WO2010087398A1 - 自動変速機用潤滑油組成物 - Google Patents

自動変速機用潤滑油組成物 Download PDF

Info

Publication number
WO2010087398A1
WO2010087398A1 PCT/JP2010/051124 JP2010051124W WO2010087398A1 WO 2010087398 A1 WO2010087398 A1 WO 2010087398A1 JP 2010051124 W JP2010051124 W JP 2010051124W WO 2010087398 A1 WO2010087398 A1 WO 2010087398A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
viscosity index
automatic transmission
composition
Prior art date
Application number
PCT/JP2010/051124
Other languages
English (en)
French (fr)
Inventor
恵一 成田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP10735863.2A priority Critical patent/EP2392637B1/en
Priority to CN201080007088XA priority patent/CN102300971A/zh
Priority to JP2010548549A priority patent/JP5629587B2/ja
Priority to US13/147,040 priority patent/US9347018B2/en
Publication of WO2010087398A1 publication Critical patent/WO2010087398A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/042Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions

Definitions

  • the present invention relates to a lubricating oil composition for an automatic transmission, and more particularly to a lubricating oil composition for an automatic transmission that has a large transmission torque capacity, good shift shock resistance, and excellent fuel economy.
  • lubricating oil for automatic transmissions is strongly required to contribute to further energy saving.
  • the transmission torque capacity is achieved by reducing the slippage of the wet clutch during traveling. This means that the dynamic friction coefficient between wet clutches (for example, friction coefficient at ⁇ 1800 : 1800 rpm) is achieved by a lubricating oil. Therefore, it is basically required to develop such lubricating oil for automatic transmission.
  • low-viscosity lubricating oil may cause oil leakage in a hydraulic control unit of the transmission, which may make shift control impossible.
  • a lubricating oil having a high viscosity index is required.
  • a low-viscosity base oil (kinematic viscosity at 100 ° C. of 1 is assumed to be a lubricant for a transmission excellent in fatigue resistance and the like even with a low viscosity.
  • 5-6 mm 2 / s) and a lubricating oil composition for transmissions comprising poly (meth) acrylate containing no long-chain alkyl group in the side chain is disclosed (see Patent Document 1).
  • a composition has a viscosity index that is not sufficiently high (170 or less), and the viscosity of the lubricating oil is greatly reduced at high temperatures, which may reduce fatigue resistance. In this case, the viscosity of the lubricating oil is greatly increased and there is a risk that the fuel efficiency will be poor.
  • the transmission torque capacity and shift shock prevention capability have not been studied, and there is room for further improvement.
  • An object of the present invention is to provide a lubricating oil composition for an automatic transmission that has a large transmission torque capacity, good shift shock resistance, and excellent fuel economy under such circumstances. .
  • the present invention is excellent in shear stability and fatigue resistance (durability) even with a low-viscosity and high-viscosity index lubricating oil, and has a large transmission torque capacity and good shift shock resistance.
  • An object of the present invention is to provide a lubricating oil composition for an automatic transmission that is excellent in fuel efficiency.
  • the present invention (1) (A) a lubricating base oil having a kinematic viscosity at 100 ° C. of 1.5 to 20 mm 2 / s, (B) a polymethacrylate viscosity index improver, and (C) an acid value of 1.0 mgKOH / g or less
  • the following general formula (1) S- (CH 2 CH 2 COOR) 2 (1)
  • R represents a hydrocarbon group having 8 to 30 carbon atoms.
  • a lubricating oil composition for an automatic transmission comprising a sulfur-based compound represented by: (2) The automatic transmission lubrication according to (1), wherein the sulfur compound of (C) is a linear or branched alkyl group having 12 to 15 carbon atoms in the general formula (1) Oil composition, (3)
  • the lubricating base oil of (A) is (a-1) a mineral or synthetic oil having a kinematic viscosity at 100 ° C.
  • the lubricating oil composition for an automatic transmission according to the above (1) or (2), which is a mixture with a mineral oil or synthetic oil of ⁇ 20 mm 2 / s, (4) Any of the above (1) to (3), wherein the polymethacrylate viscosity index improver of (B) is (b-1) a polymethacrylate viscosity index improver having a weight average molecular weight of 10,000 to 50,000.
  • the polymethacrylate viscosity index improver of (B) is improved in (b-1) a polymethacrylate viscosity index of 10,000 to 50,000 and (b-2) a weight average molecular weight of 100,000.
  • a lubricating oil composition for an automatic transmission that has a large transmission torque capacity, good shift shock resistance, and excellent fuel economy. Further, according to the present invention, even a low-viscosity and high-viscosity index lubricating oil has excellent shear stability and fatigue resistance (durability), a large transmission torque capacity, and good resistance to shift shock. In addition, it is possible to provide a lubricating oil composition for an automatic transmission that is excellent in fuel efficiency.
  • the kinematic viscosity at 100 ° C. is 1.5 to 20 mm 2 / s, preferably 1.5 to 10 mm 2 / s, particularly preferably 2 to 5 mm 2.
  • S lubricating base oil is used.
  • the kinematic viscosity at 100 ° C. of the lubricating base oil is less than 1.5 mm 2 / s, the evaporation loss is large and the fatigue life of the metal may be reduced.
  • the kinematic viscosity at 100 ° C. exceeds 20 mm 2 / s, the viscosity effect is large, and the fuel saving effect is reduced.
  • Mineral oil or synthetic oil is used as the lubricating base oil.
  • a mixed base oil composed of the components (a-1) and (a-2) may be used in order to increase the fatigue resistance of the metal while maintaining a low viscosity.
  • the component (a-1) mineral oil or synthetic oil having a kinematic viscosity at 100 ° C. of 1.5 to 3 mm 2 / s is used. If the kinematic viscosity at 100 ° C. of the component (a-1) is less than 1.5 mm 2 / s, the evaporation loss may increase, and if the kinematic viscosity at 100 ° C.
  • the kinematic viscosity of the lubricating base oil (A) mixed with the component a-2) cannot be reduced, and fuel consumption may not be sufficiently achieved. Therefore, the kinematic viscosity at 100 ° C. of the component (a-1) is more preferably 1.5 to 2.5 mm 2 / s.
  • the component (a-2) mineral oil or synthetic oil having a kinematic viscosity at 100 ° C. of 5 to 20 mm 2 / s is used. If the kinematic viscosity at 100 ° C. is less than 5 mm 2 / s, the fatigue resistance of the lubricating oil may not be sufficiently improved.
  • the kinematic viscosity at 100 ° C. exceeds 20 mm 2 / s, the kinematic viscosity of the lubricating base oil (A) cannot be sufficiently reduced, and fuel saving may not be achieved. Therefore, the kinematic viscosity at 100 ° C. of the component (a-2) is more preferably 5 to 10 mm 2 / s, and further preferably 5 to 7 mm 2 / s.
  • mineral oils or synthetic oils that satisfy the respective kinematic viscosity conditions are used.
  • the mineral oil various conventionally known oils can be used, for example, paraffin-based mineral oil, intermediate-based mineral oil, naphthenic-based mineral oil, and the like. Specific examples include solvent refining and hydrorefining. Light neutral oil, medium neutral oil, heavy neutral oil or bright stock, and mineral oil obtained by isomerization of dewaxed wax or GTL WAX.
  • synthetic oil various conventionally known oils can be used.
  • examples include polyoxyalkylene glycol, neopentyl glycol, silicone oil, trimethylolpropane, pentaerythritol, and hindered ester.
  • mineral oils and synthetic oils can be used alone or in combination of two or more thereof, and one or more mineral oils and one or more synthetic oils may be used in combination.
  • the lubricating base oil, mineral oil and synthetic oil preferably satisfy the requirements for the respective kinematic viscosities and have the following properties.
  • the viscosity index is preferably 80 or more, more preferably 100 or more. If the viscosity index is 80 or more, the change in viscosity due to the change in oil temperature is small, and the oil film forming ability at high temperatures can be kept good.
  • the aromatic content (% C A ) is preferably 3 or less, preferably 2 or less, more preferably 1 or less, and particularly preferably 0.5 or less. % C if A is 3 or less, it is possible to increase the oxidation stability. Moreover, it is preferable that sulfur content is 0.01 mass% or less at the point which oxidation stability improves.
  • the lubricating base oil (A) of the present invention is a mixed base oil composed of the components (a-1) and (a-2), the components (a-1) and (a-2)
  • the mixing ratio is preferably 50 to 70% by mass for the former and 30 to 50% by mass for the latter on the basis of the total amount of the lubricating base oil.
  • a polymethacrylate viscosity index improver is used as the component (B).
  • the polymethacrylate viscosity index improver include so-called non-dispersed polymethacrylate and dispersed polymethacrylate.
  • the dispersed polymethacrylate include a copolymer of methacrylate and a nitrogen-containing monomer having an ethylenically unsaturated bond.
  • nitrogen-containing monomer having an ethylenically unsaturated bond examples include dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, morpholinomethyl methacrylate, morpholinoethyl methacrylate. , N-vinylpyrrolidone, and mixtures thereof.
  • Such polymethacrylate viscosity index improvers having a weight average molecular weight of 10,000 (10,000) to 1,000,000 (1 million) can be used singly or in combination.
  • the viscosity index of the composition can be effectively increased, helping to form an effective lubricating film even at high temperatures, suppressing the occurrence of metal fatigue, Suppresses the increase in viscosity at low temperatures and improves fuel economy.
  • polymethacrylate viscosity index improvers having a weight average molecular weight of 10,000 (10,000) to 50,000 (50,000) are preferable. If the weight average molecular weight is 10,000 or more, the effect of improving the viscosity index is exhibited. If the weight average molecular weight is 50,000 or less, good shear stability is exhibited, and the initial performance of the composition is maintained over a long period of time. Can be maintained.
  • the polymethacrylate viscosity index improver includes (b-1) a polymethacrylate viscosity index improvement of 10,000 to 50,000, and (b-2) a weight average molecular weight of 100,000 to 100. It is more preferable to add tens of polymethacrylate viscosity index improvers. By blending the component (b-2) together with the component (b-1), the viscosity index of the composition can be further increased while maintaining the shear stability performance.
  • the blending amount of the polymethacrylate viscosity index improver as the component (B) is not particularly limited, but is usually in the range of 1 to 20% by mass and more preferably in the range of 3 to 15% by mass based on the total amount of the composition. . If the blending amount of the component (B) is 1% by mass or more, an effect of improving the viscosity index is recognized, and if it is 20% by mass or less, a decrease in shear stability can be suppressed.
  • the mass ratio (b-1) :( b-2) is 5: 1 to 1: 5. A ratio of 4: 1 to 1: 4 is more preferable.
  • (b-1) :( b-2) is in a mass ratio of 5: 1 to 1: 5, it is possible to suppress a decrease in shear stability and enhance the effect of improving the viscosity index.
  • the general formula (1) having an acid value of 1.0 mgKOH / g or less.
  • S- (CH 2 CH 2 COOR) 2 (1) (In the formula, R represents a hydrocarbon group having 8 to 30 carbon atoms.) Is used.
  • the hydrocarbon group having 8 to 30 carbon atoms represented by R is 8 to 20 carbon atoms, more preferably 12 to 18 carbon atoms, particularly from the viewpoint of availability and solubility.
  • a hydrocarbon group having 12 to 15 carbon atoms is preferable, and a linear, branched, or cyclic alkyl group is preferable, and a linear or branched alkyl group is particularly preferable.
  • Such a sulfur compound can be synthesized, for example, from thiodipropionic acid and an alcohol having a hydrocarbon group having 8 to 30 carbon atoms.
  • sulfur compound represented by the general formula (1) examples include dioctyl thiodipropionate, di-2-ethylhexyl thiodipropionate, diisooctyl thiodipropionate, di-2,4 thiodipropionate.
  • the sulfur-based compound represented by the general formula (1) of the present invention needs to have an acid value of 1.0 mgKOH / g or less, that is, an acid value prepared to 1.0 mgKOH / g or less.
  • an acid value prepared to 1.0 mgKOH / g or less.
  • the sulfur compound is more preferably prepared with an acid value of 0.5 mgKOH / g or less.
  • the acid value is a value measured according to JIS K 2501.
  • a sulfur compound represented by the general formula (1) having an acid value of 1.0 mgKOH / g or less for example, thiodipropionic acid and carbonization of 8 to 30 carbon atoms are used as raw materials.
  • the synthesis may be carried out under the condition that the ratio of 1.0 mol of thiodipropionic acid and 2.0 mol of alcohol is used and the ratio of thiodipropionic acid does not exceed that of alcohol. .
  • the blending amount of the component (C) is not particularly limited, but is usually preferably in the range of 0.01 to 10% by mass, more preferably in the range of 0.05 to 5% by mass based on the total amount of the composition. The range of 1 to 3% by mass is particularly preferable. If the blending amount of the component (C) is 0.01% by mass or more, the dynamic friction coefficient is increased and the transmission torque capacity is increased, and if it is 10% by mass or less, the oxidation stability is not lowered. .
  • an alkaline earth metal detergent in order to further improve the friction characteristics, it is preferable to blend an alkaline earth metal detergent and a succinimide dispersant.
  • alkaline earth metal detergent alkaline earth metal sulfonate, alkaline earth metal phenate, alkaline earth metal salicylate, alkaline earth metal phosphonate and the like can be used.
  • one or more alkaline earth metal detergents selected from alkaline earth metal sulfonates, phenates and salicylates are preferred.
  • the alkaline earth metal calcium, magnesium, barium, strontium, and the like can be used, but calcium and magnesium are preferable from the viewpoint of availability and an effect of improving frictional properties, and calcium is particularly preferable.
  • these alkaline earth metal detergents may be neutral, basic, or overbased, but are preferably basic or overbased. Particularly preferred are those having a base number (perchloric acid method) of 150 to 700 mgKOH / g, more preferably 200 to 600 mgKOH / g. Accordingly, one or more alkaline earth metal detergents selected from calcium sulfonate, magnesium sulfonate, calcium phenate and calcium salicylate having a base number of 150 to 700 mg KOH / g are particularly suitable. Can be used.
  • the blending amount of these alkaline earth metal detergents is usually about 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the total amount of the composition.
  • succinimide dispersant an alkyl group or alkenyl group-substituted succinimide (monoimide type or bisimide type) having an average molecular weight of 1000 to 3500 and derivatives thereof are preferably used.
  • succinimide derivatives include boron-containing hydrocarbon-substituted alkyl groups or alkenyl group-substituted succinimides.
  • the blending amount of these succinimide dispersants is usually about 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the total amount of the composition.
  • an extreme pressure agent, an antiwear agent, an oiliness agent, an antioxidant, a rust inhibitor, a metal deactivator, an antifoaming agent, and the like can be further blended.
  • the extreme pressure agent and antiwear agent include organic compounds such as zinc dithiophosphate (ZnDTP), zinc dithiocarbamate (ZnDTC), sulfurized oxymolybdenum organophosphorodithioate (MoDTP), and sulfurized oxymolybdenum dithiocarbamate (MoDTC).
  • ZnDTP zinc dithiophosphate
  • ZnDTC zinc dithiocarbamate
  • MoDTP sulfurized oxymolybdenum organophosphorodithioate
  • MoDTC sulfurized oxymolybdenum dithiocarbamate
  • a metal compound is mentioned. These amounts are usually 0.05 to 5% by mass, preferably 0.1 to 3% by mass, based on the total amount of the lubricating oil composition.
  • oily agents examples include aliphatic saturated and unsaturated monocarboxylic acids such as stearic acid and oleic acid, polymerized fatty acids such as dimer acid and hydrogenated dimer acid, hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid, and lauryl.
  • Aliphatic saturated and unsaturated monoalcohols such as alcohol, oleyl alcohol, aliphatic saturated and unsaturated monoamines such as stearylamine and oleylamine, aliphatic saturated and unsaturated monocarboxylic amides such as lauric acid amide, oleic acid amide, etc.
  • a preferable blending amount of these oil-based agents is in a range of 0.01 to 10% by mass, particularly preferably in a range of 0.1 to 5% by mass based on the total amount of the lubricating oil composition.
  • antioxidants examples include amine-based antioxidants, phenol-based antioxidants, and sulfur-based antioxidants.
  • amine antioxidants include monoalkyl diphenylamines such as monooctyl diphenylamine and monononyl diphenylamine, 4,4′-dibutyldiphenylamine, 4,4′-dipentyldiphenylamine, 4,4′-dihexyldiphenylamine, 4, Polyalkyldiphenylamines such as 4'-diheptyldiphenylamine, 4,4'-dioctyldiphenylamine, dialkyldiphenylamines such as 4,4'-dinonyldiphenylamine, tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyldiphenylamine ⁇ -naphthylamine, phenyl- ⁇
  • phenolic antioxidant examples include monophenols such as 2,6-di-tert-butyl-4-methylphenol and 2,6-di-tert-butyl-4-ethylphenol, 4,4′- Examples include diphenols such as methylene bis (2,6-di-tert-butylphenol) and 2,2′-methylene bis (4-ethyl-6-tert-butylphenol).
  • sulfur-based antioxidant examples include phenothiazine, pentaerythritol-tetrakis- (3-laurylthiopropionate), bis (3,5-tert-butyl-4-hydroxybenzyl) sulfide, thiodiethylenebis (3- ( 3,5-di-tert-butyl-4-hydroxyphenyl)) propionate, 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazine-2- And methylamino) phenol.
  • These antioxidants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the blending amount is usually selected in the range of 0.01 to 10% by mass, preferably 0.03 to 5% by mass, based on the total amount of the lubricating oil composition.
  • rust preventive examples include alkyl or alkenyl succinic acid derivatives such as dodecenyl succinic acid half ester, octadecenyl succinic anhydride, dodecenyl succinic acid amide, sorbitan monooleate, glycerin monooleate, pentaerythritol monooleate, etc. And polyhydric alcohol partial esters, rosin amines, amines such as N-oleyl sarcosine, and dialkyl phosphite amine salts. These may be used singly or in combination of two or more.
  • a preferable blending amount of these rust preventives is in the range of 0.01 to 5% by mass, particularly preferably in the range of 0.05 to 2% by mass, based on the total amount of the lubricating oil composition.
  • the metal deactivator for example, benzotriazole-based, thiadiazole-based, gallic acid ester-based compounds, and the like can be used.
  • the preferred compounding amount of these metal deactivators is 0.01 to 0.5% by mass, particularly preferably 0.01 to 0.2% by mass based on the total amount of the lubricating oil composition.
  • antifoaming agents are liquid silicones, and include methylsilicones, fluorosilicones, and polyacrylates.
  • a preferable blending amount of these antifoaming agents is 0.0005 to 0.01% by mass based on the total amount of the lubricating oil composition.
  • the lubricating oil composition for an automatic transmission is a lubricating oil composition for an automatic transmission that has a large transmission torque capacity and good shift shock resistance and excellent fuel economy, and has a low viscosity and a high viscosity index.
  • Lubricating oil composition for an automatic transmission that has excellent shear stability and fatigue resistance (durability), high transmission torque capacity, excellent shift shock resistance, and excellent fuel economy It is. Therefore, the composition (lubricating oil composition for automatic transmission) of the present invention preferably has a kinematic viscosity at 100 ° C. of 7.0 mm 2 / s or less, and has a viscosity index of 230 or more, further 240 or more. It is preferable.
  • Examples 1 to 5 and Comparative Examples 1 to 5 A transmission oil composition was prepared using the base oil and additives shown in Table 1 and blended in the proportions shown in Table 1, and their properties and performance were measured. The results are shown in Table 1.
  • Mineral oil 1 60N hydrorefined oil, 100 ° C. kinematic viscosity 2.2 mm 2 / s, viscosity index 109,% Cp 79.1, density (15 ° C.) 0.8212 g / cm 3
  • Mineral oil 2 150N hydrorefined oil, 100 ° C.
  • the lubricating oil compositions of the present invention all have a ⁇ 1800 exceeding 0.130, a large transmission torque capacity, and at the same time ⁇ 200 / ⁇ 1800 is 0.00. It is 90 or less, and the shift shock prevention performance is good. Further, the kinematic viscosity at 100 ° C. after shearing is 4.8 mm 2 / s or more, which is excellent in shear stability, and the fatigue life in the FZG gear test is 80 hours or more, which is excellent in durability. Further, the composition has a high viscosity index of 230 or more. On the other hand, the compositions of Comparative Examples 1 and 2 that do not contain the component (C) of the present invention have a ⁇ 1800 of 0.125 or less, a small transmission torque capacity, and it is difficult to achieve a fuel saving problem. .
  • the lubricating oil composition for an automatic transmission is a lubricating oil composition for an automatic transmission which has a large transmission torque capacity and excellent shift shock resistance and excellent fuel economy, and has a low viscosity and a high viscosity index. Even if it is a lubricating oil, it is a lubricating oil composition for automatic transmissions that has excellent shear stability and fatigue resistance (durability), a large transmission torque capacity, and excellent shift shock resistance and fuel economy. is there. Therefore, it can be effectively used as a lubricating oil composition for an automatic transmission that can effectively contribute to fuel saving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

(A)100℃における動粘度が1.5~20mm2/sの潤滑油基油、(B)ポリメタクリレート系粘度指数向上剤、及び(C)酸価が1.0mgKOH/g以下である下記の一般式(1) S-(CH2CH2COOR)2 ・・・(1) (式中、Rは、炭素数8~30の炭化水素基を示す。) で表される硫黄系化合物を含むことを特徴とする自動変速機用潤滑油組成物により、伝達トルク容量が大きく、かつ耐変速ショック性が良好な、省燃費性に優れる自動変速機用潤滑油組成物を提供する、また、低粘度かつ高粘度指数の潤滑油であっても、せん断安定性及び耐疲労性(耐久性)に優れるとともに、伝達トルク容量が大きく、耐変速ショック性が良好な、省燃費性に優れる自動変速機用潤滑油組成物を提供する。

Description

自動変速機用潤滑油組成物
 本発明は自動変速機用潤滑油組成物に関し、さらに詳しくは、伝達トルク容量が大きくかつ耐変速ショック性が良好な、省燃費性に優れる自動変速機用潤滑油組成物に関するものである。
 近年、厳しさを増す環境問題への対応から、各技術分野で厳しい省燃費化の要求が高まっている。自動変速機用潤滑油についても、同様にさらなる省エネルギーへの寄与が強く求められている。
 自動変速機用潤滑油の省燃費化の手段としては、伝達トルク容量を大きくすること、すなわち湿式クラッチ部分でのエネルギーロスを抑制することが基本的に重要である。
 通常、伝達トルク容量は、走行中における湿式クラッチのすべりを小さくすることによって達成される。このことは、湿式クラッチ間の動摩擦係数(例えば、μ1800:1800rpm時の摩擦係数)が大きい潤滑油によって達成されることを意味している。したがって、そのような自動変速機用潤滑油を開発することが基本的に要求される。
 もちろん、変速ショックを小さくするために,(静摩擦係数)/(動摩擦係数)、例えば、μ200/μ1800を小さくすることも不可欠である。
 さらに、自動変速機用潤滑油の省燃費化の他の手段としては、潤滑油の低粘度化を図り攪拌抵抗を低減することによって省燃費性の向上を図る方法がある。
 しかしながら、潤滑油を低粘度化すると、高温領域においてさらに粘度低下を伴うことによって、潤滑油膜形成能力が大幅に低下することになる。その結果、自動変速機の摺動部材の金属疲労が発生し、そのことによって変速制御が不能となるなど、変速機の耐久性が維持できなくなる恐れが発生する。
 また、自動変速機では、低粘度の潤滑油は変速機の油圧制御部において油漏れを引起し、変速制御が不能となる恐れもある。
 このように、潤滑油の低粘度化による省燃費性の向上と自動変速機自体の耐疲労性(耐久性)の向上を両立させることは困難な課題である。
 さらに、自動変速機油は、使用温度範囲が広いため、粘度指数が高い潤滑油が要求されるが、せん断安定性が良好で、安定した粘度を維持できる潤滑油を得ることは困難である。
 従来、自動変速機油などの変速機用潤滑油については、例えば、低粘度であっても耐疲労性等に優れる変速機用潤滑油であるとして、低粘度基油(100℃における動粘度が1.5~6mm2/s)と側鎖に長鎖のアルキル基を含まないポリ(メタ)アクリレートを含む変速機用潤滑油組成物が開示されている(特許文献1参照)。
 しかし、このような組成物は、粘度指数が充分に高くない(170以下)ものであって、高温下において潤滑油の粘度低下が大きく、耐疲労性が低下する恐れがあり、また、低温下では潤滑油の粘度上昇が大きく省燃費性に劣る恐れもある。さらに、伝達トルク容量や変速ショック防止能などについては検討されておらず、更なる改良の余地がある。
特開2006-117852号公報
 本発明は、このような状況下で、伝達トルク容量が大きく、かつ耐変速ショック性が良好な、省燃費性に優れる自動変速機用潤滑油組成物を提供することを目的とするものである。
 また、本発明は、低粘度かつ高粘度指数の潤滑油であっても、せん断安定性及び耐疲労性(耐久性)に優れるとともに、伝達トルク容量が大きく、耐変速ショック性が良好な、省燃費性に優れる自動変速機用潤滑油組成物を提供することを目的とするものである。
 本発明者らは、前記の優れた性能を有する変速機用潤滑油組成物を開発すべく鋭意研究を重ねた結果、特定の潤滑油基油、特定の粘度指数向上剤及び特定の硫黄系化合物を含む組成物が、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、
(1)(A)100℃における動粘度が1.5~20mm2/sの潤滑油基油、(B)ポリメタクリレート系粘度指数向上剤、及び(C)酸価が1.0mgKOH/g以下である下記の一般式(1)
  S-(CH2CH2COOR)2    ・・・(1)
(式中、Rは、炭素数8~30の炭化水素基を示す。)
で表される硫黄系化合物を含むことを特徴とする自動変速機用潤滑油組成物、
(2)(C)の硫黄系化合物が、一般式(1)において、Rが炭素数12~15の直鎖状もしくは分岐状のアルキル基である前記(1)に記載の自動変速機用潤滑油組成物、
(3)(A)の潤滑油基油が、(a-1)100℃における動粘度が1.5~3mm2/sの鉱油もしくは合成油と(a-2)100℃における動粘度が5~20mm2/sの鉱油もしくは合成油との混合物である前記(1)又は(2)に記載の自動変速機用潤滑油組成物、
(4)(B)のポリメタクリレート系粘度指数向上剤が、(b-1)重量平均分子量1万~5万のポリメタクリレート系粘度指数向上剤である前記(1)~(3)のいずれかに記載の自動変速機用潤滑油組成物、
(5)(B)のポリメタクリレート系粘度指数向上剤が、(b-1)重量平均分子量が1万~5万のポリメタクリレート系粘度指数向上とともに、(b-2)重量平均分子量が10万~100万のポリメタクリレート系粘度指数向上剤を含む前記(1)~(4)のいずれかに記載の自動変速機用潤滑油組成物、
(6)アルカリ土類金属スルホネート、アルカリ土類金属フェネート及びアルカリ土類金属サリチレートの中から選ばれる一種又は二種以上のアルカリ土類金属系清浄剤、及びコハク酸イミド系分散剤を含む前記(1)~(5)のいずれかに記載の自動変速機用潤滑油組成物、
(7)組成物の粘度指数が230以上である前記(1)~(6)のいずれかに記載の自動変速機用潤滑油組成物、
を提供するものである。
 本発明によれば、伝達トルク容量が大きく、かつ耐変速ショック性が良好な、省燃費性に優れる自動変速機用潤滑油組成物を提供することができる。
 また、本発明によれば、低粘度かつ高粘度指数の潤滑油であっても、せん断安定性及び耐疲労性(耐久性)に優れるとともに、伝達トルク容量が大きく、かつ耐変速ショック性が良好な、省燃費性に優れる自動変速機用潤滑油組成物を提供することができる。
 本発明の自動変速機用潤滑油組成物においては、(A)100℃における動粘度が1.5~20mm2/s、好ましくは1.5~10mm2/s、特に好ましくは2~5mm2/sの潤滑油基油を用いる。潤滑油基油の100℃における動粘度が1.5mm2/s未満であると、蒸発損失が大きく、金属の疲労寿命を低下させる恐れがある。また、100℃における動粘度が20mm2/sを越えると粘性効果が大きいため、省燃費効果が低下する。潤滑油基油としては、鉱油もしくは合成油が用いられる。
 本発明における潤滑油基油としては、低粘度を維持しつつ、金属の耐疲労性を高めるために、(a-1)成分、及び(a-2)成分からなる混合基油を用いることが好ましい。
 前記(a-1)成分としては、100℃における動粘度が1.5~3mm2/sの鉱油または合成油を用いる。(a-1)成分の100℃における動粘度が1.5mm2/s未満であれば、蒸発損失が多くなる恐れがあり、また、100℃における動粘度が3mm2/sを越えると、(a-2)成分と混合した潤滑油基油(A)の動粘度を低減することができず、省燃費化を充分に達成できないことがある。したがって、(a-1)成分の100℃における動粘度は、1.5~2.5mm2/sであることがより好ましい。
 一方、(a-2)成分としては、100℃における動粘度が5~20mm2/sの鉱油または合成油を用いる。100℃における動粘度が5mm2/s未満では、潤滑油の耐疲労性を充分に高めることができないことがある。また、100℃における動粘度が20mm2/sを越えると、潤滑油基油(A)の動粘度を充分に低減することができず、省燃費化を達成できないことがある。したがって、(a-2)成分の100℃における動粘度は、5~10mm2/sであることがより好ましく、5~7mm2/sであることがさらに好ましい。
 前記(A)潤滑油基油、並びに(a-1)成分及び(a-2)成分としては、それぞれの動粘度の条件を満たす鉱油または合成油を用いる。
 ここで鉱油としては、従来公知の種々のものが使用可能であり、例えば、パラフィン基系鉱油、中間基系鉱油、ナフテン基系鉱油などが挙げられ、具体例としては、溶剤精製、水素化精製などによる軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油又はブライトストック、さらには、脱ろうワックスもしくはGTL WAXの異性化によって得られる鉱油などを挙げることができる。
 また、合成油としては、やはり従来公知の種々のものが使用可能であり、例えば、ポリα-オレフィン、ポリブテン、ポリオールエステル、二塩基酸エステル、リン酸エステル、ポリフェニルエーテル、アルキルベンゼン、アルキルナフタレン、ポリオキシアルキレングリコール、ネオペンチルグリコール、シリコーンオイル、トリメチロールプロパン、ペンタエリスリトール、更にはヒンダードエステルなどを挙げることができる。
 これらの鉱油、合成油は、単独で、あるいは二種以上組み合わせて使用することができ、鉱油一種以上と合成油一種以上とを組み合わせて使用してもよい。
 前記潤滑油基油、並びに鉱油及び合成油は、前記それぞれの動粘度の要件を満たすと共に以下の性状を有するものが好ましい。
 粘度指数が80以上であることが好ましく、100以上がより好ましい。粘度指数が80以上であれば、油温の変化による粘度変化が小さく、高温下における油膜形成能を良好に保つことができる。
 芳香族分(%CA)が3以下が好ましく、2以下、さらには1以下、特に0.5以下であることが好ましい。%CAが3以下であれば、酸化安定性を高めることができる。
 また、酸化安定性が向上する点で、硫黄分含有量が0.01質量%以下であることが好ましい。
 本発明の潤滑油基油(A)が、上記の(a-1)成分及び(a-2)成分からなる混合基油である場合の(a-1)成分と(a-2)成分の混合割合については、潤滑油基油全量規準で、前者が50~70質量%、後者が30~50質量%であることが好ましい。
 このような潤滑油基油(混合基油)を用いることにより、低粘度であっても耐疲労性を高く保つことができる。
 本発明においては、(B)成分として、ポリメタクリレート系粘度指数向上剤を用いる。ポリメタクリレート系粘度指数向上剤としては、いわゆる非分散型ポリメタクリレートや分散型ポリメタクリレートが含まれる。分散型ポリメタクリレートとしては、例えば、メタクリレートとエチレン性不飽和結合を有する含窒素単量体との共重合体を挙げることができる。前記エチレン性不飽和結合を有する含窒素単量体としては、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2-メチル-5-ビニルピリジン、モルホリノメチルメタクリレート、モルホリノエチルメタクリレート、N-ビニルピロリドン及びこれらの混合物等が挙げられる。
 このような、ポリメタクリレート系粘度指数向上剤は、重量平均分子量が、10000(1万)~1000000(100万)のものを一種又は二種以上を混合して用いることができる。
 ポリメタクリレート系粘度指数向上剤を配合することによって、組成物の粘度指数を効果的に高めることができ、高温下においても有効な潤滑膜の形成を助けて、金属疲労の発生を抑え、また、低温下における粘度の上昇を抑制し、省燃費性の向上をもたらす。
 前記ポリメタクリレート系粘度指数向上剤の中でも、(b-1)重量平均分子量10000(1万)~50000(5万)のポリメタクリレート系粘度指数向上剤が好ましい。重量平均分子量が1万以上であれば、粘度指数向上効果が発揮され、重量平均分子量が5万以下であれば、良好なせん断安定性を発現し、組成物の初期性能を長期間に亘って維持することができる。
 さらに、前記ポリメタクリレート系粘度指数向上剤としては、前記(b-1)重量平均分子量が1万~5万のポリメタクリレート系粘度指数向上とともに、(b-2)重量平均分子量が10万~100万のポリメタクリレート系粘度指数向上剤を配合することがより好ましい。(b-1)成分とともに(b-2)成分を配合することによって、せん断安定性能を維持しつつ、組成物の粘度指数をさらに高めることができる。
 (B)成分のポリメタクリレート系粘度指数向上剤の配合量は、特に制限はないが、通常、組成物全量規準で、1~20質量%の範囲が好ましく3~15質量%の範囲がより好ましい。(B)成分の配合量が、1質量%以上であれば、粘度指数向上効果が認められ、20質量%以下であれば、せん断安定性の低下を抑制することができる。
 また、(b-1)成分とともに(b-2)成分を配合して用いる場合は、(b-1):(b-2)が、質量比で5:1~1:5であることが好ましく、4:1~1:4であることがより好ましい。
 (b-1):(b-2)が質量比で5:1~1:5であれば、せん断安定性の低下を抑制し、かつ粘度指数向上効果を高めることができる。
 本発明においては、(C)成分として、酸価が1.0mgKOH/g以下である一般式(1)
  S-(CH2CH2COOR)2    ・・・(1)
(式中、Rは、炭素数8~30の炭化水素基を示す。)
で表される硫黄系化合物を用いる。
 前記一般式(1)において、Rで示される炭素数8~30の炭化水素基としては、入手の容易性及び溶解性の観点から、炭素数8~20、さらには炭素数12~18、特に炭素数12~15の炭化水素基が好ましく、中でも直鎖状、分岐状、環状のアルキル基、特に、直鎖状もしくは分岐状のアルキル基が好ましい。
 このような、硫黄系化合物は、例えば、チオジプロピオン酸と炭素数8~30の炭化水素基を有するアルコールとから合成することができる。
 前記一般式(1)で表される硫黄系化合物の具体例としては、チオジプロピオン酸ジオクチル、チオジプロピオン酸ジ-2-エチルヘキシル、チオジプロピオン酸ジイソオクチル、チオジプロピオン酸ジ-2,4,4、-トリメチルペンチル、チオジプロピオン酸ジノニル、チオジプロピオン酸ジイソノニル、チオジプロピオン酸ジデシル、チオジプロピオン酸ジイソデシル、チオジプロピオン酸ジウンデシル、チオジプロピオン酸ジイソウンデシル、チオジプロピオン酸ジドデシル、チオジプロピオン酸ジイソドデシル、チオジプロピオン酸ジトリデシル、チオジプロピオン酸ジイソトリデシル、チオジプロピオン酸ジテトラデシル、チオジプロピオン酸ジイソテトラデシル、チオジプロピオン酸ジペンタデシル、チオジプロピオン酸ジイソペンタデシル、チオジプロピオン酸ジヘキサデシル、チオジプロピオン酸ジイソヘキサデシル、チオジプロピオン酸ジヘプタデシル、チオジプロピオン酸ジイソヘプタデシル、チオジプロピオン酸ジオクタデシル、チオジプロピオン酸ジイソオクタデシル、チオジプロピオン酸ジイコシル、チオジプロピオン酸ジイソイコシルなどの分岐鎖を有するアルキル基が挙げられる。
 本発明の一般式(1)で表される硫黄系化合物は、酸価が1.0mgKOH/g以下のもの、すなわち酸価を1.0mgKOH/g以下に調製したものであることを要する。酸価が1.0mgKOH/gを越えるものは、組成物の動摩擦係数を高める効果が低下し、充分な伝達トルク容量を得ることができない。硫黄系化合物は、酸価が0.5mgKOH/g以下に調製されたものがより好ましい。
 なお、酸価は、JIS K 2501によって測定された値である。
 ここで、一般式(1)で表される硫黄系化合物の酸価が1.0mgKOH/g以下のものを得る方法としては、例えば、原料として、チオジプロピオン酸と炭素数8~30の炭化水素基を有するアルコールとを用いて合成する場合に、チオジプロピオン酸1.0モルとアルコール2.0モルの比率とし、チオジプロピオン酸の比率がアルコールより過剰にならない条件で合成すればよい。
 前記(C)成分の配合量としては、特に制限はないが、通常組成物全量規準で、0.01~10質量%の範囲が好ましく、0.05~5質量%の範囲がより好ましく、0.1~3質量%の範囲が特に好ましい。(C)成分の配合量が、0.01質量%以上であれば、動摩擦係数が高められ伝達トルク容量の増大が認められ、10質量%以下であれば、酸化安定性が低下する恐れもない。
 本発明においては、さらに、摩擦特性を向上するために、アルカリ土類金属系清浄剤、及びコハク酸イミド系分散剤を配合することが好ましい。
 前記アルカリ土類金属系清浄剤としては、アルカリ土類金属スルホネート、アルカリ土類金属フェネート、アルカリ土類金属サリチレート、アルカリ土類金属ホスホネートなどが使用できる。中でも、アルカリ土類金属のスルホネート、フェネート及びサリチレートの中から選ばれる一種又は二種以上のアルカリ土類金属系清浄剤が好ましい。
 ここで、アルカリ土類金属としては、カルシウム、マグネシウム、バリウム、ストロンチウムなどが使用できるが、入手の容易性及び摩擦特性向上効果の観点で、カルシウムやマグネシウムが好ましく、特に、カルシウムが好ましい。
 また、これらのアルカリ土類金属系清浄剤は、中性、塩基性、過塩基性のいずれであっても良いが、塩基性や過塩基性のものが好ましい。特に塩基価(過塩素酸法)が150~700mgKOH/g、さらには200~600mgKOH/gのものがより好ましい。
 したがって、いずれも塩基価が150~700mgKOH/gのカルシウムスルホネート、マグネシウムスルホネート、カルシウムフェネート及びカルシウムサリチレートの中から選ばれる一種又は二種以上のアルカリ土類金属清浄剤が特に好適なものとして用いることができる。
 これらアルカリ土類金属清浄剤の配合量は、組成物全量基準で、通常の0.05~10質量%程度であり、好ましくは0.1~5質量%である。
 前記コハク酸イミド系分散剤としては、平均分子量1000~3500のアルキル基又はアルケニル基置換コハク酸イミド(モノイミド型、もしくはビスイミド型)及びその誘導体を用いることが好ましい。
 前記コハク酸イミドの誘導体としては、例えば、ホウ素含有炭化水素置換アルキル基又はアルケニル基置換コハク酸イミドが挙げられる。
 これらコハク酸イミド系分散剤の配合量は、組成物全量基準で、通常の0.05~10質量%程度であり、好ましくは0.1~5質量%である。
 本発明においては、さらに、極圧剤、耐摩耗剤、油性剤、酸化防止剤、防錆剤、金属不活性化剤及び消泡剤などを配合することができる。
 前記極圧剤、耐摩耗剤としては、例えば、ジチオリン酸亜鉛(ZnDTP)、ジチオカルバミン酸亜鉛(ZnDTC)、硫化オキシモリブデンオルガノホスホロジチオエート(MoDTP)、硫化オキシモリブデンジチオカルバメート(MoDTC)などの有機金属系化合物が挙げられる。これらの配合量は、潤滑油組成物全量基準で、通常0.05~5質量%、好ましくは0.1~3質量%である。
 また、油性剤としては、ステアリン酸、オレイン酸などの脂肪族飽和及び不飽和モノカルボン酸、ダイマー酸、水添ダイマー酸などの重合脂肪酸、リシノレイン酸、12-ヒドロキシステアリン酸などのヒドロキシ脂肪酸、ラウリルアルコール、オレイルアルコールなどの脂肪族飽和及び不飽和モノアルコール、ステアリルアミン、オレイルアミンなどの脂肪族飽和及び不飽和モノアミン、ラウリン酸アミド、オレイン酸アミドなどの脂肪族飽和及び不飽和モノカルボン酸アミドなどが挙げられる。
 これらの油性剤の好ましい配合量は、潤滑油組成物全量基準で0.01~10質量%の範囲であり、0.1~5質量%の範囲が特に好ましい。
 酸化防止剤の例としては、アミン系酸化防止剤、フェノール系酸化防止剤及び硫黄系酸化防止剤などが挙げられる。
 アミン系酸化防止剤としては、例えば、モノオクチルジフェニルアミン、モノノニルジフェニルアミンなどのモノアルキルジフェニルアミン系、4,4’-ジブチルジフェニルアミン、4,4’-ジペンチルジフェニルアミン、4,4’-ジヘキシルジフェニルアミン、4,4’-ジヘプチルジフェニルアミン、4,4’-ジオクチルジフェニルアミン、4,4’-ジノニルジフェニルアミンなどのジアルキルジフェニルアミン系、テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系、α-ナフチルアミン、フェニル-α-ナフチルアミン、ブチルフェニル-α-ナフチルアミン、ペンチルフェニル-α-ナフチルアミン、ヘキシルフェニル-α-ナフチルアミン、ヘプチルフェニル-α-ナフチルアミン、オクチルフェニル-α-ナフチルアミン、ノニルフェニル-α-ナフチルアミンなどのナフチルアミン系を挙げることができ、中でもジアルキルジフェニルアミン系ものが好ましい。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノールなどのモノフェノール系、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)などのジフェノール系を挙げることができる。
 硫黄系酸化防止剤としては、例えばフェノチアジン、ペンタエリスリトール-テトラキス-(3-ラウリルチオプロピオネート)、ビス(3,5-tert-ブチル-4-ヒドロキシベンジル)スルフィド、チオジエチレンビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル))プロピオネート、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-メチルアミノ)フェノールなどが挙げられる。
 これらの酸化防止剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その配合量は、潤滑油組成物全量基準で、通常0.01~10質量%、好ましくは0.03~5質量%の範囲で選定される。
 防錆剤としては、例えば、ドデセニルコハク酸ハーフエステル、オクタデセニルコハク酸無水物、ドデセニルコハク酸アミドなどのアルキル又はアルケニルコハク酸誘導体、ソルビタンモノオレエート、グリセリンモノオレエート、ペンタエリスリトールモノオレエートなどの多価アルコール部分エステル、ロジンアミン、N-オレイルザルコシンなどのアミン類、ジアルキルホスファイトアミン塩等が挙げられる。これらは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 これら防錆剤の好ましい配合量は、潤滑油組成物全量基準で0.01~5質量%の範囲であり、0.05~2質量%の範囲が特に好ましい。
 金属不活性化剤としては、例えば、ベンゾトリアゾール系、チアジアゾール系、没食子酸エステル系の化合物等が使用可能である。これら金属不活性化剤の好ましい配合量は、潤滑油組成物全量基準で0.01~0.5質量%であり、0.01~0.2質量%の範囲が特に好ましい。
 消泡剤の例としては、液状シリコーンが適しており、メチルシリコーン、フルオロシリコーン、ポリアクリレートが挙げられる。
 これら消泡剤の好ましい配合量は、潤滑油組成物全量基準で0.0005~0.01質量%である。
 本発明の自動変速機用潤滑油組成物は、伝達トルク容量が大きく、かつ耐変速ショック性が良好な省燃費性に優れる自動変速機用潤滑油組成物であるとともに、低粘度かつ高粘度指数の潤滑油であっても、せん断安定性及び耐疲労性(耐久性)に優れるとともに、伝達トルク容量が大きく、かつ耐変速ショック性が良好な省燃費性に優れる自動変速機用潤滑油組成物である。
 したがって、本発明の組成物(自動変速機用潤滑油組成物)は、100℃における動粘度が7.0mm2/s以下であることが好ましく、粘度指数が230以上、さらには240以上であることが好ましい。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、基油及び組成物の物性は、下記の方法に従って求めた。
<基油及び潤滑油組成物>
(1)動粘度(40℃、100℃)
 JIS K 2283に準拠して測定した。
(2)粘度指数(VI)
 JIS K 2283に準拠して測定した。
(3)硫黄分含有量
 JIS K 2541に準拠して測定した。
<潤滑油組成物>
(4)せん断安定性
 DIN 52350-6に準拠し、KRLせん断試験機を用いて96時間せん断後の組成物の100℃動粘度を測定した。
(5)歯車耐久試験(疲労寿命)
 FZG歯車試験により、下記の実験条件、及び評価基準で疲労寿命を評価した。
(実験条件);
   ならし運転:荷重6ステージ、油温60℃、実験時間2時間
   本運転  :荷重9ステージ、油温90℃
(評価基準)
  5mmの疲労痕が発生するまでの時間(hrs)を疲労寿命として測定した。
(6)変速クラッチ摩擦特性
 SAENo.2試験機を用い、JASO規格M348-2002に準拠し、下記の実験条件で、5000サイクルの摩擦実験を行った。
(実験条件)
   面圧   :1MPa
   油温   :100℃
   回転数  :3600rpm
   摩擦材  :セルロース系
   耐久サイクル:5000
(評価方法)
 5000サイクル終了時のμ1800,μ200を測定し、μ200/μ1800を算出した。
μ1800が大きい程、伝達トルク容量が大きく、μ200/μ1800が小さい程、変速ショック防止性が良好である。
 実施例1~5及び比較例1~5
 第1表に示す基油及び添加剤を用い、第1表に示す割合で配合して、変速機油組成物を調製し、その性状及び性能を測定した。結果を第1表に示す。
Figure JPOXMLDOC01-appb-T000001
[注]
1)鉱油1:60N水素化精製油、100℃動粘度2.2mm2/s、粘度指数109、%Cp79.1、密度(15℃)0.8212g/cm3
2)鉱油2:150N水素化精製油、100℃動粘度6.0mm2/s、粘度指数121,%Cp79.2,密度(15℃)0.8423g/cm3
3)PMA1:ポリメタクリレート(非分散型)、重量平均分子量30000
4)PMA2:ポリメタクリレート(非分散型)、重量平均分子量120000
5)PMA3:ポリメタクリレート(非分散型)、重量平均分子量270000
6)PMA4:ポリメタクリレート(非分散型)、重量平均分子量500000
7)硫黄化合物1:ジチオプロピオン酸トリデシル、酸価0.3mgKOH/g
8)硫黄化合物2:ジチオプロピオン酸トリデシル、酸価0.8mgKOH/g
9)硫黄化合物3:ジチオプロピオン酸トリデシル、酸価1.2mgKOH/g
10)その他の添加剤
 酸化防止剤(フェノール系及びアミン系の混合物)、塩基価300mgKOH/gのCaスルフォネート、ポリブテニルコハク酸イミド、金属不活性化剤、消泡剤等を含む。
 第1表から分かるように、本発明の潤滑油組成物(実施例1~5)は、いずれもμ1800が0.130を超え、伝達トルク容量が大きく、同時にμ200/μ1800が0.90以下であり、変速シヨック防止性能が良好である。また、せん断後の100℃動粘度が4.8mm2/s以上でありせん断安定に優れ、かつFZG歯車試験における疲労寿命が80時間以上であって耐久性にも優れる。さらに、組成物の粘度指数が高く230以上である。
 これに対し、本発明の(C)成分を配合しない比較例1,2の組成物は、μ1800が0.125以下で伝達トルク容量が小さく、省燃費の課題を達成することが困難である。
 本発明の自動変速機用潤滑油組成物は、伝達トルク容量が大きく、かつ耐変速ショック性が良好な省燃費性に優れる自動変速機用潤滑油組成物であり、低粘度かつ高粘度指数の潤滑油であっても、せん断安定性及び耐疲労性(耐久性)に優れるとともに、伝達トルク容量が大きく、かつ耐変速ショック性が良好な省燃費性に優れる自動変速機用潤滑油組成物である。
 したがって、省燃費化に効果的に寄与できる自動変速機用潤滑油組成物として、有効に利用できる。

Claims (7)

  1.  (A)100℃における動粘度が1.5~20mm2/sの潤滑油基油、(B)ポリメタクリレート系粘度指数向上剤、及び(C)酸価が1.0mgKOH/g以下である下記の一般式(1)
      S-(CH2CH2COOR)2    ・・・(1)
    (式中、Rは、炭素数8~30の炭化水素基を示す。)
    で表される硫黄系化合物を含むことを特徴とする自動変速機用潤滑油組成物。
  2.  (C)の硫黄系化合物が、前記一般式(1)において、Rが炭素数12~15の直鎖状もしくは分岐状のアルキル基である請求項1に記載の自動変速機用潤滑油組成物。
  3.  (A)の潤滑油基油が、(a-1)100℃における動粘度が1.5~3mm2/sの鉱油もしくは合成油と(a-2)100℃における動粘度が5~20mm2/sの鉱油もしくは合成油との混合物である請求項1又は2に記載の自動変速機用潤滑油組成物。
  4.  (B)のポリメタクリレート系粘度指数向上剤が、(b-1)重量平均分子量1万~5万のポリメタクリレート系粘度指数向上剤である請求項1~3のいずれかに記載の自動変速機用潤滑油組成物。
  5.  (B)のポリメタクリレート系粘度指数向上剤が、(b-1)重量平均分子量が1万~5万のポリメタクリレート系粘度指数向上とともに、(b-2)重量平均分子量が10万~100万のポリメタクリレート系粘度指数向上剤を含む請求項1~4のいずれかに記載の自動変速機用潤滑油組成物。
  6.  アルカリ土類金属スルホネート、アルカリ土類金属フェネート及びアルカリ土類金属サリチレートの中から選ばれる一種又は二種以上のアルカリ土類金属系清浄剤、及びコハク酸イミド系分散剤を含む請求項1~5のいずれかに記載の自動変速機用潤滑油組成物。
  7.  組成物の粘度指数が230以上である請求項1~6のいずれかに記載の自動変速機用潤滑油組成物。
PCT/JP2010/051124 2009-02-02 2010-01-28 自動変速機用潤滑油組成物 WO2010087398A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10735863.2A EP2392637B1 (en) 2009-02-02 2010-01-28 Lubricating oil composition for automatic transmission
CN201080007088XA CN102300971A (zh) 2009-02-02 2010-01-28 自动变速机用润滑油组合物
JP2010548549A JP5629587B2 (ja) 2009-02-02 2010-01-28 自動変速機用潤滑油組成物
US13/147,040 US9347018B2 (en) 2009-02-02 2010-01-28 Lubricating oil composition for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009021831 2009-02-02
JP2009-021831 2009-02-02

Publications (1)

Publication Number Publication Date
WO2010087398A1 true WO2010087398A1 (ja) 2010-08-05

Family

ID=42395656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051124 WO2010087398A1 (ja) 2009-02-02 2010-01-28 自動変速機用潤滑油組成物

Country Status (5)

Country Link
US (1) US9347018B2 (ja)
EP (1) EP2392637B1 (ja)
JP (1) JP5629587B2 (ja)
CN (2) CN106190436A (ja)
WO (1) WO2010087398A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111795A1 (ja) * 2010-03-12 2011-09-15 出光興産株式会社 潤滑油組成物
WO2012147732A1 (ja) * 2011-04-25 2012-11-01 株式会社Adeka 潤滑油添加剤組成物および潤滑油添加剤組成物の保存安定性を向上させる方法
EP2690163A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Lubricating oil composition
WO2014142230A1 (ja) * 2013-03-15 2014-09-18 出光興産株式会社 潤滑油組成物
JP2016216683A (ja) * 2015-05-26 2016-12-22 コスモ石油ルブリカンツ株式会社 動力伝達装置用潤滑油組成物
JP2018039943A (ja) * 2016-09-09 2018-03-15 昭和シェル石油株式会社 自動変速機用潤滑油組成物
WO2020171188A1 (ja) 2019-02-20 2020-08-27 Jxtgエネルギー株式会社 変速機用潤滑油組成物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5965139B2 (ja) * 2011-12-06 2016-08-03 出光興産株式会社 潤滑油組成物
JP6702611B2 (ja) 2016-03-04 2020-06-03 出光興産株式会社 潤滑油組成物、潤滑方法、及び変速機
JP6702612B2 (ja) 2016-03-04 2020-06-03 出光興産株式会社 潤滑油組成物、潤滑方法、及び変速機
JP6810657B2 (ja) * 2017-05-30 2021-01-06 シェルルブリカンツジャパン株式会社 自動変速機用潤滑油組成物
EP3935143B1 (en) * 2019-03-05 2023-11-29 Dow Global Technologies Llc Improved hydrocarbon lubricant compositions and method to make them
CN110951529B (zh) * 2019-12-24 2022-09-09 欧陆宝(天津)新材料科技有限公司 一种高铁电机车宽粘温减震器油及其制备方法
CN113025407A (zh) * 2021-01-25 2021-06-25 广州科卢斯流体科技有限公司 一种智能交通控制系统用的传动油

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392808A (en) * 1977-01-21 1978-08-15 Shell Int Research Lubricating oil compositions
JPH09194868A (ja) * 1996-01-16 1997-07-29 Nippon Oil Co Ltd 潤滑油組成物
JPH09263782A (ja) * 1996-03-28 1997-10-07 Idemitsu Kosan Co Ltd 無段変速機油組成物
JPH09328697A (ja) * 1996-06-12 1997-12-22 Idemitsu Kosan Co Ltd 自動変速機用潤滑油組成物
JPH10279980A (ja) * 1997-04-04 1998-10-20 Nippon Oil Co Ltd 潤滑油組成物
JP2004051758A (ja) * 2002-07-19 2004-02-19 Asahi Denka Kogyo Kk 硫黄含量の高い鉱油を基油とする潤滑油組成物
WO2004074414A1 (ja) * 2003-02-21 2004-09-02 Nippon Oil Corporation 変速機用潤滑油組成物
WO2005078054A1 (en) * 2004-02-03 2005-08-25 Chemtura Corporation Lubricant compositions comprising an antioxidant blend
JP2006117852A (ja) 2004-10-22 2006-05-11 Nippon Oil Corp 変速機用潤滑油組成物
WO2006073198A1 (ja) * 2005-01-07 2006-07-13 Nippon Oil Corporation 潤滑油基油、内燃機関用潤滑油組成物及び駆動伝達装置用潤滑油組成物
JP2008179662A (ja) * 2007-01-23 2008-08-07 Cosmo Sekiyu Lubricants Kk 自動変速機用潤滑油組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912212A (en) 1995-12-28 1999-06-15 Nippon Oil Co., Ltd. Lubricating oil composition
JPH09264782A (ja) 1996-03-28 1997-10-07 Minolta Co Ltd 2次元配光分布測定装置及び2次元配光分布測定用光学系
US6746993B2 (en) * 2001-04-06 2004-06-08 Sanyo Chemical Industries, Ltd. Viscosity index improver and lube oil containing the same
JP3921178B2 (ja) * 2003-02-21 2007-05-30 新日本石油株式会社 変速機用潤滑油組成物
US7572361B2 (en) * 2004-05-19 2009-08-11 Chevron U.S.A. Inc. Lubricant blends with low brookfield viscosities
US20070293408A1 (en) * 2005-03-11 2007-12-20 Chevron Corporation Hydraulic Fluid Compositions and Preparation Thereof
JP5571290B2 (ja) 2008-02-14 2014-08-13 出光興産株式会社 潤滑油組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392808A (en) * 1977-01-21 1978-08-15 Shell Int Research Lubricating oil compositions
JPH09194868A (ja) * 1996-01-16 1997-07-29 Nippon Oil Co Ltd 潤滑油組成物
JPH09263782A (ja) * 1996-03-28 1997-10-07 Idemitsu Kosan Co Ltd 無段変速機油組成物
JPH09328697A (ja) * 1996-06-12 1997-12-22 Idemitsu Kosan Co Ltd 自動変速機用潤滑油組成物
JPH10279980A (ja) * 1997-04-04 1998-10-20 Nippon Oil Co Ltd 潤滑油組成物
JP2004051758A (ja) * 2002-07-19 2004-02-19 Asahi Denka Kogyo Kk 硫黄含量の高い鉱油を基油とする潤滑油組成物
WO2004074414A1 (ja) * 2003-02-21 2004-09-02 Nippon Oil Corporation 変速機用潤滑油組成物
WO2005078054A1 (en) * 2004-02-03 2005-08-25 Chemtura Corporation Lubricant compositions comprising an antioxidant blend
JP2006117852A (ja) 2004-10-22 2006-05-11 Nippon Oil Corp 変速機用潤滑油組成物
WO2006073198A1 (ja) * 2005-01-07 2006-07-13 Nippon Oil Corporation 潤滑油基油、内燃機関用潤滑油組成物及び駆動伝達装置用潤滑油組成物
JP2008179662A (ja) * 2007-01-23 2008-08-07 Cosmo Sekiyu Lubricants Kk 自動変速機用潤滑油組成物

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309481B2 (en) 2010-03-12 2016-04-12 Idemitsu Kosan Co., Ltd. Lubricant composition
WO2011111795A1 (ja) * 2010-03-12 2011-09-15 出光興産株式会社 潤滑油組成物
EP2690163A4 (en) * 2011-03-25 2014-10-22 Jx Nippon Oil & Energy Corp LUBRICATING OIL COMPOSITION
EP2690163A1 (en) * 2011-03-25 2014-01-29 JX Nippon Oil & Energy Corporation Lubricating oil composition
US9255237B2 (en) 2011-04-25 2016-02-09 Adeka Corporation Lubricating oil additive composition and method for improving storage stability of lubricating oil additive composition
EP2703475A1 (en) * 2011-04-25 2014-03-05 Adeka Corporation Lubricating oil additive composition and method for improving storage stability of lubricating oil additive composition
EP2703475A4 (en) * 2011-04-25 2014-11-05 Adeka Corp LUBRICATING OIL ADDITIVE COMPOSITION AND METHOD FOR ENHANCING STORAGE STABILITY OF THE LUBRICATING OIL ADDITIVE COMPOSITION
JP2012229292A (ja) * 2011-04-25 2012-11-22 Adeka Corp 潤滑油添加剤組成物および潤滑油添加剤組成物の保存安定性を向上させる方法
WO2012147732A1 (ja) * 2011-04-25 2012-11-01 株式会社Adeka 潤滑油添加剤組成物および潤滑油添加剤組成物の保存安定性を向上させる方法
WO2014142230A1 (ja) * 2013-03-15 2014-09-18 出光興産株式会社 潤滑油組成物
JP2014177605A (ja) * 2013-03-15 2014-09-25 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2016216683A (ja) * 2015-05-26 2016-12-22 コスモ石油ルブリカンツ株式会社 動力伝達装置用潤滑油組成物
JP2018039943A (ja) * 2016-09-09 2018-03-15 昭和シェル石油株式会社 自動変速機用潤滑油組成物
WO2020171188A1 (ja) 2019-02-20 2020-08-27 Jxtgエネルギー株式会社 変速機用潤滑油組成物
US11560527B2 (en) 2019-02-20 2023-01-24 Eneos Corporation Lubricating oil composition for transmission

Also Published As

Publication number Publication date
US20110294708A1 (en) 2011-12-01
JPWO2010087398A1 (ja) 2012-08-02
EP2392637B1 (en) 2017-08-09
US9347018B2 (en) 2016-05-24
CN102300971A (zh) 2011-12-28
EP2392637A4 (en) 2013-03-20
CN106190436A (zh) 2016-12-07
JP5629587B2 (ja) 2014-11-19
EP2392637A1 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP5629587B2 (ja) 自動変速機用潤滑油組成物
JP5324748B2 (ja) 潤滑油組成物
KR101420890B1 (ko) 윤활유 조성물
JP5715321B2 (ja) 潤滑油組成物
WO2014077090A1 (ja) グリース組成物
JP2009096925A (ja) 自動変速機油及びその製造方法
JP6551727B2 (ja) 潤滑油組成物
WO2009090914A1 (ja) 潤滑油組成物および無段変速機
JP6088305B2 (ja) 消泡剤組成物、潤滑油組成物及びその製造方法
JP5184214B2 (ja) 金属ベルト式無段変速機用潤滑油組成物
JP5551330B2 (ja) 潤滑油組成物
WO2021177441A1 (ja) 潤滑油組成物、及び潤滑油組成物の使用方法
WO2020213644A1 (ja) 変速機用潤滑油組成物
WO2015034091A1 (ja) 変速機油
WO2015034090A1 (ja) 変速機油
WO2015034089A1 (ja) 変速機油
JP5122353B2 (ja) ウォームギヤ油組成物およびウォームギヤユニット
WO2019098098A1 (ja) 緩衝器用潤滑油組成物
WO2022209962A1 (ja) 潤滑油組成物
WO2021010265A1 (ja) 潤滑油組成物
WO2014179726A1 (en) Diester-based engine oil formulations with improved low noack and cold flow properties

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007088.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548549

Country of ref document: JP

Ref document number: 13147040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010735863

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010735863

Country of ref document: EP