범위를 초과하는 경우, 점도가 너무 높아져 세척이 효과적으로 이루어지지 않으며, 증점제의 함량이 너무 낮을 경우, 점도가 낮아 액체의 확산 및 유동에 의해 원하는 모양, 크기의 탈색영역을 구현하기 힘들다.
보다, 구체적으로, 요오드 및/또는 이색성 염료가 염착된 폴리비닐알코올의 복합체는 파장대가 400nm 내지 800nm와 같은 가시광선 범위의 빛을 흡수할 수 있는 것으로 알려져 있다. 이때, 탈색 용액을 상기 편광자에 접촉시키면, 상기 편광자에 존재하는 가시광선 파장대의 빛을 흡수하는 요오드 혹은 이색성 염료가 분해되어, 편광자를 탈색시켜 투과도를 높이고 편광도를 낮추게 된다.
예를 들면, 요오드가 염착된 폴리비닐알코올계 편광자의 일부 영역에 탈색제인 수산화칼륨(KOH)을 포함하는 수용액을 접촉시키는 경우, 하기 화학식 1 및 화학식 2와 같이 일련의 과정으로 요오드가 분해하게 된다. 한편, 요오드가 염착된 폴리비닐알코올계 편광자 제조 시 붕산 가교과정을 거친 경우, 화학식 3에 기재된 바와 같이 수산화칼륨은 붕산을 직접 분해하여, 폴리비닐알코올과 붕산의 수소결합을 통한 가교 효과를 제거하게 된다.
[화학식 1]
12KOH + 6I2 → 2KIO3 + 10KI + 6H2O
[화학식 2]
IO3 - + I5 - +6H+ → 3I2 + 3H2O
I3 - → I- + I2
[화학식 3]
B(OH)3 + 3KOH → K3BO3 + 3H2O
즉, 가시광선 영역의 빛을 흡수하는 I5 -(620nm) I3 -(340nm), I2(460nm)와 같은 요오드 및 요오드 이온 착물을 분해하여, I-(300nm이하) 또는 염을 생성하게 되어, 가시광선 영역의 빛을 대부분 투과하게 된다. 이로 인해 편광자의 가시광선 영역인 400 내지 800nm 정도의 영역에서 편광 기능이 해소됨으로써 전반적으로 투과도가 높아져서 편광자는 투명하게 된다. 다시 말해서, 편광판에서 편광을 만들기 위하여 가시광선을 흡수하는 배열된 요오드 복합체를 가시광선을 흡수하지 않는 단분자 형태로 분해하여 편광기능을 해소할 수 있다.
보다 구체적으로, 도 1을 살펴보면, 일반적으로 편광자는 가시광선 영역에서 99% 이상의 편광도(DOP) 및 40% 정도의 단체투과도(Ts)를 보이나, 상기 제조방법에 의해 편광 해소 영역을 형성하는 경우, 편광도는 10% 이하, 단체투과도는 80% 이상의 값을 갖게 됨을 확인할 수 있었다.
한편, 본 발명에 있어서, 상기 탈색 용액을 접촉시켜 편광을 해소하는 단계는, 디스펜서 또는 잉크젯을 이용하여 원하는 국지적 부위 혹은 원하는 모양의 패턴으로 탈색제를 도포하는 비접촉식 인쇄법 혹은 그라비아 프린팅과 같은 접촉 방식 인쇄법에 의해 수행되는 것이 바람직하다.
본 발명의 편광자 제조 방법은, 상기 편광을 해소하는 단계 이후에 알코올을 이용하여 세척하는 단계를 추가로 포함하는 것이 바람직하다. 상기 편광을 해소하는 단계에서, 잔류하는 탈색 용액이 적절히 세척되지 않을 경우, 편광자 상에서 용액이 확산 또는 잔류하게 되어, 원하지 않는 크기 및 모양으로 편광 해소 영역이 형성될 수 있으며 미세한 크기의 편광 해소 영역을 형성하기 어렵기 때문이다. 특히, 상기 알코올의 경우, 건조가 쉬워, 쉽게 제거가 가능하며, 편광 해소 영역 이외의 편광자에는 투과도나 편광도에 영향을 미치지 않으므로 적합하게 사용될 수 있다. 예를 들어, 이로써 한정되는 것은 아니나, 상기 알코올은 에탄올, 메탄올, 프로판올, 부탄올, 이소프로필알코올 또는 이들의 혼합물인 것이 바람직하다.
상기 세척하는 단계는 편광자를 1초 내지 180초 동안, 더 바람직하게는 3초 내지 30초 동안 알코올에 침지시키거나, 탈색 용액과 접촉되어 탈색된 국지적 부위에 디스펜서 또는 잉크젯으로 탈색방법과 같이 같은 위치에 도포 시켜주는 방법이 있다.
본 발명의 편광 해소 영역을 포함하는 편광자 제조 방법은 탈색제를 이용한 다음 알코올로 세척함으로써, 상기에서 살펴본 바와 같이 탈색제에 의해 형성된 요오드 화합물 및 염 등이 씻겨져 나가게 되고, 편광 해소 영역의 요오드 및 요오드 이온 착물의 함량이 최소화된다. 따라서, 편광 해소 영역의 잔류 요오드 및 요오드 이온 착물의 빛의 흡수가 줄어들어 더욱 투명하게 하는 효과를 가져온다.
한편, 본 편광자 제조 방법에 따라, 탈색 용액을 편광자에 접촉시키는 시간은 탈색 용액의 농도, 온도 등에 따라 달라질 수 있다. 특히 상기 탈색 용액을 접촉시키는 시간(y)은 탈색제의 함량(x)에 대하여 하기 수학식 1을 만족시키는 것이 바람직하다.
이때, 상기 탈색 용액을 접촉시키는 시간(y)은 편광 해소 영역의 단체 투과도가 90%이상이 되는 데 걸리는 시간을 의미하며, 이하에서는 '탈색완료시간'이라 표현한다.
[수학식 1]
y = ax2 + bx + c
상기 x는 1 내지 30 이고, 상기 a는 0.1 내지 0.7이고, 상기 b는 -1 내지 -20이고, 상기 c는 20 내지 120이다. 바람직하게는, 상기 탈색 용액이 탈색제와 용매로만 구성되어 있는 경우, 상기 x는 1 내지 30이고, 상기 a는 0.2 내지 0.7이고, 상기 b는 -9 내지 -15이고, 상기 c는 50 내지 110이다. 반면, 상기 용액이 탈색제, 용매 및 증점제를 포함하는 경우, 상기 x는 1 내지 20이고, 상기 a는 0.1 내지 0.3이고, 상기 b는 -2 내지 -7이고, 상기 c는 30 내지 70이다.
이때, -b/2a는 1 내지 20이다. 특히, 상기 탈색 용액이 탈색제와 용매로만 구성되어 있는 경우, 상기 -b/2a는 13 내지 19 정도인 것이 바람직하다. 반면, 상기 용액이 탈색제, 용매 및 증점제를 포함하는 경우, 상기 -b/2a는 8 내지 12 정도인 것이 바람직하다. 상기 -b/2a는 특정 탈색 용액이 편광자를 탈색시킬 경우 탈색시간이 최소가 되는 지점의 탈색제의 함량을 나타내주는 수치로서, 즉, -b/2a 범위를 1 내지 20으로 할 경우, 탈색시간이 최소가 되는 탈색제의 함량이 1 중량% 내지 20 중량%가 되는 것을 만족하는 탈색 용액임을 의미한다.
하기 도 3 및 도 4를 살펴보면, 상기 수학식 1에 따른, 각 온도조건에서 탈색제의 함량에 따른 편광 해소 영역의 단체 투과도가 90%이상이 되는 데 걸리는 시간(탈색완료시간)간의 상관관계가 도시되어 있다.
보다 구체적으로, 탈색제의 함량 즉 용액의 농도가 너무 낮거나 높은 경우, 탈색완료시간이 급격히 상승하는 것을 알 수 있으며, 상기 도면을 통해 탈색이 완료되는 시간을 최소화할 수 있는 적절한 탈색제의 함량 범위가 존재함을 알 수 있다. 즉, 탈색 용액의 농도 관점에서 살펴보면, 탈색제의 함량이 너무 높아지게 되면, 동일 화학종간의 분자간 인력이 상승하여 탈색 용액의 분자들이 편광자로 이동이 어려워지게 되어, 역효과가 일어나게 되므로, 적절한 농도의 탈색 용액이 필요하다.
또한, 도 3 과 도 4를 비교해 보면, 용액에 증점제가 추가된 도 4의 경우, 도 3에 비하여, 2차 그래프의 폭이 좁은 것을 확인할 수 있는데, 이는 증점제가 첨가되어 용액의 점도가 증가하는 경우, 탈색제의 확산을 억제하여 원하는 위치에 상대적으로 적은 탈색제의 함량으로 편광 해소 영역을 형성함을 알 수 있다.
뿐만 아니라, 탈색 용액의 온도에 따라, 용액의 농도 및 탈색완료시간 간의 상관관계를 알 수 있다. 탈색 용액이 편광자와 접촉 시, 화학반응(붕산가교 파괴 및 요오드 단분자로 파괴)이 발생하는 바, 이는 온도의 영향을 받는다. 다시 말해 온도가 높아 지게 되면, 분자의 이동성이 증가하게 되고 그로 인한 분자간 충돌 횟수가 많아지게 되고, 반응속도는 빨라지게 된다. 따라서 온도가 높아짐에 따라 탈색이 완료되는 시간은 줄어들게 된다.
다음으로, 본 발명의 편광자 제조 방법을 이용하여 제조된 편광자에 관하여 설명하기로 한다.
본 발명에 따른 편광자는, 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자에 있어서, 국지적으로 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 갖고, 상기 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이에 형성된 단차가 0㎛ 내지 10㎛인 것을 특징으로 한다.
이때, 상기 편광 해소 영역은 상기에서 살펴본 바와 같이, 가시광선 영역인 400nm 내지 800nm정도, 바람직하게는 450nm 내지 750nm 정도의 파장 대역에서의 단체 투과도가 80% 이상이고, 90% 또는 92% 이상인 것이 더욱 바람직하다. 또한 상기 편광 해소 영역은 편광도가 20% 이하이고, 5% 이하인 것이 더욱 바람직하다. 또한, 상기 편광자의 편광 해소 영역을 제외한 영역은 단체 투과도가 40% 내지 45% 인 것이 바람직하며, 42% 내지 45% 인 것이 더욱 바람직하다. 나아가, 상기 편광자의 편광 해소 영역을 제외한 영역은 편광도가 99% 이상인 것이 바람직하다.
이때, 본 발명의 편광자는 상기 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이에 형성된 단차가 0㎛ 내지 10㎛정도인 것이 바람직하며, 0㎛ 내지 5㎛정도인 것이 더욱 바람직하다.
종래의 물리적 제거 방법의 경우, 편광자 자체에 천공을 형성하게 되는 바, 편광자에 손상 및 찢어짐이 발생하고, 천공에 의해 편광자의 편평도가 고르지 못하고 단차가 발생하였다. 반면에, 본 발명의 방법에 의해 편광 해소 영역을 형성할 경우, 편광자 자체에 구멍을 형성하거나 훼손시키지 않기 때문에, 편광자 표면의 단차가 적다.
이때, 상기 단차는 편광자/편광판에서 카메라 모듈 또는 발색 장치가 위치하는 부위인 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이의 경계 부위의 높이 차를 의미하며, 경계 부위의 최고 높이와, 편광 해소 영역의 최저 높이 간의 차이를 말한다. 이때, 상기 단차는 하기 실험예 3에 기재된 바와 같이, 상기 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이의 경계 부위를 측정하며, 이는 광학 프로파일러(Nanoview E1000, 나노시스템 社) 혹은 3차원 현미경(Confocal Laser Scanning Microscopy, CLSM)과 같은 장비로 직접 측정할 수 있으나, 상기 장비 이외에도 높이를 측정할 수 있는 장비라면 특별히 제한되지 않는다. 특히, 이로써 제한되는 것은 아니나, 상기 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이의 경계 부위는 편광 해소 영역의 중앙에서부터 0 초과 3cm 이하에 존재할 수 있다.
한편, 상기 편광 해소 영역은 요오드 및 이색성 염료 중 어느 하나 이상의 함량이 0.1 중량% 내지 0.5 중량% 정도이고, 바람직하게는 0.1 중량% 내지 0.35 중량% 정도이다. 이는 상기에서 살펴본 바와 같이, 탈색제와 요오드간의 반응에 의해 편광자 상에 복합체 형태로 존재하던 요오드가 씻겨나가게 되어, 요오드 및/또는 이색성 염료의 함량이 크게 줄어들기 때문이다. 이와 대비하여, 상기 편광 해소 영역을 제외한 영역의 요오드 및 이색성 염료 중 어느 하나 이상의 함량이 1 중량% 내지 4 중량% 정도이고, 바람직하게는 2 중량% 내지 4 중량% 이다.
이때, 상기 요오드 및/또는 이색성 염료의 함량은 광 X 선 분석 장치 (리가쿠 전기 공업(주) 제조, 상품명 「ZSX Primus II」) 를 사용하여 측정하였다. 본 발명에서는 크기가 40mm×40mm이고, 두께가 12㎛인 편광자 시트 형태의 시료를 이용하여, 19.2mm3 부피 당 평균 중량%를 측정하였다.
상기 편광 해소 영역은 하기에서 설명할 바와 같이, 편광자를 탈색 용액과 접촉시키는 단계를 거침으로써 형성된다. 이때, 상기 편광 해소 영역의 요오드 및/또는 이색성 염료의 함량은 그 외의 영역과 비교하여 현저하게 감소하게 되고, 이로 인해, 투과도가 크게 향상된다.
한편, 상기 편광 해소 영역은 이에 한정되는 것은 아니나, 디스플레이의 종류 및 편광 해소 영역의 사용 용도에 따라, 면적이 전체 편광판에서 0.005% 내지 40% 차지하는 것이 바람직하다.
또한, 상기 편광 해소 영역은 그 형상이나 위치 등은 특별히 한정되지 않으며, 다양한 형태 및 위치에 형성될 수 있다. 예를 들면, 상기 편광 해소 영역은 카메라와 같은 부품이 장착되는 위치에 상기 부품의 형상에 대응되도록 형성될 수도 있고, 제품 로고가 인쇄되는 영역에 제품 로고의 형상으로 형성될 수 도 있으며, 편광 부재의 테두리 부분에 컬러를 부여하고자 하는 경우에는 편광 부재의 테두리 부분에 액자 형태로 형성될 수도 있다.
한편, 본 발명은 상기 편광 해소 영역을 포함하는 편광자의 일면 또는 양면에 편광자 보호필름을 합지시킨 편광판을 제공한다.
본 발명의 편광판의 경우, 편광자의 일부 영역에서만 편광이 해소되어, 단체 투과도가 높고 편광도가 낮으며, 종래의 펀칭 및 절삭 등의 물리적 편광 제거 방법과 달리 편광판에 물리적 손상이 없는 편광 해소 영역을 갖는 것을 특징으로 한다.
상기 보호필름은 편광자를 보호하기 위해 편광자의 양 측면에 부착하는 투명필름을 말하는 것으로, 트리아세틸셀룰로오즈(TriAcethyl Cellulose; TAC)와 같은 아세테이트계, 아크릴계, 폴리에스테르계, 폴리에테르술폰계, 폴리카보네이트계, 폴리아미드계, 폴리이미드계, 폴리올레핀계 수지 필름 등을 사용할 수 있으나, 이에 한정하는 것은 아니다.
이때, 상기 보호필름은 접착제를 이용하여 적층될 수 있으며, 접착제로는 이에 한정하는 것은 아니나 폴리비닐알코올계 수계 접착제를 사용할 수 있다. 또한, 상기 편광판에는 보호필름 이외에도 추가적인 기능 향상을 위해, 광 시야각 보상판이나 휘도 향상 필름과 같은 기능성 필름이 부가적으로 포함될 수도 있다.
한편, 상기와 같은 본 발명의 편광자를 포함하는 편광판은 표시 패널의 일면 또는 양면에 부착되어 화상표시장치에 유용하게 적용될 수 있다. 상기 표시 패널은 액정 패널, 플라즈마 패널 및 유기발광 패널일 수 있으며, 이에 따라, 상기 화상표시장치는 액정표시장치(LCD, liquid crystal display), 플라즈마표시장치(PDP, plasma display pannel) 및 유기전계발광 표시장치(OLED, organic light emitting diode) 일 수 있다.
보다 구체적으로, 상기 화상표시장치는 액정 패널 및 이 액정 패널의 양면에 각각 구비된 편광판들을 포함하는 액정표시장치일 수 있으며, 이때, 상기 편광판 중 적어도 하나가 본 발명에 따른 편광자를 포함하는 편광판일 수 있다. 즉, 상기 편광판은 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자를 포함하고, 국지적으로 단체 투과도가 80% 이상인 편광 해소 영역을 갖는 것을 특징으로 한다.
이때, 상기 액정표시장치에 포함되는 액정 패널의 종류는 특별히 한정되지 않는다. 예를 들면, 그 종류에 제한되지 않고, TN(twisted nematic)형, STN(super twisted nematic)형, F(ferroelectic)형 또는 PD(polymer dispersed)형과 같은 수동 행렬 방식의 패널; 2단자형(two terminal) 또는 3단자형(three terminal)과 같은 능동행렬 방식의 패널; 횡전계형(IPS; In Plane Switching) 패널 및 수직배향형(VA; Vertical Alignment) 패널 등의 공지의 패널이 모두 적용될 수 있다. 또한, 액정표시장치를 구성하는 기타 구성, 예를 들면, 상부 및 하부 기판(ex. 컬러 필터 기판 또는 어레이 기판) 등의 종류 역시 특별히 제한되지 않고, 이 분야에 공지되어 있는 구성이 제한 없이 채용될 수 있다.
한편, 본 발명의 화상표시장치는 이에 한정하는 것은 아니나, 카메라 모듈 등의 기타 부품을 포함하며, 상기 카메라 모듈 등의 기타 부품은 상기 편광 해소 영역에 위치할 수 있다. 가시광선 영역의 투과도가 향상되고 편광도가 해소된 편광 해소 영역에 카메라 모듈을 위치시킴으로써, 카메라 렌즈부의 시인성을 증대시키는 효과를 가져 올 수 있다.
이하, 실시예를 통하여 본 발명에 대하여 보다 상세히 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 것으로 이로써 본 발명을 한정하는 것은 아니다.
제조예 - 편광자의 제조
폴리비닐알코올계 필름(일본합성社 M3000 grade 30㎛)을 25℃ 순수 용액에서 팽윤 공정을 15초간 거친 후, 0.2wt% 농도 및 25℃의 요오드 용액에서 60초간 염착 공정을 진행하였다. 이후, 붕산 1wt%, 45℃ 용액에서 30초가 세정 공정을 거친 후 붕산 2.5wt%, 52℃의 용액에서 6배 연신 공정을 진행하였다. 연신 이후 5wt% 의 KI 용액에서 보색 공정을 거친 후 60℃ 오븐에서 5분간의 건조시킴으로써 두께 12㎛의 편광자를 제조하였다.
실시예 1 내지 7
탈색제, 용매 및 증점제를 하기 [표 1]에 기재된 종류 및 함량으로 탈색 용액을 준비한다. 다음으로, 상기 제조예에 의해, 제조된 편광자에 상기 탈색 용액을 디스펜서를 이용하여 3cm2의 영역에 도포하였다. 이후 35초 경과 후 에탄올을 이용하여 3초 동안 침지시켜 주고 60℃ 오븐에서 30초 동안 에탄올을 건조시켜 편광 해소 영역을 포함하는 편광자를 제조하였다.
비교예 1 내지 3
탈색제, 용매 및 증점제를 하기 [표 1]에 기재된 종류 및 함량으로 탈색 용액을 준비하였으며, 실시예 1과 동일한 방법으로 편광자를 제조하였다.
비교예 4
상기 제조예에 의해 제조된 편광자를 60mm×60mm으로 재단한 후, 레이저(Verdi V2, MBD resonator, Coherent 사)를 이용하여 266nm 파장, 0.6W/cm2의 세기로 10분간 노광하여 편광 해소 영역을 형성한 편광자를 제조하였다.
비교예 5
상기 제조예에 의해 제조된 편광자를 60mm×60mm으로 재단한 후, 편광판 제단용 펀칭기를 이용하여 3cm2의 영역의 편광자를 제거하였다.
실험예 1 - 편광 해소 영역의 광학 물성 평가
상기 실시예 및 비교예에 의해 제조된 편광자를 40㎜×40㎜의 크기로 잘라, 이 시편을 측정 홀더에 고정시킨 후 자외가시광선분광계(V-7100, JASCO사 제조)를 이용하여 편광 해소 영역의 초기광학 물성, 즉, 단체 투과도, 편광도를 측정하였다. 특히, 550nm에서의 값을 표 1에 표시하였다.
실험예 2 - 편광 해소 영역의 요오드 함량 평가
편광자에 있어서, 편광 해소 영역의 요오드 및/또는 이색성 염료의 함량은 광 X 선 분석 장치 [리가쿠 전기 공업(주) 제조, 상품명 「ZSX Primus II」] 를 사용하여 측정하였다. 이때, 상기 실시예 및 비교예에 의해 제조된 두께가 12㎛인 편광자 시트(sheet) 형태의 시료를 4장 겹쳐 20mm holder에 장착한 후 Iodine KA 형광세기를 측정하였다. 총 3회를 측정하여 나온 19.2mm3 부피당 중량%의 평균을 하기의 [표 1]에 표시하였다.
실험예 3 - 편광자 표면의 단차 평가
상기 실시예 1 내지 7 및 비교에 1 내지 5에 의해 제조된 편광자를 광학 프로파일러(Nanoview E1000, 나노시스템 社) 5배 렌즈를 이용하여, 상기 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이에 형성된 단차를 측정하였다.
표 1
구분 용액 조성 (중량%) 온도(℃) 탈색완료시간(s) pH 편광 해소 영역의 요오드함량(중량%) 점도 (cP) 편광 해소 영역의 물성 편광 해소 영역의 단차 (㎛)
탈색제 용매 증점제 단체투과도(%) 편광도(%)
실시예 1 KOH 5 - 25 45 14 0.3 1 92 0.8 2.80
실시예 2 KOH 10 - 25 36 14 0.3 1 92 0.8 2.63
실시예 3 KOH 10 - 60 16 14 0.3 1 92 0.8 2.78
실시예 4 NaOH 5 - 25 40 14 0.3 1 92 0.8 2.79
실시예 5 NaOH 10 - 25 32 14 0.3 1 92 0.8 2.87
실시예 6 KOH 10 폴리아크릴아마이드계 수지 (15wt%) 25 27 14 0.3 7.8 92 0.8 2.81
실시예 7 KOH 10 부텐디올비닐알코올계 수지(4wt%) 25 26 14 0.3 26 92 0.8 2.69
비교예 1 KOH 0.1 - 25 탈색x 12.8 3 1 42.5 99.99 1.10
비교예 2 KOH 50 - 25 탈색x 14 3 1 42.5 99.99 0.99
비교예 3 KOH 50 부텐디올비닐알코올계 수지(4wt%) 25 탈색x 14 3 26 42.5 99.99 1.01
비교예 4 266nm laser 조사 0.6w/cm2의 power사용10~20분 조사 3 86.2 8.1 0
비교예 5 펀칭 절삭 편광판 제단용 펀칭기를 이용하여 3cm2의 영역을 제거 - - - - 12.77
상기 표 1의 실시예와 비교예 1 내지 3을 살펴보면, 탈색제의 함량이 본 발명의 함량 범위를 만족하는 경우에 탈색이 진행되며, 편광 해소 영역의 요오드 함량이 0.3 중량% 이하임을 확인할 수 있었다.
또한, 비교예 4와 비교해 보면, 자외선을 노광하여 편광 해소 영역을 형성하는 경우에 비해, 투과도가 높으며 편광도가 더 낮음을 확인할 수 있었다. 뿐만 아니라, 비교예 5와 비교해 보면, 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이에 형성된 단차가 물리적 펀칭을 통한 방법에 의해 형성된 단차에 비하여 현저히 작으며, 표면 외관이 우수함을 확인할 수 있었다.
이상에서 본 명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (17)

  1. 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자를 준비하는 단계; 및
    상기 편광자의 일부 영역에 탈색제를 1 중량% 내지 30 중량%로 포함하는 탈색 용액을 국지적으로 접촉시켜, 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 형성하는 단계를 포함하는 편광자 제조 방법.
  2. 제1항에 있어서,
    상기 탈색제는 수산화나트륨(NaOH), 황산화나트륨(NaSH), 아지트화나트륨(NaN3), 수산화칼륨(KOH), 황산화칼륨(KSH) 및 티오황산칼륨(KS2O3)로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것인 편광자 제조 방법.
  3. 제1항에 있어서,
    상기 탈색 용액은 pH가 11 내지 14인 편광자 제조 방법.
  4. 제1항에 있어서,
    상기 탈색 용액은 점도가 1cP 내지 55cP인 편광자 제조 방법.
  5. 제1항에 있어서,
    상기 탈색 용액은 증점제를 더 포함하는 것인 편광자 제조 방법.
  6. 제5항에 있어서,
    상기 증점제는 폴리비닐알코올계 수지, 폴리비닐아세토아세테이트계 수지, 아세토아세틸기 변성 폴리비닐알코올계 수지, 부텐디올비닐알코올계, 폴리에틸렌 글라이콜계 수지 및 폴리아크릴아마이드계 수지로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것인 편광자 제조 방법.
  7. 제5항에 있어서,
    상기 탈색 용액은 전체 용액에 대하여,
    탈색제 1 중량% 내지 30 중량%;
    증점제 0.5 중량% 내지 30 중량% 및
    잔부의 물을 포함하는 것인 편광자 제조 방법.
  8. 제1항에 있어서,
    상기 탈색 용액을 접촉시켜 편광을 해소하는 단계는 디스펜서, 잉크젯 또는 그라비아 프린팅 방법에 의해 수행되는 편광자 제조 방법.
  9. 제1항에 있어서,
    상기 편광 해소 영역을 형성하는 단계 이후에 알코올을 이용하여 세척하는 단계를 추가로 포함하는 편광자 제조 방법.
  10. 제1항에 있어서,
    상기 탈색 용액을 접촉시키는 시간(y)은 용액의 농도(x)에 대하여 하기 수학식 1을 만족시키는 편광자 제조 방법.
    [수학식 1]
    y = ax2 + bx + c
    상기 x는 1 내지 30 이고,
    상기 a는 0.1 내지 0.7이고,
    상기 b는 -1 내지 -20 이고,
    상기 c는 20 내지 120이며,
    -b/2a는 1 내지 20임.
  11. 요오드 및 이색성 염료 중 어느 하나 이상이 염착된 폴리비닐알코올계 편광자에 있어서,
    국지적으로 400nm 내지 800nm 파장 대역에서의 단체 투과도가 80% 이상인 편광 해소 영역을 갖고,
    상기 편광 해소 영역과 편광 해소 영역을 제외한 영역 사이에 형성된 단차가 0㎛ 내지 10㎛인 편광자.
  12. 제11항에 있어서,
    상기 편광 해소 영역은 요오드 및 이색성 염료 중 어느 하나 이상의 함량이 0.1 중량% 내지 0.5 중량%이고, 상기 편광 해소 영역을 제외한 영역은 요오드 및 이색성 염료 중 어느 하나 이상의 함량이 1 중량% 내지 4 중량%인 편광자.
  13. 제11항에 있어서,
    상기 편광자의 편광 해소 영역은 편광도가 20% 이하인 편광자.
  14. 제11항에 있어서,
    상기 편광자의 편광 해소 영역을 제외한 영역의 단체 투과도는 40% 내지 45%인 편광자.
  15. 제11항에 있어서,
    상기 편광자의 편광 해소 영역을 제외한 영역의 편광도는 99%이상인 편광자.
  16. 제11항에 있어서,
    상기 편광 해소 영역의 면적이 전체 편광판에서 0.005% 내지 40%를 차지하는 편광자.
  17. 청구항 11 내지 16 중 어느 한 항에 따른 편광자의 적어도 일면에 편광자 보호필름을 합지하여 제조된 편광판.
PCT/KR2014/009022 2014-01-17 2014-09-26 국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판 WO2015108261A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016531555A JP6434020B2 (ja) 2014-01-17 2014-09-26 局地的に偏光解消領域を有する偏光子の製造方法、これを用いて製造された偏光子および偏光板
CN201480027253.6A CN105209944B (zh) 2014-01-17 2014-09-26 制备局部具有去偏光区域的偏光片的方法,使用该方法制备的偏光片和偏光板
US14/911,240 US10436962B2 (en) 2014-01-17 2014-09-26 Preparing method for polarizer having locally depolarized area, polarizer and polarizing plate manufactured by using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0006269 2014-01-17
KR20140006269 2014-01-17
KR10-2014-0126248 2014-09-23
KR1020140126248A KR20150086159A (ko) 2014-01-17 2014-09-23 국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판

Publications (1)

Publication Number Publication Date
WO2015108261A1 true WO2015108261A1 (ko) 2015-07-23

Family

ID=53543117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009022 WO2015108261A1 (ko) 2014-01-17 2014-09-26 국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판

Country Status (1)

Country Link
WO (1) WO2015108261A1 (ko)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215608A (ja) * 2014-04-25 2015-12-03 日東電工株式会社 偏光子、偏光板および画像表示装置
JP2015215610A (ja) * 2014-04-25 2015-12-03 日東電工株式会社 偏光子の製造方法
JP2015215609A (ja) * 2014-04-25 2015-12-03 日東電工株式会社 偏光子、偏光板および画像表示装置
JP2016151603A (ja) * 2015-02-16 2016-08-22 日東電工株式会社 偏光子、偏光板および画像表示装置
JP2017009908A (ja) * 2015-06-25 2017-01-12 日東電工株式会社 偏光子
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法
US20170090085A1 (en) * 2015-09-28 2017-03-30 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
US20170090087A1 (en) * 2015-09-28 2017-03-30 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
JP2017067855A (ja) * 2015-09-28 2017-04-06 日東電工株式会社 偏光子、偏光板および画像表示装置
JP2017068124A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法
JP2017068122A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法
JP2017068123A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法
JP2017068121A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 偏光子の検査方法および偏光板の製造方法
JP2017068244A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 偏光板の検査方法および検査装置
JP2017068106A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法、検査システムおよび製造方法
US10215901B2 (en) * 2015-11-04 2019-02-26 Nitto Denko Corporation Polarizer, polarizing plate, and method of producing polarizer
US10215900B2 (en) 2014-06-27 2019-02-26 Nitto Denko Corporation Polarizing film laminate comprising a long polarizing having exposed portion where a polarizer is exposed
US10336024B2 (en) 2013-11-14 2019-07-02 Nitto Denko Corporation Polyvinyl alcohol based polarizing film containing iodine and boric acid
JP2020126255A (ja) * 2015-09-30 2020-08-20 日東電工株式会社 偏光子の検査方法および偏光板の製造方法
US10754072B2 (en) 2014-06-27 2020-08-25 Nitto Denko Corporation Polarizer having non-polarization portions, a long polarizing plate and image display device comprising the polarizer
CN114474691A (zh) * 2022-01-18 2022-05-13 深圳市三利谱光电科技股份有限公司 偏光素子的制备方法以及偏光膜
US11467328B2 (en) 2015-06-25 2022-10-11 Nitto Denko Corporation Polarizer having non-polarizing part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060084168A (ko) * 2005-01-19 2006-07-24 주식회사 에이스 디지텍 투과성 및 내구성이 향상된 편광자의 제조방법, 편광자 및이를 구비한 표시장치
KR20100125558A (ko) * 2009-05-21 2010-12-01 동우 화인켐 주식회사 편광격자 스크린의 제조방법, 편광격자 스크린 및 이것이 구비된 3차원 화상표시장치
KR20100125560A (ko) * 2009-05-21 2010-12-01 동우 화인켐 주식회사 편광격자 스크린의 제조방법, 편광격자 스크린 및 이것이 구비된 3차원 화상표시장치
JP2011002816A (ja) * 2009-05-01 2011-01-06 Nitto Denko Corp 偏光子の製造方法
JP2013167835A (ja) * 2012-02-17 2013-08-29 Nitto Denko Corp 光学積層体及び光学積層体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060084168A (ko) * 2005-01-19 2006-07-24 주식회사 에이스 디지텍 투과성 및 내구성이 향상된 편광자의 제조방법, 편광자 및이를 구비한 표시장치
JP2011002816A (ja) * 2009-05-01 2011-01-06 Nitto Denko Corp 偏光子の製造方法
KR20100125558A (ko) * 2009-05-21 2010-12-01 동우 화인켐 주식회사 편광격자 스크린의 제조방법, 편광격자 스크린 및 이것이 구비된 3차원 화상표시장치
KR20100125560A (ko) * 2009-05-21 2010-12-01 동우 화인켐 주식회사 편광격자 스크린의 제조방법, 편광격자 스크린 및 이것이 구비된 3차원 화상표시장치
JP2013167835A (ja) * 2012-02-17 2013-08-29 Nitto Denko Corp 光学積層体及び光学積層体の製造方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10336024B2 (en) 2013-11-14 2019-07-02 Nitto Denko Corporation Polyvinyl alcohol based polarizing film containing iodine and boric acid
US11061176B2 (en) 2014-04-25 2021-07-13 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
JP2015215610A (ja) * 2014-04-25 2015-12-03 日東電工株式会社 偏光子の製造方法
JP2015215609A (ja) * 2014-04-25 2015-12-03 日東電工株式会社 偏光子、偏光板および画像表示装置
JP2015215608A (ja) * 2014-04-25 2015-12-03 日東電工株式会社 偏光子、偏光板および画像表示装置
US10782462B2 (en) 2014-04-25 2020-09-22 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
US10754072B2 (en) 2014-06-27 2020-08-25 Nitto Denko Corporation Polarizer having non-polarization portions, a long polarizing plate and image display device comprising the polarizer
US11385391B2 (en) 2014-06-27 2022-07-12 Nitto Denko Corporation Polarizer having non-polarization portions, a long polarizing plate and image display device comprising the polarizer
US10215900B2 (en) 2014-06-27 2019-02-26 Nitto Denko Corporation Polarizing film laminate comprising a long polarizing having exposed portion where a polarizer is exposed
JP2016151603A (ja) * 2015-02-16 2016-08-22 日東電工株式会社 偏光子、偏光板および画像表示装置
US10101511B2 (en) 2015-02-16 2018-10-16 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
US11467328B2 (en) 2015-06-25 2022-10-11 Nitto Denko Corporation Polarizer having non-polarizing part
JP2017009908A (ja) * 2015-06-25 2017-01-12 日東電工株式会社 偏光子
US10503004B2 (en) 2015-06-25 2019-12-10 Nitto Denko Corporation Polarizer
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法
US20170090085A1 (en) * 2015-09-28 2017-03-30 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
JP2017067860A (ja) * 2015-09-28 2017-04-06 日東電工株式会社 偏光子、偏光板および画像表示装置
JP2017067858A (ja) * 2015-09-28 2017-04-06 日東電工株式会社 偏光子、偏光板および画像表示装置
US20170090087A1 (en) * 2015-09-28 2017-03-30 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
CN107144907A (zh) * 2015-09-28 2017-09-08 日东电工株式会社 偏振片、偏光板和图像显示装置
JP2017067855A (ja) * 2015-09-28 2017-04-06 日東電工株式会社 偏光子、偏光板および画像表示装置
US10234611B2 (en) 2015-09-28 2019-03-19 Nitto Denko Corporation Polarizer, polarizing plate, and image display apparatus
JP2017068106A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法、検査システムおよび製造方法
JP2020126255A (ja) * 2015-09-30 2020-08-20 日東電工株式会社 偏光子の検査方法および偏光板の製造方法
JP2017068244A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 偏光板の検査方法および検査装置
JP2017068121A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 偏光子の検査方法および偏光板の製造方法
JP2021012393A (ja) * 2015-09-30 2021-02-04 日東電工株式会社 偏光板の検査方法および検査装置
JP2021012392A (ja) * 2015-09-30 2021-02-04 日東電工株式会社 偏光板の検査方法および検査装置
JP2017068123A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法
JP2017068122A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法
JP2017068124A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 長尺状偏光子の検査方法
US10215901B2 (en) * 2015-11-04 2019-02-26 Nitto Denko Corporation Polarizer, polarizing plate, and method of producing polarizer
US10578786B2 (en) 2015-11-04 2020-03-03 Nitto Denko Corporation Polarizer, polarizing plate, and method of producing polarizer
CN114474691A (zh) * 2022-01-18 2022-05-13 深圳市三利谱光电科技股份有限公司 偏光素子的制备方法以及偏光膜

Similar Documents

Publication Publication Date Title
WO2015108261A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광자 제조 방법, 이를 이용하여 제조된 편광자 및 편광판
WO2015147553A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광자 제조방법, 이를 이용하여 제조된 편광자, 편광판 및 화상표시장치
WO2016003105A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광판 제조방법, 이를 이용하여 제조된 편광판
WO2016056803A1 (ko) 편광판의 제조방법 및 이를 이용하여 제조된 편광판
JP6434020B2 (ja) 局地的に偏光解消領域を有する偏光子の製造方法、これを用いて製造された偏光子および偏光板
WO2015046969A1 (ko) 국지적으로 편광 해소 영역을 갖는 편광판 및 그 제조 방법
KR101828712B1 (ko) 국지적으로 편광 해소 영역을 갖는 편광판 및 그 제조 방법
WO2010087653A2 (ko) 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치 및 편광소자 제조방법
WO2010090449A2 (ko) 내구성 및 내열성이 우수한 편광소자, 편광판 및 화상표시장치
WO2016195440A1 (ko) 편광자의 제조방법 및 이를 이용하여 제조된 편광자
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2020040568A1 (ko) 마스크 필름 및 이를 이용한 편광판의 제조방법
WO2020040569A1 (ko) 마스크 필름을 이용한 편광판의 제조방법 및 그 편광판
WO2015046962A1 (ko) 내츄럴 블랙에 근접한 편광판 제조 방법 및 이를 이용하여 제조된 편광판
WO2014200296A1 (ko) Uv 조사에 의해 편광자의 색상을 조절하는 단계를 포함하는 편광판 제조방법
WO2022225288A1 (ko) 편광자, 이를 포함하는 편광판 및 이를 포함하는 광학표시장치
WO2022211398A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2016052895A1 (ko) 편광자의 제조방법 및 이를 이용하여 제조된 편광자 및 편광판
WO2022030929A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2020040570A1 (ko) 마스크 필름 및 이를 이용한 편광판의 제조방법
WO2022169260A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2014200204A1 (ko) 편광판 및 이를 구비한 화상표시장치
WO2021182800A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2012011678A2 (ko) 편광자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531555

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878515

Country of ref document: EP

Kind code of ref document: A1